Browsing by Author "Komarc, Martin"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemDeep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers(MDPI, 2019-09-16) Pelclová, Daniela; Ždímal, Vladimír; Komarc, Martin; Vlčková, Štěpánka; Fenclová, Zdenka; Ondráček, Jakub; Schwarz, Jaroslav; Koštejn, Martin; Kačer, Petr; Dvořáčková, Štěpánka; Popov, Alexey; Klusáčková, Pavlína; Zakharov, Sergey; Bello, DhimiterThousands of researchers and workers worldwide are employed in nanocomposites manufacturing, yet little is known about their respiratory health. Aerosol exposures were characterized using real time and integrated instruments. Aerosol mass concentration ranged from 0.120 mg/m3 to 1.840 mg/m3 during nanocomposite machining processes; median particle number concentration ranged from 4.8 × 104 to 5.4 × 105 particles/cm3 . The proportion of nanoparticles varied by process from 40 to 95%. Twenty employees, working in nanocomposite materials research were examined pre-shift and post-shift using spirometry and fractional exhaled nitric oxide (FeNO) in parallel with 21 controls. Pro-inflammatory leukotrienes (LT) type B4, C4, D4, and E4; tumor necrosis factor (TNF); interleukins; and anti-inflammatory lipoxins (LXA4 and LXB4) were analyzed in their exhaled breath condensate (EBC). Chronic bronchitis was present in 20% of researchers, but not in controls. A significant decrease in forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) was found in researchers post-shift (p < 0.05). Post-shift EBC samples were higher for TNF (p < 0.001), LTB4 (p < 0.001), and LTE4 (p < 0.01) compared with controls. Nanocomposites production was associated with LTB4 (p < 0.001), LTE4 (p < 0.05), and TNF (p < 0.001), in addition to pre-shift LTD4 and LXB4 (both p < 0.05). Spirometry documented minor, but significant, post-shift lung impairment. TNF and LTB4 were the most robust markers of biological effects. Proper ventilation and respiratory protection are required during nanocomposites processing.
- ItemMarkers of Oxidative Stress in the Exhaled Breath Condensate of Workers Handling Nanocomposites(MDPI, 2019-08-10) Pelclová, Daniela; Ždímal, Vladimír; Schwarz, Jaroslav; Dvořáčková, Štěpánka; Komarc, Martin; Ondráček, Jakub; Koštejn, Martin; Kačer, Petr; Vlčková, Štěpánka; Fenclová, Zdenka; Popov, Alexey; Lischková, Lucie; Zakharov, Sergey; Bello, DhimiterResearchers in nanocomposite processing may inhale a variety of chemical agents, including nanoparticles. This study investigated airway oxidative stress status in the exhaled breath condensate (EBC). Nineteen employees (42.4 ± 11.4 y/o), working in nanocomposites research for 18.0 ± 10.3 years were examined pre-shift and post-shift on a random workday, together with nineteen controls (45.5 ± 11.7 y/o). Panels of oxidative stress biomarkers derived from lipids, nucleic acids, and proteins were analyzed in the EBC. Aerosol exposures were monitored during three major nanoparticle generation operations: smelting and welding (workshop 1) and nanocomposite machining (workshop 2) using a suite of real-time and integrated instruments. Mass concentrations during these operations were 0.120, 1.840, and 0.804 mg/m3 , respectively. Median particle number concentrations were 4.8 × 104 , 1.3 × 105 , and 5.4 × 105 particles/cm3 , respectively. Nanoparticles accounted for 95, 40, and 61%, respectively, with prevailing Fe and Mn. All markers of nucleic acid and protein oxidation, malondialdehyde, and aldehydes C6–C13 were elevated, already in the pre-shift samples relative to controls in both workshops. Significant post-shift elevations were documented in lipid oxidation markers. Significant associations were found between working in nanocomposite synthesis and EBC biomarkers. More research is needed to understand the contribution of nanoparticles from nanocomposite processing in inducing oxidative stress, relative to other co-exposures generated during welding, smelting, and secondary oxidation processes, in these workshops.
