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Summary:

The main objective of the present thesis is the presentation of contemporary
statistical methodology for systematic modelling and analysis of processes
of events and of risk of these events, with application to the models of haz-
ard rates (intensities) of failures and other events influencing the reliability
of a system. The thesis describes the ideas and techniques developed in
the corresponding fields of mathematical statistics and theory of probabil-
ity, namely of the event-history analysis, survival analysis, random point
processes (e.g. counting processes). The main features of the approach are
explained, relevant theoretical and methodological results are presented,
with particular attention to the contributions of the author. The models
and methods are illustrated with the help of examples from the area of
reliability analysis and control, and also of other areas. Namely, two last
chapters deal with the cases and models of survival of technical devices. A
selection of author’s relevant publications is attached.

The methods described in the thesis are collected from many sources (cf.
references), however, some of the methods and the most of the practical
procedures used here has been developed, or at least adapted, by the au-
thor and his collaborators. In order to apply the methods numerically, a
rather large set of algorithms had to be prepared and programmed, mostly
in MATLAB. A number of references are given to other related author’s pa-
pers discussing, solving, illustrating (and bringing a deeper mathematical
theory to) some particular aspects of the whole theme. The examples ac-
companying the thesis are both artificial (though motivated by real cases),
their aim is to illustrate the use of the models and techniques presented in
the thesis, and the real-data cases, as in Part II.

Key words: data analysis, mathematical statistics, quality control, reliability,
random point process, hazard rate, intensity of failures.



Introduction — mathematical statistics, probability, and
models of reality

In R. A. Fisher’s terminology (e.g. 1970), the science of statistics is essentially taken as a
branch of applied mathematics. Really, the most important aim of statistical methodology
is to produce and offer the tools for qualified data analysis. However, contemporary
mathematical statistics is much more than “mere methodology”. The development of
theory (of proper use and behaviour of methods, of new ideas how to deal with data
analysis problems) is closely connected with analytic mathematics. Naturally, the most
close connection exists with the theory of probability, because the probabilistic models are
prevailingly used for the description of the processes generating observed data. On the
other hand, the approaches (and their theory) developed originally in classical statistical
analysis are now extensively employed in rather general areas of “information processing”,
data mining, system identification, classification or pattern recognition problems, as well
as the results of theory of probability are used in general systems modelling, simulation
and control.

Although the progress in most areas of human activity may be regarded as a continuous
process, we have to admit that in the history there were always some remarkable points
at which a development progressed by a jump, by some new solution (or at least an idea
of solution) of an important problem.

One of the most remarkable examples of fast transfer of new developments in mathe-
matical probability theory to applied statistical methodology is the use of counting pro-
cesses in the event-history analysis. By this we understand the study of a collection of
objects or individuals, each moving among a finite (usually small) number of states. An
“event-history analyst” is particularly interested in times of events (transitions) and in
risks of these events. Compared to other branches of statistics, this area is character-
ized by the dynamic temporal aspect reflecting the same aspect of reality. That is why
the main characteristic describing the process of events and quantifying the chance of
occurrence of an event “just now” is the intensity, modelled with the help of a hazard
function.

Originally, the statistical survival analysis has been developed and applied in biostatis-
tics, medical research, as well as in the field of reliability analysis (cf. Andersen et al.
1993, Arjas 1989). The standard tools were connected either with discrete-time life tables
or with continuous-time Poisson processes of events. Today, the event history analysis
finds applications in all areas where the sequences of events are observed and examined,
including social sciences, economics, demography. The counting processes model (gener-
alizing the Poisson process) can significantly enrich both the description of real situations
and the methodology of analysis, because the counting processes offer the connection of
models of individual fates of examined objects with the model of behaviour of aggregated
variables, of a system, and also the dependence of actual risk of an event on influential



factors and on the history of the system. In recent years, the flexibility of the models
and their natural description of real-case processes has also been recognized in the area
of insurance and financial mathematics. These fields have much common with the reli-
ability and survival analysis (the sequence of events, risk of certain events, e.g. of large
claims or of the ruining event), and naturally generalizes to models of risk and reliability
of economic, financial, social systems, on both micro and macro levels. While in the past
decades the complexity of structure of dependencies (on one side) and the lack of tools
and techniques did not allow to go much further than to mere definitions of different ver-
sions of continuous time processes (see for instance Snyder, 1975), these methodological,
theoretical and computational tools are now available or at least are developing.

Thus, the large progress has been achieved in the use of models with random effects
(frailty models, e.g. Arjas and Andreev, 2000), and in the development of models using
the counting processes as the basis for new classes of random processes (compound or
cumulative processes of increments at random times, processes of extremes and records, see
for instance Embrechts et al (1997), Grandell (1997), papers of T. Scheike (e.g. 1994), and
also a series of papers of Volf (1996 - 2000). The books of Hoyland and Rausand (1994),
Aven and Jensen (1999) represent the development in the field of reliability analysis.
The random shocks models and models of gradual degradation of systems are at present
another target of reliability studies, again with the use of random point processes and
random sums (e.g. Kahle, 2000).

The objective of this study consists in the collection and presentation of the statistical
methodology for the analysis and systematic modelling (via the hazard-based models
dealing prevailingly with the continuous time) of the processes of events and of duration
(ie. the times to events). We shall concentrate to all important phases and steps of
the model construction. In many instances it is not possible to transfer the methodology
uncritically from one field of application to the other. It could result in statistical models
having only weak motivation in actual problems and assuming such forms of data that are
too ideal in comparison with the reality. Therefore, the proper (mostly step-wise) model
construction is the task of the highest importance. The information (given by the data)
has to be analyzed from different points of view, the parts of the model estimated, and
the fit of the model checked, in a repeated (iterative) way. Finally, the main aim of the
analysis is to prepare the “synthesis”, which enables us to predict reliably the behaviour
of the system under various conditions, and to suggest a proper control strategy.

Hence, the study is devoted mainly to the methodology of statistical inference for
counting processes models with regression (i.e. models considering the factors affect-
ing the behaviour of the process) and to examples showing the practical value of this
methodology.
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PART 1

COUNTING PROCESSES MODELS AND STATISTICAL
EVENT-HISTORY ANALYSIS

1 Motivation from the field of reliability analysis

The reliability, as an important characteristics of the quality, means the ability of a
device (a component, a system) to perform a required function for a stated period of time.
Contemporary reliability (and quality) analysis has a very wide range of application areas.
The main objective is not only to provide information, but also to construct models as
a basis for decision, for control. Such a model (mathematical, mostly functional) has to
be able to work with uncertainty (caused e.g. by the lack of knowledge, approximations).
This is with advantage described with the help of probabilistic models containing random
variables and processes.

The reliability itself can be quantified in different ways. We shall, for instance, consider
the variable ’time to failure’ (more generally - time to event, time of event), modelled
as a random variable. Its probability distribution is mostly characterized by the hazard
function h(t) = —d In(1 — F(t))/dt = %ﬂ/(l — F(t)), where F(t) is the distribution
function. The sense is that h(t) - dt quantifies the conditional probability of failure in a
short interval [t,¢ + dt) provided the object has survived up to t.

There are some basic examples of hazard functions. The most simple case is the con-
stant hazard function corresponding to the exponential distribution of time-to-event. The
Weibull distribution, gamma distribution are other examples of probability distributions
popular (and useful) for modelling the distribution of the times to events (e.g. to failures)
in reliability testing or in survival analysis. The present study will deal with a more gen-
eral, nonparametrized or semiparametric, models of hazard rates. Inevitably we shall be
confronted with the dilemma between the ability of the model to describe and to explain
the reality and between the practical possibility to work with such a model, to identify
it and to evaluate it. In other words, the choice is (and the trade-off should be made)
between the completeness (flexibility) and the tractability of the model.

Let us recall some typical shapes of general hazard functions. In the field of reliability
testing (and also in survival analysis of biological objects) the hazard rate of failure
of a device is often “tube” shaped (cf. Figure la). Its shape is connected with the
risk of failure during various periods of lifetime. The hazard rate describing the risk
of death during our lifetime has also a very similar form (cf. Gavin et al, 1993). Let
us imagine that the fates of two distinct groups of people, living in different conditions
(geographical, environmental, ...), are compared. As a rule, the hazard rates are of
the same shape, but for one group the rate can be higher than for the second group.
Approximately h;(t) ~ c¢;ho(t), j = 1,2, where ho(t) is some basic hazard rate and
c; are values expressing the difference of various groups or variability of objects, the
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Fig. 1a: A "tube-shaped" hazard rate
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Fig. 1b: Composition of two hazard rates: "movers” (— — ), "stayers” (—.-)
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Figure 1: Examples of hazard functions

heterogeneity of the examined sample. Thus, the heterogeneity can be attached to the
model of hazard in such a multiplicative way. From another point of view, ¢ can be
regarded as a random variable, the random factor, possessing a probability distribution
throughout the population. It is also called the frailty variable, see Andersen et al (1993),
Arjas and Andreev (2000).

Figure 1b displays another example of hazard rate, now from the field of labour force
dynamics studies. Such a hazard rate can be a composition of two hazard rates specific
to quite different individuals. For instance, among the people searching a new job there
are two prevailing groups. The first one are people with ability, qualification and will
to change their state (so called “movers”), the second group, on the contrary, are the
“stayers”. That is why their group-specific hazard rates of success of the search are quite
different one from the other.

The approach based on hazard rates is used already in Barlow and Proschan (1967).
The anthors examined connections between hazard rates of components and of a system
composed from these components, they modelled changes of hazard rates caused by fail-
ures of some components or by their exchanges. This monograph is today considered to
be a classical book on the mathematical reliability analysis. Last two decades brought
a very fast growth of both theory and methodology in the fields of random point pro-
cesses and of event-history analysis. Naturally, the statistical methodology employed in
the contemporary reliability analysis and quality control reflects this recent development.
The present thesis will cover at least a part of this development. First, we shall recall the
main ideas of the statistical event-history models.



2 The event-history analysis

The event-history analysis is not a new topic in the field of statistical theory and method-
ology. Its beginning can be traced back for several centuries, starting with the life-tables
examination by actuaries and demographers. Other important elements of the survival
analysis (which is one of the branches of contemporary event-history analysis), like the
models for transitions between two or three states (illness-death models), also have the
history at least several decades long. During 1960s and 1970s, several papers appeared on
non- or semiparametric models (and methods of estimation), again in the area of biostatis-
tics and lifetime analysis. Let us recall here the product-limit estimator of distribution of
survival time (Kaplan’s and Meier’s estimator), or the Cox’s regression model.

What is the main feature of event-history models (and of reality which is modelled)?
Individual life histories (or their parts) are seen as sample paths of processes bringing,
in random moments, the events of observer’s interest. Each event can be regarded as a
transition from one state to another, but what is more important for the model, it is the
randomness of moments of transitions.

The main characteristic of the model of such a process of events is its rate or intensity
at which the events of a certain kind occur. In biostatistics, the goal is usually in observing
the time until a single nonrepeatable event (e.g. the death). In contrast, in the field of
social or demographic studies, several kinds of events may be followed (e.g. transition
among several labor force states, several important events in the life), some of them
repeatable (e.g. change of job). Event-history data gives the type of event along with
the time at which is happened, so that each observed event has also its “mark” indicating
what (and to whom) occurred.

Naturally, from the point of reliability, we are mostly interested in events like the
failures (of components of a system), but also in certain qualitative aspects of examined
process, e.g. a crossing of tolerance limits, or an indication of fatigue of a material,
etc. From this point of view, the main objective of quality control is to reduce the risk
(the intensity) of such events, either immediatelly or in a certain time horizon. The
methodology presented here is based on probabilistic models and statistical data analysis
and offers the tools solving the following problems:

1. The analysis of relationships and dependencies, and their modelling.

2. The prediction of the risk of events, based on the model and on known (or partially
known, random) inputs.

3. Repeated testing the model adequacy, detection of changes, improvement of the
model.

4. The optimal decisions (control), based on solutions of points 1 - 3, in the sense of
the actions controlling the factors (inputs) we are able to influence.



3 Counting process — definition and examples

The Poisson process is the most often used random point process, the counting process is
its direct generalization. The n-variate counting process N(t) = {Ni(t), Na(t), .. ., N,(t)}
has n components Nj(t), each of them counting the number of a (registered, observed)
specified event. So that with the help of N(¢) we can follow n types of events, or we
can follow the occurrence of a certain type of event, for n objects. The time ¢ runs
continuously, as a rule from 0 to some finite 7' at which the data are collected. The time
t could be the calendar time, or it could be a kind of relative time running individually
for each object of the study. It is assumed that N;(0) = 0 at the beginning and that N;
has jump of size +1 at the moment when the followed event is observed. Further, it is
assumed that there are no two events at the same moment. This assumption is not fully
realistic, because in praxis the data often contain a number of ties, of equal values. We
shall return to this problem later. Another special feature of the event-history data is
that one is rarely able to observe complete history. Therefore, the data are not complete,
some event may not be observed, the part of the data is censored.

If only one object is followed (or a set of independent objects), arbitrary shift of the
time is allowed, so that the observation of the object begins at ’its’ 7 = 0. However, when
a set of objects is examined, the histories of the objects may depend on each other, or on
common covariates, in such a case the time shifts are not admissible.

The moments of events are random. This randomness is modelled with the help of
hazard functions. In the setting of counting process N;(t), let h;(t), the hazard function, be
simply a nonnegative, bounded, smooth (e.g. continuous) function defined for ¢ € [0, T).

Let us now define, for each N;(t), the (random) indicator process I;(t) in such a way
that I;(t) = 1 if N;(t) is observed at moment ¢, I;(t) = 0 otherwise — i.e. after the
event which means the end of observation of i-th object, or during the period in which
the fate of i-th object is censored. In other words, N;(t) is exposed to the risk of the
count only if I;(t) = 1. The function A;(t) = I;(t) hi(t) is called the intensity, it is the
variable (in general, it is the random process) which governs the behaviour of N;(t). In
such a way, the notion of intensity is generalized, in comparison with the definition given
in Section 1. Finally, define the cumulative intensity as L;(t) = [j A\i(s)ds. The process
M;(t) = Ni(t) — Li(t) is the martingale, so that it has several favourable properties, e. g.
its mean is zero, its increments from ¢ to ¢ + s are uncorrelated with its past up to ¢.
Processes L;(t) are continuous and nondecreasing, N;(t) are taken as continuous from the
right side, meanwhile /;(t) are continuous from the left. An example of trajectories of
these processes is on Figure 2.

From the mathematical point of view, the behaviour of N;(t) is connected with the
intensity A;(¢) in the following well known manner:

(1) PriNi(t +A) = Ni(t) =1|o(t)} = Ai(t) - A + o(A),



Example of processes N(t), L(1) and M(t)=N(t)-L(1)
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Figure 2: Example of trajectories of processes N(t), L(t) and M(t)=N(t)-L(t)

i.e. the probability, that N;(¢) “counts” during a very short interval [t, t+A], conditioned
by the history of the system before ¢, equals approximately );(#) multiplicated by the
length of this interval. Formally, we can write Pr{dN;(t) = 1|o(t)} = Ai(¢) - dt. Here
o(t) (a o-algebra of events) contains the relevant events which have occurred before ¢
and which can influence the future. In probability theory, such a sequence of o-algebras
is called the filtration. From this scheme it is seen that, in general, the intensity (and
therefore the behaviour) of a particular counting process N;(t) can depend on the situation
of other components of N(t), in such a dynamical way. This dependence can be, with
advantage, expressed with the use of the regression model.

In the standard regression setting, the regression means the functional relationship
between the explained (output, dependent) variable and a set of covariates (input, “in-
dependent” variables), as a rule contaminated by a random uncertainties. The choice of
such regression models is very rich and contains models linear, nonlinear, nonparametric,
onedimensional, multidimensional, and a large set of corresponding techniques of esti-
mation, including the robust or simulation techniques. One example of nonlinear robust
regression for lifetime data is in Volf and Picek (2000). However, in the present thesis we
shall consider the regression in the framework of models for hazard functions.

4 Regression models

Let us now consider a hazard function depending on a set of explaining variables, predic-
tors, covariates. The purpose of regression models is to explain (at least a part of) the
heterogeneity observed in the data. The values of predictors can be fixed, deterministic,
or they can be again given by mm observed random variables or processes, i.e. they can also
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depend on the time. So that let us consider processes of covariates X (e =10,
each connected with i-th followed object, device, and directly influencing the intensity of
counting process N;(t). To construct a model of this dependence, assume that there is
a (smooth) hazard function h(t, ) from [0,7T] x X to [0,00), where X is the domain of
values of all X;(t). In general, ¥ ¢ R i.e. K different covariates are considered. The
intensity process of N;(t) is then

(2) Ai(t) = Li(t) - h(t, X(2)),

so that it is actually a random process, too. It is seen that, although A;(t) can generally
depend on the pre-t history of other parts of the system, in model (2) the intensity depends
explicitly only on actual states (just before t) of processes I;(t), X;(¢). It does not mean
any loss of generality, because we can incorporate all relevant information on the past into
properly chosen covariates. The only limitation is given by practical feasibility of analysis
of such a model.

In order to make the setting more tractable (from the points of mathematical theory),
it is assumed that, similarly as processes I;(t), the processes X;(t) are bounded and
have their trajectories continuous from the left side. Further it is assumed that I;(t) is
observable throughout the whole [0, 7] and that X;(t) is observed at least when [;(t) = 1.

Let us again answer the question why we are so eager to have a good model.

e First, if the good, reliable model is available (at least approximately, e. g. obtained
by a procedure of estimation), we can say which covariate is relevant, crucial for
the event of our interest, and in which sense. Of course, the combined influence of
the factors has to be examined carefully, including the factors not considered by the
present model, the heterogeneity (random, frailty) factors.

Briefly, the good model is crucial for good analysis of (and for understanding) the
system behaviour.

e Second, if we are not satisfied with the performance of the system, we can suggest
a control action. From the knowledge of the model, the probability of results of
this action can be evaluated. In other words, the models enables us to predict
the behaviour of the system (the hazard of events of our interest) under certain
combination of covariates.

e Third, two or more systems (machines, companies, groups of people, geographical
areas) can be compared, various hypotheses can be tested, e.g. on best reliability
of one over the other. Of course, the test of the primary interest is the test whether
the chosen model is appropriate, whether it fits to the data (whether it really is
good), whether it fits to the new data, too (the change detection), to each subgroup
of the data (the stability test or the outlier detection).

The model for hazard function specifies the form of h(t, x),i.e. the form of dependence
on t and on (components of) . The parametric model means that this dependence is
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expressed via a finite number of parameters. In Section 1 the most frequent types of
parametric distributions have been mentioned, e. g., the exponential, Weibull, lognormal,
gamma etc. For instance, the hazard rate of Weibull distribution is hw(t) = o/ A=t
where a, 3 are parameters. If o (or 3 or both) depends on a covariate x, the model
expresses the regression of hazard. Again, functions a(z) or f(x) can be specified with
the help of other parameters, or they can remain in the general form. The model with
both nonparametrized and parametrized parts is called a semiparametric model.

The use of parametric models is much more popular in common statistical praxis
(and it is also easier). However, the analyst should be aware of the danger of improper
choice of the model. Therefore it should be preferred to perform at least the preliminary
analysis (for instance a graphical one) on a rather general, nonparametrized level. Even
the nonparametrized models offer a rich choice of structure of dependence. For instance,
we have seen in Section 1 how the “heterogeneity-specific” part is joined to the model in
the multiplicative way. Hence, the same idea of separation of common hazard rate from
the influence of covariates leads to the multiplicative model, called also the proportional

hazard model,
h(t,z) = ho(t) - exp(b(x)).

Function hy(t) is a baseline hazard function, b(x) is a regression - or response function.
Both functions can be further specified, for instance the additive response function is
frequently considered, i. e. b(x) = j";l bj(z;). Such a model is then totally multiplicative.
As a rule, the estimates of nonparametrized functions are obtained in a graphical form.
If the graph has any familiar shape (e.g. if it is close to linear, parabolic, exponential
function), the next step consists in reparametrization (i. e. specification) of the model and
in a new estimation step (now in a parametrized setting). It is seen that the component
functions by are given up to an additive shift. If we wish to remove this ambiguity, we
have to normalize the functions (e.g. we may demand " | by (Xi(T)) =0, k=1,... k
or “stabilize” the values of component functions in another way).

If the response function is parametrized, we obtain the semiparametric Cox’s model.
Its most popular form assumes a linear response function, namely h(t, z) = hy(t) exp(8'z).
In Murphy and Sen (1991) the variant with time-dependent “parameter” 8 = B(t) is
employed, see also Gamerman and West (1987), or models with varying coeficients, Hastie
and Tibshirani (1993). Such a model then expresses the changes of the effect of a covariate
during the period of the study. An alternative regression model for counting process was
introduced by Aalen (1980). He suggested an additive form of hazard function

K
hit, =) = folt) + 3 B5(1) .

see also Andersen et al (1993), Volf (1996). We have already seen the natural origin of
the multiplicative form of regression model where the components of model intensify the
influence of each other. The Aalen’s model corresponds to another (more independent)
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co-influence of covariates. Of course, the functions should be such that h(t,z) > 0 on
0. Tl A

There is no sharp boundary between nonparametric and parametric specifications of
(a part of) a model. The nonparametric model is actually comparable with a parametric
model with very high number of parameters. One class of models uses the response
functions constructed from a basis of functional units, e.g. the regression splines, radial
basis functions, goniometric functions, polynomials etc. Actually, the wavelet functions or
feedforward neural networks are other examples of such models. The problem with such
models is that, first, the parameters are 'nonlinear’ and, second, that we do not know
the optimal number of units, in order to obtain a good model and, simultaneously, not
to overfit. Modern computational tools are able to solve such complicated optimization
problems. One of tools is the Markov chain Monte Carlo (MCMC) method. For an
overview see Volf and Linka (1997).

