
Case Study of Industry 4.0 Capability for
Fume Exhaust Units

Master thesis

Study programme: N2612 – Electrical Engineering and Informatics

Study branch: 3906T001 – Mechatronics

Author: Bc. Elǐska Veisová

Supervisor: Prof. Dr.-Ing. Alexander Kratzsch

Liberec 2016

Acknowledgements

I would like to express my sincere gratitude to Dr. Stefan Jakschik for the continuous
support, patience, innovative ideas and for letting me be a part of his company for
the duration of my master thesis writing.

I would like to thank my supervisor Prof. Dr.-Ing. Alexander Kratzsch for his
insightful comments and guidance. My thanks also goes to Bc. Michal Dostálek for
assistance with ARM programming, immense knowledge and encouragement.

Last but not least, I would like to thank my family for making my education
possible and for supporting me throughout my life in general.

Abstract

This master thesis has two major purposes: (1) to investigate Industry 4.0 capabili-
ties for fume exhaust units and (2) to create a prototype unit for needs of ULT AG
company which complies with the Industry 4.0 rules and shows possibilities for fu-
ture development in this area.

Industry 4.0 is considered as the fourth industrial revolution describing the future
industry development trends leading to smart factories and intelligent production.
Part of this thesis introduces basic principles and ideas of Industry 4.0 and presents
various solutions related with the fume exhaust industry. As a reaction to increasing
number of manufacturing processes employing Industry 4.0, the companies providing
filtration solutions such as ULT AG are made to think about future form and features
of their products.

The prototype unit uLite (ULT Air Quality Module) was created as a practical
part of this thesis. Its purpose is to measure various parameters associated with
the air quality and with the filtration unit itself, log them, save them to memory
medium, present them to the user and share with other devices. The uLite unit
core is based on ARM R© Cortex R©-M4 technology. The unit monitors the filtrated
air quality and can detect if any harmful substances are left behind. It also has
function to measure filtration unit vibration and possibility to connect external
waterproof probe. Furthermore there is option to measure pressure difference. Two
pairs of pressure differences can be measured with total of four inputs. The unit has
its own power supply solution and it is enclosed in durable box.

Keywords: Industry 4.0, STM32F407, air quality sensors, digital and analogue sen-
sors

Contents

1 Introduction 15

2 Industry 4.0 17
2.1 Internet of Things . 17
2.2 Cyber-physical systems . 17
2.3 Industry 4.0 basics . 19
2.4 Industry 4.0 in air-filtration . 20

2.4.1 Filter state and air quality monitoring 21
2.4.2 Mechanical state of the filter unit 21
2.4.3 Filter unit electrical properties 22
2.4.4 Fume exhaust unit control box 22

3 Embedded development introduction 23
3.1 Used resources . 23

3.1.1 Programming IDE . 23
3.1.2 Debugging . 23

3.2 Hardware requirements for interfacing ICs 24
3.2.1 Pull-up and pull-down resistors 24
3.2.2 Decoupling capacitors . 25
3.2.3 Analogue sensors interfacing techniques 25

3.3 Used communication buses . 26
3.3.1 I2C . 26
3.3.2 Serial Peripheral Interface . 28
3.3.3 1-Wire . 31

4 Prototype measurement box unit uLite 34
4.1 Temperature/humidity sensor choice 34

4.1.1 SHT21 temperature and humidity sensor 34
4.1.2 DS18B20 temperature sensor 39

4.2 Air quality monitoring . 43
4.2.1 Analogue sensors in uLite . 43
4.2.2 Dust sensor GP2Y1010AU0F 43
4.2.3 VOC particle sensor MP502 46
4.2.4 Carbon Monoxide sensor MQ-7 48
4.2.5 Combustive gasses sensor TGS813 50

6

4.3 Pressure monitoring . 51
4.3.1 AMS 5915 pressure sensor . 51

4.4 Vibration monitoring . 56
4.4.1 ADXL345 accelerometer . 56

4.5 SD Card . 61
4.5.1 SD card interface . 62
4.5.2 FatFs . 63
4.5.3 Commands for communication with SD card 63
4.5.4 SD Card initialization sequence 64
4.5.5 Communication with the SD card 66
4.5.6 SD card library for saving text files 67
4.5.7 Real time clock DS1307 IC . 68

4.6 LCD display . 72
4.6.1 LCD interface . 72
4.6.2 SSD2119 TFT LCD driver . 73
4.6.3 STMPE811 TFT touchscreen controller driver 75
4.6.4 Buttons . 79

4.7 Ethernet connection . 79
4.7.1 Transmission Control Protocol 80
4.7.2 ENC28J60 Ethernet controller 81

4.8 Base board . 85
4.8.1 Base Board schematics . 85
4.8.2 Base Board PCB . 85

4.9 Power Supply board . 86
4.9.1 Power Supply board schematics 86
4.9.2 Power Supply PCB . 87
4.9.3 Power Supply accessories . 87

4.10 Software for uLite box . 88
4.10.1 Microcontroller . 88
4.10.2 Program structure . 89

4.11 Prototype encasing . 91

5 uLite result presentation 97

6 Conclusion and perspectives 98

Appendix A Contents of enclosed CD 99

Appendix B Libraries on the attached CD 100

Appendix C SD card commands 101

Appendix D Saved files content 102

Appendix E ASCII table 103

Appendix F Function for creating buttons 104

Appendix G Base board scheme 105

7

Appendix H Power module scheme 106

Appendix I STM32F407 clock configuration 107

Appendix J uLite Connection Guide 108

Appendix K Measuring phase flow graph 109

Appendix L SHT21 library header 110

Appendix M Wire Shark records 112

Appendix N ENC28J60 SPI communication (Rigol) 113

8

List of Figures

Figure 1.1 Industrial revolutions . 15
Figure 2.1 5C Architecture . 18
Figure 2.2 Prototype unit requirements 22
Figure 3.1 Open drain (left) and push-pull output (right) comparison . . 24
Figure 3.2 Voltage follower (left) and non-inverting amplifier mode (right) 26
Figure 3.3 I2C topology . 27
Figure 3.4 I2C protocol . 27
Figure 3.5 classical SPI topology (left) and cascade configuration (right) 29
Figure 3.6 SPI Timing . 30
Figure 3.7 Start of communication on 1-Wire 32
Figure 3.8 Sending 0/1 bit over 1-Wire 32
Figure 3.9 Reading 0/1 bit over 1-Wire 33
Figure 4.1 SHT21 temperature and humidity sensor interface 36
Figure 4.2 SHT21 trigger temperature measurement 37
Figure 4.3 SHT21 incomming data . 37
Figure 4.4 SHT21 initialization and measurement flow diagram 38
Figure 4.5 DS18B20 interface . 39
Figure 4.6 DS18B20 start sequence . 40
Figure 4.7 DS18B20 initialization (left) and measurement (right) flow graph 42
Figure 4.8 DS18B20 probe . 42
Figure 4.9 Dust sensor . 44
Figure 4.10 Connection of the dust sensor 44
Figure 4.11 Pulse-driven wave form for IRED 45
Figure 4.12 Dust sensor response . 45
Figure 4.13 Dust sensor measurement flow graph 46
Figure 4.14 MP502 VOC sensor . 47
Figure 4.15 M502 recovery time . 47
Figure 4.16 MP502 hair spray test . 48
Figure 4.17 MQ-7 schematic . 49
Figure 4.18 MQ-7 connection . 49
Figure 4.19 TGS813 schematic . 51
Figure 4.20 AMS 5915 pressure sensor interface 52
Figure 4.21 AMS 5915 communication example 54
Figure 4.22 Flow graphs of AMS 5915 initialization and measurement . . . 55
Figure 4.23 ADXL output vs. gravity force 57
Figure 4.24 Connection scheme of the ADXL345 accelerometer 58

9

Figure 4.25 ADXL345 data acquirement 59
Figure 4.26 ADXL initialization (left) and measurement (right) flow graphs 60
Figure 4.27 ADXL345 probe . 61
Figure 4.28 ADXL345 probe - detail . 61
Figure 4.29 SD card pinout when in SPI mode 62
Figure 4.30 LC Studio SDcard reader schematics 62
Figure 4.31 LC Studio SD card reader . 63
Figure 4.32 SD card responses frames . 64
Figure 4.33 Waking up the card and setting the SPI mode 65
Figure 4.34 Acquisition of the SD card data type 65
Figure 4.35 Part of the SD card initialization sequence, CMD58 66
Figure 4.36 Decoding of data saved from oscilloscope containing a string . 67
Figure 4.37 File initialization (left) and write to the file (right) flow graph 68
Figure 4.38 DS1307 connection . 69
Figure 4.39 DS1307 request for register reading 70
Figure 4.40 DS1307 time data acquired . 71
Figure 4.41 SSD2119 driver initialization 73
Figure 4.42 Flow diagram of displaying a single pixel 74
Figure 4.43 Resistive touch screen . 76
Figure 4.44 STMPE811 Init . 77
Figure 4.45 STMPE811 calibration . 77
Figure 4.46 Reading touch position flow graph 78
Figure 4.47 TCP segment . 80
Figure 4.48 ENC28J60 Ethernet controller break-out board 82
Figure 4.49 ENC28J60 interface . 82
Figure 4.50 ENC28J60 communication flow graph 83
Figure 4.51 Web server created with ENC28J60 84
Figure 4.52 PCB bottom layer . 85
Figure 4.53 PCB design . 85
Figure 4.54 LM317 in adjustable regulator mode 86
Figure 4.55 PCB bottom layer . 88
Figure 4.56 PCB top layer . 88
Figure 4.57 PCB design . 88
Figure 4.58 Switch and jack schematics + PCB design 88
Figure 4.59 STM32F407 pinout . 89
Figure 4.60 Initilization (left) and preparation (right) phase flow graph . . 90
Figure 4.61 LCD interface pages . 91
Figure 4.62 Position of individual elements in the box 92
Figure 4.63 uLite with the funnel . 93
Figure 4.64 uLite side view . 93
Figure 4.65 uLite top view . 94
Figure 4.66 uLite side view 3 . 94
Figure 4.67 Connector detail . 95
Figure 4.68 SD card detail . 95
Figure 4.69 Power connection detail . 95

10

Figure 4.70 Funnel . 96
Figure 4.71 uLite inside wiring and the connection guide 96
Figure 5.1 uLite measurement phase . 97
Figure 5.2 uLite measurement phase 2 97
Figure D.1 Example of the file on the SD card 102
Figure E.1 ASCII table . 103
Figure G.1 Base board schema . 105
Figure H.1 Power module scheme . 106
Figure I.1 STM32F407 clock configuration 107
Figure J.1 uLite Connection Guide . 108
Figure K.1 Flow graph of the measuring phase 109
Figure M.1 SD card responses frames . 112
Figure N.1 ENC28J60 SPI communication (detail) 113
Figure N.2 ENC28J60 SPI communication 113

11

List of Tables

3.1 SPI modes . 30
4.1 SHT21 temperature and humidity measurement parameters [16] . . . 35
4.2 Communication between DS18B20 and microcontroller 40
4.3 DS18B20 temperature register . 41
4.4 AMS 5915-0350-D-B sensor specifications [2] 53
4.5 AMS 5915 data register . 53
4.6 ADXL345 data registers . 59
4.7 DS1307 registers [20] . 70
4.8 STM32F4DIS-LCD display specifications 72
4.9 The functions of 8080 parallel interface 72
4.10 Fields in TCP header [36] . 81
4.11 SPI instruction set for the ENC28J60 [35] 84
C.1 Commands for SD card initialization [48] 101

12

List of abbreviations

ABS Akrylonitril-Butadien-Styren. 91
ADC Analog-to-digital Converter. 24, 42, 45, 47, 49, 75, 76
ARP Address Resolution Protocol. 81, 83
BCD Binary Coded Decimal. 70
CAN Controlled Area Network. 27
CO Carbon Monoxide. 20, 47, 48
CPS Cyber-physical Systems. 16–19
CRC Cyclic Redundancy Check. 35, 63, 64, 83
DMA Direct Memory Access. 82
ECN Explicit Congestion Notification. 81
EEPROM Electrically Erasable Programmable Read-only Memory. 27
FAT File Allocation Table. 62, 65
FIFO First In First Out. 77
FSO Full Scale Output. 52
GPIO General Purpose Input/Output. 82
GPL General Public Licence. 22
HTML HyperText Markup Language. 79
IC Integrated Circuit. 25, 26, 30
IDE Integrated Development Environment. 22
IIoT Industrial Internet of Things. 16
IoT Internet of Things. 16, 18, 19
IP Internet Protocol. 78, 79
IRED Infrared Emitting Diode. 42–44
IT Information Technology. 14
LCD Liquid Crystal Display. 27, 33, 36, 71–73, 75, 76, 98
LGA Land Grid Array. 55
LSB Least Significant Bit. 35, 40
M2M Machine-to-machine. 16
MAC Medium Access Controller. 79
MISO Master In Slave Out. 27–29, 63
MMC Multi Media Card. 27
MOSI Master Out Slave In. 27–29, 63, 85

13

MSB Most Significant Bit. 35, 40, 53
OPC Open Platform Communications. 18
PCB Printed Circuit Board. 27, 30, 85, 87, 98
PET Polyethylene Terephthalate. 74, 75
PHY Physical Layer. 79, 83
RTC Real Time Clock. 67
SCL Synchronous Clock. 25, 26
SD Secure Digital. 7, 10–12, 27, 29, 60–66, 101, 112
SDA Synchronous Data. 25, 26
SDIO Secure Digital Input Output. 60, 61
SPI Serial Peripheral Interface. 9, 10, 12, 22, 27–30, 56, 60, 61, 63, 64, 72, 75, 81
SQL Structured Query Language. 98
SRAM Static Random Access Memory. 67
SS Slave Select. 27, 28
TCP Transmission Control Protocol. 79
TFT Thin Film Transistor. 7, 72, 74
TSC Touch Screen Controller. 75
UART Universal Synchronous/Asynchronous Receiver and Transmitter. 27
UDP User Datagram Protocol. 81
USB Universal Serial Bus. 27, 86
VOC Volatile Organic Compounds. 6, 20, 45, 46, 85

14

1 Introduction

Industrial production has changed significantly in last 300 years. Three signifi-
cant industrial revolutions took place (figure 1.1). It has started with production
mechanization using water and steam power in 18th century, followed by second
industrial revolution in which had electricity boosted the industrial processes. The
third industrial revolution brought the use of IT and automation technology to the
manufacturing process. The progress is unstoppable and it was just a matter of time
before next step in the industry process development comes.

The next industrial revolution is called Industry 4.0. For now Industry 4.0
doesn’t bring anything so revolutionary technology-wise. Most of the technology
is already around us in our daily lives and it has been for quite some time. The
mobile phones, tablets and laptops with touchscreens connected to Internet 24/7
sharing data on cloud storage is today’s standard. The 3D printer is already part
of home workshops and autonomous robots are able to play football†, piano [5] or
chess [15]. The technologies have gotten reliable enought and became price reason-
able, which allow their use in manufacturing processes. According to Moore’s law
[11] is the speed of electronics development increasing and so it is expected that
more technology nowadays considered “futuristic” will be used in manufacturing
process on daily basis.

Figure 1.1: Industrial revolutions

In the last few years there has been a growing interest in the fourth industry
revolution. The companies which are able to react to this new concept have change
to improve the manufacturing process from all points of view. The optimization of
manufacturing process brings faster production with preserved or increased accuracy

† www.robocup2015.org

15

together with very little waste of resources. The manufactures who decide to follow
the Industry 4.0 ideas will have to make adjustments in the processes. If the process
requires filtration solution, the choice falls on the filtration unit which follows the
Industry 4.0 conventions.

ULT AG offers extraction and filtration technologies for various production pro-
cesses. The offered compact and modular units are perfect basis for each filtration
or extraction solution. The company also offers to modify and adapt the units to
perfectly fit the costumer needs. The possibility of providing Industry 4.0 solutions
would bring new opportunities to both ULT AG company and their customers.

One of the tasks of this thesis is to show ideas following Industry 4.0 which
are applicable in the fume extraction industry. Those ideas are based both on the
research on Industry 4.0 and on some of the competition companies solutions.

The task of the practical part of this thesis is to take the proposals and create a
prototype unit connectible to the filtration unit. This unit is named uLite and it is
able to collect various data, save them to memory medium and display results. The
implementation of Ethernet interface is prepared both hardware-wise and software-
wise. The core is based on ARM R© Cortex R©-M4 technology.

The remainder of this paper is organized as follows. In chapter 2 Industry 4.0 is
introduced in details and there are various applications in the fume exhaust industry
presented. The following chapter 3 contains theory of basic embedded development.
This chapter is supporting the chapter 4 in which is the prototype unit development
described in detail. Following Figure 5 contains the presentation of the final form of
the unit. In chapter 6 there are conclusions and directions for future development.

16

2 Industry 4.0

Industry 4.0, also called the fourth industrial revolution, is a term describing today’s
changes in industry involving data exchange, contemporary automation and tech-
nologies. This term represents combination of industry, Internet of Things (IoT),
Internet of Service (IoS) and cyber-physical systems.

2.1 Internet of Things

The Internet of Things is defined as a network of physical objects (embedded with
electronics, sensors and network possibility) which can exchange information. This
allows the objects to be sensed and controlled from a remote location. The inte-
gration of real word into the virtual reality brings better accuracy, efficiency and
control. All of those factors contribute to the economic benefits. The “thing” in In-
ternet of Things can be imagined as a vehicle with build-in sensors, biochips inside
humans or animals controlling the life functions, intelligent thermostats, washers
with wi-fi remote or even a whole building or cities. The “thing” can also be a
production machine in a factory.

