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Annotation 

 

 

The habilitation work is based on our publications in the field of modeling 2D and 3D structures 

of woven fabrics and characterization of their properties. The list of publications shows the 

different approaches involved in achieving the objectives of understanding structure property 

relationship in woven fabrics. 

Areas of research interest as observed from the publications can be summarized as below: 

1. Modeling of woven fabric structure and properties 

2. Mechanics of woven structures 

3. 3D weaving for composite applications 

4. Characterization of woven nano-composites 

5. Objective quality evaluation in textile materials 

The main focus of habilitaion work is design and development of 2D as well as 3D woven 

structures for clothing and technical applications. Fabric properties are greatly affected by the 

choice of fabric parameters. The choice of fabric parameters influences the structure. The 

behaviour and relationship between the fabric parameters is a precursor to the optimal solution 

for fabric engineering problems. Many features of the cloth are essentially dependent on the 

geometrical relationships. The geometrical model of fabric provides some simplified formulae to 

facilitate calculations and specific constants which are of value for cloth engineering, problems 

of structure and mechanical properties. These fabric parameters are tool for an innovative fabric 

designer in creating fabrics for diverse applications. The theoretical relationship between the 

fabric parameters enables the fabric designer to play with different fibers, yarn tex, threads/cm 

and weave to vary texture and fabric properties. 

An attempt has been made to optimize engineering attributes of a plain weave fabric as per 

requirement. A simplified algorithm is used to solve fabric geometrical model equations and 

relationships between useful fabric parameters such as thread spacing and crimp, fabric cover 

and crimp, warp and weft cover are obtained. Such relationships help in guiding the direction for 

moderating fabric parameters. The full potential of Peirce fabric geometrical model for plain 

weave has been exploited by soft computing. The inter-relationships between different fabric 

parameters for jammed structures, non jammed structures and special case in which cross threads 
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are straight are obtained using suitable algorithm. It is hoped that the fabric designer will be 

benefited by the flexibility to choose fabric parameters for achieving any end use with desired 

fabric properties. 

Maximum weavability limit is predicted by extending the Peirce’s geometrical model for non-

plain weaves for circular and racetrack cross-sections by soft computing. This information is 

helpful to the weavers in avoiding attempts to weave impossible constructions thus saving time 

and money. It also helps to anticipate difficulty of weaving and take necessary steps in warp 

preparations. The relationship between the cover factors in warp and weft direction is 

demonstrated for circular and racetrack cross-section for plain, twill, basket and satin weave. 

Non plain weave fabric affords further flexibility for increasing fabric mass and fabric cover. As 

such they enlarge scope of the fabric designer. 

A simplified algorithm is used to solve fabric geometrical model equations and relationships 

between useful fabric parameters such as thread spacing and crimp, fabric cover and crimp, warp 

and weft cover. Such relationships help in guiding the direction for moderating fabric 

parameters. Soft computing can successfully provide a platform to manoeuvre crimp in warp and 

weft over a wide range with only three fabric parameters; yarn tex, modular length of warp and 

modular length of weft yarn. Soft computing has enabled solutions by interaction of crimp 

interchange and crimp balance equations. This exercise offers several solutions for fabric 

engineering by varying the above three parameters. 

Soft computing successfully provides a platform to maneuver crimp in warp and weft over a 

wide range with only three fabric parameters; yarn tex, modular length of warp and modular 

length of weft yarn. This has enabled solutions by interaction of crimp interchange and crimp 

balance equations and offers several solutions for fabric engineering by varying the above three 

parameters. 

To overcome the problems associated with the production and mechanical behavior of other 

kinds of composites, various methods have been used. These include the application of tough 

resin, interleafing, and chemical or plasma treatment of fibers in order to improve their adhesion 

strength with the resin. These methods, however, are superseded by the textile production of 

composites. This is probably due to the ability to produce large volumes of textile preforms in a 

short time thus reducing the manufacturing cost and the cycle times. There are currently a 
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number of ways used to produce 3 dimensional textiles. They can be produced through stitching, 

weaving, knitting, braiding and non-woven structures. Woven structures are, however the mostly 

produced due to ease of production and diversity of different 3-dimentional structures to 

produce. 

The research work focuses on geometric and micro-mechanical modeling of 3D Orthogonal 

fabrics for composite applications and employs Meso-FE (Finite Element) modeling for it. Finite 

Element (FE) modeling of textile composites is a powerful tool for homogenisation of 

mechanical properties, study of stress–strain fields inside the unit cell, determination of damage 

initiation conditions and sites and simulation of damage development and associated 

deterioration of the homogenised mechanical properties of the composite. Meso-FE can be 

considered as a part of the micro-meso–macro-multi-level modeling process, with micro-models 

(fibers in the matrix) providing material properties for homogenised impregnated yarns and 

fibrous plies, and macro-model (structural analysis) using results of meso-homogenisation. The 

model is successful to simulate the tensile properties of orthogonal fabrics. The model can be 

improved by incorporating fiber to fiber friction through introducing appropriate linking 

elements. Other mechanical properties such a compressive strength, shear stress, and bending 

rigidity can be tested. Fabric with similar yarn characteristics and fabric parameters can be 

produced to validate the results. The spaces between the yarns can be filled with the elements 

with the properties of required matrix, in order to conduct tests on a unit cell of composite.  
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Chapter 1: Introduction 

 

1.1 Fabric formation 

There are many ways of making fabrics from textile fibers [1]. The most common and most 

complex category comprises fabrics made from interlaced yarns. These are the traditional 

methods of manufacturing textiles. The great scope lies in choosing fibers with particular 

properties, arranging fibers in the yarn in several ways and organizing in multiple ways 

interlaced yarn within the fabric. This gives textile designer great freedom and variation for 

controlling and modifying the fabric. The most common form of interlacing is weaving, where 

two sets of threads cross and interweave with one another. The yarns are held in place due to the 

inter-yarn friction. Another form of interlacing where the thread in one set interlocks with the 

loops of neighboring thread by looping is called knitting. The interloping of yarns results in 

positive binding. Knitted fabrics are widely used in apparel, home furnishing and technical 

textiles. Lace, Crochet and different types of Net are other forms of interlaced yarn structures. 

Braiding is another way of thread interlacing for fabric formation. Braided fabric is formed by 

diagonal interlacing of yarns. Braided structures are mainly used for industrial composite 

materials. 

Other forms of fabric manufacture use fibers or filaments laid down, without interlacing, in a 

web and bonded together mechanically or by using adhesive. The former are needle punched 

nonwovens and the latter spun bonded. The resulting fabric after bonding normally produces a 

flexible and porous structure. These find use mostly in industrial and disposable applications. 

Figure 1.1 shows the schematics of fabrics produced by the above discussed methods. All these 

fabrics are broadly used in three major applications such as apparel, home furnishing and 

industrial. 

The traditional methods of weaving and hand weaving will remain supreme for high cost fabrics 

with a rich design content. The woven structures provide a combination of strength with 

flexibility. The flexibility at small strains is achieved by yarn crimp due to freedom of yarn 

movement, whereas at high strains the threads take the load together giving high strength.  
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Woven structure                                                          Knitted structure 

                               

Nonwoven (Bonded)                                                       Netting 

                                 

Braided Structure                                                            Lace 

 

1.1  Fabric structures produced by different methods of fabric formation 
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1.2 Elements of fabric structure 

A woven fabric is produced by interlacing two sets of yarns, the warp and the weft which are at 

right angles to each other in the plane of the cloth .The warp is along the length and the weft 

along the width of the fabric. Individual warp and weft yarns are called ends and picks. The 

interlacement of ends and picks with each other produces a coherent and stable structure. The 

repeating unit of interlacement is called the weave [2]. 

Plain weave has the simplest repeating unit of interlacement. It also has the maximum possible 

frequency of interlacements. Plain weave fabrics are firm and resist yarn slippage. Figure 1.2 

shows plain weave in plan view and in cross-section along warp and weft. The weave 

representation is shown by a grid in which vertical lines represent warp and horizontal lines 

represent weft. Each square represents the crossing of an end and a pick. A mark in a square 

indicates that the end is over the pick at the corresponding place in the fabric that is warp up. A 

blank square indicates that the pick is over the end that is weft up. One repeat of the weave is 

indicated by filled squares and the rest by crosses. The plain weave repeats on two ends and two 

picks. 

 

1.2   Plan (A), Weave representation (B), Cross-sectional view along weft (C), Cross-

sectional view along warp (D) for plain weave 
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1.3 Regular and irregular weaves  

1.3.1 Regular weaves 

Regular weaves [3] give a uniform and specific appearance to the fabric. The properties of the 

fabric for such weaves can be easily predicted. Examples of some of the common regular weaves 

are given in figure 1.3. 

 

      

        

       

        

        

                              

1/1 plain                               2/2 matt                                 1/3 twill                                1/4 sateen    

                             

2/2 warp rib               2/2 weft rib    1/3 on sateen base                    3/1 on sateen base 

                                                             Crepe weave                            Crepe weave                                                                                                                                                                                                                          

1.3   Regular weaves 

 

1.3.2 Irregular weaves 

Irregular weaves are commonly employed when the effect of interlacement is masked by the 

coloured yarn in the fabric. Such weaves are common in furnishing fabric. In such structures the 

prediction of mechanical properties is difficult. Examples of some of the common irregular 

weaves are given in figure 1.4.                                                      
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4 end irregular sateen                                   6 end irregular sateen 

1.4   Irregular weaves 

 

1.4   Mathematical representation of different weaves 

The firmness of a woven fabric depends on the density of threads and frequency of 

interlacements in a repeat. Fabrics made from different weaves cannot be compared easily with 

regard to their physical and mechanical properties unless the weave effect is normalized. The 

concept of average float has been in use since long, particularly for calculating maximum threads 

per cm. It is defined as the average ends per intersection in a unit repeat. Recently this ratio 

termed as weave factor [4,5] has been used to estimate tightness factor in fabric.  

 

1.4.1 Weave factor 

It is a number that accounts for the number of interlacements of warp and weft in a given repeat. 

It is also equal to average float and is expressed as:  

I

E
M                                                                                                                  [1.1] 

Where E is number of threads per repeat, I is number of intersections per repeat of the cross-

thread.  

The weave interlacing patterns of warp and weft yarns may be different. In such cases, weave 

factors are calculated separately with suffix1 and 2 for warp and weft respectively.  

Therefore, 
I

E
M

2

1
1 ; E1 and I2 can be found by observing individual pick in a repeat  

and 
I

E
M

1

2
2 ; E2 and I1 can be found by observing individual warp end in a repeat. 
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1.4.2 Calculation of weave factor 

1.4.2.1 Regular weave 

Plain weave is represented as   
1

1
;   for this weave, E1 the number of ends per repeat is 

equal to 1+1=2 and I2   the number of intersections per repeat of weft yarn =1+ number of 

changes from up to down (vice versa) =1+1=2. 

Table 1 gives the value of warp and weft weave factors for some typical weaves.     

 

Table 1: Weave factor for standard weaves 

Weave E1 I2 E2 I1 M1 M2 

1/1 Plain 2 2 2 2 1 1 

2/1 Twill 3 2 3 2 1.5 1.5 

2/2 Warp Rib 2 2 4 2 1 2 

2/2 Weft Rib 4 2 2 2 2 1 

 

E1 and E2 are the threads in warp and weft direction 

I2 and I1 are intersections for weft and warp threads 

                           

1.4.2.2 Irregular weave    

In some weaves the number of intersections of each thread in the weave repeat is not equal. In 

such cases the weave factor is obtained as under:  

I

E
M                                                                                                         [1.2]                                                                                          

Using equation 1.2 the weave factors of a ten-end irregular huckaback weave shown in figure 1.5 

is calculated below. 

