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2 Komentar k publikacim

2.1 Uvod

V prvni kapitole je uveden souhrn uverejnénych védeckych a odbornych praci, ve
kterych je autor této habilitacni prace hlavnim autorem, nebo spoluautorem. Souhrn
praci obsahuje:

5 publikaci v recenzovanych ¢asopisech ([1-5]),

3 publikace v ostatnich ¢asopisech ([6-8]),

16 pripévku ve sbornicich mezindrodnich konferenci ([9-24]),
7 pripévku ve sbornicich ndrodnich konferenci ([25-31]),

1 realizované technické dilo ([32]).

V prilohdch k habilitacni praci je uvedeno 8 vybranych publikaci v zahrani¢nich ca-
sopisech. Z toho 4 prace byly publikovany v casopisech s "Impact Factorem', jedna
byla publikovana v recenzovaném zahrani¢nim casopise a obdrzela ocenéni "Excellent
Paper Award 2008", ostatni byly publikovany v nerecenzovaném zahrani¢nim casopise.
Publikované prace je mozné rozdélit do nékolika okruhii:

Smérova orientace vlakennych systéma,
Detekce defektii v plosnych textiliich,
Automaticky odhad dostavy tkaniny,
Monitorovani kvality zinylkové prize,
Simulace deformace textilni vyztuze.

U W=

Uvedené prace jsou tematicky piimo zamérené na monitorovani struktury textil-
nich utvart, at plosnych nebo linedrnich, a to predevsim s ohledem na kvalitu téchto
utvarti. Vétsina z publikovanych praci je zalozena na pouziti metod obrazové analyzy
pro monitorovani struktury textilnich utvar.

Prace z okruhu smeérové orientace vlakennych systému se zabyvaji stanovenim od-
hadu strukturni anizotropie nebo odhadu preference sméru textilnich tutvart, ktery je
dilezitou soucasti kvantitativniho méreni v textilni metrologii. U netkanych plosnych
textilnich itvart smérové usporadani vldken zasadné ovliviiuje usporadani vlakenného
materidlu v plose a s tim spojené mechanické a nasledné uzitné vlastnosti téchto utvar.
Stanovenim odhadu strukturni anizotropie se zabyva prace [1] uvefejnéna v ¢asopise
Fibers and Teatiles in Eastern Europe (viz Priloha 1).

Publikace z oblasti detekce defektli ve tkaninach se vénuji tematice monitorovani
vyskytu vizualnich a strukturnich vad, jejich klasifikaci a stanoveni polohy vady na
plosném ttvaru, coz je dilezitou soucdsti monitorovani kvality v textilnim pramyslu.
V' uvedenych pracich byly navrzeny algoritmy detekce vychézejici ze statistického



a spektralniho pristupu k analyze textur. Metoda vyuzivajici pro automatickou de-
tekci defektu statistické charakteristiky druhého radu je navrzena v praci [2] publi-
kované v cCasopise Research Journal of Textile and Apparel (viz Priloha 2) a déle
v préaci [6] zvefejnéné v World Journal of Engineering (viz Piiloha 6). Automatickd
detekce, ktera je zalozend na spektralnich charakteristikach vychazejicich z vykonového
spektra byla uvetejnéna v clanku [8] v World Journal of Engineering (viz Priloha 8).
K vlastnimu monitorovani defektii je pak vyuzita technika sou¢asného monitorovani
vice charakteristik zalozena na vicerozmérnych regulac¢nich diagramech Hotellingova
typu.

Stanoveni dostavy tkaniny patii mezi rutinni ¢innosti v textilni metrologii. Za tce-
lem stanoveni odhadu dostavy tkaniny byly navrzeny algoritmy pro automatické sta-
noveni dostavy z obrazu tkaniny. Metodiku lze aplikovat i na detekci vad ve tkaninach
zpusobenych zménou dostavy tkaniny opét s vyuzitim nastroji, které poskytuje statis-
tickd regulace procesu. Vysledky byly uvefejnény v ¢asopise Fibres and Polymers (viz
[3], Priloha 3).

V oblasti monitorovani struktury linearnich textilnich utvart byla také fesena tiloha
pouziti regulacnich diagramii pro detekci vad na zinylkové prizi. Mezi dulezité parame-
try zinylkové prize patii stejnomérna vyska vlasu po celé délce prize, jelikoz ma silny
vliv na jeji vzhled. Vyska vlasové prize je monitorovanou charakteristikou jakosti. Mo-
difikované EWMA regulac¢ni diagramy proto byly implementovany jako nastroj k mo-
nitorovani a detekci defektt na tomto typu prize. Diagramy pomohly tspésné odhalit
ruzné typy béznych defekti vyskytujicich se v prizi. Vysledky jsou uvedeny v ¢asopisu
Teatile Research Journal (viz [5], Piiloha 5).

Dale byly Teseny otazky kvalitativnich parametra textilnich kompozitnich vyztuzi
a jejich chovani pri zatézovani. Textilni vyztuz je modelovana jako nahodné pole.
V ramci modelovani kompozitnich vyztuzi byla studovana i otdzka modelovani pev-
nosti svazku vlaken pri postupném zatézovani, jez je obdobou stanoveni spolehlivosti
systému slozeného z paralelnich komponent. Pro modelovani byl pouzit Danielstiv mo-
del a nastroje z teorie Citacich procesti. Vysledky ziskané simulaci byly pouzity pro
simulaci defektii textilni vyztuze kompozitu a publikovany v Composite Science and
Technology (viz [4], Piiloha 4).

Habilita¢ni prace obsahuje podrobny komentar k vybranym casopiseckym publika-
cim, ktery je rozclenén podle jednotlivych okruhti. Zavérem je provedeno zhodnoceni
vysledkt prace a doporuceni pro dalsi praci v oblasti monitorovani struktury textilnich
utvart.

2.2 Smeérova orientace vlakennych systémiu

Meéreni smérové orientace nebo odhad strukturni anisotropie objektovych systému na
zakladé digitalnich obrazi je dulezitou soucasti kvantitativniho méreni v textilni me-
trologii. Objekty rozumime ty ¢asti obrazu, které nas z hlediska dalsiho zpracovani
zajimaji a odpovidaji konkrétnim objektiim zobrazovaného svéta. Objekty by mély byt
v kontrastu s pozadim obrazu (gradient obrazové funkce na hranici objektu a pozadi).
V textilni praxi mtizeme za objekty povazovat vlakna, prize, fezy vlaken a pod., sys-
témy obsahujici objekty mohou byt rouna, vlakenné vrstvy, tkaniny, pleteniny, netkané
textilie a napt. nanovldkenné vrstvy. V soucasné dobé je zkoumani smérovych vlast-
nosti provadéno prevazné manualné nebo s pouzitim specializovaného softwaru, kde
odhad orientace je zatizen subjektivnim pohledem.
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Obrazek 2.1: (a) Brodatzova textura (D15), (b) odpovidajici vykonové spektrum.

Charakteristikou anizotropie je tihlova hustota délek nité f(«) sméfujicich do th-
lového rozmezi o + /2. Funkece f(a) se oznacuje jako smérova ruzice. Experimentdlni
grafickd metoda pro odhad f(«) je popsand v praci Rataje a Sazxla [33]. Metoda vyuziva
sit thld aq, ..., a,,, umisténych na povrch sledovaného systému k sestrojeni priisecikové
ruzice (stanovené z poctu pruseciki sité a vlakennych objektt). Smérova ruzice je pak
ziskana z prusecikové rtizice pomoci grafické konstrukce Steinerova kompaktu. Metoda
je ¢asové narocna a podle autorii i podle experimentti nestabilni, pokud je pocet thli
vétsi nez 18.

Techniky zalozené na spektralnim pristupu, které nejprve prevedou texturni obrazy
do frekvencni oblasti, jsou vhodné pro popis smérovosti periodickych nebo témér pe-
riodickych vzort v monochromatickych obrazech textury. Tyto techniky jsou zalozené
na vlastnostech Fourierova spektra a popisuji globalni periodicitu tirovni Sedi obrazu.
Smeér rozlozeni vysokych hodnot frekvencnich komponent ve frekvencéni oblasti odpo-
vida prevazujicim smérim objektl v obraze v prostorové oblasti. Naproti tomu nahodné
textura zplsobuje, ze vysoké hodnoty frekvencénich komponent v obraze spektra jsou
rozlozeny isotropné a tvori priblizné kruhovy tvar. Vyzkumem v oblasti smérové orien-
tace zalozené na spektralnim pristupu se zabyvali i jini autori, napriklad Josso et al.
[34], Liu [35], Holota a Némécek [36], Tonar et al. [37], Kula [38].

Necht f(x,y) je dvojrozmérna obrazova funkce, kde x = 0,1,2,...m — 1 a y =
0,1,2,...,n — 1 jsou prostorové soufadnice a f(z,y) je uroven Sedi obrazovych bodu
obrazu o velikosti man. Pro takovy obraz je dvojrozmérna diskrétni Fourierova trans-
formace (2DFT) déna vztahem [39]

m—1n—1

F(u,v) = Z Z f(z,y) g9 2m(uz/mtvy/n) (2.1)

z=0 y=0

kde, u=0,1,2,...m—1av=0,1,2,...,n—1 jsou frekvenéni proménné. F(0,0) pied-
stavuje pocatek frekvencni oblasti. Dvojrozmérna inverzni diskrétni Fourierova trans-
formace (2IDFT) mé& tvar

1 m—1n—1 )
flay)=— 33 fla,y) e d2rtu/mo/m), (2.2)
mn u=0 v=0

Jestlize f(z,y) je redlnd funkce, jeji transformace je funkce komplexni. Z divodu vi-
zudlni analyzy transformace je vhodné vypodist jeji spektrum |F'(u, v)| a zobrazit jako
obraz. Vykonové spektrum (nebo vykonova spektralni hustota) je definovana jako druhé
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Obrazek 2.2: (a) Elipsa, (b) oblast zajmu.

mocnina |F'(u,v)|, tj.
P(u,v) = |F(u,v)[* (2:3)

Pro ucely vizualizace je vhodné zredukovat dynamicky rozsah koeficientii logaritmickou
transformaci

Q(u,v) = log(1 + P(u,v)). (2.4)

Priklad texturniho obrazu z Brodatzovy databéze textur (D15) a odpovidajici vykonové
spektrum je zobrazen na obrézcich 2.1(a),(b).

