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Synopsis 

The objective of this thesis was to examine multi-functional properties of high-loft 

perpendicularly-laid nonwoven fabrics, which can be used to noise reduction application at 

building and automotive field. It presents an experimental and numerical investigation on 

acoustic properties of perpendicularly-laid nonwoven fabrics. 

Perpendicularly-laid nonwoven samples were made by two different manufacturing 

techniques:  vibration and rotating perpendicular lapper. Heat-pressing method was employed 

to form samples with varying thickness. This study determines the influence of some 

structural characteristics and laying techniques on the sound absorption properties of 

perpendicularly-laid nonwovens.  

Normally incident sound absorption coefficient and surface impedance were measured by 

Brüel and Kjær type 4206 impedance tube. Several airflow resistivity models grouped in 

theoretical and empirical categories were used to study the suitable model for 

perpendicularly-laid nonwoven fabrics. The commonly used impedance models such as 

Delany-Bazley, Miki, Garai-Pompoli and Komatsu models were applied to predict the 

acoustic properties. The measured and predicted values were compared to figure out the 

accuracy of the existing models. One simple model was developed to rapidly obtain the 

airflow resistivity of perpendicularly-laid nonwovens. 

The compression energy and compression load of perpendicularly-laid nonwovens were 

carried out by using a universal testing machine (TIRATEST 2300). The potential 

compression mechanism of the nonwoven fabric was identified with support of the 

compression stress-strain curve at different compression stages.  

Perpendicularly-laid nonwoven fabrics have special thermal and air permeability behavior 

compared with traditional cross-laid nonwovens due to their through-plane fiber orientation. 

Hence this research work also investigates the influence of different structural parameters of 

perpendicularly-laid nonwoven fabrics, such as areal density, porosity, thickness, on thermal 

properties and air permeability. The potential relationships between thermal resistivity, air 

permeability and acoustic properties were also investigated. 

Aerogel have high porosity (>90%), a high specific surface area, lightweight, and low sound 

velocity. Due to these characteristics, aerogels can be used in sound absorption and thermal 

insulation fields. Thus, this thesis also investigated sound absorption performance of aerogel 



based nonwoven fabrics. Polyester/polyethylene nonwovens embedded with hydrophobic 

amorphous silica aerogel were chosen for sound absorption measurements. The sound 

absorption coefficient (SAC) of single and multilayered of aerogel nonwovens blankets was 

tested by Brüel and Kjær impedance tube.  

Statistical analysis software, Originlab 8.5 and Matlab_R2017a were used to conduct all the 

statistical results in this study. The findings are significant and can be used for further study 

in the areas of sound absorption behavior of fibrous materials, the application of 

perpendicularly-laid nonwoven fabrics for the noise treatment application in building and 

automotive fields. 

 

Keywords: perpendicularly-laid nonwoven; acoustic properties; thermal resistivity; 

airflow resistivity; compressibility; impedance models  



Abstrakt 

Cílem této práce bylo prozkoumat multifunkční vlastnosti vysoko-loftových kolmo 

kladených netkaných textilií, které mohou být aplikovány ke snížení hluku v oblasti 

stavebnictví a automobilového průmyslu. Představuje experimentální a numerické 

vyšetřování akustických vlastností kolmo kladených netkaných textilií. 

Kolmo kladené vzorky z netkané textilie byly vyrobeny dvěma různými výrobními postupy: 

vibracemi a rotujícími kolmými lamelami. Metoda tepelného lisování byla použita pro tvorbu 

vzorků s různou tloušťkou. Tato studie určuje vliv některých konstrukčních charakteristik a 

technik kladení na vlastnosti absorpce zvuku kolmo kladených netkaných textilií. 

Obvykle koeficient absorpce hluku a povrchová impedance byly měřeny impedanční trubkou 

typu Brüel a Kjær 4206. Několik modelů odporového proudu vzduchu seskupených v 

teoretických a empirických kategoriích bylo použito ke studiu vhodného modelu pro kolmo 

kladené netkané materiály. Pro předpovědi akustických vlastností byly použity běžně 

používané impedanční modely jako modely Delany-Bazley, Miki, Garai-Pompoli a Komatsu. 

Naměřené a předpovězené hodnoty byly porovnány s výpočtem přesnosti stávajících modelů. 

Jeden jednoduchý model byl vyvinut pro rychlé získání odporu proudění vzduchu kolmo 

kladených netkaných textilií. 

Kompresní energie a zatížení stlačením kolmo kladených netkaných textilií byly provedeny 

univerzálním zkušebním strojem (TIRATEST 2300). Potenciální kompresní mechanismus 

netkané textilie byl identifikován s podporou kompresní křivky napětí-deformace, práce a 

účinnosti v různých kompresních stupních. 

Kolmo kladené netkané textilie mají zvláštní tepelnou a vzduchovou propustnost ve srovnání 

s tradičními netkanámi vrstvami z důvodu jejich orientace přes uvnitř vlákenné vrstvy. Proto 

tato výzkumná práce také zkoumá vliv různých strukturálních parametrů kolmo kladených 

netkaných textilií, jako je plošná hustota, pórovitost, tloušťka, na tepelné vlastnosti a 

propustnost vzduchu. Rovněž byly zkoumány potenciální vztahy mezi tepelným odporem, 

propustností pro vzduch a akustickými vlastnostmi. 

Airgel má vysokou pórovitost (> 90%), vysokou specifickou plochu, nízkou hmotnost a 

nízkou rychlost zvuku. Vzhledem k těmto vlastnostem mohou být aerogely použity v 

oblastech pohlcování hluku a tepelné izolace. Tato práce také zkoumala výkon absorpce 

zvuku z netkaných textilií na bázi aerogelu. Pro měření zvukové pohltivosti byly vybrány 



polyesterové / polyethylenové netkané textilie opatřené hydrofobním amorfním oxidem 

křemičitým. Koeficient absorpce zvuku (SAC) jednoplášťových a vícevrstvých pokrývek z 

netkaného vzduchu byl testován impedanční trubkou Brüel a Kjær. 

Statistický analytický software, Originlab 8.5 a Matlab_R2017a, byl použit k provádění 

všech statistických výsledků v této studii. Zjištění jsou významná a mohou být použity pro 

další studium v oblastech chování pohlcování zvuku vláknitých materiálů, aplikací kolmo 

kladených netkaných textilií pohlcování hluku v budovách a automobilech. 

 

Klíčová slova: kolmo kladené netkané textilie; akustické vlastnosti; tepelný odpor; proudění 

vzduchu; stlačitelnost; impedanční modely  

  



摘要 

该论文的目的是研究可应用于建筑和汽车领域的吸声降噪的高孔隙率纤维垂直排列非

织造材料的多种性能。纤维垂直排列非织造材料通过两种不同的生产工艺制造：振动

和旋转垂直铺网。并采用热压法获得不同厚度的样品。该论文分析了不同结构参数和

制造技术对纤维垂直排列非织造材料的吸声性能的影响。 

该论文对纤维垂直排列非织造材料的声学特性进行了模型分析和实验研究。AFD300 

AcoustiFlow 流阻测试仪被用来表征非织造材料的流阻，理论和经验模型也被用于研究

该材料的流阻，并开发了一种能快速获该材料流阻的模型。非织造材料的垂直入射吸

声系数和表面阻抗通过 Brüel & Kjær 型 4206 阻抗管测得。一些广泛应用的阻抗模型如

Delany-Bazley、Miki、Garai-Pompoli 和 Komatsu 模型被用来预测该材料的声学特性。

通过对比测试数据和预测值获得模型的准确性。 

该种材料的抗压性和压缩载荷性能通过 TIRATEST 2300 试验机进行了表征。通过压缩

应力应变曲线的分析，得出不同压缩阶段的效率来表征非织造织物的压缩机理。 

与传统的水平铺设非织造布相比，纤维垂直排列非织造材料具有特殊的导热和透气性

能。因此，该论文还研究了纤维垂直排列非织造材料的不同结构参数的影响，例如面

密度、孔隙率、厚度，对热性能和透气性的影响。还研究了隔热性、透气性和吸声性

之间的潜在关系。 

气凝胶具有很高的孔隙率（> 90％），高比表面积，重量轻和低声音传播速度（低至

90m/s）。由于这些特性，气凝胶可用于吸音和隔热领域。因此，本论文还研究了气凝

胶/聚合物非织造材料的吸声性能。嵌有疏水性无定形二氧化硅气凝胶的聚酯/聚乙烯

无纺布被用于吸声性能研究。气凝胶非织造布材料的单层和多层的吸声系数同样由

Brüel & Kjær 阻抗管测得。 

数据统计分析软件 Originlab 8.5 和 Matlab_R2017a 用于进行本研究中的所有统计分析。

该研究结果具有重要意义，可用于纤维材料吸声性能领域的进一步研究及纤维垂直分

布无纺布在建筑和汽车领域的噪声处理应用中的应用。 

关键词：-纤维垂直排列非织造材料、声学性能、热学性能、流阻、压缩性能、阻抗模

型
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Chapter 1 Introduction 
 

Noise, produced by household gadgets, big trucks, vehicles and motorbikes on the road, jet 

planes and helicopters hovering over cities and loud speakers, is considered as environmental 

pollution and becoming an increasing public health concern because it could cause a lot of 

problems such as stress related illnesses, speech interference, hearing loss, sleep disruption 

and so on. Most importantly, the immediate and acute effect of noise pollution to a person 

will impair the hearing if it lasts for a period of time. Prolonged exposure to impulsive noise 

to a person will damage their eardrum, which may result in a permanent hearing impairment. 

Moreover, health effects of noise like anxiety and stress reaction may bring physiological 

manifestations, such as headaches, feeling of fatigue, irritability and nervousness.1  

In order to minimize the adverse effect caused by noise pollution, a variety of ways are 

available to reduce noise. The most efficient and classical solution to the problem has been 

the elimination of noise at source, but this may not always be possible.2 Therefore, the 

reduction of noise emission is usually accomplished by noise isolation and absorption 

methods. The most common one is to use porous sound absorber to disseminate energy and 

turn it into heat.3 A porous sound-absorbing material is a solid that contains cavities, channels 

or interstices so that sound waves are able to enter through them. As porous material, fibrous 

textile is widely used in automotive and building industries for noise control. It has been 

considered to be ideal sound absorber material because of its high porosity, high specific 

surface area, low-cost, light-weight, no pollution and high-efficient absorbing ability.2, 4 

Nonwoven is one kind of the most common porous sound-absorbing material. 

Perpendicularly-laid nonwoven, a typical high-loft nonwoven structure, is widely used for 

thermal and acoustic comfort in automobile industry.5-10 Due to the majority of fibers 

orientated in the vertical plane, perpendicularly-laid nonwovens exhibit high resistance to 

compression and excellent elastic recovery after repeated loading. Moreover, because of their 

thermal bonded structure and high initial thickness, perpendicularly-laid nonwovens with 

varying thicknesses can be obtained through thermal treatment. Based on these characteristics, 

perpendicularly-laid nonwovens can be used in many places of automotive for sound and 

thermal insulation, such as under bonnet, door panels, headliners, A-B-C pillars and luggage 

compartment.  

Hence, the current study relies entirely on objective measures of perpendicularly-laid 
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nonwoven fabrics for evaluating the acoustic and non-acoustic properties like sound 

absorption coefficient, characteristic impedance, airflow resistivity, compression, thermal 

resistivity and air permeability. This research aims to provide an advanced high-loft structure 

nonwoven material for noise reduction to replace the tradition sound-absorbing materials 

such as glass fiber and mineral wool mat. A thorough study of the properties of the processed 

materials was performed. 

This chapter outlines the objectives and foundation of the work described in the thesis. The 

first section describes the motivation for performing the experimental and analytical work, 

followed by the sub-objectives of the study. Finally, an overall outline is given that 

summarizes the contents of the thesis. 

1.1 Research objectives   

In this work, two types of manufacturing technologies, STRUTO and WAVEMAKER, were 

used to prepare nonwoven samples. The purpose of this study is to understand the acoustic, 

compression and thermal performance of perpendicularly-laid nonwoven. The major 

objectives of this research are as follows: 

1.1.1 Studies on acoustic performance of perpendicularly-laid nonwovens with respect to 

their structural parameters 

The Brüel and Kjær impedance and Materiacustica tubes were employed for sound 

absorption and impedance measurements to study the acoustic properties of nonwoven 

fabrics. Nonwoven fabrics with varying thickness and density were prepared to investigate 

the effect of manufacturing technologies, fabric porosity, thickness and areal density on the 

sound absorption ability of nonwoven samples. 

1.1.2 Investigation of compression and resiliency in 3D corrugated nonwovens 

Researchers have studied the compression properties of perpendicularly-laid nonwovens, but 

there is no exiting paper focusing on the influence of fiber orientation on compression 

performance. In this research, nonwoven samples with different fiber orientation have been 

chosen to investigate the effect of fiber orientation on compression property of 

perpendicularly-laid nonwoven fabric. The perpendicularly-laid nonwoven samples were heat 

treated to change the fiber orientation angle. Besides, the effect of manufacturing technology 

and fabric density on compression property has been studied. The compression energy and 

compression load of perpendicularly-laid were measured by using TIRATEST 2300. It was 



 3 

found that the fiber orientation angle sharply decreases with the increase of load during heat 

treatment. Perpendicularly-laid nonwovens with higher fiber orientation angle exhibit higher 

compression resistance. Shearing deformation occurs during compression process of 

perpendicularly-laid nonwovens. Fiber orientation angle decreases with the increase of 

thickness reduction.  

1.1.3 Study of sound absorption property in relation to thermal properties 

Thermal and acoustic properties are very important for the materials applied in automotives 

and buildings for heat and sound insulation applications. The Alambeta device was used to 

measure the thermal properties of perpendicularly-laid nonwovens. Based on the results of 

acoustic and thermal properties, the relationship between these two properties has been 

studied. In this research, the main purpose is to explore their inter-relation and further 

understand both acoustic performance and thermal properties of nonwoven fabrics. Most 

importantly, the result may provide a new approach to evaluate acoustic performance by 

simple measurement of thermal properties.  

1.1.4. Investigation of acoustic behavior and air permeability of perpendicularly-laid 

nonwovens 

This work also deals with the study of acoustic performance of perpendicularly-laid 

nonwovens and their relation to fabric air permeability. Air permeability of perpendicularly-

laid nonwovens was examined by using FX3300 Textech Air Permeability Tester. It was 

observed that the sound absorption capacity was inversely proportional to air permeability. It 

was concluded that air permeability can be used as a criterion of sound absorption behavior 

of perpendicularly-laid nonwovens, a lower air permeability suggested a better sound 

absorption performance for perpendicularly-laid nonwoven fabric. 

1.1.5. Investigation on sound absorption properties of aerogel based nonwovens 

This work presents an investigation on sound absorption performance of aerogel based 

nonwoven fabrics. Polyester/polyethylene nonwovens embedded with hydrophobic 

amorphous silica aerogel were chosen for sound absorption measurements. The sound 

absorption coefficient (SAC) of single and multilayered of aerogel based nonwovens blankets 

was tested by Brüel and Kjær impedance tube, the noise reduction coefficient (NRC) was 

used for numerical analysis. 
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1.1.6. Study on some theoretical models of airflow resistivity for multi-component polyester 

perpendicularly-laid nonwovens 

The airflow resistivity is a key parameter to predict accurately the acoustical properties of 

fibrous media. There is a large number of theoretical and empirical models which can be used 

to predict the airflow resistivity of this type of porous media. However, there is a lack of 

experimental data on the accuracy of these models in the case of multi-component fibrous 

media. This study presents a detailed analysis of the accuracy of several existing models to 

predict airflow resistivity which make use of the bulk density and mean fiber diameter 

information. Three types of perpendicularly-laid polyester (PET) nonwoven materials 

prepared by using regular PET, hollow PET and bi-component PET with a range of densities 

are chosen for this study. It is shown that some existing models largely under- or over-

estimate the airflow resistivity when compared with the measured values. A novel feature of 

this work is that it studies the relative performance of airflow resistivity prediction models 

that are based on the capillary channel theory and drag force theory. These two groups of 

models are then compared to purely empirical models. It is found that the fit by some models 

is unacceptably high (e.g.  error >20-30%). The results suggest that there are existing models 

which can predict the airflow resistivity of multi-component fibrous media with 12-20% 

error.  

1.1.7. Analysis of acoustic properties of perpendicularly-laid nonwovens 

This research presents a numerical investigation for acoustical properties of perpendicularly-

laid nonwovens. The widely used impedance models such as Delany-Bazley, Miki, Garai-

Pompoli and Komatsu models were used to predict acoustical properties. Comparison 

between measured and predicted values has been performed to get the most acceptable model 

for perpendicularly-laid nonwovens. It is shown that Delany-Bazley and Miki models can 

accurately predict surface impedance of perpendicularly-laid nonwovens, but Komatsu model 

has inaccuracy in prediction especially at low-frequency band. The results indicate that Miki 

model is the most acceptable method to predict the sound absorption coefficient with mean 

absolute error 8.39% from all the samples. The values are 8.92%, 12.58% and 69.67% for 

Delany-Bazley, Garai-Pompoli and Komatsu models, respectively.  

1.2 Dissertation outline 

The dissertation is divided into five chapters: 

Chapter 1 Introduction: General introduction about the topic of research. It contains details 
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of the purpose and objectives of this research.   

Chapter 2 Literature review: A detailed study of previous literature and understanding of 

studies conducted and identify the limitations in past research. 

Chapter 3 Experimental Materials and Methods:  An overview about sample materials, 

production methods, scientific concepts, experimental and prediction models used in this 

research. This chapter also has elaborate explanation about methods and techniques used for 

characterization of acoustic, compression, thermal and permeability experiments conducted. 

Besides, introduction of models for predicting airflow resistivity and sound absorption 

coefficient was included. 

Chapter 4 Results and Discussion: A detailed analysis of the results derived from various 

experiments. The results were tabulated, suitable graphical representations made and detailed 

statistical analysis was performed. Various interpretations were drawn from the analysis. 

Chapter 5 Conclusion: This chapter contains the broad conclusions drawn from the result 

and analysis of the research. An additional section discussing future research and 

recommendation has been included. The outputs are in the form of scientific papers, book 

chapters and conference proceedings. 
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Chapter 2 State of the Art in Literature 

2.1 Purpose 

The purpose of this chapter is to provide a background for the research conducted in this 

thesis. The first part of this chapter introduces the sound absorption mechanisms of porous 

materials. The second part of this literature review details the different types of sound-

absorbing materials. The following part contains the applications of fibrous sound-absorbing 

materials. The third part contain details of fibrous materials and its properties such as thermal 

resistivity, air permeability and resistivity, compressibility and sound absorption. The later 

part introduces some existing models which used to predict airflow resistivity, impedance and 

sound absorption coefficient. Finally, the existing literature and the highlighted research gaps 

relevant to the various objectives of this research work have been summarized.  