Example 1.1. The theme of the first part of the thesis will be illustrated by an example
accompanying and explaining all steps of analysis and modelling. As the examples solved
in parts two and three deal with the reliability of technical devices or materials, here we
shall deal with analysis of "reliability” of a man as an operator of a controlled system.
Namely, let us consider the following situation:

In the process of training of future operators - persons supervising and controlling
a complex system (e.g. an automated control system of a plant), the candidates are
tested with the help of simulated signals on their control desk, like false alarms etc.
The adequacy of their response is observed. Let us image such a test during which the
operator obtains randomly (with given intensity) certain alarm signals and two types of
events are registered - either the delay of reaction, or the wrong reaction, the mistake.
The experiment is long enough (5 hours, say), so that the fatigue increases and influences
the response. If n persons are followed, n counting processes are observed in the interval
[0, T = 300 minutes], with possible 0, 1, or more events of type 1 (delay) or 2 (mistake).
We assume that no observation is censored before 7', all indicators [;(t) = 1,7 = 1,2,....n,
int € [0,7] (and I;(t) =0 for t > T).

The risk of the event (mistake, delay) depends on a number of factors. We shall
select and follow only several of them. The first one is the age of the operator. Let us
denote it X,. It has a continuous domain of values between 20 and 60 years, say, and
remains constant during the experiment. Further, let covariate X, = 1,2, 3, 4 denote four
different regimes (or conditions for the operator’s work) e.g. comfortable, noisy, with
higher temperature, with nonpractically designed control desk, respectively. Finally, let
X3 = 0 or 1 denote the non experienced or experienced operator. So that covariates
X, X3 are categorical, with values specific for each operator, but constant over time.

The example will continue in the next section where the sample of corresponding data
will be described and analyzed.
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4.1 The problem of competing risks

The case of competing risks arises when the end of the observation of an object, i.e. the
switch of corresponding I(t) from 1 to 0, can be caused by one from a set of possible
events, which, moreover, may be mutually dependent. One event then actually censores
the other. Such a situation can arise also in our Example: If there is no response at given
time period, the event is denoted as ”delay” and the correctness of delayed response is
not checked (though the event "wrong response” can be presented, t0o).

The most frequent case of competing risks is caused by the presence of dependent
(informative) censoring. The problem of competing risks has extensively been discussed
in literature (cf. Arjas, 1989). Generally, the task of identification of marginal models of
mutually dependent risks has not been solved sufficiently. To successful solution, a model
of mutual dependence of examined events should be available, which actually leads to
the case of bivariate (multivariate) lifetime data. Such cases are also a frequent theme of
statistical research (for instance, the case of fully parametric model has been solved in Han
and Hausman, 1990). The situation is worse when such a global model is not available.
However, the definition of counting process contains one strong (but natural) condition
each marginal hazard at moment ¢ is fully determined by the pre-t history. So that the
dynamics of the process is given by a sequence of conditional hazards (actually, it is a
continuous stream of conditional distributions of the nearest future — cf. (1) in Section 3).
These conditional hazards (of competing events) are identifiable, moreover they are much
more convenient for modelling the real expectations (i.e. the behaviour of real processes)
than the models of marginal hazards. In general, it is possible to say that the Bayes
approach is the way how the most of conditional information obtained from the data
can be exploited and utilized for the conclusions on the joint and marginal distributions.
Modern computational methods combine the Bayes scheme with the intensive simulation
procedures, namely with Markov chain Monte Carlo algorithms (see also Volf and Linka,
1997). With their aid, optimal models are ’generated’ from the data and conditional
submodels. Naturally, neither these methods can overcome the lack of information and
problems of nonuniqueness of solutions.

5 On techniques of estimation

The methodology of estimation of (the parts of) hazard rate models is collected elsewhere.
Mainly in monographs devoted to statistical survival analysis (in a general sense), e. g. in
Fleming and Harrington (1991) or in Andersen et al. (1993). The basic methods are well
known, therefore we do not intend to discuss here extensively the most popular estimators.
Let us only mention the famous Kaplan and Meyer product limit estimator of distribution
function of the time to failure, and the Nelson—-Aalen estimator of the cumulative hazard
function. The same concerns to estimation in the framework of the most familiar regres-
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sion models, i.e. of Cox’s semiparametric model, and also of Aalen’s additive hazard
model. The situation is worse in the case of a more general nonparametric setting. We
have already seen several “specimen” from the rich collection of hazard regression models.
The aim of the analysis, at this stage, is to estimate consistently the unknown parts of
the model (parameters, response functions, baseline hazard function etc.). The consis-
tency means that with increasing amount of information, e. g. with increasing number of
observed objects, the estimate converges to the “true” model (of course, in an ideal world
of mathematical models). Let us again emphasize that the specification of the model is
a sequential procedure which should start on a rather general (e.g. nonparametrized)
level. There are only a few leading ideas on which the methods of statistical estimation
are based, namely the least squares method and its modifications (including the robust
variants), the maximum likelihood principle (generalized for nonparametric estimation),
and also the Bayesian approach. In the sequel we intend to present (and to demonstrate
on examples) some less common applications of the maximum likelihood estimation tech-
niques, especially in the nonparametric setting.

An overview of standard techniques of estimation of hazard-based models (including
the Cox’s and Aalen’s ones) is summarized for instance in Volf (1992), however, the main
body of that paper is devoted to the local scoring procedure - i.e. to the method based
on locally employed maximum likelihood principle. Let us explain the method briefly. For
instance, in the setting of counting processes observed in [0, 7], the conditional likelihood,
given the intensities A;(%), is a generalization of Poisson likelihood function, namely

H [H Ai( exp{ /T)si(t) dt}l :
i=1 Li<T 2

Here A;(t) = I;(t)-h(t, Xi(t)), dN;(t) = 1 just at the moment of count of N;(t), dN;(t) = 0
otherwise. Let us consider a one-dimensional covariate X (¢) and a multiplicative hazard
function h(t,z) = hy(t) - exp b(z). The maximum likelihood estimates (MLE) of functions
hy(t), b(z) are functions maximizing £°. In praxis we look for maximizers of log £¢,
namely of

log[:‘-‘— l/ {log ho(t) + b(Xi(t))} dN;(t) — fﬂThg(t)epr(Xi(t))It-(t)dt :

In the case of multiplicative model, the Cox’s partial likelihood function is available for the
estimation of b(z) independently on hg(t). The partial likelihood can be derived directly
from L€ as a "profile’ likelihood for b(z), with the aid of the MLE principle. The logarithm
of partial likelihood is

- 1_é[:lug [En 1 3;

L exp b( X

1

( ))] i

and an “ideal” estimate of function b(z) should maximize it. Then, the cumulative baseline
hazard function Hy(t) = fot ho(s)ds is estimated by the Breslow Crowley estimator (also
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derived from maximization of £¢):

el 4 >, dNi(s)
Foft) = | S b G E )"

where b is estimated function b. Then, baseline hazard function can be estimated by a

standard kernel smoothing of steps of Hy(t), namely:

t—s

ho(t) = 5 [ W=D dki(s),

where W (z) is a kernel function.

How to cope with the task of estimation of a nonparametrized function b(z) from the
log-likelihood (here, from £F)? The idea of local scoring (Hastie and Tibshirani 1986, 1990)
is based on sequential local maximization. If we wish to estimate the value of b(z) at point
r = z, say, we take function b(z) as a constant b, in a chosen window (neighbourhood) O,
around z. Then b, is treated as a parameter and we solve the equation d¢” /db, = 0, using
only data with X;(t) € O,, t € [0,T]. Then the window is moved to another point, etc.
Thus, we walk through the whole domain of z, repeatedly, until convergence. The method
can be enriched by the use of weighting kernel in each window. If covariate x € R¥,
a purely multiplicative model considers additive function b(x)= Z;"zl bj(z;). Then the
algorithm of local scoring iterations contains also a loop dealing with one component after
another (see also Volf 1992, 1993a, Part II here). It is seen that functions b; are determined
up to additive constants, therefore it is necessary to normalize them for instance by some
'initial’ condition like b;(0) = 0 and similarly.

It is also evident that the method has much common with the standard kernel smooth-
ing of curves. However, the standard kernel smoothing is based on the weighted averaging
in each window, meanwhile the local scoring employs the MLE technique. A variant of
the local scoring, the technique of local maximum of likelihood computed with the help
of an algorithm proposed in Volf (1992, 1993a), is applied to the solution of the lifetime
estimation problem in Part IL

As it has already been said, another way to estimation of nonparametrized function
b(z) may consist in approximation for b(z) by a parametrized function. Every smooth
function can be well approached by a linear combination from some basis of functions. For
instance, the splines are the popular choice. Stone (1986, 1994) used the approximation
of regression function by splines in the framework of exponential family of distributions.
He proved the consistency of this approximation provided the parameters of splines were
estimated by (global) maximum likelihood method. Thus, the reparametrization may
be considered as an alternative way to solution. From this point of view, the simplest
approximation, namely the regressogram (histogram), is a trivial spline, with order 0.

A widespread discussion runs about the advantages and capabilities of both approaches

splines and kernel-like smoothing, see already a discussion to paper of Hastie and Tib-

shirani (1986). We here do not intend to contribute to arguments of any side, our opinion
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is that every well-working method is valuable. Although some data-analysts (when jok-
ing) claim that one data may be analyzed only once and only by one method - in order

to avoid contradictions and problems with interpretation of results.

Example 1.2. Let us now describe the process of data analysis and model specifica-
tion, and let us show the methods and results of estimation of hazard functions and
other model’s characteristics, in the case described by our Example 1.1. For illustrative
purposes, the data were generated artificially.

The structure of the data was the following: Number of tested persons n = 52, together
71 events were observed (namely 35 delays, 36 mistakes, 12 persons passed the test without
any delay or mistake). The design of covariates was balanced, in the sense of more or
less uniform distribution of their values and the mutual independence of covariates. We
started the solution by the evaluation of the dependence of the hazard rate on time and
by other rather simple explorative steps. Figure 3 shows the distribution of times of
events, Figure 4 then the estimate of cumulative hazard function and of hazard function
- intensity of events, in ¢ € [0, 300].

Histogram of times of evenis
B T 1

Number of evenis

(] 50 100 150 200 250 300
Time (min)

Figure 3: Distribution of times of events

I'hen, the dependence on covariates was analyzed, first in the framework of standard
Cox’s regression model i.e.
3
h(t,x) = ho(t) exp Z 8;z;.
3=1
Moreover, we consider two types of events, therefore the same type of model can be
proposed and evaluated for each type of event separately. The results are collected in
Table 1, first for both types of events together (we denoted the indicator of event type
by 6 =1 or 2). Then the parameters were estimated solely for the event § = 2 (the event

“mistake” ).
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Estimated CHR of all events and 95% conf. bands
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Figure 4: Estimated cumulative hazard function and hazard function

Table 1. Estimated Cox’s model parameters and values of test statistics

o—=1and 2 =
B Gk B Gk

k

1 0.0081 0.6578 -0.0116 -0.6844
2 0.1309 1.0690 0.3538 1.9045
3 -0.3325 -1.2031 -1.1473 -2.4751

Estimated baseline CHR and 95% coni. bands, all avenis
1.2 - T T Te—— T —— e

ozl L e e Moo L e
50 100 150 200 250 300
Tima (min)

Figure 5: Estimate of cumulative baseline hazard function, in Cox’s model

In the framework of Cox’s model, the estimates of Cox’s parameters 3 are asymptot-
ically normal (cf. Andersen et al, 1993). That is why we are able to compute the test
statistics having approximately Gaussian or chi-squared distribution. Let us again return
to the example (and assume that the Cox’s model is the right one for our data). Table 1
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displays the partial likelihood-based estimates of parameters G, £ = 1,...,3, together
with the values of the test statistics Gx. The value of Gy should approximately come
from standard normal distribution provided the hypothesis 8 = 0 holds. In other words,
let g(a) be the 1 — « quantile of standard normal distribution. When |Gk| > g(a), the
hypothesis 3; = 0 is rejected, on approximate level 2. For instance, let us choose the
level 2a = 0.1 = 10%, then ¢(0.05) = 1.645 is used as an approximate bound of critical
interval, for level of test 5% the critical value is approximately 1.960. The results from
Table 1 suggest the following conclusions:

It is seen that in the first case (and in the framework of the Cox’s model) no separate
covariate is sufficiently significant. On the other hand, for the event "mistake” the co-
variate X3 (the experience) becomes highly important, the risk of mistake is significantly
higher for non-experienced persons (even on 5% level). Further, covariate X, becomes
significant, too. As estimated 3, > 0, it means that comfortable conditions reduce the risk
of mistake (rather than the risk of delay). Figure 5 displays the estimate of cumulative
baseline hazard function, for the first case (both event categories together).

After the first stage of estimation, in the next section we shall analyze the results
and examine whether the model with time-dependent parameters is more adequate, i.e.
whether the importance and influence of certain covariate changes with elapsed time.

6 Methods of statistical tests

Once the model is selected, its evaluation yields the information on actual dependencies.
For instance, the general nonparametric approaches, e.g. the local likelihood (or the local
scoring, or the moving window) method of estimation, are able to reveal the shape of the
regression function, provided the proper model has been chosen. The correctness of the
model should be tested on several levels. Let us demonstrate it on our example.

First, the correctness of the proportional (i.e. multiplicative) hazard assumption has
to be checked. A number of test procedures have been developed, graphical as well as
numerical ones. Mostly they use the fact that, under the proportionality of hazards, the
logarithms of (cumulative) hazard rates are shifted by a constant difference. Namely, let
us consider two levels z;, 2, of a covariate X. Then

log h(t,z) — logh(t, 25) = b(21) — b(23)

for all ¢ € (0,7] such that ho(t) > 0. Instead of distinct values of covariate the strata
around certain values may be considered. Only for the sake of simplicity, let us check the
assumption about proportional hazard dependence on covariates graphically. The cumu-
lative hazard functions have been estimated using the Nelson Aalen estimator (separately
for two groups of data).

Figure 6 compares logarithms of cumulative hazard functions (of wrong or delayed
responses), for two different age groups, for value X, = 1 versus X, > 1, and also for
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X3 = 0 versus X3 = 1. The graphs support more or less the hypothesis of proportional
hazards with respect to the covariate X, the age. On the other hand, the proportionality
of hazards dependence on other two covariates may be doubted, the plots indicate that
the proportions of hazards differ in different time domains. That is why we decided to
consider an enriched model allowing the dependence of parameters on time, the results
are collected in the next paragraph.

Comparimon af paracnes wilh ege=40 (dash) snd =40 (full)

by R
)
T

Comparisen of ex Perimenta with M= (Gmmh) mod =1 (i)

e g m— —

B0
Tirme (rain)

(=] - o = (cmmt) mrd Unesperienosd (L)) persone

Teo =00 ~=oo et
Tirme (rmin)

Figure 6: Comparison of logarithms of cumulative hazards

Second, the significance of regression can be doubted. The hypothesis is tested that the
dependence of response on corresponding covariates z, is negligible. The test is performed
with the help of asymptotic normality of estimators of Cox’s model parameters (i.e. we
test the hypothesis that they are zero), conclusions of such a test were already discussed
above, in connection with the values in Table 1.

With some license, the conclusions of such a test may be acceptable even when the
Cox’s model is far from reality. However, how the (non)linearity of regression function
should be checked? It is the third question to be answered by a test. One possibility is
suggested in Stone (1986). Let us consider a polynomial form of the regression function,
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estimate the parameters — coefficients of the polynomial. Then let us test the hypothesis
that the coefficients of order higher than one are zero.

Other way of testing can be based on the linear approximation analysis of nonpara-
metrically estimated regression function, which was used also in Volf (1992, 1993a, b).
However, the results depend strongly on the “smoothing policy” during the local likelihood
iterations.

In general, statistical testing (of a hypothesis about the model) is based on com-
parison of observed data with the expected hypothetical performance of the system. In
the regression setting, the difference (departure from the hypothesis) is characterized by
residuals. The strength of a testing procedure depends on the proper choice of residu-
als. In the case of standard regression model (a datum is given by the sum of a trend
function and of a random noise) the residual is simply the difference between the datum
and the corresponding value of trend function. However, the hazard regression models
are more complicated. Arjas (1988) recommended the residuals based on the martingale-
compensator decomposition (cf. Section 3), namely M;(t) = N;(t) — L;(t), where N;(?)
are observed data and L;(t) are given by the (hypothetical) model. Arjas utilized these
residuals for the graphical assessing the goodness of fit of Cox’s regression model. A
modification applicable to general hazard regression (and, particularly, to Aalen’s model)
is described in Volf (1996). Again, these tests are applied to the data analyzed in Part II.

Example 1.3. — Time-dependent coefficients. The estimate of the dependence of
parameters on the time (i. e. the change of influence of covariates ) is graphically displayed
in Figures 7 and 8. It is seen that really the dependence on the age is stable (and not too
important ), while the other dependencies change. Figure 7 shows also that with growing
fatigue the differences between groups decrease, at least regarding to the delayed reaction
to the impulses. On the other hand, from Figure 8 it can again be deduced that the bigger
difference exists between the risk of mistakes of experienced and nonexperienced persons,
and this difference does not diminish, regardless the fatigue of operators.

7 Analysis of discrete-time (or grouped) data

We have seen that the hazard models of the counting processes support the characteriza-
tion of individual histories, that the counting process of a system (of a group of objects)
is obtained by summation of “individual” counting processes (i.e. of processes registering
specified events of specified objects).

The examples have also shown that not too rough discretization of the reference time
does not matter. On the contrary, sometimes the analyst discretizes the time domain
artificially in order to construct a grid for histogram-like estimators of time-dependent
components of model.

Another situation is encountered when not only the period of study is split into a
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Figure 7: Estimated time-dependence of Cox’s model parameters
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(Andersen et al., 1993, example VI.1.3.). The example deals with the rate
of suicides among nonmanual workers in Denmark. The persons had been grouped to the
age groups (w.r.to age at the beginning of the study), several categorical covariates, e. g.
sex, job category, marital status, regional characteristics. Thus, a set of groups (cells) has
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Figure 8: Estimated time-dependence of parameters of Cox’s model for the risk of event
"mistake”

sequence of intervals but, moreover, the individual data are summarized (grouped) in
these intervals. We then have to deal with the grouped data, the structure typical for
life tables. The values of covariates have to be grouped as well, so that the data are a
result of a multidimensional grouping of events. As the covariates are either categorical
or discretized, a rather general discrete model may then be constructed with the help of
finite number of parameters. Let us now show these aspects with the aid of an example,
from the field of sociological studies.

been obtained by a cross-classification with respect to all these categories. For each cell,
the data contain the number of exposed people and the number of events (the suicides)



during given time period 7 (in this study 7 = 10 years, from 1970 to 1980). It is assumed
that the hazard function is constant within each cell. If we further assume that the rates in
cells are mutually independent, the rate for each cell is estimated simply as the proportion
of number of events to T-times the number of people entering the cell (i. e. people exposed
to risk in the cell). However, one may also consider a kind of multiplicative model. Let
hasjmr denote the hazard rate (with respect one year exposure) specific for a cell with
certain combination of age (a) and covariate groups (s,j,m,r). Purely multiplicative
model means that hggjmr = @ fs7j Om €r, the model considering interactions between
sex and job category should be a, 0, 0, €, etc. The likelihood function is the following
product across the groups,

H {(hasjmr)NMjmr exp(_hasjmrTRasjmr)}

{a,s,3,m,r}

where Rygjm, is the number of persons entering the cell (asjmr). If we had more detailed
information about the times of “exposure” of individual persons, R, should be the
averaged sum of these exposure times, Rygjmr = % % euy ey fUT I;(t) dt. Actually, the
likelihood is proportional to the likelihood of a multiplicative Poisson model, so that the
practical estimation may be accomplished with the help of a standard statistical analysis
software (e.g. with the GLIM, Generalized Linear Models software).

Prentice and Gloeckler (1978) analysed the grouped medical data from a longitudinal
clinical study dealing with the typical “life-tables” data with censoring (i.e. the data
containing information on the number of entering persons, on the number of events and on
the number of censorings at each time and covariate-specific cell). The authors considered
the possibilities how to fit the Cox’s regression model to the grouped data. It is due to the
discrete character of the data that the Cox’s model is equivalent to the multiparameter
multiplicative model from the preceding Example 2. Again, the precision of estimation is
limited by the noncomplete information about actual periods of exposure of the persons
under study (i.e. about exact moments of events and censoring). A method of statistical
tests for grouped survival data has been proposed in Volf (1982).

On the other hand, we should not forget that the Cox’s model assumes the existence
of continuous baseline hazard function hg(t). By the techniques described in Example 2
only the “crude” estimation hj of hg is obtained (in Example 2, «, is actually such an
approximation to hg(a)). In fact, this crude estimate is a histogram (with more or less
dense nodes). So that the next step can consist in the smoothing of the estimate, mostly
with the help of the standard kernel smoothing procedures. The kernel smoothing of
hazard rates from the step-wise crude estimates (or from step-wise estimates of cumulative
hazard rates) ranks among the common techniques in the field of event-history analysis.
The properties of estimators are described elsewhere (e.g. in Andersen et al., 1993, cf.
also Volf, 1992), in the continuous time setting the consistency of estimation is guaranteed.
In the field of mathematical demography, the smoothing procedure is called graduation
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(ef. Gavin et al., 1993). The same procedure may be applied to the smoothing of the
crude (group-specific) estimates of covariate effects provided the natural scale of covariate
is continuous and is discretized artifically by grouping.

Notice that in the case of Example 2 the model can be reformulated in such a way
that the age is just one of the covariates, meanwhile the reference time is missing. The
role of reference time could be played by the calendar time from ¢t = 0 (~ 1970) to t =T
(~ 1980), but the analysts assumed that the risk of suicide did not change during the
followed time period.

In such a case as described by Example 2, when we know only the initial numbers of
exposed objects (here, persons) and the dynamics of the process of events is not taken into
account, it could be more convenient to abandon the hazard rate models and to describe
directly the probability of occurrence of the event (in given time period), for instance with
the help of logistic regression model (for an example of nonparametric logistic regression
model, see Volf, 1993a).

