Learning from the sales conversion rate throughout its Product Life Cycle analysis: a case of study for the Spanish Automotive sector

DSpace Repository

Show simple item record

dc.contributor.author Saco, Manuela
dc.contributor.author Galiano, Aida
dc.contributor.author Rodríguez, Vincente
dc.contributor.other Ekonomická fakulta cs
dc.date.accessioned 2020-04-06T13:38:24Z
dc.date.available 2020-04-06T13:38:24Z
dc.identifier.issn 1212-3609
dc.identifier.uri https://dspace.tul.cz/handle/15240/154709
dc.description.abstract The scientific literature has not considered that the conversion rate in sales could have an irregular behaviour throughout the Product Life Cycle (PLC). The main contribution of this article is to reveal this unequal behaviour of the conversion rate in each of the phases of the PLC and highlight the advantages that the knowledge of this behaviour brings to Marketing and sales departments. In the empirical analysis carried out 157,960 clients have acquired 27,831 vehicles during 42 months considering a national network of car dealerships. We use ARIMA methodology to study the evolution of the time series considered. The results show a countercyclical behaviour of the conversion rate variable and an evolution pattern that fluctuates with the cycle in the case of the analysis of the clients assisted variable. Contrary to what might be expected, the conversion rate variable increases significantly in the launch phase and decreases significantly in the growth phase. This unknown performance of the conversion rate can be used in business decisions by the Marketing and sales departments to improve their efficiency. The conclusions obtained in this investigation can be an advance in the use of the PLC in analysing the evolution of the company, promoting a development of knowledge in both the academic field and in the business world. This work has theoretical and practical implications that can help business management. This research is an exciting scientific challenge that aims to develop numerous and important practical applications, with the aim of combining the management of the PLC with the conversion rate in sales, aspects that are closely related in the business field. en
dc.format text
dc.language.iso en
dc.publisher Technická Univerzita v Liberci cs
dc.publisher Technical university of Liberec, Czech Republic en
dc.relation.ispartof Ekonomie a Management cs
dc.relation.ispartof Economics and Management en
dc.relation.isbasedon Aguilar, S., Ávalos, A. F., Giraldo, D. P., Quintero, S., Zartha, J. W., & Cortés, F. B. (2012). La Curva en S como Herramienta para la Medición de los Ciclos de Vida de Productos. Journal of Technology Management & Innovation, 7(1), 238–248. https://dx.doi.org/10.4067/S0718-27242012000100016
dc.relation.isbasedon Bloch, P. H., & Richins, M. L. (1983). Shopping Without Purchase: an Investigation of Consumer Browsing Behaviour. Advances in Consumer Research, 10, 389–393.
dc.relation.isbasedon Briede-Westermeyer, J. C., Cabello Mora, M. B., Pacheco Blanco, B., & Cartes Sanhueza, J. (2016). Implicación de participantes en la fase de diseño conceptual de un producto. Caso de estudio del impacto de la metodología sistémica en una PYME Chilena. Journal of Science and Technology of the Americas, 41(9), 622–628.
dc.relation.isbasedon Camacho, M., & Galiano, A. (2009). The incidence of the 1990’s expansion on income distribution. Economics Bulletin, 29(4), 3177–3185.