2.2 Sound absorption mechanism 

The energy lost happens when sound propagates in small spaces, such as the interconnected 

pores of a porous absorber. This is primarily due to viscous boundary layer effects. Air is a 

typical viscous fluid, and consequently sound energy is dissipated via friction with the pore 

walls. There is also a loss in momentum due to changes in flow as the sound moves through 

the irregular pores. The boundary layer in air at audible frequencies is sub-millimeter in size, 

and consequently viscous losses occur in a small air layer adjacent to the pore walls. As well 

as viscous effects, there will be losses due to thermal conduction from the air to the absorber 

material; this is more significant at low frequency. For the absorption to be effective there 

must be interconnected air paths through the material; so an open pore structure is needed. 

Losses due to vibrations of the material are usually less important than the absorption as 

sound moves through the pores.3 

2.3 Sound-absorbing materials 

2.3.1 Main groups of sound-absorbing materials 

Sound-absorbing materials can absorb most of the sound energy (e.g. > 80%). Sound-

absorbing materials contain a wide range of different materials; their absorption properties 

depend on frequency, porosity, density, thickness, airflow resistivity, composition, surface 

finish, and method of mounting. However, materials that have a high value of sound 

absorption coefficient are usually porous.11-12  
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Figure 2.1  Schematic cross-section of a porous solid material13 

A porous absorbing material is a solid that contains cavities, channels or interstices so that 

sound waves are able to enter through them. It is possible to classify porous materials 

according to their availability to an external fluid such as air. Figure 2.1 presents a schematic 

cross-section of a porous solid material.13 Those pores that are totally isolated from their 

neighbors are called “closed” pores. They have an effect on some macroscopic properties of 

the material such as its bulk density, mechanical strength and thermal resistivity. However, 

closed pores are substantially less efficient than open pores in absorbing sound energy. On 

the other hand, “open” pores have a continuous channel of communication with the external 

surface of the body, and they have great influence on the absorption of sound. Open pores can 

also be classified into “blind” (open only at one end) or “through” (open at two ends).13 

Figure 2.2 shows the three main types of porous sound-absorbing materials, their typical 

microscopic arrangements and the physical models used to describe their airflow and 

absorbing mechanisms. Porous sound-absorbing materials can be grouped in cellular, fibrous, 

or granular according to their microscopic configurations. Porous materials are characterized 

by the fact that their surfaces allow sound waves to enter the materials through a multitude of 

small holes or openings. Materials made from open-celled polyurethane and foams are 

examples of cellular materials. Fibrous materials consist of a series of tunnel-like openings 

that are formed by interstices in material fibers. Fibrous materials include those made from 

natural, synthetic or mineral fibers.14 In addition, a porous absorbing material can also be 

granular. Consolidated granular materials consist of relatively rigid, macroscopic bodies 

whose dimensions exceed those of the internal voids by many orders of magnitude 

(agglomerates). Unconsolidated materials consist of loosely packed assemblages of 

individual particles (aggregates). Granular absorbing materials include some kinds of asphalt, 

porous concrete, granular clays, sands, gravel, and soils.15-16 So the acoustical properties of 
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granular materials are an important factor in controlling outdoor sound propagation.17 

 

 

Figure 2.2 The main types of absorbing materials12 

When a porous material is exposed to incident sound waves, the air molecules at the surface 

of the material and within the pores of the material are forced to vibrate and, in doing so, lose 

some of their original energy. This is because part of the energy of the air molecules is 

converted into heat due to thermal and viscous losses at the walls of the interior pores and 

tunnels within the material. At low frequencies, these changes are isothermal, while at high 

frequencies, they are adiabatic. In fibrous materials, much of the energy can also be absorbed 

by scattering from the fibers and by the vibration caused in the individual fibers. The fibers of 

the material rub together under the influence of the sound waves.11, 18 

The sound absorption mechanism in bulk granular materials is quite similar to that in rigid 

porous materials where the solid structure can be regarded as ideally rigid and stationary. 

Then the sound absorption is produced by the viscosity of the air contained inside the 

Cellular                                   Fibrous                                        Granlar
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connecting pores 

Parallel fiber bundles Stacked identical 

sperhes 
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interconnecting voids that separate the granules. At low and mid frequencies, the solid 

structure interacts with the bulk of the gas through an isothermal heat transfer process. In 

addition, scattering from the granules also influences the absorption of sound energy inside 

the material. 

2.3.2 Fibrous sound-absorbing materials 

Most of the porous sound-absorbing materials commercially available are fibrous. Fibrous 

materials are composed of a set of fibers which can trap air between them. They are produced 

in rolls or in slabs with different thermal, acoustical, and mechanical properties. Fibers can be 

classified as natural and synthetic (artificial). Natural fibers can be vegetable (cotton, kenaf, 

hemp, flax, wood, etc.), animal (wool, fur felt) or mineral (asbestos etc.). Artificial fibers can 

be based on cellulose (regenerated bamboo fiber, for example), or polymer (polyester, 

polypropylene, polyamide etc.). Fibrous materials made from polymers are used mostly for 

sound absorption and thermal isolation. Synthetic fibers are made through high-temperature 

extrusion and are based on nonrecoverable chemicals, often from petrochemical sources, their 

carbon footprints are quite significant. 

Recently, the use of natural fibers in manufacturing sound-absorbing materials has received 

much attention.19-21 Natural fibers are not essentially completely biodegradable and modern 

technical developments have made natural fiber processing more economical and 

environmentally friendly. These new methods may result in increased use of high-quality 

fiber at competitive prices for industrial purposes. Their properties can be modified by pre-

treatments or finishing. In addition, natural fibers are also safer for human health compared 

with most synthetic fibers.  

An important geometrical parameter of a fiber is its diameter. The fiber diameter is directly 

related to the sound-absorbing characteristics of the material. In general, the diameter of 

natural fibers is unchangeable and diameter of synthetic fibers is tuned as per requirement. 

Figure 2.3 shows some scanning electron microscope (SEM) images of samples of hemp, 

glass, PLA and PP fibers. Natural fibers have more irregular shapes and variable diameters 

compared to synthetic fibers.22-23  
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Figure 2.3 SEM images of fibers (a) hemp, (b) glass fiber, (c) PLA, and (d) PP at 30.0 kV. 

The magnification of hemp fiber (×200) is different from the other fibers (×150) 23 

2.4 Applications of fibrous sound-absorbing materials in automotive 

Generally, fibrous sound-absorbing materials are used in the automotive industry to reduce 

interior noise and vibration and improve the sensation of ride comfort for the passengers. 

Interior noise is currently a competitive quality characteristic of every mode of transport 

facility in particular automobiles. Although interior noise lowers the comfort feeling inside a 

vehicle, it also induces fatigue and may reduce driving safety.24 Therefore, the use and 

development of fibrous sound-absorbing materials have been more important in the 

automobile industry. A variety of sources contribute to the interior noise of a vehicle which 

can be structure-borne or airborne sound. Fibrous sound-absorbing materials used to control 

noise in vehicles must provide airborne transmission reduction as well as damping and sound 

absorption. However, the use of fibrous sound-absorbing materials in vehicles is not only 

dependent on their acoustic properties but also on additional characteristics. Fibrous sound-

absorbing materials applied to reduce noise and vibrations are used either individually or as 

components of complex composite materials which are an interesting area of research. Figure 

2.4 shows the location of major sources of interior noise on an automobile. 
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Figure 2.4 Location of some of the sources of power system, tire, and aerodynamic noise on 

an automobile24 

Vehicle interior sound pressure levels can be controlled by reducing the noise generated by 

the sources, by reducing the noise during transmission through air-borne, and structure-borne 

paths, and by reducing the noise transmitted within the vehicle. Materials used to enclose 

noise sources are termed barrier materials in the automotive industry.25 The noise isolation 

performance of these materials is mostly dominated by their areal density. This is a design 

challenge since car weight reduction is also a requirement of the transportation industry for 

fuel and cost reduction. Generally, barrier materials are characterized by transmission loss 

(TL). For single layers, TL increases theoretically by 6 dB for each doubling of frequency or 

by 6 dB at a given frequency if their mass/unit area is doubled. Much better performance can 

be achieved using multilayer panels, and the TL for such panels can be more like 12 

dB/octave rather than 6 dB/octave of a single layer.25 

Noise reduction is also achieved by providing mechanical damping to the structural vibrating 

panels of the car body, particularly at resonance frequencies. Constrained and unconstrained 

viscoelastic layers are typically used for this purpose. Damping layer materials add mass, 

which can also reduce airborne sound transmission through areas such as floor panels.25 

Sound absorption also can reduce interior noise once airborne and structure-borne sound has 

penetrated into the passenger cabin. TL is combined with the vehicle interior average sound 

absorption to obtain the total noise reduction. The increase of noise isolation is 

mathematically estimated by 10 ×  log of the sound absorption, that is, noise reduction 

increases by 3 dB for each doubling of total sound absorption. 
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Sound absorption can be provided on the interior surfaces of the vehicle (sidewalls, rooftop 

and floor) or within the volume by the seats.26-28 In buses, the surface below overhead 

compartments can be used to add extra sound absorption. Although the materials are usually 

selected for factors other than sound absorption, such as resistance to mechanical damage, 

ease of cleaning, appearance and acoustic performance, there are several surface areas that 

can be designed with sound absorption. These include headliners, door casings, carpets, and 

other interior trims. Figure 2.5 shows locations where barrier and sound-absorbing materials 

are often applied in an automobile. 

 

Figure 2.5 Typical locations in an automobile where barrier and sound-absorbing materials 

are utilized24 

2.5 Characteristics of fibrous sound-absorbing materials 

As previous description, the use of fibrous sound-absorbing materials in vehicles dependent 

on their acoustic properties and additional characteristics. This section literately presents 

acoustic properties of fibrous sound-absorbing materials as well as thermal properties, 

compressibility and air permeability. Later, the airflow resistivity which can be simply used 

to predict acoustic properties of fibrous material will be detailed introduced. 
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2.5.1 Acoustic properties of fibrous materials 

Physical properties of fibrous materials such as fiber type, fiber size, material thickness, 

density, airflow resistance and porosity can affect the acoustic properties. This part groups the 

acoustic properties of fibrous materials into several determining factors such as fiber type, 

fiber size, structure parameters and so on.  

2.5.1.1 Fiber type  

The noise reduction application of inorganic fibrous materials, such as glass fiber and mineral 

wool, attracted a lot of attention due to their large specific surface area and high acoustical 

performance. The characteristic impedance and sound absorption of glass fiber and mineral 

wool have been investigated using impedance tube and Johnson-Champoux-Allard (JCA) 

model in Wang and Torng’s study.29 They stated that the difference in sound absorption 

ability is not obvious for materials with different bulk densities. 

 

Figure 2.6 Absorption coefficient of PP-based composites and cotton-based composites30 

Chen and Jiang30 compared the sound absorption of activated carbon fiber and glass fiber 

separately laminated with pure cotton, pure ramie and pure polypropylene (PP) nonwovens. 

Their results indicated that nonwovens with activated carbon fiber as surface layer have 

better sound absorption than nonwovens with surface layer of glass fiber. Figure 2.6 presents 

the improvement on sound absorption capacity of PP-based and cotton-based composites by 

adding one activated carbon fiber layer. 

Although inorganic fibrous materials have significant advantages, there are potential human 

health problems as a result of inhaling fibers or due to skin irritation and lay-down in the lung 

alveoli.31 Thus, some researchers investigate the usage of natural fibers instead of inorganic 
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fibers. Compared to glass fiber and mineral wool, natural fibers as sound-absorbing materials 

have relatively high thermal and acoustic performances and are more environmentally 

friendly. Reviews of acoustic properties of natural fibers can be found in literature.32-33 The 

sound absorption and physical properties of nonwovens produced via needle-punching 

through combining banana, bamboo and jute fibers with PP staple fibers have been reported 

in the ratio of 50 : 50.34 The SEM photographs of banana/PP, jute/PP, and bamboo/PP needle-

punched nonwoven are presented in Figure 2.7. The results showed that bamboo/PP 

nonwoven exhibits higher stiffness, better sound absorption, higher tensile strength, lower 

elongation, lower thermal conductivity and lower air permeability. It is known to be more 

suitable for interior automotive noise control than other fiber composites. Figure 2.8 shows 

the absorption coefficient of different combinations of nonwovens.  

 

Figure 2.7 SEM photographs of banana/PP, jute/PP, and bamboo/PP needle-punched 

nonwoven34 

 

 

Figure 2.8 Absorption coefficient of different combinations of nonwovens34 

Oldham et al.35 carried out experiments for sound absorption on cotton, wool, ramie, flax, 

jute and sisal fiber through impedance tube and reverberation chamber measurements. Table 
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2.1 presents the sound absorption coefficient of different fibrous materials at 500 Hz from 

their results. They studied the effectiveness of both Delany-Bazely and Garai-Pompoli 

models for the prediction of the absorptive properties of natural fibers. They stated that the 

two prediction models agree with measured data for natural fibers with less than 60 μm 

diameter. However, these models have less than satisfactory applicability in the case of most 

natural fibers where fiber diameters are relatively large. 

Table 2.1 List of sound absorption coefficients of different fibrous material at 500 Hz35 

Materials Fiber diameter (μm) Standard deviation 

of fiber diameter 

SAC at 500 Hz 

Cotton 13.5 0.9 0.50 

Flax 21.8 5.4 0.40 

Ramie 24.4 12.1 0.40 

Wool 37.1 (coarse wool) 9.1 0.20 

Jute 81.2 (bundle) 37 0.20 

Sisal 213 (bundle) 16.4 0.10 

 

Beside inorganic and natural fibers, synthetic fibers presently play an important role on the 

application for noise reduction. Unlike natural fibers, synthetic fibrous materials can be more 

widely used in various applications for noise reduction due to their possible diversity. 

Pelegrinis et al.36 applied an alternative model based on the Kozeny-Carman equation, to 

theoretically predict the airflow resistivity of polyester materials with uniform fiber diameter. 

The airflow resistivity retrieved using Miki model from absorption coefficient data has been 

compared with the predicted airflow resistivity. The results indicated that the flow resistivity 

retrieved from the acoustical absorption data agreed well with that predicted by the Kozeny-

Carman model, giving mean absolute values of relative error (MAVRE) within 10%.  

2.5.1.2 Fiber size 

Koizumi et al.37 reported an increase in sound absorption coefficient with a decrease in fiber 

diameter. This is because, thin fibers can move more easily than thick fibers on sound waves. 

Moreover, with fine denier fibers more fibers are required to reach equal more fibers for same 

volume density which results in a more tortuous path and higher airflow resistance was 

reported by Sun, Banks-Lee and Peng.38 A study by Youn Eung Lee et al.39 concluded that the 

fine fiber content increases sound absorption coefficient values due to an increase in airflow 
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resistance by means of friction of viscosity through the vibration of the air. A study by 

Koizumi et al.37 also showed that fine denier fibers ranging from 1.5 to 6 denier (dpf) 

perform better acoustically than coarse denier fibers. Moreover, it has been reported by 

Koizumi37 that, micro denier fibers (less than 1 denier) provide a dramatic increase in 

acoustical performance. Na et al.40 investigated the sound absorption coefficients of five 

micro-fiber fabrics and one regular fiber fabric by the reverberation room method, and found 

that the micro-fiber fabrics’ sound absorption is superior to that of conventional fabric with 

the same thickness or weight. 

Insulation and absorption properties of nonwoven fabrics depend on fiber geometry and fiber 

arrangement within the fabric structure. Because of their complex structure, it is very difficult 

to define the microstructure of nonwovens. The structure of nonwovens only has fibers and 

voids that are filled by air. The different structures and size of the fibers result in different 

total surface areas of nonwoven fabrics. Consequently, the sound absorption coefficient can 

be affected. 

 
Figure 2.9 (a) 4DG, (b) trilobal, and (c) round fiber cross- sections22 

Tascan and Vaughn22 investigated the acoustical insulation of nonwoven fabrics with different 

polyester fiber (see in Figure 2.9), and stated that fabrics made from 3 denier fibers were 

better sound insulators than those made from 15 denier fibers. Their results also indicated that 

the nonwoven fabrics made from 4DG and trilobal fibers have better sound insulation results 

than nonwoven fabrics made from round fibers. The transmitted sound results of nonwoven 

fabrics made by different size and shape were shown in Figure 2.10 and Figure 2.11. 
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Figure 2.10 Transmitted sound results for vertically lapped nonwoven fabrics made from 3 

and 15 denier fibers with 0.07g/cm3 fabric density22 

 

Figure 2.11 Transmitted sound results for vertically lapped fabrics made from 15 denier 

4DG, trilobal, and round fibers with 0.43g/cm3 density22 

2.5.1.3 Structure parameters  

The structure parameters including porosity, areal density (GSM) and thickness. The porosity 

is a ratio of the pore volume involved in sound propagation to the total volume; this is the 

open porosity. Porosity of textile structures can be investigated based on the geometrical 

arrangement of fibers in the textile structure. For evaluation of fibrous materials porosity 𝜀 it 

is simple to use experimentally evaluated fiber density 𝜌𝑓 [kg/m3] and density of 

corresponding fibrous materials 𝜌 [kg/m3],   

𝜀 = 1 − 𝜌 𝜌𝑓⁄  .                                    (2.1) 

The areal density (GSM) 𝜌𝑠 can be calculate according to the following equation: 

𝜌𝑠 = 𝜌𝑓 ∙ 𝐿 ,                                                          (2.2) 

where 𝐿 is the fibrous materials thickness. 
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Density of a material is often considered to be the important factor that governs the sound 

absorption behavior of the material. At the same time, cost of an acoustical material is 

directly related to its density. A study by Koizumi et al.37 showed the increase of sound 

absorption value in the middle and higher frequency as the density of the sample increased. 

The number of fibers increases per unit area when the apparent density is large. Energy loss 

increases as the surface friction increases, thus the sound absorption coefficient increases.  

For specialist absorbers, such as mineral wool, the porosity is close to one, and so the value is 

often assumed rather than measured. Good sound-absorbing materials tend to have high 

porosity, for example most mineral wools have a porosity of about 0.98, but in designing an 

absorber, it is possible to trade off porosity against flow resistivity (and to a lesser degree the 

structural factors outlined later). When determining the porosity, closed pores should not be 

included in the total pore volume as these are relatively inaccessible to sound waves (closed 

pores are most commonly found in foams, even ones designed to be open celled). The 

porosity is a key parameter, but for commonly used bulk absorbing materials, the value of 

porosity does not vary greatly and is close to unity.3 Since most of the models used to predict 

airflow resistivity involves porosity, researchers normally discussed the effect of porosity on 

airflow resistivity to investigate the influence of porosity on sound absorption properties.41 

Fibrous material thickness is a very important factor determining the sound absorption ability. 

