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Abstract

For several decades, holographic interferometry performs an indispensable role
among the measuring techniques. It is an universal technique that can be adapted to a
wide range of measurements from deformation measurements through vibrations
measurements to the temperature or pressure distribution measurements in gases.
Technology is constantly developing as well the holographic measurement.

Firstly, holograms were recorded analog and then these holograms were
evaluated by the experimenter. Afterwards, the recorded holograms were evaluated by
computers and nowadays the hologram can be recorded electronically on the CCD or
CMOS array and object wave is reconstructed using sophisticated algorithms. In digital
holographic interferometry the wave fields are compared and the results are displayed.

This whole process is quite demanding and it requires a lot of different
mathematical operations. Some of them proceed automatically and others require an
operator intervention. The MATLAB GUI application was developed for this purpose.
It contains all the necessary operations and also it is equipped by a number of graphics
and other tools to facilitate the work with data. The application meets the requirements
very well and greatly facilitates the accelerated implementation of the method of

holographic interferometry.

Keywords: digital holography, holographic interferometry, contactless measurement,

MATLAB GUI



Abstrakt
Holograficka interferometrie jiz nékolik desitek let plni nenahraditelnou ulohu

mezi méficimi technikami. Je to univerzalni technika, kterou lze adaptovat na velmi
sirokou Skalu riznych meéfeni, od deformaci téles pies vibrace az po teplotni nebo
tlakova rozlozeni v plynech. Technika se neustale vyviji a rozsifuji se i jeji mozné
aplikace.

Nejprve byly hologramy zaznamenany analogové a nasledne¢ vyhodnoceny
experimentatorem. Pozdé&ji zaznamenané hologramy byly vyhodnoceny pocitaci a dnes
jiz hologramy mohou byt zaznamenany elektronicky pomoci CCD nebo CMOS senzori
a objektova vina je rekonstruovana sofistikovanymi algoritmy. V digitalni holografické
interferometrii jsou vinova pole porovnana a vysledky zobrazeny.

Tento proces od zacatku az dokonce je pomérné naroény a vyzaduje desitky
ruznych matematickych operaci, nékteré probihaji zcela automaticky a jiné vyzaduji
zasah operatora. Pro tyto ucely byla vytvofena aplikace v prostiedi MATLAB GUI
zastieSujici vechny potiebné operace a navic vybavena mnozstvim grafickych prvki a
nastroju usnadnujicich praci s daty. Vytvoiena aplikace spliiuje pozadavky na ni
kladené velmi dobie a vyrazné usnadnila, zrychlila provadéni celé metody holografické

interferometrie.

Klic¢ova slova: digitalni holografie, holograficka interferometrie, bezkontaktni méfeni,
MATLAB GUI
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Introduction

With its many applications holography is one of the most interesting discoveries
in modern optics. Its scientific importance is emphasized by awarding Nobel Prize in
1971 to its inventor Denis Gabor. He created the word holography from the Greek
words “holos” meaning complete and “graphien” meaning to write.

A hologram is the photographically or otherwise recorded interference pattern
between a wave field scattered from the object and a coherent background called a
reference wave. It contains the information about the entire three dimensional wave
field. This information is coded in the form of interference stripes, usually with high
spatial frequencies. The object wave can be reconstructed by illuminating the hologram
with the reference wave. Such a reconstructed wave is de facto indistinguishable from
the original object wave and there can be recognized a three dimensional image with all
effects of perspective and depth focus.

Perhaps the most important application of holography is a so called Holographic
Interferometry developed in the sixties of the last century. Here, two or more wave
fields are compared interferometrically. Such technique allows the measurement of
changes of the wave field phase and thus the change of any physical quantity that
affects the phase. Holographic Interferometry permits to measure the deformation
distribution, to determine the refractive index changes, the temperature field distribution
and many others.

The development of the computing technology allowed transferring the
recording process or the reconstruction process into the computer. Recording of the
hologram numerically way led to a so called Computer Generated Holography, which
generates holograms by numerical method and afterwards these holograms are
reconstructed optically. Vice versa numerical reconstruction was initially based on
sampling of holograms recorded on a photographic plate. Such digitized holograms
were reconstructed numerically.

Inexorably evolving computing technology (increasing processing speed and
memory capacity of computers, as well as CCD and CMOS cameras having higher
resolution) led to direct recording of holograms with the CCD or the CMOS cameras. It
was a big step forward because this method - Digital holography - enables a full digital
recording and processing of holograms without any intermediate step, such as

photographic recording. Digital Holography can also be applied to interferometry

14



(Digital Holographic Interferometry) which offers much more possibilities than
conventional Holographic Interferometry. Beyond classical advantage in digital signal
processing like storing or filtering data, the major advantage is hidden in the possibility
to directly calculate the phases of stored light waves from the digital holograms, without
generating phase shifting holograms, which had to be done in conventional Holographic
Interferometry.

The numerical reconstruction and subsequent further processing of reconstructed
wave fields require a large number of mathematical operations and algorithms from
very different branches of physics like photonics or image processing. The goal of the
diploma thesis 1s to develop such an application that would comprise of all the
necessary operations from the numerical reconstruction, through the calculation and the
processing of phases, to the displaying of changes of physical quantities, like
the deformation or the refraction index.

The whole text 1s organized into three chapters: First chapter, Fundamentals of
Holography, presents theory necessary for Digital Holography and Digital Holography
Interferometry, starting with the wave theory, describing such effects as interference,
coherence, diffraction, and how these are employed in Digital Holography. Further the
meaning of interference phase in Digital Holographic Interferometry and its connection
to measurements of other physical quantities is explained. In second chapter,
Application for Deformation Measurement using Digital Holographic Interferometry,
detailed description of a single function included in the application is described step by
step. And the last chapter, Experiment, is devoted to application of the software to

a wide range of experimental data.
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1 Fundamentals of Holography

In this chapter the physical basics of holography and holographic interferometry
are described. The primary phenomena of holography are interference and diffraction.
Such effects are based on the wave nature of light. So this chapter begins with a
description of the wave theory of light. Terms for understanding the recording and

reconstruction of holograms and the effect of holographic interferometry are presented.

1.1 Light wave
Light is an electromagnetic wave of such a wavelength that is visible to the

human eye, see Fig. 1.

Wavelenghth

390 nm

Ultraviolet
—| 100 nm

Visible

Tum

1 10um

Infrared

1100 um

760 nm

Fig. 1: Electromagnetic spectrum with highlighted optical wavelengths and its

corresponding colors.

Generally it can be described by a set of partial differential equations called
Maxwell ‘s equations. Considering the propagation of light waves in vacuum without

bound charge and any bound current we obtain:

dE
VxH—soat,

oH (1.1)
VXE= —.uoﬁ,

VE=0,
VH=0,

16



where (V X} is an operator of curl, (V.) is an operator of divergence, E, H is a vector of

1 is a vacuum

intensity of electric resp. magnetic field, py =4m X 10~7Hm™
permeability and finally £, = 8,85 X 10™12Fm™1 is a vacuum permittivity.
Using properties of curl (vector identity): ¥V X (V X E) = V. (V. E) — V2E and the

Maxwell ‘s equations (1.1) we can derive a wave equation:

vE-1ZE_ g (12)

1

where ¢ = = 299 792 458 ms~1 is a constant - speed of light, V2= % + +

62
Hoto dy?

2
;? is the Laplace operator and x,y,z and t are the Cartesian spatial coordinates resp.

the temporal coordinate.

Transverse waves oscillate perpendicular to the direction of propagation, so the
vector notation must be used. The wave may oscillate horizontally, vertically, or in any
combination of these. Such effect i1s known as polarization. Fortunately, for most
application we can assume a wave oscillating in only one direction. Such a wave is
called plane polarized. For a plane-polarized wave propagating in the z-direction the

following scalar wave equation is sufficient:

9’E  19°F _ (13)
9zz 23tz

The most important solution of such wave equation is a harmonic wave. If we

consider oscillating source of electromagnetic waves in position z = 0:
E(0,t) = Eycos (wt + ¢),
then for the point in the distance z from the source it follows that:

(1.4)
E(z,t) = Eycos(wt — kz + @),

17



where Ej 15 a real amplitude of the wave and the term {wt — kz + @) gives the phase
of the wave The wave number k 15 = 2%: , where A is a wavelength.

The use of trigonometric functions leads to difficult calculations, which can be
avoided by using the Euler’s formula:

(15)

el® = cose + jsing,

where j =+—1 1s an imaginary unit. Therefore the equation for harmonic wave in
complex domain U (where function U represents any of components of electric intensity

E or any of components of magnetic intensity H) can be written as:

U(Z, t) = erf(wt—kz+qz) =

1.6
= Eqcos{wt — kz + @) + jEysin{(wt — kz + @) (1.6)

Hence it can be seen that E{z,t} = Re{U(z,t)} = %[U(z, t) + U"(z,t)]. During most
of the phenomena in physical optics the frequency does not change so we can omit the

term e ~/(®®) and we can consider only the so called complex amplitude independent on

time:

U(z) = erj(kz—qa),
(1.7)

or in general form:

U(r) = Upellkr-o), (1.8)

where r = (x,y,z) is a position vector, k = (k,, k,, k;) and simultaneously k| = 27’: =

k is a wave number.
After establishing of equation E{(r,t) = U(r,t) = U(r)e 7@ to wave

equation (1.2) we obtain differential equation:

(V2 +kHU@T) =0, (1.9)
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called Helmholtz equation. All the waves described by the complex amplitude

U(r) must obey Helmholtz equation.

uft) A Im{u} A Im{u(t)}
a C) ®

oo Jed) > T e b)
Up Ug 7
" - % r ’:h -
‘v \/ U v \/ v t Re{U} Re{U(t)}

Fig. 2: Representations of a monochromatic wave at a fixed position r: a) the wave

function U(t) is a harmonic function of time; (b) the complex amplitude U(r) is a fixed

phasor; (c) the complex wave function U(t) is a phasor rotating with angular velocity @.