Weave factor,   M  19.1
84

100

610610610610610

10101010101010101010

 

 

1.5 Ten-end Huck-a-back weave 
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Chapter 2: Geometrical model of woven structure 

 

2.1   Woven structure  

The properties of the fabric depend on the fabric structure. The formal structure of a woven 

fabric is defined by weave, thread density, crimp and yarn count. The interrelation between 

fabric parameters can be obtained by considering a geometrical model of the fabric. The model is 

not merely an exercise in mathematics. It is not only useful in determining the entire structure of 

a fabric from a few values given in technological terms but it also establishes a base for 

calculating various changes in fabric geometry when the fabric is subjected to known extensions 

in a given direction or known compressions or complete swelling in aqueous medium. It has 

been found useful for weaving of maximum sett structures and also in the analysis and 

interpretation of structure-property relationship of woven fabrics. Mathematical deductions 

obtained from simple geometrical form and physical characteristics of yarn combined together 

help in understanding various phenomena in fabrics.  

 

2.2   Basic relationship between geometrical parameters 

The geometrical model is mainly concerned with the shape taken up by the yarn in the warp or 

weft cross-section of the fabric. It helps to quantitatively describe the geometrical  

parameters. The basic model of Pierce’s [6] analysis is shown in figure 2.1. It represents a unit 

cell interlacement in which the yarns are considered inextensible and flexible. The yarns have 

circular cross-section and consist of straight and curved segments. The main advantages in 

considering this simple geometry are: 

(1) Helps to establish relationship between various geometrical parameters 

(2) Able to calculate the resistance of the cloth to mechanical deformation such as initial 

extension, bending and shear in terms of the resistance to deformation of individual  

fibers. 

(3) Provide information on the relative resistance of the cloth to the passage of air, water or 

light. 

(4) Guide to the maximum density of yarn packing possible in the cloth. 
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2.1 Peirce model of plain weave 

 

From the two-dimensional unit cell of a plain woven fabric, geometrical parameters such as 

thread-spacing, weave angle, crimp and fabric thickness are related by deriving a set of 

equations. The symbols used to denote these parameters are listed below. 

d - diameter of thread  

p - thread spacing  

h - maximum displacement of thread axis normal to the plane of cloth ( crimp height) 

θ - angle of thread axis to the plane of cloth (weave angle in radians) 

l - length of thread axis between the planes through the axes of consecutive cross- threads 

(modular length) 

c - crimp (fractional)  

D = d1 + d2 

Suffix 1 and 2 to the above parameters represent warp and weft threads respectively. 

In the above figure projection of yarn axis parallel and normal to the cloth plane gives the 

following equations: 

1
2

1
1

p

l
c                                                                                                      [2.1]  

θDθθDlp 11112
sincos)(                                                                               [2.2]  

)cos1(sin)( 11111 θDθθDlh                                                                  [2.3] 
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Three similar equations are obtained for the weft direction by interchanging suffix from 1 to 2 or 

vice-versa as under: 

1
1

2
2

p

l
c                                                                                                           [2.4]  

θDθθDlp 22221
sincos)(                                                                             [2.5]  

)cos1(sin)( 22222 θDθθDlh                                                                      [2.6]  

Also,    d1+d2=h1+h2=D                                                                                    [2.7] 

In all there are seven equations connecting eleven variables. If any four variables are known then 

the equations can be solved and the remaining variables can be determined. Unfortunately, these 

equations are difficult to solve. Researchers have tried to solve these equations using various 

mathematical means to find new relationships and also some simplified useful equations.  

 

2.3 Some derivatives 

2.3.1 Relation between p, h, θ and D 

From equations 2.2 and 2.3 we get: 

θ

θDh

θ

θDp
θDl

1

11

1

12
11

sin

)cos1(

cos

sin
 

0tan)1(secor  1121 hθpθD   

2

tan
x ngsubstituti 1

1

θ
     

0
2

x
2

x get, we 1
12

12
1

h
p

h
D  

hD

Dhpp

hD

h
Dhp

p
2

22
2

2

22

1

1
1

2

2

2

1
1

2

)
2

(2

 
2

tan
x fabrics realFor    

Using value of x1, one can calculate θ, l and c and also other parameters.  

Similarly, using equation 2.5 and 2.6, and by eliminating l and substituting x1 as above, we will 

arrive at a more complex equation as: 

xtanx1)
2

1(xx
2

1
12

1

2

12
1

2

1
1

p

Dc

p

Dc
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It is difficult to solve this equation algebraically for x1. However one can substitute value of x1 

obtained earlier to solve this equation just for an academic interest. 

These seven equations have been solved by soft computing in order to establish several useful 

relationships in chapter 3. However, at this stage, one can generalize the relationship as: 

                            h1 = f (p2,c1) 

This function f can be obtained by plotting p and h for different values of c. 

 

2.3.2 Functional relationship between p, h, c 

Trigonometric expansion of equations 2.2 and 2.3 gives: 

2432

4
11

3
1

2
11

12

lDl
lp  

862

4
1

3
11

2
1

111

θDθlθD
θlh  

When θ is small, higher power of θ can be neglected which gives: 

cp
θ

clpθlh 121

2
1

212111 2h ,
2

 , ,  

and these equations reduce to: 

cθ 12 2

1

1                                                                                                               [2.8] 

cθ 22 2

1

2                                                                                                             [2.9] 

cph 121
3

4
                                                                                                        [2.10]  

cph 212
3

4
                                                                                                       [2.11] 

These four equations are not new equations in this exercise. They are derived from the previous 

seven original equations. However they give simple and direct relationships between four fabric 

parameters h, p, c and θ. 

 

2.3.3 Jammed structures     

A woven fabric in which warp and weft yarns do not have mobility within the structure as they 

are in intimate contact with each other are called jammed structures. In such a structure the warp 
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and weft yarns will have minimum thread spacing. These are closely woven fabrics and find 

applications in wind-proof, water-proof and bullet-proof requirements.    

During jamming the straight portion of the intersecting yarn in figure 2.1 will vanish so that in 

equation 2.2 and 2.3,   l1–Dθ1 = 0  

θ
D

l
1

1  

Equations 2.2 and 2.3 will reduce to  

)cos1( 11 Dh  

θDp 12
sin         

Similarly, for jamming in the weft direction l2 – Dθ2 = 0, equations 2.7 and 2.8 will reduce to the 

above equations with suffix interchanged from 1 to 2 and vice-versa. 

For a fabric being jammed in both directions we have:  

)cos1()cos1( 2121 θDθDhhD    

or cosθ1+cosθ2=1                        [2.12]  

111 21

22

D

p

D

p
                      [2.13] 

This is an equation relating warp and weft spacing of a most closely woven fabric.  

 

2.3.4 Cross threads pulled straight  

If the weft yarn is pulled straight h2 = 0 and h1 = D,     

)cos1(sin)( give  will2.3Equation 1111 θDθθDlD  

θθ
D

l
θ 11

1
1 sincos  

D

l
θθ 

1
11 cotor                                               [2.14] 

This equation gives maximum value of θ1 for a given value of l1/D   

The above equation will be valid for warp yarn being straight by interchange of suffix from 1 to 

2. 

However, the weft thread can be restricted in being pulled straight by the jamming of warp 

threads. 
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In such a case,   

011 θDl  

D

l
θ

1
1or   

Equation 2.3 will become  

D

l
DθDDhDh

1
112 cos)cos1(                                                [2.15] 

If the weft thread is pulled straight and warp is just jammed  

2
Then 1

1
θ

D

l
                                                                                       [2.16] 

These are useful conditions for special fabric structure. 

 

2.3.5 Non circular cross-section 

So far, it is assumed that yarn cross-section is circular and yarn is incompressible. However, the 

actual cross-section of yarn in fabric is far from circular due to the system of forces acting 

between the warp and weft yarns after weaving and the yarn can never be incompressible. This 

inter-yarn pressure results in considerable yarn flattening normal to the plane of the cloth even in 

a highly twisted yarn. Therefore many researchers have tried to correct Peirce’s original 

relationship by assuming various shapes for the cross-section of yarn. Two important cross-

sectional shapes such as elliptical and race-track  are discussed below. 

 

2.3.6 Elliptical cross-section  

 

2.2 Elliptical cross-section 

 



 22 

Peirce elliptical yarn cross-section is shown in figure 2.2; the flattening factor is defined as  

a

b
e  

Where b = minor axis of ellipse, a = major axis of ellipse 

The area of ellipse is (π/4)ab. If d is assumed as the diameter of the equivalent circular cross–

section yarn, then  d ab   

bbddhh 212121  

cpcphhbb 12212111
3

4
                                                                   [2.17]                                                                                                   

Yarn diameter is given by its specific volume, v and yarn count as under: 

N

v
d 14.34mils  , N is the English count. 

280

Tex

2.280

Tex

f

cm

ρ
d ,  fibrecotton for  52.1 ,65.0 assuming

fρ  

This can be used to relate yarn diameter and crimp height by simply substituting in equation 2.17 

to obtain: 

N

v

N

v
Dddhh

2

2

1

1
2121 14.34                                                       [2.18] 

ρ

T

ρ

T
ddhh

2f2

2

1f1

1
2121

2.280

1
                                                     [2.19] 

TT 21
280

1
                                                                   [2.20] 

fibrecotton for  52.1 ,65.0 assuming
fρ  

These are useful equation to be used subsequently in the crimp interchange derivation. 
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2.3.7 Race track cross-section                        

 

2.3   Race track cross-section 

 

In race track model [7,8] given in figure 2.3, a and b are maximum and minimum diameters of 

the cross-section. The fabric parameters with superscript refer to the zone AB, which is 

analogous to the circular thread geometry; the parameters without superscript refer to the race 

track geometry, a repeat of this is between CD. Then the basic equations will be modified as 

under: 

)( 222

'

2 bapp                                                                                                [2.19]  

 )( 221
'
1 ball                                                                                                  [2.20] 

)( 222

21

'

2

'

2

'
1'

1

bap

pc

p

pl
c                                                                                  [2.21]                                                                                                           

Similarly, 

)( 111

12'
2

bap

pc
c                                                                                                 [2.22] 

cph
'
1

'

21
3

4
                                                                                                       [2.23]          

cph
'
2

'

12
3

4
                                                                                                       [2.24]                                                

 h1+h2 = B = b1 +b2 

And also if both warp and weft threads are jammed, the relationship becomes 
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BpBpB
'

2

22'

1

22                                                                              [2.25] 

 

2.4  Prediction of fabric properties 

Using the fabric parameters discussed in the previous section it is possible to calculate the Fabric 

thickness, Fabric cover, Fabric mass and Fabric specific volume. 

 

2.4.1  Fabric thickness  

Fabric thickness for a circular yarn cross-section is given by 

h1+d1 or h2+d2, whichever is greater.                              [2.26] 

When the two threads project equally, then h1+d1 = h2+d2 

In this case the fabric gives minimum thickness =1/2(h1+d1+ h2+d2) =D; h1=D – d1 

Such a fabric produces a smooth surface and ensures uniform abrasive wear.   