Metodu pro odhad smérového rozlozeni objekt ve formé smérové riuzice zalozené
na spektralnim pristupu s pouzitim 2DFT navrhl Tundk v disertacni praci [40] a publi-
koval v praci [1] (viz Ptiloha 1). Odhad anisotropie je vypocten jako suma frekvenénich
komponent smérového vektoru v celém rozsahu thli. Odhad souradnic smérového vek-
toru je proveden pomoci DDA algoritmu. ProtoZe transformace redlné funkce f(z,y)
je komplexni ¢islo, jsou sefteny koeficienty Fourierova spektra |F(u,v)| a vyneseny
do polarniho diagramu. Priklad odhadu anisotropie pro monochromaticky obraz D15
z Brodatzovy databdze textur (obr. 2.3(a)) je uveden na obr. 2.3(c). Vyhodou navrzené
metody je jeji rychlost a sledovéni orientace s ihlovym krokem 1°. V préci [1] jsou uve-
deny priklady odhadu smérového rozlozeni pro simulované obrazy a monochromatické
obrazy textilnich struktur a prace [40] obsahuje zdrojové kody algoritmu v programo-
vém prostiedi Matlab.

Jak uz bylo zminéno, smeér frekvencnich komponent ve frekvenéni oblasti korespon-
duje ze smérem hran objektu v prostorové oblasti. Dalsi metoda pro odhad anisotropie
navrzena Tundkem vychazi z transformace vykonového spektra do binarniho obrazu
prahovanim, tim dojde k odsegmentovani vyznamnych frekvenc¢nich komponent. V ta-
kovychto binarnich obrazech uvazujeme shluk bilych pixelii jako oblast zdjmu. Je mozné
urcit vlastnosti jako délku hlavni, vedlejsi osy a orientaci elipsy (tihel ve stupnich v in-
tervalu -90 az 90° mezi osou z a hlavni osou), kterd mé stejny normalizovany druhy
centralni moment jako oblast zdjmu (viz obr. 2.2). Orientace koresponduje s prevldda-
jicimi sméry objektl v prostorové oblasti. Porovnani vyse zminénych metod je uvedeno
na obr. 2.3(a)-(d). Obr. 2.3(a) zobrazuje Brodatzovu texturu (D15), obr. 2.3(b) pfed-
stavuje smérovou ruzici odhadnutou experimentalni metodou dle Rataje a Sazla [33],
na obr. 2.3(c) je odhad smérové ruzice ve formé polarniho diagramu dle Tundka [1].
Elipsu zobrazenou ¢ervenou barvou, délku hlavni a vedlejsi osy elipsy, a orientaci elipsy
je mozné vidét na obr. 2.3(d). Z obrazku je patrnd shoda v prevladajicim sméru.
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(c) (d)

Obrézek 2.3: (a) Brodatzova textura (D15), (b) smérova ruzice, (c) polarni diagram, (d)
orientace podle elipsy.

Obé autorem navrzené metody provadi odhad smérového rozlozeni objektd pro
monochromaticky obraz jako celek. Ukazuje se, Ze pro textilni vldkenné systémy napt.
netkané textilie nebo nanovldkenné vrstvy by byla vhodnéjsi podrobnéjsi analyza. Mys-
lenka je zalozena na rozdéleni obrazu na mensi ¢asti a provedeni analyzy pro takovéto
oblasti. Obraz nanovlaken o velikosti 1000x1000 pixelii vyrobenych elektrostatickym
zvlédkniovanim uvedeny na obr. 2.4 (a) je rozdélen na mensi podokna urcité velkosti.
Analyza smérového usporadéani je pak provedena pro kazdé podokno. Prevladajici ori-
entace objekti pro kazdé podokno je reprezentovana smérovym vektorem zobrazenym
¢ervenou barvou (pfi podmince, Ze pomér hlavni a vedlejsi osy elipsy je vétsi nez 2).
Kromé toho, orientace ve stupnich je zobrazena jako mapa v Sedé skéle. Obr. 2.4(c),(d)
predstavuji sedoténovou mapu orientace pro podokna velikosti 20x20, resp. 10x10 pi-
xeli. Je zrejmé, ze oblasti zobrazené stiedni Sedou, které neobsahuji vektory smeéri,
reprezentuji oblast bez preferovaného sméru. Na obr. 2.4(e),(f) jsou vyznaceny vektory
sméri v origindlnim Sedoténovém obraze. Odpovidajici distribuce smérii je uvedena ve
formé histogramu a jadrovych odhadu hustoty na obr. 2.4(g),(h). Odhady distribuce
smért jsou v korespondenci s odhadem anisotropie zobrazené formou polarniho dia-
gramu podle Tundka [1] na obr. 2.4(b). Vysledky ukazuji, ze mensi velikost podoken
poskytuje presnéjsi vysledky. Dalsi priklad nanovlakenné vrstvy, kde je vidét prechod
mezi strukturou isotropni, bez preference sméri a orientovanou strukturou je uveden
na obr. 2.5. Metodu pro hodnoceni anizotropie nebo smérové orientace vldkennych
nebo jinych objektovych systémii za pomoci 2DFT je mozné vyuzit pro hodnoceni
plosnych textilnich struktur z pohledu jejich homogenity, vad a ndhodnych odchylek
od struktury.



Obréazek 2.4: (a) Obraz nanovldken (1000x1000px), (b) polarni diagram dle Tundka [1],(c),(d)
sedoténova mapa sméru (velikosti podokna 20x20 a 10x10 px), (e),(f) vektory sméru, (g),(h)
histogramy a jadrové odhady hustoty rozdéleni smért.
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Obrazek 2.5: (a) Obraz nanovlédken (2000x2000 px), (b) polarni diagram dle Tundka [1],(c),(d)
sedoténova mapa sméru (velikosti podokna 40x40 a 20x20 px), (e),(f) vektory smért, (g),(h)
histogramy a jadrové odhady hustoty rozdéleni smér.
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2.3 Detekce defekt v plosnych textiliich

Vizualni kontrola textilii je dilezitou soucasti kontroly kvality v textilnim primyslu.
Jejim 1celem je dosazeni maximdélni kvality textilnich vyrobkt z pohledu vizudlnich
vad a odchylek, u tkanin také dané zménou periodické struktury. Z nékterych provede-
nych studii (Schicktanz, [41]) vyplynulo, Ze cena textilnich vyrobku 2. jakosti je mezi
45-65% ceny vyrobku 1. jakosti. Za tcelem udrzeni vysoké kvality a standardi zavede-
nych v textilnim priamyslu musi textilni vyrobci sledovat kvalitu svych vyrobkt, a to
i nékolikanasobné opakovanou kontrolou. Monitorovani kvality se dotyka i finalni faze
vyroby, ktera vyzaduje objektivni, spolehlivé, ¢asové a financné efektivni vyhodnoceni.
V soucasné dobé se vady detekuji predevsim subjektivni vizualni kontrolou plosnych
textilil provadénou vyskolenym hodnotitelem, coz je prace ¢asové narocna a vyzaduje
permanentni pozornost kontrolora. Takovéto zjistovani vad, kdy nékteré vady maji veli-
kost jen par milimetrii na velmi rozsahlé inspekéni plose, poskytuje maximélni presnost
néco kolem 70% (Kumar [42], Chan a Pang [43]). I toto je jednim z duvodu, pro¢ ma
textilni pramysl zdjem na nahrazeni soucasnych subjektivnich postupt vhodnym au-
tomatizovanym a z ekonomického hlediska efektivnim resenim.

Vyzkum v oblasti automatické inspekce plosnych textilii existuje pomérné dlou-
hou dobu. Vyvoj novych algoritml pro rozpoznavani textilnich vzort nezavislych na
pozici, velkosti, svétlosti a orientaci je cillem mnoha vyzkumnych tymu. Nicméné v ob-
lasti rozpoznavacich automatickych systému je stale prostor pro vyvoj a zdokonalovani
téchto systémii. V soucasné dobé jsou na trhu s automatickym inspekénim systémem
zastoupené firmy (Elbit Vision System, Barco Vision’s Cyclops, Shelton Vision Tex-
tile Inspection Systems, ComVis, Uster Zellweger). Firmy garantuji presnost nalezeni
defektu v intervalu 70-90% v zévislosti na typu materialu a typu vad (Kothari [44]).
Nevyhodou vyse uvedenych komerénich systémi je zatim velmi vysoka pofizovaci cena
a schopnost detekce vady jen na nékterych typech textilnich materiala. Novy typ sofis-
materialii, véetné vzorovanych materialii a to nejenom textilnich. Za timto tc¢elem bude
tfeba vyvinout zcela nové typy hybridnich algoritmt (Ngan et al. [45]), které budou
kombinovat stavajici pristupy s novymi modernimi, které jsou zalozené naptiklad na
grupach symetrie pro vzorované textury (Ngan et. al [46]).

Tundk se v disertacni praci [40] zabyval metodami pro analyzu obrazu struktury
textilie a monitorovanim defekt ve tkaniné. V praci byly pouzity postupy pro detekci
vad resp. monitorovani textury zalozené na texturnich charakteristikach ziskanych pre-
devsim na zakladé statistického a spektralniho pristupu. Statisticky pristup vyuziva
texturni charakteristiky zejména vyssich rada. Prikopnikem v této oblasti je Hara-
lick et. al, ktery v praci [47] navrhl mnozinu 14 texturnich charakteristik, za celem
klasifikace texturnich dat. Charakteristiky jsou zaloZeny na vzajemné prostorové zavis-
losti irovni Sedi dvojic obrazovych bodu a slouzi k popisu charakterizace textury, jako
napr. homogenita, kontrast nebo pritomnost organizované struktury v obraze. Dalsi
charakteristiky popisuji komplexnost a povahu prechodi trovni Sedi v obraze. Efici-
enci texturnich charakteristik na klasifikaci textur ziskanych z databaze Brodatzovych
textur s vyuzitim metody CART testoval Carstensen v praci [48]. Rozpoznanim de-
fektt ve tkaniné s vyuzitim matic vzajemnych sedotonovych zavislosti se zabyvali Kuo
a Su [49] a Bodnarova et al. [50].