1.2 Intensity of light
The only parameter of light wave which is directly able to affect sensors — eye,

photodiode, CCD target, etc. - is the intensity. Intensity I is defined by the energy flux

through an area per time. From the Maxwell equations we get:
I = gocE>. (1.10)
Speed of light and permittivity of vacuum are constants so we just use:

I ~U?=E2 (1.11)

% ) WD
U(r,t)? i(r)

“d “t‘“m nlﬂnf‘lfm.ﬂmih‘l m | “.lh !(' ”.ll

Fig. 3: Intensitv of a light wave: a) immediate changes of inftensity with very high

-

Y

[frequency; b) intensity averaged by a detector which does not vary with time.
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We can see that the intensity has a nonlinear dependence on the complex amplitude
strength. No detector is able to follow fast changes of intensity because of the very high
frequency of light. The measured value of intensity is always a result of integration over

a measuring time T, and the immediate value of intensity is not measurable, see Fig. 3.

We can measure only the mean value. If T, > T = zf we define [ as:

1.12
I1=UU*=|UJ3 %
where * denotes complex conjugate. The intensity of a general wave field is:
, Im
I(r) = U@UE)) = [ 3, U, U (r, t)dt. (1.13)
2

1.3 Interference of coherent waves

Interference appears if two or more coherent light waves occur in a space. The
interfering waves must be coherent for the interference to appear. Otherwise the
interference pattern changes very quickly with time and space and the result is just the
mean value of intensity as was mentioned above.

The resulting wave function is described by a sum of each single wave. This
basic principle of superposition results from the linearity of the wave equation (1.2). In
the case of monochromatic waves with the same frequencies the principle of
superposition for complex amplitudes (1.8) is still valid. It conforms to the linearity of
Helmholtz equation (1.9). If we consider two monochromatic waves with complex
amplitudes U; (1), U,(r), the resulting wave is also monochromatic (with the same

frequency) and its complex amplitude is:

U(r) = Uy (r) + Uy (1) (1:14)
According to formula (1.12) intensities of interfering waves are I; = |U;|? resp.
I, = |U,|? and for the resulting intensity we get:

(1.15)

Ir) = UM + U () + U,(n)|* =
= |U;(N)|? + U, () |2 + Uy (P)U," (r) + UL () U, (1)
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Using U; = ,/Ee”’i and U, = JEeﬂPZ where ¢4, @, are corresponding wave phases,

for the detectable intensity we obtain an equation:

I= I1 + Iz + 2-‘/ I1IchS(P, (1 . 16)

where @ = @, — @4. This relation (1.16) called interference equation can also be
interpreted geometrically as the phasor diagram which demonstrates that the magnitude
of the phasor U is sensitive to the phase difference ¢, not only to the magnitudes of the
constituent phasors Uy, U;, see Fig. 4b. It can be seen that the superposition of two
waves does not correspond to sum of their intensities. Moreover, the additional
component chosqo appears. This term can be positive or negative and it influences

the brightness of certain parts of interference pattern.

\ /

Fig. 4: Interference of two waves: aj relation of total intensity I on the phase difference @;

b) phasor diagram for the superposition of two waves Uy, U, and phase difference

Q=2 — Py

1.4 Coherence

With common light sources such as the sun or a light bulb we observe
interference only seldom. Only light of sufficient coherence will exhibit this effect.
Coherence is defined more generally by the correlation properties between quantities of
an optical field. Light is classified as coherent, incoherent, or in general, partially
coherent. The two viewpoints of the general coherence are the temporal and the spatial

coherence.
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1.4.1 Temporal Coherence

Temporal coherence describes the correlation of a wave with itself (autocorrelation) as
it behaves at different points in time. The autocorrelation function of a stationary
complex random function U(t) is the average of the product of U*(t) and U(t + 7) as
a function of time delay T. Result of such a function is so-called temporal coherence

function:

G(z) = (U*@®U(t + 1)) = limp_p - [5 U* (@)U (t + 1) dr. (1.17)

It is easy to show that intensity I is equal to G(7) when T = 0, see 1.13.

G(0) = (U U@ =(U®)I*) =1 (1.18)

The temporal coherence function G(7) carries information about the intensity I and also
the degree of coherence. To dispose of relation on the intensity we can normalize the

temporal coherence function to get complex degree of temporal coherence g(T):

_G(m) _(Ur(@U(t+1)) (1.19)
TG0 (Ur@U@E)

g(@)

a) 1 -dib-

b)\c)

T¢ EC_,. o
J .

Fig. 5: Three random waves, the magnitudes of their complex degree of temporal
coherence |g(t)|: a) coherent wave with infinite coherent time T, b) ,c) partly coherent

light waves with different coherent times 1.
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The absolute value must be in the{0,1) interval. If complex degree of temporal

coherence g(7) decreases monotonically with time delay, the time T, at which it falls to
i 1 : : z
a certain value (for example 3 that corresponds to a bandwidth) is the coherence time 7.

For T < 1, the light wave is strongly correlated, otherwise for T > 1, the correlation is
weaker. It follows that the coherence time of monochromatic light is infinite, since
|g(t)| = 1 everywhere.

Light, for which the coherence time 7, is much longer than the differences of the
time delays appearing in the optical system can be seen as completely coherent. Thus
light is coherent if the distance I, is much greater than whole optical path-length. The

distance I, is known as the coherent length:

I, = ct,. (1.20)

Effect of coherence can be seen during interference. From equations (1.15) and

(1.19) we can derive interference equation for partially coherent waves:

I= Il -+ Iz + 2« I112 RE{glz} = 11 + Iz + 2-\/ 1112|312|COS¢, (1 21)

where @ = @, — @ and |gy,| is a magnitude of the normalized cross-correlation. It is
obviously recognized for the monochromatic wave |gq| = 1, that the interference

relation is consistent to interference equation (1.16).

1.4.2 Spatial coherence
Spatial coherence describes correlation of different parts of the same wave front,

so the mutual intensity G (rq,73) is sufficient:

G(rll ?'2) = (U* (r]_)U(Tz)), (1.22)
and in its normalized form:
G(rler) (123)

) = e Sht
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The magnitude |g(rq,72)| is bounded between zero and one 0 < |g(rq,72)| < 1. If the
complex wavefunction U(r,t) is deterministic, |g(rq,72)| = 1 for all rq and r,, then
the light is completely correlated everywhere.

The spatial coherence of quasi-monochromatic light (its frequencies are strongly
peaked about a certain frequency) is described by |g(ry,72)| as a function of the
distance |1y — 13|. This function is equal to one when ry = ry and falls if |1y — 13|
increases. The set of points, where the value |g(rq,72)| is bigger than certain value (for
example % ) is called the coherence area A.. The coherence area is very important
parameter of light wave (similar to coherence length in case of the temporal coherence).
It must be considered in relation to other dimensions of our optical system. For example
if the coherence area is greater than the size of the aperture through which light is

transmitted, the light can be regarded as coherent and vice versa.

»
Ig(ri,r2)i
C

_’._
7 ig(r1.12)1

Fig. 6: Two examples of the magnitude of the normalized mutual intensity |g(rq,12)| as a
Junction of 1y in the vicinity of a fixed point vy. The coherence area A, in (a) is larger than

inbh).

1.5 Light waves as a linear system

Consider a plane wave with complex amplitude

U(x,y,2) = Uge ICartkyyiksa), (1.24)
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where ky, ky, k, are components of a wave vector k = (ky, ky, k;) = 21(vy, vy, ;)
with spatial frequencies Uy, vy, v, in related directions, see Fig. 7. Magnitude of the

wave vector is called wave number

2
k% = k* + k2 + k7 = (3) = @2l +3,2 +,2). (129

Furthermore 4 denotes wavelength and Uy is complex envelope. The vector k forms

angles
0, = arcsin%" =arcsinuy A = U, 4, (1.26)
with the y-z planes and
k
8, = arcsin-X = arcsinv, A = v, A,
y K Yy y (1 27)

with x-z planes. Therefore the angles of the wave vector are related to the spatial

frequencies of the harmonic function.

A
a) X b)
Ulx.y.z)
-~
k X ~ » \\\//;
~
-
8 Jix,y)=U(xy,0)- \\\\
y
- k
= 6 k, ~ e,\.
. <5/ z ' s
=~ —
~ i f
v Vi

Fig. 7: a) The wave vector k decomposed into components Ky, Ky, K, and illustration of
.k .k 5 ; :
angles 8, = arcsmf and 6, = arcsmf respectively; b) A thin element f{x,y) with

spatial frequency v, at plane z=0 is corresponding to a plane wave traveling at angle 8.