In a fabric with coarse and fine threads in the two directions and by stretching the fine thread 

straight, maximum crimp is obtained for the coarse thread. In this case the fabric gives maximum 

thickness as under; 

Maximum Thickness =D + dcoarse  ,   since hcoarse  = D 

When yarn cross- section is flattened, the fabric thickness can be expressed as 

h1+b1 or h2+b2, whichever is greater 

 

2.4.2 Fabric cover  

In fabric, cover is considered as fraction of the total fabric area covered by the component yarns. 

For a circular cross-section cover factor is given as: 

ρ

K

ρ

TE

p

d

ff
02.282.280

 

factorcoveris10
1 KTEK  

T is yarn tex, E is threads per cm = 1/p 

suffix 1 and 2 will give warp and weft cover factors 

1for
p

d
, cover factor is maximum and given by, 
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ρK fmax 02.28  

Fractional fabric cover is given by: 

pp

dd

p

d

p

d

21

21

2

2

1

1  

02.2802.28

1 21
21

KK
KK  

Multiplying by 28.02 and taking 28.02 ≈ 28 we get fabric cover factor as under: 

28
factorcover  Fabric 21

21

KK
KK                                                                         [2.27] 

For race track cross-section the equation will be  

abe

ρ
e

pe

d

p

a
/here

02.281
14

1
f

       

   

ρ
e

e

K

f
02.281

14
1

                                      [2.28] 

For elliptical cross-section the equation will be; 

ρe

K

ρe

TE

pe

d

p

a

ff
02.282.280

                             [2.29] 

abd
a

b
e andHere  

 

2.4.3 Fabric mass (Areal density) 

gsm = [T1E1(1+c1)+T2E2(1+c2)]×10
-1

                                                                  [2.30] 

gsm =√T1 [(1+c1) K1 + (1+c2) K2β]                                                                      [2.31] 

E1, E2 are ends and picks per cm. 

T1, T2 are warp and weft yarn tex 

Here K1 and K2 are the warp and weft cover factors, c is the fractional crimp and d2/d1= β. 

In practice the comparison between different fabrics is usually made in terms of gsm. The fabric 

engineer tries to optimize the fabric parameters for a given gsm. The relationship between the 
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important fabric parameters such as cloth cover and gsm is warranted. This is shown in figure 3.8 

for jammed fabric. 

 

2.4.4   Fabric specific volume  

The apparent specific volume of fabric, vF is calculated by using the following formula: 

)cm(g/ mass fabric

(cm)  thicknessfabric
2vF                                                                                     [3.6] 

gsm10)cm/g(massFabric 42

 

v

v

F

f,factor packing Fabric                                                                                 [3.7] 

Here vf, vF are respectively fiber and fabric specific volume. 

A knowledge of fiber specific volume helps in calculating the packing of fibers in the fabric. 

Such studies are useful in evaluating the fabric properties such as warmth, permeability to air or 

liquid. 

 

2.5 Maximum cover and its importance 

Maximum cover in a jammed fabric is only possible by keeping the two consecutive yarns (say 

warp) in two planes so that their projections are touching each other and the cross thread (weft) 

interlaces between them. In this case the weft will be almost straight and maximum bending will 

be done by the warp.  

KK
p

d
max1

1

1  give will1  

and the spacing between the weft yarn  

p2 =D sinθ1 = D (for θ = 90
0
) 

p2= d1+d2 

dd
dd

d

p

d
2for  

3

2
12

21

2

2

2  

This will give K2 = 2/3 Kmax,  

If d1 = d2 then d1 = d2/p2 =0.5 and K2 =0.5 Kmax 

This is the logic for getting maximum cover in any fabric.  
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The principles are as under: 

(1) Use fine yarn in the direction where maximum cover is desired and keep them in two 

planes so that their projections touch each other and use coarse yarn in the cross 

direction. 

(2) As in (1) instead of coarse yarn insert two fine yarns in the same shed. 

Both options will give maximum cover in warp and weft but first option will give more thickness 

than the second case. 

The cover factor indicates the area covered by the projection of the thread. The ooziness of yarn, 

flattening in finishing and regularity further improves the cover of cloth. It also gives a basis of 

comparison of hardness, crimp, permeability, transparency. Higher cover factor can be obtained 

by the lateral compression of the threads. It is possible to get very high values only in one 

direction where threads have higher crimp. Fabrics differing in yarn counts and average yarn 

spacing can be compared based on the fabric cover. The degree of flattening for race track and 

elliptical cross-section can be estimated from fabric thickness measurements to evaluate b and a 

from microscopic measurement of the fabric surface.  

The classical example in this case is that of a poplin cloth in which for warp threads  

p1 = d1 and for d1 = d2 = D/2 and for jamming in both directions 

p1 = D sin θ2 

d = D/2 = D sin θ2 

θ2 = 30º = 0.5236 

0 '
1 1 21.4364(using cos cos 1)82 18  

p2 = Dsinθ1 = 0.991D ≈ 2p1 

l1 = Dθ1 = 1.14364 

l2= Dθ2= 0.5236 

c1
'
 = 0.45, c2

'
 = 0.0472 

This is a specification of good quality poplin which has maximum cover and ends per cm is 

twice that of picks per cm.  
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Chapter 3: Application of geometrical model 

 

3.1  Introduction 

The actual behavior of fabric structure is not precisely calculable by geometry but many features 

of the cloth are essentially dependent on the geometrical relationships. These fabric parameters 

are a tool for an innovative fabric designer in creating fabrics for diverse applications. The 

theoretical relationship between fabric parameters enable the fabric designer to play with 

different fibers, yarn tex, threads per centimeter and weave to vary texture and fabric properties. 

The following applications can be made by using the parameters from the geometrical model: 

(1) Obtain relationship between different fabric parameters and estimate fabric mass, gsm. 

(2) Calculate maximum picks per centimeter of a cloth of low reed and when ends are 

cramped. As a guidance it helps in knowing the maximum weavability limit; maximum 

ends and picks which can be inserted for a given yarn and weave. The weaver avoids 

attempts to weave impossible constructions and also estimates the difficulty of weaving, 

yarn breakage rate and measures for appropriate yarn and weaving preparation. 

(3) The limits to the stretch along warp or weft direction in the cloth and prediction of fabric 

dimensions, crimp and the changes in the fabric parameters. 

(4) Prediction of crimp in the fabric, this has a marked influence on the fabric properties. 

(5) Estimate cloth porosity to the passage of air, light, fluid and guide to the maximum 

density of packing that can be achieved. 

(6) Prediction of fabric thickness and estimation of apparent fabric specific volume and 

porosity. This knowledge is useful for estimating fabric warmth, moisture absorption and 

flow and absorption of liquid. 

(7) Prediction of fabric shrinkage. 

The geometry provides simplified formulae to facilitate calculations and specific constants which 

are of value for cloth engineering, problems of structure and mechanical properties. 
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3.2 Computation of fabric parameters 

The basic equations derived from the geometrical model are not easy to handle. Research 

workers [9,10] obtained solutions in the form of graphs and tables. These are quite difficult to 

use in practice. It is possible to predict fabric parameters and their effect on the fabric properties 

by soft computing [11]. This information is helpful in taking a decision regarding specific buyers 

need. A simplified algorithm is used to solve these equations and obtain relationships between 

useful fabric parameters such as thread spacing and crimp, fabric cover and crimp, warp and weft 

cover. Such relationships help in guiding the directions for moderating fabric parameters.  

Peirce’s geometrical relationships can be written as  

θθθ
D

p
111

2 sincos)(K1                                                                                   [3.1]   

)cos1(sin)( 111
1

θθθ
D

h
K1                                                                            [3.2]                                                                                      

Where K1= l1/D and two similar equations for the weft direction will be obtained by 

interchanging the suffix 1 with 2 and vice versa. The solution of p2/D and h1/D is obtained for 

different values of θ1 (weave angle) ranging from 0.1– π/2 radians. Such a relationship is shown 

in figure 3.1.  

 

3.1 Relation between thread spacing and crimp height 
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3.2 Flow chart for solving Peirce’s seven equations 

Start 

θ1 = 0.1 

l1/D = 0.1 

111

2 sincos)(K
D

p

 

1
/

/
),cos1(sin)(

2

1
1111

1

Dp

Dl
cK

D

h

 

1.022

D

p

D

p

 

Print 

c
D

p

D

h
1

21 ,,  

 

A 

Is 

D

l

D

p 12

 

Is 

31

D

l

 

C 

1.011

D

l

D

l

 

E 

D 

θ1= θ1+0.1 

 

Is 

θ1=1.57 

End 

B 

No 

No No 

Yes 

Yes Yes 



 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2a Module connector at C of figure 3.2 
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3.2b Module connector at A of figure 3.2 
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3.2c Module connector at F of figure 3.2b 
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The Flow chart for this algorithm is shown in figure 3.2 along with associated module connectors 

at figures 3.2a, 3.2b and 3.2c.  

The figure 3.1 is similar to that given by Peirce [6]. It is a very useful relationship between fabric 

parameters for engineering desired fabric constructions. One can see its utility for the following 

three cases 

(1) Jammed structures 

(2) Non-jammed fabrics 

(3) Special case in which cross-threads are straight 

 

3.2.1 Jammed structures 

Figure 3.1 shows non linear relationship between the two fabric parameters p and h on the 

extreme left. In fact, this curve is for jamming in the warp direction. It can be seen that the 

jamming curve shows different values of p2/D for increasing h1/D, that is warp crimp. The 

theoretical range for p2/D and h1/D varies from 0-1. Interestingly this curve is a part of circle and 

its equation is:  

111

2

2

2

D

h

D

p
                                                                                              [3.3] 

 with centre at (0, 1) and radius equal to 1.             

For jamming in the warp direction of the fabric the parameters p2/D and corresponding h1/D can 

be obtained either from this figure or from the above equation.  

The relationship between the fabric parameters over the whole domain of structure being 

jammed in both directions can be obtained by using an algorithm involving equations from the 

previous section. The flow chart for this algorithm is given in figure 3.3.     

From these computations the relationship between different useful fabric parameters are obtained 

and are shown in the Figures 3.4-3.8. Figure 3.4 gives the relationship between weft and warp 

thread spacing in a dimensionless form; that is between p2/D and p1/D. This figure shows that the 

relationship between these parameters is less sensitive at the two extreme ends. The relationship 

is sensitive in a p/D domain close to 1. In fact this sensitive range corresponds to maximum 

crimp in one direction only. 
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3.3 Flowchart for fabric parameters in jammed structures 

θ1 = l1/D = 0.1 

1
2 sin

D

p

, 
)cos1( 1

1

D

h

, 

1
/

/

2

1
1

Dp

Dl
c

 

Is 

θ1==1.57 

D

h

D

h 12 1
 

D

h21

2 1cos

 

θ
D

p
2

1 sin  

2

2
1

2
2

cos

1
sin

D

p

D

l

 

1
/

/

1

2
2

Dp

Dl
c

 

c
D

p

D

h
c

D

p

D

h
2

12
1

21 ,,,,,Print  

End 

l1/D = θ1 = θ1+0.1 

No 

Yes 

Start 



 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Relation between weft and warp thread spacing for jammed fabric 

 

Another useful relationship between the crimps in the two directions is shown in figure 3.5. It 

indicates inverse non-linear relationship between c1 and c2. The intercepts on the X and Y axis 

gives maximum crimp values with zero crimp in the cross-direction. This is a fabric 

configuration in which cross-threads are straight and all the bending is being done by the 

intersecting threads.  