Tundk et al. v praci [2] (Priloha 2) a [6] (Ptiloha 6) pomoci metody CART stano-
vil texturni charakteristiky s nejvétsi diskriminacni silou, které pak byly pouzity pro
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Obrazek 2.6: (a) Okno s obrazem neporusené ¢asti tkaniny, (b) okno s obrazem, ktery obsahuje
poruchu, (c¢),(d) odhad smérového rozlozeni s krokem 10°.

detekci vizualnich defekti ve tkaninach. Studie ukézala, Ze za charakteristiky s nej-
vetsi rozlisovaci silou lze povazovat charakteristiky energie, korelace, lokalni homo-
genita a treti a ¢tvrty moment rozdéleni hodnot soucttt drovni Sedi. K vlastnimu
testovani algoritmii pro detekci vad ve tkaninach byl vytvoreny dvojrozmérny model
vazby tkaniny v platnové vazbé se simulovanymi béznymi defekty. Pro simulaci textilni
struktury byl v Matlabu vytvoren program s vyuzitim konvolu¢ni véty s ohledem na
typ vazby, dostavu a $itku modelové prize. Vstupnimi parametry simulace modelovani
struktury tkaniny byly: rozte¢ osnovnich a tatkovych niti; primér osnovnich a ttkovych
niti; aroven sedi osnovnich a ttkovych niti; hranice niti; stin niti a provazani, para-
metry ndhodného Sumu; Sitka provazani a vazba. V praci [2] jsou uvedeny priklady
simulovanych béznych defekti.

Spektralni pristup zalozeny na 2DFT vyuziva charakteristiky ziskané ze spektra.
V préci [8] (Priloha 7) byla k detekovani vyuzita sada 18 charakteristik pochazejicich
z Tundkem et al. navrzené metody odhadu anisotropie [1]. JestliZe si predstavime hod-
noty vynesené v polarnim diagramu jako vektor charakteristik X;, tyto charakteristiky
lze vyuzit pro hodnoceni homogenity a odchylek od pravidelné struktury textilii. Ob-
razy stejné neporusené struktury tkaniny by mély mit priblizné podobné tvary odhadu
smérové ruzice, tj. témeér stejné hodnoty vektoru X;. Naopak, obraz struktury tkaniny,
ktera obsahuje poruseni, bude mit tvar odhadu smérové rtizice a hodnoty X; jiné. Pro
ilustraci je uveden priklad na obr. 2.6. Obr. 2.6(a),(b) predstavuji okna o velikosti
50x50 pixelu z obrazu tkaniny. Obr. 2.6(a) je obraz neporusené struktury, obr. 2.6(b)
predstavuje obrazek tkaniny s defektem. Na obr. 2.6(c),(d) jsou korespondujici odhady
smérové ruzice ziskané po tthlovém kroku 10°. Z obrazk je vidét rozdilnost tvart od-
hadti, tj. hodnot vektoru X;. Tento fakt 1ze vyuzit pro detekci vad, ktery miize byt
pak realizovany napt. postupem regulace procesu pomoci Hotellingovych regulac¢nich
diagramii.

U vsech studovanych pristupt je k automatické detekci defektnich oblasti vyuzita
technika souc¢asného monitorovani vice texturnich charakteristik, individualni sledo-
vani téchto charakteristik mtze poskytovat nedostatecné vysledky. Proces monitorujici
kvalitu, kterd je charakterizovana vektorem nékolika proménnych, je znamy jako vi-
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Obrazek 2.7: (a) Defekt v redlné struktute, (b) odhady smérového rozlozeni s krokem 10°,
kde cervend barva zobrazuje odhad 10-ti oken s vadou a modré zobrazuje odhad 50-ti oken
z mneporusené struktury, (c) vysledek realizace algoritmu, (d) graf i-té statistiky.

cerozmérna statisticka regulace procesu. Nastrojem vicerozmérné statistické regulace
procesu jsou Hotellingovy regulacni diagramy, které vyuzivaji statistiky D? a jsou zo-
becnénim Shewhartovych regulacnich diagrami. Pii predpokladu, Ze data pochézeji
s p-rozmérného norméalniho rozdéleni se znamym vektorem stiednich hodnot g a zna-
mou kovarian¢ni matici X, potom testova statistika D? pro i-té individudlni pozorovani
je ekvivalentni druhé mocniné Mahalanobisovy vzdélenosti [51]

D} = (X; — p)'E (X — ), (2.5)

kde X; je -té, 1 = 1,2, ...,m pozorovani pochézejici z p-rozmérného normélniho roz-
déleni N,(p,X). V fadé redlnych situaci se Casto potkavame s piipadem, ze vektor
stfednich hodnot p a kovarian¢ni matice 3 neni znama apriori. Uvazujeme, ze data
jsou ziskana z procesu, u kterého predpokladame stabilitu. Predpokladame, ze nahodny
vybér z téchto dat pochézi z p-rozmérného normalniho rozdéleni N,(p, X), kde pp a X
neni znama. Pro vybérovy primér a vybérovou kovariancéni matici tohoto rozdéleni
plati

X, (2.6)

1
m i3

5= X - X)X - X" @7)

Jj=1
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Obréazek 2.8: Vysledek algoritmu detekce na realnych vzorcich.

X a 8 jsou nestranné odhady p a X. Potom testova statistika pro vektor X; ma tvar
D} = (X; - X)T'Ss1(X; — X). (2.8)

Pro monitorovani individualnich pozorovani, ktera nasleduje po pocatecéni kalibraci
diagramil v trénovaci fazi, ma horni mez regula¢niho diagramu tvar

(m+1)(m—1)
m(m — p)

veL =" Fymp(1—a), (2.9)
kde F), ;n—p(1—a) je (1—a) kvantil F-rozdéleni s parametry p a (m—p). Jestlize hodnota
statistiky D? prekro&i horni regula¢ni mez UCL pro danou hladinu vyznamnosti a,
pak je proces nestabilni, coz v tomto pripadé zpravidla indikuje odchylku od bézné
struktury textury.

Monitorovani defekt bylo provedeno technikou posuvného okna o velikosti 50x50
pixelt, které se systematicky po kroku 25 pixeli posouvalo po celé ploSe obrazu (si-
mulace kontinudlniho pribéhu). Pro kazdé okno byla vypoctena i-té testova statistika
podle vztahu (2.8) a vynesena proti horni regula¢ni mezi UCL. Jestlize i-t4 hodnota
testové statistiky byla mimo mez, okno bylo povazovano za okno obsahujici defekt.
Vektor optimalnich charakteristik X je ziskdn v trénovaci fazi z ndhodné vybranych
oken v neporusené casti textilie.

Priklad na obr. 2.7(a) zobrazuje defekt v redlné struktute tkaniny, konkrétné tatkovy
pruh (nedoraz). Na obr. 2.7(d) je vynesena i-ta testova statistika dle vztahu (2.8).
Vsechna pozorovani (okna) nad horni regula¢ni mezi jsou povazovana za okna obsa-
hujici defekt. Vysledek algoritmu je vidét na obr. 2.7(c), kde okna zobrazena ¢ervenou
barvou jsou okna s defektem. Pro lepsi predstavu jsou na obr. 2.7(b) zobrazené po-
larni diagramy vypoctené po kroku 10°, kde cervena barva predstavuje 10 zastupct
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Obrazek 2.9: Vysledek algoritmu detekce s ruznou velikosti prohlizeciho okna, (b) 20x20, (c)
40x40, (d) 60x60, (e) 80x80, (f) 100x100 pixeli.

(oken), které obsahuji defekt a modra barva predstavuje 50 oken s neporusené ¢asti
tkaniny. Z obrazku je vidét podobnost tvaru polarnich diagrami vypoctenych z oken
neporusené c¢asti, kdezto tvar diagramt prislusejici okniim s defektem je jiny. Obrazky
2.8(a)-(f) zobrazuji vysledek pouziti algoritmu detekce na obrazech realnych struktur,
které obsahuji bézné defekty. Detekce defektti zalozena na spektralnich charakteristi-
kach ziskanych z Fourierova spektra vykazuje vétsi presnost detekce vad. Uzitim této
metody muzeme detekovat vady spojené se zménou dostavy tkaniny a kontrastni ne-
smérové vady. V porovnani se statistickym pristupem se zlepsila i¢innost detekce.
Dilét vysledky byly prezentovany v pracich [13, 15-17, 19-22, 27, 29]. Postup mo-
nitorovani defekti pomoci regulacnich diagramt zalozeny na texturnich statistikach
je velmi citlivy na pofizeni trénovaciho souboru dat (souboru dat z neporusené tex-
tury), tj. souboru dat, kdy je monitorovany proces ve statisticky zvladnutém stavu.
Ukazuje se, ze napriklad i velmi malé zmény v pribéhu ziskani digitalniho obrazu
(natoceni snimaného vzorku, zména svételnych podminek pfi snimani, relativné mala
zména povrchu) mohou mit velky vliv na parametry rozdéleni vektoru texturnich cha-
rakteristik ziskanych z vybéru oken tohoto vzorku. Jako dilezity parametr se jevi také
velikost prohlizeciho okna, ktery mé vliv na tc¢innost detekce (viz obr. 2.9). Nevyhodou
u pouziti Hotellingovych regulac¢nich diagramt se vsak ukazuje pomérné veliky pocet
sledovanych jakostnich znakit. U datovych systémi vysoké dimenze s kolinearitami ne-
musi byt pouziti téchto diagrami prakticky proveditelné. Bézné pouzivanou metodou
pro redukci dimenze dat je metoda hlavnich komponent. Vyhodou této metody je,
ze pouze nékolik latentnich proménnych vystihuje témér celou variabilitu ptvodnich
proménnych. PTi pouziti regula¢niho diagramu hlavnich komponent zalozeného na Ho-
tellingové statistice, kdy se do statistiky zahrne vliv jen nékolika hlavnich komponent
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vysvétlujicich vice jak 80% celkové variability dat, dojde pri regulaci procesu k omezeni
false alarmu [52].