When speaking about the secondary smoothing of estimated dependence of hazard
function on a discrete-valued covariate, it should be emphasized that the local scoring
procedure enables us to accomplish the smoothing automatically. It depends only on
the choice of the width of window. If the window is narrow, the local scoring solve
standard parametric task of maximum likelihood estimation (estimating one parameter
after another, or one subset of parameters after another subset, not all parameters jointly).
If the windows are wider than the distance between categories (for instance, if covariate
“age” is grouped to two years classes and the corresponding window is chosen greater
than four), the smoothing is performed.

The methods of analysis of grouped data are actually outside the scope of the present
study. However, in many cases, the procedures described here can easily be modified
and employed for such a situation. The limitations of the counting processes approach to
the statistical life-history analysis are widely discussed by Andersen et al. (1993). They
believe that the most nonfavourable cases are caused by such a lack of information that
no other techniques can reach significantly better results.

“Detailed life history data may be given a thorough analysis using the methods based
on counting processes. However, if less precise information is available, then alternative
techniques are necessary. Some such techniques can also be based on counting process

"

idea, but not in the simple form...” Andersen and Borgan (1985)

8 Control of the process of events’ intensity

[f the intensity process depends on covariates, the natural way how to control this process
is the control the covariates, 1.e. at least these which can be influenced by our decisions and
actions. The sense of a control consists in the reduction of the number of nonfavourable

events (i.e. failures), as well as in the optimization of the cost of events. If the intensity of
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failures is known deterministic function (under different control conditions) the problem
can be treated as the standard problem of optimization of exchanges and supplies, with
Poisson process of events. However, in the more general concept considered here, the
intensity process is a random process, influenced by random inputs - covariates, and by
the random indicator process, too. Hence, for optimal decisions, the development of
covariate processes has to be estimated, predicted (Aven, 2000). Then, we can again deal
with the intensity, conditionally on given inputs, as with the determined function, and
therefore solve the problem of prediction of the process of events, in the sense of the mean
number of expected events, or in the sense of 90% (for instance) prediction intervals or
bands. The prediction interval at a given ¢ says that with 90% probability the number of
events up to ¢t will be in a given interval (e.g. lower than a given value - it is a one-sided
interval). On the other hand, the meaning of a prediction band is that the whole process
of events will be with 90% probability in a given band (or below a given curve forming a
one-sided band).

We shall show an example of a procedure of prediction of failures and of their costs in
the framework of the real data case treated in Part II. The objective of experiments with
operators, as described in example 1.1. - 1.3., was also to find the optimal conditions for
their work and, consequently, to guarantee such conditions in the real situation. Let us
therefore return to this example once more:

Example 1.4. We want to compare the performance of operators under different condi-
tions. In order to do such a comparison, we should first be able to predict the properties of
corresponding counting process. So that let us for instance consider the counting process
with the cumulative hazard rate (intensity) H(t,x) = Hy(t) - exp(byz, + by + b3), i.e. for
the “optimal” case such that X; = X, = 1. There are in fact two ways how to solve
the problem of prediction. One solution is the simulation of a sample of trajectories of
the process. The second approach will compute CHR for each person (i.e. for his value
X1) and then average them. For instance, the expected (mean) number of events in an
interval [0, S], with ideal values of covariates (i.e. X, =1 and X3 = 1) is

I = ) s
(3) % Z{ H (S, z;) = Hy(S) exp(ba + bs) - = > exp(bizi;).

i=1
Let us present here some results obtained from the first (simulation) approach. Figure
9 shows 200 randomly generated realizations of counting processes. The cumulative hazard
rate was the ”optimal” H (¢, z) given above, where Hy(t) and parameters b; were estimated
(in Example 1.2.). Values of X, - the age - were generated uniformly from interval [20,60].
Full lines connect the averages and empirical 90% quantiles, respectively. The ”quantile”
line thus shows approximate 90% one-sided prediction intervals at each t (the line is
secondary smoothed).
The mean number of events in [0, 300], estimated from our analyzed data, is 71 fB2=1.365
while the expected (mean) number of events in the case of optimal covariates X, and X3
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Figure 9: Simulated counting processes, averages and 90% empirical quantiles of numbers
of events

is 0.926 (it is seen also from Figure 9.). Moreover, let us now imagine that after 2.5 hour
the operator is changed. Then the mean number of events in first 150 minutes, computed
from the data of our sample, is 0.481, while the mean number of events for persons with
X = X3 =1 is again lower, namely 0.334. So that the selection of operators and their
timely exchange will reduce the risk of their wrong (or delayed) reaction considerably.

9 Conclusion of Part 1

The main purpose of the present part of the study consisted in reviewing the methodol-
ogy of statistical event-history analysis (including the author’s results) and in suggestions
of modifications convenient for the use of this methodology in praxis. In order to make
the techniques applicable, the computational programs were prepared. They follow the
algorithms described in the study and are adapted to particular data (e.g. to the data of
Example 1, and to the cases analyzed in the following Parts II and III). As the standard
procedures are now available in professional software systems (e. g. S-plus), including for
instance the analysis of Cox’s model with time-dependent covariates, our effort here has
been concentrated onto their modifications, and, mainly in the next part, to the nonpara-
metric techniques, namely to the maximum local likelihood (local scoring) approach, and
to the graphical goodness-of-fit testing methods.

We said that (up to now) the counting processes models were used mainly in the area
of biostatistics, medicine research, and, newly, also in reliability. However, it is clear
that these models and analyzes are applicable in many other fields. Their list is rather
long. We have already mentioned here the financial and economic management, ecology,
security and defense, demography. Actually, it concerns to all areas where one deals with
the forecasting of events, with the reliability and risk analysis in the random environment.
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PART II

A CASE STUDY: AN APPLICATION OF
NONPARAMETRIC COX’S REGRESSION MODEL TO
PREDICTION OF SURVIVAL OF MELTING CELLS

1 Introduction

In the present reliability analysis study, a nonparametric version of the Cox’s regression
model of hazard rate is used for the modelling of the time-to-failure probability distri-
bution. In the framework of this model, the dependence of hazard rate on covariates is
described by a nonparametric additive response function. The objective is to recall the
methods of statistical analysis of such a model (developed by the author in Volf, 1993a,
1996) and to adapt them to the real-case study of the Reynolds Metals Company data.
The method of estimation of the response function uses a kernel-like approach which max-
imizes, in an iterative way, the local partial likelihood. Then, the goodness-of-fit is tested
by the procedure based on the properties of generalized residuals.

At present, there exist a well developed methodology of nonparametric estimation in
generalized regression models (i.e. in the exponential family of models, including the Cox
one). Actually, the method used in the present study is a variant of the local scoring pro-
cedure proposed by Hastie and Tibshirani (1990) for generalized additive models. Other
modifications are proposed for instance in Gentleman and Crowley (1991), O’Sullivan
(1993), Fan and Gijbels (1996). These techniques were derived from the local smooth-
ing (i.e. kernel, local polynomials etc.) procedures used successfully in the framework
of standard (normal) regression. Nevertheless, the main problems remain, namely the
problems of quality (e.g of consistency) of estimates and of convergence of algorithms at
all. We shall return to the problem of optimality of nonparametric procedures in these
"likelihood’ regression models in the concluding remarks.

The organization of the study is following: In subsections of Part 2 the model is
formulated and the method of moving window (maximizing iteratively weighted local
likelihood) is described. Then, a considerable part of the study is devoted to the analysis
of a real case data known as the Reynolds Metals Company data (Part 3).

The method is applied to the evaluation of losses caused by the reduction of lifetimes
of damaged electrolytic cells, this reduction being caused by an uncontrolled shutdown of
cells during a strike in an aluminium smelter. The lifetime distribution of the cells is mod-
elled, the model characteristics are estimated, and then the goodness-of-fit of the model
is tested. The case has been statistically examined by several analysts, cf. contributions
of Kalbfleisch and Struthers, and of Thomas, both published in CS, 1982. Nevertheless,
the case is so interesting from the point of statistical data analysis, that it can be used as
a bench-mark example for comparision of analytic techniques. Thus, today’s interest in

these data is due to recent development of methodology of nonparametric identification
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of general regression models. Thus, in the paper of Arjas and Liu (1995) the Bayesian
approach is used to estimation of nonparametrized hazard rate, with the help of Gibb’s
sampling procedures. The novelty of our solution is that we consider a more detailed
and more flexible (nonparametric) model then the preceding authors, we use the moving
window method, and, finally, we also check the fit of the model by the statistical tests. We
shall use the goodness-of-fit tests for the hazard-regression models based on the proper-
ties of generalized residuals. The graphical version has originally been proposed by Arjas
(1988), numerical test for the parametric Cox’s model has been developed by Marzec
and Marzec (1993). Then, Volf (1996) derived the test for the Aalen additive model and
also proposed the general graphical procedure of testing the fit of a nonparametric Cox’s

model. Such a version will be used in the present case.

2 Counting process and Cox’s regression model

The notion of counting process as well as the Cox’s regression model have been introduced
already in Part I of the thesis. Nevertheless, let us here recall them briefly. A multivariate
counting process N(t) = Ni(t),..., N,(t) is a set of right-continuous random step func-
tions on [0, 7], with N;(0) = 0 and with steps +1 at random moments. It is assumed
that no two components step simultaneously. In the case analyzed here, N;(t) will jump
from O to 1 at the moment of (observed) failure of the i-th device. The probability (the
hazard) of the failure is modelled via the hazard function.

The Cox’s model is a well known model for description of the dependence of the haz-
ard function on a covariate x. It specifies the form of the hazard function to h(t,x) =
ho(t) exp(f(x)), where hg(t) is the baseline hazard function. The most frequently used
standard semiparametric Cox’s model has parametrized f(x), mostly f(x) = f'x. We
shall deal with the case when f(x) is a nonparametrized smooth function. Its estima-
tion can be based on a multidimensional moving window (or kernel) procedure (such a
procedure being a direct generalization of a one-dimensional case). However, a multidi-
mensional covariate causes the data sparse and the multidimensional kernel approach loses
its effectivity. Therefore, we shall consider a less general model of additive influence of co-
variates, namely the model with f(x) = JK:I fj(z;). The analyst has to identify suitable
functions fi, ..., fx and also function h(t), or its cumulative version Hy(t) = f!a(s)ds.
Evident ambiguity (with respect to additional constants in f;’s) can be overcome by a
proper normalization of these functions.

Simultaneously, we shall admit the time-dependent covariates X;(t), i =1,....n (in
general, they can also be random). Then, the behaviour of component N;i(t) is governed
directly by the (possibly random) intensity

Ai(t) = h(t, Xi(1) - Li(t) = ho(t) - exp [ (X;(t)) - Li(2),
i=1,...,n, t € [0,T], where I;(t) is an indicator process, I;(t) = 1 if the i-th object is
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in the risk set at moment ¢, I;(t) = 0 otherwise. In other words, I;(t) = 0 either after the
failure of i-th object or after the i-th object is censored. The inference is based on the
Cox’s partial likelihood (cf. Andersen et al.,1993). Let us again recall its logarithm:

_E T e f(K() |
b=3 | s o R HeS O

Notice that dN;(t) = 1 at points of events, dN;(t) = 0 otherwise, so that the integral
transforms to a sum. A(t) = [fa(s)ds, When an estimate of function f is available,
we can use the following generalized maximum likelihood estimator of the cumulative

baseline hazard function

~ t dN (s
()= [ =, ()
0o >3, exp f(X;(s));(s)
where N(t) = =%, N;(t). Hy(t) is then a nondecreasing stepwise function, with steps

at points of observed events (i.e. points of counts of N(t)). From the increments of Hy(t)
an estimation of function hgy(t) can be obtained, with the aid of a smoothing procedure.

Let us now describe the idea of the moving window estimation of function f(x),
following Volf (1993a).

2.1 Moving window estimation procedure

Let us first consider a one-dimensional covariates X;(t) with values in some finite interval
X C R, for each 7 and t € [0,7]. If we wish to estimate the value of f(z) at a point
r = z, we take f as a constant f, in some chosen neighborhood (window) around z, say,
in O(z). Then f, is treated as a parameter, we have to solve the equation 94, /df, = 0,

where

S “exp f, - ¥ (1) - 1[X;(t) € O]
A R e ey o EACC

Hastie and Tibshirani (1990) recommend to compute also the second derivatives and to
use the Newton-Raphson procedure. Then, the step from r-th to (r + 1)-st iteration is
given by the following expression:

ol 0*¢

8 [ ofE

where the derivatives are evaluated at f((z). Such a method is called the local scoring

fz{r—l—l f(r

procedure. We derive the scheme of iteration directly from (2). Iteration starts from a

chosen initial function, e.g. f®(z) = 0. Then we update it sequentially, in the following
way: At each point z, we set

b
) O(z
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It is seen that we need not register all trajectories of X;(t), but only their values
X;(T;) at T; - the moments of observed counts of N;(t).

Let us now consider the case of multidimensional covariate processes
X(t) = (X,(t),... Xk(t)) and suppose the additive form of function f, namely
flw)i= Zf:, fi(z;). In order to derive the procedure of iteration, let us imagine that
when estimating, say, function fy(z,), we have already estimated all necessary values of
functions f(Zm), m = 1,2,..., K, during the preceding steps. Quite analogically to
the one-dimensional case, from the equation 8¢,/9f,(z) = 0 we can obtain the following
scheme of the moving window estimation procedure:

i@ =[x [MEELID g [ 5 [M1xu € o) anw)

where now

T

K
Z 1[Xy;(t) € O(2)] - exp {Z 1k # 4] - fk(ij(f))} Lit),  (4)
So(f,t) = Yi_exp{f(X;(?))} - 1;(t), and O(2) is a chosen window around z in the
domain of ¢-th covariate.

The loop iterates through ¢ = 1,..., K and updates the values of f{Hl (2) at every
chosen z (we need at least the values at all observed Xy;(T;) provided I;(T;) = 1, ¢, j =
1,...,n). Then we proceed to the (r + 2)-nd step of 'outer’ iteration. The procedure may
start from f; = --- = fg = 0 or from another convenient initial guess.

In order to control the progress of iteration (and convergence), a following method
can be employed: After each r-th loop of iterations, optimal (in the least squares sense)
lines are led through just estimated values of component functions fiy. We pursue the
development and convergence of parameters of these lines. On this basis we decide either
to continue or to stop the estimation process.

It is seen that the method can easily be enlarged to the kernel or to the nearest neigh-
bours estimation procedures. The choice of the window-widths is a matter of experience
(there exists a well developed theory of optimal window-width selection, for the standard
kernel regression cases). We prefer the use of simple kernels (e.g. a triangular one) in
combination with the nearest neighbours approach, i.e. we prescribe a minimal number
of data points in the window.

2.2 Remarks on convergence of the procedure

As regards the consistency of estimates (i.e. of the large sample convergence to the 'true’
hazard function), in the case of standard Cox’s model the existence of consistent sequence
of estimates is guaranteed theoretically (see Andersen et al, 1993). On the other hand,
even in this standard semiparametric case the actual solution is obtained by an iteration
procedure depending strongly on the actual data and on starting points. Iteration then
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can lead to a local optimum or to an oscillation without any convergence at all. One
possibility how to overcome such a case is to start the procedure several times, under
different initial and control conditions. These problems are even more actual in the case
considered here, where the optimization in a local window is combined with repeated
shifts of this window and with sequential local updating of component functions fg).
The problem of convergence and of consistency of estimates is discussed elsewhere, for
instance in Hastie and Tibshirani (1990), see also Volf (1993a). However, neither for
the exponential family of models, nor for the Cox’s model, a definite result is available.
Nevertheless, the experience with the method presented here is encouraging, it has been
tested successfully by a number of simulated as well as of real-data examples.

3 A case study

In 1967, a strike at a Quebec aluminium smelter resulted in the uncontrolled shutdown of
electrolytic cells. The company claimed that the shutdown caused the shorter operating
lives of cells operating at the time. The case led to a legal action and initialized a need
of a deep statistical analysis of the data, in order to confirm expected higher failure rate
after the intervention (shutdown) and to estimate statistically the losses caused by this
(eventual) higher rate. The more details about the case, as well as the complete data were
published in “Case Studies in Data Analysis” (CS, 1982), a section of Canadian Journal
of Statistics, V.10 (1982). The table of data contains three parts. In the first subtable,
there are data on 395 cells of standard types, of which 297 experienced the shutdown.
There are 20 types of standard cells (denoted Al -A20). The second subtable refers to
104 cells of experimental design, their types are labelled as B, C,..., K. The survival
of cells was measured in days, the highest observed time to failure was 2541 days. The
installation times differed from 2 287 to only 3 days before the shutdown (no cell installed
after the strike is considered). The survival times are known, noncensored.

From all these 499 cells, 349 were in circuit at the moment of intervention. The cells
of the third group, 73 experimental cells labelled from L do O, were installed and had
failed before the intervention.

From description in CS, 1982 it is not clear how long the interruption lasted. It is
therefore assumed that the aging of cells had been “stopped” during this period, that the
failure rate of a nonfunctioning cell is negligible.

[t is supposed that each type of cell may have specific properties influencing its survival
time. There arises the question whether the third group of cells (no experiencing the
intervention) is worth to be taken into account, not bringing any information about the
influence of the shutdown. However, as soon as the model with a common baseline hazard

is considered, even these data contribute to the estimation of the baseline characteristic.
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3.1 Choice of the model

In the first part of their study, Kalbfleisch and Struthers (1982) estimated and compared
the age-specific hazard rates before and after intervention. The fact of experience of
intervention was treated as a {0,1} covariate in Cox’s model, two-sample test showed
substantial increase of aggregated hazard rate after the intervention. Other covariates
have been considered, namely the age of the cell at the moment of intervention and the
time from intervention (provided the cell experienced it at all). Thus, the changes of the
hazard rate in the course of individual time have been examined attentively, while the
types of cells have not been considered.

Thomas (1982) used also the standard Cox’s model, considering the following covari-
ates: date of installation, experience of intervention (0 or 1), subtype of cell (the types of
cells were aggregated to 6 subclasses). The pairwise interactions of these three covariates
were considered, too. Thomas remarked that the statistical tests revealed a lack of fit of
the model. It could be caused by a nonoptimal choice of covariates or by a nonoptimal
structure of the chosen model. It seems to be more appropriate to consider two hazard
rates, one for non-damaged cells, and the second as a function of the time after inter-
vention. These two hazard rates can be connected in a multiplicative way, so that one is
regarded as the baseline hazard, the second as a function describing the covariate effect
of the time after intervention.

Following this idea, we shall work with the following model of the hazard rate of failure
of i-th cell, using the age of the cell as a reference time ¢:

Ai(t) = ho(t) -exp {b(t — U;) - 1[t > U] + ¢(zi)}, t€[0,Ti], Ai(t) = 0 otherwise, (5)

where T; is the survival time of i-th cell. U; is now the age of i-th cell at the moment of
intervention and z; is the type of cell ;. The values from 1 to 34 are assigned to types
Al,...,A20,B,C,...,N,0. While the covariate z is categorized, the time is regarded as a
continuous variable, functions hg, b are assumed to be continuous and bounded.

The validity of the model was tested. Let us postpone the problem of testing to
the concluding part of analysis. Now let us apply the moving window technique to the
estimation of nonparametric regression functions b and c.

3.2 The procedure of estimation

Denote f(t,u,z) = b(t — u)L[t > u] + c(z). As each cell encountered exactly one failure,
at moment T;, Cox’s partial likelihood is now

(Ti1 Ui: I'i))
() !

E; = Zln EXp(f
f=1

where S(z) = 37, exp(f(Ti, Uj, z;))I;(T;). The computations start from b, ¢ = 0. Let us
imagine that we wish to estimate value of function b at a fixed point s (> 0). Therefore
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we regard (for the moment) function b(-) as a constant b, in a chosen window O(s) around
s. Quite analogically to (2), from equation 9¢ / 9b, = 0 we obtain

n R : .

Z {I[T, > Ul] & II(T; = U,) = O(,s)] - S('Z;) . eprg} =0, (6)

i=1
where R(s,i) = X", 1{(T; — U;) € O(s)] - 1[T; > Uj] - exp c(z;) - I;(T;). An iteration step,
derived directly from (6), is then:

where naturally the right side uses the estimates of functions b, ¢ obtained from the
preceding steps. The task of local estimation of function c is solved in the same way. As
the variable z is categorized to M = 34 classes, the task is equivalent to solution in the
framework of Cox’s model with M parameters ci, ...,cyu and 0,1-valued covariates. We

have
g ) 4
E—i:l{l[:&-—m] S0 exp m}, (7)
where S(m,i) = Zn: l[z; = m] - exp {b(T; — U;) - 1[T; > U]} - Li(Z3),

j=l

and the iteration step is

- n{ %0 ).

Results: The progress of iteration was controlled and its convergence observed from the
changes of estimated parameters ¢,,. Originally, function b(s) was estimated at equidistant
points, at each 10 (days). The full domain of s was from 0 to 1837, so that we obtained
183 values. Then the estimate was secondary smoothed, i.e. the values were averaged
(in a weighted way) in a moving window. The graphs of estimated functions b and ¢ are
displayed in Figures la, 1b.

After we decided to stop the iterations (when changes of values of ¢, were less than
0.1%), we computed the estimate of cumulative baseline hazard function Hy(t) in accor-
dance with (1). From it, by a kernel smoothing of its increments, we obtained a graph of
estimate of ho(t) in Figure lc.