Figure 3.6 shows the relation between h1/p2 and h2/p1. The figure shows inverse linearity 

between them except at the two extremes. This behavior is in fact a relationship between the 

square root of crimp in the two directions of the fabric. 

Other practical relations are obtained between the warp and weft cover factor and between cloth 

cover factor and fabric mass (gsm). 
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3.5   Relation between warp and weft crimp for jammed fabric 

 

Figure 3.7 gives the relation between warp and weft cover factor for different ratio of weft to 

warp yarn diameters (β). The relation between the cover factors in the two directions is sensitive 

only in a narrow range for all values of β. The relation between the cover factors in the two 

directions are inter- dependent for jammed structures. Maximum threads in the warp or weft 

direction depend on yarn count and weave. Maximum threads in one direction of the fabric will 

give unique maximum threads in the cross-direction. The change in the value of β causes a 

distinct shift in the curve. A comparatively coarse yarn in one direction with respect to the other 

direction helps in increasing the cover factor. For β = 0.5, the warp yarn is coarser than the weft, 

this increases the warp cover factor and decrease the weft cover factor. This is due to the coarse 

yarn bending less than the fine yarn. Similar effect can be noticed for β =2, in which the weft 

yarn is coarser than the warp yarn. These results are similar to earlier work reported by Newton 

[11, 12], Seyam [13]. 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Warp crimp ( c1 ) 

W
ef

t 
cr

im
p
 (

 c
2
 )

 



 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6 Relation between √c1 and √c2 for jammed fabric 

 

 

3.7 Relation between warp and weft cover factor for different β in jammed fabric 
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3.8 Relation between fabric cover factor and fabric mass for jammed structure 

 

The relation between fabric mass, (gsm) with the cloth cover (K1+K2) is positively linear as 

shown in the figure 3.8 [14]. The trend may appear to be self explanatory. Practically  an 

increase in fabric mass and cloth cover factor for jammed fabrics can be achieved in several 

ways such as with zero crimp in the warp direction and maximum crimp in the weft direction; 

zero crimp in the weft direction and maximum crimp in the warp direction; equal or dissimilar 

crimp in both directions. This explanation can be understood by referring to the non-linear part 

of the curve in figure 3.1. 

 

3.2.2   Non-jammed structure   

It can be seen that the relation between p2/D and corresponding h1/D is linear for different values 

of crimp. This relationship is useful for engineering non-jammed structures for a range of values 

of crimp. The fabric parameters can be calculated from the above non-jammed linear relation 

between p2/D and h1/D for any desired value of warp crimp. Then h2/D can be obtained from (1–

h1/D) and for this value of h2/D one can obtain the corresponding value of p1/D for the desired 
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values of weft crimp. Thus all fabric parameters can be obtained for desired value of p2/D, picks 

per cm, warp and weft yarn tex, warp and weft crimp. One can choose any other four parameters 

to get all fabric parameters. The algorithm mentioned in figure 3.2 can be used to get several 

solutions for the non-jammed fabric.  

 

3.2.3  Straight cross-threads  

In the figure 3.1 the intersection of horizontal line corresponding to h1/D=1 gives all possible 

structures ranging from relatively open to jammed configurations. In this case h2= 0, h1= D; This 

gives interesting structures which have stretch in one direction only, enabling maximum fabric 

thickness and also being able to use brittle yarns. The fabric designer gets the options to choose 

from the several possible fabric constructions. These options include jamming and other non 

jammed constructions. Using the above logic it is also possible to get fabric parameters for: 

(1) fabric jammed in both directions.  

(2) fabric with maximum crimp in one direction and cross-threads being straight. 

(3) fabric which is neither jammed nor has zero crimp in the cross-threads. 

 

3.3  Weavability limit 

The maximum number of ends and picks per unit length that can be woven with a given yarn and 

weave defines weavability limit [15]. This information is helpful to the weavers in avoiding 

attempts to weave impossible constructions thus saving time and money. It also helps to 

anticipate difficulty of weaving and take necessary preparations. Dickson [16] demonstrated the 

usefulness of theoretical weavability limit and found agreement with the loom performance. 

Most of the work in this area was done using empirical relationships. The geometrical model is 

very useful in predicting this limit for a given warp, weft diameter (tex) and any weave. 

Maximum weavability limit is calculated in the model by using jamming conditions for plain and 

non-plain weaves for circular and race track cross-sections. 

 

3.3.1 Yarn diameter  

Two important geometrical parameters are needed for calculating weavability for a general case. 

These are yarn diameter and weave factor. 
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Yarn diameter in terms of linear density in tex for a general case is given as:  

ρ

T
d

f
2.280

                                                                                                    [3.4]                                                                   

Where d = yarn diameter (cm), T = yarn linear density (tex, i.e. g/km),  

ρf = fiber density(g/cm
3
), ρy = yarn density(g/cm

3
), factor packingyarn  

This equation for the yarn diameter is applicable for any yarn type and fiber type. The packing 

factor depends on fiber variables such as fiber crimp, length, tex and cross-section shape. 

Table 2 and 3 give the fiber density and yarn packing factor for different fiber and yarn type 

respectively. 

Table 2: Fiber Density, g/cm
3
 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Yarn Packing Factor 

Ring-spun 0.60 

Open-end-spun 0.55 

Worsted 0.60 

Woolen 0.55 

Continuous-filament 0.65 

 

For blended yarns, average fiber density is given by the following 

Acetate 1.32 

Cotton 1.52 

Lycra 1.20 

Nylon 6 1.14 

Nylon 66 1.13-1.14 

Polyester  1.38 

Polypropylene  0.91 

Rayon 1.52 

Wool 1.32 
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ρ 1
f
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1

                                                                                                              [3.5]                                                      

where  = average fiber density ,  

pi = weight fraction of the ith component, 

pft = fiber density of the ith component and 

n = number of components of the blend 

 

3.3.2 Effect of variation in fiber density on the relation between warp and 

weft cover factor for jammed fabrics 

The change in the fiber density affects the relation between the warp and weft cover factors for 

jammed structures. It can be seen from the following three figures 3.9 a,b,c; with an increase in 

fiber density from 0.91-1.52 g/cm
3
 the sensitivity in the relation between K1 and K2 increases. 

The base level and range of cover factor K2 increases, the range of cover factor K1 decreases but 

shifts to a higher level. Lower values of beta (d2/d1) show greater sensitivity in the relation 

between cover factors. It is a useful ploy to increase the range of cover factors in jammed 

structures and enables flexibility in designing jammed woven structures. 

 

3.9a Effect of fiber density on the relation between warp and weft cover factor 
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3.9b Effect of fiber density on the relation between warp and weft cover factor 

 

3.9c Effect of fiber density on the relation between warp and weft cover factor 
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3.3.3 Effect of variation in yarn packing factor on the relation between warp   

and weft cover factor for jammed fabrics 

Rayon and cotton fiber have same density, In the yarn packing factor of 0.60 is taken for rayon 

and 0.65 for cotton. The effect of change in yarn packing factor from 0.60 to 0.65 on the relation 

between warp and weft cover factors can be seen in the figures 3.10 a,b,c  for beta ranging from 

0.5-2. The higher yarn packing factor results in increasing the levels of warp and weft cover 

factors. The increase in beta helps in attaining higher weft cover factors and gives a wider range 

of sensitivity between the warp and weft cover factors. 

 

 

3.10a Effect of yarn packing factor on the relation between warp and weft cover factor 
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3.10b Effect of yarn packing factor on the relation between warp and weft cover factor  

 

 

3.10c Effect of yarn packing factor on the relation between warp and weft cover factor 

K
2
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3.3.4 Effect of variation in beta (d2/d1) on the relation between warp and weft cover 

factor for jammed fabrics 

An increase in the value of beta from 0.5-2 increases the range of warp cover factors but raises 

the level for the weft cover factor. This means with an increase in beta higher weft cover factors 

are achievable and vice-versa. However it may be noted that for cotton fibers having higher fiber 

density the sensitivity range between the warp and weft cover factor is relatively large compared 

to polypropylene fiber as shown in figure 3.11a and 3.11b. This shows a very important role 

played by fiber density in deciding warp and weft cover factors for the jammed fabrics.      

                                                                         

 

 

3.11a Effect of β on the relation between warp and weft cover factor 
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3.11b Effect of β on the relation between warp and weft cover factor  

 

3.3.5 Equation for jammed structure for circular cross-section in terms of weave 

factor 

Weave factor is useful in translating the effect of weave on the fabric properties. This has been 

discussed in part 1 at 1.4.2. For circular cross-section the general equation for jammed cloth is 

desired. 

Thread spacing Pt1 for a non-plain weave per repeat is shown in figure 3.12 and is given as:                                                            
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3.12 Jammed structure for 1/3 weave (circular cross-section along warp) 
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where β = d2/d1 

Similarly, interchanging suffix 1, 2 we get 
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For a jammed fabric the following equation is valid: 
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This equation can easily be transformed in terms of warp and weft cover factor (K1 and K2) 
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3.13 Relation between average thread spacing in warp and weft for jammed fabric 

(circular cross-section) 

 

Relation between fabric parameters for circular cross-section for different weave 

The effect of weave in the jammed structures is examined using the above equations for plain, 

twill, basket and satin weave. M, the weave factor value (average float length) for these weaves 

are 1, 1.5, 2 and 2.5 respectively for all the discussion which follows. 

Figure 3.13 shows the relation between p1avg/D and p2avg/D. it can be seen that with the increase 

in float length, the sensitivity of the curve decreases in general. Also the range of  

p1/D and p2/D values gets reduced. This means a weave with longer float length decreases the 

flexibility for making structures. 

Figure 3.14 shows the relationship between the warp and weft cover factor for circular cross-

section. It is interesting to note that the behavior is similar for different weaves. However with 

the increase in float, the curve shifts towards higher values of weft cover factor. It should be 

borne in mind that the behavior shown in this figure is for virtual fabrics. In real fabrics jammed 

structure is unlikely to retain circular cross-section. 
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3.14 Relation between warp and weft cover factor for jammed fabric (circular cross-section) 

 

3.3.6 Equation for jammed structure for race track cross-section in terms of  

         weave factor         

In jammed fabrics, the yarn cross-section cannot remain circular. The cross-section will change. 

It is easy to modify the geometry for circular cross-section by considering race track cross-

section. Figure 3.15 shows the configuration of jammed structure for 1/3 weave for race track 

cross-section along weft direction of the fabric.  

 

 

3.15 Jammed structure for 1/3 weave (race track cross-section along warp) 
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Thread spacing Pt1 for a non-plain weave per repeat is given as: 
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Where, p1 and p2 are horizontal spacing between the semi-circular threads in the intersection 

zone. Here, a and b are the major and minor diameters of race track cross-section. 
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As such analysis of circular thread geometry can be applied for the intersection zone of the race 

track cross-section. 
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Total warp crimp in the fabric is given by: 

1
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1
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p1 and p2 can be calculated from the jamming considerations of the circular thread geometry 

using: 
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It should be remembered that p/B corresponds to the semi-circular region of the race track cross-

section and is similar to p/D for circular cross-section. As such the values of p/D ratio from 

figure 3.1 can be used for p/B  
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This equation can be simplified to the following usable forms. 
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It is assumed that  e1 = e2 = e 

where e=b/a 

The above equation can easily be transformed in terms of warp and weft cover factor as under: 
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3.3.7  Relationship between fabric parameters in race track cross-section 

The relationship between fabric parameters such as p2 and p1, p1 and c2 for the race track cross-

section in jammed condition is discussed below. 