The IoT has been around for a while but in last years it is finding its way to
industry production due to generally fast development of electronics. The use of
IoT in industry gave rise to IIoT (Industrial Internet of Things). It extends the
standard M2M (Machine-to-Machine) communication. When using the M2M the
captured data are transmitted across a local area networks to trigger specific action
or alert. The IoT includes properties and abilities of M2M but adds the significant
value of interconnecting systems, customers, manufactures or whole enterprises over
the Internet.

According to Maarten Botterman [10], the prediction for next 15 years is, that
tens of billions devices will be wirelessly connected to the IoT. This will be possible
only if the IPv6 protocol is implemented due to limited address space of currently
used IPv4 protocol (“only” 4.3 billion unique IP addresses [17]).

2.2 Cyber-physical systems

The CPS (Cyber-physical Systems) are created by combination of physical compo-
nents and embedded systems. The embedded systems provide computational power
for algorithms and connectivity. Together they form a adaptable, resilient and safe

17

system which is a key for future technology development. The CPS are able to
communicate and work with each other and with humans as well.

The CPS technology can bring significant improvement and optimization to every
process. As stated by Jay Lee et al. in [26], the development is more or less still
in the initial stage. The structure and methodology was defined to create a clean
guideline for implementation of CPS in industry [31]. The structure is called 5C.
The 5C architecture contains five necessary steps to fully implement CPS into the
industrial process described in [50] by Dominick Vanthienen et al.:

• Connection

• Conversion

• Cyber

• Cognition

• Configuration

The 5C architecture can be visualized as a pyramid-shape diagram representing
the data path. The data which are passed higher are reduced in size while their
information value rises [30]. This is ilustrated in figure 2.1 which was recreated
based on ilustration in an article written by Jay Lee et al. [30].

Figure 2.1: 5C Architecture

The data are collected in the first connection layer. In the second, conversion
level, the data are processed and converted to information. As an example can serve
collecting data on vibration of a drive which was described in [30] by Jay Lee et al.
The data itself do no carry any information about the state of the machine but the
algorithm can extract the status of the drive from the data. It then sends the status
to the third layer. The cyber layer performs additional analysis. It can identify
patterns in series of data using e.g machine learning algorithms. Compared to the
previous stage, the cyber level uses data collected from more devices to compare
and add additional value to data. In cognition level the device can diagnose its own
failures (or potential failures) and becomes aware of its own state [50]. In the last
configuration layer is the machine able to tract the state of its health. The machine
itself can adjust its working load system. The result is resilient system which is
able to defend itself from failures [26]. Operators and factory managers can make
informed decision based on the data from the CPS.

18

This brings a new step in the maintenance model. At first there was the reactive
model. In other words: wait for a machine breakdown and then repair it. Predictive
maintenance model has brought improvement to this process. The machines are
checked after a specific amount of time or cycle units and each time are the minor
problems eliminated, preventing the machine breakdown. The ultimate goal is to
implement predictive maintenance model. The machine is able to track its own
health, can detect failures early on and send health monitoring information to the
operation level. The maintenance is targeted and precisely planned to save both
resources and human power.

2.3 Industry 4.0 basics

Industry 4.0 has several definitions and no exact steps for implementation of Indus-
try 4.0 are given. However, there exist six principles to support and guide companies
in identifying possible Industry 4.0 pilots which then can be implemented (described
by Mario Hermann et al in [23] and by Hartmut Rauen in [37]).

• Interoperability

• Virtualization

• Decentralization

• Real-Time Capability

• Service Orientation

• Modularity

Interoperability
The connection of cyber-physical systems, humans and companies is one of the fun-
damental principles. All components should be able to communicate, exchange data
and operate with each other through IoT. Holger Junker has in [27] interesting idea.
According to the article, the ideal situation would be if all devices and services were
able to communicate independently with one another, irrespective of manufacturer,
operating system, hierarchy and topology. This is at some point already possible
with use of e.g. OPC Unified Architecture, which is nowadays the preferred com-
munication standard for Industry 4.0 [18]. As David Greenfield stated in [22], the
OPC Foundation efforts to standardize interoperability are not new, but the impor-
tance of this step is increasing as the possibilities of Industry 4.0 and the Internet
of Things are taken more seriously.

Virtualization
Cyber-physical systems can monitor the actual physical process. The data will be
linked to the virtual model created by simulations. This link creates a virtual copy
of the physical world.

19

Decentralization
When different systems within the company are allowed to make their own decision
the overal response is faster. Cyber-physical systems are endowed with embedded
computers capable of making the individual decisions. In case of any failure or warn-
ing, a report is send to a higher level. Therefore, central planning and controlling is
no longer needed (Schlick et al. [25]).

Real-Time Capability
Industry 4.0 makes a concentrated effort to gather the data in each process step and
offers real-time feedback and monitoring. All the process parameters are tracked and
processed. In case of a failure the plant can reroute products to another machine
without stopping the manufacturing process.

Service Orientation
The services of companies, CPS and humans are available over the Internet of Ser-
vices. They can be offered both internally or between companies.

Modularity
The importance of the ability to flexibly react to a change of requirements with-
out too much effort is valuable. Modular systems enables easy adjustment in case
of seasonal fluctuations or changed product characteristics (Hermann [23]). The
individual modules are designed in such way that improvement, replacement or ex-
pansion is possible.

The vision of Industry 4.0 is a “Smart Factory”. The cyber-physical systems monitor
manufacturing processes, collect data, create a virtual model of the whole factory
and make decentralized decisions. Using IoT, the individual systems communicate
with each other and also with humans.

2.4 Industry 4.0 in air-filtration

This chapter suggests Industry 4.0 ideas applicable for air filtration industry. At
first sight, fume extraction units seem to be devices with straightforward function,
but there exist a lot of ways how to extend their possibilities with use of different
sensors and Internet connection. When proposing any idea, the main focus should
always stay on the customer. The final product should be not only innovative, but
also useful and reasonably priced. The proposed ideas are divided into three logical
parts.

• Filter state and air quality monitoring

• Mechanical state of the filter unit

• Filter unit electrical properties

At the end of this chapter is the basic concept of uLite unit introduced.

20

2.4.1 Filter state and air quality monitoring

The most noticeable issue with the fume exhaust unit run is the necessity to regularly
change filters. The question arises: what does regularly mean in this context? That
strongly depends on not only what kind of process is the unit connected to but
also on the operation time of the filter unit. The most primitive solution is to have
a maintenance worker to perform a routine filter checks. The more automatized
solution is monitoring of pressure drop in the filtration unit. This information is
usable for determining the state of the filter. After the logic inside of the unit
decides, that the filter is ready to be changed, a signal light on the unit is lid and
the maintenance worker can change the filter. This approach has some drawback.
One of them is stopping the filter unit while the production is running which can
be in some cases costly.

Moving this approach one step forward, the unit can continuously observe the
state of the filter and warn the user before the filter is clogged. The customer can
order new filters in time and change the filter in convenient time. If the unit is
connected to the Internet it can order new filters by itself or the company selling
filtration units can observe the state of each filter and unit online and deliver the
new filters to customer when needed.

The cartridge filter units with self cleaning filters don’t require the filter change
but a bin for collecting particles has to be regularly emptied. It is possible to use
weight cells to obtain the bin mass. Emptying of the bin can be planned before
its weight reaches the law given limits for lifting weights (the bin can be emptied
without use of e.g. fork lift). If the collected data are fed to learning algorithm, the
prediction of the next bin emptying can be calculated.

Another way how to tell if the filter (or rather whole fume exhaust unit) is
working properly is to measure the air properties at the outlet of the unit. This
brings safe assurance to the customer. Furthermore the detection of dust particles
can detect smoke in the unit and together with values from temperature sensors it
can trigger possible fire warning. The detection of combustive gases can prevent
hazardous situations. A lot more sensors to monitor air quality can be deployed
(humidity, CO, VOC etc.).

2.4.2 Mechanical state of the filter unit

To prevent damage and unexpected behaviour of the fume exhaust unit it is pos-
sible to employ sensors to detect if everything is working well from the mechanical
point of view. The reed sensors are able to check if the doors of the unit are closed,
tensometers or optical sensors can detect the presence of the filters. The unit shall
not be started when one of the previous mentioned conditions is not met. The pres-
sure sensors may help with identifying both open doors and missing filter situation
as well as they can detect blocked hose on the filter unit inlet. The vibration of
the blower drive may be measured using accelerometer. Increased vibration could
produce unwanted noise and can show possible bearing or drive problems.

21

2.4.3 Filter unit electrical properties

Another way how to look at the filtration unit is from the electrical point of view.
Data about drawn current and voltage can be processed and total power consump-
tion can be calculated. The drawn current measurement can be used to detect
possible current spikes which can mean drive malfunction. Along with current and
voltage measurement a phase shift could be evaluated.

2.4.4 Fume exhaust unit control box

For the practical part of this master thesis a prototype of an unit connectible to the
filtration unit is designed. The unit was named uLite (ULT Air Quality Module).
This unit is able to measure, collect, process, save and display data (figure 2.2). The
sharing of the data is ready to be implemented.

Figure 2.2: Prototype unit requirements

The motivation for creation uLite is to ensure that the quality of the filtrated air
is acceptable from both costumer preferences and law regulations. The task of this
box is not to measure exact values of gasses concentrations in the air but rather to
ensure that the concentration is kept at minimal levels.

Furthermore the unit can be used to verify the active carbon filter. It is possible
to determine the necessity to change the particle filter thanks to the increased pres-
sure drop, but the active carbon filter has no such indicator. Additionally the unit
can determine parameters of the polluted air entering the unit as arbitrary source
of air can be brought to the unit inlet.

The unit is able to measure dust density as well as volatile particles, carbon
monoxide and combustive gases concentrations. It is also capable of measuring tem-
perature and humidity of the air on the unit inlet. Moreover there are pressure sen-
sors for measuring pressure difference drops on two measuring points, accelerometer
probe with magnet which can be attached to magnetic surface measuring vibrations
and waterproof temperature probe are available.

22

3 Embedded development introduction

Development of embedded software applications requires a lot of both hardware and
software theory knowledge. In this chapter there is a brief overview of hardware and
software resources used for development followed by the theory which supports the
next part of this thesis.

3.1 Used resources

3.1.1 Programming IDE

System Workbench for STM32 based on Eclipse IDE for C/C++ Developers in
version Luna is used for the programming of the STM32F4 microcontroller. This
program provides a software development platform for all STM32 microcontrollers.
It already includes STM32 devices databases and libraries, source editor, linker,
building tools (GCC-based cross compiler), debugging tools (OpenOCD) and flash
programming tool. This IDE is free for commercial use, as long as the target hard-
ware is based on an STM32 microcontroller and contains a few GPL-licensed com-
ponents like compiler or debugger.

For the design of pinout, clock tree setting and peripherals setting STM32CubeMX
software tool is used. This software works with STM32Cube HAL drivers, which
are meant to ease the program migration across STM32 portfolio.

3.1.2 Debugging

Seleae 8-channel logic analyser and Seleae logic software version 1.1.15 are used to
debug and decode the communication on different buses (I2C, SPI, 1-wire . . .).

RIGOL DS1054 oscilloscope serves as an extended analyser of the signals. Un-
less stated otherwise, all graphs displaying signals are created from data collected
by this oscilloscope. In this thesis, there are also screenshots of the Rigol screen
to demonstrate the authentic bus decoding or signal time properties. For the com-
munication, remote programming and advanced data logging are Ultra Sigma PC
connectivity tool and Ultra Scope used (both freeware).

23

3.2 Hardware requirements for interfacing ICs

3.2.1 Pull-up and pull-down resistors

Output pins on microcontrollers fall into two categories: open drain (open collector)
or push-pull. Push-pull output has two transistors (figure 3.1 on the right). Each
has the capability of driving the output to the appropriate level. To make the output
high, the top PNP transistor is on. On the other hand, when the output is set to
low level the NPN transistor is on.

Figure 3.1: Open drain (left) and push-pull output (right) comparison

The open drain output lacks the PNP transistor driving the line to the high level
(figure 3.1 on the left). To return the line into logical high state when the transistor
is off, the pull-up resistor is deployed. If the line was not pulled by the resistor up
or down, the pin would be left in floating state. This state is mostly not acceptable
as the microcontroller might interpret the input value as either logical low or logical
high. Microcontrollers have usually in-build programmable pull up/down resistors
but it is not possible to choose their values. Hence, better results are obtained when
using external components.

Every bus has its own capacitance including all pins, connection, wires or PCB
traces capacitances. This capacitance varies with length of the bus and in most cases
it is an unknown variable. Together with the pull-up resistor, the RC constant limits
the bus capacitance rise time. If the selected pull-up resistor is too high, the line
may not rise to the logical high level before it is pulled down again. With increasing
number of devices on one line the capacitance increases and a lower value pull-up
resistor should be considered. This leads to the fact that there is no universal value
of pull-up resistor.

However, for most application is value between 3 kΩ and 10 kΩ sufficient. Power
sensitive circuits may require higher values (up to 100 kΩ). On the other hand in
speed sensitive circuit low values of pull up/down resistor are used (1 kΩ or even
less). The lower value resistor increases current draw and negatively impact power
consumption. The mostly used pull up/down resistor value is 4.7 kΩ.

The disadvantage of open drain output, or rather the advantage of push-pull
output, is speed of the switching thus a higher frequency capability. The line is

24

driven both way whereas the line using open drain output can rise as fast as the RC
constant allows. Push-pull can also provide more current.

3.2.2 Decoupling capacitors

The supply voltage is rarely stable in practice. Instead there are glitches, AC com-
ponents or spikes. When analogue circuit is connected to the unstable power source,
hum or cracking noise can be produced unintentionally. Digital circuits can be un-
stable and unpredictable. Decoupling capacitors are used to filter the power supply
voltage and make it more stable. If voltage spike occurs, the capacitor absorbs the
excess energy. In case of the sudden input voltage drops, the capacitor provides
energy to make the voltage stable.

The method of decoupling is dependent on the frequency used in the circuit. The
general recommendation for circuits with less then 50 MHz is to have one ceramic
bypass capacitor between power supply pin and ground for each integrated circuit
on the board as close to the IC as possible. The usual values are 0.1 µF or 0.01 µF.
A larger electrolytic capacitor (up to hundreds µF) should placed on the the board
as well.

Decoupling and grounding in high speed circuits is a complicated process on
which many books (High-Speed Digital Circuit by Masakazu Shoji [42] or Robust
Electronic Design by John R. Barnes [6]) has been written and it will not be dis-
cussed in this thesis.

The decoupling capacitors values and types are often recommended in the device
datasheet.

3.2.3 Analogue sensors interfacing techniques

Analogue sensors produce variable output which can be voltage, current or resis-
tance. In microcontroller systems output is usually converted to voltage in a suitable
range for ADC (Analogue-to-digital Converter).

The inputs of ADC can be damaged by voltage signals higher then the specified
ADC voltage range (in case of wrong design, circuit malfunction or power up/down
phase). Most ADC inputs have internal diodes which start conduction in case that
the voltage goes too high but the diodes are not designed to withstand large current
for a longer period of time. The diodes are placed inside of the microcontroller and
it is impossible to repair them. Therefore it is better to use an another protection.

The simplest way of protecting inputs is use of operational amplifier. Opera-
tional amplifier gets saturated when its output gets to the supply rails. When the
supply voltage is not higher then the maximal allowed input to the ADC, the opera-
tional amplifier is efficiently protecting ADC inputs. The operational amplifier also
brings advantages to the analogue sensor interfacing circuit. The high impedance
of the operational amplifier prevents current loading of the sensors. This forestalls
heating of the sensors which can in some cases cause inaccuracy (e.g when reading
temperature).

25

If the output range of the analogue sensor is already suitable for the ADC con-
verter is possible to use the voltage follower connection (figure 3.2 on the left).
Because of the lack of feedback resistors the operational amplifier returns the same
signal that is fed in. In case that the output range the analogue sensor has to be
adjusted (scaled up/down), the connection as non-inverting amplifier (figure 3.2 on
the right) is used. Equation 3.1 represents the voltage gain of such connection.

Uout

Uin

= 1 +
R2

R1

(3.1)

Figure 3.2: Voltage follower (left) and non-inverting amplifier mode (right)

3.3 Used communication buses

3.3.1 I2C

I2C bus was designed by Phillips originally for easy communication between inte-
grated circuit and the same circuit board. I2C is short distance, serial communica-
tion and multi-master bus protocol. Nowadays it is not used only for IC communi-
cation on the same board but it also serves as connection to low-speed peripherals
(which sensors usually are).

I2C topology

The line uses two wires for data transmission, one serial data line SDA and one clock
line SCL. The slaves are connected in series and there can be arbitrary number of
masters present on the line. The I2C topology is shown on figure 3.3.

26

Figure 3.3: I2C topology

I2C data transmission

The communication is based on addressing individual devices. The basic design
has 7-bit long address for each device with 16 reserved addresses. That leads to
27 − 16 = 112 possible devices connected on one bus. Every device on the bus must
have its own address. Some of the sold devices do not have an option to manually
set the address and if there is a need of use more devices with the same address
on one I2C bus a multiplexer has to be used (e.g. TCA9544A 4-Channel I2C and
SMBus Multiplexer With Interrupt Logic). Each of the device connected to the line
can be receiving or transmitting data.

The communication is initializes by the master. Before the master starts trans-
mitting, the bus must be free (both SDA and SCL in logical high state). The master
sends start condition which makes all the devices on the line listen on the data line
for instructions. The start condition consists of pulling the SDA line low when the
SCL is high. The master then provides clock on the SCL line. The data are valid
as the clock pulse goes from low to high. The master sends an unique address of
the device together with one byte informing the device whether the master wants
to send or receive data from the addressed IC (1:read, 0:write). All the slave de-
vices compare the send address with their own. If it doesn’t match, they wait until
the bus is released again. In case the device address matches, the IC sends back
acknowledgement bit. After the master receives the acknowledgement bit it starts
transmitting or receiving data. The communication proceeds until the master issues
a stop condition (setting SDA line high when SCL is high) to make the bus free. To
see frame of I2C communication protocol please refer to figure 3.4.