Navrzené algoritmy detekce byly zaloZzeny na systematickém prohlizeni statického
obrazu tkaniny posuvnym oknem. V redlném provozu je tkanina odtahovana na va-
lec rovnomérnou rychlosti a finalni monitorovani kvality je provadéno na prohlizecich
stolech, kde je tkanina previjena na valec. V pripadé online kontroly jsou statické sni-
mace obrazu rozmisténé rovnomérné nad tkaninou po celé jeji sifce. V ramci kol
Centra pro jakost a spolehlivost vyroby (CQR) byl zkonstruovan prototyp zafizeni
[32] na testovani pouzitelnosti algoritmi pro detekei defektt plognych textilii k online
detekci, které dovoluje previjeni nekonec¢ného pasu plosné textilie a tim simulaci sku-
tecného provozu. Zartizeni se sklada z hlinikové konstrukce, previjecich valei, hnaciho
motoru, osvétleni textilie a fadkové digitalni kamery, ktera umoznuje sbér obrazovych
dat. Spolu se zarizenim byla vytvorena softwarova aplikace k testovani pouzitelnosti
algoritmu pro online detekei defektt plosnych textilii (viz [7], Pfiloha 7 a [8], Priloha
8). Z koncepcniho hlediska je mozné aplikaci chépat jako urcitou platformu na jejimz
zakladé je mozné implementovat a ovérit vyvijené metody pro detekci defekttt a moni-
torovani parametrii struktury textilnich dtvara za podminek, které se blizi podminkam
provoznim.

2.4 Odhad dostavy tkaniny

V oblasti textilni metrologie je stanoveni dostavy tkaniny ¢innosti, ktera se stale pro-
vadi prevazné manualné. Proto je v pripadé odhadu dostavy tkaniny snaha o jeho auto-
matizaci. Je zndmo nékolik pristupi k tloze automatického stanoveni odhadu dostavy
tkaniny, naptiklad metoda profilové tirovné sedi pro stanoveneni dostavy tkaniny (Jeon
a Jang [53]), metoda pomoci rozlozeni obrazu prostrednictvim Wienerova (Liging et
al. [54]) nebo medidnového ( Yildirim a Baser [55]) filtru, metoda vychazejici se statis-
tického pristupu zalozeném na maticich vzajemnych Sedoténovych zavislosti (Lin [61]).
V oblasti stanoveni dostavy a dalsich konstrukénich parametri tkaniny se nékolik au-
tord vénuje spektralnimu pristupu zalozeném na 2D Fourierové transformaci obrazu
textury textilie (Wood [56], Ravandi a Toriumi [57), Xu [58]). Jak uz bylo zminéno
Fourierova transformace je vhodna pro popis periodickych vzoriu vzhledem k vztahu
mezi pravidelnou strukturou v obraze v prostorové oblasti a vyznamnymi frekvencemi
ve frekven¢ni oblasti. Dostavu tkaniny je mozné ziskat nalezenim téchto vyznamnych
frekvenci.

Rekonstrukce obrazu vyuzivajici dvojrozmérnou Fourierovou transformaci byla apli-
kovana na ulohu automatického urceni dostavy tkaniny a automatické detekce defekti
zapri¢inénych zménou dostavy v praci Tundka et al. [3] (Ptiloha 3). Informace o pre-
vazujicich smérech v puvodnim obraze je koncentrovana v obraze spektra ve smé-
rech s vysokymi hodnotami frekvenc¢nich komponent. Odstranéni vyznamnych smér,
v tomto pripadé soustavy niti, je mozné nastavenim frekvenc¢nich hodnot ve spektru od-
povidajicich dané soustavé niti na nulu. Obnoveny obraz je pak ziskdn pouzitim inverzni
2D Fourierovy transformace. P¥iklad na obr. 2.10(a) zobrazuje Sedoténovy obraz tka-
niny v platnové vazbé, obr. 2.10(b) je odpovidajici vykonové spektrum. Obr. 2.10(c),(d)
predstavuji frekvenéni komponenty v orientaci 0° a 90° a sitkou pasu 7 pixeli. Zbylé
frekvencéni komponenty jsou nastavené na nulu. Obnovené obrazy osnovni resp. utkové
soustavy niti po provedeni inverzni 2DFT jsou na obr. 2.10(e),(f). Z obnovenych ob-
razl jednotlivych soustav niti je mozné ziskat profil trovni Sedi, ktery je kolmy na
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Obrazek 2.10: Obraz platnové vazby, (b) vykonové spektrum, (c),(d) vytez ze spektra (e),(f)
obnovené obrazy po inverzni 2DFT.

—
N

danou soustavu niti. Profil trovni Sedi si mizeme predstavit jako periodickou casovou
fadu, kde vysoké hodnoty trovni Sedi predstavuji nité a nizké hodnoty tdrovni Sedi
mezery mezi nitémi. Zakladnim néstrojem pro popis periodické casové rady je perio-
dogram I (w), ktery pro konecnou posloupnost ndhodnych veli¢in y, ..., y, definujeme
jako funkci proménné w ve tvaru [59]

2
, —rm<w<m. (2.10)

n .
Z ytefztw

t=1

1

Periodogram slouzi jako nastroj pro nalezeni vyznamnych periodickych slozek v dané
casové Tadé. Objektivni metodou, kterd umoznuje statisticky rozhodnout, jaké hod-
noty periodogramu miizeme opravdu povazovat za vyznamné velké ve srovnani s jeho
ostatnimi hodnotami je Fisheruv test periodicity [59, 60]. Nulovd hypotéza ve Fisherové
testu ma tvar

HO Y = €4, (211)

tj. predpoklada se, ze fada y; neobsahuje zadnou periodickou slozku a je pfimo rovna
bilému Sumu ¢; s rozdélenim N (0, 0?). Tato nulova hypotéza je testovana oproti alter-
nativni hypotéze, ktera je definovana ve tvaru

p
Hy:yo=p+ Y ajcos(wst) + Bsin(wit) + e, t=1,...,n
j=1

(2.12)

kdy se tada y; chape jako smés konecného poctu goniometrickych funkci s riznymi
frekvencemi wy, ..., w, s trovni p a s pfidanym bilym Sumem ¢,. Testova statistika ve
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Obrézek 2.11: Graf profilu tirovni Sedi a graf modelu ¢asové fady pro (a) osnovni a (b) tdtkovou
soustavu niti.

Fisherové testu je zalozena na hodnotach periodogramu dané fady vy, ..., y, vypocte-
nych pro frekvence

w; 0 j=1L..m m< 5

(2.13)

Jestlize plati nulova hypotéza, potom by zadna z téchto hodnot periodogramu neméla
byt vyznamné vétsi nez zbyvajici hodnoty. Fisheruv test vlastné odpovida na otazku,
jestli nékteré hodnoty periodogramu muzeme povazovat za vyznamné velké, coz souvisi
s vyskytem periodickych slozek v fadé. Hodnoty periodogramu jsou normovany za
ucelem odstranéni zavislosti rozdéleni na neznamé hodnoté o, a to y, = Y;/s,, kde s,
je odhad smérodatné odchylky w;, pokud je nulova hypotéza platnéa. Testova statistika
je pak definovana

W= max [(w]), (2.14)

j=1,...m

a nulova hypotéza se zamita, jestlize W > gp, kde gr je kritickda hodnota Fisherova
testu na hladiné vyznamnosti a. Jestlize je pomoci Fisherova testu zjiSténa vyznamna
periodickd slozku urcité frekvence w, (pro tuto frekvenci je I(wj)) = max;=1,__n. [(w]),
potom je mozné testovat vyznammnost dalsi velké hodnoty periodogramu tak, ze se
hodnota I (w;o) vynecha a s ostatnimi hodnotami pracujeme analogicky jako predtim
(hodnotu m nahradime hodnotou m — 1). Tato metoda umoziuje nalézt vyznamné
frekvence w; v modelu (2.12) na zdkladé statistickych postupt. Pfitom pu, o, a f;
jsou neznamé parametry, které lze odhadnout naptiklad metodou nejmensich ¢tverci.
Dostavu tkaniny je mozné vyhodnotit na zédkladé nalezeni periodicity T (délky periody,
po které se pravidelné opakuji nité jedné soustavy) v horizontalnim a vertikalnim sméru
obnoveného obrazu tkaniny. Jestlize zndme rozliseni R (pixel/palec), pri kterém byl
obraz pofizeny, je mozné urcit dostavu tkaniny D (pocet niti/cm) podle

 R/2.54

D :
T

(2.15)
kde T' = 27/w} a wj je prvni nejvyznamnéjsi frekvence urcend z Fisherova testu pe-

riodicity. Na obr. 2.11(a),(b) je modrou barvou vyneseny profil Grovni Sedi osnovnich
a ttkovych niti a ¢ervenou barvou model ¢asové fady vypocteny ze vztahu (2.12) pro
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Obrazek 2.12: (a) Obraz tkaniny s defektem, (b) regula¢ni diagram pro dostavu.

nejvyznamnéjsi frekvenci. Metoda byla testovana na dvanécti vzorcich materidlu s plat-
novou, keprovou a atlasovou vazbou. Cely proces je automaticky, kde vstupni proménou
je rozliseni obrazu a vystupni proménou je dostava tkaniny [9], [25].