Consider a thin optical element (in our case hologram) with the complex amplitude

transmittance (superposition of harmonic functions), see Fig. 7b, then:

flx,y) = ff:o Uo( ¥y, vy)e—jzn(uxx+ vyY) dv, dvy, (1.28)
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in the z = 0 plane. Then the wave is modulated by the harmonic function,
soU(x,y,0) = f(x,y). Further the transmitted wave U(x,y,2) is the superposition of
plane waves, at z > 0

U(x,y,z) = ff Up( vy, Uy)e—,inx(vxx+ vyY) g~ikzz gy, duy, (1.29)

with complex envelope Ug(vy, vy ), where k, = 21 Jaiz —4—i);2 5ee 125,

Now we examine the propagation of a monochromatic optical wave of
wavelength A and complex amplitude U(x, y, z) in the free space between the planes z =
0 and z = d, called the input and output planes. The complex amplitude of the wave at
the input plane f(x,y) = U(x,y,0) is given and from 1.31 we will determine the
complex amplitude at the output plane denoting g(x,y), where g(x,y) = U(x,y,d).
We regard f(x,y) and g(x,y) as the input and output of a linear system, see Fig. 8.

X X
Ulx,y,2)
fxy) OpncaL system alxy)
2 h
Input plane Output plane
z=0 z=d

Fig. 8: The transmission of a light wave U(x,y, 2) through an optical system between an
input plane z = 0 and an output plane z = d. It can be regarded as a linear system, whose
input and output are the functions f(x,y) = U(x,y,0) and g(x,y) = U(x,y,d).

The system is linear because U(x,y, z) must satisfy the Helmholtz equation (1.9). The
system is shift-invariant because of the invariance of free space to displacement of the

coordinate system. A linear shift-invariant system is characterized by its impulse

response function h(x,y) or by its transfer function H ( Uy, vy):

H( s ) g(x, y) —jz:rd ’%_vxz_vyz. (1.30)

fy)
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So, the output — input relation can be determined as:

90,y = F(x, H( vy, vy) = (131)

o . 1
—j —j2nd ‘——v Z—yy2
= f f UO(Ux: Uy)e 2a(vxxt vyy) o 2z JxTTVy dvx dvy_
—ca

The impulse response function h(x,y) of the system of free space propagation is the

response g(x,y) if the input f(x,y) is at point (0,0). It is the inverse Fourier transform

of the transfer function H( v,, vy):

hr.y) = F*{H (v, v,)} 132)

The expression for the transfer function in (1.32) may be simplified if the input function

f(x,y) contains only spatial frequencies that are much smaller than the cutoff
frequency % which me:clns}.—l2 » vy? + v, Then the plane-wave components of the

propagating light make small angels corresponding to paraxial rays. Then the following

formula holds true:

2 2 62

where @ is the angle with the optical axis, see Fig. 7a. The phase factor of the transfer

function written as a Taylor series is

4 4
—j2n V102 ~ —j2ni(1-Z+Z-..), (134)

Omitting the third and higher terms of this expansion, the transfer function H ( Y, ‘Uy)

may be approximated by

H( vy, vy) = e-ﬂ“(%-%(”xz‘f"yz))d = e-f%“dema(vx2+vy2)_ (1.35)
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Likewise the output - input relation can be determined as:

9(x,y) = f(x,y)H(vy, vy) = (1.36)

21 o : ;
== ﬂ Uo( Uy, vy)e 12 (vext vyy) gimdd(v+vy®) gy, au,.
—co

This approximation is known as the Fresnel Approximation. Hence, the impulse

response h(x,y) can be derived as:
j , _ x24y?
h(x,y) = FH{H vy, v,)} = e e 2d (137)

Therefore the free space propagation can be described as a convolution:

9(x,y) = f(x,y) * h(x,y), (1.38)

where the operator * is a convolution operator.

1.6 Diffraction theory

When an optical wave is transmitted through an aperture in an opaque screen
and propagates some distance in free space, its intensity distribution is called the
diffraction pattern. If light were propagated as rays, the diffraction pattern would be a
shadow of the aperture. Because of the wave nature of light, the diffraction pattern may
deviate from the aperture shadow, depending on the distance between the aperture and
observation plane, the wavelength, and the dimensions of the aperture, see Fig. 9.

The simplest theory of diffraction is based on the assumption that the impinging
wave is transmitted without change at points within the aperture, but is reduced to zero
at points on the back side of the opaque part of the screen. If U(X,y) and f(x,y)are the

complex amplitudes of the wave directly to the left and right of the screen, then:

fy) =UXrEy), (1.39)

where p(x,y) is called the aperture function defined as p(x,y) = 1 inside the aperture
and p(%,y) = 0 outside the aperture.
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Function f(x,y) is usually given, the complex amplitude g(x,y) at an
observation plane at distance d from the screen may be determined using the methods

of free space light propagation, see 1.31.

\

Observation plane

Aperture plane

\

Fig. 9: A wave is transmitted through an aperture of amplitude transmittance p(x,y),
generating a wave with complex amplitude f(x,y) = U{x,y)p(x,y) After propagation in
[free space in the distance d there is a complex amplitude g(x,y) and finally the diffraction
pattern is the intensity I(x,y) = |g(x,¥)|%.

The diffraction pattern I(x,y) = |g(x,y)|? is known as Fraunhofer diffraction or
Fresnel approximation. It depends on whether free space propagation is described. The
Fresnel approximation (1.34) replaces the secondary spherical waves by waves with
parabolic wavefronts, while the Fraunhofer approximation uses even plane wavefronts.
For our purpose we use the Fresnel diffraction, which is uniquely less restrictive than
the Fraunhofer one, so we will use the formula (1.36). The condition for Fresnel

approximation is fulfilled when the third term in 1.34 is much smaller than 7:

%4 « 1 (1.40)

If a is the largest distance in output plane and d is the distance, then the largest angle

6,, = - and it may be rewritten as:

=
d

N,6,,2 (1.41)

« 1,
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2
where Np =:—d is called Fresnel number. For completeness’ the above mentioned

Fraunhofer diffraction must fulfil the following condition:

Np « 1. (1.42)

— ]

' Aperture
—) |
' |
Hp'umjmﬂm Without |
aproximation

—b

|
|
|
Fresnel zone (near field) | Fraunhofer zone (far field) —"'z
|
|
|

Fig. 10: Relative positions of Fresnel and Fraunhofer zones.

1.7 Holography

Holography involves the recording and reconstruction of optical waves. A

hologram is a transparency containing a coded record of the optical wave.
Consider a monochromatic optical wave with complex amplitude Uy(X,y) in a plane,
where z=10. If a thin optical element with complex amplitude transmittance
h(x,y) equal to Uy(x,y) exists it would be possible to provide a complete record of the
wave. Then the wave could be reconstructed by illuminating the transparency (thin
element) with a uniform plane wave of unit amplitude propagating in the z direction.
The transmitted wave would have a complex amplitude in the z= 0 plane U(x,y) =
h(x,y) = Uy(x,y) . Then the original wave could be reproduced everywhere in the
space z = 0.

The question is how to make a transparency h(x,y) from the original wave
Uo(x,y). The main problem is that optical detectors like photographic emulsions,
human eye or CCD sensor are responsive only to the optical intensity |Uy(%,y)|? and
therefore they are insensitive to the phase arg{Uy(x,y)}. But the phase is evidently
important and cannot be disregarded. To record the phase of Uy(x,y), a code that
transforms phase into intensity must be found. Then the recorded information could be

optically decoded in order to reconstruct the wave. Such a code is based on combination
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of the original wave - the object wave Uy with a known reference wave U, and
recording their interference pattern in the z = 0 plane. The intensity of the sum of the
two waves is recorded and a transparency of complex amplitude transmittance h is

obtained. The transmittance is then defined as:

h =~ |Uo T U._,,.|2 = |Uo|2 + |Ur|2 + UoUr* + Uo*Ur =
= Ip + I + 2 /IyI-cos (¢r — Qo)

(1.43)

where I, and I are the intensities of the reference wave and the object wave in the
z = 0 plane. The transparency h called a hologram carries a coded information about
the intensity and phase of the wave U, and the hologram h is highly sensitive to the

difference between the phases of the two waves.

Object wave

\\\@@% il A

Holegram Holagram

Object wave
Fig. 11: The hologram: a) transparency on which the interference pattern between the
object wave and the reconstruction wave is recorded; b) the object wave is reconstructed
by illuminating of the hologram with the reference wave.
To decode the information in the hologram and reconstruct the object wave, the

reference wave U, must be used to illuminate the hologram. The result is a wave in the

hologram plane z = 0 with complex amplitude:

U = hUy = UL, + Uplo + LU + U, 2Up". (1.44)

The term I.Uy is the original wave multiplied by the intensity of the reference wave I,..
If I, is uniform this term constitutes the desired reconstructed wave. The term U, 2Up* is
a conjugated version of the original wave modulated by U,% and the terms U,
U, I, represent the reference wave, modulated by the sum of the intensities of the two

waves I, and I.
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-
Fig. 12: The holographic setup: a) The object wave U, scattered from the object and the
reference wave U, interfere on the recording medium. So the hologram is created; b)
Object wave is reconstructed by illumination the hologram with the reference wave. The
object appears in the same position relative to the hologram as it was positioned during
recording.

