A Monte Carlo method simulation of the European funds that can be accessed by Romania in 2014-2020

DSpace Repository

Show simple item record

dc.contributor.author Săvoiu, Gheorghe
dc.contributor.author Burtescu, , Emil
dc.contributor.author Dinu, Vasile
dc.contributor.author Tudoroiu, Ligian
dc.contributor.other Ekonomická fakulta cs
dc.date.accessioned 2017-10-02
dc.date.available 2017-10-02
dc.date.issued 2017-10-02
dc.identifier.issn 1212-3609
dc.identifier.uri https://dspace.tul.cz/handle/15240/20912
dc.description.abstract The authors dealt with finding some relevant simulation solutions for the value of the European funds that can be accessed by Romania in the second budget cycle (2014-2020) of the European Union (EU), in which the national economy is participating after the 2007 accession. The article presents, in a brief conceptual introduction, the option for simulation, not only as economical and statistical alternative but also as conceptual and technical method, followed by an analysis section for the EU funds accessed by Romania in the 2007-2013 financial period and in the first three years of 2014-2020 financial period, with a role in generating hypotheses and scenarios of a type of modelling the process of accessing and specific absorption (including all types of rates, from the current absorption rate to the actual rate, with revenue in advance, etc.). A methodology section describes the rationale for selecting the method of simulation as Monte Carlo, and also the main hypotheses, detailed scenarios and integrated characteristic variables. The scenario-making eventually shaped three options by combining criteria of stability/instability, nuanced by optimistic/ pessimistic type scenarios. The analysis of the variables described by a probability distribution was conducted statistically on several types of samples simulated by the Monte Carlo method, from 100 draws to 200; 300; 400; and finally 500 and 1,000 draws. A presentation of the final simulation results and a number of major comments regarding their calibration, confrontation, clarity and statistical analysis, together with some final remarks as conclusions, limitations and perspectives, end the research approach. en
dc.format text
dc.format.extent 17 s. cs
dc.language.iso en
dc.publisher Technical university of Liberec, Czech Republic en
dc.publisher Technická Univerzita v Liberci cs
dc.relation.ispartof Ekonomie a Management cs
dc.relation.ispartof Economics and Management en
dc.relation.isbasedon Benninga, S. (2008). Financial Modelling (3rd ed.). Cambridge, Massachusetts: MIT Press.
dc.relation.isbasedon Burtescu, E. (2010). Sisteme informatice în afaceri. Craiova: Editura Sitech.
dc.relation.isbasedon Creal, D. D. (2012). A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews, 31(3), 245-296. doi:10.1080/07474938.2011.607333.
dc.relation.isbasedon Del Moral, P., Doucet, A., & Jasra, A. (2006). Sequential Monte Carlo sampler. Journal of the Royal Statistical Society, Series B, 68(3), 1-26. doi:10.1111/j.1467-9868.2006.00553.x.
dc.relation.isbasedon Dinu, V., Săvoiu, G., & Dabija, D.- C. (2016). A concepe, a redacta și a publica un articol științific. O abordare în contextul cercetării economice. București: Editura ASE.
dc.relation.isbasedon Dobrescu, E. (2015). BARS curve in Romanian economy. Amfiteatru Economic, 17(39), 693-705.
dc.relation.isbasedon Glasserman, P. (2004). Monte Carlo methods in financial engineering. New York, NY: Springer. doi:10.1007/978-0-387-21617-1.
dc.relation.isbasedon Jackel, P. (2002). Monte Carlo methods in finance. New York: John Wiley and Sons.
dc.relation.isbasedon Kottemann, E. J. (2017). Illuminating Statistical Analysis Using Scenarios and Simulations. New Jersey, NJ: John Wiley & Sons, Inc. doi:10.1002/9781119296386.