Testovani a ovérovani efektivity vybranych metod automatického stanoveni dostavy
ruznych druht tkanin je uvedeno v praci Technikové a Tundka [23]. Pro zjisténi do-
stavy prostrednictvim téchto metod byla vybrana sada vzorki s tkaninami v platnové,
keprové, atlasové vazbé a vzorované tkaniny. Mezi studované metody pattila metoda
profilové trovné sedi [53], metoda rozlozeni obrazu pomoci Wienerova filtru [54] a me-
didnového filtru [55], metoda matice vzdjemného vyskytu trovni Sedi [61] a metoda
automatického urceni dostavy pomoci 2DFT [3]. Vysledky ukéazaly, Ze vypocetné a al-
goritmicky narocnéjsi postupy nemuseji vzdy vést k presnéjsimu vysledku stanoveni
dostavy. Zatim nebyla nalezena univerzalni metoda stanoveni dostavy, prace vsak na-
vrhuje optimélni metodu pro kazdy z typu vazeb.

Mnohé z béznych defekt, které se vyskytuji ve tkaninach je spojeno se zménou
dostavy tkaniny, prevazné ve sméru utku, které se rozkladaji po celé sitce tkaniny. Na-
vrzenou metodu pro odhad dostavy tkaniny dle Tundka [3] 1ze aplikovat i na detekci
takovychto vad. Myslenka detekce defekti v itkovém sméru je zaloZena na sledovani in-
formace o hodnoté dostavy utku ve sméru délky tkaniny. Za timto tcelem jsou pouzity
regulacni diagramy Shewhartova typu, které sleduji zménu dostavy tkaniny v itkovém
sméru oproti ocekdavané hodnoté a indikuji tak vadu struktury tkaniny. Algoritmus je
ucici, kde parametry regulacniho diagramu jsou ziskany z obrazu tkaniny bez poru-
seni. Algoritmus detekce je pak zalozen na systematickém vypoctu dostavy tkaniny
po Tadcich obrazové matice pro skupinu nahodné vybranych oken v kazdém tradku.
Ve stejném radku obrazu tkaniny je ndhodné vybrano n = 5 oken o velikosti 1002100
pixeli, které predstavuji opakovana méreni stejné veli¢iny prakticky ve stejném case.
Pak v rtiznych casech miizeme ziskat nékolik vybéria Vi, ..., V,,. Pro kazdy vybér V;
stejné velikosti n jsou urceny vybérové priméry z,; a smérodatné odchylky s;. Pri
piedpokladu normality rozdéleni N(d, o?/n) vybérovych priméri z, a nezavislosti vy-
bérovych primeéri je odhadem stredni hodnoty d generalni prumér definovan vztahem
[62]

&= =S u.., 2.1
mjzl% (2.16)
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a odhadem smérodatné odchylky je

. 1Ly
g :stj, (217)

Jj=1

kde Cy je konstanta zajistujici nevychylenost. Regula¢ni diagramy = vyuzivaji k po-
suzovani stavu sledovaného procesu (v tomto pripadé hodnoty dostavy) aritmetické
priuméry z4;. Ke své konstrukei vyZzaduji znalost parametri d, o normdlniho rozdé-
leni, nebo pouze znalost vhodnych odhadt d* a o*?. Regula¢ni diagram 7 m4 pak
centralni linii d* a odhad regulac¢nich mezi je dan

1.960°*
Vi

kde konstanta 1.96 predstavuje 97.5%-ni kvantil normovaného normalniho rozdéleni
Uo.975, tj. 95% - ni pravdépodobnost s jakou se veli¢ina vyskytuje v regulacnich me-
zich, tj. proces je v pozadovaném stavu (v tomto ptipadé hodnota dostavy). Vybérové
pruméry x,; odhadu dostavy jsou vynaseny do regulacniho diagramu. Pfi piekroceni
regulacnich mezi je oblast povazovana za oblast, kterd vykazuje poruchu - odchyleni
od periodicity struktury tkaniny.

Priklad regula¢niho diagramu pro monitorovani dostavy tkaniny ve sméru délky
tkaniny je uveden na obr. 2.12, kde utkovy pruh v pilce obrazu je zplisoben absenci
utkovych niti, coz muzeme pozorovat z regulacniho diagramu, kde hodnoty dostavy
utku jsou pod dolni regula¢ni mezi LCL. Tyto priznaky indikuji vadu nedostateéné
dostava — ttek (nedoraz), nebo pretrzené utkové nité. Tento pristup je zejména vhodny
pro vady v utkovém sméru, které jsou urc¢itym zptisobem spojeny se zménou dostavy,
napt. utkové pruhy nebo zména utkové dostavy. Nékteré dalsi priklady monitorovani
dostavy jsou uvedeny v préaci [3].

UCL, LCL = d* +

(2.18)

2.5 Monitorovani kvality zinylkové prize

V oblasti monitorovani struktury linedrnich textilnich utvart byla fesena tloha sle-
dovani kvality a detekce vad zinylkové prize. Aplikaci obrazové analyzy pro sledovani
parametri linearnich vldkennych ttvart se zabyvalo nékolik studii. Barella navrhl néko-
lik riznych technik a algoritmt pro méfeni chlupatosti ptize [63, 64]. Pouziti hranovych
operatort pro stanoveni chlupatosti ukazal Guha et al. v praci [65] a otdzkou praktic-
kého urceni chlupatosti s vyuzitim obrazové analyzy se taky zabyva prace Krupincové
a Tundka [14]. Stanoveni geometrickych parametru efektnich pfizi je popsano v pracich
Xu [66] a Lia [67].

Popis objektivni metody pro sledovani homogenity a rozpoznani defekti jako in-
dikdtoru kvality zinylkové prize je uvedena v praci Tundka et al. [5] (viz Ptiloha 5).
Skana zinylkova prize sestava ze 2 typu piizi. Nosnd (jadrovd) piize o nekone¢né délce
provazuje kolmo kladené smycky efektni prize. Smycky efektni prize jsou po upevnéni
roziezany a ziska se tak vlas. Mezi dilezité parametry zinylkové prize patii stejno-
meérnd vyska vlasu po celé délce prize, jelikoz ma silny vliv na jeji vzhled. Byly ziskany
monochromatické obrazy zinylkové ptize a ulozené jako obrazové matice o velikosti
1000x7500 pixeli. Predzpracovani obrazu zahrnovalo prahovani do binarniho obrazu
a morfologickou operaci otevieni pro odstranéni malych nezadoucich objektt v obraze
(prach, nedistoty atd.). Nésledné byla z obrazu odectena Sitka prize v pixelech, ktera
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byla pouzita jako jakostni znak pri tvorbé regulacnich diagramii. Datova sada obsa-
hovala 7500 pozorovani sitky prize ve sméru jeji osy. Z divodu vyhlazeni byly data
rozdélena na disjunktni po sobé nasledujici sadu dat o velikosti 5 pixelt a priméry
z této sady byly pouzity pro monitorovani kvality zinylkové ptize.

V trénovaci fazi, kdy méreni probéhlo na obraze zinylkové ptize bez poruseni bylo
zjisténo, ze vyska vlasu jako monitorovand charakteristika jakosti je vysoce autokore-
lovana. Proto byl v praci Tundka et al. [5] navrzen autoregresni model prvniho fadu
AR(1), ktery se ukézal jako vhodny pro modelovani autokorelaéni struktury. V. préci
jsou uvedeny grafy autokorelac¢ni a parcialni autokorelacni funkce, kde s rostouci vzdale-
nosti se autokorelace snizuje a pouze parcialni autokorelace prvniho radu je statisticky
vyznamna. Data, kterd maji charakter casovych fad muzou byt modelovdana AR(1)
modelem

Ty =c+ Qpri 1+ ay, (2.19)

kde ¢ je konstanta, —1 < ¢ < 1 je autokorelacni koeficient prvniho fadu, ¢ je index,
a je nezavisla, stejné rozdélend ndhodna veli¢ina N (0, ¢2). Odhad procesu pro hodnotu
(t + 1) zaloZeném na minimu chyb kvadratické odchylky procesu je dan

j:t+1|t = @I, (2-20)
a rezidua e; je mozné vypocitat podle
Ct = Ty — j:t+1|t' (221)

Protoze procesni parametry nejsou zname, jsou odhadnuty v trénovaci fazi z obrazu
zinylkové prize v pozadované kvalité. Odhady parametri AR(1) modelu jsou uvedeny
v tabulce prilozené prace [5]. Pouzitim AR(1) modelu byly vypocteny rezidua, odpo-
vidajici autokorelacni funkce a parcialni autokorelac¢ni funkce. Ukazalo se, ze navrzeny
model dobte vysvétluje autokorelac¢ni strukturu a rezidua jsou rozdélenéd nezavisle. Mo-
difikované EWMA regulacni diagramy pak byly implementovany jako nastroj k moni-
torovani a detekci defektti na piizi. Testik [68] navrhl modifikaci standardnich EWMA
regulacnich diagrami, které jsou aplikovany na rezidua modelu casové rady, kdyz pro-
cesni parametry casové fady nejsou znamé, ale odhadované. Testové kriterium, které
se vynasi do regulacniho diagramu EWMA pro monitorovani rezidui je definované

2y = (1 — )\)th1 + )\et, (222)

kde 0 < A <1 je vaha a pocatecni hodnota zy = 0, protoze predpoklddame, ze rezidua
maji nulovou stfedni hodnotu. Regula¢ni meze diagramu jsou nastaveny

+Lo., (2.23)

kde L je sitka regula¢nich mezi a o, je smérodatna odchylka. Parametr A = 0.2 a Sirka
regulacnich mezi L = 3 byla nastavena pri tvorbé modifikovanych EWMA regulacnich
diagramu. Podle Testika [68] rozpyl modifikovanych EWMA regulacnich diagramu je
dan

, 2(1_V){1+1.6y =/ (1+y¢)} (2.24)

72T %) (1—vo) n(1—vg)
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Obrézek 2.13: Modifikované EWMA regula¢ni diagramy pro rezidua, (a) pfize bez defektu,
(b) prazdné misto, (c) nopek.

kde v = 1— X a n je pocet pozorovani trénovaci mnoziny pouzitych ptri odhadu parame-
tra AR(1) modelu. Tato praktickd modifikace redukuje pravdépodobnost false alarmui.
Diagramy uspésné odhalily ruzné typy béznych defektt vyskytujicich se v piizi (viz
obr. 2.13(b),(c)). Obr. 2.13(a) zobrazuje EWMA regula¢ni diagram trénovaci sady, tj.
obrazu ptize bez poruseni.