Figure 3.4: I2C protocol

The concrete example of the I2C communication can be found in section 4.1.1
(reading of the SHT21 sensor).

27

I2C hardware requirements

The I2C uses open drain connection, which means that the driver can pull the signal
line low but it cannot drive it high so the pull-up resistor is required (discussed in
section 3.2.1). If not said otherwise the ICs using I2C communication usually require
decoupling capacitors across the power supply. The use of decoupling capacitors was
covered in section 3.2.2.

The maximal length of the bus depends on its capacitance. According to the bus
specification [41], the maximal capacitance for fast mode should not exceed 200 pF
but it can go up 400 pF in normal mode.

I2C advantages and disadvantages

I2C maintains very long pin and signal count even when there are numerous devices
connected on the bus. It supports multiple masters and incorporates acknowledge
bits to confirm successful communication. On the other hand it increases the com-
plexity of firmware and it requires pull-up resistors which are slowing the bus down,
consume space on PCB and increase power dissipation. It can also be considered
rather slow (standart speed I2C is 400 kHz, high-speed I2C operates at 1 MHz).

3.3.2 Serial Peripheral Interface

SPI (Serial Peripheral Interface) is a synchronous serial data interface developed by
Motorola. The source of synchronization is the system clock generated by master.
SPI can operate in full-duplex or half-duplex mode. Full-duplex communication
between two devices means that both of them can send and receive data simultane-
ously. Half-duplex communication allows only one device at a time to transmit the
data while the other device has to listen. SPI can transmit data with high speed (up
to 100 MHz) over short distances and it is used for talking to a variety peripherals
such as MMC or SD cards, LCD displays, flash and EEPROM memories, real-time
clocks modules, Ethernet, USB, UART, CAN and many more. SPI has no formal
definition, only a set of guidelines to follow. The concrete details for communicating
with device using SPI are to be found in the device datasheet.

SPI topology

SPI is a single master protocol which allows multiple slaves connections. The tra-
ditional SPI topology and a cascade slave configuration are shown on figure 3.5. In
case of tradition connection each slave has its own SS (slave select) line and it is
connected to the master via two communication lines MISO (Master In Slave Out)
and MOSI (Master Out Slave In). In case of cascade configuration all SS lines are
connected together. Master output goes to the slave input which sends it to the
next slave. The last connected slave sends the data back to the master. This way
the data flows out of the master through each slave and back to the master. The
configuration is sometimes referred as daisy-chained configuration. The advantage
of this reduction of chip select pins and the different connection of MISO/MOSI lines

28

Figure 3.5: classical SPI topology (left) and cascade configuration (right)

can significantly reduce complexity of large systems. There is no complex system
which requires SPI connection in this thesis, therefore there is only the traditional
SPI topology used.

In the classical configuration the master can communicate with one slave at the
time by use of the SS line. This line is usually active low, but it is always necessary
to check this condition for specific device. SPI is called four-wire bus, but with
increasing number of slaves, the number of needed SS lines arises. The line naming
can be different for each device and the alternative names are listed in the bracket.

• SCLK (SPSCK,SCK): Serial Clock (output from master)

• MOSI (SDI): Master Output, Slave Input (output from master)

• MISO (SDO): Master In, Slave Out (output from slave)

• SS (CS,CE): Slave Select (active low/high)

SPI data transmission

There exist 4 different types of SPI clocking set by parameters CPHA (clock phase)
and CPOL (clock polarity). The slave only accept the bit if there is a falling edge
(CPHA = 1) or rising edge (CPHA = 0) of the clock signal detected. The two
additional states are determined by the idle state of the clock (CPOL = 0 for active
state 1 and CPOL = 1 for active state 0). The four SPI clocking types for PIC
and ARM-based microcontrollers are usually referred as SPI Mode 0-3 (table 3.1).
For the timing diagram please refer to figure 3.6 (figure is created based on the
information in the SPI specification [24]).

29

Figure 3.6: SPI Timing

Table 3.1: SPI modes

SPI MODE Clock Phase Clock Edge

0 0 1

1 0 0

2 1 1

3 1 0

The communication is always initialized by the master. The master configures
the clock with frequency less or equal the device’s maximal frequency. Then by use
of SS pin selects a desired device. The devices which are not selected ignore the
clock and MOSI signal and produce no MISO signal. The data transfer is organized
by using shift registers with fixed word size (e.g. 8-bit, but it is not limited to only to
this size). The master and slave shift registers are connected in a ring. The master
shifts the register to MOSI line and slave shifts its register to MISO line. The process
is repeated as long as there are data left to be send. Otherwise the master stops the
clock, releases the SS line and the transmission is over. The detailed example of the
SPI data transmission is described in section 4.5.4 (communication with SD card).

SPI hardware requirements

Generally speaking there is no need for pull-up resistor for SPI bus, because the
driver use push-pull outputs so it can reset and set the lines internally (for details
please refer to section 3.2.1). It is a good practice to put a pull-up resistor to the
chip select lines so the line is hold up when not in use, preventing coincidently line
pulling during power up and power down phases. In some applications pull-up is
recommended for every line. For example for interfacing the SD card, a pull-up
resistor on MISO line will prevent floating pins when SD card is not plugged in.

30

Adding the pull-up resistors to the SPI lines will not cause any problems and when
it comes to the final design, it is always easier not to use the resistors then try to
add some. Generally the pull-up resistor increases the robustness of the design.

ICs using SPI communication protocol often require decoupling capacitors on
power supply lines (as explained in section 3.2.2).

The maximal length of SPI bus depends on the communication speed and on the
concrete application but the fact that SPI is originally designed for communication of
two ICs on a single PCB should be taken in account. The same restriction is valid
for I2C, but the effect is weaker thanks to the significantly lower communication
speed.

SPI advantages and disadvantages

SPI offers high speed full-duplex communication with word size up to 32-bits. SPI
is not defined by formal standards, so the choice of content, purpose and size of the
transferred word is arbitrary. The slave uses master clock so there is no need for
external oscillators. On the other hand, there is no slave acknowledgement and no
hardware flow control. It doesn’t support multi-master configuration and compared
to e.g. RS-232 can only transfer on short distances.

3.3.3 1-Wire

1-Wire is a half-duplex serial protocol bus developed by Dallas Semiconductors. It
provides low-speed data and power over a single wire. The distinctive feature is
the possibility to use only two wires thanks to the 800 pF capacitor in each 1-Wire
device. This capacitor can store charge and power the device during periods when
the data line is active.

Each device has 64-bit identification number. The first 8-bit of the identification
number is a family code which defines the device functionality. The identification
number is factory programmed, unique and not changeable.

1-Wire hardware requirements

The bus uses open drain connection so the pull-up resistor is required on the data
line (section 3.2.1). Besides, there are no special HW requirements. When using
the device in parasitic mode it is better to keep the wires short or to have a look
at the signal on oscilloscope and adjust the pull-up resistor value. It has to be low
enough so there is sufficient current for charging parasitic devices and high enough
to pull the line low. The length of the bus is limited by its capacitance, in this
case it should not exceed 10 nF. If the capacitance is too high, the signal cannot
change fast enough to transport data (each 1-Wire slave adds 30 pF, typical cables
has around 60 pF/m).

31

1-Wire data transmission

Usually there is not a 1-Wire interface in microcontrollers and STM32F407 is no
exception. In order to communicate it is necessary to use software based signalling.
The communication always starts with a master sending a reset pulse that pulls the
line low at least for 480 µs (figure 3.7). After the master releases the line, external
pull-up pulls it back to high level. If there is a device connected to the 1-Wire bus
it responses after a short period of time (max 60 µs) with a presence pulse which is
shorter then the initial master pulse (up to 240 µs). The communication can start
after the slave releases the line.

Figure 3.7: Start of communication on 1-Wire

Sending one and zero bits is done in 60 µs time slots (figure 3.8). To write zero,
the line must be pulled down for the whole time. Slave is sampling around 30 µs
and it reads zero. In order to write one, the master must pull time line down for
maximum of 15 µs and then release it. The pull-up resistor returns the line back to
high level and the slave detects logical one.

Figure 3.8: Sending 0/1 bit over 1-Wire

The reading is slightly more complicated (figure 3.9). The master has to pull
down the line for about 1 µs and then releases the line. If the slave send zero, the
line stays low for the whole time slot at the master samples the logical zero. If
the slave wants to transmit logical one, it doesn’t pull the line down and after the
master short initial pulse, the line return to logical one. The master then samples
this value. The master can sample in time from 15 µs to 60 µs. When sampling close
to the lower limit it is necessary to check if the pull-up resistor has enough time to
pull the line back up.

Every communication on 1-Wire bus must consist of three parts. First comes
the reset, next there is a ROM command enabling addressing slaves, followed by the
function command sequence.

32

Figure 3.9: Reading 0/1 bit over 1-Wire

The detailed example of 1-Wire communication can be found in section 4.1.2
(communication with DS18B20 temperature sensor).

33

4 Prototype measurement box unit uLite

The practical application of this thesis is to design a unit fulfilling requirements
stated in section 2.4.4 on page 22. The box is designed from the very beginning,
starting with the choice of an appropriate microcontroller, platform for development,
sensors and other peripherals. The program meets the needs and wishes of ULT AG
company. The unit is encased in a customized project box with its own supply
power solution and user interface in form of touch LCD display.

4.1 Temperature/humidity sensor choice

The temperature and humidity of filtrated air is valuable information especially
when units are connected to extensive heat producing process such as soldering or
welding.

Every application using sensors brings different requirements to its parameters.
For simple measurement of ambient air temperature a more affordable sensor with
lower accuracy is sufficient. For measuring hot air at the unit input it is important to
have a sensor which is designed to measure such temperatures and preserves desired
accuracy at the used range. If the temperature was a controlled variable, a high
precision measurement would be required.

As the representative of relatively cheap sensor with quite high accuracy and
measurement speed was chosen STH21 temperature sensor from Sensirion. The
second sensor selected for the use in uLite is DS18B20 from Maxim. This sensor
advantage is possibility to run without external power (less demanding interface
design).

The STH21 sensor is used inside the air channel, measuring temperature and
humidity of the air. The DS18B20 is designed as optional connectible waterproof
temperature probe.

4.1.1 SHT21 temperature and humidity sensor

SHT21 is a temperature and humidity sensor from Sensirion [16]. The sensor is
used in industry applications requiring higher temperature and humidity accuracy
(table 4.1). SHT21 comes in a small Dual Flat No Leads package (3x3 mm foot
print and 1 mm height), provides calibrated linearised signal which is transferred
on the I2C bus. For the purpose of this master thesis, a SHT21 breakout board
was purchased. This board contains already soldered SHT21 sensor and decoupling

34

capacitors. The reason for use of the breakout board is that the soldering of Flat
No Leads package is not possible by hand as it has all contacts on the bottom of
the package.

Table 4.1: SHT21 temperature and humidity measurement parameters [16]

Humidity

Condition Value [RH]

Resolution
12 bit 0.04

8 bit 0.7

Accuracy
typ ± 2%

max ± 5%

Temperature

Condition Value [◦C]

Resolution
14 bit 0.01

12 bit 0.04

Accuracy
typ ± 0.3%

max ± 1.5%

The humidity is measured with use of capacitive relative humidity sensors. They are
composed of a substrate (glass, ceramic, silicon) with thin film of polymer or metal
oxide between conductive electrodes. The change of dielectric constant is propor-
tional to the relative humidity of the air surrounding the sensor. For the temperature
measurement there is a silicon band-gap temperature sensor. The principle of this
common form of temperature sensor is that the forward voltage of a silicon diode is
temperature dependent.

SHT21 interfacing

The transfer of the data between SHT21 sensor and microcomputer is provided by
I2C bus (for more information refer to section 3.3.1). In figure 4.1 there is the scheme
of used connection.

SHT21 communication

The datasheet provides device address, which is not adjustable in this case. The
sensor has two modes in which can run the measurement: hold master mode and no
hold master mode. In the hold master mode is the I2C blocked during measurement
and no other communication can be processed. This mode is not suitable for appli-
cations with more devices on the bus therefore not usable for the program created
as a part of this thesis. In the no hold master mode the measurement is triggered,
the line is free for the whole measurement time and master has to poll the sensor for

35

Figure 4.1: SHT21 temperature and humidity sensor interface

the measurement results. This mode is used in the program, but the hold master
mode is also implemented in the library for possible future use.

One temperature reading, processing of the data and calculation of the temper-
ature follows. Figure 4.2 shows how the I2C device address (0x40)h and a write
bit (denoted as W) is send to trigger temperature measurement in the hold master
mode (0xE3)h. On following figure 4.3 is I2C device address and a read bit (denoted
as R) send to the sensor which then returns the measured data.

The first two bytes (0x6A)h MSB and (0x18)h LSB contain the temperature data
(last byte is CRC). Creating a 16-bit number by their combination yields result:

St = (

(0x6A)h︷ ︸︸ ︷
0110 1010

(0x18)h︷ ︸︸ ︷
0001 1000)b = (27160)d

If the two last bits are different from zero it is necessary to negate them. The
calculation of temperature according to the datasheet is presented in equation 4.1.

T = −46.85 + 175.72 · St

216
= −46.85 + 175.72 · 27160

216
= 25.9 [◦C] (4.1)

The acquirement of humidity has similar steps. The only difference is address of
the register triggering the humidity measurement and the equation 4.2. The variable
Srh is calculated the same way as St.

R = −6 + 125 · Srh

216
[%] (4.2)

36

Figure 4.2: SHT21 trigger temperature measurement

Figure 4.3: SHT21 incomming data

SHT21 library

The library contains functions to adjust all parameters of the sensor so the full
potential of this sensor can be used. However, there is no opportunity to change
parameters of the sensor as the user interface of the LCD display doesn’t enable
it. The only chance how to change the measurement parameters is directly in the
program (default values of resolution are set to 13-bits for temperature measurement
and 10-bits for humidity measurement). The internal heater of the sensor serves for
self testing. The library also enables check of the supply voltage which is relevant
for battery operated devices.

The flow graph of initialization of the sensor and temperature/humidity measure-

37

ment can be found on figure 4.4. To see an example of the header file please refer to
appendix L. For all files, full library and for comments please see the attached CD
(files SHT21.c, SHT21.h and SHT21 systemInclude.h).

Figure 4.4: SHT21 initialization and measurement flow diagram

All the information relevant to the sensor are stored in a structure with following
arrangement (code 4.1).

Code 4.1: Data holding structure for SHT sensor

struct SHT_parameters {

uint16_t writeAddress;

uint16_t readAddress;

uint8_t resolutionTemp;

uint8_t resolutionHum;

// status of the heater, 0 = OFF, 1 = ON

uint8_t heater;

// battery status 0: VDD> 2.25V; 1: VDD<2.25V

uint8_t battery;

// results of the last temperature and humidity reading

float lastTempReading;

float lastHumReading;

//1 = sensor connected, 0 = sensor connection problem

uint8_t sensorStatus;

};

* conversion process can be found in section 4.1.1

38

4.1.2 DS18B20 temperature sensor

The DS18B20 digital thermometer is commonly used temperature sensor. The ad-
vantage of this sensor is the used communication bus 1-Wire designed by Dallas
Semiconductors. This bus enables to connect devices with use of two wires only
(data line and ground line). The device can run in parasite mode which reduces
the need of external power therefore eliminating the need of external components
for interfacing. Each sensor has unique 64-bit serial code, which allows multiple de-
vices to work on one line. The sensor comes in several packages (TO-92, 8-pin SO,
8-pin µSOP) and it is also possible to get the sensor in waterproof probe version.
This probe is used as an optional external temperature sensor fors uLite unit.

DS18B20 interfacing

Interfacing of the sensor requires minimum external components. The only necessary
part is a pull up resistor on the data (figure 4.5). Details about use of pull-up
resistors can be found in section 3.2.1.

Figure 4.5: DS18B20 interface

DS18B20 communication

The basics of 1-Wire communication were introduced in the section 3.3.3. As an
practical example of the communication on the 1-Wire bus, there is a start sequence
caught on oscilloscope (figure 4.6). From the times displayed on the starts and ends
of the pulses, it is possible to calculate their width. The reset pulse has 484 µs, the
sensor is waiting for the response for 40 µs and the presence pulse is 114 µs. All the
measured values fall inside the definition range of 1-Wire bus.

Rigol DS1054 can’t decode 1-Wire bus so the logic analyser form Saleae logic
is used to capture the communication between the microcomputer and the sensor
(table 4.2). The white rows are commands from master, the blue rows contains data
from sensor.

39

Figure 4.6: DS18B20 start sequence

Table 4.2: Communication between DS18B20 and microcontroller

Time [s] Detail Data
9.489004875 Reset Pulse
9.489525375 Presence Pulse
9.491332375 Read Rom Command (0x33)h
9.492534375 ROM Family Code (0x28)h
9.492934125 ROM Code (0x754F1B3)h
9.495331750 ROM CRC (0x87)h
9.498053125 Reset Pulse
9.498571125 Presence Pulse
9.500379875 Match Rom Command (0x55)h
9.501575500 ROM Family Code (0x28)h
9.502785875 ROM Code (0x754F1B3)h
9.510001375 ROM CRC (0x87)h
9.511193250 Data (Trigger T measuring) (0x44)h
10.27150625 Reset Pulse
10.27202037 Presence Pulse
10.27382875 Match Rom Command (0x55)h
10.27502012 ROM Family Code (0x28)h
10.27622650 ROM Code (0x754F1B3)h
10.28344000 ROM CRC (0x87)h
10.28463562 Data (Read scratchpad) (0xBE)h
10.28581925 Data (0xA4)h
10.28621912 Data (0x01)h
10.28661887 Data (0x4B)h
10.28701875 Data (0x46)h
10.28741862 Data (0x7F)h
10.28781850 Data (0xFF)h
10.28821837 Data (0x0C)h
10.28861837 Data (0x10)h
10.28901837 Data (0xDA)h

40

The temperature is passed as 16 bit sign-extended two’s complement number in
first two bytes of returned data. The structure of data containing information about
temperature is shown in table 4.3.