dc.relation.isbasedon Krivokapić, J., & Jaško, O. (2015). Global Indicators Analysis and Consultancy Experience Insights into Correlation Between Entrepreneurial Activities and Business Environment. Amfiteatru Economic, 17(38), 291-307.
dc.relation.isbasedon Kucharavy, D., & De Guio, R. (2005). Problems of Forecast. ETRIA TRIZ Future Conference, 1, 219-235, Retrieved April 7, 2017, from https://hal.archives-ouvertes.fr/hal-00282761/document.
dc.relation.isbasedon Kucharavy, D., & De Guio, R. (2012). Application of Logistic Growth Curve. In C. V. Machado, & H. V. Navas (Eds.), TRIZ Future Conference 2012 (pp. 41-53). Lisbon: Universidade Nova de Lisboa.
dc.relation.isbasedon Maverick, J. B. (2016). What' s the difference between a financial plan and a financial forecast? Retrieved March 1, 2017, from http://www.investopedia.com/ask/answers/051315/whats-difference-between-financial-plan-and-financial-forecast.asp.
dc.relation.isbasedon Mun, J. (2006). Modeling Risk: Applying Monte Carlo Simulation, Real Options Analysis, Forecasting, and Optimization Techniques (Wiley Finance). Hoboken, NJ: John Wiley & Sons, Inc. doi:10.1002/9781118366332.
dc.relation.isbasedon Consiliul fiscal. (2015). Raport anual fiscal. Retrieved April 17, 2017, from http://www.consiliulfiscal.ro/RaportanualCF2015.pdf.
dc.relation.isbasedon Robert, C. P., & Casella, G. (2004). Monte Carlo Statistical Methods (2nd ed.). New York, NY: Springer Press. doi:10.1007/978-1-4757-4145-2.
dc.relation.isbasedon Săvoiu, G. (2007). Statistica - Un mod ştiinţific de gândire. București: Editura Universitară.
dc.relation.isbasedon Săvoiu, G. (2013). Modelarea Economico-Financiară: Gândirea econometrică aplicată în domeniul financiar. Bucureşti: Editura Universitară.
dc.relation.isbasedon Săvoiu, G. (2016). European Integration through Economic Convergence. Amfiteatru Economic, 18(42), 237-238.
dc.relation.isbasedon Săvoiu, G., Dima, F., Ene, S., Marcu, N., & Mihailov, L. (2006). Proiecte cu finanțare externă. Piteşti: Editura Independența Economică.
dc.relation.isbasedon Săvoiu, G., Tudoroiu, L., & Burtescu, E. (2017). Using the Monte Carlo method to estimate the European funds absorbed by the Romanian economy from the EU in 2007-2013. Romanian Statistical Review, Supplement 3, 110-119.
dc.relation.isbasedon Simulation. (2012). In Encyclopaedia Britannica Online. Retrieved May 1, 2017, from https://www.britannica.com/science/simulation.
dc.relation.isbasedon Țarțavulea (Dieaconescu), R. I., Belu, M. G., Paraschiv, D. M., & Popa, I. (2016). Spatial Model for Determining the Optimum Placement of Logistics Centers in a Predefined Economic Area. Amfiteatru Economic, 18(43), 707-725.
dc.rights CC BY-NC
dc.subject simulation en
dc.subject Monte Carlo en
dc.subject European funds earmarked en
dc.subject EU funds accessed en
dc.subject the current absorption rate and the actual rate en
dc.subject revenue (in advance) en
dc.subject.classification C53
dc.subject.classification C63
dc.subject.classification E17
dc.subject.classification E27
dc.subject.classification E37
dc.subject.classification F37
dc.subject.classification F47
dc.subject.classification G17
dc.title A Monte Carlo method simulation of the European funds that can be accessed by Romania in 2014-2020 en
dc.type Article en
dc.publisher.abbreviation TUL
dc.relation.isrefereed true
dc.identifier.doi 10.15240/tul/001/2017-3-002
dc.identifier.eissn 2336-5604
local.relation.volume 20
local.relation.issue 3
local.relation.abbreviation E+M cs
local.relation.abbreviation E&M en
local.faculty Faculty of Economics
local.citation.spage 19
local.citation.epage 35
local.access open
local.fulltext yes


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

My Account