Effectiveness of absorption is directly related to the thickness of the material; sound-

absorbing materials are most effective when their thickness is between one-fourth and one-

half the wavelength of the sound, with the maximum performance where the thickness is one-

fourth the wavelength. This means that sound absorbers do a very good job at high 

frequencies, which have short wavelengths. However, at lower frequencies, very thick 

materials would be required to yield high sound absorption, which would be impractical on 

the interior of a car.41 Generally, the increase of thickness results in an increase of sound 

absorption coefficient at low-frequency range. Moreover, the sound absorption of fibrous 

material involves viscous losses, which convert acoustic energy into heat as sound wave 

travels through the interconnected pores of fibers of the material. Thus, for high areal density 

samples there are more fibers involved in the viscous losses and more acoustic energy is 

dissipated in the form of heat energy.42 From Figure 2.12, it can be seen that the sound 

absorption coefficient generally increases with increasing of thickness at same frequency.  
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Figure 2.12 Sound absorption of 350 g/m2 high-loft nonwovens at different thicknesses42 

2.5.1.4 Airflow resistivity  

The airflow resistivity is one of the most critical parameters determining the sound absorption 

properties of a porous absorber. It is a measure of how easily air can enter a porous absorber 

and the resistance that airflow meets through a structure. Once the airflow resistivity is 

known, a series of theoretical or empirical models can be applied to predict the impedance 

and absorption coefficient of fibrous media.43 The values of airflow resistivity vary largely 

between various type of common fibrous absorbent materials. It therefore gives some sense 

of how much sound energy may be enter the material pores to be lost due to viscous and 

inertia effects within the material.  

 

Figure 2.13 The relationship between airflow resistivity (left), airflow resistance (right) and 

mean value of sound absorption coefficient41 

Zent and Long42 studied 128 types of porous absorbers with varying airflow resistivity and 
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material types (cotton blends, microfibers, etc.). They grouped materials into two groups 

according to samples thickness. They concluded that a specific air flow resistance of around 

1000 MKS rayls can yield good overall absorption regardless of the thickness of the material. 

Figure 2.13 presents the relationship between airflow resistivity, resistance and sound 

absorption. 

2.5.1.5 Combinations 

Besides the material made from different types of fiber, cellular and granular materials also 

can combine with fibers to form a new sound-absorbing materials. Aerogel is a typical 

granular material. Aerogel was discovered more than 80 years ago. Aerogels have high 

porosity (>90%), a high specific surface area, light weight, and low sound velocity (down to 

90m/s).45-46 Due to these characteristics, aerogels can be used in sound absorption and 

thermal insulation fields. Acoustic properties of aerogels were studied and summarized by 

researchers.47-51 Forest et al. measured the reflection coefficient, the attenuation and the 

sound velocity of the granular aerogels and glass wool sample, and found that the acoustic 

transmission losses in the aerogel absorber are at least 10 dB higher than in the glass wool 

sample of the same thickness for the frequency range 300-1700 Hz. Gibiat et al.52 presented 

that acoustic properties of cylindrical silica aerogels in ultrasonic and audible range; and 

reported that the low-density aerogels can exhibit unexpected attenuation for well-defined 

frequency bands. Their results also showed that an unexpected high attenuation is related to 

the aerogel density. 

Since nonwovens and aerogels have impressive acoustic properties and aerogel based 

nonwoven can be widely used in various environments because of its flexible structure. It is 

essential to understand the sound absorption behavior of aerogel based nonwoven fabric. 

However, the acoustic properties of aerogel based nonwoven fabrics were seldom 

investigated. Oh et al.53 prepared PET/Aerogel blankets and measured the acoustic and 

thermal insulation properties of PET/Aerogel blankets. They reported that the existence of a 

great amount of silica aerogel of more homogeneous and smaller size in the cell wall material 

has a positive effect on the sound absorption and thermal insulation. 

2.5.2 Thermal properties of fibrous materials 

Thermal properties of nonwoven fabrics are extensively studied by researchers. Generally, 

the thermal insulation properties of nonwoven fabrics have a strong correlation with fabric 

dimensional and structural parameters.54 Arambakam et al.55 numerically investigated the 
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thermal performance of fibrous insulation materials and concluded that heat conduction 

through fibrous structures increases by increasing the solid volume fraction, fiber diameter, 

and fibers’ through-plane orientations. In their study, simulations were conducted in 3-D 

fibrous geometries resembling the microstructure of a fibrous material. They assumed that the 

heat transfer through the interstitial fluid is independent of the geometrical parameters of the 

solid phase (for when the porosity is held constant), the energy equation was solved only for 

the solid structures, and the resulting values were used to predict the effective thermal 

conductivity of the whole media. The novel feature of their study is that they studied the 

effect of fiber in- and through-plane orientation on thermal resistivity, the simulations of fiber 

orientation are presented in Figure 2.14. 

 

Figure 2.14 (a–d) Show fibrous media with random in-plane but different through-plane fiber 

orientations. (e–h) Show fibrous media with no through-plane but different in-plane fiber 

orientations55 

Researchers56 summarized that for a fixed weight, thermal insulation increases with thickness. 

Vallabh57 confirmed that fabric volume density is a significant factor influencing the 

radiation component of effective thermal conductivity and the radiative thermal conductivity 

decreased with increase in the fabric volume density as shown in Figure 2.15. They explained 

this phenomenon by the fact that, as the density of the nonwoven fabric increases, the 

packing density increases making the fibrous structure more packed. This causes the mean 

free path, which is defined as the distance traveled by a photon before hitting the surface of 

the surrounding fibers, to decrease thus causing a decrease in the heat transfer due to 
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radiation mode. 

 

Figure 2.15 Effect of Fabric Density on the Radiative Thermal Conductivity57 

2.5.3 Compressibility of high-loft fibrous materials 

Kang et al.58 investigated the relationship between the fiber orientation distribution and 

mechanical properties of perpendicularly-laid nonwovens prepared by air and mechanical 

folding systems, they stated that with the increase of web density the compressional 

resistance of air folding nonwoven increases as well while that of mechanical folding 

material decreases. Their results also showed that air folding nonwoven has lower strain at 

maximum stress than the mechanical folding nonwoven, as shown in Figure 2.16.  

 

Figure 2.16 Effect of web density on compressional energy of high-loft nonwoven made by 

air and mechanical folding method58 

The compressional behavior of perpendicularly-laid nonwovens was introduced by Parikh et 

al..59-60 They compared the compressional resistance of perpendicularly-laid and cross-laid 
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nonwovens, they concluded that perpendicularly-laid nonwovens have higher compressional 

resistance and their recovery properties are better to cross-laid nonwovens. Figure 2.17 

presents the comparison of compression recovery ability between perpendicularly-laid and 

cross-laid nonwovens, it can be seen that the perpendicularly-laid nonwoven without cotton 

content has much better compression resistance.  

 

Figure 2.17 Compression curves of perpendicularly-laid and cross-laid nonwovens51 

2.5.4 Air permeability and airflow resistivity of fibrous materials 

Air permeability has been theoretically studied for almost one and a half centuries. Base on 

Darcy’s law and Kozeny Equation, air permeability, q, is directly proportional to the pressure 

gradient between the two sides of a measuring fabric.61-62  

pk P
q

L
,                                                            (2.3) 

Where kp, the flow permeability coefficient (1), is 

3

2pk
s k

,                                                         (2.4) 

where k, the Kozeny constant (1), is                 

2

0 fk k t ,                                                                 (2.5) 

where tf, the tortuosity (1), is 

𝑡𝑓 =
𝑙𝑒

𝑙
,                                                                 (2.6) 

where P  is the pressure gradient (Pa),  is the viscosity of the flow (Pa∙s), s is channel 
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wetted surface ((Pa ∙ s)−1 2⁄ ), l is the thickness of sample (m), le is the effective channel 

length (m), L is the material thickness (m), ε (1) is the porosity of sample and k0 is the shape 

factor (1). 

Soltani and Zarrebini63 reported that the acoustic characteristics of woven fabrics are related 

to fabric structural parameters such as weave type, yarn linear density, yarn twist, and fabric 

thickness of woven fabric. They concluded that air permeability of woven fabrics, which is 

strongly dependent on fabric cover factor, can be used as a criterion of sound absorption 

behavior, as shown in Figure 2.18. In addition, the investigated the effect of weft yarn twist 

on noise reduction coefficient (NRC) and air permeability. They stated that fabric NRC 

decreases as weft yarn twist is increased. It must be pointed out that, up to a certain level of 

twist, fabric air permeability is generally increased. However, fabric air permeability beyond 

the certain level of twist tends to decrease slightly. Figure 2.19 shows the effect of weft yarn 

twist on NRC and air permeability. 

 

Figure 2.18 Effect of air permeability on NRC63 

 

Figure 2.19 Effect of weft yarn twist on NRC and air permeability63 

Yang and Yu64 conducted experimental study and found that nonwoven fabrics with highest 

value of air permeability exhibit inferior acoustic absorbency. They stated that the 
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permeability is not just linear to porosity, but also relates to many other complex and 

difficult-to-measured parameters such as tortuosity, shape factor etc. Kucuk and Korkmaz2 

measured sound absorption properties of eight different nonwoven composites including 

different fiber types mixed with different ratios, they stated that the increase in thickness and 

the decrease in air permeability results in an increase in sound absorption properties of the 

material. 

According to the direct airflow method detailed in the standard ISO 9053-199165, the airflow 

resistivity is determined by an experiment where a sample of a porous material is placed in a 

tube, and a steady airflow is passed through the sample. The airflow velocity u, the pressure 

drop between two sides of the sample ∆p, and the thickness of the sample l, are measured.65 

The airflow resistivity, 𝜎 (Pa.s/m2) of the material is defined: 

𝜎 =
∆𝑝

𝑢∙𝑙
 .                      (2.7) 

Xue et al.66 proposed a modification based on the existing models for two-component fibrous 

materials with varying fiber diameter. In their paper, the micro-CT measurement was applied 

to obtain the fiber radii distribution. By applying the fiber radii distribution in one of the 

Tarnow model, they accurately predicted the airflow resistivity of materials having two fiber 

components. Hurrell et al.67 compared the performance of several theoretical and empirical 

models applied to a representative range of nonwoven fibrous media composed of blends of 

different fiber sizes and types. Their results indicated that the value of the flow resistivity 

inverted with either Padé approximation or Miki model is more accurate than that predicted 

using Bies-Hansen, Garai- Pompoli or Kozeny-Carman equations. The comparison between 

measured and predicted airflow resistivity from Hurrell et al.67 is presented in Figure 2.20. 

 

Figure 2.20 The measured, inverted and predicted flow resistivity values67 
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2.6 Models for predicting airflow resistivity, impedance and sound absorption  

The presently widely used sound absorption prediction methods are based on the theory 

proposed by Zwikker and Kosten.68 In their theory, the surface characteristic impedance of 

rigidly-backed layer of porous material with finite thickness can be calculated from the 

following equation: 

𝑍𝑠 = 𝑍𝑐coth(𝑘𝑙) ,                                                          (2.8) 

where 𝑍𝑠 is the surface characteristic impedance, 𝑍𝑐 is the characteristic impedance, 𝑘 is the 

complex wavenumber, and 𝑙  is the material thickness. Then, the normal-incidence sound 

absorption coefficient can be derived from the surface characteristic impedance as 

𝛼 = 1 − |𝑅|2 = 1 − |

𝑍𝑠
𝜌0𝑐0

−1

𝑍𝑠
𝜌0𝑐0

+1
|

2

,                                         (2.9) 

where 𝛼 is the sound absorption coefficient, R is the pressure reflection coefficient, 𝜌0 is the 

air density at room temperature, and 𝑐0 is the sound speed in air media at room temperature. 

2.6.1 Review of previous works on airflow resistivity models 

There are a large number of theoretical and empirical models to predict the airflow resistivity 

for fibrous and granular media. Good reviews of some of these models can be found in Refs. 

69-70. These models can be grouped into two main categories: theoretical models and 

empirical models. In this section, the previous works on airflow resistivity models will be 

introduced and we will present mathematical expressions from some existing models for the 

airflow resistivity for completeness. In Chapter 4 we will use these models to predict the 

measured flow resistivity of multi-component polyester fiber. 

2.6.1.1 Theoretical models 

There are two main theories in airflow resistivity theoretical models: capillary channel theory 

and drag force theory. The airflow resistivity models established using capillary channel 

theory are based on the works of Hagen-Poiseuille, Kozeny and Carman, where the flow 

through the porous material is treated as a conduit flow between parallel cylindrical capillary 

tubes.71-72 Davies presented a model to fit his own transverse permeability data for the flow 

through porous fibrous materials having a high fabric porosity (as high as 0.7) .73 The airflow 

resistivity of fiber orientation along the flow direction was in the same form as the Kozeny-

Carman equation, and the airflow resistivity of fiber orientation perpendicular to the flow 
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direction was obtained using the lubrication approximation, assuming that the narrow gaps 

between adjacent cylinders dominate the flow resistance.74-75 Pelegrinis et al.36 modified the 

Kozeny-Carmen model to obtain more accurate prediction for the airflow resistivity of 

uniform fiber diameter polyester material. Lind-Nordgren and Göransson presented a scaling 

law applied to the airflow resistivity of porous materials having a porosity and tortuosity 

close to 1.76 However, it has been argued that those models based on capillary channel theory 

are unsuitable for high porosity media in which the porosity is greater than 0.8.72 Airflow 

resistivity models based on capillary channel theory are summarized in Table 2.2. 

Table 2.2 Airflow resistivity models established using capillary channel theory 

Method                   Airflow resistivity 

Davies CN73 𝜎 =
64𝜂(1 − 𝜀)1.5[1 + 56(1 − 𝜀)3]

𝑑2
 

Kozeny-Carman72 𝜎 =
180𝜂(1 − 𝜀)2

𝑑2𝜀3
 

Lind-Nordgren76 𝜎 =
128𝜂(1 − 𝜀)2

𝑑2𝜀
 

Doutres et al.77 𝜎 =
128𝜂(1 − 𝜀)2

𝑑2
 

Pelegrinis et al.36 𝜎 =
180𝜂(1 − 𝜀)2

𝑑2
 

𝜂 is the air dynamic viscosity (Pa·s), 𝜀 is the material porosity and d is the fiber diameter (m).  

There are a number of airflow resistivity models which are based on drag force theory. In 

these models the fibers in the porous material that form the walls of the pores in the structure, 

are treated as obstacles to an otherwise straight flow of the fluid and the fibers cannot be 

displaced.78 The sum of all the ‘drags’ is assumed to be equal to the total resistance to flow in 

the porous material. Unlike capillary flow theory, drag force theory and unit cell models 

demonstrate the relationship between permeability and the internal structural architecture of 

the porous material. In drag force models, the fibers are assumed to be aligned 

unidirectionally in a periodic pattern such as a square, triangular or hexagonal array. The 

airflow resistivity of unidirectional fibrous materials can then be solved using the Navier-

Stokes equation in the unit cell with appropriate boundary conditions.33 One of the earliest 

equivalent dimensionless permeability for flow parallel to an array of fibers was developed 

by Langmuir.79 Tarnow presented a new way to calculate the airflow resistivity of randomly 

placed parallel fibers based on Voronoi polygons.80 In his study, Tarnow discussed a two-
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dimensional model consisting of parallel fibers randomly spaced for flow parallel and 

perpendicular to the fibers. A number of other theoretical, drag force models have been 

developed to predict the flow resistivity of fibers. A summary of these models is given in 

Table 2.3. 

Table 2.3 Airflow resistivity models established using drag force theory 

Method Airflow resistivity 

Langmuir79 
𝜎 =

16𝜂(1 − 𝜀)

𝑑2[− ln(1 − 𝜀) − 1.5 + 2(1 − 𝜀) −
(1 − 𝜀)2

2 ]
 

Hasimoto81 
𝜎 =

32𝜂(1 − 𝜀)

𝑑2(− ln(1 − 𝜀) − 1.476)
 

Kuwabara82 
𝜎 =

32𝜂(1 − 𝜀)

𝑑2[− ln(1 − 𝜀) − 1.5 + 2(1 − 𝜀) −
(1 − 𝜀)2

2
]
 

Happel83  

A. Flow parallel to fibers 

𝜎 =
72𝜂(1 − 𝜀)

𝑑2[− ln(1 − 𝜀) − 3 + 4(1 − 𝜀) − (1 − 𝜀)2]
 

B. Flow perpendicular to fibers 

𝜎 =
72𝜂(1 − 𝜀)

𝑑2[− ln(1 − 𝜀) −
1 − (1 − 𝜀)2

1 + (1 − 𝜀)2]
 

Tarnow80 Flow parallel to fibers 

A. Square lattice 

𝜎 =
16𝜂(1 − 𝜀)

𝑑2[− ln(1 − 𝜀) + 0.5 − 2𝜀]
 

B. Random lattice 

𝜎 =
16𝜂(1 − 𝜀)

𝑑2[−1.280 ln(1 − 𝜀) + 0.526 − 2𝜀]
 

Flow perpendicular to fibers 

C. Square lattice 

𝜎 =
16𝜂(1 − 𝜀)

𝑑2{ln[(1 − 𝜀)−1 2⁄ ] − 0.5𝜀 − 0.25𝜀2}
 

D. Random lattice 

𝜎 =
16𝜂(1 − 𝜀)

𝑑2[−0.640 ln(1 − 𝜀) + 0.263 − 𝜀]
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2.6.1.2 Empirical models 

The empirical model of airflow resistivity was first introduced by Nichols, who suggested 

that the airflow resistance, 𝜎~
ℎ∗𝜌1+𝑥

𝑑2 , where the adjustable parameter, h, is 0.3≤ x ≤1. This 

parameter value depends on the distribution of the fibers in material.84 Based on the work by 

Nichols, Bies and Hansen presented a simple model which allows the calculation of the 

airflow resistivity of fiber glass starting from the values of its bulk density and fiber 

diameter.85 Garai and Pompoli investigated the airflow resistivity of double fiber component 

polyester materials and extended the Bies and Hansen model to predict the flow resistivity of 

polyester fibers.86 Manning and Panneton analyzed the acoustic behavior of shoddy fiber 

materials manufactured by three different methods: mechanical bonding, thermal bonding, 

and resin bonding. They established three simple airflow resistivity models based on weight-

of-evidence approach.87 A summary of the equations for these empirical models is given in 

Table 2.4. 