Table 4.3: DS18B20 temperature register

MSB LSB

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

S S S S S 26 25 24 23 22 21 20 2−1 2−2 2−3 2−4

In this case has the LSB value (0xA4)h and MSB is equal to (0x01)h.

(0xA4)h︷ ︸︸ ︷
0000 0001

(0xA4)h︷ ︸︸ ︷
1010 0100

When the data are acquired with 12 bit resolution all bits are valid. The first bit
of MSB is a sign bit (S = 0 for positive numbers, S = 1 for negative numbers).
According to the datasheed [21], the decimal part is computed from the last four
bits as:

(0.0100)b = (0.25)d

The whole number part is evaluated from bit four to bit ten as:

(0011010)b = (26)d

The sign bit is zero, so the value is positive and the final result is 26.25 ◦C

DS18B20 library

In this case not only a library for communicating with the sensor was written. It
was necessary to write a library for 1-Wire protocol as it is not integrated in the
SM32F4 the same way as e.g I2C is. This library contains functions for sending and
receiving bytes with carefully timing as described in the section 3.3.3. The library
can be found on the attached CD (files OneWire.c and OneWire.h) as well as the
library for DS18B20 (files DS18B20.c and DS18B20.h)

The flow graphs of the initialization process and measurement can be found on
figure 4.7.

41

Figure 4.7: DS18B20 initialization (left) and measurement (right) flow graph

All the data in relevant to the DS18B20 are saved in a structure (code 4.2).

Code 4.2: Data holding structure for DS18B20 sensor

struct DS18B20_parameters {

// unique identification code

uint8_t ROM_NO[8];

// last measured value of temperature

float lastTemperatureReading;

// resolution used for measurement

uint8_t resolution;

// 1: sensor connected, 0: sensor connection error

uint8_t sensorStatus;

};

DS18B20 probe

The waterproof probe is provided by the manufacturer. To connect it to the uLite
box, it was only necessary to solder a plug socket connector (figure 4.8).

Figure 4.8: DS18B20 probe

* conversion process can be found in section 4.1.2

42

4.2 Air quality monitoring

The primary motivation for building uLite unit is to bring the possibility of air
quality measurement. The data can be use to prove that the filtrated air meets law
regulations. The filtration units are designed to purify the air and the sensors are
used to detect substances which should not be present. Therefore even cheaper sen-
sors with a low measurement precision can be used as the interest lies in the presence
of the substance and not so much in the exact concentration. The same applies for
the gas sensors which are not calibrated therefore not suitable for measurement of
exact concentration.

4.2.1 Analogue sensors in uLite

The analogue sensors used in uLite are read with use of operational amplifier. The
description of this method is in section 3.2.3. There is a structure created for each
analogue sensor holding the last measured value. The structure is created even
though it has only one element to preserve the program convention (code 4.3).

Code 4.3: Example of data holding structure for analogue sensors

struct Dustsensor {

uint16_t lastValueRead;

};

STM32F407 has three 12-bits ADC converters with 15 channels. The program uses
two ADC converters. The first one is used for reading gas sensors and the second one
is reserved for reading values of the dust sensor. All ADC conversions are triggered
by interrupts.

4.2.2 Dust sensor GP2Y1010AU0F

The compact optical dust sensor GP2Y1010AU0F (figure 4.9) from Sharp is used
to detect presence of dust in the air. The sensor uses optical sensing system. An
internal infra-red diode (IRED) and an phototransistor are diagonally arranged in
this device. The LED creates short light pulses and the reflected infra-red light is
opening the photo-transistor accordingly. This sensor can detect particles of minimal
size PM2.5 (2.5 µm).

Dust sensor GP2Y1010AU0F interfacing

The IRED diode is internally connected to PNP transistor and to switch it on the
pin has to pulled down. According to the datasheet, the IRED diode needs 20 mA
but the current drawn was over 40 mA so the pin should not be pulled down by the
microcontroller pin as there is a danger of destroying the 20 mA tolerant microcon-
troller pin. The switching is solved with an additional transistor (figure 4.10).

43

Figure 4.9: Dust sensor

Figure 4.10: Connection of the dust sensor

The pulse cycle for IRED diode should be 10±1 ms and the pulse width 0.32±0.02 ms.
The sampling should take place in the first 28 ms of the pulse width. The generated
pulses for the dust sensor are on figure 4.11.

44

Figure 4.11: Pulse-driven wave form for IRED

The output is a voltage signal between 0-3.3 V depending on the dust air den-
sity. This range was achieved by setting the trimmer R3 in the operational amplifier
circuit. Before this adjustment was the range smaller and the full scale of ADC
converter would not be used. On the figure 4.12 it is possible to observe one mea-
surement cycle of the dust sensor under two conditions.

Figure 4.12: Dust sensor response

Dust sensor measurement

The pulse-driven wave form for the IRED was created by two timers with periods
0.32 ms and 10 ms that periodically switch the output pin on and off. When the pin

45

goes high, the ADC conversion is switch on and the data are sampled. After the
end of the pulse the ADC conversion stops and the array with the measured data is
searched for the highest value. This value is then declared as the result and save in
the structure.

The flow diagram of the measuring process is on figure 4.13. The waiting times
are handled as interrupts from timers to save computing power of the microcon-
troller.

Figure 4.13: Dust sensor measurement flow graph

4.2.3 VOC particle sensor MP502

Volatile organic compounds (VOC) are organic chemicals with a high vapour pres-
sure at temperature around 20 ◦C. The VOC can be both natural in origin or human
made. They can be harmless or can be considered health risk. As examples of VOC
commonly present in air is possible to mention acetone, formaldehyde, toluene, ben-
zene, methylene chloride, ethylene glycol . . .

VOC particles are one of the parameter which states the air quality and to
which can law regulation apply as well. The motivation to measure VOC is to verify
function of the carbon filter because in contrast to the dust filters, the wear out of
the carbon particles filters is not easily detectable.

Either way is the goal to detect any traces of VOC particles in the air and
take appropriate action without too much dependency on what VOC and in which
concentration is present.

The MP502 gas sensor from Winsen (figure 4.14) has hight sensitivity to or-
ganic gases such as toluene, benzene or methanol. The detection range is from
0 ppm to 50 ppm. The sensor contains internal heater which needs 5 V to operate
and it’s power consumption is 300 mW. The heater has to be on for the whole
operation time.

46

Figure 4.14: MP502 VOC sensor

MP502 interfacing

The sensor comes with already prepared breakout board. The sensor came with
complete circuit solution. It is possible to adjust load resistor using one of the
trimmer on the board. The resistor value was adjusted to scale the output values
from 0 V to ca. 3.5 V. To protect the analogue pin, the sensor is read with use of
the operational amplifier (section 3.2.3).

The sensor has quick response and recovery time about 20 s . The measurement
was made by covering the sensor with ethanol and then moving the sensor into clean
air. Find the result of this measurement on figure 4.15. For the next test, a Syoss
Hold & Flex hair spray containing besides other ingredients dimethyl ether, alcohol
denat, aminomethyl propanol, perfume and benzene alcohol was sprayed into the
vicinity of the sensor. The result is on figure 4.16. The resulting VOC particle level
was holding on until the window was opened.

Figure 4.15: M502 recovery time

47

Figure 4.16: MP502 hair spray test

This sensor doesn’t require any special measuring process. The value of the ADC
converter can be read at any time. The value is saved in the structure.

4.2.4 Carbon Monoxide sensor MQ-7

Carbon monoxide (CO) is a odorless, colorless poisonous gas. It is produced by
the imcomplete burning of liquid, solid, gaseous fuels and all materials containing
carbon. It is a leading cause of chemical poisoning in both houses and workplaces
where it is produced by several industrial processes [12]. CO competes with oxygen
and binds to haemoglobin which prevents sufficient oxygen from reaching the tissues
of the human body. The levels of concentration up to 25 ppm are not harmful. The
concentration of about 50 ppm corresponds to the normal state of CO contained in a
body of a heavy smoker. The concentrations above 60 ppm brings health problems
such as headache, shortness of breath. In concentrations around 500 ppm brings
coma, unconsciousness and death.

MQ-7 analogue semiconductor sensor is used for detection of CO (10-1000 ppm).
It also has high sensitivity to hydrogen (H2) and methan (CH4). The sensitive ma-
terial is tin oxide (SnO2) which has high reactivity to gases with a low oxidation
number (also called reducing gasses) such as methane or CO at relative low op-
erating temperatures. The principle is detecting the conductivity change of n-type
semiconductor material while the surface reacts with gasses. The conductivity is low
when exposed to clean air, because the conduction electrons are bound to surface
oxygen. On the other hand, when exposed to the reducing gasses, electrons are no
longer bound to the surface state and the conductivity increases [39].

For the purpose of this master thesis, the sensor is not calibrated. The sensor
output characteristic is not linear and it is dependent on the temperature and hu-
midity, so the exact values of concentration are not reachable. However when taken
in account the previously mentioned effects of even rather low concentration of CO
on human body, the sensor is sufficient for this application. If the CO sensor detects
increased concentration of CO, H2 or CH4, the action should be taken.

48

Figure 4.17: MQ-7 schematic

MQ-7 interfacing

According to the datasheet [46], before using this sensor in regular operation it is
necessary to let the sensor “bake” (it is connected to the supply voltage for at least
48 hours before first use) to eliminate any remaining moisture or contamination from
the manufacturing process. After this initial pre-heat there is a shorter preheating
before any measurement (500 s) recommended.

In the normal operation requires MQ-7 the internal heater cycling voltage phases.
In the low temperature phase (heater is powered by 1.4 V for 90 s) the detection of
CO is carried out. In the high temperature phase (heater is powered by 5 V for 60 s)
the gases which has absorbed at low temperature are cleaned.

The sensor has six pins. There is the basic test circuit of MQ-7 on the figure 4.18.
Two of the pins are used as a supply power for the heater, two pins are sensor
power supply and the last two are analogue output from the sensor. The datasheet
recommends 10 kΩ for the RL.

Figure 4.18: MQ-7 connection

There are few adjustments done to this circuit (figure 4.17). The switching of
5 V and 1.4 V is solved in the power supply circuit (section 4.9). For the reading

49

of the analogue sensor is used connection with operational amplifier (explained in
3.2.3).

MQ-7 measuring

The values read from the sensor are only valid in the non-cleaning phase. The infor-
mation about in which state the sensor is can be found in the structure (code 4.4).

Code 4.4: Data hodlijg structure for MQ-7

struct COsensor {

uint32_t lastValueRead;

//phase = 0 : cleaning phase

//phase = 1 : measuring phase

uint8_t phase;

};

When the sensor is in the cleaning state, the value of the ADC is not processed.

4.2.5 Combustive gasses sensor TGS813

Smoke which is involved in any combustion or burning consists of gases such as
carbon dioxide, carbon monoxide, methane, propane, butane and so on. Filter units
are often connected to industrial processes producing smoke and if there exists a way
how to tell presence of any of the previously mentioned gasses, the function of the
filter or the whole unit can be verified. The TGS813 has high sensitivity to methane
(CH4), propane (C3H8) and butane (C4H10). It also detects traces of hydrogen (H2),
ethanol (C2H6O) and carbon monoxide (CO). The internal structure is similar to the
carbon monoxide sensor. The sensitive element is tin oxide (SnO2) as well. When it
comes to the contact with any gaseous element, the internal resistance can drop as
low as 20 times to its normal value. The initial preheating phase of this sensor took
7 days and before every new measurement there is approximately 1 minute long.

TGS813 interfacing

In comparison with the MQ-7 sensor is the interfacing easier. The testing scheme
is the same as for the MQ-7 sensor (figure 4.18) with only one modification. The
heater doesn’t not require voltage changing over time. This simplifies the connection
scheme (figure 4.19).

50

Figure 4.19: TGS813 schematic

TGS813 sensor doesn’t require any special measuring process. The value of
the ADC converter can be read at any time and it is stored in the corresponding
structure.

4.3 Pressure monitoring

Monitoring of pressure drops plays an important role in filter unit functions. The
pressure can measured on the filtration unit inlet and after the filter (before the
fan). This data can be used to calculate a filter usage according to the equation 4.3
in which is ∆p representing the pressure drop on the filter.

Filter usage [%] =
actual ∆p− ∆p new filter

∆p used filter − ∆p new filter
(4.3)

Furthermore the blocked inlet hose can be recognised. In case that the difference of
pressure drop on the fan and the pressure drop on the filter exceeded some defined
value, that is possibility of foreign object in the inlet hose. The pressure difference
measuring can also be used for filter presence check. If the revolution of the fan
drive are higher than zero and the pressure drop over the filter is lower then defined
value, the filter may be missing or it is not correctly inserted. In case that the
pressure drop over filter is higher then defined value but the pressure drop before
fan is not increased, the door of the filter unit is not closed or sealed properly. All
the threshold values have to be measured and will be slightly different for individual
filter unit constructions.

4.3.1 AMS 5915 pressure sensor

AMS 5915 is a digital pressure sensor series with amplifier and digital output (I2C)
characterized by high precision measurement. The principle of sensing element is

51

based on piezoresistive measuring cell. The sensor consists a resistor on the di-
aphragm of the cell’s silicon chip. When there is a pressure applied it causes a
deflection and the resistance changes. The advantage of this function principle is
hight resistance to chemicals, relatively high output signal and possibility to mea-
sure within small ranges with high accuracy. In addition to the pressure difference
measurement, the sensor also provides temperature measurement used for pressure
measurement temperature compensation. The measured value is accessible so it can
be used as additional monitoring of the temperature inside of the filter unit (close
to the control board on which are those sensors usually mounted). The suitable
pressure range is selected as −350 mbar to 350 mbar which complies with the AMS
5915-0350-D-B type.

AMS 5915 interfacing

The sensor comes in common dual in-line package (DIP) and it doesn’t need any
additional components to function except the pull-up resistor on the I2C bus lines.
The connection of the sensors to the microcomputer is shown on figure 4.20. On the
schematic, two sensors are connected to demonstrate the possibility of connecting
more device with different addresses to one I2C bus.

Figure 4.20: AMS 5915 pressure sensor interface

52

Table 4.4: AMS 5915-0350-D-B sensor specifications [2]

AMS 5915-0350-D-B

Pressure range ±5 PSI

Communication I2C

Accuracy of pressure measurement ±0.5% FSO

Overall accuracy ±1% FSO

Temperature measurement error ±3% FSO

Resolution A/D converter 14 bit

Resolution pressure signal 12 bit

Resolution temperature signal 11 bit

AMS 5915 communication

The address of this sensor is programmable in all seven bits. The programming of the
address is done with a special software from HJK Sensoren + Systeme GmbH & Co. KG.
The three ordered sensors came with pre-setted addresses (0x01)h,(0x02)h,(0x03)h.
The communication with this sensor is limited only to addressing the sensor. The
communication is started always by master by sending the address of desired sensor.
When the is sensor addressed it returns four data bytes (figure 4.21). The address
and every data byte (except for the last one) is followed by the acknowledgement
bit. The structure of returned data is in table 4.5.

Table 4.5: AMS 5915 data register

1st byte MSB pressure 2nd byte LSB pressure

x x 5 4 3 2 1 0 7 6 5 4 3 2 1 0

3nd byte MSB temperature 4nd byte LSB temperature

7 6 5 4 3 2 1 0 7 6 5 x x x x x

53

Figure 4.21: AMS 5915 communication example

From the figure 4.21 it is possible to read data bytes (0x1F)h, (0xF1)h, (0x5E)h,
(0xC3)h. The pressure measurement is acquired by ignoring the first two bits of the
MSB byte and using the value in an equation provided in datasheet.

(1FF8)h = (0001 1111 1111 0001)b = (8177)d

The first two bits are in this case already zero. The equation for pressure calculation
is taken from the datasheet (equation 4.4.)

p =
Digoutput −Digoutputmin

Sensitivity
+pmin with Sensitivity =

Digoutputmax −Digoutputmin

pmax − pmin

(4.4)
The constants used in the equation 4.4 are specific for each AMS 5915 sensor

type and they can be found in the datasheet [2].

Digoutputmin
= 1638

Digoutputmax = 14745

pmax = 350 mbar

pmin = −350 mbar

Please refer to equation 4.5 and 4.6 for the calculation of the physical value
of measured pressure difference. The resulting pressure difference is really small,
because there were no connections to either one of the inputs and the pressure

54

difference should be theoretically zero. The small offset is negligible for given range.

Sensitivity =
Digoutputmax −Digoutputmin

pmax − pmin

=
14745 − 1638

350 − (−350)
= 18.7243 (4.5)

p =
Digoutput −Digoutputmin

Sensitivity
+ pmin =

8177 − 1638

18.7243
+ (−350) = −0.7746 mbar

(4.6)

For the calculation of temperature the first eleven bits of the two last data bytes are
used.

(5EC3)h = (0101 1110 1100 0011)b

Before calculating the physical value it is necessary to disregard the last five bites
(table 4.5). To ignore the last five bits shifting to right by 5 bits is carried out.

(0101 1110 1100 0011)b >> 5 = (0010 1111 0110)b = (758)b

The relation for temperature calculation is in equation 4.7. The numerical solution
is in the equation 4.8.

T =
Digoutput(T) · 200

2048
− 50 [◦C] (4.7)

T =
758 · 200

2048
− 50 = 24.02 [◦C] (4.8)

AMS 5915 library

This sensor doesn’t allow any changes of the parameters so the initialization of the
sensor and the reading of the values are both simple (figure 4.22).

Figure 4.22: Flow graphs of AMS 5915 initialization and measurement

* conversion process can be found in section 4.3.1

55

The structure contains sensor address, results of the last differential pressure and
temperature reading and the status of the sensor (code 4.5).