Figure 3.16 shows the behavior between these pair of parameters is similar to that for the circular 

cross-section but it shifts towards higher values of thread spacing. This figure shows the 

behavior of real fabrics. 
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3.16 Relation between average thread spacing in warp and weft for jammed fabric  

(race track cross-section, β=1) 

 

 

Figure 3.17 shows the relationship between warp and weft cover factors for different weaves. As 

discussed above in real fabrics the weaves show distinct differences between them unlike in 

circular cross-section. Increase in float length decreases the scope of cover factors. 

From these equations crimp and fabric cover can be evaluated using the above two equations 

along with:  
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3.17 Relation between warp and weft cover factor for jammed fabric 

(race track cross-section) 

 

3.4 Special structure 

3.4.1 Square cloth 

A truly square fabric has equal diameter, spacing and crimp. 
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From the basic equations of the geometrical model from the previous chapter we have: 
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This is valid for all values of (p/D) 2 ≥ 0.75 or p/D ≥ 0.866 

p/d ≥ 1.732; d/p ≤ 0.5773  
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Therefore complete cover is not possible with square cloth. 

 

3.4.2 Similar cloth  

Cloths can be made from same fibers which may differ in respect of yarn count, ratio of yarn 

count in warp and weft, ratio of yarn spacing, average yarn spacing and weave.  

Such cloths can be compared in terms of fabric cover. It is possible to consider cloth which differ 

in many ways as being similar if they posses the same fractional covering power. 

While comparing cloths for cover only such comparison are perfectly justifiable for cloths 

differing in yarn count and average yarn spacing. It will not be correct to say cloths which have 

equal cover are equally acceptable, equally difficult to make and equally tight. Cloths which 

differ in the ratio of spacing or weave cannot be made similar by fabric cover concept. Some 
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examples for change of weave, yarn count, threads per cm and fabric mass for square 

constructions are shown below for similar fabrics that have the same firmness. The mathematical 

logic for these variables and some examples are given below: 

 

3.4.2.1 Effect of change in weave on thread density  
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3.4.2.2 Effect of change in weave on yarn count 
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3.4.2.3 Effect of change in thread density on yarn count 
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3.4.2.4 Effect of change in fabric mass on thread density and yarn count 

The change in the fabric mass (gsm) by maintaining the same firmness can be done by: using 

fewer and coarser threads if the fabric is to be heavier and increased number of fine threads if the 

fabric is to be lighter. 
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massfabric
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Some examples  

1) 3/3 twill with 48 ends per cm is to be changed to 3-end twill, how many threads per cm 

are required in the new weave to give the same firmness as old weave? 

MOld=6/2=3 

MNew=3/2=1.5 

(threads per cm)New=48(1.5/2.5)/(3/4)=38.4 

2) A 4-end twill cloth is required with the same number of threads per cm as a plain cloth 

woven with 36 yarns. Find the count of the yarn to be used to give a twill cloth with the 

same firmness as the plain cloth. 

3/2

3/1

Old

New

N

N
 

5.436
4

3

22

31
OldNew NN  

NNew = (4.5)2=20.25. 

3) If a given cloth is woven with 28 threads of 64
S
 yarn per cm. It is desired to keep the 

same weave but to have only 25 threads per cm .what counts must be used? 

143.764
28

25
NewN  

NNew =51
S
. 

4) If we wish to make a cloth from 64
S
 yarn to be of the same firmness as one with 28 

threads per cm of 36
S
 yarn. How many threads per cm will be required? 
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5) A fabric contains 32 threads per cm of 52
S
 yarn in both warp and weft. If gsm = 100. 

What count and threads per cm will be required to increase the gsm to 125?  
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3.6 Application 

It is easy to consider cloth which differ in many ways as being similar if they posses the same 

fractional covering power. In comparing cloth for cover only such comparison are preferably 

justifiable, but it will not be correct to say cloths which have same cover are equally acceptable, 

equally difficult to make and equally tight. 

Total fabric cover factor when jamming occurs varies with ratio of thread spacing and weave. 

The ratio of actual fabric cover to maximum fabric cover factor is a measure of tightness, relative 

acceptability. This concept has been used by several researchers using weave value. 

 

3.6.1 Tightness factor 

Recent research efforts were directed towards establishing a standard or a reference fabric which 

can be objectively compared. Reference fabric is normally of maximum construction. The 

comparison is expressed in terms of ratio of a construction parameter of a given fabric to that of 

the standard fabric. This ratio is called firmness or tightness. The physical, mechanical, aesthetic 

part of the fabric can be related to its degree of tightness. This is a rational basis for constructing 

fabrics with predetermined end use performance. 
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Russell [17] suggested tightness factor as the ratio of threads per cm to the maximum threads per 

cm in a fabric. This ratio can be obtained for the warp and weft directions of the fabric. For a 

fabric it is given as: 
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This concept can be used to compare tightness values of fabric for different weave with a 

standard fabric. The modified equation considering weave will be as under: 

For circular cross-section the total thread spacing is given as:  
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The maximum threads will be given by: 
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This is a general equation for tmax for any crimp (θ).   

However the maximum threads in a fabric are possible when cross threads are straight. In such a 

situation the intersecting yarn will have maximum crimp and weave angle is 90º. 
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For a standard fabric one can assume maximum cover in the fabric and corresponding maximum 

possible ends and picks per cm. In this case as mentioned before cross threads must be straight 

and maximum bending will be done by the interlacing yarn. The maximum possible threads in 

the two directions will be different.  

If weft yarn remains straight, θ1=90
0 

the maximum picks per cm from equation 3.30 will be  
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and the maximum ends per cm will be for θ2=0
0 
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However these equations are valid for M>1 

It will be fair to use these equations rather than equation 3.31 for both warp and weft directions. 

For the race track cross-section: 
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as discussed above for maximum threads the weave angle is 90º 

so,   
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similarly for standard fabric the relevant equations will be: 
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These are equations which a designer can use to construct fabrics with different texture and 

tightness by varying the yarn and fabric parameters. 
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Chapter 4: Structural modifications 

 

4.1 Introduction 

A fabric structure is specified by any four parameters, for example ends per cm, picks per cm, 

warp crimp, weft crimp; one can calculate all other fabric parameters. Now the question is what 

will happen or exactly what changes occur in the structure when dimensions are changed? 

Sometimes after weaving fabric specifications are not according to what is desired. Some 

structures are impossible to weave on the weaving machines. In such cases the corrections to the 

fabric can be made by pulling it either in the warp or in the weft direction. The effect of stretch 

along warp or weft on fabric parameters can be predicted and any desired requirement can be 

perfectly accomplished. However it should be remembered that such changes in the fabric 

parameters do not involve yarn stretch or compression. A very important practical application of 

Peirce’s geometrical model [6] is for determining the fabric parameters after modification.  

 

4.2 Crimp interchange phenomena 

A stretch in the fabric for example in the warp direction will reduce the warp crimp and increase 

the weft crimp in general. This phenomenon is termed as crimp interchange. It is equivalent to 

stretch in one direction accompanied by contraction in the cross-direction and vice versa. This is 

a geometrical change between the fabric parameters in one direction vis-à-vis the cross-direction. 

The practical implementation of this concept can be carried out by weft stretch in the stenter 

machine and by warp stretch in the calendar. This implies that the mechanical act can cause a 

direct change only in thread spacing, p1 or p2 and the changes in other fabric parameters will be 

indirect due to the effect of changes in p1 or p2. 

The following equation gives a useful relationship between the two directions of the fabric.  

' '
1 2 1 2D h h h h  

Superscript represents changes in the fabric parameter after modification 

' '' ' ' '
1 2 1 22 1

4

3
D p ph h c c  
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Equation 4.1 is called crimp interchange equation. It gives the relationship between the warp and 

weft crimp for the new configuration after the application of stretch in the warp/weft direction. It 

may be noted that the parameters l1, l2 and D are invariant; that is they have the same value in the 

original fabric and in the new configuration. This basically means that there is a geometrical 

change in the deformed fabric with respect to the undeformed fabric. 

In the crimp interchange equation one of the parameter c1
'
 or c2

'
 is determined based on the 

requirement of modification and the other parameter is calculated from the equation 4.1. 

One of the following options can be initiated for getting parameters of the new fabric 

Fabric dimensions changed 

Fabric dimensions either the length or the width can be pulled by a certain extent to change the 

fabric parameters.  

1.  Extension or contraction of fabric length is made by αl%; New weft spacing,  
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Fabric crimps changed 

Fabric crimp in either the warp or weft direction can be changed by extension to change the 

fabric parameters. 
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Fabric crimp amplitude changed 
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4.3 Maximum fabric extension 

The maximum fabric extension will be limited to the following two options: 

(1) When the crimp in the direction being pulled becomes zero, in this case the threads will be 

pulled straight and the changes in the cross-thread will not cause interference. For example, the 

maximum warp stretch will be equal to the warp crimp.  

new crimp, c1
'
 = 0 

new weft spacing, p2
'
 = l1 

%100stretch  rppercent wa maximum
2

2

'

2

p

pp
  

Similar logic can be applied for extensions in the weft direction.       

(2) The maximum warp stretch will be limited to jamming in the cross-threads. For example 

maximum stretch in warp will be limited by the weft yarn getting jammed. It can be calculated as 

under:  

D

l
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c1
'
 can be calculated from equation 4.1 and the corresponding p2

'
 can be obtained.  
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2
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Similar logic can be applied for the other direction. 

The flow chart shown in figure 4.1 gives the logic of the algorithm for computing the parameters 

of the new fabric configuration on the application of options mentioned under 4.1. 
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4.1 Flow chart for solving crimp interchange equation 

Start 

Enter EPC, PPC, C1, C2 

p1 = 1/EPC 

p2 = 1/PPC 

l1=p2(1+C1) 

l2=p1(1+C2) 

h1=(P2√C1)4/3 

h2=(P1√C2)4/3 

DC=h1+h2 

 

 

Is yarn 

count 

given 

D=DC 

D=Dd=d1+d2 

Enter t1, t2 

d1=(1/280.2)√(t1/0.912) 

d2=(1/280.2)√(t2/0.912) 

 

is 

l1/D≤π/2 
Print Warp 

Jammed 

Print Warp 

not Jammed 

is 

l2/D≤π/2 

 

Print Weft 

not Jammed 

Print Weft 

Jammed 

A 

Yes No 

Yes 

Yes 

No 

No 



 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1a Module connector A of figure 4.1 

Is there 

jamming in 

any direction 

A 

Is 

warp 

jammed 

p2'= D sin (l1/D) 

C1'= l1/ p2' - 1 

p1'=l2/(1+C2') 

EPC'=1/p1' 

PPC'=1/p2' 

p1'= D sin (l2/D) 

C2'= l2/ p1' - 1 

p2'=l1/(1+C1') 

p2'=p2(1+ α) 

C1'=C1(1+α) 

C2'=C2(1+ β) 

p1'=p1(1+ β) 

p2'= p2(1- α) 

p1'= p1(1- β) 

C1'=C1(1- α) 

C2'=C2(1- β) 

Enter α or β 

B 

D D 

Print C1, C2, p1', p2', 

EPC, PPC' 

End 

B 

B 

B 

C 

C 

C 

C 

Yes 

No 

Yes 

No 



 66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1b Module connector at B, C figure 4.1a 
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4.4 Other structural changes 

Once the new fabric parameters are calculated the following can be obtained. 