Table 2.4 Airflow resistivity models established using empirical method 

Method Airflow resistivity 

Bies & Hansen85 𝜎 =
3.18 × 10−9𝜌1.53

𝑑2
 

Garai & Pompoli86 𝜎 =
2.83 × 10−8𝜌1.404

𝑑2
 

Manning & Panneton87 

Mechanically bonded     𝜎 =
2.03×10−8𝜌1.485

𝑑2  

Resin bonded                  𝜎 =
3.61×10−9𝜌1.804

𝑑2  

Thermally bonded          𝜎 =
1.94×10−8𝜌1.516

𝑑2  

Note: These models are dimensionally nonhomogeneous since they are based on empirical 

formula. 𝜌 is the material density (kg/m3), d is the fiber diameter (m). 

2.6.2 Some impedance models 

When modelling the acoustical behavior of porous materials, non-acoustic parameters such as 

porosity, airflow resistivity, tortuosity, thermal permeability and viscous and thermal 

characteristic lengths are tiring and time consuming to determine. Therefore, usage of 

empirical models that are developed by regression method is more common, in which such 

parameters are not necessary. As described in Eqs. (2.6) and (2.7), it is essential to obtain the 

characteristic impedance and complex wavenumber to predict the surface characteristic 
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impedance and sound absorption coefficient. Several impedance models are introduced in this 

section. 

2.6.2.1 Delany-Bazley model 

Delany and Bazley88 carried out several impedance tube measurements in the 1960s with 

which they could derive empirical relationships between impedance and wavenumber to the 

airflow resistivity. These relationships are widely used across quite a wide frequency range 

due to the reasonable estimations. It is necessary to note that several empirical models have 

been developed based on Delany-Bazley model. In Delany-Bazley model,24 only a non-

acoustical parameter of airflow resistivity is required to predict acoustical characteristics. 

𝑍𝑐 = 𝜌0𝑐0 (1 + 0.0571 (
𝜌0𝑓

𝜎
)

−0.754

− 𝑗0.087 (
𝜌0𝑓

𝜎
)

−0.732

)                          (2.10) 

𝑘 =
𝜔

𝑐0
(0.189 (

𝜌0𝑓

𝜎
)

−0.595

+ 𝑗 (1 + 0.0978 (
𝜌0𝑓

𝜎
)

−0.7

)) ,                        (2.11) 

where 𝜎 is the airflow resistivity, f is the frequency, 𝑗 = √−1 is the complex number and 𝜔 =

2𝜋𝑓 is the angular frequency. 

2.6.2.2 Miki model 

Miki89 developed a new regression model based on experimental data from Delany and 

Bazley’s study in 1989. Miki’s proposed modifications to the Delany-Bazley model were in 

order to generate a more accurate model, valid for a broader frequency range. The 

characteristic impedance and wavenumber in Miki’s model89 is given by: 

𝑍𝑐 = 𝜌0𝑐0 (1 + 0.0699 (
𝑓

𝜎
)

−0.632

− 𝑗0.107 (
𝑓

𝜎
)

−0.632

)                        (2.12) 

𝑘 =
𝜔

𝑐0
(0.160 (

𝑓

𝜎
)

−0.618

+ 𝑗 (1 + 0.109 (
𝑓

𝜎
)

−0.618

)).                         (2.13) 

2.6.2.3 Garai-Pompoli model  

Besides a new simple model for airflow resistivity prediction which has been developed by 

Garai and Pompoli, they also presented a modified impedance model based on Delany-

Bazley method.86 The accuracies of Delany-Bazley, Dunn-Davern and Garai-Pompoli 

prediction models were investigated by comparing the measured sound absorption of 

polyester materials with diameter ranging from18 to 48 𝜇𝑚22, suggesting a suitable method 
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of prediction for the acoustical characteristics of polyester materials. They performed a 

similar set of measurements on polyester materials to those of Delany-Bazely’s to obtain the 

following expressions for predicting the characteristic impedance and wavenumber: 

𝑍𝑐 = 𝜌0𝑐0 (1 + 0.078 (
𝜌0𝑓

𝜎
)

−0.623

− 𝑗0.074 (
𝜌0𝑓

𝜎
)

−0.660

)                        (2.14) 

𝑘 =
𝜔

𝑐0
(0.159 (

𝜌0𝑓

𝜎
)

−0.571

+ 𝑗 (1 + 0.121 (
𝜌0𝑓

𝜎
)

−0.530

)).                         (2.15) 

2.6.2.4 Komatsu model 

Komatsu90 proposed a new prediction model based on the impedance tube measurements 

from 15 types of glass fiber and 9 types of mineral wool samples in 2008. The airflow 

resistivity of the samples ranges from 6000 to 72900 Pa·s/m2. He stated that the Komatsu 

model is more accurate to predict the acoustical properties of a fibrous material compared 

with the Delany-Bazley and Miki models,  

𝑍𝑐 = 𝜌0𝑐0 (1 + 0.00027 (2 − log
𝑓

𝜎
)

6.2

− 𝑗0.0047 (2 − log
𝑓

𝜎
)

4.1

)                     (2.16) 

𝑘 =
𝜔

𝑐0
(0.0069 (2 − log

𝑓

𝜎
)

4.1

+ 𝑗 (1 + 0.0004 (2 − log
𝑓

𝜎
)

6.2

)).                       (2.17) 
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Chapter 3 Experimental part 

 

3.1 Materials 

3.1.1 Perpendicularly-laid nonwoven fabrics 

Five perpendicularly-laid nonwoven fabrics prepared by vibrating perpendicular lapper at the 

Technical University of Liberec, Czech Republic, as well as two types of commercial 

available nonwoven fabrics which separately made by vibrating perpendicular lapper and 

rotating perpendicular lapper were selected to carry out this study.  

 

Figure 3.1 Vibrating perpendicular lapper 

 

Figure 3.2 Rotating perpendicular lapper  

The vibrating perpendicular lapper (STRUTO) is illustrated in Figure 3.1. The carded web is 

fed onto conveyor belt and a reciprocating forming comb pulls the carded web towards the 

hold back roller to form a fold. The fold is pulled off the comb by a system of needles placed 

on a reciprocating compressing bar and pushed to the fiber layer which is created and moved 

between the conveyor belt and a wire grid. The fiber layer is bonded by melt-bonding fibers 
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present in the fiber blend when it passes through thermobonding chamber. The rotating 

perpendicular lapper (WAVEMAKER) is shown in Figure 3.2. Carded web is brought to the 

working roller. The teeth of the working roller form the carded web into folds creating a fiber 

layer between the conveyor belt and wire grid. Again, the fiber layer is bonded in the 

thermobonding chamber.91  

   

   

Figure 3.3 Cross-sectional and longitudinal microscopic images of polyester fibers: (i) 

hollow PET; (ii) PET; (iii) bi-component PET 

Table 3.1 Fiber specifications92 

Fiber 

Code 
Types of PET 

Diameter 

(µm) 

95% confidence 

interval for 

diameter 

Staple Length 

(mm) 

Ratio of Core 

and Sheath 

i Hollow PET 24.45 24.45 ± 0.709 70.00 ---- 

ii PET 13.18 13.18 ± 0.158 50.00 ---- 

iii Bicomponent PET 17.93 17.93 ± 0.229 50.00 3:1 

iv PET 26.91 26.91 ± 0.439 57.00 ---- 

v Bicomponent PET 14.58 14.58 ± 0.198 38.00 3:1 

               PET: polyethylene terephthalate. 

(i) (ii) (iii) 

(i) (ii) (iii) 
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Table 3.2 Characteristics of perpendicularly-laid nonwovens 

Samples 

type 

Samples 

code 

Fiber 

content 

Mean 

diameter 

(µm) 

Manufacturing 

techniques 

Thickness 

(mm) 

Areal 

density 

(g·m-2) 

Porosity 

(%) 

Bulk density 

(kg·m-3) 

Airflow 

resistivity 

(Pa·s/m²) 

Original A   

30%-i 

45%-ii 

25%-iii 

15.94 

WAVEMAKER 24.09 507.5 98.15 21.07 5757.05 

Heat 

compressed 

A1 WAVEMAKER 20.71 506.3 97.86 24.45 7319.58 

A2 WAVEMAKER 18.80 502.2 97.66 26.71 7530.23 

A3 WAVEMAKER 18.51 509.8 97.59 27.54 9829.76 

A4 WAVEMAKER 14.29 508.2 96.89 35.56 14989.14 

A5 WAVEMAKER 14.02 503.1 96.86 35.87 15414.89 

A6 WAVEMAKER 11.05 503.5 96.01 45.56 19733.06 

Original B STRUTO 28.36 478.3 98.52 16.87 4828.55 

Heat 

compressed 

B1 STRUTO 20.37 479.5 97.94 23.54 7498.51 

B2 STRUTO 19.14 469.6 97.85 24.54 7412.32 

B3 STRUTO 15.52 480.2 97.29 30.94 13397.13 

B4 STRUTO 12.81 472.5 96.59 36.88 16750.24 

Original C  STRUTO 27.48 465.2 98.15 16.93 4108.94 

Heat 

compressed 

C1 STRUTO 23.76 463.1 97.86 19.49 5337.58 

C2 STRUTO 20.96 471.4 97.66 22.49 7029.82 

C3 STRUTO 16.61 458.6 97.59 27.61 10181.53 

C4 STRUTO 13.51 472.3 96.89 34.95 12868.69 

C5 STRUTO 10.50 468.5 96.86 44.60 20474.6 

Original D 

70%-iv 

30%-v 
20.83 

STRUTO 20.82 335.7 98.68 16.12 2208.3 

Original E STRUTO 19.85 317.5 98.69 15.99 2031.52 

Original F STRUTO 20.12 198.6 99.19 9.87 1024.4 

Original G STRUTO 20.66 259.3 98.97 12.55 1727.8 

         Note: WAVEMAKER is rotating perpendicular lapper; STRUTO is vibrating perpendicular lapper. 
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The perpendicularly-laid nonwoven samples were made by different types of polyester fibers. 

Samples A, B and C have same fiber content, while samples D, E, F and G have another fiber 

content. The details of five types of fiber i, ii, iii, iv and v are illustrated in Table 3.1. The 

sheath part of fibers iii and v are low-melting polyethylene terephthalate (PET). In order to 

get the cross-sectional slice of fibers, the resin embedding technology was utilized. Cross 

sectional and longitudinal microscopic images were also captured (see in Figure 3.3) at the 

Technical University of Liberec using JENAPOL microscope and NIS-elements software. 

Since fiber i, ii and iii are the contents of samples A, B and C which will be mainly 

investigated their properties, the microscopic images of fibers iv and v are not necessary to 

take.   

In this study, sample A was prepared by rotating perpendicular, samples B, C, D, E, F and G 

were produced by vibrating perpendicular lapper. In order to produce nonwoven samples with 

different thicknesses, the heat-pressing method was applied. Samples A, B and C were 

compressed under 600 Pa pressure at 130 ℃ for 5 minutes, thickness gauges were applied to 

obtain sample at certain thicknesses. The schematic of heat-pressing method was shown in 

Figure 3.4. 

 

Figure 3.4  Schematic of heat-pressing method 

The characteristics of the nonwoven specimens are listed in Table 3.2. According to ASTM 

C830-00, sample porosities were determined.93 The content percentage of samples is based 

on weight. The fiber diameter has been determined using the ImageJ software based on the 

scanning electron microscope (SEM) images (see Figure 3.5), so that the fiber diameter 

distribution for polyester nonwovens A, B and C were obtained. 2358 fiber diameters from 
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150 SEM images were measured in total to ensure reproducible statistics. 

 

Figure 3.5  Scanning electron microscope (SEM) image of sample A 

 

Figure 3.6  Fiber diameter distribution of polyester nonwovens A, B and C obtained for 2358 

fiber diameter data 

The fiber diameter distribution is shown in Figure 3.6. The kernel density estimation was 

applied to get the distribution line in the image analysis. Obviously, some of the features are 

that it has at least two peaks and one tail at the large diameter end. A symmetric fiber 

diameter distribution on either side of the highest peak implies that the finest fiber is the key 

component which is 45% in polyester materials. An asymmetric fiber diameter distribution 

can be found at the second peak from the left and the slope of distribution line has a slight 

decrease after the peak. It indicates that there is another type of polyester fiber besides the 

two types of fiber which can be easily distinguished from the first and second peaks from the 

left. Thus, samples A, B and C have triple fiber components with rough diameter of 13, 19 

Triple component 
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and 22 μm. The mean fiber diameter of multi-component polyester materials was determined 

according to the following equation: 

𝑑 =
∑ 𝑑𝑖

𝑛
𝑖=1

𝑛
  ,                                                         (3.1) 

where n is the total fiber count, 𝑑𝑖  is the diameter for each fiber. The mean diameter of 

polyester fibers was presented in Table 3.2. The same method was applied to obtain fiber 

diameter of samples D, E, F and G. 

The densities of the fiber types i, ii, iii, iv and v were measured by liquid pycnometry 

method, the values are 947.97 kg/m3, 1228.93 kg/m3, 1217.64 kg/m3, 1177.52 kg/m3 and 

1318.61 kg/m3 for fiber i, ii, iii, iv and v, respectively. Since the closed pores have little or no 

effect on the airflow resistivity and sound absorption, voids in hollow fibers were not 

included in this analysis.94 By means of an Alambeta device (SENSORA), fabric thicknesses 

were measured and fabric areal density was determined according to ISO 9073-1:1989.95 

Figure 3.7 illustrates that the majority of fibers in an uncompressed sample are vertically 

orientated and parallel arranged. The orientation angle of fibrous layer in this study (Figure 

3.7, areas highlighted in red) was defined as the angle between the surface of sample and the 

dominant fibrous layer axis. Such an angle is dependent on material density or compression 

degree of the fibrous specimen. During the process of heat press, the angle of fibrous layer 

orientation decreased and consequently, thickness of specimen reduced and material density 

increased.   

 

Figure 3.7 Cross-sectional macroscopic images of original samples A, B and C 

Circular specimens with 100 mm diameter were cut with an ELEKTRONISCHE 
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STANZMASCHINE TYPE 208. Measurements were carried out in a standard setup for air 

flow resistivity. In current study, the airflow resistivity was measured directly with an 

AFD300 AcoustiFlow device (Gesellschaft für Akustikforschung Dresden mbH, Dresden, 

Germany) according to ISO 9053:1991.65 The AcoustiFlow device determines the airflow 

resistivity based on direct-airflow method on open porosity porous materials. For each 

perpendicularly-laid nonwoven fabric, ten samples were measured to ensure the 

reproducibility of the airflow resistivity experiment, results summarized in Table 3.2.  

3.1.2 Aerogel based nonwoven fabrics 

Aerogel was discovered more than 80 years ago. Aerogels have high porosity (>90%), a high 

specific surface area, low weight, and low sound velocity.96-97 Due to these characteristics, 

aerogels can be used in sound absorption and thermal insulation fields. The specifications of 

amorphous silica aerogel involved in this work are shown in Table 3.3. 

Table 3.3 Amorphous silica aerogel specification 

Properties Value range 

Particle size range 0.1–0.7 mm 

Pore diameter ~20 nm 

Density 135±15 kg/m3 

 

Table 3.4  Characteristics of aerogel based nonwoven fabrics 

Sample 

No. 

Fabric 

density 

kg/m3 

95% 

confidence 

interval 

Areal 

density 

g/m2 

95% 

confidence 

interval 

Thickness 

mm 

95% 

confidence 

interval 

% of 

aerogel 

AP-A 79.6 79.6 ± 0.512 278.6 278.6 ± 1.021 3.5 3.5 ±  0.02 1.5 

AP-B 80.4 80.4 ± 0.623 498.5 498.5 ± 1.102 6.2 6.2 ±  0.01 2.5 

AP-C 66.7 66.7 ± 0.324 440.2 440.2 ± 1.045 6.6 6.6 ± 0.07 2.0 

 

50:50 ratio compositions of polyester/polyethylene thermal-bounded nonwoven fabrics 

embedded with aerogel were selected. The type of aerogel used was hydrophobic amorphous 

silica aerogel, which is excellent for ambient and sub-ambient insulating applications.98 The 

aerogel particles were added during thermal bonding of the nonwoven web. High resolution 

images for the aerogel based nonwoven fabrics are shown in Figure 3.8. It can be seen that 
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the aerogel is uniformly dispersed between the fibers in the structure. The physical properties 

are shown in Table 3.4. 

 

Figure 3.8 Scanning electron microscope (SEM) images of aerogel based nonwovens98 

3.2 Evaluation of sound absorption  

3.2.1 Impedance tube measurement 

Acoustic properties of materials can be evaluated by steady-state methods, reverberant 

chamber methods, impedance tube methods, etc. In this study, the impedance tube was used 

to obtain normal incidence impedance. The surface impedance of perpendicularly-laid 

nonwovens was determined according to ISO 10534-2.99 The 45 mm impedance tube 

manufactured by Materiacustica (as shown in Figure 3.9) was applied to carry out the 

impedance measurements. The measurement frequency range starts from 200 and goes up to 

4200 Hz. The measurements of airflow resistivity and impedance were carried in the Jonas 

Lab at the University of Sheffield. For each nonwoven fabric, ten samples were measured. 

 

Figure 3.9 Materiacustica 45 mm impedance tube 

Besides, a Brüel and Kjær measuring instrument (as shown in Figure 3.10) containing Type 
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4206 Impedance Tube, PULSE Analyzer Type 3560, and Type 7758 Material Test Software 

was used for sound absorption testing within the frequency range 50Hz–6.4 kHz. A large tube 

(100 mm in diameter) and a small tube (29 mm in diameter) were set up for measuring the 

sound absorption in low-frequency range from 50-1600Hz and high-frequency range 500-

6400Hz respectively. The curves from both measurements were merged. The sound 

absorption values of lower common frequencies (start from 50 to 1600 Hz) were mainly from 

the large tube and the higher common frequencies (up to 1600 Hz) were mainly from the 

small tube.8 The lower boundary was chosen higher than the tube limit in order to avoid 

inaccuracies caused by structural vibrations or phase mismatch.67 The sound absorption 

coefficient measurements were carried out by using Brüel and Kjær measuring instrument at 

Technical University of Liberec. 