Code 4.5: Data holding structure for AMS5919

struct AMS_parameters

{ uint8_t address;

// result of the last temperature reading

float lastTempReading;

// result of the last pressure reading

float lastPressureDifReading;

// 1: sensor connected, 0: sensor disconnected

uint8_t sensorStatus;

};

4.4 Vibration monitoring

Monitoring of the drive or unit vibration can help determine the state of the DC
motor in the blower. If there are data about vibration of the drive in time available,
it is possible to investigate the vibration spectrum in which various problems of the
drive can be found. To collect the data an accelerometer is used.

The measurement of drive vibration should be done as close to the drive as
possible. Ideal case would be the accelerometer placed on the drive itself but uLite
is designed as a mobile measurement unit and the run of a filtration unit is not
possible with the unit door open. Therefore an accelerometer probe which can be
attached to an arbitrary magnetic surface is designed.

4.4.1 ADXL345 accelerometer

The ADXL345 is low-power 3-axis accelerometer with selectable sensitivity ranges
(±2G,±4G,±8G,±16G), resolution (10,11,12,13-bit) and data rate ranging (from
10 Hz to 3200 Hz). The sensor consists of a micro structure on a silicon substrate
suspended by springs from poly-silicon∗ which allows it to deflect smoothly in any
direction. The deflection causes a change in capacitance between plates which are
attached to the structure and fixed plates. This change is converted to an out-
put voltage proportional to the acceleration on every axis. The accelerometer was
purchased on the break-out board because it only comes in the package which is
manually unsolderable (14-terminal LGA). ADXL345 offers change of all measure-
ment parameters and provides some interesting additional functions. It is possible
to combine ranges and resolutions, detect free fall or send interrupts triggered by
various motions (detect of the presence, lack of movement, double tap etc.). It
contains self-testing function as well.

∗ “Polycrystalline silicon, also called poly-silicon or poly-Si, is a high purity, polycrystalline form
of silicon, used as a raw material by the solar photovoltaic and electronics industry.”
https://en.wikipedia.org/wiki/Polycrystalline_silicon

56

The output response of the sensor relative to the orientation to gravity is shown
on figure 4.23 (redrawn based on figure in device datasheet [19]).

Figure 4.23: ADXL output vs. gravity force

One of the value is always going to have an offset equal to ±1. There is a mark
on the accelerometer probe which guides the user to place the accelerometer in the
“correct” position but there is no guarantee that the user positions the accelerometer
according to the instruction. Therefore is no correction of the offset value in the
program and this operation has to be done in the data processing procedure. The
accelerometer has registers in which is possible to set offsets for all axis in case that
it is mounted on a surface and change of its position in respect to gravity field is
not expected.

ADXL345 interfacing

ADXL345 offers both I2C and SPI communication. Because the sensor is going
to be used in form of a probe, the I2C bus is selected. The reasons are that I2C
bus generally allows communication over longer distances and it also needs less
conductors. To activate the I2C communication, the CS pin has to be connected to
VDD. The device has option to choose from two I2C addresses by setting the pin SDO
high or low. In this case it is connected to the high logical level (figure 4.24) setting
the accelerometer address to (0x1D)h (with a write bit 0 translates the address to
(0x3A)h, similarly with a read bit 1 is the address (0x3B)h). The I2C lines use 4.7 kΩ
pull-up resistors (explained in section 3.2.1) and the power line is decoupled with
capacitors (see section 3.2.2).

57

Figure 4.24: Connection scheme of the ADXL345 accelerometer

ADXL345 communication

Even though the sensor offers wide variety of measuring modes the application of
measuring vibrations for the analysis of a drive requires simple continuous measure-
ment mode. Individuals measurements do not have to be trigged and the value can
be read at any time. It is recommended to use the memory burst reading because
when a single-byte reading operation is performed, the remaining data in the sensor
FIFO are lost. The only requirement on reading of the sensor running in continuous
measuring mode is that there must be at least 5 µs between individual readings.

Six bytes are read in memory burst mode from registers (0x32)h to (0x37)h
(figure 4.25) using the accelerometer address and a read bit (0x1D)h. Due to the
fact the accelerometer is actually a probe with cable length of 2 m it is possible
to notice a decreased quality of the signal. Despite this fact there are no missed
acknowledgements and the communication is therefore still reliable.

58

Figure 4.25: ADXL345 data acquirement

The output data is two’s complement format with following arrangement (ta-
ble 4.6):

Table 4.6: ADXL345 data registers

Register address Description

(0x32)h X-Axis Data 0

(0x33)h X-Axis Data 1

(0x34)h Y-Axis Data 0

(0x35)h Y-Axis Data 1

(0x36)h Z-Axis Data 0

(0x37)h Z-Axis Data 1

To calculate the physical value it is first neccessary to conjugate LSB and MSB
bytes for each axis data (equation 4.9).

X axis data: (

(0x00)h︷ ︸︸ ︷
0000 0000

(0x01)h︷ ︸︸ ︷
0000 0001)b = (1)d

Y axis data: (

(0xFF)h︷ ︸︸ ︷
1111 1111

(0xF0)h︷ ︸︸ ︷
1111 0000)b = (−16)d

Z axis data: (

(0x01)h︷ ︸︸ ︷
0000 0001

(0x03)h︷ ︸︸ ︷
0000 0011)b = (259)d

(4.9)

59

The scale factor for given range of measurement can be found in the device datasheet
and it is equal to 3.9. The value is also scaled to get the value in g or in m/s2 when
using SI units (equation 4.10). The position of the sensor during the measurement
can be determined from figure 4.23.

X axis data: 1· 3.9

1000
= 0.0039 m/s2

Y axis data: −16· 3.9

1000
= −0.0624 m/s2

Z axis data: −259· 3.9

1000
= 1.0101 m/s2

(4.10)

ADXL345 library

Because of the huge possibilities of this sensor, only functions directly needed for the
vibration measurement in this particular application are implemented. The complete
library can be found on the attached CD (files ADXL345.c and ADXL345.h).

In the sensor initialization process (figure 4.26 on the left) is the range of mea-
surement set to ±2g and the sensor the continuous measurement mode is started.
The resolution of ±2g range is set to 10-bits by default. The flow graph of the
reading algorithm is on figure 4.26 (on the right).

Figure 4.26: ADXL initialization (left) and measurement (right) flow graphs

The structure for this sensor contains addresses, the range (to make the library
usable also for another application), last values of the reading and sensor status
indicator (code 4.6).

* conversion process can be found in section 4.1.1

60

Code 4.6: Data holding structure for ADXL345

struct ADLX345_parameters {

uint16_t writeAddress;

uint16_t readAddress;

// selected range, can only take values of type range_ADLX345

(RANGE_2G, RANGE_4G, RANGE_8G, RANGE_16G)

range_ADLX345 range;

// results of the last reading

float xReading;

float yReading;

float zReading;

// 1 = sensor connected, 0 = sensor connection error

uint8_t sensorStatus;

};

ADXL345 probe

The probe was created using the break-out accelerometer board, 4-core conductor,
heat shrinking tube, electrical tape, neodymium magnet, plug socket connector and
stickers (figure 4.27 and 4.28).

Figure 4.27: ADXL345 probe Figure 4.28: ADXL345 probe - detail

4.5 SD Card

MicroSD Card from Kingston (8 GB) is used to log and backup the measured values.
The communication with a SD card can be managed in two modes: SDIO and SPI
mode. Both SDIO and SPI mode run on similar frequencies (40 kHz for SD, 50 kHz
for SPI [48]). The difference is the bus width and the fact that SDIO protocol uses

61

separate lines for commands and data. The 4-bit or 8-bit width SDIO is four or
eight times faster then SPI. The advantage of SPI is that the protocol is widely used
and well documented while SDIO is not. The developed application doesn’t require
high speed data transfer as the measurements are performed every so often and the
size of the data is small. For given reasons is SPI communication protocol selected.

It is possible connect individual SD card pins directly to the pins on the STM32F4
discovery board but to make the manipulation easier, a SD Card interface board by
LC Studio was used (figure 4.31). The pinout of a classical SD card operating in
SPI mode is shown on figure 4.29.

Figure 4.29: SD card pinout when in SPI mode

4.5.1 SD card interface

The break-out board from LC studio offers SPI and has pull-up resistors on all
SPI lines and two decoupling capacitors on the power supply lines. There is also a
option to power this line from 5 V supply thanks to the 3.3 V regulator AMS1117.
The schematics of this break out board is on figure 4.30. The mirrored output pins
on the card reader header connector are useful for debugging as they allow to connect
oscilloscopes probes or logic analyser without the necessity of using breadboard.

Figure 4.30: LC Studio SDcard reader schematics

62

Figure 4.31: LC Studio SD card reader

4.5.2 FatFs

FAT file system (File Allocation Table) is used to allow access to files and directories.
To manipulate with the directory structure and to handle files generic FAT file sys-
tem module FatFs∗ is applied. The FatFs specification [13] says “FatFs is a generic
FAT/exFAT file system module for small embedded systems. The FatFs module is
written in compliance with ANSI C (C89) and completely separated from the disk
I/O layer. Therefore it is independent of the platform. It can be incorporated into
small microcontrollers with limited resource, such as 8051, PIC, AVR, ARM, Z80,
78K and etc.”
Among others it offers following features:

• Windows compatible file systems including FAT sub-types FAT12, FAT16 and
FAT32.

• Long name support.

• RTOS support.

• Unlimited number of open files and up to 10 connected volumes.

• Volume size up to 2T bytes with sector size up to 4K bytes.

The code is free to use for both personal and commercial products without any
restrictions.

4.5.3 Commands for communication with SD card

The commands used for generic initialization of SD card are described in table C.1 in
apendix C. The table was created based on information in SD card specification [48]
and [49]. The command structure of SPI communication is defined in the standards
[14] as follows.

∗ http://elm-chan.org/fsw/ff/00index_e.html

63

The command has always six bytes. The first byte is command number with
added value of (0x40)h. The middle four bytes can be filled with an argument. The
last byte is CRC which is by default switched off in the SPI (but the six bytes still
have to be send).

The SD card is ready to receive a command when it drives MISO line high. To
wait for response “I don’t care” value (0xFF)h is send to repeat the clock cycles.
The response time is eight bytes at maximum (if the response doesn’t came after
eight clock cycles there is a problem with communication). In case the first bit of
the response is high, the low seven bits are error flags. Response can take up to two
bytes, depending on the command. To end communication the CS chip select pin
has to be set high and at least eight cycles of clock with value on MOSI line (0xFF)h
has to be send.

The card can respond using several response formats. The most important are
R1, R3 and R7 response formats (figure 4.32). The most common is R1 response
(value of R1 (0x00)h means successful), frames R3 and R7 are used for the SD card
set up.

Figure 4.32: SD card responses frames

4.5.4 SD Card initialization sequence

After the power reset the SD card enters its native operating SD mode. There exist
a sequence of steps to start communicating with the SD card via SPI bus. First it
is necessary to wait a moment (most sources recommend 1 ms or more) after the
power switches up to allow stabilization. To “wake” up the SD card it is necessary
to send at least 74 dummy clock cycles. Eleven 8-bit clock cycles is send to full-fill
this condition (figure 4.33).

64

Figure 4.33: Waking up the card and setting the SPI mode

After the SD has been waken up, the chip select pin CS is set to low which
enables the card. Another two dummy clock cycles (which are always send prior to
a command to allow the card to prepare for incoming data) follow and a command
CMD0 is send. The structure of the command:

0x40 0x00 0x00 0x00 0x00 0x95

The (0x95)h is a pre calculated checksum CRC valid for this command [14]. The
“I don’t care” bits with value of (0xFF)h are send to shift the register and read the
data send by the card. This value is send until the SD card responds. The SD card
returns response R1 with In Idle State bit high. The card enters the SPI mode and
CRC wont be evaluated anymore. To end the communication an end-of-command
clocking with value (0xFF)h is send and the chip select pin is set to high again.

To be able successfully write and read data it is necessary to check what type of
card is used so it can be used with correct parameters. To inquire the card type, the
command CMD8 is send with argument (0x000001AA)h and pre-calculated CRC
value (0x87)h (figure 4.34).

Figure 4.34: Acquisition of the SD card data type

If the card rejects the command with illegal command error (0x05)h, the card
type is SDCv1 or MMCv3. If the command is accepted, the R7 response is returned.
In this particular case (figure 4.34) is the returned value

0x00 0x00 0x01 0xAA

65

which shows that the type of the used SD card is SDCv2 [49].
Second to last part of the initialization is sending command CMD58 to read CCS

(Card Capacity Status) bit of OCR (figure 4.32 and 4.35).

0x51 0x00 0x00 0x00 0x00 0x01

The card responds with R3 containing CSS bit low. This means the card is Standard
Capacity SD Memory Card. If the CSS bit was high, the card would be High
Capacity SD Card.

Figure 4.35: Part of the SD card initialization sequence, CMD58

The last command forces block size to 512 bytes so it is possible to work with
FAT file system on this type of SD card. This initialization has prepared the card
for communications (SPI mode and block size configured) and also provided a in-
formation about card (type and size) to microcontroller.

4.5.5 Communication with the SD card

After the low level SD card driver is initialized it is possible to start using the
FatFs library (mentioned in section 4.5.2) containing functions which can mount a
medium, open file, write strings into file, close files etc. The use of those function
is straightforward (code 4.7). The data string produced and saved by the code is
caught on oscilloscope (figure 4.36) and the decoding of such string is demonstrated.
The ASCII table was used to decode individual letters (appendix E).

66

Code 4.7: Use of FatFs

FATFS FS; //storage medium variable

FIL fil; // variable for file

FRESULT fres;// variable for saving results of operations

// mount the card

f_mount(&FS, "SD:", 1);

// try to open file */

if ((fres = f_open(&fil, "SD:test_file.txt", FA_OPEN_ALWAYS |

FA_READ | FA_WRITE)) == FR_OK) {

//format string

sprintf(buffer, "ULT :)");

f_puts(buffer, &fil);

f_close(&fil);

}

//unmount the card

f_mount(NULL, "SD:", 1);

Figure 4.36: Decoding of data saved from oscilloscope containing a string

4.5.6 SD card library for saving text files

To store the measured value, an interrupt caused by timer is triggered and a function
to write measured data to the end of the corresponding file is called. Every digital
sensor has its own text file with header containing the information about sensor,
date and time, units etc. The analogue sensors evaluating air quality share one file.
Example of a created file can be found in appendix D on figure D.1.

67

The flow graphs of initialization on a file and write of a single result of the
measurement can be found of figure 4.37.

Figure 4.37: File initialization (left) and write to the file (right) flow graph

The libraries containing functions for formatting the text output can be found on
the attatched CD (files write sd.c and write sd.h) as well as the low level driver and
FatFs files (fatfs sd.c, fatfs sd.h, diskoio.c, discoio.h, ff.c, ff.h, ccsbcs.c, and ffconf.h).

4.5.7 Real time clock DS1307 IC

There is a real time stamp in every measurement file. To acquire the time infor-
mation RTC (Real time clock) DS1307 is used. STM3F4xx devices has internal
calibrated oscillator but the external oscillator is more accurate and the whole mi-
crocontroller doesn’t have to be powered all the time.

The DS1307 is low-power, full binary-coded decimal clock/calendar real-time
clock with 56 bytes of non-volatile SRAM with I2C communication. The correction

68

of leap year and date adjustment for months with less then 31 days is implemented
by the manufacturer. The DS1307 has build-in circuit detecting loss of supply power
and switches to the backup supply power automatically. The backup supply can be
provided by any standard 3 V lithium cell or any other energy source. According to
the datasheet [20] the DS1307 will be back-up for 10 years when a lithium battery
with at least 48 mAh is used.

DS1307 interfacing

The interfacing DS1307 real-clock to the microcontroller is show on figure 4.38. The
DS1307 communicates over I2C and requires standard external 32.768 kHz oscillator
with specified load capacitance of 12.5 pF.

Figure 4.38: DS1307 connection

DS1307 communication

The data are saved in seven registers with addresses (0x00)h to (0x07)h (table 4.7).
The seventh bit of the first register (0x00)h CH has to be cleaned to enable the
oscillator. The time can be read both in 12 and 24 hours format.

69

Table 4.7: DS1307 registers [20]

Bits

Function Address 7 6 5 4 3 2 1 0

Seconds 0x00h CH 10 Seconds Seconds

Minutes 0x01h 0 10 Minutes Minutes

Hours 0x02h 0
12 10 Hour

10 Hour Hours
24 PM/AM

Day 0x03h 0 0 0 0 0 Day

Date 0x04h 0 0 10 Date Date

Month 0x05h 0 0 0 10 Month Month

Year 0x06h 10 Year Year

On first application of power is the device set to 01.01.2000, 00:00:00. It is necessary
to set the current time and calendar date. This setting is necessary only once as the
backup power wont allow any data loss. After the initialization, the current time
and date can be read. The I2C address of the device is (0x68)h. The example of
reading the time is on figures 4.39 and 4.40.

Figure 4.39: DS1307 request for register reading

The time data acquisition process precedes request for reading registers. The
request is composed of sending addressing the first register (0x00)h with device
address (0x68)h and write bit W (as seen on figure 4.39). This is followed by the
device address with read bit R and the device then starts returning the data. In
this case a multi-memory read approach is used so it is not necessary to address

70

Figure 4.40: DS1307 time data acquired

each individual register for the full time and date acquirement. With the use of the
table 4.7, it is possible to read the returned data as follows.