In the framework of Cox’s regression model, the procedure of estimation yields also
the asymptotic confidence regions for true values of parameters and for true cumulative
baseline hazard function. It follows from the asymptotic normality of estimates (cf. An-
dersen et al. 1993). In our case, the application of these asymptotic results is rather
limited, because we use a nonparametrized function b(s) in model (5). This could be
overcome with the help of a rougher, histogram-like approximation to b(s), or by boot-

strapped construction of confidence regions. However, even if we have confidence bounds
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for 'true’ characteristics of the model, the transformation of these intervals (in order to
obtain confidence intervals for the mean number of lost days, say) is a rather hazy and
ambiguous problem. That is why the confidence intervals were not constructed.
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Figure 1: Estimates of functions b(s), ¢(m) and baseline hazard rate hy(t)

3.3 Evaluation of the cost of intervention

Method 1. Let T'(m,U) be a random variable - the remaining time to failure of the cell
type m, which has survived up to age U and which is supposed not to be involved in the
intervention. The hazard rate of distribution of T'(m,U) is ho(s + U) - exp ¢, s > 0, its
estimate is available. The data contains n,, cells of type m which passed the intervention
at ages Uj, their remaining survival times S(m,7) = T; — U;, i = 1,...,nm, have been
observed. Then the total loss (in days) of cells of type m is given by random variable
Dy = 3 (T(m, U;) — S(m,i)). The mean number of lost days is directly E D,, =
L ET(m,U;) — S(m,1)).
Theoretically, the mean remaining lifetime is ET'(m,U) = — [(° sd Py,,(s), where
dPym(s) =dPn(s+U)/ Pn(U) and P,(t) = Py(t)=®™

3

P (t) is the survival function (for nondamaged cells of type m) and Py(t) = exp(—Hy(t))
is the baseline survival function. The estimate of the mean is given by the following sum

ET(m,U) = - i(Tm —U) 1[Tyy) > U] - A Pu(Tiy) [ BalD),

j=1

where T(;) are ordered all survival times, T s d e o Tin), and where

A ﬁm(rf"(j)) = pm(T{j}) = pm(T(j—l}): pm(T(O)) =1 "P= exp (ﬂf:fu(t) - exp é(m)) i
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Method 2. It is worth to remind that % | T'(m,U;) (k < nyn,) can be regarded as a
waiting time to k-th failure of a nonhomogeneous Poisson process. If L(t) is a common
cumulative hazard rate of independent identically distributed random variables T; char-
acterizing the times to failures, then Y¥ | L(T;) is the waiting time to the k-th event of
standard Poisson process, or, equivalently, it is a random variable distributed according
to the gamma (1, k) law (each L(T;) has standard exponential distribution and they are
mutually independent). This connection between the actual process and the standard
Poisson process is often used for the testing the fit of the model, because the accuracy
of this transformation depends strongly on the accuracy of the model of hazard rate (cf.
Arjas 1988, Volf 1996).

It has also another important consequence. Assume that a cell of type m had experi-
enced the intervention at age U and then it survived another S = T'— U days. The cumu-
lative hazard of this remaining lifetime was L, ,,(S) = Ji; ho(s) exp(b(s — U) + c(m)) ds.
Provided the model is correct, L, ,,(S) is a standard exponential random variable. The
realization of S shows how quickly the 'hazard clock’ of the cell has been running after
U.

If the intervention did not occurred, the cumulative hazard on the interval (U, t)
would be Lo (t — U) = [ ho(s) exp c(m) ds = (Ho(t) — Ho(U)) - exp c(m). So that R =
Ly (L1m(S)) is now the remaining survival time after U of the same cell but in an
“another world” in which the cell did not pass the intervention. Again, provided the
model is correct. Natural estimates are:

Eim(S) = S UU < T < U + S]exp(B(T; — U) + &(m))A Bo(Ty),

i—1
Ly m(s) = exp é(m) - Y 1U < T; <U +s] A Hy(T;) and
f.;:n(z) = inf {s : f,g,m(s) > z},

eventually the inverse function can be computed with the help of interpolation. So that
the estimate of R — S yields another estimate of loses caused by the intervention. Notice
that the evaluation of R from equation Loy, (R) = Ly, (S) does not require the knowledge
(estimate) of function ¢ (while the former method of evaluation of expected remaining
lifetimes did not use the function b).

The results of estimation of numbers of lost days are summarized in Table 1. Both
methods yield approximately the same results. The estimates of cumulative baseline
hazard function A, of function ¢ and secondary smoothed estimate of function b have
been used. The first two columns contain the results of method 1, namely the expected
remaining lifetimes summarized for type m, 32, ET(m; U), and the differences from really
achieved remaining survival times. The last two columns display the values of estimated
remaining lifetimes, R;, again summarized for types of cells, and summarized differences
R; — S;. Both R; and S; are computed following the second method.
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Method 1: Method 2:
Cell Type Remain.Lifetimes Differences Remain.Lifetimes Differences

1 703.021 323.021 502.1910 122.1910
2 6186.977 1176.977 7214 .6456 2204 .6456
3 8018.959 2720.9569 8403.7884 3105.7884
4 8691 .149 2169.149 9625.9951 3103.9951
5 9457 .718 3022.718 10077.0737 3642.0737
6 11735 .956 3895.956 11530.0891 3690.0891
4 20500.358 4856 .358 20920.3909 5276.3909
8 12074 .879 4390.879 11402.1867 3718.1867
9 3501335 876:.335 3795 .4695 1170.4695
10 3244 .579 1368.579 2862 .9982 986 .9982
il 10865 .187 22327187 {S:B83 112 2950.7112
12 13970.679 2770.679 14346 .7773 3146.7773
13 12199.764 3366 .764 197321333 3140.:1333
14 7221.806 1820.806 7461 .6275 2060.6275
15 12802.812 3357.812 12653.0895 3208.0895
16 15184 .571 4319.571 14294 .2969 3429 .2969
17 29215.036 7062.036 29166 .3350 7013.3350
18 16568 .215 S26r 216 16690.5910 3948 .5910
19 3193.496 528.496 3621.4483 966 .4483
20 15309.948 3232.948 15793 (712 STA6 T2
2 198.770 —835.230 1034 .0000 0.0000
22 3649 .869 2142 .869 2233.755T 126 2557
23 1507 .566 391 .566 1613.0126 497 .0126
24 250.948 250.948 0.0000 0.0000
25 890.102 264 .102 909.0553 283.0553
26 5237.939 2283.939 4338.3263 1384 .3263
27 2712 .441 690.441 2914 .5540 892.5540
28 1869 .895 413.895 2100.9605 644 .9605
29 1534 .350 176,350 1949 .4194 591.4194
30 3442 .019 1273.019 2294 .1161 15957 11 64
BI0EA 0 o v 6L ][ 241840.344 64270.344 243316 .8094 65746 .8094
Table 1.

Our results are not far from the estimate (in much rougher, semiparametric model) of
Kalbfleisch and Struthers (1982)). Their estimate of lost days was 82653.5.
3.4 Testing the goodness—of-fit

[Let us now consider the problem how to asses the fit of the model of hazard rate. The main
idea of the time-scale transformation (i.e. transformation to standard Poisson process)

has already been mentioned in the preceding part. For the more precise formulation of
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the testing method, see for instance Arjas (1988), Marzec and Marzec (1993) - the case
of Cox’s model with the estimator plugged in the test statistics, or, in a rather general
setting, Volf (1996). The sample of examined objects is divided into two or more strata
and in each stratum S the counting process of ordered observed failure times is examined.
Let these times be 0 < Tj g < Tp s < .... Their transformation to the times Tk,s of events
of a standard Poisson process is given (provided the model holds) by

Tk,s
Ts=3 [ M) dt.
ies”0

Their estimates are obtained from the estimates of components of the model (5), i.e.
Tr.s = Ties2; U[T; < min(Th, s, T:)]-exp {b(i’} - U) 1[T; > U;] + é(mi)}-A Ho(T;). These
7“};}5 are plotted graphically, the “ideal” value of Ty g should be k. If the plot of Tk s differs
from k significantly, it is an indication that the model does not correspond to the data.
As the test uses estimated response functions, and, in general, there does not exist a
relevant theory of large sample properties of local likelihood estimates, the test is used as
an explorative tool, in its graphical version. Such a graphical testing procedure was used
in order to check the fit of (estimated) model (5). The data were stratified with respect
to the types of cells. We did the same kind of test for different combinations of strata
even the least favourable results of tests did not contradict to the model. For instance,
Figure 2a shows the plots for cell types 1-4 (121 cells, high survival, mostly without
intervention) and cell types 21-30 (104 cells, lower survival, mostly with intervention).
Then, in Figure 2b there are the plots for cells of types 11-20 (121 cells with rather
high survival, in spite of the intervention) and cells 31-34 (73 experimental cells with low
survival, without intervention). It is possible to say that the model fits well for all types
of cells.

Figure 2c displays the plots for cells which have passed the intervention and for cells
which have not. The picture shows that for our data the actual hazard of damaged cells
was lower than it was assumed by the model (and was higher for nondamaged cells).

The reason was rather simple and natural. There was a high positive correlation
between the survival of a cell and the event that this cell passed the intervention. In
other words, the cells which had higher survival (caused only by a random fluctuations)
were more likely to survive to (and to pass) the moment of intervention. We tested this
connection with the help of 2 x 2 contingency table (Table 2), with resulting chi-squared
test highly significant (i.e. rejecting the hypothesis of independence).

T <1300 | T > 1300 | Totals
Int. 114 235 349
No int. 184 39 223
Totals | 298 274 572 |

TABLE 2. Resulting value of test statistics x7,, is 135.46.
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Figure 2: Graphical goodness-of-fit tests. Plots of 'f};g for: a) thick - cell types 21 — 30,
thin - types 1 — 4; b) thin - types 11 — 20, thick - types 31 — 34; ¢) thick - cells without
intervention, thin - cells which passed intervention

4 Conclusion of Part I1

We have described a method of nonparametric estimation of Cox’s regression model, a
method based on a moving window concept. The procedure is iterative, its idea consists
in a sequential steps toward maximization of local partial likelihood. The performance of
the method has been demonstrated on solution of a complex real-data case.

Nonparametric estimation has its advantages (consisting mainly in its generality), but
its weak sides are well known, too. One of them consists in a rather slow global consistency
of nonparametric estimates, while an estimate of parametrized model is able to reflect the
main features of model very quickly. The nonparametric estimate depends more strongly
on the data and their local nonregularities. For instance, the estimate of baseline hazard
rate a(t) in our example decreases at the right end of the time interval. It is caused only
by the lack of data (of nondamaged cells) surviving for so long.

Although the moving window procedure is a very flexible and easily computable
method, its consistency in general likelihood-based models is not guaranteed. On the other
side, in the cases of such complex models,one can use, as an alternative, the reparametriza-
tion approach (e.g. approximation of response function by regression splines). Then the
problem is transferred to the solution of a standard (but multiparametric) task of maxi-
mization of global (relevant) likelihood.

Stone, in a series of papers (e.g. Stone, 1994) has examined the family of exponential
regression models and their approximation with polynomial splines. The parameters
of splines are estimated via the global maximum likelihood method. Stone has shown
theoretical consistency of such an approach. Kooperberg et al. (1993) have proved such
a consistency of spline approximation for the case of nonparametric Cox model with
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constant covariates. Volf (1994) then derived a similar result for the general case of
the intensity of the counting process model. These results suggest a question why to
employ the moving window approach, why not to prefer the splines instead. The answer
is that the moving window method has its evident advantages (simple computations, local
character) and is suitable especially in the initial phase of analysis, before the models are
specified and (possibly) parametrized. Moreover, as the number of parameters of splines
is (as a rule) quite high, a direct computation of global maximum of likelihood is difficult.
Therefore, one has to use some sequential procedure computing iteratively one subset of
parameters after another. Such a procedure is then quite comparable with the moving
window approach, and its consistency ceases to be guaranteed generally.
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PART III

A COUNTING PROCESS MODEL OF RELIABILITY OF A
PARALLEL LOAD-SHARING SYSTEM

1 Introduction

In the present part we model the reliability (survival) of a system composed from m
parallel identical components. The reliability is understand as a resistance of the system
against a load (strength, stress) causing its failure, the reliability of the system is derived
from the reliability of the components.

We assume that the system is tested by a load increasing from 0 up to the level breaking
the system (i.e. all its components) — or up to a given maximal load Spax When the
experiment is terminated. Let the testing experiment be relatively fast, so that the time
of duration of the stress does not influence the survival. We use more or less the standard
survival analysis approach and the counting processes model, however, instead the time,
the load per one component is the variable of interest. Simultaneously, we consider a rather
simple scheme of re-distribution of the load among the components, namely the Daniels
load-sharing model, see Crowder et al (1991). We assume that the breaking strengths of
individual components are the independent and identically distributed random variables,
and that at each moment the load applied to the system is divided equally among the
(unbroken) components. The same model has been used, for instance, in Belyaev and
Rydén (1997). The global load affecting the system is observed. However, as the break of
a component leads to an immediate re-distribution of the load to the other components
(so that to the abrupt increase of the load per each component), the consequence can be
the immediate break of several of remaining components. Therefore, in such a case of
multiple breaks we observe directly the strength causing the break of the first component
only. Moreover, we often are not able to register the order in which the components broke,
but in the case of identical components the information on the order is not important. The
statistical analysis will use only the values of directly observed (i.e. noncensored) data.
The censoring of the other breaks will be expressed by a properly defined observability
indicator process, as it is common in the setting of the counting process model. Thus, we
actually omit a part of information. On the other hand, the estimation and the proofs of
the large-sample properties are then much more straightforward.

We have to admit that we deal with a rather simple description of a parallel system,
that a more accurate model should consider for instance the (irreversible) consequences
of shocks caused by the abrupt increase of the load per one component. Some cases, for
instance the case of a wire or a textile yarn composed from a set of strands, are even more
complicated due the elasticity of the material, or due the mutual dependence of twisted
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strands. Therefore, the present model is just a step to the more profound investigation
of reliability of systems.

The theme of reliability of a system composed from parallelly organized units has
already been studied by a number of authors. In most instances the time to break under
a constant stress has been analyzed. The random process approach was used for instance
in Daniels (1989), who examined the behaviour of maxima of certain Gaussian processes
and with their aid he modelled the breaking strengths of a bundle of fibres. As we
have already said, the starting point of our analysis is the model of the counting process
characterized by a nonparametric hazard function. In the same setting, Belyaev and
Rydén (1997) proved the uniform consistency and the local asymptotic normality of the
Nelson-Aalen estimate of the cumulative hazard function (C.H.F.) characterizing the
probability distribution of the breaking strengths of components.

Our objectives are mostly methodological, in the sense that we want to propose a set
of methods for modelling, computing, testing and simulation of reliability of a parallel
system. Quite naturally, certain theoretical problems have to be solved, too. In Section 2
the counting process model of the breaking strengths of the components in a load-sharing
system is recalled. In the beginning of Section 3, still following Belyaev and Rydén
(1997), we present the Nelson—Aalen estimator of C.H.F. of the breaking strength of one
component. The main results are concentrated in sections 3 and 4. After a rather trivial
statement of Lemma 1, we offer a modified proof of uniform consistency in Theorem 1.
Then the main Theorem 2 proposes the weak convergence of residual process to a Wiener
process, on a whole interval. In Section 4 this global asymptotic normality is utilized for
the formulation of a goodness-of-fit test. The proofs use the relevant results and theory
available in a number of papers and monographs dealing with the counting processes
models (e.g. Andersen and Borgan (1985), Fleming and Harrington (1991), Andersen et
al (1993)).

The problem how to derive the probability distribution of the breaking strength of the
system, if the distribution of breaking strengths of its components is known, is discussed
in Section 5. We recall both the computation approach proposed already in Suh et al
(1970) and the simulation method, and we compare them. In concluding Example 3 we
consider also a more general case of two types of units with proportional hazard rates,
and we analyze such a situation as a simple case of the Cox’s hazard regression model
(Andersen and Gill, 1982).

2 The counting process of breaks of components

Let us first consider one component and the random variable U - its breaking strength. We
assume that U has a continuous distribution on [0, co) with a distribution function F(u),
density f(u), hazard function h(u) = lf;‘(u) defined on u € [0, S] such that F|(S) < 1. By
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H(u) = [y h(v) dv we denote the cumulative hazard function. The ‘fate’ of a component
during the increase of the load affecting it, u, is described by two random processes, by
the counting process N'(u) and the indicator I'(u). I'(u) = 1 if the load u affecting
the component is observed, otherwise I'(u) = 0. Namely, I'(u) = 0 if the component is
already broken or if the experiment is terminated. We assume that the trajectories of / Hu)
are left-continuous. As regards N'(u), N'(0) = 0 and N'(u) jumps to 1 at the load level
uy, causing the observed break of the component (i.e. provided I'(u,) = 1). Trajectories
of N'(u) are taken as right-continuous. The above description is actually the standard
scheme of survival analysis, where the increasing load per component stands instead of
time. As we assume a continuous distribution of U, we also consider a continuous scale
of u. The difference in comparison with the standard survival analysis scheme consists in
that we allow for abrupt jumps-up of the actual load affecting the component — in these
intervals we set I'(u) = 0, too.

2.1 The model of parallel system

Let us now consider the system composed from m components, let the breaking strengths
of components be described by i.i.d. random variables U;, j = 1,...,m, with distribution
given by f(u), F(u), h(u), H(u), respectively. The following example illustrates the
structure of observed data. Let us imagine that the breaks of components occurred for K
‘global’ loads affecting the system, 0 < s; < s < ... < sg < Spax, that on levels s; the
numbers k; of components broke, with 3° k; = m. Therefore, just before the first break
the load per each component was u; = s,/m, while just before the moment of the second
break it was us = so/(m — ki) (naturally affecting only m — k; remaining components)
and, finally, immediately before the moment of the last break the load per each of last kg
components was ux = Sk /kk. As regards the observed breaks (i.e. the breaks caused
by known loads per component), we actually observed only K of them, caused exactly
by loads u;. Other breaks (if k; > 1) were caused by unknown (unobserved) loads per
component from intervals (u;, u; = s1/(m — k; + 1), (ug, Uy = s2/(m — ky — ko + 1)), ...
(ug, Ug = Sk), respectively for ky — 1,k; — 1, ..., kx — 1 components. Our first aim is
to analyze the distribution of U; on [0, S]. We assume that the maximal load per system
Swmax is sufficiently large (e.g. Smax > S - m) in order not to terminate experiments too

early.

Remark: Taking into account the assumption that the probability distribution of U is
continuous, then (theoretically) there cannot occur two breaks at the same load per com-
ponent level u. In other words, components break one after another, not simultaneously
(though sometimes we are not able to distinguish their order). The intervals of breaking
strengths can be specified even more precisely than (ug,u;) above. However, as it has
been said, our solution will not use the information about interval-censored strengths ex-
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plicitly, but through a properly defined observability indicator process only. That is why
we do not discuss the details of interval censoring here.

_____

N(u)

0 0.5 1 15 2 25 3

0 05 1 15 2 25 3

Figure 1: Counting process N(u) and indicator process I(u).

Thus, the data used for analysis consist of I(u) = 37, I}(u), N(u) = 7| N} (u), i.e.
the sums of indicators and observed counting processes of the components. By u we again
denote the load per (unbroken) component. For the better explanation of the structure of
observed data, let us display one example graphically. A system composed from m = 10
components has been simulated. Distribution of U; followed the exponential distribution
with the mean one. K = 5 successive breaks has been observed. Figure 1 shows the
indicator process I(u), the counting process N(u) of observed breaks (full line), and also
the underlying counting process of actual breaks of components (dashed line), which, in

the real data cases, is not observed.

3 Estimator of C.H.F., asymptotic properties

In the present part the estimator of the cumulative hazard function H(u) (of distribution
of the breaking strength of one component) is recalled and the uniform consistency and
asymptotic normality of this estimator on interval [0, S| are proven. Let us consider that
n identical and independent systems are tested. Denote by U;; the random variables

breaking strengths, by N;;(u), I;;(u) related individual counting and indicator processes
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for the j-th component of the i-th system (j = 1,2,...,m, i = 1,2,...,n). Further,
denote
m mn (s
Ni(w) =Y Ny(uw), L(u)=Y Li(w), N(w)=Y Nu), I(u)=> L)
J=1 J=1 i=1
Let us first revoke some useful results of martingale theory connected with the counting
processes (Andersen et al, 1993). Individual counting processes N;;(u) are governed by
their intensities, which, in our case, are \;j(u) = h(u) - I;;(u). Cumulative intensities
are Lij(u) = [ Aij(v) dv and corresponding counting processes can be decomposed to the
compensator and martingale, N;;(u) = L;;(u)+ M;;(u). M;;j(u) are local square-integrable
martingales, with zero mean, mutually orthogonal and with variance process (M;;)(u) =
L;j(u). Here ( ) denotes actually the process of conditional variance conditioned by the
nondecreasing sequence of o-algebras — the filtration - containing the observed history
of the process. More precisely, o(u) is a o-algebra constructed above the trajectories of
Nij(v), Lij(v),v < u. For more details, see again Andersen et al (1993), Fleming and
Harrington (19910. The martingale-compensator decomposition, together with the law of
large numbers and the central limit theorem applied to martingales, are the basis for the
derivation of the large-sample (asymptotic) properties of the estimator.

3.1 Nelson—Aalen estimator of C.H.F.

The most common estimator of the cumulative hazard function is the Nelson- Aalen one

A(w)= [ devx
where we set 0/0 = 0. It is seen that the ability of the estimator to approximate well the
‘true’ H(u) depends on the indicator process, i.e. on the observability of the counting
processes for all values of strength u in the interval of interest [0, S].

Let us assume that the number of tested systems, n, tends to infinity. Then it is also
desirable that at each point u € [0, 5] the number of observed unbroken components is of
order n. Lemma 1 shows that such a property follows from the initial simple assumptions
of identical, independent and continuous distribution of U;; together with the assumption
that E(S) < L.