 

Figure 3.10 Brüel and Kjær measuring instrument 

Although two different impedance tube measurement systems were applied, the measurement 

principles are same. A sound source is mounted at one end of the impedance tube and the 

material sample is placed at the other end. The loudspeaker generates broadband, stationary 

random sound waves. These incident sound signals propagate as plane waves in the tube and 

hit the sample surface. The reflected wave signals are picked up and compared to the incident 

sound wave.100 

 

Figure 3. 11 Two-microphone impedance tube schematic 
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.A schematic of the two microphone impedance tube setup used in this work is depicted in 

Figure 3.11. Steady state pressure in the impedance tube is given by: 

𝑝 = 𝐴(𝑒𝑗𝑘𝑥 + 𝑅𝑒−𝑗𝑘𝑥) ,                                              (3.2) 

where A is a complex constant, R is the pressure reflection coefficient, k is the wavenumber, 

𝑗 = √−1 is the complex number, and x is the position of sample surface. 

There are two standard methods for sampling the pressure within the tube: standing wave 

ratio method and transfer function technique.3 The second method was applied for 

determination of impedance in this work. The transfer function between two microphone 

positions in the impedance tube is measured as shown in Figure 3.8. The transfer function is 

the ratio of pressure between two microphone positions: 

𝐻12 =
𝑝𝑥2

𝑝𝑥1
 ,                                                                     (3.3) 

and then using Eq. (3.3), the transfer function is given by: 

𝐻12 =
𝑒𝑗𝑘𝑥2+𝑅𝑒−𝑗𝑘𝑥2

𝑒𝑗𝑘𝑥1+𝑅𝑒−𝑗𝑘𝑥1
 ,                                                     (3.4) 

where 𝑥1and 𝑥2 are the positions of the microphones as shown in Figure 3. From Eq. (3.5), 

the complex pressure reflection coefficient can be obtained by: 

𝑅 =
𝐻12𝑒𝑗𝑘𝑥1−𝑒𝑗𝑘𝑥2

𝑒−𝑗𝑘𝑥2−𝐻12𝑒−𝑗𝑘𝑥1
 .                                                    (3.5) 

Appling Eq. (3.6) to Eq. (2.7), the surface impedance and sound absorption coefficient are 

consequently attained. 

3.2.2 Measurement of thermal properties 

Alambeta instrument was used to measure thermal conductivity and thermal resistance, 

according to EN 31092 standard. The measuring head of the Alambeta contains a copper 

block which is electrically heated to approximately 32℃ to simulate human skin temperature, 

which is maintained by a thermometer connected to the regulator. The lower part of the 

heated block is equipped with a direct heat flow sensor which measures the thermal drop 

between the surfaces of a very thin, non-metallic plate using a multiple differential micro-

thermocouple.101 Each specimen was tested five times and the results were averaged. 
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3.2.2.1 Thermal conductivity 

Thermal conductivity, 𝜆 , measures the rate at which heat is transferred through unit area of 

the fabric across unit thickness under a specified temperature gradient and thus is defined by 

the relation102    

𝜆(𝑊 ∙ 𝑚−1 ∙ 𝐾−1) =
𝑄

𝐹𝜏
∆𝑇

𝑙

 ,                                             (3.6) 

where Q is the amount of conducted heat, F is the area through which heat is conducted, τ is 

the time of heat conduction, ∆𝑇  is the difference of the temperatures and l is the fabric 

thickness. 

3.2.2.2 Thermal resistance 

Thermal resistance expresses the ability of material to prevent heat flow through the 

thickness over unit surface area. Fabric thickness and thermal conductivity are important 

factors governing thermal insulation of textiles. Usually, the higher the thermal resistance, the 

lower the heat loss. The thermal resistance, R, is connected with the thermal conductivity, 𝜆, 

and the fabric thickness, l, as follows 

       𝑅(𝑚2 ∙ 𝐾 ∙ 𝑊−1) =
𝑙

𝜆
 .                                             (3.7) 

3.2.3 Measurement of compression properties 

The compression energy and compression load of perpendicularly-laid nonwovens were 

carried out by using a universal testing machine (TIRATEST 2300). Circular perpendicularly-

laid nonwoven samples of diameter 10 cm were prepared. The compression tests were 

conducted at the velocity of 10 mm/min according to the ASTM D575-91 (Standard Test 

Methods for Rubber Properties in Compression). All the nonwoven specimens were 

compressed up to a deformation 90% of the initial thickness in an atmospheric condition of 

20 ℃ and 65% relative humidity. Five tests were carried out for each sample. The fiber 

orientation angle at different compression stages was analyzed. 

3.2.4 Measurement of air permeability 

Air permeability measures the ability of a porous medium to transmit fluids. It depends on 

the porous geometrical structure.103 The air permeability of perpendicularly-laid nonwovens 

were measured using FX3300 Textech Air Permeability Tester (Figure 3.12). The fabric 

sample is fixed as an obstacle in a flow of air by the clamping holder. A pressure difference 



 43 

∆p between both sides of the fabric sample develops as a consequence of hydraulic losses. 

The pressure difference is recorded by using of the manometer. The measured value is a 

speed of air in meter per second or a volume rate of the flow in liter per hour.  

 

Figure 3.12 Set-up for measuring air permeability 

3.2.5 Measurement of airflow resistivity 

100 mm diameter circular shape samples were cut with an ELEKTRONISCHE 

STANZMASCHINE TYPE 208 machine to measure the airflow resistivity using a standard 

setup. In the present study, the airflow resistivity was measured with an AFD300 

AcoustiFlow device (The Gesellschaft für Akustikforschung Dresden mbH, Dresden, 

Germany) according to ISO 9053:1991.65 The measurement device is presented in Figure 

3.13. Ten samples were measured for each perpendicularly-laid nonwoven fabric to study the 

reproducibility of the airflow resistivity experiment and scattering in the obtained data.  

 

Figure 3.13 AFD300 AcousticFlow device 

In the measurement process, the device generates different rate of airflow. Then, the pressure 

drop between two sides will be measured. The airflow resistance (=
∆𝑃

𝑢
) can be calculated 

from pressure drop and rate of airflow. Various pressure drop under different rate of airflow 

will be determined used to get the airflow resistance at 0.5 mm/s using linear regression 
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method. The airflow resistivity will be obtained by dividing material thickness to the airflow 

resistance at 0.5 mm/s.  

3.3 Statistical analysis 

Statistical analysis software, Origin 8.5 and Matlab_R2017a were used to conduct all the 

statistical tests mentioned in this work. All of the statistical analysis work related to airflow 

resistivity and surface impedance models were well done in Matlab_R2017a. Power-model 

was used to get the most suitable empirical model for airflow resistivity of perpendicularly-

laid nonwoven fabrics in the Matlab_R2017a software.  
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Chapter 4 Results and Discussion 

 

This chapter outlines the results of the work described in this thesis. The first section 

describes the sound absorption properties of perpendicularly-laid nonwovens. The second 

section describes the acoustic properties of aerogel based nonwovens. The prediction and 

accuracy of airflow resistivity and impedance prediction models are presented in third and 

fourth sections. The later sections discuss compressibility, thermal and permeability of 

perpendicularly-laid nonwoven. 

4.1 Sound absorption properties of perpendicularly-laid nonwovens 

The sound absorption coefficient SAC (α) indicates how much of the sound is absorbed in the 

material. When sound wave propagate into a media part of input sound energy Wi [J] is 

transform into heat (Wq [J]), part is reflected back (Wr [J]) and part is transmitted through 

insulation layer (Wt [J]). The sound absorption coefficient SAC (α) can be defined as: 

𝛼 = 1 −
𝑊𝑟

𝑊𝑖
=

𝑊𝑞+𝑊𝑡

𝑊𝑖
 .                                                      (4.1) 

The normal incidence sound absorption coefficient of perpendicularly-laid nonwovens was 

determined as a function of the sound frequency. The normal incidence SAC of part of the 

perpendicularly-laid nonwoven samples was measured by using Brüel and Kjær impedance 

tube (as shown in Figure 3.10). The characteristics of fourteen samples, A, A1, B, B1, C, C1, 

C2, C3, C4, C5, D, E, F and G, are presented in Table 3.2.  

The Brüel and Kjær impedance tube contains a large tube (100 mm in diameter) and a small 

tube (29 mm in diameter) which used to obtain the sound absorption coefficient in low-

frequency range from 50-1600Hz and high-frequency range 500-6400Hz respectively. Later 

the measurement data from large and small tube were combined to form the curves for the 

frequency range between 50-6400 Hz. The normal incidence sound absorption coefficient of 

original perpendicularly-laid nonwovens is shown in Figure 4.1. 



 46 

 

Figure 4.1 Sound absorption coefficient of original perpendicularly-laid nonwovens 

It is observed that sound absorption coefficient of the test samples lies in the range of 0.017-

0.76. Apparently, the value of absorption coefficient for samples A, B and C sharply increases 

at frequency bands 50 Hz-3500 Hz and the maximum value of absorption coefficient occurs 

at frequency bands 4000 Hz-5400 Hz. However, samples D, E, F and G show lower 

absorption coefficient value in comparison to samples A, B and C, and the value of 

absorption coefficient increases with the increasing of frequency at the whole measurable 

frequency bands (50Hz-6400 Hz). Results indicate that perpendicularly-laid nonwoven 

exhibits much better sound absorption ability at frequency bands 3000 Hz-6400 Hz. 

Samples produced by different manufacturing techniques were measured for sound 

absorption performance and the results are shown in Figure 4.2. Sample A was produced by 

rotating perpendicular lapper (WAVEMAKER), and samples B and C were prepared by 

vibrating perpendicular lapper (PERPENDICULARLY-LAID). The manufacturing 

techniques, thicknesses and areal densities of samples are listed following sample codes. 

WAVEMAKER is rotating perpendicular lapper, STRUTO is vibrating perpendicular lapper, 

SAC is sound absorption coefficient. Samples A1, B1 and C2 were obtained from samples A, 

B and C through heat-pressing method. It is obviously found that all the samples SAC 

sharply rise with the increasing frequency, but the curves turn to be flat after around 3500 Hz. 

From Figure 4.2(a), it can be seen that sample B exhibits the highest SAC at low-frequency 

band, but after 3500 Hz sample A shows better sound absorption ability. Meanwhile, sample 

C shows the lowest SAC after 1000 Hz compared to samples B and C. In Figure 4.2(b), 

sample A exhibits the best sound absorption ability while sample C shows the lowest SAC. It 

is found that samples with higher areal density have better sound absorption performance, 

and samples with lower areal density are weaker absorbers. The reason for this phenomenon 
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can be samples thickness and areal density differences.41-42 Nonwoven thickness is a very 

important factor determining the sound absorption ability. Generally, the increase of thickness 

results in an increase of sound absorption coefficient at low-frequency range. Moreover, the 

sound absorption of fibrous material involves viscous losses, which convert acoustic energy 

into heat as sound wave travels through the interconnected pores of fibers of the material. 

Thus, for high areal density samples there are more fibers involved in the viscous losses and 

more acoustic energy is dissipated in the form of heat energy.42 In the case of similar 

thickness, the increase of fabric areal density leads to an increase in sound absorption 

performance. Based on above analysis, by comparing SAC of samples A, B, C, A1, B1 and 

C2, it is hard to conclude that samples produced by rotating perpendicular lapper have better 

sound absorption performance. 

 

Figure 4.2 SAC of samples produced by different manufacturing techniques: (a) SAC of 

original samples; (b) SAC of samples prepared by the heat-pressing method from original 

samples 

The sound absorption results obtained by impedance tube are plotted against frequency 

between 50 and 6400 Hz. In order to numerically investigate the effect of perpendicularly-

laid nonwoven fabric structure properties on the sound absorption ability, the noise reduction 

coefficient (NRC) and average value of SAC ( ) of all the nonwovens were calculated. The 

NRC has been calculated as the average value of measured values for 250, 500, 1000 and 

2000 Hz, which provides a decent and simple quantification of how well the porous material 

will absorb the noise. The  is the average of the SAC for the whole sound absorption 

coefficient measurement range. The NRC of perpendicular nonwovens were calculated using 

the following equations: 

𝑁𝑅𝐶 =
𝛼250𝐻𝑧+𝛼500𝐻𝑧+𝛼1000𝐻𝑧+𝛼2000𝐻𝑧

4
                                         (4.2) 
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During the impedance tube measurement process, the sound absorption coefficient was 

measured at even number of frequency in the range of 2 to 6400 Hz. The values of sound 

absorption coefficient are not accurate under 50 Hz, so the  was calculated from 50 to 6400 

Hz. The equation for calculating  is as follows:  

2

1

2 1

=
-

F

F
f df

F F
                                                 (4.3) 

where F1 (50 Hz) is lower bound of sound frequency in testing and F2 (6400 Hz) is upper 

bound of sound frequency in measurement.92 The NRC and computed  values for the 

perpendicularly-laid nonwovens are listed in Table 4.1.  

Table 4.1  and NRC of perpendicularly-laid nonwovens 

Sample codes 

 NRC 

Mean value 
95% confidence 

interval 
Mean value 

95% confidence 

interval 

A 0.580 0.58 ± 0.00789 0.254 0.254 ± 0.00263 

A1 0.581 0.581 ± 0.00614 0.239 0.239 ± 0.00351 

B 0.588 0.588 ± 0.00614 0.281 0.281 ± 0.00263 

B1 0.545 0.545 ± 0.0105 0.228 0.228 ± 0.00438 

C 0.523 0.523 ± 0.00526 0.255 0.255 ± 0.00438 

C1 0.544 0.544 ± 0.00526 0.242 0.242 ± 0.00175 

C2 0.521 0.521 ± 0.00438 0.216 0.216 ± 0.00263 

C3 0.528 0.528 ± 0.00701 0.191 0.191 ± 0.00263 

C4 0.433 0.433 ± 0.0131 0.147 0.147 ± 0.00438 

C5 0.444 0.444 ± 0.0245 0.136 0.136 ± 0.00526 

D 0.315 0.315 ± 0.0245 0.142 0.142 ± 0.00877 

E 0.290 0.29 ± 0.0149 0.129 0.129 ± 0.00526 

F 0.201 0.201 ± 0.00614 0.092 0.092 ± 0.00351 

G 0.242 0.242 ± 0.0123 0.110 0.11 ± 0.00438 

: average value of sound absorption coefficient; NRC: noise reduction coefficient.  

In order to investigate the effect of areal density on sound absorption performance of 

perpendicularly-laid nonwovens, seven types of nonwoven samples with similar thickness 

were compared in Figure 4.3 and Figure 4.4. It is found that SAC of samples D, E, F and G 

sharply increase with the increase of frequency at whole measured band, while the curves of 

samples A1, B1 and C1 no longer sharply increase after 3500 Hz. Also, the sound absorption 
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performance shows similar trend as samples areal density. It means that the sound absorption 

ability of similar thickness perpendicularly-laid nonwovens increase with an increase of 

samples areal density or bulk density. As analyzed earlier, in the case of similar thickness, the 

increase of fabric areal density leads to an increase in sound absorption performance. This 

phenomenon can be seen in Figure 4.4, both NRC and average value of SAC increase with 

the increase of areal density. It is also observed that the NRC and average value of SAC have 

a strong quadratic correlation with areal density: the adjusted coefficients of determination 

(R2) are 0.99676 and 0.99685, respectively. It can be concluded that higher areal density 

gives better sound absorption ability for perpendicularly-laid nonwovens when materials 

have similar thickness.  

 

Figure 4.3 SAC of nonwovens with different areal densities 

 

Figure 4.4 Effect of areal density on sound absorption performance 

Table statistical characteristics of regression 

 Equation 

y = y0 + 

b1*x+b2*x2 

Value t-test 

Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test 

Significance 

“Yes” or “No” 
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Average value 

of SAC 

y0 0.11498 Yes 

0.99676 Yes b1 

b2 

8.77*10-5 

1.67*10-6 

Yes 

Yes 

NRC 

y0 0.06496 Yes 

0.99685 Yes b1 

b2 

-9.18*10-6 

7.10*10-7 

Yes 

Yes 

 

The coefficient of determination, R2, is the proportion of the variance in the dependent 

variable that is predictable from the independent variable(s). The use of an adjusted R2 is an 

attempt to take account of the phenomenon of the R2 automatically and spuriously increasing 

when extra explanatory variables are added to the model. It is a modification that adjusts for 

the number of explanatory terms in a model relative to the number of data points. 

 

Figure 4.5 SAC of samples with a different thickness 

Samples C1, C2, C3, C4 and C5 were made from sample C through heat-pressing method. As 

the material gets thicker, the sound absorption at low-frequency range increases as well.92, 104-

105 Sound absorption performance of samples with same areal density but different 

thicknesses are shown in Figure 4.5. It can be seen that samples sound absorption ability at 

low-frequency bands decreased with the decrease of samples thickness. Meanwhile, the SAC 

increases at high-frequency bands with the decrease of thickness. This can be explained by 

the resonance, the resonance phenomena occur towards the low-frequency band for thicker 

samples.98 It is also found that the peak values of SAC increase and shift towards the higher 

frequencies side with decrease of sample thickness. But the effect of decreasing thickness on 

SAC peak values is limited, since the peak values no longer increase after the thickness 

reaches a critical value. In addition, samples (C4, C5) with thickness less than 16.85 mm 

show a significant decrease of SAC at 50-4500 Hz range. 
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The effect of thickness on the sound absorption performance is presented in Figure 4.6. The 

adjusted coefficients of determination between the NRC and thickness is 0.96966, and this 

value is 0.07321 for average value of SAC and thickness, indicating that the NRC of 

perpendicularly-laid nonwovens has a very strong correlation with thickness while an 

insignificant relationship between average value of SAC and thickness. As described above, 

the increase of thickness results in SAC increases at low-frequency bands while SAC 

decrease at high-frequency bands. Meanwhile, NRC was defined as material’s sound 

absorption ability at low frequency and average value of SAC was described as sound 

absorption ability for whole measurement frequency. This can be the reason of this 

phenomenon.  

 

Figure 4.6 Effect of thickness on sound absorption performance 

Table Statistical characteristics of regression 

 Equation 

y = y0 + 

b*x 

Value t-test Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test Significance 

“Yes” or “No” 

Average value 

of SAC 

y0 0.46385 Yes 
0.07321 Yes 

b 0.00286 Yes 

NRC 
y0 0.05604 Yes 

0.96966 Yes 
b 0.0077 Yes 

 

Porosity has a strong influence on sound absorption performance of fibrous materials. Figure 

4.7 illustrates the effect of porosity on sound absorption performance of perpendicularly-laid 

nonwovens. It can be seen that the average value of SAC increases with the increase of 

porosity, the average value of SAC reached peak values between 97% and 98% of porosity, 

but average value of SAC sharply decreases after 98% of porosity. The porosity is inversely 

proportional to perpendicularly-laid nonwoven specific air flow resistance.92 Lower porosity 



 52 

means higher specific air flow resistance, which means fiber movement rarely occurs when 

sound wave passes through the materials.107 High porosity results in fewer number of fibers 

involved in the viscous losses, which will decrease the sound absorption performance of the 

materials. The quadratic correlation between porosity and average value of SAC was 

calculated and mentioned in Figure 4.7. It can be found that porosity has a quadratic relation 

with average value of sound absorption coefficient with adjusted coefficient of determination 

0.87779.   