16 : 40 : 45, second day (tuesday), 10.5.201

Please note that the oscilloscope is set to show hexadecimal values for example the
value of hours “16” is in fact (0x16)h which translates as (22)d. This is consequence
of the data saved in the register in BCD (Binary Coded Decimal) format. Thus
is necessary to convert the values into the required format to enable processing
of the time data and to prevent wrong reading. The BCD is a system of writing
numbers which assigns a four-digit binary code to each number from zero to nine.
The numbers larger then nine are expressed digit by digit. For example number
(25)d = (11001)b is in BCD expressed as:

0010︸︷︷︸
(2)d

0101︸︷︷︸
(5)d

The BCD offers compromise before machine-readable and human-readable numer-
als. The conversion (code 4.8) is done by adding of the two nibbles (four bites) from
which the more significant nibble must be multiplied by ten (to move one order up).

Code 4.8: Conversion of BCD format to decimal integer

// returns converted BCD number

uint8_t bcd2int(uint8_t bcd) {

uint8_t dec = 10*(bcd>>4);

dec += bcd & 0x0F;

return dec;

}

71

4.6 LCD display

For the representation of the measured data and for communication between user
and the microcontroller a 3.5 inch touch LCD display was selected (table 4.8).

For the connection of the display to the microcontroller was used STM32F4DISCOVERY
Base Board.

Table 4.8: STM32F4DIS-LCD display specifications

STM32F4DIS-LCD

Size 3.5 inches LCD board

Driving IC SSD2119

Display format 320x240

Color 262K colors

Interface 16-bit 8080 parallel system interface

Touch screen 4-wire resistive touch screen

Driving IC for touchscreen STMPE811

4.6.1 LCD interface

The display is connected using 16-bit 8080 parallel interface. The signals for con-
trolling LCD are divided into two types: control signals and data signals. In this
particular case there are sixteen data lines. The four control signals WR, RD, DC,
CS (all active low) define the type of operation. Combination of different levels of
those signals generates desired operation (table 4.9).

Table 4.9: The functions of 8080 parallel interface

WR RD DC CS operation

1 0 0 0 read 8-bit command

1 0 1 0 read 8-bit parameter

0 1 0 0 write 8-bit command

0 1 1 0 write 16-bit display data

CS (chip select) signal line must be pulled low to perform any operation. RD and
WR are read and write lines. In other words, if the write operation is required, the
WR line must be pulled down and the RD has to be hold high and similarly for the
read operation. The DC line determines if the data are intended to be written into
the display data RAM or into the internal command register.

72

Figure 4.41: SSD2119 driver initialization

4.6.2 SSD2119 TFT LCD driver

SSD2119 is an all in one TFT LCD driver which can be used to drive panel with up
to 262k color and resolution of 320x240 pixels. The LCD display can be interfaced
via 8/9/16 bit 6800 parallel interface, 8/9/16-bit 8080 parallel interface or SPI.

The driver comes with the LCD display on the board but an initialization is
needed. The LCD is designed to be used with 16 bit 8080 parallel interface thus
it is necessary to set the SSD2119 driver to the same mode. As can be seen from
the LCD internall connection scheme [45], SSD2119 is already connected in 16-
bit 8080 parallel mode. The mode selection pins PS[3:0] are set to combination
(0010)b using combination of resistors. According to the table 6-3 in SSD2119
datasheet [43] is this combination used for 16-bit 8080 parallel mode therefore correct
for this application.

The initialization flow graph can be seen on figure 4.41. The initialization starts
with resetting the display. The oscillator is started and display is put into the
sleep mode because some of the register are not accessible in the normal mode.
Driver output control register sets color mode to RGB (contrary to default BRG
setting). Waveform control register actives the line inversion to help to suppress the
flicker [4]. The entry mode register deactivates pins HSYNC/VSYNC which under
normal conditions take control of position synchronization. Instead is the window of
the RAM buffer defined using fixed values. Gate scan position assures that the first
line is on the very top of the display. This parameter can be used e.g. to protect
a header (including e.g. company logo or time and date) which should remain the
same all the time the LCD is on from overwriting. Rest of the registers was set to
with help of the datasheet to achieve good displaying quality without flickering.

73

Figure 4.42: Flow diagram of displaying a single pixel

After the initialization the LCD is ready to display a pixel with given color on
given position. The process of displaying a pixel is shown on figure 4.42.

The display with given initialization requires color in RGB565 color code thus is
necessary to convert the values before sending them to the display (code 4.9).

Code 4.9: Conversion from RGB888 to RGB565

RGB565(R ,G, B) ((((R)& 0xF8) << 8) | (((G) & 0xFC) << 3) | (((B) &

0xF8) >> 3))

Graphic elements

After the function for writing a single pixel with defined color on the desired position
on the screen is ready, it is possible to start creating functions to display text and
graphic. There exist two options how to solve this problem. First one is to use
prepared commercial libraries such as uGFX∗, SEGGER emWin† or StemWin‡.
With use of the prepared libraries is the displaying of various graphic elements easy
but they also have drawbacks. The first two mentioned are not free for commercial
use and StemWin is not an open source project. Hence a simple small graphical
library is written. The functions display text, buttons and various geometric figures.
There is an example of drawing line with given parameters in the snippet 4.10).

∗ http://ugfx.org/
† https://www.segger.com/emwin.html
‡ www.st.com/resource/en/application_note/dm00089670.pdf

74

Code 4.10: Drawing line on the display

#define SSD2119_X_RAM_ADDR_REG 0x4E

#define SSD2119_Y_RAM_ADDR_REG 0x4F

#define SSD2119_RAM_DATA_REG 0x22

void LCD_WriteRAM_Prepare(void){

LCD_CMD = SSD2119_RAM_DATA_REG;}

void LCD_WriteReg(uint8_t register, uint16_t value){

LCD_CMD = register; // choose register to write into

LCD_Data = value;} // send the required value

void LCD_WriteRAM(uint16_t RGB_Code){

LCD_Data = RGB_Code;} // write into 16-bit register of LCD RAM

void LCD_SetCursor(uint16_t Xpos, uint16_t Ypos){

LCD_WriteReg(SSD2119_X_RAM_ADDR_REG, Xpos); // set X address of

the cursor

LCD_WriteReg(SSD2119_Y_RAM_ADDR_REG, Ypos);} // set Y address of

the cursor

void LCD_drawHorizontalLine(uint16_t Xpos, uint16_t Ypos, uint16_t

length, uint16_t color){

uint32_t i = 0;

LCD_SetCursor(Xpos, Ypos); // set cursor to the start of the line

position

LCD_WriteRAM_Prepare(); // prepare for writing into the LCD RAM

for(i = 0; i < length; i++) {

LCD_WriteRAM(color);

}

}

4.6.3 STMPE811 TFT touchscreen controller driver

4-wire resistive touch screen

The 4-wire resistive touch screen consists of three layers (figure 4.43). There is a rigid
substrate made usually from glass or acrylic. Surfaces are coated with a transparent
conductive film (e.g. indium tin oxide). The conductive layers are normally not
touching thanks to the insulating spacers on the edges and in-between the two
layers. There is a flexible membrane made from PET (polyethylene terephthalate).

75

Figure 4.43: Resistive touch screen

If there is a touch present on the PET layer, a contact between the two layers is
made. The 4-wire technology uses pair of electrodes for each layer. The electrodes
are often referred as bus-bars. The bus-bars are placed perpendicularly and the four
wires are referred as X+,X-,Y+ and Y-. The reading of the touch position in y axis
is done by driving Y+ high, Y- low and reading X+. Similarly the x coordinate can
be obtained. The STMPE811 driver, if properly initialized, has ability to measure
those voltages and convert them to a digital values thanks to the build-in ADC.

STMPE811 initialization

The STMPE811 can communicate on both I2C and SPI bus, but the wiring on the
LCD display board makes only I2C bus accessible. The address of the driver is
(0x82)h and the driver is running on a different I2C bus then the sensors (marked
as I2C3 in the STM32F407 peripherals list). The reason is that if the touch occurs
at time of any other I2C communication already in progress, the reaction on touch
can appear as delayed. In the first step of the initialization (figure 4.44) are the
ADC and TSC (Touch Screen Controller) clocks activated. The next step, setting
the ADC, is crucial for correct working of the touch screen controller. The ADC
resolution, conversion time and clock speed are set to 12-bits, 80 clock cycles and
3.25 MHz.

Next step is configuring TSC. In the datasheet note there is a recommendation
for setting the settling time for panels larger then six inches as 1 ms. Since the
used LCD panel is half size, the settling time was selected as 500 µs. The resulting
position is set to be calculated as an average of last four readings and will be treated
as single point reading. This setting shows the best result concerning the precision
and speed of the touch screen response. The range of the pressure measurement is
set high and the accuracy low because in the given application only detection of the
touch is necessary and not the evaluation of the pressure used (the evaluation of
pressure force is used e.g. in painting programs). The maximal driving current is
set to maximal value of 50 mA because the unit is not battery driven and there is no
need for extreme power savings. At last the interrupts are enabled. The controller
has one dedicated pin output to generate interrupts in case of touch event so the

76

Figure 4.44: STMPE811 Init

microcontroller doesn’t have to read new values of ADC converter all the time. The
interrupt line is set to be active low and set to level interrupt. The same setting has
to be done in the microcontroller interrupt control.

STMPE811 calibration

Since the controller has no information about the size and resolution of the connected
display, the calibration must be done manually. The raw value returned by the touch
controller in the corners was measured (figure 4.45). The LCD dimensions are know,
the output of the ADC is linear and the correct position can be calculated by cross-
multiplication.

Figure 4.45: STMPE811 calibration

77

Moreover the corrected values are scaled to bring the beginning of the coordinate
system into the upper left corner so it corresponds to the beginning of coordinate
system.

STMPE811 reading touch position

The flow graph of reading the touch position is on figure 4.46. In the interrupt
routine is the position stored in the touch controller FIFO read, converted and scaled.
The defined buttons are tested one by one. If the button is enabled, the position
of the touch is compared with the inside area of the button. If it corresponds, the
button is marked as pressed and the routine ends, interrupts flags are cleared and
the microcomputer waits for another interrupt.

Figure 4.46: Reading touch position flow graph

78

4.6.4 Buttons

After the proper initialization of both LCD display and the touch controller it is
possible to create an interface for communication with the user. One of the element
of such interface is a button. As mention in section 4.6.2, no prepared graphical
library was used thus the buttons have to be designed. Every button is an element
of a structure with following arrangement (code 4.11).

Code 4.11: Structure for holding button parameters

struct buttons {

// position of the button left upper corner on the display

uint16_t xPosition;

uint16_t yPosition;

// size of the button

// if ySize or xSize == 0 the size is calculated automatically

// based on the button text

uint16_t ySize;

uint16_t xSize;

uint16_t backColor; // color scheme for the button

uint16_t textColor; // color scheme for the button

sFONT *fonts; // font size

char text[40]; // text of the button

// area in which is the button active

uint16_t xTouchMin;

uint16_t xTouchMax;

uint16_t yTouchMin;

uint16_t yTouchMax;

uint8_t volatile enable; // enable = 1 -> button is active

uint8_t volatile status; // status = 1 -> button is pressed

};

The function which takes elements of the structure and uses them to display the
button on the display is demonstrated in appendix F (code F.1).

4.7 Ethernet connection

The created program for transmitting data via Ethernet demonstrates the possi-
bilities of the Ethernet controller. However, it is not fully implemented into uLite
unit and the transmission of measured data via Ethernet to another device is not
yet possible. The first reason is that the receiving application for the transmit-
ted data is not written. It is possible to send data and display them in the web
browser on given IP (Internet Protocol) address but it is not possible to save them.
Another problem is connected with use of the STM32F407 Discovery Board. The

79

Ethernet module is communicating via SPI and requires fast responses from the
microcontroller. On the STM32F407 Discovery Board there are several peripherals
already connected to the SPI bus (accelerometer, gyroscope and audio driver). All
the connected devices increase the RC constant which is slowing down the bus, delay
responses of the microcontroller and cause lost of packets and thus very unreliable
communication which freezes occasionally. Moreover the used breakout board with
ENC28J60 Ethernet controller also contains resistors and capacitors which makes
the communication even more unpredictable. The program works without problem
on modules such as STM32Fxxx Nucleo Boards which are mend to be used for de-
ployment and it would work with the microcontroller placed on a dedicated board
as well.

4.7.1 Transmission Control Protocol

The used Ethernet controller already contains the Medium Access Controller layer
(MAC) and Physical Layer (PHY). Thanks to the build-in network stack and trans-
mitting/receiving buffers the controller takes care about most parts of the commu-
nication. The following chapter covers only basics of TCP (Transmission Control
Protocol) protocol which was used to support HTML (HyperText Markup Lan-
guage) application layer.

TCP is a transport layer supported by IP. It offers connection-oriented, reliable,
full-duplex and error checked delivery of data between applications communicating
over an IP network. The connection-oriented means that a virtual connection must
be establish before any data can be transmitted [32]. Every transmission is acknowl-
edged by the receiver and if the sender doesn’t receive the acknowledgement within
a specific time frame, the data are resended. The communication with use of TCP
is full-duplex. The data travel in segments containing the data bytes and control
information identifiers. Example of such segment is on figure 4.47 (redrawn based
on [36]). The description of individual parts of the TCP header are in table 4.10.

Figure 4.47: TCP segment

80

Table 4.10: Fields in TCP header [36]

Field Length Function

source port 16 bits The port number at the source side.

destination port 16 bits The port number at the receiver side.

sequence number 32 bits Identifies the data segment position in the
stream of already send segments.

ack. number 32 bits Acknowledged sequence number.

offset 4 bits Number of 32-bit words in the TCP header.

reserved 3 bits Reserved for later use.

flags 9x1 bit NS
ECN-nonce (Explicit Congestion Notification)
concealment protection (experimental).

CWR
If set, the received TCP segment has responded
in congestion control mechanism.

ECE Indication of TCP seed ECN capability.

URG
If set, the urgent pointer field contains data for
the receiver.

ACK
If set, the acknowledgement field contains data
for the receiver.

PSH If set, the data shall be send without buffering.

RST If set, the sender is requesting connection reset.

SYN
If set, the synchronization of sequence number
between two nodes is required by the sender.

FIN
If set, the send segment is last in a sequence
and communication should be closed.

TCP implementation

Before sending any data with use of TCP protocol a correct header has to created.
For the creation of valid packets is used a library created by Guido Socher “IP,
ARP, UDP and TCP functions” which is available under GLP V2 license. Both
files contained in this library can be found on the attached CD (ip arp udp tcp.h
and ip arp udp tcp.c). It is possible to use arbitrary TCP/IP stack such as lwIP∗.

4.7.2 ENC28J60 Ethernet controller

The ENC28J60 (figure 4.48) is a stand-alone Ethernet controller with SPI interface.
This controller is used in form of a break-out board commonly sold for developing

∗ http://en.wikipedia.org/wiki/LwIP

81

applications with Ethernet connection. It already contains all external elements
needed for interfacing the controller (crystal, resistors, capacitors and RJ-45 con-
nector). The ENC28J60 meets all the IEE 802.3 specifications. It also provides an
internal DMA (Direct Memory Access) for faster data transfer and internal check-
sum calculator. It has two dedicated LEDs to indicate network activity indication.
This Ethernet controller doesn’t came with its own MAC address. It can be set
manually but if the device was used commercially it would be necessary to purchase
a registered MAC address (block of 4096 MAC addresses costs about $665∗). As

Figure 4.48: ENC28J60 Ethernet controller break-out board

already mentioned, the break-out board already contains all necessary components
to make the ENC28J60 chip work. It is connected to microcontroller SPI pins and
to one GPIO pin to accept interrupts from ENC28J60 (figure 4.49).

Figure 4.49: ENC28J60 interface

ENC28J60 Ethernet controller communication

There are three memory types in ENC28J60 Ethernet controller: control registers,
Ethernet buffer and PHY registers.

The control registers are divided into four banks. Each bank is 32-bytes long.
The control registers are directly read and written to by the SPI interface.

The 8Kbytes Ethernet buffer contains trasmit and receive buffer. The sizes of
those areas are programmable via SPI by the host controller (the part of the buffer
which is not programmed as a receive buffer is automatically considered to be a

∗ https://standards.ieee.org/develop/regauth/oui36/index.html

82

transmit buffer). The receive buffer is a circular FIFO buffer completely managed by
the hardware. Both buffers are addressed with several pointers indicating start, end
or read position (for the complete list see the device datasheet [35]). Those buffers
can be only accessed with use of read buffer memory and write buffer memory SPI
commands (table 4.11).

The PHY registers are used for PHY module control and status retrieval. Those
registers are not accessible through the SPI interface and they must be addressed
with Media Independent Interface Management (MIIM) which is part of the MAC.

Figure 4.50: ENC28J60 communication flow graph

The initialization of ENC28J60 (figure 4.50) starts with the chip reset. The
receive buffer initialized for 16-bits transfers. In the Bank 1 it is possible to set
filters for packets. In this case only ARP (Address Resolution Protocol) packets are
allowed for broadcast. The Bank 2 contains registers for allowing and setting up
the MAC parameters. The automatic padding of the packets to 60 bytes and CRC
control is enabled. In the Bank 3 the actual MAC address is saved. The PHY layer
is configured, the interrupts are enabled and the reception of the packet is allowed.

When sending a packet the pointer is moved to the start of the transmit buffer
and set the end pointer according to the packet length. The packet data are then
copied into the buffer and send out. When reading a packet it is first checked if it is
received and buffered correctly. The pointer on the start of the following packet is
read and saved. The length of the incoming packet is also read and it is shortened
by four bytes containing CRC. The receive status vector is read and it is checked

83

for errors. If there are no errors, the data are copied from the receiver buffer and
the read pointer is moved at the beginning of the next packet (using the previously
saved position) to free the memory. The packet counter is decreased to indicate
successful operation.