1.8 Digital holography

The aim of digital holography is to record holograms, which are later stored in a
computer memory and then can be reconstructed numerically afterwards. The digital
recording medium is usually CCD camera. In this chapter main differences between
digital and conventional recording holographic setups and the following reconstruction

process are introduced.

1.8.1 Digital holography recording

The basic principle of digital hologram recording is the same as in the
conventional holography. Only the recording medium is different. The hologram is the
microscopic interference pattern generated by the coherent superposition of an object

and a reference wave as was mentioned in the previous chapter.

REIRK
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|l | |

—_— o -

. >
Fig. 13: The interference of two plane waves at angle 8: a) the result is sine period d; b)
simplification for easier determination of period d, see 1.45
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The spatial frequency of such interference pattern is defined by the angle between

these two waves:

A (1.45)

A meaningful sampling of the intensity distribution constituting the hologram is only
guaranteed if the sampling theorem is followed. The sampling theorem requires that the
spatial period d must be sampled with more than two pixels:

d > 2A¢, =

where A¢ is the pixel size. For small values of angle 8 we can consider sinf =~ 6.
Hence the limit value for the angle 8,,4,, which is the maximum angle formed by
reference and object wave when the sampling theorem is followed, can be determined

as:

. A (1.47)

Naturally, the sampling theorem must also be followed for conventional holography, but
due to the resolution of digital and analog recording medium, the meeting the conditions

of sampling theorem is much more exacting for digital holographic setup.

Fig. 14: The detailed illustration of a part of the CCD target: it can be recognized that the
distance of interference frings d must be at least greater than pixel extension A% to fulfil the
sampling theorem.
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If we consider geometry shown in Fig. 15a with the object width dy in the x
direction placed symmetrically to the optical axis, and a reference wave propagating
along the optical axis and impinging orthogonally onto the CCD, we can calculate the

maximum object width d for a given distance d:

tan = 22, (1.48)

Together with the condition of maximum angle 0,4, we obtain the following:

|t
27 g =i, (1.49)
From that we can derive a formula:
Ad
Go Sz —HAL (1.50)

which describes the limit for a maximal width d, of the object with respect to distance
d and simultaneously the sampling theorem for such parameters is fulfilled.

In practical applications of holographic metrology we often have objects with
large surfaces. If so, the sampling theorem does not have to be fulfilled. In such cases
the wave field scattered from the surface of object can be reduced by using a negative

lens, see Fig 15b.

__a) b)
- P
e
- Negative lens
Object a1
s —
~ cco

_ - Y e el S
do l_/-""f z

L q _‘_b!__‘—ll._
L

Fig. 15: The geometry for recording of digital hologram: a) holographic setup without a
lens; b) holographic setup with reduced angle 8 by using a negative lens.

The object wave field impinging onto the CCD target seems to come from the small

virtual image of the object of width d,, and not from the large object with width d.
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, magnification formula Z =% _ L and the

dy g-f

]

From the lens formula %:%

geometry tanf = we can derive the term for distance between the lens and the

dy
2(a+b)
CCD, see Fig. 15b.

a=Jt0 ___fdbo _ (1.51)
g-f (g—f)2tand

Now, the distance between the CCD and the small virtual image of the object is
d=a+b instead of the original distanced =a+g. It can be seen, that

Oreduced K Biensiess and it is much easier to fulfill the sampling theorem.

1.8.2 Digital holography reconstruction
Although there exist other possibilities of reconstruction [11], here we will
concentrate on the numerical calculation of the wave field. The theoretical tool for the

numerical reconstruction is the diffraction theory.

1
A A 2
y n y afxy) "V
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nen) A1,
X
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Object plane Hologram plane Image plane z -
- ” -t 7 -

Fig. 16: The geometry for digital holography reconstruction.

Let the geometry for the numerical description is as in Fig. 16. At distance d from the
object surface we have the hologram plane with coordinates (£,7). At distance d from
this hologram plane we also have the image plane known as the observation plane,

where the real image can be reconstructed. The coordinates of this plane are again (x, y).

Consider the hologram with spatial frequencies v, = % and vy =%, and their

intensity distribution is h(£,n). Such a hologram originates by interference of reference
and object wave. To get real image of the object the reference wave must be complex
conjugated 7*(€,n), see 1.43. The reconstruction requires the illumination of the

hologram with the reference wave. This process is now modeled numerically by a
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multiplication of the digital hologram / with the reference wave r. From the formula
(1.36) and with the use of mentioned hologram h(¢§,n), we can derive the relation for

the wave field in the image plane:

-ra - —j2
9@y = [I" hE M T Em ¢T3 G Q@ g gy, (152)

. . , X ’ r - . .
then after substitution v’ = o and v’y = %_, where v', v’y are spatial frequencies

of relevant directions in image plane, we obtain the following;

s
7

0 , . . J
g,y =2 ” J‘J’_m h(E,7) 1 (§,n) e T2FEVxinvYy) eu—’f(«fzmz)df dng. (1.53)

With these substitutions we can see that the wave field g(x, ¥) is calculated by a Fourier

transform of the digital hologram A(§,n) multiplied by the reference wave r*(£,n) and
Jr

also by the so called chirp function e2a&*+1),

Because the reconstruction will be calculated numerically, we need a discrete form of

the formula (1.53). With the use of the equations:

& = kAE where1 < k <N, (1.54)

n=IlAnwherel <l <M,

for sampling of hologram plane and image plane:
x = nAxwherel <n <N,

(1.55)
y=mAywherel <m <M,
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we obtain the reconstruction equation:

g(nAx,mAy) = s
e‘:’zTnd N M N z 2 -
=—g ZZ h(kAE, l1An)r* (kAE, Mn)em(("ﬂf} +am)?) - jen(km 7)

k=1 1=1

where A, An are CCD pixel extensions, Ax, Ay are the image plane pixel sizes
andn, m, k, I are integers. In practical applications the pixel numbers N, M and the
pixel size A§ X An is given by the CCD by default. Image plane distances Ax, Ay are
given by the size of a frame, where the reconstructed object wave is displayed.

Formula (1.56) defines the practical discrete finite calculation method for the
reconstruction of the wave field coded in a digital hologram. The result g(nAx, mAy) is
a numerical representation of a complex optical wave field. Intensity I(nAx, mAy) and

phase @(nAx, mAy) distribution can be determined as:

I(nAx, mAy) = |g(nAx, mAy)[2, 1:27)
_ Im{g(mAx,miy)}
¢(nAx,mAy) = arctan 2 ore S (1.58)

This is a real advantage compared to the optical reconstruction, because by the optical

way we only obtain the intensity distribution.

Fig. 17: the digital holography reconstruction: a) the digital hologram; b) the intensity
distribution including: the real image (the dice), the virtual image (not focused), and the
d.c. term (the bright square in the middle); c) the noisy phase distribution.
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In the digital case we also have the possibility to calculate the phase modulo 27z. At first
sight it seems the phase calculation has no importance, because for rough object
surfaces it varies stochastically. But we will see that the phase calculation brings a real
advantage when it comes to applications in digital holographic interferometry.

We should not forget that the reconstructed wave field includes information about
the object wave (real image) as well as about its conjugated image (virtual image) and
reference wave (d.c.-term), see Fig. 17. This is the result of the reconstruction
interference equation (1.44). The real image corresponds to a wavefront converging to a
sharp image, while the virtual image belongs to a divergent wavefront that seems to be
not in focus. However the virtual image can also be reconstructed. Here the non-
conjugated reference wave must be used, see (1.43). This can be done by the numerical
calculation of the field in the (z = —d) plane. Such a plane corresponds to the object
plane according to Fig. 16. For more detailed information about the virtual image
reconstruction, see [2].

Another component, which can be seen in the intensity distribution image as a
bright central square, is a d.c.-term. It is much brighter than the reconstructed real or
virtual images. The physical meaning of the bright central square is a representation of
the zero-order diffraction of the reference wave (whereas real and virtual image
represents the first or the minus first diffraction order). Similarly it can also be the
projection of the illuminated CCD array. The bright square can be regarded as the
undiffracted part of the reference wave or (from the calculation point of view) the
d.c. - term of the Fresnel hologram. A mutual location of these components is given by
the holographic setup and by angle of the reference and the object wave. If the real
image is overlapped by the virtual one or by the d.c.-term we have to suppress these
phenomena. We can change the holographic setup to have all components well

separated or we can suppress them by numerical way instead [5].

1.9 Conventional Holographic Interferometry
The interference occurs if two mutually coherent waves are superposed and
holography was introduced as a method for recording and reconstructing optical wave
fields. Now these concepts can be combined to define holographic interferometry as the
interferometric comparison of two or more wave fields.
There exist several kinds of holographic interferogram recording methods, but for

our purposes we will focus at the so called Double Exposure Method. Other methods
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like Time Average Holographic Interferometry or Real Time Holographic
Interferometry are based on different principles and the processing of the data recorded

in this way is not included in the developed application.

mirror

beam-splitter
/ Z

lens

a) b)

Reference wave

Object  Object wave
’ Hologram
I -

Fig. 18: The double exposure method: a) two different states of object are recorded on the
same recording medium; b) the reconstructed holographic interferogram.