 

Figure 4.7 Effect of porosity on sound absorption performance 

Table Statistical characteristics of regression 

 Equation 

y = y0 + 

b1*x+b2*x2 

Value t-test 

Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test 

Significance 

“Yes” or “No” 

Average 

value of 

SAC 

y0 -1734.037 Yes 

0.87779 Yes b1 

b2 

35.51619 

-0.1818 

Yes 

Yes 

 

Airflow resistivity is a measure of how easily air can enter a porous material and the 

resistance that airflow goes through a structure. The airflow resistivity of a porous material is 

one of the most important defining characteristics. Once the airflow resistivity is known, a 

series of empirical models can be used to find the characteristic impedance and wavenumber, 

and thus to obtain the surface impedance and sound absorption coefficient. But the modelling 

process of determination of impedance and sound absorption coefficient through airflow 

resistivity is tedious. In order to investigate the influence of airflow resistivity on sound 

absorption performance in a simple way, the correlation between them has been illustrated in 

Figure 4.8. It is found that below 6000 Pa•s/m² with the increase of airflow resistivity the 

sound absorption ability increases as well. The highest value of both average value of SAC 
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and NRC appeared at the range between 5000 and 7000 Pa•s/m² of airflow resistivity. After 

that, the sound absorption ability shows a decrease trend with the increasing of airflow 

resistivity. This phenomenon is completely compatible to Zent and Long’s research.41 

 

Figure 4.8 Effect of airflow resistivity on sound absorption performance 

Table Statistical characteristics of regression 

 Equation 

y = y0+A*exp(-

exp(-z)-z+1) 

z = (x-xc)/w 

Value t-test 

Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test 

Significance 

“Yes” or “No” 

Average value 

of SAC 

y0 0.12862 Yes 

0.79362 Yes 
xc 

w 

A 

6722.1163 

4422.3725 

0.44647 

Yes 

Yes 

Yes 

NRC 

y0 0.11483 Yes 

0.82725 Yes 
xc 

w 

A 

5452.544 

2494.0218 

0.14384 

Yes 

Yes 

Yes 

 

4.2 Sound absorption properties of aerogel based nonwovens 

The sound absorption coefficient (SAC) of single layer aerogel based nonwoven fabrics is 

shown in Figure 4.9. By examining the curve of all samples, the SAC of the test samples lies 

in the range of 0.0003-0.832. It is observed that the SAC of samples A, B and C increase with 

the increase of frequency. In addition, the SAC of all samples A, B and C exhibit a steady 

increase at the whole measurable frequency bands (50-6400 Hz). Single layer of sample C 

shows the best sound absorption ability in whole test band. SAC of samples A, B and C attain 

peak values at 6400 Hz, the maximum values are 0.385, 0.766 and 0.832, respectively. 
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Figure 4.9 Sound absorption coefficients of single layer aerogel based  nonwoven fabrics 

For numerical analysis, the noise reduction coefficient (NRC) of all single layer aerogel 

based nonwoven fabrics was calculated. The NRC of aerogel based nonwoven fabrics was 

calculated using the equation 4.1. The NRC for single layer aerogel based nonwovens are 

listed in Table 4.2. The NRC is a dimensionless number. The NRC values of single layer 

aerogel based nonwoven fabrics are found to lie in the range of 0.0556-0.0858, indicating that 

single layer aerogel based nonwoven fabrics are not effective absorbers for low-frequency 

sound absorption. It is also observed that sample C exhibits higher sound absorption ability, 

superior to samples A and B although sample C has lowest aerogel content. It indicates that 

aerogel content is not a crucial factor in determining the sound absorption ability compared to 

the thickness and density. 

Table 4.2 Noise reduction coefficient (NRC) of single layer aerogel based nonwoven fabrics 

Samples 
Sample 

codes 

Mean 

value 

95% confidence 

interval 

AP-A AL1 0.0556 0.0556 ± 0.000789 

AP-B BL1 0.0862 0.0862 ± 0.00263 

AP-C CL1 0.0977 0.0862 ± 0.00263 

 

To further understand the effect of aerogel content on sound absorption performance of 

aerogel based nonwoven fabric, the comparable absorption index was developed by dividing 

the average value of sound absorption coefficient and air permeability under 200 Pa pressure 

drop by corresponding areal density and thickness. The absorption index of single layer 

aerogel based nonwoven fabrics was calculated by the following equation.  
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𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =
𝛼̅∙𝑞

𝐺𝑆𝑀∙𝐿
× 10 ,                                           (4.4) 

where, 𝛼̅ the average value of sound absorption coefficient calculated according to equation 

4.3, q is the air permeability (mm/s), GSM (areal density) is the gram per square meter (g/m2), 

L is thickness (mm).   

Figure 4.10 exhibits the single layer samples’ aerogel content and corresponding absorption 

index. It can be seen that samples with higher aerogel content have lower absorption index, 

while the lowest aerogel content sample exhibits the highest absorption index. This dramatic 

phenomenon could be explained by following reasons. First, the acoustic properties of silica 

aerogel are sensitive to geometry and boundary condition52, the aerogel-fiber structure and 

irregular aerogel particles can cause adverse effect on sound absorption ability of aerogel 

based nonwoven fabrics. Moreover, the sound absorption performance of fibrous materials is 

strongly depending on specific airflow resistance which is inversely proportional to fabric 

porosity.92 Aerogel has very high air-saturated porosity. Generally, increase of aerogel 

content leads an increase in the porosity of aerogel based nonwoven fabrics. Consequently, 

the sound absorption performance of samples will decline due to the decrease of specific 

airflow resistance. 

 

Figure 4.10 Absorption index of single layer aerogel based fabrics 

The multilayer sound-absorbing materials, with the increased thickness, are the most 

commonly used method to improve the sound absorption ability at low frequencies. In this 

section, the SAC and NRC of the sound-absorbing materials multilayered with the same kind 

of aerogel based nonwoven fabric are presented. 

The sound absorption performance of sound-absorbing materials is depending on a series of 

physical parameters, such as material thickness, fiber size, material density, bonding method, 
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airflow resistance and so on.2 Generally, material thickness is a very important factor 

determining the sound absorption ability of porous structures. The thickness of the sound-

absorbing materials has a direct relationship with the sound absorption ability. As the 

material gets thicker, the sound absorption at low frequency increases as well.98 But the effect 

of increasing of thickness on SAC at low frequencies is limited, since the SAC no longer 

increase after the thickness reaches a critical value.  

 

Figure 4.11 SAC of multilayered aerogel based nonwoven fabric A 

The SAC of multilayered sample A is shown in Figure 4.11. It is found that two layers of 

sample A have a significant improvement in the sound absorption ability in the whole 

measurable frequency bands. It is also observed that as the thickness increased, the SAC at 

low frequencies increased as well. However, the SAC decreased at high frequencies after two 

layers, and the peaks of SAC curves shift towards the lower frequency side. 

Figure 4.12 shows the SAC of multilayered sample B. It can be found that the SAC 

significantly increase with the increase of blanket layers. In addition, after three layers, the 

SAC sharply increase at low frequencies. However, the SAC decrease when they increase up 

to peak values due to resonance. Moreover, the resonance phenomenon region shifts toward 

the lower frequencies side with an increase of the fabric layers. Because of the resonance, 

two peaks show on the SAC curves of four, five and six layers of sample B.  
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Figure 4.12 SAC of multilayered aerogel based nonwoven fabric B 

The SAC of multilayered sample C are shown in Figure 4.13. It can be found that the two 

layers of sample C have a significant improvement, and the SAC of two layers attains its 

maximum value 0.9978 at 4136 Hz. However, after two layers, as the increase of fabric 

layers the maximum values of the SAC decrease. It is also observed that SAC of five and six 

layers have slight improvement compared with four layers. Besides, the resonance 

phenomenon also can be found, and the resonance regions shift towards the lower 

frequencies side with an increase of layers. 

According to the SAC curves in Figure 4.11 to Figure 4.13, it can be predicted that the SAC 

will steadily increase with the increasing of the nonwoven fabrics layers. So, it is expected 

that the better sound absorption performance of aerogel based nonwoven fabrics can be 

obtained if enough layers are used.  

 

Figure 4.13 SAC of multilayered  aerogel based nonwoven fabric C 

In order to investigate the effect of multilayered structure on sound absorption performance 

of aerogel based nonwoven fabrics, the NRC of different layers were calculated. The NRC of 



 58 

multilayered samples is shown in Table 4.3 and Figure 4.14. The NRC of multilayered 

samples A, B and C were found to lie in the range of 0.0556-0.4900, 0.0862-0.6465 and 

0.0977-0.6491, respectively. It was observed that the NRC of all aerogel based nonwovens 

increase with the increase of fabric layers. The NRC of sample A exhibits a steady increase. 

However, for samples B and C, the improvement of NRC became slower after four layers. As 

described earlier, it could be predicted that the NRC of samples B and C may slightly 

increase with the increase of layers when the layers reach critical values. 

Table 4.3 Noise reduction coefficient (NRC) of multilayered nonwoven fabrics 

Samples Sample codes Layers 
Mean 

value 

95% Confidence 

Interval 

AP-A 

AL1 1 0.0556 0.0556 ± 0.000789 

AL2 2 0.1186 0.1186 ± 0.00263 

AL3 3 0.2145 0.2145 ± 0.00841 

AL4 4 0.3189 0.3189 ± 0.00438 

AL5 5 0.4057 0.4057 ± 0.0105 

AL6 6 0.4900 0.49 ± 0.00149 

AP-B 

BL1 1 0.0862 0.0862 ± 0.00263 

BL2 2 0.2038 0.2038 ± 0.00877 

BL3 3 0.3746 0.3746 ± 0.00666 

BL4 4 0.5015 0.5015 ± 0.00517 

BL5 5 0.5869 0.5869 ± 0.00456 

BL6 6 0.6465 0.6465 ± 0.00657 

AP-C 

CL1 1 0.0977 0.0977 ± 0.00123 

CL2 2 0.2462 0.2462 ± 0.00272 

CL3 3 0.4169 0.4169 ± 0.0028 

CL4 4 0.5422 0.5422 ± 0.00561 

CL5 5 0.6056 0.6056 ± 0.00412 

CL6 6 0.6491 0.6491 ± 0.00412 
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Figure 4.14 Effect of multilayered  samples on NRC of aerogel based nonwoven fabrics 

 

Figure 4.15 Effect of 4 cm air-back cavity on SAC impedance tube experiment schematic 

In order to investigate the effect of the air-back cavity on SAC of aerogel based nonwoven, 

SAC of sample A with 4, 8 and 12 cm air-back cavities were measured by impedance tube. 4 

cm air-back cavity impedance tube experiment was shown in Figure 4.15. As can be seen in 

Figure 4.16, all the sound absorption curves are in the form of frequency spectra, because the 

air-back cavity causes frequency-selected sound absorption due to the resonance. It is 

observed that the increasing of air-back thickness results in narrower absorption frequency 

ranges. It is also found that the air-back cavity obviously improves the SAC of sample A at 

low frequency range. In addition, as the thickness of air-back increase, the first peak of SAC 

curve moves toward to lower frequency side. However, an increase in thickness of air-back 

cavity does not significantly improve the SAC of aerogel based nonwoven fabric.  
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Figure 4.16 Effect of air-back cavity on SAC of aerogel based nonwoven fabric 

4.3 Some airflow resistivity models for multi-component polyester fiber assembly 

As described in Table 3.2, samples A, B and C are made by same fiber content which are 30% 

hollow PET, 45% staple PET and 25% bi-component PET while sample D, E, F and G are 

made by other fiber content. Thus, this section will only discuss the airflow resistivity of 

sample A, B, C and their compressed samples. The selected samples for airflow resistivity 

models study are listed in Table 4.5. The relative density is equal to 1 minus porosity. 

 

Figure 4.17 The scanning electron microscope (SEM) image of sample A 

As shown in Table 2.2-2.4, it can be seen that the fiber diameter is one of the key parameters 

to predict the airflow resistivity with a theoretical model. In this section, the perpendicularly-

laid nonwoven materials were made with three types of fiber. The fiber diameter has been 

determined by scanning electron microscope (SEM) images and ImageJ software. The 

ImageJ software based on the scanning electron microscope (SEM) images (see Figure 4.17) 

to measure the fiber diameter, so that the fiber diameter distribution for polyester nonwovens 
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were obtained. 2358 fiber diameters from 150 SEM images were measured in total to ensure 

reproducible statistics.  

Table 4.4 Characteristics of polyester materials 

Samples 

type 

Samples 

code 

Porosity 

(%) 

Relative 

density 

(%) 

Airflow 

resistivity 

(Pa·s/m²) 

Fibrous layer 

orientation angle 

(º) 

Original A 98.15 1.85 5757 ± 589 56.07 

Heat 

compressed 

A1 97.86 2.14 7319 ± 243 45.65 

A2 97.66 2.34 8630 ± 408 40.88 

A3 97.59 2.41 10329 ± 376 39.41 

A4 96.89 3.11 14990 ± 285 29.44 

A5 96.86 3.14 15410 ± 167 29.17 

A6 96.01 3.99 22230 ± 433 22.56 

Original B 98.52 1.18 4011 ± 316 87.26 

Heat 

compressed 

B1 97.94 2.06 7498 ± 332 45.70 

B2 97.85 2.15 7412 ± 328 43.35 

B3 97.29 2.71 13400 ± 277 32.99 

B4 96.59 3.41 16750 ± 442 27.18 

Original C 98.15 1.85 4108 ± 199 79.09 

Heat 

compressed 

C1 97.86 2.14 5337 ± 217 58.53 

C2 97.66 2.34 7029 ± 356 47.67 

C3 97.59 2.41 10180 ± 259 37.02 

C4 96.89 3.11 13370 ± 199 28.40 

C5 96.86 3.14 20470 ± 687 21.88 

 

The fiber diameter distribution is shown in Figure 3.6. Thus, samples have triple fiber 

components with rough diameter of 13, 19 and 22 𝜇𝑚. The mean fiber diameter of multi-

component polyester materials was determined according to the following equation:    

𝑑 =
∑ 𝑑𝑖

𝑛
𝑖=1

𝑛
  ,                                                             (4.5) 

where n is the total fiber count, 𝑑𝑖 is the diameter for each fiber. 

The accuracy of the airflow resistivity prediction models presented in Tables 2.2-2.4 was 
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compared against the obtained experimental data. The accuracy of theoretical and empirical 

models was investigated by comparing the relative prediction errors. In this calculations the 

values of the material density and porosity were taken from Table 4.4. In order to investigate 

the accuracy of airflow resistivity models, the mean absolute values of relative error 

(MAVRE) was calculated according to the following equation:  

∆=
∑ ∆𝑛

𝑁
𝑛=1

𝑁
=

1

𝑁
∑

|𝜎𝑝,𝑛−𝜎𝑚,𝑛|

𝜎𝑚,𝑛

𝑁
𝑛=1   ,                                     (4.6) 

where 𝜎𝑝 is the predicted airflow resistivity, 𝜎𝑚 is the measured airflow resistivity, and N is 

the total number of material specimens studied (N=18). A MAVRE of 0.2 means a difference 

of 20% from the measured value. 

4.2.1 Prediction of airflow resistivity based on theoretical models 

Due to the same fiber content in samples A, B and C the airflow resistivity was descried as a 

function of relative density which was determined as a ratio of the material density over the 

density of polyester. The predicted airflow resistivity values based on capillary channel 

theory (see the models listed in Table 2.2) are show in Figure 4.18 as a function of the 

relative density.  

 

Figure 4.18 Predicted airflow resistivity based on capillary channel theory 

The mean absolute values of relative error (MAVRE) of capillary channel theory models are 

compared in Figure 4.19. It can be seen that Doutres and Lind-Nordgren models predict 

similar values of the airflow resistivity. The Kozeny-Carman model agrees closely with that 

by Pelegrinis et al. This difference can be explained by the fact that the two sets of models 

make use of rather different coefficients in the flow resistivity equations: 180 for the Kozeny-

Carman type models; and 128 for the Lind-Nordgren models. This difference in the predicted 
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airflow resistivity increases proportional to the material density. The Davies CN model shows 

the highest value of predicted airflow resistivity and a relatively high error. It is observed that 

the maximum MAVRE for this model is 83.8%. The MAVRE of Kozeny-Carman model, 

with a maximum value of 15% which is the lowest among the five models considered. The 

maximum error for the Pelegrinis et al. model is relatively low which is 19.7%. It was also 

found that the Kozeny-Carman model is more reliable when the material density is relatively 

low. However, it begins to overestimate the airflow resistivity as the relative less than 4%. 

 

Figure 4.19 The MAVRE of airflow resistivity based on capillary channel theory 

The calculated airflow resistivity of multi-component polyester materials based on the drag 

force theory is presented in Figure 4.20 as a function of the relative density. Figure 4.21 

presents the mean absolute values of relative error (MAVRE). The keys to the model type 

can be found in Table 2. The results presented in Figure 4.21 suggest that the model by 

Happel (Happel B model) for the airflow perpendicular to fibers significantly overestimate 

the resistivity by over 390%. The predictions by Hasimoto, Kuwabara, Happel A (airflow 

parallel to the fibers) and Tarnow C (airflow perpendicular to fibers arranged in the form of 

lattice) are very similar and overestimate the measured airflow resistivity by 160-200%.  The 

predictions by the Langmuir and Tarnow A (airflow parallel to the fibers arranged in square 

lattice) are almost identical but overestimate the airflow resistivity by approximately 31.1%. 

The predictions by Tarnow D model (airflow is perpendicular to the fibers arranged in 

random lattice) fall between the two latter groups. The most accurate model for the flow 

resistivity of this kind of fibers is the Tarnow B model (airflow is parallel to fibers arranged 

in random lattice). This model is accurate within 13%. In addition, it can be seen that the 

Tarnow B model is more accurate when the materials have relatively low density, however 
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this model exhibits higher variation comparing to measured values at high density range. This 

phenomenon can be explained by the decrease of fibrous layer orientation angle with 

increased density for high specimen compression as illustrated in Figure 4.20. When the 

fibrous layer orientation angle decreases, the airflow is no longer parallel to the fibers. When 

the orientation angle is close to 0 the airflow becomes perpendicular to the fibers. For these 

materials the measured flow resistivity (see Figure 4.20) is higher than that predicted with 

Tarnow B models which work better when the flow is parallel to the fibers. 