Lemma 1. There exists, with probability 1, a limit

Jim S = ()

for u € [0,5]. Moreover, this limit is uniform w.r.to u € [0, 5] and r(u) > € for some

£ > 0.
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Proof:

1. For each fixed u, I;(u) are i.i.d. random variables, with values from {0, 1,2...,m}.
Hence, the law of large numbers yields the almost sure convergence

1 T

L3 Iiw) - r(w) = B ().
i=1

2. From assumptions that random variables U;; are i.i.d. and that F'(S) < 1 it follows
that for each u < S there is a positive probability [1 — F'(u)]™ that all components
of the system survive u. Therefore, r(u) > m - [1 — F(u)]™ > m-[1 — F(S)|™ > 0.
The last expression can be used as £ in the Lemma 1.

3. It remains to prove the uniformity of convergence. Random functions /;(u) are
mutually independent, with the same distribution. They have maximally 2m finite
jumps (m down and up). We shall use the results collected in Hoffmann-Jorgensen
(1994, Vol II, Parts 9.13 to 9.17). We can imagine that each trajectory of I;(u)
is given by a bounded, piecewise-constant nonrandom function b(v,k;u), where
v,k = (vi,vs,...,Um, ki1, ko, ..., km) are the realizations of random vector V,K=
(V1, K1, Vo, Ko, ..., Vi, Kp), K; are levels of I;(u) and V; are its points of jumps
down. Again, for different i-s these vectors are i.i.d., K is bounded, V has contin-
uous distribution. Hence, the proof of Lemma 1 follows from the boundedness in
the mean and from a.s. piecewise continuity of functions b(-; u) with respect to the
distribution of V,K (cf. again Hoffmann-Jorgensen, 1994, Theorem 9.17 on uniform

convergence).

From the uniform convergence and from the boundedness of jumps of I(u) it also follows
that the limit function r(u) is continuous on [0, S].

Remark 1. The statement of Lemma 1 implies that for every 6 > 0, for sufficiently
large n > ns, Pr{I(u) > 60 on the whole [0,S]} = 1. Hence, with probability one it
also holds that 1[I(u) = 0] = 0 on [0, S], and also v/n [y 1[I(u) = 0]dH (u) = 0. Such a
property corresponds to one of conditions required in Andersen et al (1993, Th. IV.1.1
and IV.1.2) for the consistency and asymptotic normality of the Nelson-Aalen estimator.

3.2 Asymptotic properties

1. Consistency: The uniform consistency of H,, has already been proved in Belyaey
and Rydén (1997). We shall prove the same result with the aid of Lemma 1. Let us
examine residuals Hy(u) — H(u) for u € [0,S]. Denote M; = M My, M =¥, M,
From the martingale-compensator decomposition we obtain

()~ H(w) = [ Z—Z%'j(“)m(v) et
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ZZdLu( )

vy dM;i(v) i

[ ey @) >0+ | ) 1{I(v) > 0] — H(u) =
i df}”{(;’)l[f e ()U?f” 1[1(v) > 0] - H(u) =

1 +dM(v) 4

=l I(U)/nl[f(v)>0]—/o 1[I (v) = 0]dH (v). (1)

Theorem 1. H,(u) is an a.s.-consistent estimate of H (u) on [0,S]. Moreover, this

consistency is uniform w.r. to u € [0, o(u) — H(u)| = 0 a.s.

Proof: Processes ;. [;'dM(v) = L 3% | M;(u) have zero mean, M; are mutually indepen-
dent. Moreover, as M;(u) = N;(u) — [y h(s)I;(s)ds, they are uniformly bounded on [0, S].
Therefore, at fixed u, L [*dM(s) — 0 a.s. (it follows from the law of large numbers).

Uniform convergence supye(o,s): fo' dM(s) — 0 a.s. can be proved similarly as in the
preceding Lemma 1. We can represent N;(u) by a piecewise constant function c(v;u)
which has maximally m steps +1 at points vy, vs, ..., Um, and [y h(s)I;(s)ds can be rep-
resented by a continuous and bounded function [y* h(s)b(v,k; s)ds, where b is a function
defined in the proof of Lemma 1, v,k are i.:.d. realizations of V,K ( also the same as in
the proof of Lemma 1). Then, Theorem 9.17 of Hoffmann-Jorgensen (1994) can again be
applied to the proof of the a.s. uniform convergence 1 [*dM(s) — 0, on [0, S].

From this and further from Lemma 1 and Remark 1 the statement of Theorem 1

follows immediately.

2. Asymptotic distribution: Let us now analyze the behaviour of the process
Vn(H,(u) — H(u)) on [0, S], for n — oo. Similarly as in (1), we obtain

(B (u) - f/ 1“ >0]dM \/a/ 1[I(v) = 0JdH(v). (2)

Taking into consideration the uniform convergence of I(v)/n given in Lemma 1, the
statement of Remark 1, and the boundedness of jumps of dM(v) (jumps are less or equal
to m), we immediately obtain the following theorem specifying the asymptotic distribution

of residual process.

Theorem 2. Random process v/n(H,(u) — H(u)) converges weakly on [0, S] to a Gauss
random process with independent increments, zero mean and with variance function

v dH (v)
w(u)z/o T

In other words, the process is asymptotically distributed as W (w(u)), where W (.) is

a Wiener process.



Proof: The proof follows directly either from the central limit theorem for martingales
(e.g. Andersen et al, 1993, part IL.5.) or from Theorem 3.2. of Andersen and Borgan
(1985). It remains to show the convergence of the variance process and to compute
the exact form of its limit. The convergence follows from our Lemma 1 and from the
boundedness of both H(u) and r(u) on [0, S], namely

’u) 5 v (dM) (v)
}‘”E/o AR

u dL v h(v)dv v dH(v)
e I(v)/n%jt; r(v)

4 Goodness-of-fit test

Let the hypothetical model be given by the cumulative hazard function H°(u). We want
to decide whether the data correspond to it. The data are represented by the observed
trajectories of N;(u), I;(u) ¢ = 1,...,n. The tests are quite naturally based on the com-
parison of H,(u) with expected H°(u).

Graphical test: Let us order all observed strengths breaking the components into one
nondecreasing sequence ug, k = 1,..., K. For the graphical comparison, we plot the
values

L) = /:" dH(v)(v)

against V(ug) = k on the abscissa. If the model holds the residual process L(u) — N(u) is
a martingale. Then it is expected that the curve L(ux) will be close to the line y(k) = k.
An opposite case (e.g. expanding distance of both curves) indicates that the model H°(u)
does not correspond to the data. Approximate critical bounds for such a comparison can
be derived e.g. from the following numerical procedure.

Numerical test: Numerical test is based on asymptotic distribution. From the result
of Theorem 2 it follows that the process

Dy (u) = v/n(Ha(u) — H(w)) /(1 + w(u))

is (if the model holds) asymptotically distributed as a Brownian bridge process B(7(u)),
where 7(u) = w(u)/(1 + w(u)), u € [0,S]. Hence, a test of Kolmogorov-Smirnov type
can be used. From the theory of Brownian bridge it follows, for instance, that if d > 0,

P (max Du) 2 d) = P (mjn Dufu) < ~d) = exp(-2d"

approximately. So that the value exp(—2d?), where d is the observed max; | Dy (ug)|, is
an approximate p-value for the test of hypothesis of the goodness-of-fit against a proper
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one-sided alternative. Simultaneously it holds that the critical value of the two-sided test,
on the level a;, namely the value d() fulfilling

P{supy|Dy(u)| > d(a)} = «,

can be approximated by d(@) = |/In(2)]. It follows that the approximate (1 — @) con-
fidence region for 'true’ H(u) is the band H (u) £ d(a)(1 + w(u))/+/n. A more precise
critical values can be obtained from the relevant results on the Brownian bridge process

and on its probability of crossing a given level. An example of the test is provided in
Section 6, Example 2.

5 Distribution of the breaking strength of system

Let us now assume that we know the characteristics of breaking strengths distribution of
individual components (e.g. the distribution function F'(u)) and our aim is to compute
the reliability for the whole system composed from m such components. Though such a
problem has already been considered elsewhere, for instance in Suh et al (1970), we think
that it is useful to recall this approach in order to complete the set of methods presented
in the paper. More precisely, let the probability that the system will not survive the
(global) load s be given by the distribution function Fg(s) = P(R < s), where R is
the random variable describing the breaking strength of the system. If we denote by
Uy < Up) < ... < Upyy the order statistics created from the random strengths breaking
individual components of the system, U, Us,, ... Uy, then evidently

—1},

m—k+1

Er(s)=P(R< s}= P{rE [Up <

which can be computed from the joint distribution of order statistics Uy, ..., Uimy. Though
such a distribution is well-known (see e.g. Rao, 1965, Ch. 3.6.), the computation of the
joint distribution function is not easy. In our case a sequential computation yields that

Fr(s) = m! An(s),

where Ay(s) =1 and
s

k :
As) =3 T A )R, ®)

Another, simple and universal approach to the evaluation of distribution of random
variable R consists in the simulation. The following example illustrates and compares

both methods.
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6 Examples
Example 1

Let us consider a system composed from m = 10 components and assume that the breaking
strength of each component (i.e. random variable U;;) has the standard exponential
distribution (i.e. with EUj; = 1). We simulated the breaks of n = 200 such systems.
The results observed for one of them are already in Figure 1. Naturally, the global load
under which the system broke was observed, too. We thus obtained a sample of n = 200
independent realizations r; of random variable R - the breaking strength of the system.
The empirical distribution function Fy(s) = LS 1[r; < s] constructed from this sample
is displayed in Figure 2a and compared with Fg(s) computed from (3). Other empirical
characteristics can be easily derived, too. For instance, the estimate of the cumulative

hazard function can be obtained either as Hg(s) = —In(1 — Fg(s)) (see Figure 2b) or
directly from the ordered sample: Let (i) be the order of r; in r|,7s,...,7,, then the
standard Nelson-Aalen estimator is Hg(s) = 1, —ri<sl
=1 n—(i)+1
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Figure 2: Estimated F'r(s) and Hpg(s) of distribution of random variable R, compared
with dotted Fg(s) computed from (3).

Example 2

In this example of the numerical goodness-of fit test we use the data simulated in Ex-
ample 1. We intend to test the hypothesis H that the data really correspond to the
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standard exponential distribution, on interval u [0,5]. Therefore, we should compute

H,(u), estimate w(u) by

I(v) °
and find the maximum of |D,,(u)|, assuming that the hypothetical C.H.F. of standard
exponential distribution is H%(u) = u.

The maximal and minimal observed values of D, (u) on [0,5] were d* = 0.0138,
d- = —0.0711. We then computed approximate critical value for the test level @ = 5%,
d(e) = 1.3581. As it was considerably greater than d = maz(d*, —d~) = 0.0711, the hy-
pothesis Hy was not rejected (on approximately 5% level of test significance). Estimated

H,(u) together with hypothetical H°(u) = u and approximate 95% confidence bands are
displayed in Figure 3.

thn(u) = [* n- A (o)
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Figure 3: Cumulative hazard function for individual components: estimated ﬁn(u) (full
line), hypothetical H%(u) = u (dashed), and asymptotic 95% confidence bands for H(u)
(dotted).

Example 3 — A system with non-identical units

Let us now consider a simple case of components with different breaking strengths, namely
the case of the proportional hazard model with only two types of components. Let
a standard type have the hazard function ho(s), while the other type has the hazard
function hy(s) = ¢ - ho(s), ¢ = 0. Equivalently, the situation can be described via the
hazard functions of components h(s) = ho(s)ezp(bX), where b =Inc and X is a random
variable with p = P(X = 1),1—-p = P(X = 0). In the follow up we shall assume that the
configuration of z’s is known, i.e. we are able to match a certain value z to each observed
broken or censored component. Then the case can be regarded as a simple version of
Cox’s regression model (with only two levels of regressor). The objective of statistical

data analysis is to estimate parameter b and function hg(s), respectively its cumulative
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version Ho(u) = Jg' ho(s)ds, on [0,S]. It is well known (cf. Andersen and Gill, 1982) that
such an estimation problem is solvable consistently,

the property of asymptotic normality.

moreover with estimates possessing

Assumptions. We assume that Hy(S) < oo and that 1 > p > 0. These assumptions

actually suffice for the validity of conditions (given in Andersen and Gill, 1982) ensuring
the desirable large sample properties of estimates.
Let us denote

I'(s) = ZZI‘J‘(S)I[X*J“ =1}, ’(s)= szij(s)l[xij = 0],

let N'(s) and N°(s) be defined in a similar way. Then a variant of Lemma 1 (with a quite
analogical proof) holds:

Lemma 2. There exist, with probability one, uniform limits

ri(s) = hm 1—1@, To(s) = lim I'(s)

n— 00 T n—oo n !

which are positive, bounded, and also bounded away from zero on [0, S].

Estimation. In the framework of the proportional hazard model, the estimation has two
stages. First, the parameter b of proportionality is estimated from the relevant partial
likelihood (which actually can be derived from the full likelihood, because it is a 'profile’
likelihood of b). Its logarithm, after some simplification, reads

InL,(b) = /OS bdN'(s) — /OS In{I°(s) + exp(b)I'(s)}dN(s). (4)

Optimal b (the maximizer of (4)) is obtained from the solution of equation dinL,/db = 0,
via the Newton-Raphson algorithm (or via another iterative procedure). In such a simple
case considered here the solution is unique and, as the second derivative of (4) is negative,
the maximum of InL,(b) can be well reached practically from arbitrary starting value of
the iteration procedure. In practical examples, the Newton-Raphson algorithm converged
as a rule in less than 10 steps. The next stage consists in the estimation of the cumulative
baseline hazard function, by the Newton-Aalen type estimator (in a regression context

called the Breslow-Crowley one):

cn
e

vl W) T) > O
o) = Jy o+ capine) ;

As we have already said, the large sample properties (consistency and asymptotic nor-

mality) follow from the results derived for the more general case of Cox’s model.
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Figure 4: Final estimate of cumulative baseline hazard function, with asymptotic confi-
dence bands (dotted) and Hy(u) = u (dashed)

Numerical example: We generated a sample of 200 ’systems’, each composed from 10
components with the breaking strengths given by exponential distributions: 5 standard
components had the mean 1, 5 stronger components had the mean 2. So that Hy(u) = u
and the proportionality parameter ¢ = exzp(b) = 0.5. After a fast and short iteration
we obtained the estimate of b = —0.7072, i.e. of ¢ = 0.4930, with approximate 95%
confidence interval, based on the asymptotic normality of estimate of b, (0.4358, 0.5577).
Estimated cumulative baseline hazard function in Figure 4 shows a linear trend with the
slope close to one. Approximate 95% confidence bands for Hy(u) computed in accordance
with the results of Andersen and Gill (1982) are displayed by dotted lines.

7 Conclusion of Part 111

We presented a set of procedures for the probabilistic modelling and statistical analysis
of the breaking strengths in a system of parallel components. The data were treated as
the lifetime data, with the increasing load per one component as the leading variable. We
studied the asymptotic behaviour of the estimator of the cumulative hazard function of
breaking strength distribution. In particular, asymptotic normality of the estimator on
the whole interval was proved and on this basis the goodness-of-fit test was proposed.
Such a test can for instance be useful for the assessing the agreement of observed break-
ing strength data with the expected resistance of the system (e.g. with the resistance
guaranteed by the producer).

In the concluding example we also showed how the approach used in the present work
could be generalized to a system of units with nonequal reliability. Another generalization

can consist in models considering simultaneously the load, the time and/or the cumulated

load, in the framework of the hazard regression model.
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In the first paper the method of local scoring is described. It is used for the estimation
of (nonparametrized) regression functions in general regression models. A modification of

the method is proposed, its use in the case of logistic regression model and nonparametric
Cox's regression model is presented.

The second paper proposes a generalization of the method of statistical test (of goodness-
of-fit) in the case of models of hazard functions. Namely, the cases of Cox’s model and of
additive Aalen’s model are discussed. Both graphical and numerical versions (the latter
one based on limit properties) of tests are presented.

The third paper deals with the process of random sums driven by the counting process,
i.e. the process with increments at random moments. Again, the methods of model
specification, evaluation and testing are derived. An example of analysis of financial time
series is given. The most contemporary author’s research in this area is focused on the
models of degradation of reliability of technical systems (e.g. caused by a sequence of
shocks and similar events).
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MOVING WINDOW ESTIMATION PROCEDURES
FOR ADDITIVE REGRESSION FUNCTION!

PETR VOLF

The general additive regression function I — ZbJ (z,) is considered and subjected
to nonparametric estimation. The method of estimation is inspired by the regressogram
approximations to the components of regression function. The procedure using the moving
window is then derived, it naturally generalizes to a kernel approach. The method can
be applied to the likelihood-based models, in which the value of regression function is a
parameter of likelihood ol a response variable Y. Suggested moving window algorithm is
a variant of Hastie and Tibshirani’s [3] local scoring procedure. In order to discuss the
quality of obtained results, the method is compared with the approximation by regression
splines, treated successfully by Stone [6]. An example illustrates the solution for the logistic
regression, the proportional hazard regression model is also examined.

I. INTRODUCTION

The methods for nonparametric estimation and smoothing of curves are in the centre
of attention of the data analysts for a long time. The modern equipment enables
the statistician to examine the data attentively and to do deep preliminary analysis.
Hence the nonparametric estimation of the covariate effect is at least a part of
preliminary examination.

Let us consider a pair (XX, Y) of real-valued random variables. In a regression
model, X is called a covariate, meanwhile Y is a response variable. Let the general
regression function be some smooth function b(z), describing the dependence of a
response variable Y on a covariate X. Likelihood-based regression model means
that the value b(z) is a parameter of likelihood for ¥ given X' = x. Lxamples
of this are the normal regression model, in which the rcgressmn.flmct.ton stnndls for
E(Y]X = ), or the logistic regression model. We shall also mention the proportional

hazard regression model for survival data.
a random sample (X;,Y;) of extent n, often

If the observation is represented by
the logarithm of likelihood can be expressed as

‘071:2":(?1( /lllb("\"i))! (l]

=
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where €y is a loglikelihood for one realization oy
[fow to cope W_“-h _“lﬂ task of estimation of function’b from the log-likelihood? One
way may consist 1n approximation for b(x), by a parametrized function. Every
smooth function can be well approached by a linear combination from some basis of
functions. For instance, the splines are the popular choice. Sleeper zmd Harrington
[5] illustrate successfully the flexibility of regression splines in the analysis of the form
of hazard ratio. Stone [6] used the approximation of regression function by splines
in the framework of exponential family of distributions. Ile proved consistency of
this approximation provided the paramecters of splines were estimated by (global)
maximum likelihood method. Thus, the reparametrization may be considered as an

.'l||.l_‘r|l}\l.l\..’f‘. way to solution. Irom this point of view, the regressogram is a trivial
sphne, with the order 0.

conditioned by a value of X.

A widespreaded discussion runs about advantages and capabilities of both ap-
proaches — splines and kernel-like simoothing, cf. also discussion to paper of Hastie
and Tibshirani [3]. The author does not intend to contribute to arguments of any
side, his opinion is that every well-working method is valuable. Although some data-
analysts (when joking) claim that one data may be analysed only once and only by
one method — in order to avoid contradictions and problems with interpretation of
results.

Our approach to estimation of regression function starts from a regressogram
approximation. Then it proceeds to the moving window concept, considering simul-
taneously the additive regression function b(x) = Z;‘ b;j(x;) in the case of multi-
dimensional covariate. It 1s necessary to stress at once that the additive model can
include various transformations of covariates, their interactions (e. g. z,-x3), or, say,
two-dimensional covariate, so that its idea seems to be sufliciently wide and flexible.

The general features of the method are described in the second part. Part 3 deals
with the case of multi-valued logistic regression model. Part 4 considers a rather
general case of a counting process with intensities fulfilling the proportional hazard
model. The properties of solution are discussed in Part 5. Finally, an example with
artificial data is solved numerically and discussed briefly.

Although the moving window procedure is a very flexible and easily computable
method, its consistency is not guaranteed by any theoretical result. Only for the
case of the normal regression model, in a more general concept of the Alternating
Conditional Expectations (ACE) algorithm, Breiman and Friedman [2] show that
the solution obtained by the moving window smoothing is the l’(“‘_“'_ml‘ll"“'e_ AppEL
imation to E(Y|X). It means also that if E(Y|X = x) is an additive function, it is
consistently estimable by the moving window approach.

For a more general family of models, the results of Stone [6], .mentiouod abo‘ve,
ler to support our conviction about the quality of the moving

| : : ' stween the moving window concept
window smoothing. We discuss the connection betwee n oving w I
polynomials on fixed windows.

can be used in orc

and the approximation by regression splines- :
Volf in [8] deals exclusively with (he proportional hazard regression ”‘Od‘-‘IS{_ and
solves several simulated examples, in order to "’"1“7{“’ a good performance o s
method, In the example illustrating the paper of bl.rrehfr a!lttll llilarrlngl.lct)u l[)"z], th
result of smoothing by the splines is compared graphically with the result obtaine
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by the local scoring,.

2. LIKELIHOOD-BASED ESTIMATION PROCEDURE

s first consider the one-dj ion: s : : :
Let us firs the one-dimensional covariate X, with values in some finite

. r m .

interval X' C R. The construction of a regressogram means that the domain .U

is divided into M disjoint intervals 1, (their choice depends on the analyst), the
. ‘ IS ¢ ‘1 ' \ e A . . .

filll(‘l.lOl.l b(x) 1s approximated &8 Yoiimi P deE I,,]. Now, after inserting into the

loglikelihood, the parameters g, are estimated in ordinary way, which searches for

solution of the equations A€, / df, =0, m = 1,... M. If the loglikelihood is of the
form (1), then its first and sccond derivatives are

(?fn . = P
o = 2 L € Il (%, ) )
g=1
a4, =

95 9B, = ; 1[X; € Im] - €/(Y;,Bm) for m=k, =0 otherwise.

The step from estimation of the regressogram to the moving window estimation
is quite straightforward. 1f we wish to estimate the value of b(z) at a point z = z,
we take b as a constant b, in some chosen neighborhood (window) around z, say, in
O(z). Then b, is treated as a parameter, we have to solve the equation d¢,, / db. = 0.