New fabric thickness 

The new h1
'
 and h2

'
 can be calculated by using the equation 2.10, 2.11 

New thickness will be h1
'
 +d1 or h2

'
 + d2 whichever is greater. 

New fabric mass 

This can be calculated using equations 2.30 and 2.31 

New fabric cover factor 

This can be calculated using equation 2.27. 

New fabric specific volume 

The importance of this concept is for altering the fabric properties. A reduction in the values of 

parameters in one direction will be accompanied by an increase in the values of parameters in the 

cross-direction.  

An extension along warp will cause a contraction in the fabric width and vice-versa. This will 

primarily change thread spacing in warp and weft as such the ends and picks per cm. It will 

result in a change in the warp and weft cover factor and the cloth cover factor. The extension of 

warp will also result in reducing warp crimp and crimp amplitude. It is likely to affect fabric 

thickness and fabric mass. 

 

4.5 Structural design of fabric by soft computing 

The crimp in fabric is the most important parameter which influences several fabric properties 

such as extensibility, thickness, compressibility and handle. Normally crimp interchange 

equation is used to predict the change in crimp in the fabric when it is extended in any direction 

by keeping the ratio of modular length to the sum of thread diameter (l1/D and l2/D) constant.  

An attempt is made by soft computing to exploit the crimp interchange equation in a different 

way instead of keeping the usual three invariants l1, l2 and D, the relationship between warp 

crimp,c1 and weft crimp, c2 is determined by varying l1/D and l2/D. The algorithm for this 

strategy is shown in figure 4.2. Such a strategy enables bias of crimp in a preferred direction. 

This is a new concept and entirely a different use of crimp interchange equation.   
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4.2 Flowchart for solving crimp interchange equation in terms of l1/D and l2/D as variable 

 

4.5.1 Effect of varying l1/D and l2/D on relation between c1 and c2 

It was thought appropriate to exploit this equation as a designer tool by varying l1/D and l2/D to 

alter the domain of c1 and c2. This attempt is shown in figures 4.3, 4.4 and 4.5. 

Figure 4.3 shows that the relation between (√c1)/(1+ c1) and (√c2)/(1+ c2) is linear for given 

values of l1/D and l2/D. The relation between warp and weft crimp will be dictated by the unique 

straight line for crimp interchange. 
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4.3 Relation between c1 and c2 with varying l1/D, l2/D 

 

An attempt was made to investigate the effect by progressively decreasing the value of l1/D and 

increasing the value of l2/D by the same amount. It can be seen that all these lines pass through a 

point. The domain of relationship between warp and weft crimp gets altered, shifting to higher 

values of warp crimp by increasing l2/D in relation to l1/D and vice-versa.  

Figure 4.4 shows the effect of decreasing l1/D and l2/D by the same amount increases the domain 

of the two axis without altering any ratio of (√c1)/(1+ c1) and (√c2)/(1+ c2). Whereas greater 

increment in l2/D compared with l1/D gives non-parallel lines in figure 4.5 unlike figure 4.4.  
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4.4 Relation between c1 and c2 with equal decrease in l1/D and l2/D 

 

4.5 Relation between c1 and c2 with decrease in l1/D for constant l2/D 

 

In this case the ratio of (√c1)/(1+ c1) and (√c2)/(1+ c2) will be altered and straight line will be 

biased towards the X-axis. Any line shows the relation between c1 and c2 for constant value of 

l1/D and l2/D. thus depicting the operating range of c1 and c2 for desired change in any one of 

them. Thus l1/D and l2/D  can be chosen to dictate desired imbalance between  c1 and c2. 
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Chapter 5: Modeling of 3D woven structures 

 

5.1 Introduction 

Fiber-reinforced composite materials have many advantages and are frequently used in a wide 

variety of applications [18]. Most of them are two-dimensional (2D) laminated composites, and 

interlaminar delamination is, therefore, the weakest failure mode in such materials. Various 

techniques have been introduced for increasing the interlaminar strength and the most effective 

one, is supposed to employ three-dimensional (3D) textile technologies [19,20]. Several types of 

3D fabrics have been developed and have provided unique characteristics. 

Among them, the orthogonal fabric composite, as shown in Fig. 5.1, provides a fiber architecture 

aimed at retaining in-plane performance while increasing interlaminar toughness, by introducing 

only a small amount of through-thickness (z) reinforcements [21-23]. 

 

This part discusses modelling of such structures by stages of the meso-FE analysis and proposes 

a succession of steps (‘‘roadmap’’) and the corresponding algorithms are:  

orcement  

 

model and providing space for the thin matrix layers between the yarns  

: Dividing the solid into small elements.  

 

 

– Deformed shape, contour plots, nodal solutions etc. 

 

In this fabric basically the yarns are in 3 directions. All the yarn in 3 directions are mutually 

perpendicular to each other. There are layers of warp and weft yarn and Z-binding yarn (yarn in z 

axis) binds all these layers. The best property with these type of fabric is that there is no crimp in 

the yarns which thereby increases the young’s modulus of the fabric. There is only some crimp 

in Z-binding yarn which is at the boundary of fabric and can be neglected [24]. 
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5.1.1 Finite element method 

The finite element method (FEM) which in practical application often known as finite element 

analysis (FEA) is a numerical technique for finding approximate solutions of partial differential 

equations (PDE) as well as of integral equations. The solution approach is based either on 

eliminating the differential equation completely (steady state problems), or rendering the PDE 

into an approximating system of ordinary differential equations, which are then numerically 

integrated using standard techniques such as Euler's method, Runge-Kutta, etc.  

In solving partial differential equations, the primary challenge is to create an equation that 

approximates the equation to be studied, but is numerically stable, meaning that errors in the 

input and intermediate calculations do not accumulate and cause the resulting output to be 

meaningless. There are many ways of doing this. 

 

5.1.2 ANSYS  

ANSYS is a general purpose finite element modelling package for numerically solving a wide 

variety of mechanical problems. These problems include: static/dynamic structural analysis (both 

linear and non-linear), heat transfer and fluid problems, as well as acoustic and electro-magnetic 

problems. It uses a pre-processor software engine to create geometry. Then it uses a solution 

routine to apply loads to the meshed geometry. Finally it outputs desired results in post-

processing. 

 

5.1.3 Geometry 

The analysis was done on unit cell of 3D orthogonal fabric. The fabric has three layers of stuffer 

yarns, four layers of feeder yarn and two binder yarns. The cross section of yarn is choosen as 

race-track because it gives best practical results. 

Analysis is done on unit cell instead of full fabric because the number of elements will be very 

high in case of full fabric and ansys couldn’t be able to converge the solution. So, unit cell of 

fabric is taken for analysis using proper boundary conditions so that practical conditions are 

acheived. 

  

The dimension of unit cell is 4mm(width) * 6.3mm(height)  * 2.7.mm(length).  
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Effective number of stuffer yarn = 6 

Effective number of filler yarn = 8 

Effective number of binder yarn = 2  

The reason why race-track cross-section is used is that, in other geomerties like circular, 

elliptical and lenticular, the contact between two bodies will be line, area of contact will be very 

low, thus for very low load, stress developed will be too high. That is why they will not give 

accurate results. 

 

 

 

5.1 Unit cell structure of 3D orthogonal fabric. 

 

5.2 Race-track cross-section of yarns. 
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The major axis = 1mm 

   The minor axis =0 .7mm 

 

5.2 Material property 

The material used is glass fiber having the following properties. 

Young’s modulus = 86000 MPa 

Poisson’s ratio = 0.22. 

Density of material is 2540kg/m
3
 

Tensile yield strength = 1.538E9 

Tensile ultimate strength = 3.1E9 

Coiefficent of inter yarn friction = .3 

 

5.2.1 Mesh formation 

For analysis purpose, the structure is divided into small elements. Mesh statistics constitute 

number of elements = 2273, and number of nodes = 13318. 

 

 

 

5.3 Mesh generation on the unit cell. 

 

5.2.2 Boundary condition 

1. Fixed support on one side 

The plane of symmetry will not move if equal and opposite forces are applied on the 

surface of the unit cell. Therefore, the unit cell is divided by this plane of symmetry and 



 75 

one side is welded with fixed support to prevent the rigid body motion. The blue colour 

surface indicates  the welded zone of the fixed support in Fig. 5.4 . 

 

   

    

                      5.4 Fixed support zones. 

 

2. Frictionless support 

To prevent the intermessing of unit cell, surfaces are provided with frictionless support so 

that there is no motion in the direction perpendicular to the surface. 

 

 

5.5 Friction-less support zone. 

3.   Loading  

The stuffer yarns are provided with load. Pressure load is applied, so that uniform force 

can be exerted on each yarn. 
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5.6 Pressure is applied to one of the face as shown above. 

 

5.3 Result and discussion 

The maximum stress is in the stuffer yarn, this is the place where fabric will start to break. The 

image obtained from ansys simulation  given in Fig. 5.7  shows stress distribution in the unit cell. 

The simulated value of maximum stress at different loads is given in Table 4. The stress-strain 

behaviour obtained in FEM simulation is given in Fig. 5.8, which shows that the relation is 

almost linear. 

Table 4: Simulated value of maximum stress 

Pressure applied (in MPa) Maximum stress (in MPa) 

20 31.12 

40 61.56 

60 91.78 

80 122.53 

120 181.23 

200 322.31 

400 644.18 

1790 3122.23 
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5.7 Stress distribution. 

 

 

 

 

5.8 Simulated stress analysis. 

5.3.1 Experimental results 

Sample size  

Length= 250mm, Width = 25mm and Thickness = 1.87mm 

 

LOAD APPLIED (in MPa)  

MAXIMUM STRESS(in MPa) 
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Table 5: Load applied 

Sample No. Load (in kg) 

1 893 

2 1024 

3 946 

4 976 

         Avg. 959.74 

 

So, the average breaking stress = 201.186 MPa 

Ideally the break should occur at ultimate tensile stress. However, in this experiment it appears 

earlier due to various type of failure like fatigue, manufacturing errors, corrosion etc.  

 

5.3.2 Deformation 

The deformation graphs in Fig. 5.9 & 5.10 show maximum displacement of an element. With 

this maximum displacement, strain is calculated and the result is shown in Table 6. 

 

Table 6: Strain rate 

Pressure applied (in MPa) Strain (in %) 

20 0.05 

40 0.098 

60 0.14 

80 0.19 

120 0.30 

200 0.46 

 

 

. 
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5.9 Applied load vs strain %. 

 

 

 

 

 

 

5.10 Stress strain behaviour. 

Fig. 5.11 shows the total deformation of the unit cell. 

STRAIN(%) 

STRESS DEVELOPDED (in MPa) 

STRAIN(%) 

LOAD APPLIED (in MPa)  
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5.11 Total deformation. 