 

Figure 4.20 Predicted airflow resistivity based on drag force theory 

 

Figure 4.21 The MARVE of airflow resistivity based on drag force theory 

4.3.2 Prediction of airflow resistivity using empirical models 

The predicted airflow resistivity calculated from empirical models are presented in Figure 

4.22. Figure 4.23 presents the prediction MARVE data. The Bies-Hansen and Manning RB 

models give significantly underestimated airflow resistivity of multi-component polyester 

materials in comparison with measured values. This can be explained by the different 

materials and bonding method in their studies in comparison with in the current study.85, 87 
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Garai, Manning MB and TB models exhibit similar results and relative good agreement by 

comparing the measured airflow resistivity. It is observed that the MARVE for these three 

models range from 15.8% to 41.2%. The predictions by Manning TB and Garai are very 

close, but Manning TB method shows better predictions. The MARVE for Manning RB/TB 

and Garai models increase with the increased value of the relative density. The relative error 

for these models is below 10% when the relative density of the fibrous material is below 3%.  

Although one drag force theory model exhibits acceptable prediction for multi-component 

polyester nonwovens, the the empirical models are not reliable which overestimate the 

airflow resistivity by 16%. One same type simple empirical model was developed by power-

fitting the values of measured resistivity, the model presented in equation 4.6. The fitted 

empirical model is show in Figure 4.22 - 4.23. The relative prediction error of the fitted 

empirical model is 5.1%.  

𝜎 =
1.053×10−8×𝜌1.645

𝑑2                                                      (4.7) 

 

Figure 4.22 Predicted airflow resistivity based on empirical models  
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Figure 4.23 The MARVE of airflow resistivity based on empirical models 

4.4 Numerical analysis of acoustic properties of perpendicularly-laid nonwovens 

As presented in Chapter 2, the normal sound absorption coefficient surface impedance can be 

obtained form Zwikker and Kosten theory by applying material thickness and airflow 

resistivity.18 This section discussed four commonly used impedance models, such as Delany-

Bazley, Miki, Garai-Pompoli and Komatsu models. The accuracy between measured values 

these models will be presented. The impedance tube measurement has been detailed in 

Chapter 3. The 45 mm impedance tube manufactured by Materiacustica was applied to obtain 

the impedance. The measurement frequency range starts from 200 and goes up to 4200 Hz. 

The selected samples A, A1, A2, A3, A4, A5, A6, B1, B3, C, C1, C2, C3, C4 and C5 are 

listed in Table 3.2. 

The effect of surface morphology on an acoustic wave can be characterized by four 

interrelated acoustic quantities: impedance, admittance, pressure reflection coefficient and 

absorption coefficient. The impedance, admittance and pressure reflection coefficient 

describe the magnitude and phase change on reflection. The absorption coefficient only gives 

information about the energy change on reflection.3 The impedance models introduced in 

previous section were used to predict characteristic impedance and wavenumber. By applying 

characteristic impedance and wavenumber into equations 2.6 and 2.7, the surface impedance 

and sound absorption can be easily obtained. The surface impedance contains real part 

(resistance) and imaginary part (reactance). The real part of surface impedance is associated 

with energy changes, and the imaginary part with phase changes. Thus, the surface acoustic 

impedance gives more insight information about the absorbing properties of a material than 

the absorption coefficient. The predicted surface impedance and absorption coefficient will 
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be demonstrated in this section. In addition, the accuracy between predicted and measured 

absorption coefficient will be presented.  

Delany and Bazley advised that their method is more accurate in the range of 10−2 ≤
𝑓

𝜎
≤ 1, 

where 𝑓 is the frequency, 𝜎 is the airflow resistivity.88 In order to verify the adaptability of 

Delany-Bazley model for predicting impedance and sound absorption of multi-component 

polyester nonwovens, the 
𝑓

𝜎
 against frequency has been plot in Figure 4.24 The slope of each 

line is equal to the reciprocal of airflow resistivity (𝜎). It can be seen that one sample with 

4108 Pa·s/m² airflow resistivity demonstrates high value of 
𝑓

𝜎
 (i.e. > 1) from 4108 to 4200 Hz 

which means the sample with lowest airflow resistivity has 2.3% invalid prediction range in 

the whole measurement range (200 - 4200 Hz). Miki, Garai and Komatsu stated that their 

methods has wider confident prediction range compared with Delany-Bazley method.86, 89-90 

Thus, the predicted and measured impedance absorption coefficients will be compared at the 

frequency band of 200 - 4200 Hz in this section. 

 

Figure 4.24 Range of the ratio of frequency to airflow resistivity of nonwoven samples 

Sample A with 5757 Pa·s/m² airflow resistivity was chosen to figure out the most suitable 

model for impedance prediction of multi-component polyester nonwoven. Figure 4.25 

demonstrates the comparisons of normalized impedance between the measured values and the 

values calculated using the Delany–Bazley model, the Miki model, the Garai-Pompoli and 
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the Komstsu model. The normalized surface impedance is the ratio of surface impedance to 

the characteristic impedance of air (𝑍𝑠 𝜌0𝑐0⁄ ). It can be seen that Delany-Bazley and Miki 

model have accurate predictions on normalized surface impedance, while Komatsu model 

exhibits significant difference compared to measured values especially at low to mid 

frequency range. The reason for the inaccuracy of Komatsu method can be attributed to the 

wider airflow resistivity range (i.e. 6000 - 72900 Pa·s/m²) used to derive the impedance 

prediction equations compared with the range from 4108 to 20474 Pa·s/m² in this study. It 

also can be found that Delany-Bazley model exhibits more acceptable predictions not only on 

real part of normalized surface impedance but also imaginary part by comparing with Miki 

and Garai-Pompoli models. The predictions of surface impedance for other types of 

nonwoven samples with varying airflow resistivity are presented in Figure 4.25 - 4.30.  

 

 

Figure 4.25 Measured and predicted impedance for the sample with airflow resistivity of 

5757 Pa·s/m² 
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Figure 4.26 Measured and predicted impedance for the sample with airflow resistivity of 

4108 Pa·s/m² 

   

   

Figure 4.27 Measured and predicted impedance with airflow resistivity of 7530 Pa·s/m² 
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Figure 4.28 Measured and predicted impedance for the sample with airflow resistivity of 

10181 Pa·s/m² 

  

  
Figure 4.29 Measured and predicted impedance with airflow resistivity of 13397 Pa·s/m² 
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Figure 4.30 Measured and predicted impedance for the sample with airflow resistivity of 

20474 Pa·s/m² 

By applying predicted surface impedance into equation (2.7), the calculated absorption 

coefficient can be rapidly attained. A similar method for comparison between measured and 

predicted airflow resistivity was used to analyze the prediction errors of sound absorption 

coefficient among the four models. The MAVRE for sound absorption prediction were 

calculated according to the following equation:  

𝑒𝑟𝑟𝑜𝑟 =
|∑ 𝛼𝑚𝑒𝑎𝑠−∑ 𝛼𝑝𝑟𝑒𝑑|

∑ 𝛼𝑚𝑒𝑎𝑠
× 100% ,                                         (4.8) 

where 𝛼𝑚𝑒𝑎𝑠 is the measured absorption coefficient, and 𝛼𝑝𝑟𝑒𝑑 is the predicted value. 
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Figure 4.31 MAVRE based on Komatsu model. The airflow resistivity on horizontal axis 

represents corresponding samples 

 

Figure 4.32 MAVRE based on Delany–Bazley model, Miki model and Garai-Pompoli model 

As shown in Figure 4.25 - 4.30, the Komatsu model demonstrates unsuitable predictions on 

surface impedance. Consequently, the error of absorption coefficient based on Komatsu 

model can be very high compared with Delany-Bazley model and Miki model. In order to 

clearly show the adaptability of the models for multi-component polyester nonwovens, the 

MAVRE of Komatsu model was separately presented in Figure 4.31. The MAVRE based on 

Delany-Bazley model, Miki model and Garai-Pompoli model were shown in Figure 4.32. The 

Komatsu model exhibits the highest MAVRE of 125% for the sample with 12868 Pa·s/m² 

airflow resistivity. MAVRE is relatively low when the resistivity is small. The Komatsu 

method shows around 70% mean MAVRE, while the values from other three methods are 

less than 15%. From Figure 4.32, it is found that Delany–Bazley model and Miki model have 

similar results. The difference on their mean MAVRE is less than 0.6% which are 8.92% and 

8.39%, respectively. However, it is obviously found that the absorption coefficient predicted 

by Miki model yields closer results for most of the samples than that from Delany-Bazley 
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model. The MAVRE between the Delany-Bazley and Miki methods and measured values of 

the absorption coefficient are smaller than those between the Garai-Pompoli method and 

measured values. The maximum MAVRE of 25.48% is found between the absorption 

coefficient predicted by the Delany-Bazley model and that measured for the sample with 

14989 Pa·s/m² airflow resistivity. The maximum MAVRE of Garai-Pompoli model is 20.57% 

for the sample with 19733 Pa·s/m² airlow resistivity. The minimum values of MAVRE based 

on Delany-Bazley and Miki methods are 1.79% and 1.67%, respectively.  

It is considered that the results with an error less than 10% are accurate for this kind of 

analysis, as the value of bulk density and thickness for a fibrous material can vary due to 

several uncertainties during measurements. Uncertainties such as fabric compression, fiber 

density and any inaccuracy or noise that is present during the acquisition of the acoustical 

data might have resulted in erroneous data.67 Thus, it can be concluded that the Delany-

Bazley and Miki models are superior in terms of the sound absorption coefficient by 

comparing Garai-Pompoli and Komatsu models. It can also be concluded that Miki model 

can be used to accurately predict sound absorption coefficient of multi-component polyester 

nonwovens. 

4.5 Compression property of perpendicularly-laid nonwovens  

The samples were chosen to carry out the compression property study are listed in Table 3.2. 

Cross-sectional microscopic images of samples are shown in Figure 4.33. The resultant 

compression for perpendicularly-laid nonwovens is compression of the nonwoven fabric 

structure constructed by change of fibers position.48  

The compression properties of all the perpendicularly-laid nonwovens are given in Table 4.5 

and shown in Figure 4.34. The absorbed energy was computed by multiplying load pressure 

and thickness reduction of samples. It can be found that sample C5 exhibits highest 

compressional resistance at 50 % and 90 % thickness reduction, while sample C3 absorbs the 

highest energy during the compression test. In addition, sample F shows lowest 

compressional resistance and energy absorption of compression.  
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Table 4.5 Compression properties of perpendicularly-laid nonwovens 

Sample codes 

50 % Thickness 

reduction 

90 % Thickness 

reduction 

90 % Thickness 

reduction 

Pressure 

(kPa) 

Pressure 

(kPa) 

Absorbed energy 

(10-3 J) 

A 1.909 5.038 321.888 

A1 2.693 11.199 432.159 

B 2.124 7.614 451.673 

B1 3.005 11.067 469.267 

C 4.298 11.954 815.708 

C1 5.816 17.268 988.175 

C2 7.954 20.234 1111.066 

C3 10.96 31.864 1277.924 

C4 12.643 35.423 1129.402 

C5 15.003 50.568 1132.771 

D 3.279 6.075 413.628 

E 2.685 4.905 331.906 

F 0.889 2.605 130.661 

G 1.413 3.574 208.086 
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Figure 4.33 Cross-sectional microscopic pictures of perpendicularly-laid nonwovens before 

compression 

 

Figure 4.34 Compression properties of perpendicularly-laid nonwovens 

The compression curves of samples prepared by vibrating and rotating perpendicular lappers 

are compared in Figure 4.35. It can be seen that nonwovens (samples B, B1) produced by 
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vibrating perpendicular lapper exhibit better compressional resistance compared to 

nonwovens (samples A, A1) prepared by rotating perpendicular lapper. From Table 4.7, it is 

also observed that samples B, B1 absorb more energy during compression measurement 

although samples A, A1 have higher density. The reason for this phenomenon can be 

explained by the different fibrous layer orientation in these samples. Obviously, sample B, 

B1 have higher fiber orientation angle compared to samples A, A1 in Figure 4.33. As stated 

earlier, the nonwoven structure compression is performed prior to the compression of fibers 

themselves. Samples with higher initial fibrous layer orientation angle require higher amount 

of energy at compression stage. Thus, it can be concluded that perpendicularly-laid 

nonwovens made by perpendicularly-laid have better compression properties than 

WAVEMAKER nonwovens. 

 

Figure 4.35 Compression pressure of samples produced by different manufacturing 

techniques 

The compression properties of samples treated by heat-pressing method are shown in Figure 

4.36. It is observed that sample C exhibits lowest compressional resistance. The 

compressional resistance increases with the decreasing thickness. It is also found that the 

pressure sharply rises with the increase of thickness reduction during compression 

measurement of samples C3, C4 and C5, while the compressional resistance curves of 

samples C, C1 and C2 remain relatively flat before 75 % thickness reduction. 
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Figure 4.36 Compression curves of samples treated by heat-pressing 

Samples B1, D, E, F and G, with similar thickness, were prepared by vibrating perpendicular 

lapper. These samples were chosen to investigate the effect of density on compression 

property. From Figure 4.37, it can be seen that compressional resistance decreases with the 

increase of density. The compressional resistance of perpendicularly-laid nonwovens has a 

strong correlation with density, with an adjusted coefficients of determination of 0.97185, 

which means the perpendicularly-laid nonwovens with higher density usually exhibit better 

compression property. 

 

Figure 4.37 Effect of porosity on compression property 

Table statistical characteristics of regression 

 Equation 

y = y0 + 

b*x 

Value t-test Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test Significance 

“Yes” or “No” 

Pressure 
y0 689.21891 Yes 

0.97185 Yes 
b -6.92619 Yes 
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The cross-sectional microscopic images of samples A, B and C at different compression state 

are shown in Figure 4.38. ImageJ software was used to obtain fiber orientation angle based 

on cross-sectional microscopic pictures of nonwovens, each average orientation angle was 

calculated from 10 measurements. Figure 4.39 describes the effect of thickness reduction on 

fibrous layers’ angle. From these two graphs, it is found that the fibrous layers’ angle 

decreases with the increase of thickness reduction. Also, samples B and C have higher initial 

fibrous layers’ angle compared to sample A, the initial fibrous layers’ angle of samples A, B 

and C are 56.07˚, 87.26˚ and 79.09˚, respectively. Apparently, the majority of fibrous layers 

are oriented towards same direction as the thickness reduction increases. The shearing 

deformation happens in compression process as can be seen in Figure 4.38. At the beginning, 

the compression is applied along the fiber axis for perpendicularly-laid nonwovens. Some 

fibers stay in stable equilibrium, and others fail by buckling because of the irregularity of 

fiber length and non-uniformity of fiber position in the nonwoven structure. With the increase 

of compression load, the fibers yield to higher stress by buckling.  

 

         TR is the thickness reduction. 

Figure 4.38 Fibrous layer orientation of perpendicularly-laid nonwovens under different 

compression state 
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Figure 4.39 Effect of thickness reduction on fibrous layers’ angle 

Table statistical characteristics of regression 

 Equation 

y = y0 + b*x 

Value t-test Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test Significance 

“Yes” or “No” 

Fibrous layers’ 

angle (A) 

y0 53.0927 Yes 
0.95733 Yes 

b -0.95733 Yes 

Fibrous layers’ 

angle (B) 

y0 86.05544 Yes 
0.98914 Yes 

b -0.71592 Yes 

Fibrous layers’ 

angle (C) 

y0 80.10449 Yes 
0.9797 Yes 

b -0.68788 Yes 

 

The effect of compression load on fiber orientation angle is shown in Figure 4.40. It can be 

seen that the fiber orientation angle sharply decreases with the increase of compression load, 

but the slopes turn to be flat at the end of compression cycle. It is also observed that sample B 

and C have higher orientation angle compared to sample A under same compression load. 

This indicates that perpendicularly-laid nonwovens with higher fiber orientation angle exhibit 

better compression resistance.   

 

Figure 4.40 Effect of compression load on fibrous layers’ angle 
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Table statistical characteristics of regression 

 Equation 

y = y0 + b1*x^1 + 

b2*x^2 + b3*x^3 

Value t-test 

Significance 

“Yes” or “No” 

Adj.  

R-

Square 

F-test 

Significance 

“Yes” or “No” 

Fibrous 

layers’ 

angle (A) 

y0 114.24341 Yes 

0.97542 Yes 
b1 -7.12911 Yes 

b2 0.16174 Yes 

b3 -0.00127 Yes 

Fibrous 

layers’ 

angle (B) 

y0 212.00302 Yes 

0.95208 Yes 
b1 -9.84664 Yes 

Yes 

Yes 

b2 0.15996 

b3 -8.60953*10-4 

Fibrous 

layers’ 

angle (C) 

y0 199.34783 Yes 

0.99295 Yes 
b1 -8.82359 Yes 

b2 0.15642 Yes 

b3 -9.72944*10-4 Yes 

 

4.6 Thermal properties of perpendicularly-laid nonwovens 

4.6.1 Thermal conductivity and resistance 

The original perpendicularly-laid nonwovens have been chosen to carry out the thermal 

properties measurements. Thermal conductivity and thermal resistance of perpendicularly-

laid nonwovens are presented in Table 4.6 and Figure 4.41. 

Table 4.6 Thermal properties of perpendicularly-laid nonwovens 

Sample 

codes 

Thermal conductivity Thermal resistance 

Mean value 

10-3 W∙m-1∙K-1 
SD 

95 % confidence 

intervals  

Mean value 

10-3 K∙m2∙W-1 
SD 

95 % confidence 

intervals 

A 55.84 1.86 55.84 ± 1.15 431.80 15.48 431.8 ± 9.59 

B 61.70 3.28 61.7 ± 2.03 460.60 22.78 460.6 ± 14.1 

C 60.04 1.95 60.04 ± 1.21 458.20 18.71 458.2 ± 11.6 

D 63.30 1.35 63.3 ± 0.837 329.20 6.61 329.2 ± 4.1 

E 63.42 0.59 63.42 ± 0.366 313.00 13.17 313 ± 8.16 

F 71.10 0.70 71.1 ± 0.434 283.00 6.36 283 ± 3.94 

G 67.00 1.49 67 ± 0.923 308.40 16.04 308.4 ± 9.94 

 

For nonwovens with approximately the same thickness (samples D, E, F and G), thermal 
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resistance increases with the increasing of fabric areal density and thermal conductivity 

shows an adverse trend. This is because increase in areal density causes increase in fiber to 

fiber contact and packing density as well as tortuosity, so less heat flows through the 

channels in nonwoven, and thermal resistance therefore increases correspondingly. Moreover, 

for samples A, B and C, since they have slightly different areal density and varying thickness, 

the increase of thermal resistance with the increase in sample thickness indicated that fabric 

thickness plays a major role in deciding thermal resistance of perpendicularly-laid 

nonwovens. 