Laboratorni zarizeni pro kontinualni pofizovani obrazu a okamzitého vyhodnoco-
vani kvality textilii lze prizptisobit pro monitorovani kvality délkovych textilii, v tomto
pripadé zinylkové prize.
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2.6 Simulace deformace textilni vyztuze

Ulohu simulace deformace tkaniny jako textilni vyztuZe v kompozitech mtizeme rozdélit
do nékolika ¢asti. Jednou z ¢asti je modelovani odolnosti svazku paralelnich vlaken proti
rostouci zatézi, jez je obdobou stanoveni spolehlivosti systému slozeného z paralelnich
komponent. Spolehlivosti budeme chapat odolnost systému proti zatézi zptusobujici po-
ruchy jednotlivych komponent systému, v tomto pripadé za poruchy systému uvazujeme
pretrhy jednotlivych vlaken. Na rozdil od houzevnatych materialt kompozitni materi-
aly slozené napriklad s uhlikovych vldken jsou kiehké a k popisu jejich chovani je mozné
vyuzit modely zaloZené na konceptu nejslabsiho ¢lanku. Poruchy komponent systému
zavisi od pevnosti materidlu, zateze a chovani struktury, kterd zahrnuje interakci mezi
komponentami, okrajové podminky atd. V praci [4] (viz Priloha 4) je uvazovan sys-
tém slozeny z kiehkych paralelnich vlaken a je modelovana odolnost tohoto systému
proti rostouci zatezi. Vysledky z navrzené¢ho modelu lze vyuzit pro simulaci deformace
tkaniny a simulaci defektti ve tkaniné.

Predpokladejme, ze svazek vlaken je zatézovan silou rostouci od 0 az do pretrhu
vsech vlaken, nebo do hodnoty Sz, kdy je experiment ukoncen. V praci je pouzity
standardni popis z analyzy preziti, avsak misto doby preziti nas zajima pevnost v tahu
pro jeden pramen. Je uvazovan Danielsiiv model prerozdéleni sily ptisobici na svazek
mezi jednotliva vlakna (Belyaev a Rydén, [69] Volf a Linka [70]). V tomto modelu se
predpoklada, ze sila ptisobici na svazek je rovnhomérné prerozdélena mezi nepretrzend
vldkna a pevnosti jednotlivych vlaken jsou nezavislé, stejné rozdélené nahodné velic¢iny.
V modelu je pozorovana celkova sila piisobici na svazek, pretrzeni vlakna vede k oka-
mzitému prerozdéleni sily pusobici na zbylé nepretrzené vlakna (z divodu prudkého
rustu sily pusobici na kazdé jednotlivé nepretrzené vlakno). Nasledné muze dojit k pre-
trzeni nékolika dalsich vldken (ne nutné vsech, jejich pevnosti jsou ndhodné veli¢iny).
V tomto ptripadé nezname presnou hodnotu sily, pii které dojde k pretrhu jednotlivych
vldken a ani poradi ve kterém se trhaji. V pripadé pretrhu vice vldken zname pouze
silu, ktera zptisobi pretrh prvniho vlakna a interval sily, ve kterém dojde k pretrhu zby-
Iych vldken. K registrovani pretrhii pri postupném zatézovani svazku vldken je vyuzity
indikatorovy proces v ramci modelu ¢itactho procesu.

Uvazujeme jedno vldkno a ndhodnou veli¢inu U, ktera predstavuje pevnost v tahu.
Predpokladdme, ze ndhodna veli¢ina U mé spojité rozdéleni na intervalu [0, co) s distri-
buéni funkei F'(u), hustotou f(u) a intenzitou (rizikovou funkei) h(u) = f(u)/(1—F(u))
definovanou na intervalu u € [0, 5] takovou, ze F(S) < 1. H(t) = [3 h(u)du oznacuje
kumulativni intenzitu. Pretrh vldkna béhem rostouciho tahového napéti je popsano
dvéma ndhodnymi procesy, ¢itacim procesem N'(u) a indikdtorovym procesem I'(u),
které jsou standardni v analyze preZiti. I'(u) = 1 jestliZe sila u piisobici na vldkno je po-
zorovatelnd, jinak I'(u) = 0. Specidlné, I'(u) = 0, jestlize je vlakno pretrzeno, jestlize
je pozorovani ukonceno a také pro hodnoty sily u béhem skokovitého ristu sily. Predpo-
klddejme, Ze trajektorie I'(u) jsou zleva spojité. Pokud jde o N'(u), N'(0) = 0a N'(u)
se zvétsuji o 1 pti hodnoté sily uy, kterd zptisobi pietrh vldkna a plati I'(up) = 1.

Predpokladejme, Ze svazek je slozen z m vldken a zZe preziti vldken (pevnost v tahu
vldken) je popsana nezavislymi stejné rozdélenymi ndhodnymi veli¢inami U;, j = 1, ...,m
s rozdélenim danym hustotou f(u), distribuéni funkei F'(u), rizikovou funkei h(u) a ku-
mulativni intenzitou H(u). Sila ptisobici na svazek je v kazdém okamziku rovnomérné
prerozdélena mezi nepretrzend vlakna a struktura pozorovanych dat je uvedena v na-
sledujicim prikladu.
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(b)
Obrézek 2.14: (a) Citaci proces N(u) a (b) indikdtorovy proces I(u).

Predstavme si, ze pretrhy vldken se objevuji pri tfech globalnich tahovych silach
pusobicich na svazek, 0 < s; < S < 83 < Sz @ ze pii sile s; a sy se pretrhne
k1 a ko vldken a zustavajicich ks vlaken se pretrhne prii sile s3. Plati k; + ko + ks =
m. Pred prvnim pozorovatelnym pfetrhem sila natahujici kazdé vldkno byla rovna
u; = $1/m, v momenté druhého pretrhu byla rovna us = so/(m — k;) a v okamziku
posledniho pretrhu byla tato tahova sila ptisobici na poslednich m — ki — ko vldken
ug = s3/(m — ky — k2) = s3/ks. Byly pozorovény tii pretrhy (pretrhy pozorované pri
znamé sile) zpusobené silou wuy, us a uz. Ostatni pretrhy byly zpusobeny neznamymi
silami z intervalt (uy, @ = sy(m—Fk1+1)), (ug, U = So(m—Fk1—ka+1)) a (us, a3 = s3),
pricemz se jednd o k1 — 1, ks — 1, k3 — 1 vldken. Maximalni sila je dostatecné velka (napr.
Smaz > S.m), aby nedochézelo k predéasnému ukonéeni experimenti.

Uvazujme, Ze je testovano n identickych, nezavislych svazkl vldken. Oznacme Uj;
nahodné veli¢iny (preziti), N;j(u),l;;(u) ozna¢me odpovidajici ¢itaci a indikdtorové
procesy pro j-té vlakno i-tého svazku (j = 1,2,...,m,i = 1,2,...,n). Déle ozna¢me

Ni(u) = > Nij(u), N(u) =) Ni(u), Li(u) =7 ILj(u), I(u)=7) ILi(u). (2.25)

j=1 ‘

i—1 j=1 i=1

Nejbéznéjsi odhad kumulativni intenzity poruch H, (rozdéleni pevnosti v tahu svazku)
je Nelson-Aalentv odhad

) = [

(2.26)

kde definujeme 0/0 = 0. Je patrné, ze schopnost odhadu dobte aproximovat spravné
H (t) zavisi na indikdtoru, tj. na pozorovatelnosti ¢itactho procesu pro vSechny hodnoty
sily u v sledovaném intervalu [0, S].

Priklad svazku vlaken slozenych z m = 20 vlédken, kde predpoklddame, Ze pevnost
v tahu (nahodnd veli¢ina U,;) kazdého vlakna méa Weibullovo rozdéleni s kumulativni
intenzitou

H(u) = (0)5 (2.27)

a simulace pretrhu n = 1000 takovychto svazku je uvedena v praci [4]. Vysledek simu-
lace pro jeden takovy svazek s parametry 5 = 2 a 6 = 3 je na obr. 2.14(a),(b). Globalni
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Obrazek 2.15: Simulace deformace do pretrhu vSech vldken.

sila t pri které se svazek pretrhne byla pozorovana také. Byl obdrzen vybér n = 1000
realizaci ¢; ndhodné veli¢iny R - pevnosti v tahu svazku. Empiricka distribuéni funkce
Fr(t) = L3 I[t; < t] konstruovand z tohoto vybéru a jiné empirické charakteristiky
nap¥. odhad kumulativn rizikové funkce —In(1 — Fir(t)) a Nelson-Aalentiv odhad sta-
noveny za pouziti usporadaného vyberu

(2.28)

jsou uvedeny na obrézcich v préci [4].

Na zakladé predchozi analyzy byla Tundkem et al. [4] navrzena simulace procesu
natahovani a pretrhu svazku vldken. V simulaci se uvazuje kazdé vlakno jako sada
uzlt a obloukl. V modelu se uvazuje treni mezi vldkny - odpor proti posunuti mezi
jednotlivymi vlakny, coz je dalsim zdrojem napéti. V tomto pripadé kazdé vldkno mize
prasknout vic nez jednou. Simulace je provadéna ve smyslu zmény pozice uzll jenom
v horizontalnim sméru. Celkové napéti je sumou napéti z jejich protazeni (napéti je
mocninnou funkei protazeni s exponentem vétsim nez jedna) a tfeni (zavisi linearné on
posunuti vlakna s ohledem na sousedni vlakno). Jestlize celkové napéti prekroci urcitou
hodnotu, vlakno praskne. Obr. 2.15 zobrazuje jeden takovyto experiment.