Table 4.11: SPI instruction set for the ENC28J60 [35]

Instruction name
Byte 0 Byte 1

Opcode Argument Data

Read Control Register (RCR) 0 0 0 a a a a a N/A

Read Buffer Memory (RBM) 0 0 1 1 1 0 1 0 N/A

Write Control Register (WCR) 0 1 0 a a a a a d d d d d d d d

Write Buffer Memory (WBM) 0 1 1 1 1 0 1 0 d d d d d d d d

Bit Field Set (BFS) 1 0 0 a a a a a d d d d d d d d

Bit Field Clear (BFC) 1 0 1 a a a a a d d d d d d d d

System Reset Command (SRC) 1 1 1 1 1 1 1 1 N/A

a = control register address, d = data

Simple web server with ENC28J60 Ethernet controller

To demonstrate the function of the ENC28J60, a simple web server is created. The
data can be accessed with the IP address and password which was set in the program.
The result is captured on figure 4.51.

Figure 4.51: Web server created with ENC28J60

The debugging of Ethernet is not possible with the available oscilloscope and logic
analyser. However it is possible to observe the packets with software Wireshark (an
open source packet analyser). The communication was recorded using this software
and the file is available on the attached CD. Data about one packet can be found in
appendix M on figure M.1.

Even though the communication cannot be decoded with use of the oscillator
it is possible to observe the communication signal. On figure N.1 in appendix N
the negative effect of additional devices connected to the SPI bus on the Discovery

84

Board can be observed. The MMOSI (green) line rise time is very low and despite
the microcontroller efforts to communicate the bits are not read correctly. The
ENC28J60 evaluates this situation as if the microcontroller was not connected at all
and ends the communication. On figure N.2 in appendix N it is possible to see this
effect in a large scale.

4.8 Base board

4.8.1 Base Board schematics

Base Board was designed to bring all the parts described in the previous sections to-
gether on one PCB board. The schematics can be found in appendix G (figure G.1).
The components are easily connectible thanks to the pins on the Base Board. The
board contains all the necessary circuit elements. The components are placed in such
way that they are close to the point of their working position. The sensors evaluat-
ing air quality are located close to the air channel, the external sensors are situated
the near of the connectors and the pinheads for connection with microcontroller are
right beside the STM32F407 Discovery Board kit.

4.8.2 Base Board PCB

The PCB (figures 4.52 and 4.53) was manufactured as one sided PCB with green
unsolderable mask and white silkscreen labelling the components positions by com-
pany APAMA. Each element has its own connection cable with exact length to make
the connections inside the box more transparent. The board dimension is 97x66 mm.
The diameter of the wires is 1.17 mm and 2.54 mm crimp connectors housing were
used. The VOC sensor and the dust sensor are connected with JST ZHR-6 and
JST XHP-4 Wire-to-board connectors.

Figure 4.52: PCB bottom layer Figure 4.53: PCB design

85

4.9 Power Supply board

In the development phase was the STM32F407 Discovery Board powered by the
same USB cable which was used for programming the microcontroller. The parts
requiring external power were powered by laboratory power source with possibility
of voltage setting and current limitation. To make the project independent of the
laboratory source and USB power, the power supply solution is designed.

The components on the base board are power by either 3.3 V or 5 V. One of the
gas sensor (CO) requires specific voltage cycling of 1.4 V and 5 V. Due to the use of
operational amplifiers it is necessary to provide symmetrical power supply. All the
requirements are summed up in the following item list.

• 5 V supply for gas sensors, dust sensor, DS18B20 temperature sensor, real time
clock DS1307, LCD display.

• 3.3 V supply for SHT21 temperature sensor, ADXL345 accelerometer, AMS5915
pressure sensor, SD card reader, LCD display.

• Symmetric supply for operational amplifiers ±5 V.

• Alternating voltage 5 V/1.4 V for the heater of CO sensor.

4.9.1 Power Supply board schematics

The schema of the power module can be found in appendix H (figure H.1). The
main power input to the unit is 12 V provided by switch mode power supply for
240 V AC input with 12 V direct voltage output, maximum output power of 2 A
and standard 5.5/2.1 mm output connector. It is possible to power the uLite unit
with up to 30 V. There is a medium time lag 2 A fuse on the input of the power
module board to protect the rest of the circuit. The input voltage is regulated by the
positive adjustable voltage regulator LM317TS in To-220 package to approximately
8 V with maximal output current of 1.5 A. This step prevents overheating of the
following regulators and provides stable power. The nominal output voltage of this
regulator is selected by means of a resistive divider (equation 4.11 and figure 4.54).

Uout = Uref ·
(

1 +
R2

R1

)
+ Iadj ·R2 (4.11)

Figure 4.54: LM317 in adjustable regulator mode

86

As stated in the datasheet [33], LM317 provides an internal reference voltage
Uref of 1.25 V. The current Iadj is designed to be very low with maximum value of
100 µA. Therefore the error term containing Iadj in equation 4.11 can be neglected.
For this application was R1 selected as 470 Ω and R2 was set with use of multimeter
to achieve approximately 8 V on the output. The capacitors C6 and C7 are placed to
smooth drops in supply voltage lines and to filter 50 Hz. Capacitance C5 improves
transient response of the regulator. There are two fixed voltage regulators REG1117,
one providing 3.3 V and the second 5 V. These voltage regulators require input and
output capacitors (C1, C2, C3, C4) [1]. There is one more REG1117 regulator
designed to cycle voltages for the CO gas sensor. As the transistor T1 BC817 opens
and closes, the ratio of the resistor divider is changed, setting either 1.4 V or 5 V to
the output.

Symmetrical power supply can be created by use of specially designed silicon
chips such as TLE2426∗ from Texas Instruments, but those chips can only handle
low current of maximum 40 mA. The chips that can handle higher current gets
expensive, too complicated, can’t provide voltage high enough or come in hand
unsolderable packages. The cheap elegant solution is to use operational amplifier
in comparator mode (in this case TDA2008V). The two closely matched resistors
create a voltage divider at the non-inverting input to the operational amplifier. C10
and R9 forms a low pass filter to eliminate noise internally generated by operational
amplifier. C8 and C9 stabilize the output. This connection is designed to provide
current up to 3 A.

4.9.2 Power Supply PCB

The PCB was designed as two layer board with dimension of 58x64 mm. The final
design can be seen on figures 4.55, 4.56 and 4.57. The board was manufactured
by company APAMA with green solder mask coating and white silkscreen on both
sites.

4.9.3 Power Supply accessories

To make the powering of the unit user friendly, a button switch and a power jack are
mounted to the side of the box. They are fixed with a help of two small PCBs with
holes for screws (figure 4.58). Those PCBs were manufactured in home laboratory
and the dimension of each PCB is 18x20 mm. This systems allows reliable connection
of the switch and power jack to the power supply module.

∗ http://www.ti.com/product/TLE2426

87

Figure 4.55: PCB bottom
layer

Figure 4.56: PCB top layer Figure 4.57: PCB design

Figure 4.58: Switch and jack schematics + PCB design

4.10 Software for uLite box

4.10.1 Microcontroller

The software solution is based on STM32F407VGT6 in LQFP100 package on the
Discovery Board (please see the microcontroller specification in datasheet [44]). The
Discovery Boards kits are complete solution for the development of STM32 based
application. They have integrated debugger and programmer which makes them
ideal for prototyping.

On the other hand when developing on Discovery board it is necessary to carefully
select pins and prevent collision with devices already mounted on the discovery
board (accelerometer, audio sensor, digital microphone etc.). The used pinout is on
figure 4.59. The core clock is set to 168 MHz. The whole clock configuration setting
is on figure I.1 in appendix I.

88

Figure 4.59: STM32F407 pinout

4.10.2 Program structure

The program is composed of three main parts. In the first part the initialization of
microcontroller internal and external peripherals take place (figure 4.60 on the left).
The second parts prompts user to start the measurement with selected parameters
(figure 4.60 on the right) and the third part is the measurement itself (figure K.1 in
appendix K).

In the flow diagrams there are used elements described in the previous chapters.
For example the “digital sensors init” refers to section 4.1.1 for initialization of the
SHT21 sensor and similarly for all digital sensors. The same principle also applies for
reading of the buttons (section 4.6.3). In the flow diagram is the process simplified
to make the flow diagrams more readable (each button touch triggers an interrupt
which would disrupt the flow diagram).

89

Figure 4.60: Initilization (left) and preparation (right) phase flow graph

The flow diagram corresponds to the frames of LCD interface on figure 4.61.
After power up there is a welcome page with the very basic information about the
project (figure 4.61a). After a short while, the one minute countdown starts (fig-
ure 4.61b). The one minute is for heating up the gas sensors but it is possible to skip
this phase by pressing the “Skip!” button (user is not interested in the measurement
with gas sensors or the unit has been switched off recently and the sensors didn’t
have time to cool down). Either way there is a beep tone to indicate the end of the
waiting phase. The program enters the preparation phase (figures 4.61c and 4.61d).
The user is informed about the state of the connected sensors. The saving to the
SD card can be switched on and off. After the “Start measurement!” button is
pressed, the program leaves the preparation phase and it moves into the measure-
ment stage (figures 4.61e and 4.61f). In the upper left corner there is time, date and
the information about SD card status displayed. There is also the “STOP” button
which stops the measurement phase and returns the program into the preparation
phase. Below the horizontal line there are the measured values displayed. In case
that any digital sensor is not connected, the user is informed. As mentioned before
the analogue sensors are not calibrated therefore the actual measured value is not
displayed. The results are interpreted in form of so to speak “loading bar” which is
customized for every sensor and shows any increased reading.

90

(a) Introduction page (b) Waiting phase

(c) Preparation phase (d) Preparation phase 2

(e) Measurement phase (f) Measurement phase 2

Figure 4.61: LCD interface pages

4.11 Prototype encasing

For easy manipulation is the unit enclosed in 200x150x70 mm universal ABS proto-
type box. The box is modified to meet the requirements of the project. Inside the
box there is plexiglass partition diving the electronics and sensor area and protecting

91

the electronics from possible negative impact of the humidity or dust in the air. Its
position is secured with a silicon which also adds insulation effect. A white sticker
is placed on the plexiglass to shelter the dust sensor from the power supply board
light emission. The wires for connecting sensor are passed through the plexiglass
via rubber grommets. The position of each element is shown on figure 4.62.

The necessary openings for allowing access to the SD card, Ethernet port, for
connecting of sensors were drilled. All the parts inside are secured with crews to
prevent unwanted movement. The connection of uLite to a filtration unit is designed
as a funnel with a flexible pipe (figure 4.70). The funnel has neodymium magnets to
stick to the filtration unit surface and it covers the air outlet of the filtration unit.

A logo for uLite is designed and placed on the box as well as the labels to each
element on the box. A connection guide is printed and placed onto the inner side of
the box lid (figure J.1 in appendix J).
The finished box is displayed on figures 4.63 - 4.69. The inside of the box is displayed
on figure 4.71. For more detailed photos of both uLite interior and exterior please
see the content of the attached CD (appendix A).

Figure 4.62: Position of individual elements in the box

92

Figure 4.63: uLite with the funnel

Figure 4.64: uLite side view

93

Figure 4.65: uLite top view

Figure 4.66: uLite side view 3

94

Figure 4.67: Connector detail

Figure 4.68: SD card detail

Figure 4.69: Power connection detail

95

Figure 4.70: Funnel

Figure 4.71: uLite inside wiring and the connection guide

96

5 uLite result presentation

The test measurement was carried out with use of different sources of chemicals and
heat sources. The The output files can be found on the attached CD (appendix A).
The photos from the uLite test run can be found on figures 5.1 (clean air) and 5.2
(polluted air). uLite measurement unit function is verified and it is ready to be
tested in the real application on the filtration unit.

Figure 5.1: uLite measurement phase

Figure 5.2: uLite measurement phase 2

97

6 Conclusion and perspectives

Industry 4.0 is undoubtedly going to gain more and more significance in the manufac-
turing industry. In the beginning of this thesis is the general concept of Industry 4.0
introduced and the concrete applications for the air filtration industry are discussed.
Some of the proposals are chosen and used in the practical part of this thesis.

The result of the practical part, uLite unit, presents the use of embedded tech-
nologies for implementation of Industry 4.0. The unit is capable of measuring, log-
ging and displaying various parameters. Both software and hardware are designed
from the beginning. The encasing, name and logo are also created exclusively for
this thesis. Every step of the development is described in detail and the documen-
tation can serve for future research. In most cases the libraries are universal and
can be used in arbitrary project.

uLite unit should inspire future projects. But to be able to use the full potential
of the unit, the most important step is to create an application for receiving and
processing the data send from uLite via Ethernet. This application can take a form
of SQL database of simple C# windows application.

The next step in development would be to move the microprocessor to dedicated
board. Also the Ethernet and SD card connectors should be placed on the same
board as well as the LCD display interface. The air quality sensors may be placed
on an extra PCB board which would lower the amount of needed wire connections.

Currently the LCD user interface allows a basic control of the uLite unit. The
future improvement could be to implement function which enables advance setting
of the measurement parameters (such as resolution of the sensors or measuring
period/time). Moreover, a mobile application for a smart phones and tablets can
replace the LCD display.

98

A Contents of enclosed CD
CD

Master thesis Latex . . . This master thesis is written in LATEX. This folder
contains all source files and figures used in the thesis.

Master thesis PDF Please find the thesis text in pdf form here.
Ethernet interface Standalone program for communication via Ethernet,

WireShark session log and additional screens.
src
inc
project
additional files

uLite HW. The directory contains schematics and PCB layouts
for Power Board and Base Board (in form of both
Eagle and Gerber files) as well as all schematics used
in this thesis.

eagle parts schematics
sensors
others

power board
eagle files
gerber files

base board
eagle files
gerber files

uLite measurements . . . This folder contains measurements examples.
uLite photos There are photos of the complete uLite unit.
uLite SW This directory contains the software solution for uLite

with form of source files, libraries and project which
is possible to import into AC6 SW4STM32 IDE.

Drivers
CMSIS
STM32F4xx HAL Driver

Inc In this directory there are headers for all .c files used
in the program solution. Detailed description off the
files in individual folder can be found in appendix B.

lcd
others
peripherals init
SD card
sensors

Src This directory contains all libraries used in the pro-
gram.

SW4STM32 The folder contains .cproject which can be imported
into AC6 SW4STM32 IDE.

99

B Libraries on the attached CD
Inc

lcd
lcd display.h. Contains function for LCD initialization and

displaying of graphics elements and text.
lcd touch controller.h.. Function for initialization of the touch con-

troller and for reading of the buttons.
fonts.h. Set of several fonts defined in form of ASCII

tables converted to array of hex (some cre-
ated by a freeware GLCD Font Creator).

buttons.h. Setting of buttons parameters.
others

OneWire.h. Contains function for communication over
One Wire with arbitrary device which sup-
ports this bus.

DS1307.h. RTC initialization and functions for time
reading and handling of the read values.

peripherals init
adc init.h
gpio init.h
i2c init.h
spi init.h
timer init.h

SD card
diskio.h. FatFs: Common include file for FatFs and

disk I/O module.
fatfs sd.h. Low level driver for SD card.
ff.h. FatFs: Common include file for FatFs and

application module.
ffconf.h.. FatFs: Configuration file for FatFs module.
files headers.h. Headers for measurement files.
write sd.h. Contains function for formatting the mea-

surement results and saving them to SD card.
integer.h. FatFs: Integer type definition for FatFs.

sensors
ADLX345.h. Accelerometer.
AMS5915.h. Pressure sensor.
DS18B20.h. External temperature sensor.
SHT21.h Temperature and humidity sensor.
SHT21 systemInclude.h Sensor register addresses.

stm32fxxx hal.h
stm32f4xx it.h
stm32f4xx hal conf.h

100

C SD card commands

Table C.1: Commands for SD card initialization [48]

Index A
rg

u
m

e
n
t

R
e
sp

o
n

se

D
a
ta

Name Function

CMD0 - R1 - GO IDLE STATE Software reset

CMD1 - R1 - SEND OP COND
Initiate initialization
process

ACMD41† Y R1 - APP SEND OP COND
Initiate initialization
process (SDC only)

CMD8 Y R7 - SEND IF COND
Check voltage range
(SDC v2 only)

CMD9 - R1 Y SEND CSD
Read CSD (Card Spe-
cific Data) register

CMD10 - R1 Y SEND CID
Read CID (Card Iden-
tification Data) register

CMD12 - R1 - STOP TRANSMISSION Stop data reading

CMD16 Y R1 - SET BLOCKLEN Change R/W block size

CMD17 Y R1 Y READ SINGLE BLOCK Read a block

CMD18 Y R1 Y READ MULTIPLE BLOCK Read multiple blocks

CMD24 Y R1 Y WRITE BLOCK Write a block

CMD25 Y R1 Y WRITE MULTIPLE BLOCK Write multiple blocks

CMD55 - R1 - APP CMD
Leading command for
ACMD<n> command

CMD58 - R3 - READ OCR
Read OCR (Operation
Condition Register)

† ACMD<n> is a command sequence of CMD55 and CMD<n>

101

D Saved files content

Figure D.1: Example of the file on the SD card

102

E ASCII table

Figure E.1: ASCII table †

† https://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/ASCII-Table-wide.svg/

2000px-ASCII-Table-wide.svg.png

103

F Function for creating buttons

Code F.1: Function for drawing buttons

void createUserButton(struct buttons *buttons_t){

uint8_t textLength; // holds the length of the button text

uint8_t charWidth; // holds the width of the char for given font

uint8_t xSize; // X size of the button

uint8_t ySize; // Y size of the button

uint8_t offset = 30; // the space between the text and border

// set font and color scheme for the button

LCD_SetFont(buttons_t->fonts);

LCD_SetBackColor(buttons_t->backColor);

LCD_SetTextColor(buttons_t->textCOlor);

// in case the user did not enter the exact X size of the button,

calculate it

if (buttons_t->xSize == 0) {

charWidth = buttons_t->fonts->Width; // width of the char in pixels

textLength = strlen(buttons_t->text); // length of the given text

// calculate the width of the whole string in pixels

textLength = textLength*charWidth;