In the double exposure method of conventional holographic interferometry two
wavefronts scattered by the same object are recorded consecutively onto the same
holographic medium. These two wavefronts correspond to different states of the object,
one in an initial condition and one after the change of a physical parameter. Consider

the complex amplitude of the first wavefront in certain position 7 as:

U,(r) =, / I, (r)ele® (1.59)

and the complex amplitude of the changed wavefront:

U,(r) = I (@) el @@ +ae@), (1.60)

From the interference equation (1.15) the stationary intensity distribution is:

I(r) = L(r) + L,(r) + 2/ [,(r);(r)cos |Ap(T)|, (1.61)

where A@(r) is the interference phase difference (or shortly interference phase) and

represents the change of physical value. If the intensity of the first and the second wave
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fields are equal (I(r) = (7)), we can convert (1.61) into the resulting intensity
distribution:

1(r) = 21, (X)(1 + cos|Ap(r)]). (1.62)

An example of such a holographic interferogram is shown in Fig. 18b. Bright centers of
fringes are the contours, where the interference phase is an even integer multiplied by =,
while the dark centers of fringes correspond to odd integer multiplied by . From such

an interference pattern we can determine the interference phase Ag.

1.10 Digital Holographic Interferometry

The main advantage in digital holographic interferometry is that instead of a
reconstruction of a double exposure hologram and evaluation of the resulting intensity
field, the reconstructed phase fields can be directly calculated. The calculated
interference phase is modulated by the value 2m. Further the interference phase modulo
2m can be demodulated. These demodulated interference phase distributions already

carry the information about a change of a certain physical quantity.

1.10.1 Interference Phase Modulo 2n

In digital holographic interferometry the double exposure technique is realized
digitally. For this purpose the two digital holograms hy(kA&,lAn), h,(kAE,lAn)
representing two deformation states of the object surface are recorded one by one and
then reconstructed numerically (see the chapter Digital Holography Reconstruction).

Complex wave fields obtained in this way:

g1(n,m) = gy, (n,m) + jgis(n,m), (1.63)
92 (n: m) = Gr2 (n: m) + fgiz (n, m)r

can be compared numerically. There are two ways to process these wave fields

numerically. Partly we can calculate phase distributions of the wave fields separately as:

Im{g,(n,m)} = arctan g !1(“-"1)

@,(n,m) = arctan Relg, Cm)) gri(n,m)’

(1.64)
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@,(n,m) = arctanw — arctan 92 (n,m)
o gfz (ns m)

Re{g,(n,m)}

and then the interference phase modulo 2m can be determined by a point to point

subtraction according to:

Ap(n,m) = (1.65)

@.(n,m) — p1(n,m) + 21 if ,(n,m) —@;(n,m) < -7
=4 @2(n,m)—@,(n,m) — 2m if p,(n,m) — @,(n,m) = +n
@2 (n,m) — @,(n,m) if @,(n,m) — @,(n,m) € (—m,+m).

Here we have assured that the phase values are in the range (—m,+m), which is
required by the range of the inverse trigonometric function arctan.

Another, more direct, way of the interference phase calculation is:

Im{g,(nm)g," (nm)} _
Re{g;(nm)g,*(n.m)}

Gr1 (ns m)giz (n, m) — Gr2 (n, m)gil(n) m) (1 66)
gri(n, m)g,,(n,m) + giz(n,m)g;; (n, m)’

Ap(n,m) = arctan

= arctan

The intensity distribution of the resulting complex wave field can also be calculated as:

I(n,m) = |g2(n,m)g,"*(n,m)|2. (1.67)

The intensity distribution of this wave field corresponds to the interference pattern of

conventional optical holographic interferometry, see Fig. 18b.

1.10.2 Interference Phase Filtering

Although the noise included in the interference phase distributions generated by
digital holographic interferometry is low, there are still some distortions. Therefore a
smoothing of the interference phase by digital filtering should be performed to ensure a
reliable phase demodulation.

A simple low pass filtering is not applicable to phase distributions modulo 27. /t
will cut the sharp edges at the 2z-jumps. It would complicate the demodulation process,
which is based on finding these jumps. The Median filter does not preserve the edge
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sharpness either. Fortunately there exists a filter that permits smoothing the phase while
keeping the 2z-jumps at full amplitude. For this filter the interference phase must be

divided into two orthogonal parts:

s(n,m) = sin(Ap(n,m)), (1.68)
c(n,m) = cos(Ap(n,m)).

Although A@(n,m) is modulated by the value 2z, s(n,m) and c(n,m) contain no 2z
discontinuities. They both can be smoothed by a conventional low pass or median filter.

After filtering of s(n,m) and c(n, m) the filtered version of A@(n, m) is determined by:

Sriit (n,m)

A@ri(n,m) = arctan \
i cruc(n,m)

(1.69)

where index “filt”" denotes the filtered version of the corresponding field. Now the low
pass filtered interference phase Agg;;¢(n, m) has kept the 27 jumps at full amplitude and
simultaneously the noise is suppressed. The comparison of different filters is shown in

Fig 19.

Fig. 19: Interference phase modulo 2x filtering and function values along the green line:
a) non-filtered pattern; b) averaging convolution filter with kernel 7x7; ¢} median filter
with kernel 7x7; d) sofisticated filter using median filter with kernel 7x7 in orthogonal
directions.

1.10.3 Interference Phase Demodulation
From the formula (1.66) we can see that the interference phase distributions has
only values between —z and +m (see Fig20). Unfortunately in most practical

applications a continuous interference phase distribution is expected. The process of

42



resolving the 27 discontinuities by adding a step function consisting only of 2x steps is
called phase demodulation or phase unwrapping.

There exist two basic ways how to demodulate the interference phase. A more
direct possibility of demodulation [10] (a one-dimensional interference phase
distribution Ag(x)) is done by checking the phase differences of neighboring
pixels Ap(n + 1) — Ag@(n). If this difference is less than —z, an additional value 27 is
added to Ag from n + 1 onwards. If the difference is greater than +z one more 27 is
subtracted from A¢ starting at pixel n + 1. This easy algorithm strongly depends on
numerical differentiation, which will amplify the influence of noise in the phase data. If
a wrong difference occurs it can lead to an erroneous 27 term added, or subtracted, or

missing a necessary 2z term operation. Such a phase error spreads up to all following

pixels.
a) b) 4Ap
4n
Agp
m 2n
0 m
—n > 0 >
n n

Fig. 20: Interference phase: a) modulo 2x; b) demodulated interference phase.

To avoid the difficulties with a possible spreading of erroneous phase, path
independent demodulation procedures are recommended [13]. The following algorithm
considers the distribution of interference phase modulo 27 as a graph, where the points
are the nodes, and the arcs are the edges between neighboring points. For each edge a
value dy;(A@q,A@,y) is defined by the phase values Agq,A@yof the two nodes it

connects:

d2n (A1, A@y) = min{|A@, — A, |, |A@; — Ap, + 21|, [A@y — Ap, — 21|}
(1.70)

The demodulation now proceeds along the paths, where the values of d,,;(A@4,A@;)
are minimal. Along these paths the probability of an erroneous demodulation is also
minimal. Points with wrong phase are deselected this way as well as masked regions.

Finally points, which possess an erroneous phase remain isolated in the final
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interference phase distribution and can be easily recognized. Such points cannot be

reached along any path.

1.11 Holographic Interferometry as a Measurement Tool

The calculation of the interference phase distribution is usually not the final goal
of holographic interferometry. It is only an intermediate step in the determination of the
physical quantity of interest like deformation in the case of diffusely reflecting opaque
object, refractive index distribution or temperature field in the case of so called phase
object (transparent objects, which do not affect the amplitude of an optical wavefront

passing through, but only change the phase of this wavefront).

1.11.1 Deformation distribution measurement in relation to the interference phase

The measurements of the deformation of diffusely reflecting opaque object
surfaces in holographic interferometry is based on the displacement of each surface
point R, which influences the optical path difference §(R). This is the difference
between the paths from the source point S of the illuminating wavefront over the surface
point R to the observation point B before and after change of the deformation state. The

interference phase A@(R) is related to this path difference as:
2n (1.71)
Bp(R) = - 8(R) -

Consider illumination point S and observation point B (see Fig. 21). If the object

is deformed, the surface point R moves from position R; to a new position R,.

-‘Humf'nar}on point

Object

8
Observation point

Fig. 21: Geometry of the holographic setup for measurement of deformation.
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This change of position is called the displacement vectord = R, — Ry.

Now we can determine the optical path difference as follows:

8(R) = |SRy|+ | RyB| — |SRy| — | RyB| = (1.72)
=515 Ry + by RB —5:S R, — b2 B3 B,

where §; and §, are unit vectors in the direction of illumination, b4 and by are unit
vectors in the observation direction. Further § Ry and R;B are the vectors from § to R;
or R;t0oB.