Uvedeny model je mozné vyuzit pro simulaci defektu typu zatrh nebo dira. Sif
tvofena sadou uzli (vazné body) a ohebnych oblouku (prize) predstavuje jednoduchy
model tkaniny v platnové vazbé. Defekt typu zatrh se projevuje jako lokdlni premisténi
utkovych niti, nité nejsou v seskupeni. Osnovni nité jsou pretrzené nebo velmi napnuté.
Podobné defekt typu dira je misto, na kterém je nékolik sousednich osnovnich a/nebo
utkovych niti pretrzenych. Je vysledkem chybéjicich ¢asti niti riznych velkosti a tvart.
Tyto typy defekti vznikaji, kdyz jedna nebo vice ttkovych niti je zatrzenych pro-
stfednictvim tlustého mista nebo uzlu a nité jsou zadrené nebo premisténé. V simulaci
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se predpoklada, ze smér napéti je kolmy k utkové soustavé niti a hranice mrize jsou
fixované. Napéti je prerozdélovano pres mriz, které zpusobuje natahovani a napéti
v obloucich. Jestlize napéti prekroci uréitou hodnotu, oblouk (prize) praskne. V mo-
delu se navic uvazuje zména thlu mezi oblouky, které spojuji uzly a pri prekroceni
kritické hodnoty prize praskne. Obr. 2.16 zobrazuje priklad tu¢inku verikalniho tlaku
pusobiciho shora do centralnich uzlti mrize a vysledek simulace, kdyz tlak postupné
roste. Rizné kombinace napéti zptisobené zménou délky obloukt a tthli mezi oblouky,
spolu s kritickymi hodnotami umoznuji simulovat pripady, které odpovidaji realnym
situacim.

2.7 Zavér

Obsahem habilitac¢ni prace je souhrn simula¢nich metod a metod obrazové analyzy pro
monitorovani struktury textilnich ttvarti. Obrazova analyza ma v oblasti monitoro-
vani kvality velmi dutlezité misto, protoze poskytuje informaci o geometrii, povrchu,
defektech, o tpravach povrchu vyrobku a jinych charakteristikach. Ziskané vysledky
dokumentuji, ze uvedené postupy lze pouzit pro monitorovani struktury linearnich
a plosnych textilnich dtvari s ohledem na jejich kvalitu. Integrace navrzenych po-
stupt a statistickych regulac¢nich diagramu do sofistikovanych systému povede k vy-
tvoreni automatickych vizudlnich expertnich systémii pro monitorovani kvality téchto
utvart. Z vysledkt prace 1ze ucinit nékolik zavéri.

Fourierova transformace se ukazala jako vhodna pro stanoveni strukturni anizot-
ropie nebo smérové orientace vlakennych a jinych objektovych systému. U netkanych
plosnych textilnich Gtvart je nezbytné nutné zajistit stabilitu kvalitativnich charakte-
ristik téchto struktur. K tomuto ucelu je nutné z téchto struktur odhadnout rozdéleni
smérového usporadani vlakenného materidlu v plose. V préaci uvedené postupy umoz-
nuji tyto kvalitativni charakteristiky monitorovat.
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V oblasti detekce defektii ve tkaninach bylo ovéreno, ze algoritmus detekce zalozeny
na statistickych charakteristikach druhého radu je pouzitelny pro detekci vad ve tkani-
nach. Timto postupem miizeme efektivné detekovat smérové, ale taky nesmeérové typy
vad. Algoritmus neni vhodny pro vady, které nezptisobuji prilis velké zmény struktury.
Automatickd detekce zalozena na spektralnich charakteristikach ziskanych z Fourie-
rova frekvencniho spektra vykazuje vétsi presnost detekce vad. Uzitim této metody
muzeme detekovat vady spojené se zménou dostavy tkaniny a kontrastni nesmérové
vady. V porovnani se statistickym pristupem se zlepsila detekce u typu vad, které
nezpusobuji prili§ velkou zménu struktury. Algoritmy a postupy pro detekci defekti
jsou efektivni jenom pro nékteré skupiny vzori nebo materiali a pro jiné skupiny se-
lhavaji. Pro pokryti co nejvétsiho spektra skupin vzorovanych textur a materialtt bude
tfeba vyvinout zcela nové typy hybridnich algoritmi, které budou kombinovat stavajici
pristupy s novymi modernimi, které jsou zalozené na grupéach symetrie pro vzorované
textury.

Metoda automatického zjistovani dostavy tkaniny mutze byt také vyuzita pro de-
tekei vad, které jsou urcitym zplisobem spojené se zménou dostavy tkaniny. Vhodné
je pouziti pro vady ve sméru utku, které se rozkladaji po celé sifce tkaniny. Myslenka
detekce defekt v utkovém sméru je zalozena na sledovani informace o hodnoté do-
stavy utku ve sméru délky tkaniny. Zména hodnoty dostavy oproti o¢ekavané hodnoté
indikuje poruseni struktury.

V oblasti monitorovani kvality zinylkové prize se ukazalo, ze navrzené modifikované
EWMA regula¢ni diagramy tspésné odhalily ruzné typy béznych defekti vyskytuji-
cich se v prizi. Ukazuje se, ze podobné je mozné pouzit tyto modely pro hodnoceni
chlupatosti, nerovnomérnosti a vzhledu prizi a délkovych textilnich utvaru.

Na zakladé ziskanych vysledkl lze konstatovat, Ze oblast analyzy obrazovych dat
a vicerozmérnych regulac¢nich diagramu je velmi perspektivni a moderni oblasti pro
aplikace statistického fizeni jakosti. Monitorovani obrazu je prirozenym rozsitenim mo-
nitorovani profilii s rostouci perspektivou v nasledujicich 5-8 letech i s rostoucim poctem
realnych aplikaci v pramyslu. Pritom koncept statistického fizeni jakosti v tomto pri-
stupu hraje zasadni roli. Nejde jenom o zlepseni vykonnosti existujicich metod ¢i jejich
aplikace na obrazova data. Predevsim je nutné vyvinout zcela nové typy regulac¢nich
diagrami, které by odrazely prostorovy charakter téchto dat a poskytly napriklad i in-
formaci a vétsi citlivost na situace, kdy nékteré vady jsou Castéjsi v nékterych ¢astech
plochy. Zejména se bude jednat o aplikace v textilnim a materidlovém pramyslu. Novy
typ sofistikovaného expertniho inspekcniho systému by mél byt pouzitelny na co mozné

.....

2.8 Prohlaseni

Rad bych na tomto misté podékoval vSsem spoluautoriim praci, které jsem prezentoval
jako soucést habilitacni prace. Cestné prohlasuji, Ze ve viech pripadech byl mij podil
na priprave, realizaci a interpretaci vysledki vétsi nebo stejny jako vsSech ostatnich
spoluautort.
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Analysis of Planar Anisotropy of Fibre
Systems by Using 2D Fourier Transform

Abstract

This paper describes a simple method of description of the anisotropy of fibre systems using
image analysis. The proposed method is based on Fourier transform which is in frequency
domains displayed by high values of frequency components corresponding to major
structural direction lines in the spatial domain image. The values of frequency components
are summarised in directional vectors depending on their certain angle and transformed to
a polar diagram and histogram. The polar diagram can be seen as an estimate of the rose

of directions.

Key words: anisotropy, fibre system, Fourier transform, rose of directions.

Introduction

The article is aims to graphically describe
the planar anisotropy of fibre or other
planar systems based on image analysis.
The method uses spectral techniques with
the aid of two-dimensional Fourier trans-
form. The objects are an important part
of an image and represent real-world ob-
jects. These objects are either randomly
placed or they prefer certain directional
placement. The objects should be in
contrast with the background (gradient of
image function on the edges of the object
and background). In textile experience,
the objects are considered to be fibres,
threads, cross — sections of fibres etc.,
systems containing objects can be webs,
fibre layers, woven fabrics, knitted fab-
rics, nonwoven textiles etc.

The characteristics of planar anisotropy
is the angular density of length of thread
or fibres f{cr), which defines the length of
thread or fibres orientated to an angular
segment o + o/2. Function f{o) or rather
the polar plot of density flo) is called
the rose of directions. An experimental
graphical method for the estimation of
f(or) is described in [3]. This method
uses the net of angles o...0,, situated
at the top of fibre system being moni-
tored for the construction of the rose of
intersections. The rose of directions as an
estimate of function f{o) is then obtained
from the rose of intersections through
the graphical construction of the Steiner
compact. The number limit of angles is
n<18.

The graphical method proposed is based
on the spectral method of image analysis.
The goal of this method is a fast graphical
representation of the directional arrange-
ment of objects (estimation of anisotropy

o) in the form of rose of directions and

histogram.