// add space between the text and button border

xSize = textLength+offset;

} else {

xSize = buttons_t->xSize; // in case X size is defined

}

// in case the user did not enter the exact Y size of the button,

calculate it

if (buttons_t->ySize == 0) {

ySize = LINE(3); // define Y size as 3xheight of the font

} else {

ySize = buttons_t->ySize; // in case Y size is defined

}

// display the button on given position with given (calculated) size

LCD_DrawFullRect(buttons_t->xPosition,buttons_t->yPosition,xSize,ySize);

LCD_SetBackColor(buttons_t->backColor);// set color of the text

LCD_SetTextColor(buttons_t->textCOlor);

// display the string aligned in the middle of the button

LCD_DisplayString(buttons_t->yPosition+LINE(1),

(uint8_t*)buttons_t->text,buttons_t->xPosition+(offset/2));

//calculate the active area of the button and save it into the structure

buttons_t->xTouchMin = buttons_t->xPosition;

buttons_t->xTouchMax = buttons_t->xPosition+xSize;

buttons_t->yTouchMin = buttons_t->yPosition;

buttons_t->yTouchMax = buttons_t->yPosition+ySize;

}

104

G Base board scheme

Figure G.1: Base board schema

105

H Power module scheme

Figure H.1: Power module scheme

106

I STM32F407 clock configuration

Figure I.1: STM32F407 clock configuration

107

J uLite Connection Guide

Figure J.1: uLite Connection Guide

108

K Measuring phase flow graph

Figure K.1: Flow graph of the measuring phase

109

L SHT21 library header
#include <SHT21_systemInclude.h> // includes defines for measuring times,

resolutions values, addresses...

struct SHT_parameters { // structure for holding parameters of each

sensor

uint16_t writeAddress;

uint16_t readAddress;

uint8_t resolutionTemp;

uint8_t resolutionHum;

uint8_t heater; // status of the heater, 0 = OFF, 1 = ON

uint8_t battery; // battery status 0: VDD> 2.25V; 1: VDD<2.25V

float lastTempReading; // results of the last temperature reading

float lastHumReading; // results of the last humidity reading

};

extern struct SHT_parameters SHT_parameters_t;

extern uint8_t buffer[16]; // buffer for storing values read from the

sensor

/* Definition of possible commands */

typedef enum {

TRIGGER_t_MEASUREMENT_HOLD_MASTER = 0xE3, // 1110 0011 227

TRIGGER_t_MEASUREMENT_NO_HOLD_MASTER = 0xF3, // 1111 0011 243

TRIGGER_rh_MEASUREMENT_HOLD_MASTER = 0xE5, // 1110 0101 229

TRIGGER_rh_MEASUREMENT_NO_HOLD_MASTER= 0xF5, // 1111 0101 245

WRITE_USER_REGISTER = 0xE6, // 1110 0110 230

READ_USER_REGISTER = 0xE7, // 1110 0111 231

SOFT_RESET = 0xFE, // 1111 1110 254

} SHT21_COMMANDS;

/* possible temperature and humidity combinations */

typedef enum

{

TEMP14HUM12 = 0,

TEMP12HUM8 = 1,

TEMP13HUM10 = 2,

TEMP11HUM11 = 3,

} Resolution_TEMP_HUM;

/////////////////////////////USER FUNCTIONS///////////////////////////

/* @brief Sensor init (default adresses, default resolution temperature

14bits, humidity 12bits, heater off)

* @param *SHT_parameters_t : pointer to a structure with sensor

parameters*/

void initializeSensor(struct SHT_parameters *SHT_parameters_t);

/* @brief Reads the humidity and stores the result in the structure

110

* @param *SHT_parameters_t : pointer to a structure with sensor

parameters*/

void humidityReading(struct SHT_parameters *SHT_parameters_t);

/* @brief Reads the temperature and stores the result in the structure

* @param *SHT_parameters_t : pointer to a structure with sensor

parameters*/

void temperatureReading(struct SHT_parameters *SHT_parameters_t);

/* @brief Reads user register content and fills the structure with data

* @param *SHT_parameters_t : pointer to a structure with sensor

parameters*/

void readUserRegister(struct SHT_parameters *SHT_parameters_t);

/* @brief Sets resolution of temperature and humidity measurement

* @param *SHT_parameters_t : pointer to a structure with sensor

parameters

* @param res_value : chosen combination of the resolutions, shall

have values TEMP14HUM12,TEMP12HUM8,TEMP13HUM10,TEMP11HUM11

*/

void setResolution(struct SHT_parameters *SHT_parameters_t,

Resolution_TEMP_HUM res_value);

/* @brief Toggles the heater

* @param *SHT_parameters_t : pointer to a structure with sensor

parameters

* @param heater : set 0 to stop the heater, 1 to start the heater

* any other value wont do anything

*/

void heaterToggle(struct SHT_parameters *SHT_parameters_t, uint8_t

heater);

/////////////////////////////INTERNAL FUNCTIONS///////////////////////

float calculateHum(uint8_t buff[16]);

float calculateTemp(uint8_t buff[16]);

void sendToSensor(struct SHT_parameters *SHT_parameters_t, SHT21_COMMANDS

byteToSend);

void readFromSensor(struct SHT_parameters *SHT_parameters_t, uint16_t

number_of_bt);

void waitTillTheEndOfConverstionTemp(struct SHT_parameters

*SHT_parameters_t);

void waitTillTheEndOfConverstionHum(struct SHT_parameters

*SHT_parameters_t);

void recieveTemperature(struct SHT_parameters *SHT_parameters_t);

void recieveHumidity(struct SHT_parameters *SHT_parameters_t);

111

M Wire Shark records

Figure M.1: SD card responses frames

112

N ENC28J60 SPI communication (Rigol)

Figure N.1: ENC28J60 SPI communication (detail)

Figure N.2: ENC28J60 SPI communication

113

Bibliography

[1] 800mA and 1A Low Dropout Positive Regulator. Available at:
http://www.ti.com/lit/ds/sbvs001d/sbvs001d.pdf (Accessed 14.6.2016). Texas
Instruments. 2004.

[2] AMS 5915 Amplified pressure sensor with digital output (I2C). Available at: http:
//www.analogmicro.de/_pages/sens/ams5915/ams5915_data_sheet.pdf(Accessed
10.4.2016), Rev. 2.1. HJK Sensoren + Systeme. Apr. 2015.

[3] Application note of Sharp dust sensor GP2Y1010AU0F. Available at: http://www.sharp-
world.com/products/device/lineup/data/pdf/datasheet/gp2y1010au_appl_e.pdf

(Accessed 10.4.2016), Sheet No.: OP13024EN. Sharp. 2006.

[4] David Armitage, Ian Underwood, and Shin tson Wu. Introduction to microdisplays. John
Wiley and Sons, Ltd, 2006. isbn: 9780470852811.

[5] Abhishek Attal et al. Piano Playing Robot. Vol. 3. International Journal of Engineering
Research and Technology, May 2014. isbn: 22780181.

[6] John R. Barnes. Robust Electronic Design. 1st edition, 360 pages. Springer US, 2004. isbn:
1-4020-7830-7.

[7] Jaap Bloem et al. No more secrets with Big Data Analytics. Available at:
http://vint.sogeti.com/wp-content/uploads/2013/11/Sogeti_NoMoreSecrets.pdf

(Accessed 20.5.2016). Sogeti LINE UP boek en media bv Groningen, 2013.

[8] Jaap Bloem et al. The Fourth Industrial Revolution: Things to Tighten the Link Between
it and ot. Available at:
http://www.fr.sogeti.com/globalassets/global/downloads/reports/vint-

research-3-the-fourth-industrial-revolution (Accessed 20.5.2016). Sogeti LINE
UP boek en media bv Groningen, 2014.

[9] Jaap Bloem et al. THINGS — Internet of Business Opportunities. Available at:
http://www.fr.sogeti.com/globalassets/global/downloads/reports/vint-

research-1-things-internet-of-business-opportunities.pdf (Accessed 20.5.2016).
Sogeti LINE UP boek en media bv Groningen, 2013.

[10] Maarten Botterman. Internet of Things: an early reality of the Future Internet,
WORKSHOP REPORT. Available at:
http://cordis.europa.eu/pub/fp7/ict/docs/enet/iot-prague-workshop-report-

vfinal-20090706_en.pdf (Accessed 28.5.2016). O’Reilly Media, May 2009.

[11] Encyclopædia Britannica. Moore’s law. Available at:
http://www.britannica.com/topic/Moores-law (Accessed 20.5.2016). Encyclopædia
Britannica Inc., 2014.

[12] Carbon Monoxide in the workplace. Available at:
www.iapa.ca/pdf/carbon_monoxide_feb2003.pdf (Accessed 4.5.2016). IAPA -
Industrial Accident Prevention Association. 2008.

[13] Elm Chan. FatFs - Generic FAT File System Module. Available at:
http://elm-chan.org/fsw/ff/00index_e.html)(Accessed22.5.2016).

114

[14] SanDisk Corporation. SanDisk miniSD: Card Product Manual. Available at:
http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/ProdManualminiSDv1.1.

pdf)(Accessed22.5.2016). Nov. 2003.

[15] Timothee Cour, Rémy Lauranson, and Matthieu Vachette. Autonomous Chess-playing
Robot. Ecole Polytechnique, July 2002.

[16] Datasheet SHT21: Humidity and Temperature Sensor IC. Available at: https:
//www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/

Humidity_Sensors/Sensirion_Humidity_Sensors_SHT21_Datasheet_V4.pdf (Accessed
10.4.2016), Version 4. Sensirion. May 2014.

[17] Joseph Davies. Understanding IPv6 (3rd Edition). ISBN: 0735659141. O’Reilly Media,
2012.

[18] Karl-Heinz Deiretsbacher et al. OPC Unified Architecture Pioneer of the 4th industrial
(r)evolution. Available at: https://jp.opcfoundation.org/wp-
content/uploads/2014/03/OPC_UA_I_4.0_Pioneer_US_v2.pdf (Accessed 20.5.2016).
2015.

[19] Ditigal Accelerometer ADXL345. Available at:
http://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL354.pdf

(Accessed 23.6.2016). Analog Devices. 2009.

[20] DS1307 64 x 8, Serial, I2C Real-Time Clock. Available at:
http://datasheets.maximintegrated.com/en/ds/DS1307.pdf(Accessed 26.5.2016),
Rev. 3. Maxim Integrated Products, Inc. 2015.

[21] DS18B20 Programmable Resolution 1-Wire Digital Thermometer. Available at:
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf(Accessed 10.4.2016),
Rev. 4. Maxim Integrated. 2015.

[22] David Greenfield. Industry 4.0 and OPC UA. Available at:
http://www.automationworld.com/industry-40-and-opc-ua (Accessed 20.5.2016).
2014.

[23] Mario Hermann, Tobias Pentek, and Boris Otto. Design Principles for Industrie 4.0
Scenarios: A Literature Review. Available at:
http://www.leorobotics.nl/sites/leorobotics.nl/files/bestanden/2015%20-

%20Hermann%20Pentek%20%26%20Otto%20-

%20Design%20Principles%20for%20Industrie%204%20Scenarios.pdf (Accessed
20.5.2016). Encyclopædia Britannica Inc., Jan. 2015.

[24] Texas Instruments. User guide: KeyStone Architecture Serial Peripheral Interface (SPI).
Literature Number: SPRUGP2A, Available at:
http://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf (Accessed 6.4.2016). Mar. 2012.

[25] Schlick J. et al. Industrie 4.0 in der praktischen Anwendung. 2014.

[26] Shi J et al. A survey of cyber-physical systems, In: International conference on wireless
commnication and signal processing (WPC). Nov. 2011.

[27] Holger Junker. Interoperability is the Key for IoT and Industrie 4.0. Available at:
http://www.maintworld.com/Applications/Interoperability-is-the-Key-for-IoT-

and-Industrie-4.0 (Accessed 20.5.2016). Nov. 2015.

[28] Prof. Dr. Henning Kagermann, Prof. Dr. Wolfgang Wahlster, and Dr. Johannes Helbig.
Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Available at:
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/

Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report_

_Industrie_4.0_accessible.pdf (Accessed 4.5.2016). National Academy of Science and
Engineering, Apr. 2013.

115

[29] L3GD20 MEMS motion sensor: three-axis digital output gyroscope. Available at:
http://www2.st.com/resource/en/datasheet/l3gd20.pdf (Accessed 10.4.2016), Rev 2.
STMicroelectronics. 2013.

[30] Jay Lee and Behrad Bagheri. Big future for cyber-physical manufacturing systems.
Available at: http://www.designworldonline.com/big-future-for-cyber-physical-
manufacturing-systems/ (Accessed 26.5.2016). Sept. 2015.

[31] Jay Lee, Behrad Bagheri, and Hung-An Kao. A Cyber-Physical Systems architecture for
Industry 4.0-based manufactuing systems. Available at: wwww.sciencedirect.com
(Accessed 26.5.2016). NSF Industry/Universiy Cooperative Research center on Intelligent
Mantenance Systems, University of Cincinnati, Elsevier, Oct. 2014.

[32] Candace Leiden and Marshall Wilensky. TCP/IP For Dummies 6th Edition. Wiley
Publishing. 2009. isbn: 78-0-470-45060-4.

[33] LM317 3 Terminal Adjustable Regulator. Available at:
http://www.ti.com/lit/ds/symlink/lm317.pdf (Accessed 14.6.2016). Texas
Instruments. 2014.

[34] LM75A Digital Temperature Sensor and Thermal Watchdog With Two-Wire Interface.
Available at: http://www.ti.com/lit/ds/symlink/lm75a.pdf (Accessed 10.4.2016).
Texas Instruments. 2014.

[35] Microchip. ENC28J60, Stand-Alone Ethernet Controller with SPI Interface. Available at:
http:

//ww1.microchip.com/downloads/en/DeviceDoc/39662e.pdf)(Accessed20.7.2016).

[36] Lydia Parziale et al. TCP/IP Tutorial and Technical Overview. Available at:
https://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf)(Accessed20.7.2016).
Dec. 2006.

[37] Hartmut Rauen. Industrie 4.0 in practice – Solutions for industrial applications. Available
at: http://industrie40.vdma.org/documents/4214230/5356229/Industrie%204.0%
20in%20practice%202016/7fa35030-9456-4de4-8f55-fbd7380d8cf4 (Accessed
20.5.2016). VDMA, 2016.

[38] Michael Rüßmann et al. Industry 4.0: The Future of Productivity and Growth in
Manufacturing Industries. Available at: https:
//www.bcgperspectives.com/content/articles/engineered_products_project_

business_industry_40_future_productivity_growth_manufacturing_industries/

(Accessed 12.5.2016). Web article on www.bcgperspectives.com, Apr. 2015.

[39] Dı́az Delgado Rül. Tin oxide gas sensors: an electochemical approach. Universitat de
Barcelona, 2002.

[40] Dr. Ralf C. Schlaepfer, Markus Koch, and Dr. Philipp Merkofer. Industry 4.0: Challenges
and solutions for the digital transformation and use of exponential technologies. Available
at: http:
//www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en-

manufacturing-industry-4-0-24102014.pdf (Accessed 6.5.2016). The Creative Studio
at Deloitte, Apr. 2015.

[41] NXP Semiconductors. UM10204 I2C-bus specification and user manual. Available at:
http://www.nxp.com/documents/user_manual/UM10204.pdf (Accessed 1.4.2016 Rev. 6).
Apr. 2014.

[42] Masakazu Shoji. High-Speed Digital Circuits. 1st edition,360 pages. Addison Wesley
Publishing Company, Apr. 1996. isbn: 020163483X.

[43] SSD2119 - 320 RGB x 240 TFT LCD Driver Integrated Power Circuit, Source and Gate
Driver and RAM. Available at: http://www.hpinfotech.ro/SSD2119.pdf (Accessed
14.6.2016), Rev 1.4. SOLOMON SYSTECH. 2009.

116

[44] STM32F405/415, STM32F407/417, STM32F427/437 and STM32F429/439 advanced
ARM-based 32-bit MCUs. Available at:
http://www.st.com/content/ccc/resource/technical/document/reference_manual/

3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:

content/translations/en.DM00031020.pdf (Accessed 10.4.2016), Sheet No.:
DocID018909 Rev 12. STM. 2016.

[45] STMicroelectronics. STM32F4DISLCD Rev History and Block Diagram. Available at:
wiki.hevs.ch/uit/images/e/ef/STM32F4DIS-LCD_REV1.0.pdf (Accessed 27.6.2016).
Oct. 2012.

[46] Technical data MQ-7 Sensor. Available at:
https://www.sparkfun.com/datasheets/Sensors/Biometric/MQ-7.pdf (Accessed
10.4.2016). Hanwei Electronics CO. 2002.

[47] TGS 813 - for the detection of Combustible Gases. Available at:
www.figarosensor.com/products/813pdf.pdf (Accessed 10.4.2016), Rev. 2. Figaro
TGS813. 2012.

[48] SD Group (Panasonic SanDisk Toshiba) and SD Card Association. SD Specifications Part
1: Physical Layer Simplified Specification. Version 2.00 Available at:
https://www.sdcard.org/downloads/pls/pdf/part1_410.pdf)(Accessed22.5.2016).
Sept. 2006.

[49] SD Group (Panasonic SanDisk Toshiba) and SD Card Association. SD Specifications Part
A2: SD Host Controller. Version 2.00 Available at:
https://www.sdcard.org/developers/overview/host_controller/simple_spec/

Simplified_SD_Host_Controller_Spec.pdf)(Accessed22.5.2016). Feb. 2007.

[50] Dominick Vanthienen, Markus Klotzbucher, and Herman Bruyninckx. The 5C-based
architectural Composition Pattern: lessons learned from re-developing the iTaSC
framework for constraint-based robot programming. May 2014. isbn: 20353928.

117