 

Figure 4.41 Thermal properties of perpendicularly-laid nonwovens 

Nonwoven fabrics possess a large amount of void space, which can entrap large volumes of 

stagnant air. Resulted from the much lower conductivity of still air in comparison to textile 

fibres, the thermal insulation performance of nonwoven textiles is determined by the trapped 

air in the inter-fibre spaces. The effect of porosity on thermal properties of perpendicularly-

laid nonwovens is illustrated in Figure 4.42. Results showed that the thermal properties of 

high-porous nonwovens have strong correlation with porosity. Especially, the thermal 

resistance is directly proportional to fabric porosity, with adjusted coefficients of 

determination 0.891, indicating that nonwovens with higher porosity usually exhibit better 

thermal insulation performance since they can preserve more still air. 
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Figure 4.42 Effect of porosity on thermal properties 

Table statistical characteristics of regression 

 Equation 

y = y0 + b*x 

Value t-test Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test Significance 

“Yes” or “No” 

Thermal 

conductivity 

y0 -786.981 Yes 
0.89148 Yes 

b 8.63266 Yes 

Thermal 

resistivity 

y0 13434.21 Yes 
0.82387 Yes 

b -132.662 Yes 

 

4.6.2 The relationship between acoustic and thermal properties  

Since the fabric thickness, fiber fineness and fabric areal density are very important factors in 

determining both acoustic and thermal properties of perpendicularly-laid nonwovens, there 

appears a great interest to investigate the relationship between these two properties for 

perpendicularly-laid nonwovens.  

 

Figure 4.43 Estimation of correlation between thermal conductivity and sound absorption 

(NRC and average value of SAC)  
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Table statistical characteristics of regression  

 Equation 

y = y0 + b*x 

Value t-test Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test Significance 

“Yes” or “No” 

Average value 

of SAC 

y0 2.2438 Yes 
0.68973 Yes 

b -0.02913 Yes 

NRC 
y0 1.02244 Yes 

0.60353 Yes 
b -0.01332 Yes 

 

Figure 4.43 illustrates the estimation of correlation between thermal conductivity of 

perpendicularly-laid nonwovens and sound absorption, NRC and average value of SAC ( ). 

It is observed that both NRC and  have insignificant correlation with thermal conductivity, 

the adjusted coefficients of determinations are 0.60353 and 0.68973, respectively. The reason 

could be that thermal conductivity is not dependent on fabric thickness while fabric thickness 

is a determining factor for sound absorption.   

 

Figure 4.44 Estimation of correlation between thermal resistance and sound absorption 

(NRC and average value of SAC) 

Table statistical characteristics of regression 

 Equation 

y = y0 + b*x 

Value t-test Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test Significance 

“Yes” or “No” 

Average value 

of SAC 

y0 -0.38632 Yes 
0.94803 Yes 

b 0.00211 Yes 

NRC 
y0 -0.19578 Yes 

0.98313 Yes 
b 0.00102 Yes 

 

Estimation of correlation between thermal resistance and sound absorption, NRC and , are 
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presented in Figure 4.44. The adjusted coefficients of determination between NRC and 

thermal resistance is 0.98313, and this value is 0.94803 for SAC and thermal resistance, 

indicating that the sound absorption performance of perpendicularly-laid nonwovens has a 

very strong correlation with thermal resistance. It can be concluded that NRC and SAC are 

directly proportional to thermal resistance of perpendicularly-laid nonwovens. That means for 

different perpendicularly-laid nonwovens, a higher thermal resistance suggests a better sound 

absorption performance. 

 

Figure 4.45 Effect of porosity on specific airflow resistance 

Table statistical characteristics of regression 

 Equation 

y = y0 + b*x 

Value t-test Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test Significance 

“Yes” or “No” 

Porosity 
y0 9957.599 Yes 

0.94637 Yes 
b -100.134 Yes 

 

The relationship between sound absorption performance and thermal resistance could be 

explained by the strong dependence of sound absorption and thermal insulation on pore 

characteristics of nonwoven fabrics. The thermal resistance of perpendicularly-laid 

nonwoven is directly proportional to fabric porosity. Moreover, the sound absorption 

performance of perpendicularly-laid nonwoven strongly depends on its specific airflow 

resistance, and this specific airflow resistance is also observed to be proportional to fabric 

porosity, with adjusted coefficients of determination 0.94637 as shown in Figure 4.45. 

Generally, for high porous perpendicularly-laid nonwovens, when the pressure wave 

penetrates into the material through the open pores of the surface and gets scattered by a high 

number of internal reflections before being lost to the environment, these reflections transfer 

energy to the solid structure through frictional losses and efficiently absorb sound. As the 
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porosity decreases, less energy is transferred into the solid structure and more is reflected 

from the surface, making the material less useful as an acoustic absorber. Thus, the sound 

absorption performance of perpendicularly-laid nonwoven is indirectly correlated to its 

thermal resistance. 

4.7 Air permeability of perpendicularly-laid nonwovens 

4.7.1 Air permeability 

It is believed that fibers will be deformed by the airflow under a given air pressure during the 

measurement of air permeability of a fabric due to flexibility of textile fibers. It is reported 

that most fabrics are easily deformed under pressure load especially below 200 Pa with an 

evident deformation and this would significantly affect the air permeability.54 In order to 

examine the effect of fiber deformation on the measured air permeability of perpendicularly-

laid nonwovens, different pressure gradients 50 Pa, 100 Pa, 150 Pa and 200 Pa were chosen 

to carry out air permeability testing. The measured air permeability is listed in Table 4.7. 

Each value is the average of five test results.  

Table 4.7 Measured air permeability of samples 

Samples 

Code 

Air Permeability (mm/s) 

ΔP 

=50Pa 

95% 

Confidence 

Interval 

ΔP 

=100Pa 

95% 

Confidence 

Interval 

ΔP= 

150Pa 

95% 

Confidence 

Interval 

ΔP= 

200Pa 

95% 

Confidence 

Interval 

A 320.1 320.1 ± 11.4 597.6 597.6 ± 20.9 848.7 848.7 ± 29.7 1070.5 1070.5 ± 39.2 

B 320.1 320.1 ± 36.3 652.1 652.1 ± 46.5 923.3 923.3 ± 63.5 1177.6 1177.6 ± 84.4 

C 370.6 370.6 ± 9.55 687.3 687.3 ± 17.2 968.3 968.3 ± 22.3 1227 1227 ± 28.8 

D 908.8 908.6 ± 20.7 1598 1598 ± 36 2166 2166 ± 45.9 2712 2712 ± 59 

E 929.8 929.8 ± 37 1628 1628 ± 59.7 2220 2220 ± 80.7 2760 2760 ± 99.1 

F 1548 1548 ± 26.1 2608 2608 ± 59 3508 3508 ± 104 4336 4336 ± 191 

G 1234 1234 ± 18.9 2104 2104 ± 26.5 2824 2824 ± 36.6 3468 3468 ± 25.3 

Note: Samples were held by clamping arm under the load 50N 

Since perpendicularly-laid nonwoven is loose fabric, the large spacing between fibers enables 

the majority of air to flow through these gaps. Obviously, samples A, B and C exhibit much 

lower air permeability while F and G show the highest air permeability. Similar to the sound 

absorption performance, this is also attributed to their difference in areal density and fabric 

thickness. For s perpendicularly-laid nonwovens with higher areal density and fabric 
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thickness, there is less pores and air space in textile structure to allow air flow go through. 

Air permeability increases with the increasing of pressure gradient. Usually, with the 

increasing of pressure gradient, the airflow velocity increases as well. If the airflow velocity 

exceeds a limit, turbulence flow may occur and the air permeability value will sharply 

decrease in that case. In this study, assuming flow in a circular channel, the calculated 

Reynolds numbers are all less than the critical value (2300). That means no turbulent flow 

occurs during the measurement. 

 

Figure 4.46 Effect of pressure gradient on air permeability 

Table statistical characteristics of regression 

 Equation 

y = y0 + b*x 

Value t-test Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test Significance 

“Yes” or “No” 

Air permeability 

(A) 

y0 65.30485 Yes 
0.99691 Yes 

b 5.16632 Yes 

Air permeability 

(B) 

y0 37.90913 Yes 
0.99312 Yes 

b 5.87269 Yes 

Air permeability 

(C) 

y0 82.22684 Yes 
0.9972 Yes 

b 5.85668 Yes 

Air permeability 

(D) 

y0 304.96928 Yes 
0.99532 Yes 

b 12.34672 Yes 

Air permeability 

(E) 

y0 317.12012 Yes 
0.995 Yes 

b 12.56062 Yes 

Air permeability 

(F) 

y0 569.41397 Yes 
0.99534 Yes 

b 19.73267 Yes 

Air permeability 

(G) 

y0 520.54964 Yes 
0.99446 Yes 

b 14.96385 Yes 
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The effect of pressure gradient on air permeability is illustrated in Figure 4.46. Air 

permeability is strongly correlated to pressure gradient, the adjusted coefficients of 

determination between pressure gradient and air permeability are all above 0.99 for seven 

samples, indicating there is linear relationship between pressure gradient and air permeability. 

This is completely compatible to Darcy’s law. Results also reveal that the fiber deformation 

of perpendicularly-laid nonwoven has insignificant effect on the measured air permeability. 

This is because the samples are firmly clamped by the arm and the loose nonwoven structures 

are partly compressed during the measurement, so the fibers are not easily deformed by the 

high speed airflow. Moreover, the fibers are oriented approximately in parallel with the 

airflow direction, which will significantly reduce the airflow force suffered by fibers. 

The interaction effect of fabric areal density and thickness on air permeability is shown in 

Figure 4.47. It is observed that air permeability of perpendicularly-laid nonwovens tends to 

decrease with the increasing of areal density and fabric thickness, which is similar to 

conventional textile fabrics.  

 

Figure 4.47 Effect of areal density and thickness on air permeability 

As shown in Figure 4.48, the porosity of the material has a strong influence on the air 

permeability of the material. It is obvious that the increase in porosity leads to increase in air 

permeability. The quadratic correlations dependences between porosity and air permeability 

were also calculated and mentioned in Figure 4.48. It is found that porosity has a quadratic 

relation with air permeability with adjusted coefficients of determination 0.99261.  
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Figure 4.48 Effect of porosity on air permeability 

Table statistical characteristics of regression 

 Equation 

y = 

A*x^2+B*x+C 

Value t-test 

Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test Significance 

“Yes” or “No” 

Air 

permeability 

A 908.68695 Yes 

0.99261 Yes B -177492.41183 Yes 

C 8.6679*106 Yes 

 

4.7.2 The relationship between sound absorption properties and air permeability 

From the above analysis, it can be seen that the fundamental structural parameters such as 

porosity and fabric thickness have profound effect on acoustic performance and air 

permeability of perpendicularly-laid nonwoven. Remarkably, they show completely inverse 

effect on acoustic performance and air permeability.  Thus, there should be some indirect 

relation between air permeability and acoustic performance of perpendicularly-laid 

nonwovens. 

Estimated correlation between air permeability and sound absorption is presented in Figure 

4.49. It is observed that  has significant correlation with air permeability, the adjusted 

coefficients of determination is about 0.98, indicating the existence of an inverse relation 

between air permeability and sound absorption of perpendicularly-laid nonwovens. That 

means perpendicularly-laid nonwoven with lower air permeability usually exhibits better 

sound absorption performance. This may provide a new method to evaluate the sound 

absorption property of perpendicularly-laid nonwovens by means of air permeability testing. 
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Figure 4.49 Estimated correlation between air permeability and sound absorption 

Table statistical characteristics of regression 

 Equation 

y = y0 + 

b1*x^1 + 

b2*x^2 

Value t-test 

Significance 

“Yes” or “No” 

Adj.  

R-Square 

F-test 

Significance 

“Yes” or “No” 

Average value 

of SAC 

y0 0.82832 Yes 

0.97959 Yes b1 -4.70315*10-4 Yes 

b2 8.83596*10-8 Yes 
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Chapter 5 Conclusions 

 

In this study, the acoustic properties, airflow resistivity, compressibility, thermal properties 

and air permeability of perpendicularly-laid nonwovens were investigated. Besides, the sound 

absorption properties of aerogel based nonwovens have been analyzed. 

Sound absorption property of perpendicularly-laid nonwovens were tested by Brüel and Kjær 

measuring instrument. The effect of manufacturing techniques on sound absorption 

performance was investigated. The effect of porosity and airflow resistivity on sound 

absorption ability was studied. It is found that there is no significant influence of two 

manufacturing techniques on sound absorption performance. The increase of areal density 

results in improvement of sound absorption ability. The increase of thickness can improve 

sound absorption coefficient at low-frequency range, but decrease of the coefficient occurred 

at high-frequency range. A quadratic relationship between porosity and sound absorption 

ability has been found.  

An investigation on sound absorption performance of aerogel based nonwoven fabrics was 

carried in this study. Polyester/polyethylene nonwovens embedded with hydrophobic 

amorphous silica aerogel were chosen for sound absorption measurements. The sound 

absorption coefficient (SAC) of single and multilayered of aerogel nonwovens blankets was 

tested by Brüel and Kjær impedance tube. The effect of air-back cavities on SAC of single 

layer aerogel based nonwoven fabrics was investigated. The results show that there is a 

decrease in SAC with the increase of aerogel content. It is observed that the noise reduction 

coefficient (NRC) linearly increased with the increase of layers for all the samples. It was 

also found that the air-back cavities result in resonance phenomenon, as the increase in 

thickness of air-back cavities the peak values of SAC shift towards lower frequencies. 

The airflow resistivity is a key parameter to predict accurately the acoustical properties of 

fibrous media. There is a large number of theoretical and empirical models which can be used 

to predict the airflow resistivity of this type of porous media. However, there is a lack of 

experimental data on the accuracy of these models in the case of multi-component fibrous 

media. This study presents a detailed analysis of the accuracy of several existing models to 

predict airflow resistivity which make use of the porosity, bulk density and mean fiber 

diameter information. The AFD300 AcoustiFlow device was employed to measure airflow 

resistivity. It is shown that some existing models largely under- or overestimate the airflow 
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resistivity when compared with the measured values. A novel feature of this work is that it 

studies the relative performance of airflow resistivity prediction models that are based on the 

capillary channel theory and drag force theory. These two groups of models are then 

compared to some purely empirical models. It is found that the mean absolute values of 

relative error (MAVRE) by some models is unacceptably high (e.g.  >20-30%). The results 

suggest that there are existing models which can predict the airflow resistivity of multi-

component fibrous media with 12.6% accuracy. A simple empirical model based on fiber 

diameter and fabric bulk density has been obtained through power-type model. This model 

exhibits very small error which is 5.1%.  

15 types of perpendicularly-laid nonwoven samples were chosen to study their acoustic 

properties. The surface impedance and sound absorption coefficient were determined by 

using 45mm Materiacustica impedance tube. The widely used impedance models such as 

Delany-Bazley, Miki, Garai-Pompoli and Komatsu models were used to predict acoustical 

properties. Comparison between measured and predicted values has been performed to get 

the most acceptable model for perpendicularly-laid nonwovens. It is shown that Delany-

Bazley and Miki models can accurately predict surface impedance of multi-component 

polyester nonwovens, but Komatsu model has inaccuracy in prediction especially at low-

frequency band. The results indicate that Miki model is the most acceptable method to predict 

the sound absorption coefficient with mean error 8.39% from all the samples. The values are 

8.92%, 12.58% and 69.67% for Delany-Bazley, Garai-Pompoli and Komatsu models, 

respectively. 

Perpendicularly-laid nonwovens with varying thickness and areal density were prepared by 

heat-pressing method to investigate the effect of structural parameters such as thickness and 

areal density on compressibility. The effect of laying techniques on compression properties 

was investigated. The influence of density and fibrous layers’ orientation angle on 

compression properties was analyzed. The results show that samples prepared by vibrating 

perpendicular lapper exhibit better compression properties. The results also show that the 

compressional resistance has a strong relation with porosity, the adjusted coefficients of 

determination is 0.97, indicating that the compressional resistance is directly proportional to 

the density of perpendicularly-laid nonwovens. The results indicate that the perpendicularly-

laid nonwovens with higher initial fibrous layer orientation angle have better compression 

properties.  
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An experimental investigation on the thermal properties of perpendicularly-laid nonwovens 

was carried for establishing relationship between thermal and acoustic properties. Seven 

perpendicularly-laid nonwoven fabrics were selected to examine thermal properties including 

thermal conductivity and thermal resistance. Alambeta was used for evaluation thermal 

properties. The influence of structural parameters on thermal properties were investigated and 

analyzed. The effect of porosity on specific airflow resistance and thermal properties was 

studied in detail. The result indicated that porosity has a strong correlation with specific 

airflow resistance and thermal properties. It was also observed that sound absorption, the 

NRC and mean value of sound absorption coefficient ( ), have insignificant correlation with 

thermal conductivity, while they are strongly correlated with thermal resistance. The adjusted 

coefficients of determination of NRC with thermal resistance is 0.98, indicating that NRC is 

directly proportional to thermal resistance of perpendicularly-laid nonwovens. 

This study also investigated the air permeability of perpendicularly-laid nonwovens and their 

relation to acoustic performance. Air permeability of perpendicularly-laid nonwovens was 

examined by using FX3300 Textech Air Permeability Tester. Perpendicularly-laid 

nonwovens with high areal density and fabric thickness showed lower air permeability. It was 

observed that  were inversely proportional to air permeability, with adjusted coefficients of 

determination 0.98. It was concluded that air permeability can be used as a criterion of sound 

absorption behavior of perpendicularly-laid nonwovens, a lower air permeability suggested a 

better sound absorption performance for perpendicularly-laid nonwoven fabric. 

5.1 Scope for future work 

The ideas, experiments and data generated as part of this research, have added to the 

knowledge base that could be useful to define the future direction and provide insightful 

references to researchers. The potential of this research can be realized by pursuing further 

studies into areas given below: 

 Applying semi-phenomenological and empirical models, such as Johnson-Champoux-

Allard-Lafarge model, on the acoustical investigation of perpendicularly-laid 

nonwovens to further study their acoustic behaviour. 

 To develop a suitable inverse method to obtain porosity, fibre diameter and density of 

polyester sound-absorbing materials. 

 Optimizing sound absorption of fibrous material under set frequency bands using 

numerical method based on existing models. 
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 Investigate the acoustic behaviour of waste natural fibers (e.g. wool, cotton, ramie, 

hemp, flax and jute waste) through practical and numerical method, and figure out the 

most suitable models for each type of natural fiber. 
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