If the loglikelihood has the form (1), then

afn
db,

= D 1[Xi € 0.] - f(Yi,b:). (3)

Now, (3) contains only the derivatives of a “local” loglikelihood. It is the basis for
the idea of the local scoring (or local likelihood) algorithm. However, when the form
(1) does not hold, the derivatives do not contain the local results only. It is clearly
visible in Example 2 which deals with the proportional hazard regression model.

Example 1. Logistic regression with two-valued response.

Let P(Y = 0| x) = 1/(1 4 exp b(z)), P(Y =1 l2y=1—P(¥ =(][x). Then .
g, = Z (b(X;) - 1[Y; = 1] = In(1 +exp b(Xi))} .
g i

| for survival times and for i.i.d. sample

Exmnpln 2. Proportional hazard mode ey e
observed value and 6; is the indicator of

Yi,0: Xi. i = nY. where Y; 1s an g L

¥, "_’\“ i = 1,...,n}, 7. s observed survival time, 6; = 0 if Y; is

r-r.“h-r}”“gl “ means I.il;ﬂ‘ hi = 1 W'h(‘“ },‘ 15 ODs '\l S : . \ i)
ation is censored at time moment Yoo The

less than survival time, the ith observ

. . B e e logarithim of Cox’s partial
ference for the hazard proportion b(z) s based on Ul & l (
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likelihood (cf. Andersen and Gill (1)), n

amely on
L =N Sl il X b(X;)
; {E.f:l exp b(X;) - I; (i) [’

where [;(i) = 1 if Y; 2 Y, I;(i) = 0 otherwise.

This partial likelihood has not the form (1.

s pa : | Nevertheless, let us compute its first
derivatives with respect to value b, in

a neighbourhood O(z) of a point z € X' :

LA {1[/\,‘_ 0, ZPh T i) 1UX; € o.,.]}

Ob; 2 exp b(X;) - I;(3) @

The numerical iteration is the most frequently used way how to solve the likeli-
hood equations. As a rule, the procedures need the second derivative of the loglike-

lihood, which in the case (1) yields
a2e
S = S 1{s € O] €[, b),

When the Newton-Raphson procedure is applied, the step from sth to (s + 1)-st
iteration is given by the following expression:

/4 d%¢ (5)
db, b2’

b£s+1) - bg") -

where the derivatives are evaluated at b(*)(z).
Hastie and Tibshirani [3] recommend to incorporate a smoothing directly into
every step (5), they suggest the modification

2/ ot (22
abz Smootl tﬂ)g .

The notion of smoothing can have a very wide meaning, from weighted mean to,
say, local parametrized regression.

Both examples mentioned above allow also another iteration procedure, which
differs from (5) and which does not use the second derivatives. Moreover, after
smoothing the results at each point, we shall “secondarily” smooth the final result.
The procedure will be described in the following parts of the paper.

Let us now consider the I¢-dimensional covariate X, with values in some bounded
interval ' ¢ Ry. When the dimension of X increases, the (.lata are sparse andl t'lle
method using the I-dimensional windows becomes inefTectwe. Then the additive
“hypothesis” is available. The general additive regression model means that the

regression function is g
b(x) = Y b(ak)-
k=1

d be nonparametrically estimated. The tech-
limensional case, but the inner loops has

b(*+1) = smooth lb{:) —

['he component functions by shoul
Nique is essentially the same as for the one-c
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be incorporated to the procedure. Thi
¥ l re. This loop computes (at cach sth step of the

«uter” loop) successively all () i - : ]
out ) y Eak=1,.. K , al all chosen points z;.. At least the

values at all reall.zcd points x; are needed for further computation. lere k£ denotes
the component, ¢ denotes the case; =1 Loon.
Let z be a pomnt from the domain of Xi,

; say. The derivation of loglikelihood (1)
with respect to by(2) now yields

ae. i : K
bi(z) z 11X e 3] 5 (Y“ bi(z) + LZbk(XM)) -
==

=1

It is seen that the actual estimates (i.c. estimates obtained from the last preceding
step) of other component functions by, k£ =2,3,... K, have to be available.

3. LOGISTIC REGRESSION MODEL

Let Y be a random variable with M + 1 possible values from {0,1..., M}. The
logistic model describes the dependence of probability distribution of ¥ on a (K-
dimensional) covariate X. The model assumes that

P(Y =0|X)= LIB(X). P(Y = y|X) = exp(C(y, X))/ S(X),

M
with S(X) =1+ Z exp C'(m, X),
m=1
wheny = 1,2,..., M. Moreover, the additive version of the model considers additive
functions C'(m,x) = ?:1 C(m,k,zg). The form of the log-likelihood has been

sketched in Example 1, now it enlarges to

n M K
0 = Z Z 1[Y; = m]- LZ_II C(m, k, Xii) — In S(X,‘)} ; (6)

=1 m=1

Our task consists in successive estimation of all functions C(m, k,z) as a functions
ofz = z,. Let us imagine that we have already got some estimates of t.hfa regression
functions from the sth step of the outer loop. In order to proceed with (s +' 1)-
st step of estimation, we need to know the estimates of C(m,k, z) aF all realized
Let z be a point in the domain of X;, O,
). The actualized (s + 1)-st estimation of
f (local) likelihood equation

points @ 4 = 1,...,.m, b= L... M
be its neighborhood (an interval around z
fm = C(m,j, z) is obtained from the solution o

: n ‘-’xl’(fm) - eXp CJ (IH., X:) i o
i)_p'ﬂ_ = Z] [Xji € O] {1[}'}' =] = S(X;) =lleel)

i=1

i . i . = 1N alLe t. = C ]“ o
wliere Ci(m, x;) = I 1(k 4 J](.(m,k,;i-k:)- We can csLm‘n 11{. he value o‘f gt
: FNTTky k=1 The equations (7), in which j and z are fixed,

simultaneously for allm=1,..., M. : -
iy : h‘ . or it can be solved as an M-dimensional equa-
1

can be solved separately for eac .
Ived separately ) ecribed in Part 6, we used separate evaluation

tion. When computing the example e
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. m alte i
for one va.hto f(‘)f\' c\fvt}r an(ither. The procedure then proceeds {o
alll Aq. ¥ s 4 gl - ]
the domam ol A; 1en the values of C'(m, j, Tji) in

each m are CStllllfl‘t-Ct‘, = Lsoogmam=1. ‘M (he algorithm starts to compute
the 95““_““'95 of G(m, j + 11_3’i+1‘i)- All these computations are a part of the inner
loop. It iterates through all j = 1,... . Only then the algorithm may proceed to a
further (s +2)-nd step of the outer loop, which Again tns for 7 — 1 te Ik The iter-
ations are repeated until the convergence of all estimated functions C'(m, k,-). lHow
can be the convergence of functions checked and recognized? After every step, for
every component C(m, j, ) we can construct the optimal least squares line through
the points C'(m, j, xji), 1 = 1,...,n. The changes of the parameters of the line can
serve as a crilerion of iteration progress and as an indicator of convergence.

The usual way how to solve (7) consists in an iteration with the help of the second

derivative of loglikelihood, for instance it may follow the scheme (5). In our example
with the logistic model,

another point z 1n
all realized points z;; and for

0%, o) s exp(fim) - exp Cj(m, X;) {exp(fm) -exp Cj(m, X;) .
T ; 5(X;) S0X) - '} e,

if again f,,, = C'(m, j,z), 7 and z are fixed. But the form of equation (7) suggests
also another procedure of iterative estimation. If (7) is solved directly for f,,, it
yields

it exp Cj(m, X;) 5
fm = —In Z .‘J'J(Xi) g 1[Y3 o ] ) (8)

i,2

where the sums are through {i =1,...,n: Xji € O.}. The “inner” iteration again
proceeds through all m = 1,..., M, then through all z = z;; (realized points), and
it renovates successively the estimates of component functionsfor j=1, ..., K.

4. PROPORTIONAL HAZARD REGRESSION MODEL

The model is a popular choice for the description of covariate effect in l‘ife events
listory analysis. Especially, the Cox model is an often used rel)res_entatwe of the
model, It is able to analyse the censored data, its semiparau-letnc. form can be
identified ecasily. However, the Cox model restricts Ll{e log; hazard ratio to be linear
in the covariates. A proportional hazard model considering a more general ha'f:ar(l
function has an intensity A(f|z) = a(t) - exp(b(x)), where b(x) is an 1-ms])ee‘.1ﬁed
smooth function. The estimation of proper function b can be based on /-dimensional
kernel procedure (VU” [T])

: Th - ote causes the data sparse and the global
However, a more-dimensional covariate cause ‘

iy P the model of the

kernel approach loses its eflectivity. Therefore, let us TCt:;rll l:’r hazard ratio has

g : [ ¥ /e (&

additive influence of covariates 10 the log hazard. an. - -fb. itabl fl‘lll('tiOII‘%

K ¢ : - S bi(z;). The analyst has to identify suitable functions

: omponents, h(x) = Y- I}JI g mon hazard function a(t), or better, its cu-
"y, by and also the underlying com azi o

O and also th ahg 0 Ve ac :

L | el s Byident ambiguity (with respect to additional

ative version A(l) = If” a(s)ds. 1

cons : y » by proper normalization of the functions. Volf [8]
mstant in h) §) can e overcoine by |
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Jescribes a method of estimation for a particul

ject has constant values of covariates. The method consists in alternating sequential
computing of functions b; and A. The procedure has been tested successfully, b
simulated examples as well as by real data. § : ¥y DY

In the sequel, we S.h““ consider a more general design, based on the counting
MECCHER We have simultancously to cnlarge the model and to allow the time-
dependent (random) processes of covariates Xi(l), i =1 . s In fact: such &
system ceased to have the proportional hazards, although, for fixed X :, x, the
proportional hazard model holds. The counting process Y= (i) e Nu(i,) Is a
set of right-contintous random step functions on (0,77, with steps +1. It is assumed
that no two components step simultaneously. In this model, the components need
not to be 1.1.d., the recurrent jumps are allowed. N;(t) simply counts the events of
ith kind or of ith object in the life history.

The model is fully described by the (random) hazard rates for counting processes
Ni(t), namely Ai(t) = a(t) -expb(Xi(t)) - Li(t), i=1,...,n, t € [0,7], where I;(t)
is an indicator of risk set. It means that [;(t) = 1 if the ith object is in the risk set
at moment ¢, I;(1) = 0 otherwise. The inference is based on Cox’s partial likelihood.
Its logarithm is

ar but frequent case, when each ob-

i T eb(Xi(1))

o = f In — - d Ni(t).

L Jo S W)

By the way, if we define again the underlying baseline cumulative hazard function

Alt) = fﬂt a(s) ds, there exists its generalized maximum likelihood estimator

At) = f:; av (s -, where N = 5" | Ni. In the frame of Cox’s model,
Z‘J exp b(X;(s))1,(s) =

this estimator is strongly consistent and asymptotically normal. However, here the

analogy with the survival time model ends.

Let us now return to the idea of the kernel (moving window, or m-nearest neigh-
bor) estimate for function b(z). Inspired by (4) of Example 2, dealing with the
one-dimensional case, we may suggest the iteration scheme b+ (z) = h (b'*), z),
where

h(b, z) =

Ty 1[X;(t)€O(2)] (1) L. -
==In fodend dN; (¢ L[Xi(t)€O()]dNi(t) |- (9)
Z;A Z;‘ exp b(N;(1))1;(1) ( )/Zt:/{]

. »
lere O(2) denotes our moving window-neighborhood of point z € "

are the step-wise functions, with steps +1 at the
| it corresponds to moments =),
ctories of X;(t), but only their values
), and we are able to register

Do not, forget that N;i(l)— s
moments of “counts”. In a survival time mode
I ie seen, that we need not register all traje
,\'J(.‘)',-]} where S; are the moments of counts of Ni(l
then only if [;(S;) = 1.

Let us now consider the situ
XUJ = (X1(1),...Xk(l)) and suppose the

( M eo ated to our ite
e . : ag s ncorpora
Zi:l”j("’})- [hen the inner loop has to b ]

ation with mn]{.irlill'lnllsional covariate processes
. additive form of function §obix) =
ration scheme. It
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computes successively all components bg") i bg‘{'
step of “outer” 1teration.

In order to obtain a generalization for iteration (9
function, let us imagine that when estimating, s
estimated all functions bm(-’l?m): m=12
outer loop.

Quite analogically to the one-dimensional case, from the equation 9¢ /0by(2) =0

i n —_
we can suggest the following scheme for the moving window estimation procedure:

| T Re(z,b(), )
1) (z) = —In [Z _Iéé_(bT),_zjt_)dN‘(t)/Z/o 1 [ Xy € O04(2)] dm-(t)},

)
» then we proceed to the (s + 1)-st

) with an additive regression
a'y, fun.ction be(z¢), we have already
-, I{', during the preceding step of the

0

where now

n K
Re(z,b,t) = )~ 1[X45(t) € O(2)] - exp {Z 1k £14]- bk(ij(f))} - 1(),

j=1 k=1

So(b,t) = Z?:; exp {b(X;(t))} - 1;(t) and O¢(2) is a chosen window around z in the
domain of £th covariate.

The inner loop now iterates through £ = 1,..., K and gives the values of bgsﬂ)(z)
at every chosen z (we need at least the values at all observed z¢i(T;) provided
[i(T;) = 1, where T; are the moments of counts, t,j = 1,...,n). The first inner
loop may start from b; = --- = bg = 0 or from another convenient initial guess.

5. REMARKS ON CONSISTENCY

Stone [6] has examined the family of exponential-type regression models. Their
loglikelihood has the form (1) with

£, X) = o(6(X)) - Y+ d(0(X)), (10)

where ¢, d, e are known functions, @ is a regression function of our interest. The
functions ¢, d are required to be twice continuously differentiable, w1t..h. e >4
Stone has proved that under mild conditions a unique (as to the additive shift)

additive function bix) = Z;{:l bj(z;) exists, closests to Bl in i eaie OL O
Kullback-Leibler distance. Leaving this aspect of the problem apart, b o
that the regression function has already the additive form. Fr.om this point of view,
the second result of Stone [6] is important. Stone has considered the polynomial

splines (of chosen order) approximating each component bj. Thus, the model is

timated by means
"®parametrized by a finite number of parameters, they are then es b

e 1 : hat:
Fihe standard (global) maximum likelihood method. It suffices to assume tha

I. The distribution of X is absolutely continuous on X', with its density bounded

away from zero and infinity.

f 1 . . . . o 3 4
2. Function b is Lipschitz continuous on A
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3. The knots ff the 51‘1“1_05 are chosen equidistantly and their number is propor-
tional to n, where v is chosen properly from (0,1)

4. There are positive constants » and R such that

ElexplsY)I X=%)< B for Is|]<r and xe ..

Then, when n ncreases to infinity, this approximation by splines yields the con-

sistent estimates of functions b;. Stone gives also the order of convergence.
By the way, even the M +1 valued logistic regression model can be regarded as an

M-dimensional representant of the exponential family. Let us recall its loglikelihood
(6). It has the form (1), with

M M
L% X) =) BN (X emind ] ) expb™(X) b,
mi=1 m=1

where Y, = 1[Y = m].

Sometimes the likelihood is more complicated, e. g. in the case of the proportional
hazard regression model. New results of Kooperberg et al. [4] prove consistency even
for the spline approximation of hazard regression.

Let us now try to transfer the results of Stone to the moving window estimation.
Let us recall again the regressogram approximation, in the case of loglikelihood (1)
and one-dimensional covariate X. Its (global) maximum likelihood solution (2) leads
in fact to the local likelihood iterations, because the matrix of the second derivatives
s diagonal. Thus, the only difference between (3) and (2) consists in the use of the
moving window instead of the fixed one. That is why the consistency property of
Stone (which applies also to the regressogram — a “trivial” spline of order 0) holds
also for the moving window solution. The sufficient conditions are the same as
above, instead of increasing number of knots the decreasing width of window has to

be considered, proportional to n?~!. Again, the result is well known 1n the case of
X = z) in the normal regression

the kernel estimation of regression function E(Y
mode].

Unfortunately, the same statement does not hold when the additive regression
function of multi-dimensional covariate is considered. Even in the framewor.k of the
exponential family of models, Hastie and Tibshirani [3] express a mere “conj'ectm:e”
that their result of local scoring does not differ significantly from the approximation
by splines, . .

Howwprr the number of the splinns—g(‘nnrnt.cd parameters is high, the direct com-

butational task of global maximum likelihood would be too large. Therefore one

should search for some sequential procedure, computing iteratively one subset of

Parameters after another. Such a |:r0rl‘th1f(‘-

is again comparable with the local
THRT ‘ : ‘ I8 . guaranteed.
likeliloo approach. But the optimality of such a procedure 1s not guar:

0. NUMERICAL EXAMPLE WITII LOGISTIC MODEL

artificial example. Nevertheless,

This par : the solution of an
! : el /o v . ata ¢ he solutLlo i
part, describes the data and tl s COMpANY (Say & Mnd of an

s fan PR W us imagine
the cage may represent a real situation. Let us 1mag
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scademic Institute), budget of which was affected by the economic probl in tl
country (probably the country from Cengral Lurope). - problems in the
(o reduce the stall” of the Institute. Simultaneo
stitute voluntarily, they are searching for hetter
private sector.

The sample has been collected during the critical period of the last two years
That is why the values ol all covariates may he considered as Gomit it iy s timc:

The response variable characterizes the kind of leaving (or not leaving) the job during
ollowed period. "The data have the lollowing structure: '

Pherefore it was necessary
usly, some people are leaving the
paid jobs in the slowly developing

16:, Xuiy Xoiy Xag, Xag, i=1,...,n= 185} .

llere n is the number of einployeed, the response variable § = 1 when the employee
was fired (42 cases), & = 2 when the individual left his Job voluntarily (20 cases,
retired employees are included in this group), 6§ = 0 for remaining employees. The
covariables have the following meaning: X is the length of the previous employment
in the Institute, up to the moment of event (in case of § > 0) or to the moment
when the data have been collected (& = 0). It is measured in years. Its values are
from 0 to 14. X3 characterizes the category of the job: 1 — scientist (40 cases), 2
- specialist (98), 3 — adninistration (21), 4 — technical staff (16), 5 — unqualified
assisting employees (10). X4 = I for men (107), = 2 for women (78). X, is the age
of the individual, again in years, at the mowment of leaving tlie job or of collecting
the data. Its range is from 20 to 60 years.

We wish to reveal and describe the influence of covariates on the probability of
mndividuals to remain in the Institute, to be fired or to leave, respectively. The
appropriate mathematical model is the model for the response variable (8) and for
s regression on the covariables Xi,..., X4.

For this example, the analysis of the dependence of the response on the covariates
will be accomplished in the frame of the logistic model, by the iteration procedure
(8). As the fourth covariate acquires two values only, its influence can be described
lully by a linear function ba(z4) = oo+ B - 24. This assumption can be incorporated
into the computing procedure,

The results of estimation are summarized in Table 1 and Figure 1. After 9 it-

crations the convergence has been achieved. Table 1 displays the parameters of

optimal lines (and correlation and variance analysis) led through P‘st.mmted points
olunctions C'(m, j, ). This linear analysis has been done before a final (secondary)
es procedure has been weighted by the number of

Smoothing. Thus, the least squar L i

tied values of a covariate. 1t concerned cspecially the third covarmt.o: 1
with respect to the variance of results in a window has not been -consulored. l'lg_ure \
of functions C(m, j, ) for first three covariates,
Institute, 3 = 3 ~ cate-
{1,2} for two

then displays smoothed estimates e
L . , ).
e j=] ~ age, ] = 2 ~ duration of employment i t ;t. ;
. . ¢ s OIS 3 L= D=

Bty of employee. T'wo distinet events were considered, for
fl .
listinet reasons of departure.

e example has been constructed in orde

ditive regression models and i order Lo (I".\'{k the
wen applied m orde

r to demonstrate the usefulness of
procedure of solution. No test

' support the conclusions.
”f-“ilr,ni{ir- e of recression has b r Lo supj
ance of regression has b
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Figure 1.

aditional way, for a parametric logistic
is C(m, j,z). The values of in-
preliminary estimates of the

Sllf'l'l a Lest, “]i}_dﬂ he ;u‘(‘ljllll]‘i.‘-ﬁ]l(‘tl in a ‘
model, i.e. for a linear approximation to functior

lercepts and slopes from Table 1 can be considered as

Parameters of this parametric model.
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Table 1.

m intercept slope

7 correl var
1 -0.3434 0.0058 0.2805  0.0381
2000 0.4507  -0.0386 -0.7858  0.0885
1 2 -0.0753  -0.0119  -0.1600 0.0383
2 2 -0.8912 0.0136 0.1286  0.0776
a3 -0.7376 0.2369 0.8075  0.0394
2 3 -0.6800  -0.1006 -0.7246 0.0480
1 4 ~0.5424 1.1668 1 0
2 4 1.3862 1.3485 1 0

(Received January 28, 1993.)
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ANALYSIS OF GENERALIZED RESIDUALS
IN HAZARD REGRESSION MODELS

PETR VOLF

In the present paper, we consider a counting process and a model of its intensity. We
introduce the generalized residuals measuring the deviation of observed times to counts
from the expected times given by the model. These residuals are then used for assessing the
goodness-of-fit of hazard regression models. The method is inspired by Arjas’ [4] graphical
procedure (dealing with Cox’s model) and generalized to a quite general hazard regression
case. The large sample properties of the test statistics are derived, they are then specified
for the case of Aalen’s regression model. The diagnostic ability of the method is illustrated
by an example with simulated data.

1. INTRODUCTION

The purpose of the statistical event-history analysis consists in the examination of
streams of events modelled with the help of the counting processes. The random
behaviour of a counting process is as a rule characterized by a hazard function. Haz-
ard regression models describe the case when the hazard function depends on values
of covariates. The inferences are sought about the form of this dependence. The
most popular representative of hazard regression models is the proportional hazard
model of Cox. The present contribution is prevailingly devoted to the methods of
diagnostics for quite general hazard regression models. We develop both graphical
and numerical procedures of goodness-of-fit testing. Then, for the case of Aalen’s
model, we derive an asymptotic distribution of the test statistics with plugged-in
estimate of the hazard function.