From the Fig. 21 we can also determine the equation for the displacement vector

d(R) =R,B— R,B=5SR,—SR,;. (1.73)

Because deformations of an object are much smaller than the distances in holographic
setup (the displacement d is in the micrometer range, whereas the
distances |S R;|, | R;B| are in range of meters), unit vectors in the direction of
illumination 84,8, can be considered as parallel. Unit vectors in the observation
direction by, b, are oriented in the same way. Hence we canuse b=by; = by s =585, =

S5 and using (1.73) on (1.72) we get:

1.74
5(R) = d(R)[B(R) — s(R)]. (1.74)

Now we can define the so called sensitivity vector:
e(R) = Z[b(R) - s(R)], (1.75)

The sensitivity vector is defined by the geometry of the holographic setup. With the use
of (1.71), the equation for interference phase in relation on displacement vector d can

be expressed as:

(1.76)
Ap(R) = d(R)e(R).

It is evident we obtain the optimal geometry, in which the setup has maximal

sensitivity, if the object is illuminated perpendicular to its surface.
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It means that b(P) = (1,0,0), s(P) = (—1,0,0) and we can determine sensitivity vector
for optimal holographic setup as follows:

e(R) =7 (1.77)

In such a case the deformation in point R can be calculated by the following equation:

d(R) = - Ap(R). (178)

1.11.2 Refractive Index measurement

The refractive index distribution measurement of phase objects is also based on
the comparison of the interference phase between two different states.
Consider the double exposure method, when the first recording is done with the
refractive index distribution n, (x, y, z), and the second one with the different refractive
index distribution n,(x,y, z). If the recording wave impinging in the z direction onto
the phase object surface (plane with coordinates x, y) (see Fig. 22) then the path
difference &(x, y) is:

8(x,y) = fﬁ‘n(x,y,z)dz, (1.79)

where An(x,y,z) = ny(x,y,z) — ni(x,y,2) and with the use of formula (1.71) the

interference phase can be calculated as:

2 (1.80)
Ap(x,y) = Tn' f An(x,y,z)dz.

The simplest case is an object with refractive index varying in only one direction
(direction y for example). Consider the object with the length / in the z-direction and a

constant refractive index along /. Then the interference phase is:

Ap(y) =2 (n(y) — my)L. (1.81)
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beam-splitter

Hologram

Fig. 22: Holographic setup for measurement of the phase object refractive index.
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2 Application for Deformation Measurement using Digital
Holographic Interferometry

The first chapter has already shown the digital holographic interferometry
includes many operations and calculations which are interconnected. For this purpose
an application called DEMETER (DEformation MEasurement by inTERferometry),
which effectively solves all processing steps one by one, was developed. Beyond the
data processing and necessary numerical calculations the application also uses many
graphical tools for data visualization and analysis. User interface is intuitive and leads
the user from the beginning (loading of a digital hologram) to the end (a deformation
field display). DEMETER was developed using programming language MATLAB and

of its all functions and possibilities will be described in this chapter.

2.1 MATLAB Environment

MATLAB (from MATrix LABoratory) is a numerical computing environment
and computing language of the fourth generation. MATLAB allows matrix
manipulations, 2-D and 3-D plotting of functions and data, algorithms implementation,
creating user interfaces, and interfacing with programs written in other languages,
including C, C++, and Fortran. The MATLAB family contains more than 90 modules,
which can facilitate the data processing. The main structure of MATLAB is displayed in
Fig. 23. For the development of our application we have used mainly the Image

Processing Toolbox and The Graphical User Interface.

“
TOOLBOXES SR
Function SIMULINK
libraries Simulations and model based design
A

> L v MATLAB

Calculation, visualization, programming, ...

Fig. 23: The structure of MATLAB and SIMULINK
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2.2 Structure of DEMETER

The whole application is divided into four logical panel tabs. In the first panel
tab, called Hologram, the basic operations with digital hologram like loading, cropping
or histogram displaying are possible. These are necessary for the next step,

reconstruction, which is located in another panel tab. Here the basic parameters of the

B DEmETER [ESTE. )
DEMETER - DEformaticn MEasurement by digital helegraphic inTERferometry

Hologram Recoramuckon It T eroe Frace Daforsstion
Hologram State Zaro
hho Holagram
Load
Displary

Hestogram

Digital Halographic Interferometry
Hekgram Stebe Gre

o Holagram

Crepping

ROl Siza [pixf | 2046

Crop - cantim Crap

Fig. 24: DEMETER — opening screen.

holographic setup are set up. The numerical algorithms to suppress the d.c. term and the
twin image can also be used. The third tab - interference phase - is focused on
interference phase calculation, processing and demodulation. Finally the last tab panel,
Deformation, is aimed at the deformation field calculation, results analysis and
visualization. In the following text individual tab panels and their functions will be

described in detail.

2.2.1 Hologram

At first the digital hologram must be loaded from a file. The digital hologram is
usually stored in computer memory as an image in typical image format as jpeg, .bmp,
png, tiff, .gif or .raw. The button “Load” displays a modal dialog box that lists files in

the current folder and enables us to select or enter the name of a file. The current folder
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path is saved, which brings more comfort for repeated using of “Load” button callback,

because we do not have to search the current folder again.

B EMETR [E=p—
DEMETER - DEformation MEasurement by digital holographic inTERferometry

Helegram Feconrruston mtarance Prata Datarreation

Hologram State fero

s e = e

Mo Hologram

S X emom

Tos e ach L o A snch_ W - o

Disginy

— -

Digital Holographic Interferometry

F il

Huolograrm State Ore

Mo Hologram

il

Cropping

ROl Size |pix] | 248

Crop - cantrs Crop

Fig. 25: Tab panel Hologram with modal dialog box.

Now the digital hologram is ready for processing and can be displayed in its
current size using the “Display” button. Statistical analysis of the digital hologram
histogram can be displayed by pressing the “Histogram” button. It shows the
distribution of data by counting the number of data values within a range between
0 - 255 values and displaying each range as a rectangular column, see Fig. 56. The
height of a bin represents the number of values that fall within each range. It helps us to
decide if the shutter of the digital camera used for digital holographic recording was set
optimally.

Digital holography interferometry is based on a comparison of two different
wave fields, which correspond to a certain state of object. Therefore the checkbox
“Digital Holographic Interferometry” makes available the buttons “Load”, “Display”

and “Histogram” for the second digital hologram.
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Fig. 26: Tab panel hologram: display of digital hologram histograms and crop tool.

In reconstruction of wave fields the Fast Fourier Algorithm, which needs 2™
values, is used. It is recommended to crop the digital holograms using 2™ squared
region. The button “Crop” serves to this effect. If the check box “Crop - centre” is
selected, the cropped image is the squared array placed in the centre of initial image. Its
size can be set by “edit text” “ROI Size”. If the check box “Crop - centre” is not
selected, the Crop Image Tool with region of interest (its size is also given by “edit text”
“ROI Size” value) is displayed. The region is a moveable, resizable rectangle which we
can position interactively using the mouse. Then the cropping is done by double
clicking inside the region. The centre cropping in the majority of cases is sufficient for

processing of a digital hologram.

2.2.2 Reconstruction
The reconstructed wave field results from the formula (1.56). To simplify the
calculation of the reconstruction equation, the inverse discrete Fourier transform can be

used [2]:

fn,m) = S M, F(k, e/ (5 +w), 2.0)
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then the reconstruction equation can be presented as:

2.1

o leTnd

Ad

9, may) = S 7= {(kAg, Lam)r* (kAE, L) a 40"+,

where F~1 is the inverse Fourier transform, d is CCD — object distance, A is the

wavelength of used laser and A X An is the CCD pixel size in orthogonal directions.
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Fig. 27: The tab panel reconstruction.

Utilization of the Fast Fourier Transform algorithm (FFT) leads to the acceleration of
the computing process and to the reduction of computing time. Variables of
reconstruction formula (2.1) are set by corresponding “edit text”, see Fig. 27.

As was mentioned in the chapter about digital holography reconstruction, the
reconstructed wave also the twin image and the d.c. term. It is undesirable in case if the

twin image or the d.c. term overlaps the real image.
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Fig. 28: The resolution of intensity distribution: ajreconstructed from digital
hologram of size 1024x1024 pixels; b) 256x256 pixels

2.2.2.1 D.C. Term and Twin Image Suppression

The d.c. term is the zero order diffraction image and therefore it is represented
by low spatial frequencies of the digital hologram. Such low frequencies can be
suppressed by high-pass filtering of the digital hologram. There exist many ways how to
do it. In DEMETER two different ways with comparable results are possible. If the
“Cyclic High-pass Frequency Filter” radiobutton is selected, low frequencies in the
spectrum of the digital hologram are set to zero. The region, where the frequencies are
suppressed, is the circle with centre in the coordinate origin of the digital hologram
spectrum. The radius of the circle is adjustable using “edit text” “Radius”. Otherwise we
can select the radiobutton “D.C. Term Subtraction”. There the average intensity hgye of

the digital hologram h is calculated as follows:

have = $Z¥=1 Zlﬁil h(k, I)’ (22)

where N X M is the size of the digital hologram. N is the number of rows and M is the
number of columns. This average intensity is now subtracted from each stored hologram
intensity value, yielding the modified digital hologram h,,

han(k, 1) = h(k, 1) — hpe. (23)

By this subtraction of the d.c. term we have only suppressed the spatial frequency at the

point [0,0]. Therefore other high-pass filters suppressing the smallest spatial frequencies

can be employed to achieve desirable effects.
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This high-pass filter is defined by the subtraction of the averages over each 3 x 3 pixel

neighborhood from the original digital hologram:

he(k,1) = h(k,1) —

h(k—1,1—-1)+h(k—1,0)+ h(k—1,1+ 1) +
3 +h(kI-1) +hED+RKI+D+ |, CD
+h(k+1,1—1) + h(k + 1,1) + h(k + 1,1+ 1)

where hp is the filtered hologram and h is the initial digital hologram or the modified
digital hologram hy,.