- ItemThe repeated cytogenetic analysis of subjects occupationally exposed to nanoparticles: a pilot study(NLM (Medline), 2019-01-01) Rossnerová, Andrea; Pelclová, Daniela; Ždímal, Vladimír; Rossner, Pavel; Elzeinová, Fatima; Vrbová, Kristýna; Topinka, Jan; Schwarz, Jaroslav; Ondráček, Jakub; Koštejn, Martin; Komarc, Martin; Vlčková, Štěpánka; Fenclová, Zdenka; Dvořáčková, ŠtěpánkaThe application of nanomaterials has been rapidly increasing during recent years. Inhalation exposure to nanoparticles (NP) may result in negative toxic effects but there is a critical lack of human studies, especially those related to possible DNA alterations. We analyzed pre-shift and post-shift a group of nanocomposite researchers with a long-term working background (17.8 ± 10.0 years) and matched controls. The study group consisted of 73.2% males and 26.8% females. Aerosol exposure monitoring during a working shift (involving welding, smelting, machining) to assess the differences in exposure to particulate matter (PM) including nanosized fractions <25-100 nm, and their chemical analysis, was carried out. A micronucleus assay using Human Pan Centromeric probes, was applied to distinguish between the frequency of centromere positive (CEN+) and centromere negative (CEN-) micronuclei (MN) in the binucleated cells. This approach allowed recognition of the types of chromosomal damage: losses and breaks. The monitoring data revealed differences in the exposure to NP related to individual working processes, and in the chemical composition of nanofraction. The cytogenetic results of this pilot study demonstrated a lack of effect of long-term (years) exposure to NP (total frequency of MN, P = 0.743), although this exposure may be responsible for DNA damage pattern changes (12% increase of chromosomal breaks-clastogenic effect). Moreover, short-term (daily shift) exposure could be a reason for the increase of chromosomal breaks in a subgroup of researchers involved in welding and smelting processes (clastogenic effect, P = 0.037). The gender and/or gender ratio of the study participants was also an important factor for the interpretation of the results. As this type of human study is unique, further research is needed to understand the effects of long-term and short-term exposure to NP.
- ItemThree-Year Study of Markers of Oxidative Stress in Exhaled Breath Condensate in Workers Producing Nanocomposites, Extended by Plasma and Urine Analysis in Last Two Years(MDPI, 2020-01-01) Pelclova, Daniela; Zdimal, Vladimir; Komarc, Martin; Schwarz, Jaroslav; Ondracek, Jakub; Ondrackova, Lucie; Kostejn, Martin; Vlckova, Stepanka; Fenclova, Zdenka; Dvorackova, Stepanka; Lischkova, Lucie; Klusackova, Pavlina; Kolesnikova, Viktoriia; Rossnerova, AndreaHuman data concerning exposure to nanoparticles are very limited, and biomarkers for monitoring exposure are urgently needed. In a follow-up of a 2016 study in a nanocomposites plant, in which only exhaled breath condensate (EBC) was examined, eight markers of oxidative stress were analyzed in three bodily fluids, i.e., EBC, plasma and urine, in both pre-shift and post-shift samples in 2017 and 2018. Aerosol exposures were monitored. Mass concentration in 2017 was 0.351 mg/m3 during machining, and 0.179 and 0.217 mg/m3 during machining and welding, respectively, in 2018. In number concentrations, nanoparticles formed 96%, 90% and 59%, respectively. In both years, pre-shift elevations of 50.0% in EBC, 37.5% in plasma and 6.25% in urine biomarkers were observed. Post-shift elevation reached 62.5% in EBC, 68.8% in plasma and 18.8% in urine samples. The same trend was observed in all biological fluids. Individual factors were responsible for the elevation of control subjects’ afternoon vs. morning markers in 2018; all were significantly lower compared to those of workers. Malondialdehyde levels were always acutely shifted, and 8-hydroxy-2-deoxyguanosine levels best showed chronic exposure effect. EBC and plasma analysis appear to be the ideal fluids for bio-monitoring of oxidative stress arising from engineered nanomaterials. Potential late effects need to be targeted and prevented, as there is a similarity of EBC findings in patients with silicosis and asbestosis.