Our approach is inspired by the explorative and diagnostic _met.hods presented
for instance in Arjas [4]. The approach is based on the martmgale.-compe.nsator
decomposition of the counting process and on properly defined generalized residuals.
Arjas dealt with graphical methods for assessing the ﬁt‘of Cox’s model. Later on,
the large sample properties of Arjas’ statistics were cxaml'ncd by Marzec and Mar?:ec
P he mdin objective of the present paper is to generalize these results concerning
both graphical and numerical procedures. ; ' ;
as follows: In Section 2 the notion of counting process is

The paper is organized :
ssion model is introduced and the process of generalized

recalled, the hazard regre



502
50 P. VOLF

residuals is defined. Part 3 is devoted to the
present a method applicable to quite general
the test statistics in the general case are de
the situation when (a part of) the model js
estimator 1s solved for the Aalen’s hay
simulated data illustrates the usefulne

graphical goodness-of-fit testing. We
models. The large sample properties of
rived in Part 4. Then, we consider also
estimated. The case with ‘plugged-in’
ard regression model. A simple example with
ss of suggested approach.

9. MODEL AND RESIDUALS

Let N(f) =N % Nn(t))" be a multivariate counting process followed in the
time P?“_Od [0, 7]. It is supposed that N;(0) = 0 and that N;(t) counts +1 when the
ith indnv1dua} encounters the (()l)servcd) event of interest. Further, it is assumed that
there 1s max'mmlly onc count at one moment. The behaviour of N;(t) is governed
by an intensity process A;(t) = Ii(t) - A(t, X;(t)), where A(t,x) is a bounded, non-
negative, continuous hazard function, X;(t) is a vector covariate process and I;(t)
is a {0, 1} valued process indicating whether N;(t) is at risk of count at moment ¢.
In other words, /;(t) = 1 when the ith individual is observed, I;(t) = 0 otherwise.

The most popular hazard regression model is the Cox’s proportional one, with
At,z) = Ao(t)exp(b(x)), where Ao(t) is a baseline hazard function. The most
common semi—parametric version considers a linear specification 3'x of the function
b(zx).

The intensity of the counting process has the interpretation A;(¢) dt = P (d N;(t)
=1|o(t™)), where o(t) is a right continuous nondecreasing (w.r.to t € [0,7]) se-
quence of o-algebras defined on the sample space of histories of IV(t). More precisely,
o(t) contains all (relevant) events which occurred up to time t. Processes X ;(t) and
I;(t) are assumed to be left continuous and predictable w.r.to the sequence o(t), the
trajectories of N;(t) are continuous from the right side.

Let us now recall the martingale-compensator decomposition of counting process,
so basic for the theory of asymptotic normality and consistency of estimates. Define
the cumulative intensities by L;(t) = f[: Ai(s)ds. The fact that N;(t) has an intensity
process A;(t) implies that M;(t) = Nj(t)—Li(t) is alocal square integrable martingale
on [0,7], adapted to o-algebras o(t). It holds that £ M;(t) = 0, the variance process
(M;)(t) = Li(t), moreover, M;(t) is orthogonal to M;(t) (z # 7). Further details can
be found for instance in Andersen and Gill [2], in Arjas [5], in Andersen et al [3].

Individual counting processes are connected through L.hcir.common history stored
in o(t). In the framework considered here, this connection 1s given b‘y dependence
of processes Ii(t), X(t) on the past (up to t7) of‘the system. . lhv-crelorc, processes
Ni(t) are mutually conditionally independent provided the realizations of X ;(t) and
Ii(t) are known (of course, X (1) is needed only when I;(t) = 1). ‘

For the moment, let us imagine the case that each Nigt) has mz.mxnnally one count,
(and that I;(t) = 0 after the moment of the count)-’ I',Or Ly i i .'.f. :Sfl -]Ct }us
denote S; = sup{t € [0,7], I;(t) = 1} and deﬁne lIldlCEltOl‘S‘ :5.;- |; .13’1‘. i 1S tl)e
moment of count, & = 0 otherwise. Let us consldf:r- rapdom variables 7; — waiting
Bimes t6 the connte ol Nollk The distribution of T; 1s given by cumulative intensity

Li(t) = I.t Ai(s)ds, the values of 1’s are observed i tie BiEaRIdRd censai gy,
(1) = s)ds, the values
A, :
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i.e. Si, 0, t=1,...,n, are observed instead.

: When t} diti :
is taken into account, the following holds ( 1e conditional independence

cf. also Arjas, [5]):

Proposition 1.'. The couples of random variables (L;(S;), O), =105 tare
mutually (CO‘ndItI(?nally, for intensities Xi(t) given) indepe ) R
sults of the right-sided censoring of unit-exponentially distr
L:(T

ndent, they are the re-
ibuted random variables

Similarly, 1f the events are recurrent, L;(t) represents a transformation of the
time scale. I'rom each counting process Ni(t) (having counts at moments TG =
l,...,Ni(7T)) a standard Poisson stream P’ (Li(t)) is obtained, with counts 1:;14 mo-
ments Li(77). Again, these Poisson processes are mutually conditionally indepen-
dent. It is seen that the testing the behaviour of the counting process can be based

on comparision of N;(t), representing the data, with L;(t), representing the model.

Definition. The variable L;(t) — N;

¥i t), at a given t, is called the (generalized)
residual. The process L;(t) — N;(t), t

il
€ [0,7] is called the residual process.

Such a definition of residuals enable us to perform the analysis with the help of
martingale-compensator decomposition. Sometimes, when we wish to compare the
occurrence of events in various subclasses of individuals, it is convenient to define
an aggregated counting process Ng(t) = 3, 5 Ni(t) — the sum through a chosen
stratum S C {1,...,n}. Its intensity process is given by Ag(t) = 3,5 Ai(t) and
the time scale transformation Lg(t) = fl: As(s) ds yields again a standard Poisson
stream of events.

3. GRAPHICAL GOODNESS-OF-FIT TESTING

In this section, we shall suggest a graphical procedure for testing the fit of general
hazard-based regression model. Let 0 < Tay < gy S = T{m) < T denote the
ordered times of counts of the whole observed system (actually, equalities are ruled
out theoretically). Set N(t) = Y.y Ni(t), M(t) = D i=1 Mi(t)s L(t) = 2 izt Li(t).
We propose the graphical test based on (explorative) analysis of differences L(E‘{k))—
N(T(k)) - _H(T(k))- Notice that W(T(k)) =k, therefore we propose to plot L(T{x))
against k. In fact, we obtain nothing other than the chart of the tlme—transform‘cd
cumulative hazard function, which should be the cumulative hazard function of unit-
exponential distribution, provided the model fits. ’ S :
Suppose now that we wish to compare the behaviour of distinct groups of in-
dividuals. In this case, we split the n-sample into (two or more) strata and (i.ra.w
the plot separately for cach of them. Of. course, we pllotk:lhe. :m;?;nfiff::;ﬁt:f)?s
Ls(t) = Y ies Li(t), evaluating them at points T(s k) — the kth mom :

i th NelT, =}
r them again with Ns(T(s k)) _
2 2 a presented in Arjas [4]. In the frame-

bles Hs(T(x)), Bl =) endli(l),

stratum S — and comparin _
Our method of testing generalizes the uh,.
work of the Cox’s model, Arjas used the varia
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where Hi(t) = f[: pi(s) dTV_(s) and p;(t) = Li(t) exp b(X i (
These variab.lcs are convenient because the knowleci
hazard function is not required. The difference of Lg|
tingale, so that the performance of both tests js comparable. In the case of the Cox’
model, fhcn in Lf_(t) the baseline hazard function is rcpla(;ed by its c::n(;iste(r:lt ;}ii?
mate d Lo(t) = dN(t)sz L;(t) exp b(X;(t)), both statistics coincide. Notice that
'H‘(t) = Z::.‘:I H(l) = NE) directly, so that the statistics of this type cannot be used
for testing without a stratification.

Let us now consider a following frequently encountered case: In the framework
of a certain model, we wish to decide whether a specific form of submodel holds.
For instance, let us assume that the general Cox’s model fits and that we wish
to assess whether the regression function b(x) can be expressed as 3’ « for some
3. Andersen and GilL (2] solved the task of maximal partial likelihood estimation
of 8. The estimate B is shown to be consistent. Therefore, we replace b(x) by
@’:L' in test statistics’;The fit for stratified subsamples can be tested with the help
of Arjas’ statistics Hs(t) (i.e. Hg(t) with b(z) = Bfa:) Similarly, in a general
case, an unknown part of a tested model (i.e. of Ls(t)) may be replaced by its
consistent estimator (provided such an estimator is available). Now the martingale
decomposition (as well as Proposition 1, applied to the estimated model) holds only
approximately, i.e. asymptotically. Nevertheless, the graphical procedure is still a
useful indicator of validity of our hypothesis.

)/ 25=11i(t) exp b(X;(t)).
ge (or estimation) of baseline
(¢) from Hs(t) is again a mar-

4. NUMERICAL TESTS AND LARGE SAMPLE PROPERTIES

Proposition 1 transforms the data into a sample of censored unit-exponential vari-
ables, provided A(t,z) is the “true” hazard rate. Therefore the test of fit of A(t, z)
can be accomplished with the help of standard goodness-of-fit procedures adapted
to censored data. For instance the modified Kolmogorov-Smirnov procedure can
be used to assess the unit-exponentionality of {L;(7i)}. If the independent unit-
exponentional waiting times are ranked into series, the waiting time to the kth se-
quential event is distributed according to the gamma (1,k) law. The same holds for
time EE(T(S',C}) to kth event in an aggregated system E? S} of parallelly running
unit-exponential times. Simultaneously, -L_s(T(s]k)) — Ls(T{s,k-1)) are distributed
unit - exponentially and independently of a(T(s,k-1))- |
All these properties should hold if the model A(t,z) is cho§en prﬁ:perly;} \‘thl.e
the graphical testing methods are based directly on the properties of “exact” distri-
butions, the numerical tests use as a rule the asymptotic laws, consequences of f?he
central limit theorem. Their advantage is that they offer a quantified information
about the magnitude of deviation from model. However, as soon as a part of the

model is unknown and estimated, the asymptotics becomes ra.t.her hazy. The cases
are discussed for instance 1n Khmaladze ([8] -
. statistics) or in Hjort ([7] - the case of
rd function and in Cox’s model). Both
as in Arjas [4]) show that it 1s pos-

of l'?hlggml—in parameter estimator
the case of standard I(nlnmgorov-—Smirnov
¢stimated parameters in parametrized haza
authors (and some others, cited in Hjort as well

e
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sible to construct asymptotic test of Kolmogoroy-
test. However, the test statistics thep need more ¢
the unknown parameter by an estimator.

The asymptotic behaviour of Arjas’ residual process ff:s(t) — Ns(t) applied to the
Cox’s model ha.f_s been examined by Marzec and Marzec [9]. Two t:;pes gfp conditions
have been specified, both‘ following Andersen and Gill’s (2] conditions of asymp-

Smirnov type as well as x2-type
omputation than mere replacing

Ell Y ies Li(t) exp(B' X;(t)) independently of the strata S, provided |S| — oo, where

I5l= Eie_s 1) ensures Lhclweak convergence of n“%(ﬁ;(t) — Ns(t)) to a Gaussian
process with independent increments. Therefore, the Kolmogorov-Smirnov asymp-
totic confidence regions can be constructed.

As has been pointed out, the stratification is a very helpful tool in the model
diagnostics. In particular, the Arjas’ statistics is derived to deal with stratified
data. Nevertheless, in the sequel we shall leave the idea of stratification. It is not
difficult to adapt all results to the stratified case. We shall briefly consider the
general case of the hazard model, then we shall derjive some asymptotic results for
the regression model of Aalen [1].

Let us first repeat the basic assumptions about the boundness of intensity and
covariate processes. These conditions, although slightly too strong, enable us to
omit any additional condition of Lindeberg type (cf. again Andersen and Gill (2]).

Assumption 1. The covariate processes X ;(t) have their values in a bounded
interval X C R for ¢ € [0, 7).

Assumption 2. The hazard function A(t,z) is uniformly bounded on (0,7] x X.

Further, let us formulate a general variant of a stability condition. Let P-lim
denote the limit in probability:

Assumption 3. There exists a deterministic function . ;
W(s) = P- lim L 5"  I;(s) A(s, Xi(5)). The limit is uniform in [0, 7].

n—oo

Proposition 2. Under Assumptions 1-3 the process n_%ﬂ(t) converges weal‘(ly
on [0,7] to the Gaussian random process with independent increments and with
variance function fot W(s) ds.

The proof follows immediately from.the central limit theorem for martingales —
cf. also Andersen and Gill [2], Marzec and Marzec [9].

Let us again return to the case of an unknown hazard function estimated by \.

s i ing ¢ irical’ residual process:
Now, the analysis is based on the following ‘empir p
t n

g=1
ya=]



Aalen’s re.gressio‘n mo'dcl. Let the hazard function be A(t,x) = B'(t)z, both

anfi x being K‘dlmfﬂsmﬂﬂl Vec.tors. It follows that the indi\;idual intensit} pro-
cess is Ai(t) = L) B'(t) Xi(t), i = 1,... n. Let us assume that fy,..., Bk are
nonnegative, left-continuous functions, bounded on [0,7] - f. Assump’t’ic')l.;?. Fur-
ther, assume that X;(t) = 1, (so that Ai(t) is an intercept function) and that
X;,,-(t),.--,XK.‘(t) are the actual nonnegative covariate processes. The method
of estimation of cumulative functions By(t) = Jo Be(s)ds is described (and con-
sistency and asymptotic normality are shown) for instance in Andersen et al [3],
part VII: Denote by Z(t) the (K x n) matrix having ith column Z.i(t) = Xi(t) - L(t).
Then the simplest approach considers the estimator f?(t) = f(; E(s) dN(s), where
Z(s)=(2(s) Z'(s))" ' 2(s), assuming that the inverse matrices exist for s € [0, 7].
Notice, that Z(s) is a generalized inverse matrix to Z'(s). Andersen et al [3] and
others argue that this estimator, which is based on the simple least squares prin-
ciple, does not take into account possible unequal variances of individual martingales
M;(t). Therefore the weighted variant using Z = (ZW Z')‘1 Z W should be pre-
ferred, with W = diag[w;(t)] a diagonal matrix of weights. The weights w; = 1/);(t)
are optimal theoretically (w; = 0 should be set if Ai(t) = 0). This choice can be
achieved approximately with the help of a sequential procedure.

It holds that B(t)— B(t) = fot Z(s)dM(s) and that under proper conditions
n%(ﬁ(i)—B(t)) is asymptotically distributed as a Gaussian process with independent
increments. Its covariance function is then P-lim,_, . nfot E(S)D(s,ﬁ)hz—’(s) ds,
provided such a limit exists and is regular. Here D(s, ) is the (n x n) diagonal
matrix with components ;(s) = 8'(s) X;(s) Li(s). It is seen that if optimal weights
w; = 1/); are used, then ZDZ = (ZW 2Z)- ..

The test statistics is now derived from L(t) = VIO fgt Ii(s) Xi(s) B(s) ds. When
dB(s) is inserted instead of B(s)ds, we obtain

L(t) = i/{), Ii(s) X'!(s) Z(s)dN(s) = E/O Z'i(s) Z(s)dN(s),

where dN(s) = (dNy(s),...,dNp(s))". The difference from the observed number of
counts up to t is

L(ty-N(t) = L(t)-I(t) - M(t) = Z/D Z'(s) {df}(s) = dB(s)} ~M(2)

= / {25 Z() M (s) - M)} = /0 i {2'(s) Z(s) ~ I} dM(a),

: ' the 1dentity matrix.
Where 3/ (1,...,1) is the vector of dimension n, I denotes the identity

Denote u'(s) =4 (2'(s) Z(s) — I).
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Assumption 4. Components Uu;

0,7]and toi=1,2, ... (5) ate bounded, uniformly with respect to s ¢

Assumption 5. There exists a deterministic functjon

V(is)= P "li‘n;o %u'(s) D(s,8) u(s).

The limit 1s uniform w.r.to s [0, 7).

The assumptions cllaim actually the uniform regularity of matrices Z(s)W(s) Z'(s).
They also assume existence of two limits, namely of

n

lz” Z'(s) Z(s) D(s,B) 2"(5) Z(s)z, and of % i Xi(s)B(s) L(s).

: ) =
Notice again that Z D Z = (Z W Z')~! provided the optimal matrix W is used.

groposition 3. Suppose the Assumptions 4, 5 hold. Then the process n‘%(f(t)—
N(t)) converges weakly to a Gaussian process with independent increments and with
variance function C(t) = f(: V(s) ds.

The proof follows again from the boundness of all processes and functions and
from the fact that D(s,3)ds is the conditional covariance matrix of dM (s).

5. EXAMPLE

The method described in the present paper has been employed to analyse both
simulated and real data. The application to regression diagnostics in the framework
of the semi-parametric Cox’s model is described in Arjas [4] as well as in Marzec
and Marzec [9]. A more general multiplicative models are tested in the real data
study of Volf [11].

For the lack of space, let us present here one simple artificial example only. We
simulated a sample (n = 150) of independent survival times fulfilling the Aalen’s
model with hazard function A(t,z) = Ai(t) z1 + B2(t) x2 + B3(t). The values of
covariates were generated uniformly, Xi; from (0,10), Xy; from (0,20), they were
independent, of time. The sample was not censored. We put 1 = 0.5, B2 =1, (3 =
0.7. Thus, the survival time had actually a very simple distribution, namely an
exponential one with a constant hazard rate. _ _

First, the “full” model has been estimated, by the method described in Pax:t 4.
The solution has been searched for in the set of general Aalen’s models. We obtained
the (nonparametric) estimates of cumulative functions B 1(t), B;\(t).} Bs(t). The first
two of them were approximately linear (with slopes A1 = 0.84, /52 - 1.08), butiHait]
was far from a linear function. It could be caused by that the resulting general model

ioin: ential one.
corresponded to our data better than the original exponenti
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For the purpose of diagnostics the sample has beep divided into two strata, S =

{i, Xa2i < 10};‘5 =11, X3 > 10}. Flg'lll‘e la displays the graphs of testing variables
ﬁls(Tk.S) 3“? [I'S(Tk BE) Yers. lk . 'ﬂhi Picture suggests that the model fits well. Then
the same data have been analysed, buy (e ) ' ’
been ornitte.d. Again,.Bl(t) and By(t) havedf)f:g:idee;:?rizgeléazzild z{unc%gncslr;xitlézs
The reSl.lIt is shown in Figure 1}, The picture clearly indicatessjthaf the l;)nodei
considering only z, overestimates the hazard rate in group S and underestimates
the actual hazard rate in §. |p other words, the graph suggests that a positive
dependence of hazard on z, should be incorporated into the model.

For the comparison, in Figure 1c there are the plots of the statistics L(t) con-
structed from the “true” exponential model. It seems that the fit jg slightly worse
(but still good) than the fit of the more general Aalen’s model.

Finally, the numerical tests have been accomplished. From Propositon 3 it
follows that the statistics 1) = n‘%(Z(,{) _ N(t))/(l + C(t)) is asymptotical-
ly distributed (provided the Aalen’s mode] holds) as a Brownian bridge process
B(K(t)), where K(t) = C(t)/(1+ C(t)), t € [0,7]. Hence, for d > 0, it holds that
P*(d) = Pr(max, D(t) > d) = P~(d) = Pr (min, D(t) < —d) ~ exp(—2d?). First,
the estimate of asymptotic variance C(t) has been computed. Then we obtained,
for the first case (full model), in stratum one (X2 < 10) max D(t) = 0.478 and
min D(t) = —0.196. It corresponded to the test value P*(0.478) = 0.63. In stra-
tum 2 (X3 > 10) we had min D(t) = —0.405 (max D(t) = 0), PS(0.405) =072
The test did not show any reason for rejection of the model,

For the model omitting the dependence on 5 we obtained max D(t) = 2.5 corre-
sponding to P*(2.5) ~ 10~*, in the first stratum, min D(t) = —3.3, P~(3.3) ~ 10-5
in the second stratum. These values suggest clearly the rejection of the model (on
each reasonable confidence level), in favour to an alternative model considering a
positive dependence of hazard on z,.
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ON CUMULATIVE PROCESS MODEL
AND ITS STATISTICAL ANALYSIS

PETR VOLF

The notion of the counting process is recalled and the idea of the ‘cumulative’ process is
presented. While the counting process describes the sequence of events, by the cumulative
process we understand a stochastic process which cumulates random increments at random
moments. It is described by an intensity of the random (counting) process of these moments
and by a distribution of increments. We derive the martingale — compensator decomposition
of the process and then we study the estimator of the cumulative rate of the process. We
prove the uniform consistency of the estimator and the asymptotic normality of the process
of residuals. On this basis, the goodness-of-fit test and the test of homogeneity are proposed.
We also give an example of application to analysis of financial transactions.

1. INTRODUCTION

A counting process is a stochastic point process registering random events and count-
ing their number. The trajectory of such a process starts at zero and has jumps +1
at random moments. The main characteristic is the intensity of the stream of events.
A review of theory and applications of counting process models is given, for instance,
in Andersen et al [2], or in Fleming and Harrington [5].