 

5.4 Conclusion 

The model is successful to simulate the tensile properties of orthogonal fabrics. The model can 

be improved by incorporating fibre to fibre friction through introducing appropriate linking 

elements. Other mechanical properties such a compressive strength, shear stress, and bending 

rigidity can be tested. Fabric with similar yarn characteristics and fabric parameters can be 

produced to validate the results. The spaces between the yarns can be filled with the elements 

with the properties of required matrix, in order to conduct tests on a unit cell of composite.  
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Chapter 6: Characterization of woven fabric 

properties 

 

6.1 Objective measurement of fabric appearance using digital image processing 

Fabric appearance is very essential for characterizing and determining the acceptability of textile 

products. Drape, pilling, texture and wrinkle are recognized as major aesthetic attributes of a 

woven apparel fabric and measured by the digital image processing technique. An integrated 

appearance index is estimated from these attributes after judiciously evaluating the weightage of 

individual parameter with an expert opinion. It has a good correlation with some of the existing 

subjective methods of analysing fabric appearance. 

As standards of living continue to improve, aesthetic characteristics of clothing become a 

primary consideration in determining serviceability and longevity of apparel fabrics. Apparel and 

household goods are often discarded for no other reason than that the fabrics lose aesthetic 

appeal. Fabric appearance is normally evaluated from the traditional appearance attributes such 

as wrinkling, staining, creasing, texture, pilling, drapes and colour. Most of these attributes are 

measured using subjective methods which lack reproducibility and often cause controversy due 

to large variation in perception and skill of the evaluator. Moreover, there is no method available 

which can combine all aesthetic attributes to express the fabric quality from appearance point of 

view. In this work a computer vision system is proposed to measure and integrate most important 

aesthetic attributes of an apparel fabric such as pilling, drape, texture and wrinkle so as to 

develop an index called fabric appearance index (FAI). 

The appearance of a fabric mainly depends on the fabric design and characteristics of raw 

material used for it. The design of a fabric could be an artistic design and/or engineering design. 

The artistic design includes weave structure, pattern and colour of the material whereas the 

engineering design is mainly concerned with constructional details. The weave design is also an 

integral part of the engineering design. However, the colour selection for a given end use mainly 

depends on the user’s choice. The weave design, pattern and fabric sett combined together 

attribute to texture of the cloth. Material characteristics along with engineering design 

specification determine fabric mechanical prosperities. The properties which directly linked to 
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the aesthetic appearance are therefore drape (mechanical properties), texture (constructional 

parameters), wrinkle (irregular surface deformations) and pilling (surface abrasion).  

 

 

 

6.1 Contribution of appearance attributes on total appearance of fabric 

 

Each of these four parameters is quantified based on scientific principles using digital image 

processing and integrated together to estimate a parameter called fabric appearance index (FAI) 

as follows: 

 

 

The image processing technique is successfully used for objective measurement of fabric 

appearance. Drape, wrinkle, pilling and texture characteristics of a fabric are considered the 

major attributes of fabric appearance. These attributes are objectively evaluated by developing 

suitable image processing software and summed up at a suitable proportion suggested by a team 

of experienced fabric technologists to derive an index called fabric appearance index (FAI). The 

individual attribute measured by the image processing method holds very good correlation with 
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the conventional method of measurement. The newly developed appearance index also gives a 

very strong correlation with overall appearance of the fabric subjectively assessed by the experts. 

6.2 Prediction of fabric drape behavior using finite element method 

In this study, an alternative instrument with customized software is developed to measure the 

planner (2D) and spatial (3D) parameters of fabric drape. The principle of software is based on 

the digital image processing algorithm. This image processing based instrument along with 

customized software is capable of measuring the drape coefficient and the newly defined drape 

parameters. These newly defined parameters are drape distance ratio (DDR), fold depth index 

(FDI), amplitude and number of nodes (N). The reason for these additional drape parameters are 

for the complete understanding of the drape profile. This proposed measurement system is 

verified by comparing the drape coefficient results with the traditional drapemeter. The 

comparison of results shows excellent agreement with the traditional results. The advantage of 

this instrument is the ease of operation as this method does not require much time and skill. This 

instrument is also capable of measuring the newly defined shape parameters for better 

understanding of the drape profile.  

Apart from accurate measurement, a trial has also been made to predict the various drape 

parameters by different techniques. Finite element method has been used for the prediction of the 

drape parameters. Finite element analysis is carried out by the commercial package “ABAQUS”. 

The standard procedure has been followed for the modeling and analysis of the results. The 

results obtained from this model are compared with results estimated by digital image processing 

technique and cusik method for the verification of models. The correlation between digital image 

processing and finite element analysis gives very good result. 

The five drape parameters such as drape coefficient (DC), drape distance ratio (DDR), fold depth 

index (FDI), amplitude and number of nodes (N) are calculated with consideration of non-linear 

relationship between the input fabric mechanical properties with the various fabric drape 

parameters.   
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6.2 FEM simulation of drape profiles 

 

6.3 Artificial neural network-based prediction of aesthetic and functional 

properties of woven fabrics 
 

An engineered approach to fabric development is described in which a radial basis function 

network is trained with worsted fabric constructional parameters to predict functional and 

aesthetic properties of fabrics. An objective method of fabric appearance evaluation with the help 

of digital image processing is introduced. The prediction of fabric properties by the network with 

changing basic fiber characteristics and fabric constructional parameters is found to have good 

correlation with the experimental values of fabric functional and aesthetic properties. The radial 

basis function network can successfully predict the fabric functional and aesthetic properties 

from basic fiber characteristics and fabric constructional parameters with considerable accuracy. 

The network prediction is in good correlation with the actual experimental data. There is some 

error in predicting the fabric properties from the constructional parameters. The variation in the 

actual values and predicted values is because of small sample size. Moreover, the properties of 

worsted fabrics are greatly influenced by the finishing parameters which are not taken into 

consideration in the training of the network. Prediction performance can be further improved by 
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including these parameters as input, during the training phase. In few cases, the network has 

predicted contradictory trends, which are found difficult to be explained. 

 

In this study, 58 worsted suiting fabric samples were tested for their constructional parameters as 

well as aesthetic and functional properties. Aesthetic properties include total appearance value, 

fabric appearance index (FAI) and drape coefficient. The functional properties are restricted to 

handle and comfort properties like total hand value, formability, air permeability, relative water 

vapour permeability and thermal insulation. Functional properties are taken from KES and fabric 

assurance by simple testing (FAST) equipment, where as for appearance an image processing-

based system was developed for evaluation of FAI by objective measurement of appearance 

attributes. A radial basis function neural network model was used for prediction of the fabric 

appearance values and comfort properties using fabric constructional parameters and some 

primary fiber mechanical properties as input parameters of the network. 

 

 

6.3 Architecture of radial basis function neural network model 

 

It can be concluded that the radial basis function network can successfully predict the fabric 

functional and aesthetic properties from basic fiber characteristics and fabric constructional 

parameters with considerable accuracy. The network prediction is in good correlation with the 

actual experimental data. There is some error in predicting the fabric properties from the 

constructional parameters. The variation in the actual values and predicted values is because of 

small sample size. Moreover, the properties of worsted fabrics are greatly influenced by the 

finishing parameters which are not taken into consideration in the training of the network. 
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Prediction performance can be further improved by including these parameters as input, during 

the training phase. In few cases, the network has predicted contradictory trends, which are found 

difficult to be explained.  

6.4 Fabric drape and mechanical properties 

Today’s consumers are more quality conscious than ever before. They now prefer to have less 

clothing but of higher quality. Among various properties, aesthetic characteristics of clothing 

have become the primary consideration in determining serviceability of apparel fabrics. 

Normally fabric appearance is determined from traditional attributes like wrinkle, crease, texture, 

pilling, colour and drape etc. Among all these parameters drapability of a fabric plays an 

important role, particularly when the garment is required to provide an elegant look. 

There is a strong correlation (R
2
 = 0.93) between fabric bending rigidity and drape coefficient 

value. Negative correlation is is observed between bending rigidity and number of nodes. In most 

cases a higher drape coefficient is accompanied by fewer nodes. Wool and its blends give nodes 

between 4 and 6 depending on fabric areal density and flexural rigidity. There is a direct 

relationship between fiber bending rigidity and fabric bending rigidity. Fibers having higher 

crimp do have a lower bending rigidity, reflected in low bending rigidity of fabric resulting in 

low drape coefficient. 

A higher formability is normally accompanied with a lower drape coefficient value. It is due to 

the fact that formability depends on bending as well as longitudinal compression/tensile 

properties. A good correlation between tensile energy and drape coefficient indicates that a fabric 

with higher tensile energy is less susceptible to draping or falling from the edge of a contour. A 

higher extensibility always favours the folding and hanging of fabric at the edges of the platform 

and thus a smaller shadow is formed giving lower drape coefficient. 

The shear rigidity of worsted fabrics shows very good correlation (R
2
 = 0.91) with the drape 

coefficient values. A higher rigidity to tangential deformation prevents folding or hanging and 

thus a high drape coefficient is obtained. A highly compressible fabric does have high 

compressional energy and can absorb/withstand compressive loads to a greater extent at the 

deforming points. This prevents the folding at the deforming points and resulting in a higher 

drape coefficient value. 
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6.5 Carpet grading by digital processing 

Appearance, a key attribute of carpets, is often considered as more important than its durability. 

Of particular concern now is the rate at which a carpet looses its original appearance due to fiber 

shedding, abrassive wear, shading, soiling, development of surface roughness and colour change. 

Most of these factors influence the perceived texture of the pile. 

In assessing carpet serviceability, appearance retention is a key attribute. Different structural 

prameters like pile density, pile orientation etc. affect the aesthetic properties of a carpet, so an 

objective method was developed to evaluate these parameters by image processing. 

It has been found that with increasing strokes of dynamic loading, the piles get flattened and 

absolute value of pile disorientation increases. It is also observed that with increasing strokes, the 

value of energy decreases showing poorer texture. The digital image processing based system 

developed to measure the aesthetic properties of carpet shows good correlation with the expected 

results and the subjectively evaluated grades. Hence, the technique can be used effectively to 

evaluate carpets objectively. 

6.6 Effect of crease behaviour, drape and formability on appearance of light weight 

worsted suiting fabrics 

Fabric appearance is a major criterion for its consumer acceptance. Fabric tailorability depends 

largely on its formability. Thus, the formability is a major determiner of the final garment 

appearance. Pressing performance is yet another important aspect for good aesthetic appeal of a 

suit. Crease recovery angle can be treated as an index to predict the pressing performance of 

fabrics. Apart from crease retention property, drapability of a cloth significantly contributes to 

graceful appearance of a suiting cloth. This is strongly related to the low-stress mechanical 

properties of the fabric, like bending rigidity. Thus, the measurement of drape and its correlation 

to the total appearance value of the fabric would make the understanding of the inter-dependence 

of these parameters more relevant and object oriented. A shift towards the use of light weight 

suiting fabrics has been observed globally for almost a decade. When fabric areal density 

decreases substantially, the major appearance attributes which are normally secondary 

determinants of fabric mechanical properties are significantly affected. Because these attributes, 

such as drape, crease recovery angle and wrinkle, have direct influence on human vision 
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perception, it is very crucial to study the inter-dependence of creasing, drape and formability to 

develop fabrics of acceptable appearance level. Creasing behaviour of conventional worsted 

fabrics has already been established by several researchers. However, the present trend of light 

weight suiting fabrics with introduction of various natural fibers has made it necessary to 

investigate the formability as well as aesthetic properties of these new fabrics. This concerned 

study was aimed at examining the use of simple measurement of fabric crease recovery angle 

and drapability to predict the aesthetic performance of worsted fabrics or the suit made there of. 

As pressing performance has a greater influence on garment appearance for light weight fabrics 

as compared to heavy weight fabrics, other fabric properties which may influence tailorability 

have also been examined. 