dc.relation.isbasedon Cetinkaya, E., & Thiele, A. (2016). New product launch decisions with robust optimization. Computational Management Science, 13(2), 263–292. https://dx.doi.org/10.1007/s10287-015-0237-y
dc.relation.isbasedon Choe, Y., Stienmetz, J. L., & Fesenmaier, D. R. (2017). Measuring Destination Marketing: Comparing Four Models of Advertising Conversion. Journal of Travel Research, 56(2), 143–157. https://dx.doi.org/10.1177/0047287516639161
dc.relation.isbasedon Fenech, J. P. (2013). The diffusion of new products in Latin America: a new comparative approach. Academia Revista Latinoamericana de Administración, 26(1), 77–107. https://dx.doi.org/10.1108/ARLA-05-2013-0041
dc.relation.isbasedon Ferreira, F., Faria, J., Azevedo, A., & Marques, A. L. (2017). Product lifecycle management in knowledge intensive collaborative environments: An application to automotive industry. International Journal of Information Management, 37(1A), 1474–1487. https://dx.doi.org/10.1016/j.ijinfomgt.2016.05.006
dc.relation.isbasedon Fisher, M. (2013). Foreword: Special Issue on Retail Operations. Production and Operations Management, 22(4), 755–757. https://dx.doi.org/10.1111/poms.12014
dc.relation.isbasedon Galiano, A., Rodríguez, V., & Saco, M. (2018). Analysis of the behaviour of the clients assisted and sales variables in the different phases of the product life cycle. European Journal of Management and Business Economics, 27(3), 266–284. https://doi.org/10.1108/EJMBE-01-2018-0005
dc.relation.isbasedon Gan, S. S., Pujawan, I. N., Suparno, & Widodo, B. (2015). Pricing decision model for new and remanufactured short-life cycle products with time-dependent demand. Operations Research Perspectives, 2, 1–12. https://doi.org/10.1016/j.orp.2014.11.001
dc.relation.isbasedon Gauri, D. K., Ratchford, B., Pancras, J., & Talukdar, D. (2017). An Empirical Analysis of the Impact of Promotional Discounts on Store Performance. Journal of Retailing, 93(3), 283–303. https://doi.org/10.1016/j.jretai.2017.06.001
dc.relation.isbasedon Guo, Z., & Chen, J. (2012). Multi-Generation Product Diffusion in the Presence of Strategic Consumers. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2892081
dc.relation.isbasedon Hachuła, P., & Schmeidel, E. (2016). The Model of Demand and Inventory in a Decline Phase of the Product Life Cycle. Folia Oeconomica Stetinensia, 16(1), 208–221. https://doi.org/10.1515/foli-2016-0013
dc.relation.isbasedon Kaldasch, J. (2015). The Product Life Cycle of Durable Goods. British Journal of Economics, Management & Trade, 10(2), 1–17. https://doi.org/10.9734/BJEMT/2015/20395
dc.relation.isbasedon Ledingham, D., Kovac, M., & Locke Simon, H. (2006). La nueva ciencia de la productividad de la fuerza de ventas. Harvard Business Review, 84(10), 104–112.
dc.relation.isbasedon Mahajan, V., Muller, E., & Bass, F. M. (1995). Diffusion of New Products: Empirical Generalizations and Managerial Uses. Marketing Science, 14(3_supplement), G79–G88. https://doi.org/10.1287/mksc.14.3.G79
dc.relation.isbasedon Moon, Y. (2005). Libérese del ciclo de vida del producto. Harvard Business Review, 84(5), 66–74.
dc.relation.isbasedon Netessine, S., Fisher, M., & Krishnan, J. (2010). Labor Planning, Execution, and Retail Store Performance: An Exploratory Investigation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2319863
dc.relation.isbasedon Orbach, Y., & Fruchter, G. E. (2014). Predicting product life cycle patterns. Marketing Letters, 25(1), 37–52. https://doi.org/10.1007/s11002-013-9239-0
dc.relation.isbasedon Perdikaki, O., Kesavan, S., & Swaminathan, J. M. (2012). Effect of Traffic on Sales and Conversion Rates of Retail Stores. Manufacturing & Service Operations Management, 14(1), 145–162. https://doi.org/10.1287/msom.1110.0356
dc.relation.isbasedon Polo, Y. (1983). Evidencia empírica sobre el ciclo de vida para productos de consumo duradero. Cuadernos Aragoneses de Economía, 7, 61–76.
dc.relation.isbasedon Puente, N. (2016). Optimizando la conversión del punto de venta online. Revista TELOS, Cuadernos de comunicación e innovación, January–May, 1–7.
dc.relation.isbasedon Qualls, W., Olshavsky, R. W., & Michaels, R. E. (1981). Shortening of the PLC: An Empirical Test. Journal of Marketing, 45(4), 76–80. https://doi.org/10.2307/1251474
dc.relation.isbasedon Ratcliff, R., & Doshi, K. (2016). Using the Bass Model to Analyze the Diffusion of Innovations at the Base of the Pyramid. Business & Society, 55(2), 271–298. https://doi.org/10.1177/0007650313479529
dc.relation.isbasedon Rink, D. R., & Swan, J. E. (1979). Product life cycle research: A literature review. Journal of Business Research, 7(3), 219–242. https://doi.org/10.1016/0148-2963(79)90030-4
dc.relation.isbasedon Rodríguez Escudero, A. I. (1996). Una aproximación al ciclo de vida del producto bajo los presupuestos de la Teoría del Casos. Anales de estudios Económicos y Empresariales, 11, 129–156.
dc.relation.isbasedon Rodríguez, V., Olarte-Pascual, C., & Saco, M. (2015). ¿Qué distancia recorre el consumidor para comprar un coche? Omniscience. Harvard Deusto Business Research, 4(2), 96–112. https://doi.org/10.3926/hdbr.82
dc.relation.isbasedon Rodríguez, V., Olarte-Pascual, C., & Saco, M. (2017). Application of geographical information systems for the optimal location of a commercial network. European Journal of Management and Business Economics, 26(2), 220–237. https://doi.org/10.1108/EJMBE-07-2017-013
dc.relation.isbasedon Saffo, P. (2007). Seis reglas para pronosticar eficazmente. Harvard Business Review, 85(7), July, 100–110.