In the present paper, we consider a random process

Ct) = /UtY(s)dN(s), (1)

where N(t) is a counting process and Y (t) is a set of random variables. We assume

that the time runs through [0, 7] and starting value is again C(0) = 0. le‘n.this
a process having the random increments at disjoint

will be called the cumulative process. In the

special case when the process of times, N(t), is the Poisson one, the process (1) is

known as the compound Poisson process (see for e?(ample Embrechts et .al [4]). |
The objective of the present paper is to describe the process (1) with the aid

of Charact;:ristics of both its components, i.e. the hazard function of N(t) and the

distsibution of Y (). The paper is Drganized as follows: In part fz‘the‘process (1)
| artingale-compensator decomposition is presented

point of view, we deal with
random moments. The process C(t)

1 defined more accurately. Its m



the mean trajectory of the process (actually representing the cumulative rate) is

constructed m.ld its uniform consistency is proved. In this we generalize the results
of Volf [7] achieved for the case of underlying Poisson process of events. The main

reslult s in the derivation of the weak convergence of the residual process to a
Wiener one. Finally, based on this convergence, a test procedure is proposed both
for assessing the goodness-of-fit of the model and for testing the homogeneity of

two processes. In this we follow the method of analysis of generalized residuals for
counting processes proposed in Arjas [3] and also in Volf [6].

2. THE MODEL OF CUMULATIVE PROCESS

In order to define the process (1), we consider a measurable, nonnegative and
bounded function A(t),t > 0, the hazard function, and the indicator process I(t)
which equals 1 if N() is in the risk of count, I(t) = 0 otherwise. Actually, I(t) is
an indicator of observability of counting process N(t). Then, the behaviour of the
counting process N(t) in (1) is governed by a random (in general) intensity process
A(t) = h(t)I(t).

Further, let us consider a right-continuous nondecreasing sequence of o-algebras,
S(t), where each S(t) is defined on the sample space of {N(s), I(s),Y(s), 0 < s <
t}. We assume that process N(t) is S(t)-measurable. Following Andersen and
Borgan [1], we denote by dN(t) the increments of N(t) over the small time interval
[t,t+dt). Then we can write that A(2)dt = P(dN(t) = 1|S8(t™)). The trajectories of
N(t) are right—continuous, the trajectories of I(t) and also the “histories” collected
in §(¢7) are left-continuous.

As regards the variables Y (), we assume that

1. Y (t) are distributed with (unknown) densities f(y;?).

2. Their means pu(t), variances o%(t), and also E(|Y (t)|”) exist and are measurable
and bounded functions on [0, 7].

3. Each Y (t) is independent of S(t7), i.e. of the history of the process C(s) up
to t (on the other hand, dN(t) can depend on history of Y(s),s < t).

Remark. Point 3 is a rather strong condition which in some cases is not fulfilled.

On the other hand, we can imagine a number of processes (especially in the area of

natural sciences) for which such an independence of increments on the history is a

quite realistic property. I
The assumption on existence and boundedness of the 3-rd absolute moments 1s

actually a condition of the Lyapunov version of the central limitltheo'rem. Here, it
will be utilized for the proof of the condition of Lindeberg required in the central

limit theorem for martingales (Proposition 3.).
Rk tis now zecall the marl,ingale-compeﬂsa‘»or decomposition of the counting pro-

. e p %
cess N(t). Define first its cumulative intensity L(t) = [, /\(“;) dl-j- 1;?) J(PV(é) .
L(t) + M(t), where M(t) is a martingale adapted to the o-algebras S(t) (i.e. i
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is §(t)-measurable). It holds that EM(t) = 0 and variance processes (N)(t) =

(M)(i) = L(t), where the notation (N)(t) means Var(N(t)[S(g—)). Similarly as the

paths of N(t), the paths of M(t), and al : : :
paths of L(t) are continuous). %0 o 1) are right-continuous gt

The first task 1s to derive a compensator of the process C(t). We utilize the

decomposition N(t) = L(t) + Mi(t).of the tount: *
u(t). Then we can decompose 1ting process. Denote Y*(1) = Y (t) —

C(t) :A (Y*(s) + u(s)) dN (s) I/‘;J(s)d[,(s)-fM(i),

where
T

M(L) = M (L) +M,y(t) :/ﬂ.rY*(s)dN(s) +/ p(s) dM(s).

Proposition 1. The processes M(t), M, (t), M5(t) are martingales adapted to
r-algebras S(t) on [0, T'], the variance process of M(t) is

(M)(t) = / (02(s) + *(s)) dL(s).

Proof. Evidently, £ M(t) = 0. As regards the property defining the martingale,
we have for 0 < s < t that

E(M(t) | 8(s)) = M(s) + E ( / dM(r)w(s)) L Ms),

because E ( [ dM(7)[S(5)) = 0 holds for both parts of M(t): For Mi({) it follows
from the centering of Y *(¢) and from the independence of Y*(t) on dN(t). Properties
of M,(t) follow directly from properties of M(t). From the independence of Y*(t)
on the past up to t it also follows that Y*(¢) is orthogonal both to dM(t) and to
dN(t), distribution of dN and dM being given by predictable process dL. Therefore

(My)(t) = /ﬂtaz(s)df‘(s)l (M, Ma)(t) = 0.

t
Further, from martingale properties of M () we have that (Ma)(t) = [y n*(s) dL(s).
Then

(M)(1) = E {My(t)? + Ma(t)* + 2Mi(8) M2(t) | S(7)}

t

= /‘ 02(s)dL(s)+]0 p?(s)dL(s). O

Corollary. Process J [; ju(s) dL(s) is the compensator of process C(t) on 19, T}.

' it f compensator. Its sub-
E ss [* u(s)dL(s) fulfils the conditions o ‘
il g fu gl )'ngale process 18 predictable and its paths are

straction from C(t) yields a mart
, t ‘ e ' eded).
uniformly continuous on [0, 7] (which is more than is needed)
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3. LARGE SAMPLE PROPERTIES

o L o aun l.eL - imagine that n realizations Ci(t) of a cumulative process
C(t) are obgerved in interval [0, T]. More precisely, we observe moments of events
’Ij"" . countmg- processes Ni(t), corresponding indicators I;(t) and “jumps” Y;(T;;)
(=1, 0=1,... ,n; = Ni(T)). Formally, observed trajectories are .

Ci(t) = /0 Yi(s) dNi(s) = iYi(TH)-
=1

It is assumed that random variables ¥i(t),i=1,2,..., n have the same distributions
with densities f(y;t) and moments 1(t) and o?(t). Further, we assume that Y,-(ti
are independent of the common history of the processes N;(s), Yi(s), Li(s),s < t,i =
1,2,...,nstored now in o-algebras S(t- ). Finally, we assume that N;(t) are charac-
terized by the same hazard function h(t). Corresponding intensities of N;(t) are then
Ai(t) = h(t)I;(t). As it is assumed that the hazard function is finite, the compen-
sator is a continuous process. The consequence is also that there are not two events
at one moment and, further, that for i # j d(M;, M;)(t) = 0, d(M;, M;)(t) = 0 and
even cov{Y;(t) dM;(t), Y;(t) dM;(t)|S(t™)} = 0.

The likelihood process (which is actually the generalization of the likelihood of
Poisson process) is

n 0 ] 2
L =T IT (@) r(¥(T;): T5)) - exp {~/ Xi(1) dt} .

g=17=1I

It is seen that the part containing the intensities and the part containing the
distribution of Y’s can be separated (and therefore both characteristics can be es-
timated independently). Denote by £(f) = [TiZ; [1;<, f(Yi(Ti;); Tij). Then we
obtain the following log-likelihood:

n A1 T

Inf = Z / In X;(¢) dN;i(t) — / Ai(t) dt} + In(L(f)). (2)
=1 0 9

In the case of parametrized function f, its parameters can be estimated from the

maximum likelihood estimation procedure based on L(f) only. In a nonparametriz.:ed

case, estimates of functions p(t), a%(t) can be obtained with the help of a smoothing

(kernel) technique. Even the density f(y;t) can be then estimated via.tl.lc kernel
method. In the follow-up, we shall try to characterize the process C(t) jointly and

to derive some asymptotic properties which depend on h(t), p(t) and o*(t).

3.1. Fstimates and their convergence

Let us recall here the well-known Nelson-Aalen estimator of the cumulative hazard

function H(t) = [”t h(s)ds:

o i S L
”,,(f.):;/{] TdN‘(.)‘
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n
where I(s) = > i_, Li(s) characterizes the risk set at moment s

following assumption: Let us make the

Al. There exists the limit, r(s) = lim 12
T

im in probability such that

a) the limit is uniform on o, 74 <
b) 1 > r(s) > € on |0, T, for some ¢ > (.

Then it is proved elsewhere (for instance i Andersen and Borgan [1], Andersen

et al [2]) that Hy(t) is a consistent estimate of H(t). Further, such an estimate
is asymptotically normal on (0, 7], namely \/ﬁ(f}n(g) — H(t)) ~ \/ﬁzp_l f(; dﬂd.gq
converges weakly to a Wiener process with variance function f(; —(—ld!’{ ; , when n — oo.
It follows from the central limit theorems for martingales (e.g. Andersen et al (2],
chapter 1I). Moreover, it is due A1 and due the boundedness of all involved functions

that H,(t) is a uniformly consistent estimator of H(t) on [0,T] (see also Winter,
Foldes and Rejto [8], and their variant of Glivenko-Cantelli theorem).
Inspired by these results, we consider the average of observed processes

CORDY u ”—"(;%f—"ln(s)dm(s)

as an estimator of the function K (t) = fot p(s)dH (s). Actually, K (t) represents the
cumulative rate describing the risk and the mean size of jumps of C(t).

From Al and boundedness of H(s) and u(s) we easily see that P{ fUT Lif(a) =

=0]ds = 0} — 1 for n — oo, so that even P{\/ﬁf[; 1[I(s) = 0]dK(s) = 0} — 1,
uniformly w.r.t. t € [0, 7).

Proposition 2. Under Al, C,(t) is a uniformly consistent estimate of K(t) on

[0,7], that is .
lim sup |C,(t) — K(t)| = 0 in probability.
R selb T

Ca(t) = 21; / | 57 M) dLi() + M)

b S dM;(s t 2 -
=K@+ [ 3 T~ 1) = 0l4x(a), &

Here M;(t) are square integrable martingales, with the same distribution ai/[\}/llgt)
defined in the preceding part. They are mutually ort.hog?nal, (M‘.’]M{)('t) = ]lor
i # j, their variances are uniformly bounded on [0,7]. From Lerllg lilrlii : migua ;t.y
(cf. Andersen and Borgan (1], or Andersen et al (2], part 11.5.2) it follows that for

each 6, > () and for sufficiently large n > n(6,¢€)
n )
1 s
P ( sup ’- E M:(t)l Z 5) S g2’

tef0,T] ™ =3
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This, together with the uniform ¢ 1 :
onvergence of (1) assumed in Al, leads to the

n
5 4 1M
convergence of sup | [ (7_%3_1 : e

telo,7].. ;';1 1(s) | in probability to zero. 0

Proposition 3. Under Al the
[0,7] to a Wiener process (i.e. the
independent increments) which

o’(s)) dH (s).

process /n(Cy(t) — K(t)) converges weakly on
continuous Gaussian process with zero mean and
has the variance function W(t) = f{; *(1;5(3“2(3) 7=

Proof. From (3) we have that

i'm

Val(Calt) ~ )=l B0l e e
/Gg I(s) \/‘/ﬂ 1{I(s) = 0] dK(s).

The convergence follows from the central limit theorem for martingales. We use the
version stated in Andersen et al [2], namely Theorem IL.5.1 (Rebolledo’s). The proof
requires two convergences in probability to hold, namely that for all ¢ € [0,T7]

(i) (MM)(t) — (1),

(i1) ( E(n))(t) — 0 (Lindeberg condition).

(i) Here M(™)(t) = \/n fot b I %@‘ From Proposition 1 and from A1 it follows

that
e (02(s) + u2(s))dL;(s
(M(n))(t) uA E :( (s) pﬁ(sg/?n)d (s)

(o2(s) + I >0
:/G o) dH (s) — W (t)

in probability, (1) is proved.
(i) By MI(t) = [y Yory 5Qi e (s)dMi(s), with Qie(s) = 1{|VrdMi(s)/1(s)]

> €], we mean the process (martingale) containing all jumps of M(™)(t) larger
than chosen ¢ > 0. For “zero-one” random variables Q)i (s) we have from the

Chebyshev inequality that, for each k = 55 G
E(QE(5)IS(s7)) = P(Qie(s) = 115(s7)) =

(LRI, 15057 < (2o, @

I(s) e?

: _ { : 3
.ssion in brackets is of size Op (E) uniformly in s € [0,T1,
48 otation Bn ~ Op(an), for sequences By Qf
1 that the sequence B, /a, is

where the expre

38 a (:(}“S(‘_(lll““(:ﬂ (Jf Al (hy l-}](‘. 1 IT]C'LI
‘ x we >
random variables and a, of numbers,

asymptotically bounded in prolmllllli-y)-
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From the conditional ortho

onalit ‘ S
obtain that gonafity of increments d(M;, M;)(s) for i # j, we

t n
MMt < f = )
( )(t) < ) T03) ;L{Qf_,(.9)(de(s))2lS(s_)}.
Further, the Holder inequality yields that

B{QEe(s)(dM:(5))*[S(s7)} < [E{dM;(s)P|S(s~ )} - [E{Q} (5)IS(s™)}]5.

From our assumptions on the boundedness of (absolute) moments of vari-
ables Y("j;) up to the 3-rd_ moment it follows that [{ dM;(s)|S(s7)} =
E{[Yi(s)["}dLi(s) + O((ds)?), taking into account that dLi(s) = h(s)I;(s)ds.
Finally, we obtain

n

MOV < [ DB P + O(@s))) HOp(LaLe?

=1

t o - t
~ | —~{E|Yi(s)PPh(s) ds} 30p(n=3)(h d%,\,/q”_ -4
| 17 EMOP R 400 ine) )t ~ [ op(-(aas
which is of size Op(n‘%) uniformly in ¢ € [0,7]. This proves the condition
(i1). 0

4. STATISTICAL TESTS

In the following part, the asymptotic normality of the residual process will be utilized
for the construction of statistical tests, namely the goodness-of-fit test and the test
of homogeneity of two samples of cumulative processes.

From two parts of martingale M(t) the first reflects the variability of Y”’s and the
second equals p(t)-times the ‘residual’ martingale known from the counting processes
scheme. Hence, the variance function of residuals Vn(C(t)— K(t)) contains also two
parts, expressed by o2 and pu?. They can significantly influence the power of test
procedures. Therefore, for the purpose of tests, we recommend to normalize the

residuals, i.e. to divide them by \/o? + p?.

4.1. The goodness-of-fit test

Arjas [3] and later Volf [6] derived goodness-of-fit tests f{)r the counting processes
model, and generalized them for the case of hazard regression models (namely Arjas
considered the Cox model, Volf a general case of hazard regression model and the
Aalen model). From this point of view, the case considered here is much simpler,
because the regression is not involved. ) ;

Let the model be given by functions H(t), u(t), o*(t), we want to decide .wheth‘er
the data correspond to it. The data are represented by. the observed trajectories
Ci(t) and indicators I;(t), i=1,...,n The tests are quite naturally based on the

comparison of C,(t) with expected K(t). The process of differences C'n (t) — K (1) is

called the residual process.
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Graphical test: Let us order aj] moments of events into one nondecreasing sequence

Ti; €= 1,...; K. For a graphi : :
(_;T Tt ORe 6 i P“cal comparison, we plot K {Ti)= f(;n u(s)dH(s) and

(Tk) . ¢ ligure, against k on the abscissa.
process 1s a .martmgulc asymptotically tending to zero. Then it is akmactod hiat
both plots will b_e c_losc to cach other. An opposite case (i.c. an increasing distance
of both curves) md@atcs that the model K(t) does not correspond to the data. Of
course, a miGke precise test will need a specification of critical limits for the distarice
of compared curves. Such critical bounds can be derived from the large sample
properties, for instance in the following way.

If the model fits the residual

Numerical test: Numerical test is based on asymptotic distribution. Define the
normalized residual process by

£ d(Co(s) — K(s))
0 Vu*(s)+o2(s)

From Proposition 3 it follows that \/nR,,(t) is asymptotically distributed as a Wiener
process with the variance function V(t) = f[; dH (s)/r(s). Then the process

Ra(l) =

D (t) = VnRa(t) /(1 + V(1))

is (if the model holds) asymptotically distributed as a Brownian bridge process
B((V(t)/(1+ V(t)), int € [0,T]. Hence, a test of Kolmogorov—-Smirnov type can
be used. From the theory of Brownian bridge it follows, for instance, that for any

d>0,
& (mta.x Dn(t) > d) =& (mtin Dn(t) < —d) ~ exp(—2d?)

approximately. So that the value exp(—2d?), where d is the observed maxy |Dp (T%)],
is an approximate P-value for the test of hypothesis of the goodness-of-fit against a
proper one-sided alternative. Unknown limit function r(s) needed for computation

of V(t) is consistently estimated by I(s)/n from Al.

4.2. Test of homogeneity

Besides the goodness-of-fit tests, we can also consider the tests of homogeneity. They
compare two (sets of) realizations of the process. Both graphical anq numerical
comparison can be based on slight modifications of the methods described above.

On the other hand, the performance of a test of homogeneity is influenced by the

fact that, as a rule, certain characteristics of the joint model have to be estimated.

The properties of the test procedure t
estimator. C‘(k)(t): k=13

: ' lative processes,
Let us consider two independent sets of cumu :
Sl resenting a certain model characterized by H®)(t), u(¥)(¢),

he hypothesis Hy that H®)(t), uth)(t),
terval [0, 7). To confirm it, we analyse

hen depend strongly on the properties of the

p=32 ...,m;, each rep ‘
o¥)(t). The test of homogeneity assesses t

U(k)(i) are the same for k = 1,2,0n a given in
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the averaged processes

k) ) 4T dN®
N / Z ([()k)( 2 1[1%)(s) > 0],

and their difference
m
\/_\*L‘TE' {c"0-c%0)
mim ( ) Mg
S R- s [Sa s el
S s S '
t=1

where m = my + my. Let us now assume that:

1. Hy holds, so that K(1(t) = K®(t), p,o and H are common for both pro-
cesses.

2. my, my tend to infinity in such a way that " — o € (0, 1.

3. Azis)umption Al is fulfilled for both sets of processes (possibly with different
ri*)(s)).

Then, from Proposition 3 it follows that

[mimg / dC"(s) - T?(s)) (5)

mJo " \/u(s) + o2(s)
tends weakly to the Wiener process with zero mean and variance function V()=
(1 - a)V(t) + aV2)(t), where V() = fﬂth(s)/r(")(s), k= 1,2. In order
to estimate (5), we need the estimates of joint characteristics of the processes. As

regards /(t), the Nelson-Aalen estimator is available, cf. part 3.1. The moments
p(t) and 0?(t) can be estimated e. g. with the help of the moving window (or kernel)

approach. We can then compute (approximatelly) the test process

mimg [*dC(s) =T oy e
Di(t) = /2L ey (YO (6)

which again behaves asymptotically as the process of Brownian bridge. Therefore,
the test of H, is then performed in a quite similar way as the goodness-of-fit test, i.e.
by evaluation of d = max | Dy (t)| on [0, 7] and taking exp(—2d?) as an approximate

P-value of the test against a one-sided alternative.

5. EXAMPLE OF THE TEST OF HOMOGENEITY

As an example, let us consider one-day processes of financial transactions performed
gas stations, both for m; = my = 100 days. We

via : : ferent
s madscns bve G forming the counting process) and also the

follow both the number of transactions (
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umulation of transferred : TR
¢ rred amounts (from this we obtain the cumulative process), t €
2}

' ams the averaged processes _J_V_(k)(g) _ Ly N-(k)(f.)
and estimated corresponding hazard functions J my Lui=11Yi

- C0F = 1,7 Eahi
ard function were obtained from {le esti p X =1 Estimates of haz-
j Imated :
smoothing (kernel) technique. d cumulative hazard functions by a

[0,24] hours. Figure 1 cont,

|

Stations 5541 ----, 5542 - . ..

-
%))
i

-
o
T

aver. N(1)

o
T

o

o
4]
-
(=]

15 20 25

-
w0

-
T

hazard rate of N(t)
o
[4)]

25

t (hours)

Fig. 1. Averaged counting processes and estimates of their hazard rates.

Figure 2 shows the averaged cumulative processes 6(’“)(35) = mlkz:-":"l C'fk)(t),
and estimated and smoothed derivatives of functions K(¥)(¢).

From the graphical comparison we already see the difference between both sets
of processes. By the numerical test of homogeneity computed in accordance with
(6) we obtained that the minimum of D, (t) was —3.841, which was highly significant
(P-value was ~ 10~13). Functions p(t) and o*(t) were estimated with the aid of the

moving window procedure, H(t) by the Nelson-Aalen estimator.

6. CONCLUSION

The main advantage of the counting processes s their dynamics regulting from t.lhe
conditioning the actual intensities by the history of the system. This area of si.;atls-
tical methods has a well developed theoretical background as well as the techniques
of computational analysis. _

The main purpose of the paper was to ‘de’scrll_)e and ana.l}-rze t.he random process
(called here the cumulative process) consisting in the coml)matlop of the counting
process with the process of random incremfznts. Such quels are suitable for descnjlp~
tion of many real-world technological, environmental, biological (and also financial)

processes, We derived tools for modelling and statistical analysis of such situations,
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namely we proposed the estimator of the rate of the
its large sample properties. These propertie
dures for the test of agreement of the data wi :
i with the cumulat S .

for the tests of homogeneity of two cumulative processc:m Sk S

As regards the generalization of the case :
one should consnc-:ler a functional model for the hazard function describing also the
111ﬂuencle of the history of Ci(t) on the actual intensity. For instance, regression mod-
els (variants of Cox model, say) are available for such a case. Another generalization

should omit the assumption of the independence of variables Yi(t) on the history
and should deal with increments generated by a specific random process model.

cumulative process and proved
s were utilized in the proposal of proce-

studied in the present paper, the first

Statlons 5541 ---- S
15000 : : 541 ' 554‘:'_'

8
:

aver. C(t)

4y}

(=]

3
T

OO

25

1000 T T T = T
800 7N e N =

6001 ,’ Fr L il

rate of C(t)

200} > 2a

t (hours)

Fig. 2. Averaged cumulative processes and estimates of their rates.
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