 

 

 

6.4 Correlation of fabric parameters with TAV (Total Appearance Value) 

 

It is observed that irrespective of the composition of the fabrics the crease recovery angle is 

negatively related to the total appearance value. This indicates that the lower crease recovery 

angle or high crease retention is related to better appearance. The fiber properties play a major 

role in determining crease behaviour and appearance of fabrics. Basically, creasing and recovery 



 89 

are the functions of fiber bending rigidity. However, the deviation is observed in the linen 

blended fabrics. This is because of very high degree of orientation of polymeric chains in the 

fiber structure, leading to a notoriously bad creasing property. For worsted fabrics a lower drape 

coefficient is favorable with respect to appearance. Drape coefficients of 30-40% are most 

common in these kinds of fabrics. However, too low value of drape coefficient sometimes may 

prove detrimental to fabric appearance. Again the fiber properties can be very well correlated to 

the drape behaviour. Coarser fibers have higher bending rigidity and lead to higher drape 

coefficient of fabric but poor appearance value. As the appearance of fabric depends on several 

other parameters, a more intensive study of fiber properties is essential. Thus, drape alone cannot 

be considered as a deciding factor for fabric appearance. A higher formability is required for 

better appearance value. This may be attributed to the fact that in case of suiting fabrics a 

graceful appearance resulting from slightly higher bending rigidity is preferable. 

Finer fibers for the same linear density of yarn facilitate for more number of fibers in the 

crosssection. Thus, a higher specific surface area is available for fiber interaction and this 

generates more cohesivity between fibers, leading to higher bending rigidity. This increases 

fabric formability and at the same time a better appearance is achieved. An optimum warp 

formability of 0.4-0.6 is most favorable with respect to worsted suiting fabrics appearance. In 

case of very light constructions, sometimes a formability lower than 0.25 is obtained which may 

prove detrimental to appearance. 

 

6.7 Measurement of fabric wrinkle using digital image processing 

Wrinkle formation is one of the most important parameters which decides the aesthetic 

appearance of the fabric. Easy care garments are often made from fabrics processed by wrinkle-

resistant treatments. This property of fabric is reflected in the criteria of a consumer’s choice 

through the appearance of fabrics during ordinary wear. Wrinkles are defined as undesirable 

creases or short and irregular deformations in a fabric. These deformations depend on the 

viscoelastic properties of the fabric. There are three dimensional versions of creases, formed 

when legs and sleeves are bent along the opposite direction and kept in such a position for either 

a long period of time or intermittently. 
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The most standardized methods which are widely used in the industry for the evaluation of fabric 

wrinkle are AATCC and ASTM D-123. Technically these standardized methods are always 

based on the visual assessment of multiple observers. Hence, there has been a need for 

instrumental test methods. The subjective method allows observers to assign the numerical grade 

or rating of the specimen which most nearly matches the wrinkling characteristics of a 

photograph or replica. Though these methods are relatively simple to conduct and easy to 

perform but these are subjective, time consuming, slow and sensitive to biases in perception. 

Also, the standard replicas may not have equal intervals in the degree of wrinkling. This visual 

evaluation is unreliable and time inefficient. In particular, a specimen’s embedded color and/or 

pattern does not result in consistent evaluation of fabric wrinkling . Objective and automated 

fabric evaluation methods are needed as alternatives to existing visual inspection methods. On 

the basis of the previous research work in computer application to the textile products, it is 

realized that an imaging system will be the best solution for objective evaluation of the fabric 

wrinkling. Computer vision technology provides one of the best solutions for the objective 

evaluation of fabric aesthetic properties. Wrinkle slope, height, density and isotropy index are 

determined to distinguish various wrinkled surfaces quantitatively. These parameters in fabric 

are measured using the coordinates.  

This research work was, therefore, aimed at designing and developing a system to measure the 

surface characteristics of a fabric, based on the method of image processing. Various samples 

have been evaluated with the system developed and the results are compared with the 

conventional AATCC method.  

 

 

6.5 Images of wrinkled fabric after different steps of processing 

By comparing subjective ratings with those obtained by digital image processing, it was found 

that the two sets of ratings are comparable to each other. Correlation analysis is used to 

determine the strength of linear relationship of these two evaluation systems. An excellent 



 91 

correlation (R
2
=0.8401) is observed between subjective method and digital image processing 

based system. 

 

7. References 

 

1. Newton A (1993), Fabric Manufacture: A Hand book, Intermediate Technology 

Publications, London  

2. Robinson A T C and Marks R (1973), Woven Cloth Construction, The Textile Institute.  

3. Grosicki Z (1988), Watson’s Textile Design and Colour, Newnes Butterworths.  

4. Weiner L (1971), Textile Fabric Design Tables, Technomic, Stamford, USA.  

5. Seyam, A M (2002), Textile Progress, The Textile Institute, Vol. 31, No. 3. 

6. Peirce F T (1937), J. Text. Inst., 28, T45-112. 

7. Kemp A (1958), J. Text. Inst., 49, T 44. 

8. Love L (1954) Graphical Relationships in Cloth Geometry for Plain, Twill, and Sateen  

Weaves, Textile Research Journal, Vol. 24, No. 12, 1073-1083.  

9. Weiner L I(1971), Textile Fabric Design Tables, Technomic, Stamford, CT, USA. 

10. Nirwan S and Sachdev S, (2001), B. Tech. Thesis, I.I.T. Delhi   

11. Newton A (1995), The comparison of woven fabrics by reference to their tightness, 

J.Text. Inst., 86,232-240. 

12. Newton A (1991), Tightness comparison of woven fabrics, Indian Text. Journal, 101, 38-

40. 

13. Seyam A M (2003), The Structural Design of Woven Fabrics: Theory and Practice, 

Textile Progress, Vol.31, No. 3. 

14. Singhal and Choudhury (2008), B. Tech. Thesis, I.I.T. Delhi.  

15. Hearle J W S, Grosberg P, and Backer S, (1969) Structural Mechanics of Fibers, Yarns 

and Fabrics, Wiley Interscience. 

16. Dickson J B, (1954), Practical Loom Experience on Weavability Limits, Textile Research 

Journal, Vol. 24, No. 12, 1083-1093. 

17. Russell H W (1965), Help for Designers Construction Factor-An Aid to Fabric 

Evaluation and Design. Text. Industr., 129, No. 6, 51-53. 



 92 

18. Mallic, P.K. (1993). Fiber-reinforced composite; materials, manufacturing, and design. 

2nd ed. NewYork: Marcel Dekker. 

19. Ko, F.K. (1989). Three-dimensional fabric for composite. In: Chou TW, Ko FK, editors. 

Textile structural composite, NewYork: Elsevier Publisher. 

20. Chou, T.W. (1992). Microstructural design of fiber composites. New York: Cambridge 

University Press. 

21. Guenon, V.A.F., Chou, T.W., & Gillespie, J.W. (1989). Toughness properties of a three-

dimensional carbon-epoxy composite. Journal of Material Science, 24:4168–4175. 

22. Tanzawa, Y., Watanabe, N., & Ishikawa, T. (1997). Interlaminar delamination toughness 

and strength of 3-D orthogonal interlocked fabric composite. In: Proceedings of 11th 

International Conference on Composite Materials, Gold Coast, Australia, 3529–39. 

23. Tanzawa, Y., Watanabe, N., & Ishikawa, T. (1999). Interlaminar fracture toughness of 3-

D orthogonal interlocked fabric composite. Composite Science and Technology,59:1261–

1270. 

24. Guenon, V.A.F. (1987). Interlaminar fracture toughness of a three-dimensional 

composite. Master thesis of Applied Science in Mechanical Engineering. University of 

Delaware. 

 

Own publications in this field 

 

1. Rajesh Mishra, Jiri Militky & B K Behera, Structural design engineering of woven fabric 

by soft computing: Mathematical maneuverability to control crimp in the fabric, Journal 

of the Textile Institute, Vol 103, Issue 4, Pages- 400-404, 2012. 

2. Rajesh Mishra, Dana Kremenakova, B K Behera & Jiri Militky, Structural design 

engineering of woven fabric by soft computing: Part I –plain weave, Autex Research 

Journal, June, 2011. 

3. Rajesh Mishra, Dana Kremenakova, B K Behera & Jiri Militky, Structural design 

engineering of woven fabric by soft computing: Part II –nonplain weaves, Autex 

Research Journal, June, 2011. 

4. Rajesh Mishra, Jiri Militky & B K Behera, Modeling and simulation of 3D orthogonal 

fabrics for composite applications, Journal of the Textile Institute, April, 2012. 



 93 

5. Rajesh Mishra, Richa Tiwari, Miroslava Marsalkova, Jiri Militky & B K Behera, Effect 

of TiO2 nanoparticles on Basalt/Polysiloxane composites: mechanical and thermal 

characterization , Journal of the Textile Institute, April, 2012. 

6. Rajesh Mishra, B P Dash, B K Behera & Jiri Militky, Geometrical modeling of 3D 

woven fabrics, FIBRES & TEXTILES (VLÁKNA a TEXTIL), vol-(1), pp. 28 - 35, 

(2012), ISSN 1335-0617. 

7. B K Behera & Rajesh Mishra, 3-D weaving , IJFTR, No. 3, Vol. 33, 2008.  

8. Rajesh Mishra & B K Behera, Objective measurement of fabric appearance using digital 

image processing, Journal of the Textile Institute, No. 2, Vol. 97, 2005.   

9. Rajesh Mishra, B K Behera & Ajit Pattanaik, Finite element modeling of fabric drape 

profile using digital image processing, Journal of Textile Engineering, Japan, Vol. 54, 

No. 4, 2008. 

10. B K Behera & Rajesh Mishra, Artificial neural network based prediction of aesthetic and 

functional properties of worsted suiting fabrics, International Journal of Clothing Science 

and Technology, Vol.-19, No. 5, 2007. 

11. Rajesh Mishra & B K Behera, Drape behavior of non-conventional light weight worsted 

suiting fabrics, Textile Asia, No. 6, Vol. 37, 2006. 

12. Rajesh Mishra & B K Behera, Carpet grading by digital image processing, Textile Asia, 

Vol. 38, No.5, 2007. 

13. Rajesh Mishra & B K Behera, Crease behavior, drape & formability of non-conventional 

light weight worsted suiting fabrics, Indian Journal of Fibre & Textile Research, No.3, 

Vol.32, 2007. 

14. Rajesh Mishra & B K Behera, Measurement of fabric wrinkle using digital image 

processing , IJFTR, No. 1, Vol. 33, 2008. 

15. Rajesh Mishra & B K Behera, Aesthetic attributes & appearance index of non-

conventional light weight worsted suiting fabrics, Textile Asia, No. 3, Vol. 38, 2007. 

16. Rajesh Mishra & B K Behera, Factors behind fabric appearance, Textile Asia, Vol. 38, 

No.4, 2007.      

17. Rajesh Mishra & B K Behera, Fabric appearance as a function of mechanical properties, 

IJFTR, No. 3, Vol. 31, 2006. 



 94 

18. B K Behera, Jiri Militky, Rajesh Mishra & Dana Kremenakova, Book chapter on 

Modeling of woven fabric structure and properties, INTECH publishers, 2012. 

19. Rajesh Mishra, B K Behera & Jiri Militky, Modeling & simulation of 3D orthogonal 

fabrics, Book chapter in – Selected topics of textile and material science, 2012. 