After the digital hologram processing we can easily use the filtered hologram

hg instead of initial hologram h in the reconstruction formula (2.1).

Fig. 29: The reconstructed intensity distribution: a) without any adjustments;
b) after d.c. term suppression; ¢) twin image reconstruction with d.c. term

suppression; d) intensity distribution after d.c. term suppression and twin image
SUppression.
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Another component of the reconstructed wave field is the twin image
represented by the conjugated part of the complex field. The twin image is not focused
in the distance d (the observer plane) but it is focused in distance —d (the object plane).
By selecting the checkbox “Virtual Image”, the twin image will be focused, see Fig.
29c¢.

Usually the presence of the twin image is undesirable, so we want to suppress it.
If the object is placed completely outside the optical axis, so that the twin image in the
reconstructed field will not overlap the real one, then the amplitude spectrum of the
digital hologram will consist of two symmetrically placed partial spectra. One of these
contains the frequencies leading to the real image. The other one contains those
responsible for the virtual image. So we can set the frequencies of the virtual image to
zero and in the reconstructed frame only the real image remains. In DEMETER we can
select which half-plane, where the twin image is located, we want to suppressed, see
Fig. 29d.

2.2.2.2 Reference Wave

During the reconstruction, the digital holograms are multiplied with the
numerical models of the reference waves before the diffracted field in the image plane is
calculated. The most frequent reference waves used in praxis are the plane wave and the
spherical wave. This choice is also possible in DEMETER. The most commonly used in
digital holography is the plane reference wave. In general the reference wave is not

normally impinging onto the CCD and can be described as:

23
(k1) = U, ¢halksind1AE +isinatn) e

where U, is the complex envelope, 68, is the angle to normal in horizontal direction and
6, is the angle to normal in vertical direction. These parameters are adjustable using
corresponding edit texts.

The second case to be considered in DEMETER is a spherical wave. The

numerical expression for the Fresnel approximation of the spherical reference wave is:
r*(k, I) — Ure#ei—z((kﬁazi-(lﬁn)z). (26)

The effects of using different reference waves in the digital holographic process are
shown in Fig. 30.
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Fig. 30: The effect of reference wave direction: a) normally impigning; b) 8; = 0.5°
in horizontal direction ¢) 8, = 0.5° in horizontal direction and 8, = —02 in
vertical direction.

2.2.3 Interference Phase

In this section of application we want to calculate and process the interference
phase modulo 2m. The result should be demodulated interference phase without 2w
jumps.
After the reconstruction process of two digital holograms we have two complex fields

corresponding to certain state of the object:

g1(n,m) = g1 (n,m) + jgi;(n, m), 2.7
g2(n,m) = g,,(n,m) + jg;(n,m).

To reduce the noise, components of these complex fields can easily be filtered by

low-pass filter:

g{ilt(n’ m) = g.(n,m) =K, (2.8)
97" (n,m) = gy(n,m) K,
. L = %
where K = F(E ) is the matrix with n equal to the number of columns or
L. @ X

number of rows and symbol * is the convolution operator. The variable n can be set by
edit text “Squared Kernel Size”, see Fig. 31. If user sets the edit text “Squared Kernel

Size” to one, no filtering process is applied.
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Fig. 31: The tab panel Interference Phase.

The filtered version of complex fields is:

il . fil
g/ (n,m) = gl (n,m) + jgli" (n,m), 29
filt filt

g’ (m,m) = gl (n,m) +jgi, (n,m).

The comparison of this effect of the filter is shown in Fig. 33. Now the interference
phase modulo 2m can be calculated using (1.66), where we can use the filtered
fit it

components of complex fields g, as well as the initial components g4, g-.

» 92
The interference phase is calculated for all components of reconstructed field, but we
are only interested in the part of the field, where the object is located. Other pixels are
redundant and can be cropped. The cropping lowers the computing time during further
operations with the field. For this purpose a crop tool can be utilized. This tool is based

on the same principle as for the digital hologram cropping.
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Fig. 32: The crop tool.

After clicking the “Interference Phase calculation” button, the calculated
interference phase distribution with the cropping rectangle is displayed, see Fig. 32.
There we can crop the redundant pixels and after that the cropped or filtered

interference phase is displayed, see Fig. 33.

Fig. 33: The cropping effect and filtering of components of the complex field: a)
non-filtered version; b) filtered field by averaging filter with matrix of size
3x3pixels; c)field filtered by averaging filter with matrix of size 5x3 pixels.

In DEMETER there is another possibility how to pre-process the interference
phase. The sophisticated filtering is strongly recommended before the demodulation
process, as was described in detail in chapter “Interference Phase Filtering”. To do that,
the checkbox “Median Filter of (sin, cos) Components” must be selected. There the
interference phase is divided into two orthogonal components as can be seen from

formula (1.68), and these components are then filtered. To filter the
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components s(n,m), c(n,m) is used median filter. Median filter replaces the value of
each pixel by the median of values of all pixels in the neighborhood. The size of the
neighborhood can be set in edit text “Kernel Size”. Consequently the filtered version of
interference phase is given by (1.69). In DEMETER the whole process of sophisticated
filtering of interference phase is done by clicking the “Interference Phase Filtering”

button and the desired filtering effect is shown in Fig, 34.

M/
P 5 | f

A 1

Fig. 34: The effect of advanced interference phase filtering: a) non-filtered version
and its function values along the green line (in bottom part); b) the filtered version
and its function values along the green line.

Although we have already discarded some redundant pixel by phase field
cropping, usually there are still some left. These pixels are given by the object shape in
the rectangle region, see Fig. 32, where the round object is placed in rectangle region.
To eliminate these redundant pixels and to obtain an image without noisy background
the masking can be used. First of all the mask is created. It is a binary image with the
same size as the interference field. The pixels of the mask, corresponding to the
redundant pixels of the interference phase, are set to zero, other pixels are set to one.
Then the masked interference phase can be calculated from:

A@mask(m,m) = Ap(n,m) - Mask(n, m), 2-19)

where Mask is the mask field and symbol - indicates pointwise product.
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In DEMETER there are four possibilities how to create the mask. If the object
has a clearly defined geometrical shape, the mask type “Ellipse” for oval-shaped objects

or the mask type “Polynomial” for objects with straight edges can be used.

Fig. 35: Masking process: a) initial image; b) “ellipse” mask; ¢} finial image after
applying the mask.

The “Thresholding™ or “FreeHand” masks serve for more complicated shapes of

objects.

Fig. 36: ’ufaskmg process: a) initial image; b) “polynomial” mask; ¢) finial image

after the mask is applied.
If user selects the “Thresholding” mask, the threshtool is displayed, see Fig 37. There
we can continuously change the threshold value and find its optimized value, when the
redundant pixels are set to zero. While changing the thresh, all pixels in the interference
phase with luminance greater than the threshold value are replaced with the value one

(white) and all other pixel values are replaced with the value zero (black), see Fig. 38.

=

1

Fig. 37: Thresh tool: how does the change of threshold value inside the histogram
plot affects the binary mask.
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The last kind of mask is the “FreeHand” mask. It is very versatile, because we

can distinguish any shape we want by an interactive mouse dragging, see Fig. 39.

-

Fig. 38: Masking process: a) “threshtool” mask; ¢} finial image after the mask is
applied.

Moreover the possibility of applying the inverse mask is available. Inverse mask can
eliminate redundant parts of the object, e.g. a screw, see Fig. 39. We can choose

“ellipse” or “FreeHand” inverse mask.

Fig. 39: Masking process: a) initial image; b) “FreeHand” mask for the periphery
detection and ,,ellipse * inverse mask inside the region for the screw elimination; ¢)
finial image afier the mask was applied.

Now the interference phase is prepared enough for demodulation process. The
goal of demodulation is to unwrap the modulated interference phase and obtain
continuous interference phase without 2m jumps. Existing phase demodulating
techniques start from the fact that it is possible to estimate the neighboring pixel
differences from the modulated phase, when these differences are less than . Now,

the demodulated phase can be reconstructed by adding a constant.
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Fig. 40: Demodulation process: a) initial masked interference phase distribution
modulo 2m and finction values along the green line in the bottom part; b)

interference phase distribution after demodulation and function values along the
green line.

The demodulating methods differ in the way, how they overcome the difficulty
of errors being present in the phase field. The errors cause the estimated modulated

phase differences to be inconsistent and their demodulated value depends on

the integration path.

a)

Fig. 41: Demodulation process: a) initial masked interference phase modulo 2n
distribution and finction values along the green line are shown in the bottom part of

the figure; b) interference phase distribution after demodulation and function values
along the green line.

For demodulation process in DEMETER, “Goldstein algorithm™ is used. This

algorithm demodulates the modulated phase by integrating the estimated neighboring
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pixel differences avoiding the regions, where these estimated differences are
inconsistent.