dc.relation.isbasedon Sahni, N. S. (2015). Effect of temporal spacing between advertising exposures: Evidence from online field experiments. Quantitative Marketing and Economics, 13(3), 203–247. https://doi.org/10.1007/s11129-015-9159-9
dc.relation.isbasedon Saura, J. R., Palos-Sánchez, P., & Cerdá Suárez, L. M. (2017). Understanding the Digital Marketing Environment with KPIs and Web Analytics. Future Internet, 9(4), 76–88. https://doi.org/10.3390/fi9040076
dc.relation.isbasedon Seiler, S., & Yao, S. (2017). The impact of advertising along the conversion funnel. Quantitative Marketing and Economics, 15(3), 241–278. https://doi.org/10.1007/s11129-017-9184-y
dc.relation.isbasedon Shankar, V., Carpenter, G. S., & Krishnamurthi, L. (1999). The Advantages of Entry in the Growth Stage of the Product Life Cycle: An Empirical Analysis. Journal of Marketing Research, 36(2), 269–276. https://doi.org/10.2307/3152098
dc.relation.isbasedon Söderlund, M., Berg, H., & Ringbo, J. (2014). When the customer has left the store: An examination of the potential for satisfaction rub-off effects and purchase versus no purchase implications. Journal of Retailing and Consumer Services, 21(4), 529–536. https://doi.org/10.1016/j.jretconser.2014.04.004
dc.relation.isbasedon Sood, A., & Kumar, V. (2017). Analyzing Client Profitability across Diffusion Segments for a Continuous Innovation. Journal of Marketing Research, 54(6), 932–951. https://doi.org/10.1509/jmr.16.0209
dc.relation.isbasedon Suomala, P. (2004). The life cycle dimension of new product development performance measurement. International Journal of Innovation Management, 08(02), 193–221. https://doi.org/10.1142/S1363919604001039
dc.relation.isbasedon Walters, R. G., & MacKenzie, S. B. (1988). A Structural Equations Analysis of the Impact of Price Promotions on Store Performance. Journal of Marketing Research, 25(1), 51–63. https://doi.org/10.2307/3172924
dc.relation.isbasedon Weissmann V. (2008). Difusión de nuevas tecnologías y estimación de la demanda de nuevos productos: un análisis comparativo entre Argentina y EEUU. Palermo Business Review, 1, 5–17.
dc.relation.isbasedon Wu, M., Wang, L., & Li, M. (2015). An approach based on the Bass model for analyzing the effects of feature fatigue on customer equity. Computational and Mathematical Organization Theory, 21(1), 69–89. https://doi.org/10.1007/s10588-014-9177-2
dc.relation.isbasedon Zhu, Y., Tokimatsu, K., & Matsumoto, M. (2017). Study on the Diffusion of NGVs in Japan and Other Nations Using the Bass Model. In M. Matsumoto, K. Masui, S. Fukushige & S. Kondoh (Eds.), Sustainability Through Innovation in Product Life Cycle Design, (pp. 765–778). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-0471-1_52
dc.relation.isbasedon Zhu, Z., Wang, J., Wang, X., & Wan, X. (2016). Exploring factors of user’s peer-influence behaviour in social media on purchase intention: Evidence from QQ. Computers in Human Behaviour, 63, 980–987. https://doi.org/10.1016/j.chb.2016.05.037.
dc.rights CC BY-NC
dc.subject conversion rate in sales en
dc.subject Product Life Cycle en
dc.subject consumer behaviour en
dc.subject car dealerships en
dc.subject clients assisted en
dc.subject.classification M31
dc.subject.classification C22
dc.subject.classification C25
dc.title Learning from the sales conversion rate throughout its Product Life Cycle analysis: a case of study for the Spanish Automotive sector en
dc.type Article en
dc.publisher.abbreviation TUL
dc.relation.isrefereed true
dc.identifier.doi 10.15240/tul/001/2020-1-013
dc.identifier.eissn 2336-5604
local.relation.volume 23
local.relation.issue 1
local.relation.abbreviation E+M cs
local.relation.abbreviation E&M en
local.faculty Faculty of Economics
local.citation.spage 184
local.citation.epage 198
local.access open
local.fulltext yes
local.filename EM_1_2020_13

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account