The theoretical basis of the method was described in chapter ,,Interference Phase
Demodulation”. The main structure of this algorithm was taken from website [4] and
later it was upgraded for our own purposes. Demodulation is done by clicking the
“Unwrap Phase” button. The effect of demodulation process is shown in Fig. 40 and
Fig. 41.

2.2.4 Deformation
In this tab panel functions for calculations, processing and displaying of

resulting deformation distribution are available.
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Fig. 42: The tab panel Deformation.

At first we can set the reference point, which belongs to the deformation
distribution corresponding to known value of the deformation. In DEMETER we can set
a value anywhere in the deformation field, but usually we set a zero reference value in
point, where the value of deformation is also zero (e.g. near a rigid frame).

According to (1.78) the continuous demodulated phase has direct relation to the
deformation, so it can be easily calculated. It is done after clicking the “Deformation

distribution” button and then the resulting deformation distribution is displayed. If the
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radio button “Mesh” is selected, a colored wireframe mesh is drawn, where the color is
proportional to the surface deformation is drawn. On the other hand, if the radio button
“Surt” is selected a three-dimensional shaded surface is created. Both plots are partly
displayed in the user interface and they can also be displayed in their own figure if the

checkbox “Display in Figure” is checked, see Fig. 42, Fig. 43, Fig. 44.

Fig. 43: The surf plot of the deformed surface.

Because the calculated deformation field is not absolutely without noise, the

averaging convolution filter can be applied as:
dey(n,m) = d(n,m) * K,

1 P |
where K = %( ) is the matrix with » equal to number of columns and
e S

number of rows and the symbol * is the convolution operator. The matrix size » can be
set by edit text ,Squared Kernel Size“and filtering is done by ,,Deformation
distribution® button click. So we obtain the smoothed version of the deformation
distribution. If user sets the value in the edit text ,,Squared Kernel Size* to one, no filter

will be applied.
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deformation z-direction
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Fig. 44: The mesh plot of the deformed surface.

The user can also interpolate or decimate the deformation field. The decimation
appears advantageous in case of large fields. There the pixels density is unnecessarily
high. The size of the deformation field can be changed by edit text “Change array size”.

The effect of decimation and interpolation can be seen in Fig. 45a.b.

a) b) - c)

Fig. 45: The effect of decimation and colorbar scaling: a) initial 100% field of
deformation; b) 10% decimated field of deformation with colorbar autoscale;

c) 10% decimated field of deformation with colorbar manually scaled from -14 to
14um;

In DEMETER the axis ratio can be adjusted. This can be used to obtain better 3-
D plot of deformation field. The colorbar scale can be adjusted manually or

automatically according to minimal and maximal value of the deformation field, see
Fig.45b,c.
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When measuring the deformation we can also be interested in the direction of

the greatest rate of increase of the scalar field — the gradient:

where d is the deformation distribution, n,m are field coordinates and i,j are unit
vectors. The button “Gradient of Deformation” serves for this purpose. It plots gradient
vectors as arrows for each corresponding pair of elements in n and m, see Fig. 46.
Simultaneously the level curve (a curve along which the function has a constant value)

is plotted as can be seen in Fig. 46.

Fig. 46: The gradient field with level lines.

Another useful function for results interpretation is “slice”, which permits us to

plot function values along a certain line.

b
S
8-

Fig. 47: The slicetool: a) moveable, resizable and draggable line in the deformation
field image; b) Function values along the chosen line.
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After the “SliceTool” button click the image of deformation distribution is displayed.
There we can draw any line by a drag mouse. The line is resizable and draggable and

finally the values of deformation are plotted along the line, see Fig. 47.
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3 Experiment

In this chapter of my thesis we will demonstrate the applications of DEMETER

for measurement of deformation distribution.

3.1 The deformation distribution measurement of piezoelectric
actuators

Piezoelectric actuators are transducers that convert electrical energy into a
mechanical displacement using an inverse piezoelectric effect, which is the ability of
some materials to product mechanical stress in response to applied electric field.

We used two different piezoelectric actuators: round and squared. We powered
them by different DC voltage values to obtain different deformation
distributions - states of object - and for each of these states we have recorded a digital
hologram. The digital hologram recorded for non-supplied piezoelectric actuator was
used as a reference (not deformed) state. Then the digital holograms were processed by

DEMETER step by step and resulting deformation distribution field were displayed.

3.1.1 Square piezoelectric actuator

The DC voltage, which was applied to generate deformation states, was in range
0 — 60V. Then we changed the polarity of the DC voltage and repeated the
measurement. The results are displayed as a surf 3D plot, where the deformation
distribution is displayed for the whole surface of object. Moreover, the values of
deformation along the white line in the surf plot are plotted in the bottom part of the
figure, see Fig. 48. In following the results for single values of DC wvoltage are

introduced:
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Fig. 48: Deformation distribution Jor 20V DC voltage.
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Fig. 49: Deformation distribution for 40V DC voltage.
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Fig. 50: Deformation distribution for 60V DC voltage.

20V — changed polarity

Fig. 51: Deformation distribution for 20V DC voltage with changed source polarity.
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40V — changed polarity

Fig. 52: Deformation distribution for 40V DC voltage with changed source polarity.

defoemustion 3-deection

60V — changed polarity

Fig. 53: Deformation distribution for 60V DC voltage with changed source polarity.
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From these results we can estimate the behavior of the actuator with respect to
the value of the DC voltage. As was expected the higher the value of voltage the higher
the values of deformation we measured. Further the shape of deformation is given by
the polarity of the DC voltage source. The shape can be convex (Fig. 48, Fig. 49, Fig.
50) and if we change the polarity, the shape of deformation distribution is concave (Fig.
51, Fig. 52, Fig. 53). For concave deformation distribution the values of deformation are

higher than for the convex one while the voltage remains the same value.

3.1.2 Circle piezoelectric actuator
For measurement of deformation distribution of circle piezoelectric actuator we
have applied the same procedure as for the squared actuator. Only the range of the

applied DC voltage was 0 — 20V and no change of polarity was done.
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Fig. 54: Deformation distribution for 217 DC voltage.
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Fig. 55: Deformation distribution for 81" DC.
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Fig. 56: Deformation distribution for 16} DC.
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Fig. 57: Deformation distribution for 20V DC.
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3.2 The deformation distribution measurement of plate caused by
micrometer screw

In this case the deformation was caused by mechanical pressure generated by a
micrometer screw. By turning the micrometer screw we got different states of
deformation distributions. These states were recorded as a digital hologram and the

deformation distribution was evaluate by DEMETER, see Fig. 58.
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Fig. 58: Two different deformation distribution of a plate surface caused by
micrometer screw.

The oval-shaped part with zero value of deformation is the part where the screw
and the noisy background were masked. From these results it can be seen, that the

deformation distribution is changing with respect to turning of the micrometer screw.
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3.3 The phase object interference phase measurement

We have also tried to apply the digital holographic interferometry to phase
object as was described in the chapter “refractive index measurement”. As a phase

object we have used a candle flame and the heated resistor. The red color corresponds

1 [§ ]
- I l I

to higher temperature.

/

Fig. 59: The phase objects interference phase distributions: a) surrounding of a
heated up resistor, the resistor is placed in the oval masked region; b) surroundings
of a candlewick, which is placed vertically in the middle of the field.
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Conclusion

The goal of this thesis is to outline the theory of digital holographic
interferometry and on this basis to develop an application for the measurement of
deformation distribution. Deformation measurement, using digital holographic
interferometry is contactless, noninvasive, and a full surface method with very high
precision, which is in fractions of a wavelength of the laser in use. These properties are
very welcome and custom made for the method of a wide usage in engineering and
industry.

Recent developments in digital holographic interferometry are mainly connected
to the progress of the digital recording technique. A better resolution of digital sensors
permits the recording of a very fine structure hologramically. The evaluation process of
such holograms consists of many operations from different disciplines like optics or
image processing. It leads to a complex and large application. The complexity and
modernity of the problematic are probably the main reasons why such software has not
been obtainable by purchase or as a freeware until now and, therefore, we had to
develop this software ourselves.

The developed application meets requirements, such as robustness, adaptability
and applicability to the entire range of different experimental holographic setups for
accurate deformation measurement. The examined objects may be of almost any shape
or material and the measurement and range of deformation extends from about
5.107* — 5.10%um.

In this thesis we have firstly implemented a summary of the fundamentals of
digital holographic interferometry, and present some formulas necessary for the
development of the application. In the next chapter, the user interface and control of the
application is introduced and described in detail. Finally, many experiments for the
measurement of deformation distribution were conducted and consequently evaluated
by the developed application. Results of these experiments are also included in this
thesis.

The measurement of the deformation is not the only possible application of
digital holographic interferometry. The measurement of the other physical quantities
(strain distribution, stress distribution, refractive index distribution, temperature field
distribution etc.) utilizes the double exposure method principle as well. Therefore the

application can be easily adapted for the measurement of these quantities. Another
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holographic interferometry method is a time-average method, for measurement the
amplitudes of oscillating surfaces, in which we are also engaged. Currently, we are
working hard to develop applications for the evaluation of other measured quantities.

Since the results, so far, are very encouraging and can withstand the strictest
comparison, we will continue in the same way also in the future. The author of the
thesis is also the author of a paper dealing with these issues and is the co-author several
others.

A CD containing the developed application and the text of the diploma thesis is

enclosed.
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