2D Fourier Transform (2DFT)

The spectral approach is based on two-
dimensional (2D) Fourier transform
(FT) and is suitable for describing the
textured images. The dominating direc-
tions (gradient of image function) in
the directional textures (spatial domain)
correspond to the large magnitude of
frequency components distributed along
the straight lines in the Fourier spec-
trum (frequency domain). In contrast,
the purely random texture causes, that
the frequency components in the power
spectrum are approximately isotropic and
possess a near circular shape. The Fourier
transform is rotation dependent, i.e. rotat-
ing the original image by an angle will
rotate its corresponding frequency plane
by the same angle. The transform of hori-
zontal lines in the spatial domain image
appears as vertical lines in the Fourier
domain image, i.e. the lines in the spatial
domain image and its transformation are
orthogonal to each other [5]. Let f{x,y) be
the grey level at pixel coordinates (x,y).
Let the size of spatial domain image be
M x N. For such an image the direct and
inverse Fourier transforms are given

M- N-1
F(M,V) — ](‘(x y)e—/ln(ux/M+qv/N)
x=0 y=0 (1)
M-1N-1
(x y) — _ZZF(M v) J2m(ux I M+vy ! N)
u=0 v=0 (2)
where u=0,1,2,..,N-land,v=0, 1,

2, ..., M - 1 are frequency variables [4]. If
fix,p) is real, its transform is, in general,
complex. R(u,v) and I(u,v) represent the
real and imaginary components of F(u,v),
the Fourier spectrum is defined as

Flw, v -\,‘..":::l-'\-'.'l 1+ i, 3)
The power spectrum P(u,v) and the rep-

resentation of P(u,v) scaled to 8 - bit grey
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Figure 1. (al) - (cl) Binary images of simulated structural lines, (a2) - (c2) power spectrum as an intensity image, (a3) - (c¢3) polar plot

of Sos (ad) - (c4) histogram of S,

levels is converted

Fim, v 4

Pre, ) = bogil+ | Fin, vl ¥ 3

Flm,v)

If fix,y) is real, its Fourier transform is
conjugated symmetrically around the
origin, that is

P vl = 5 (=t =%k (6)

which implies that the Fourier spectrum
is also symmetric around the origin

Fluvl=Flug] @

FIBRES & TEXTILES in Eastern Europe January / December 2007, Vol. 15, No. 5- 6 (64 - 65)

Figures 1 (al) - (cl) represent binary
images of simulated structural lines in
the 0° direction, 45° direction, in the in-
terval 30° - 60°, respectively. The length,
position and orientation of the lines were
randomly generated from uniform distri-
bution. Figures 1 (a2) - (c2) show power
spectrums scaled into 256 grey levels.
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Figure 2. Coordinates for directional vector
dependent on o. = 30°.

As can be seen from these figures, in-
formation about the direction of major
structural lines in the spatial domain is
concentrated in the Fourier domain im-
age as the direction of corresponding
large magnitude frequency components
(represented by white colour).

Assumptions

Let the image matrix be a square matrix
of size M x M. Let M be an odd number
- it is convenient for the specification
of the origin of the Fourier spectrum,
and image matrix be scaled to 8 — bit
grey levels (monochromatic image). All
frequency components from the Fou-
rier frequency spectrum are summarised
together in the directional vector of
certain angle o. Since the transform of
real image function f(x,y) is complex,
the absolute magnitudes of frequency
components |F(u,v)| are obtained accord-
ing to relation (3). The sum of frequency
components Sy, in the directional vector
is given by

X Ef"":"" ) (8)

where o forms an angle between the
directional vector and u axis, |F(u,v)| is
a frequency component of the directional
vector at the coordinates (u,v) and M is
the size of the image.

Computation of directional
vector coordinates

As can be seen from equation (7), the
Fourier frequency spectrum is symmetric
around the origin; it is sufficient to add up
the frequency components of directional
vectors depending on o in the interval
(0, m), i.e. to specify that coordinates for
the I. and II. quadrant. are symmetric
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around the ordinate (v axis, ©/2), that is
(u,v) = (-u,v), therefore the determination
of coordinates for I. quadrant suffices

i
[IEA T O PR T

- ©)

b L
<L & L]

b

Rinife

Here u is the abscissa axis or column
number, v is the ordinate or row number
and coordinates (u,v) are rounded to the
closest integer, because the coordinates
acquire an integer discrete value. The
DC (Direct Current) component is the
origin of frequency domain F(0,0), and
represents the origin of the system of co-
ordinates. Figure 2 displays an example
of coordinates for directional vector in I.
quadrant, o = 30°.

For an estimation of the rose of directions
the magnitude of S, is plotted onto the
polar diagram and consequently into the
histogram. The algorithm realising the
method proposed was created in MAT-
LAB programming language (Image
Processing Toolbox). Input parameters
are an image matrix and the output is the
visualisation of the direction arrangement
of objects in the form of a polar plot of Sy,

© 90 10000000

and histogram of S, which can be seen
as the estimate of the rose of direction.

Figure 3 (a) displays the binary image of
simulated structural lines from Figure 1
(c1) and corresponding estimate of the
rose of direction achieved by means of
the Steiner compact in six directions
oy =km/6 for k=1, ..., 5. The red line in
Figure 3 (c) displays the estimate of the
rose of direction, also in six directions,
and Figure 3 (d) in directions with one-
degree step using image analysis with
the aid of Fourier transform. Figures 1
(a3) - (c3) display the polar plot of S,
and represent the estimation of function
fla) (rose of directions), and Figure 1
(a4) - (c4) display the histogram of S,
for the binary images from the Figure 1

@al) - (cl).

Figures 4 (al) - (c1) show grey level
images of nanofibres with a randomly
distributed structure, captured by a
screnning electron microscope. Figure 4
(a2) - (c.2) represent a corresponding
power spectrum, Figure 4 (a3) - (c3)is a
polar plot of S, and Figure 4 (a4) - (c4)
is the estimate of the rose of directions by
means of the Steiner compact. As can be
seen from the polar plot, the image struc-

(@ 90 15000000
60

10000060

Figure 3. (a) Simulated fibre system, (b) estimation of the rose of directions by means of
Steiner compact, (c) estimation of the rose of directions by using the Fourier transform, plot
with 30 degree step, (d) estimation of the rose of directions by using the Fourier transform,

plotted with 1 degree step.
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Figure 4. (al) - (cl) Textured images, (a2) - (c2) power spectrum as an intensity image, (a3) - (c3) polar plot of S, (a4) - (c4) estimation
of the rose of directions by means of the Steiner compact.

ture of the nanofibres in Figure 4 (a), and
(b) is almost isotropic, but the structure
in Figure 4 (c) shows a preference for
the directional placement of fibres in a
90°- 120° direction.

Figure 5 (al) is a grey level image of
random Gaussian noise as an example
of the isotropic system. The magnitudes
of Sy, are uniformly distributed along the
whole spectrum of angles, which can be

FIBRES & TEXTILES in Eastern Europe January / December 2007, Vol. 15, No. 5- 6 (64 - 65)

seen from the polar plot of S, in Figure 5
(a2). Figure 5 (bl) displays a system of
viscose fibres with preferred directions
of orientation between the 0° - 30° and
Figure 5 (c.1) is an image of a real fabric
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Figure 5. (a.l) - (c.1) Textured images, (a.2) - (c.2) polar plot of S,

in plain weave with a tilted warp set of
yarns.

M Conclusion

This paper presents a simple graphical
method of planar anisotropy analysis
for fibre systems. The advantage of this
method is its fastness; results are directly
available after the acquisition of image
and application of algorithm. The visu-
alization of anisotropy is obtained in the
form of a polar diagram and histogram.

FIBR.

The polar diagram can be seen as an
estimate of the rose of directions or func-
tion flar). It is possible to monitor direc-
tional vectors with an angular step of 1°.
Method can be used for the analysis of
anisotropy of other systems, too.
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ABSTRACT

This paper deals with a procedure that recognizes common defects occurring in woven
fabric. Images of woven fabric are considered as having a directional texture due to their
periodical nature. We used a statistical approach based on the analysis of periodicity of
texture images in horizontal and vertical directions. These periodicities correspond to the
periodicity of second-order grey level statistical features obtained from a grey level
co-occurrence matrix. A set of five significant features is extracted from the matrix: energy,
correlation, homogeneity, cluster shade and cluster prominence. The presence of a defect
over texture causes regular structure changes and consequently, statistical changes.
Detection algorithm is based on the sliding window technique; the window is moved over
the whole image area. We counted the test statistic for every window and the multivariate
control charts are used as a tool for judging the existence of defects. The results show that
the statistical approach is suitable for detection of directional defects or changes in regular
structure in analysed simulated and real fabrics.

Keywords: Texture, Statistical approach, Grey level co-occurrence matrix, Defect detection

Introduction

Proposed features were used for identifying

In the textile industry, the current inspection
process for the quality of textiles still depends on
human visual inspection. It is time consuming and
repetitive activity requiring permanent attention in
order to detect defects. Accordingly, there are
many human mistakes in this process and human
visual inspections can only catch around 70% of
significant defects. Therefore, the textile industry
is concerned with replacing human visual
inspection with a suitable automated visual
inspection.

Lately, the task of automatic detection of fabric
defects has attracted the attention of many
research teams. Although there are many different
approaches in dealing with the automatization of
defect detection, it is mostly still performed
manually. A frequently used approach for texture
analysis is based on statistical properties obtained
from grey level co-occurrence matrices (GLCM).
The standard set of statistical features was
originally introduced for the first time by Haralick
etal. (1973).

* Corresponding author. Tel.: (+420) 48 535 3548; Fax: (+420) 48 535 3542

E-mail address: ales.linka@tul.cz

regions in photomicrographs of sandstones, an
aerial photograph or satellite images. The
performance of 15 GLCM features was tested in
CART classification of Brodatz textures by
Carstensen (1992).

Simultaneously, the most important features were
determined. Selected Brodatz textures contained
deterministic and stochastic textures; some of
them were textile textures. The automatic
inspection of weaving density is based on the
co-occurrence matrix algorithm presented by Lin
(2002).

There are a few articles dealing with the problem
of defect detection in woven fabric based on the
grey level co-occurrence matrix. Recognition of
fabric defects, including broken warps, broken
wefts, holes and oil stains by applying the
co-occurrence matrix and grey relational analysis
was described by Kuo (2003).

An overview of defect detection techniques for
detecting the presence of defects including
statistical techniques was presented in the paper
by Bodnarova (2000).
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The modelling of woven fabric structure based on
the two dimensional discrete convolution theorem
can be found in Chan (2000) and Escofet (2001).

Due to the periodical nature of woven fabrics, their
images are homogenously structured and can be
considered as texture images. These periodicities
correspond to the periodicity of second-order grey
level statistical features obtained from grey level
co-occurrence matrices. Presence of a defect over the
periodical structure of woven fabric causes changes
in periodicity and consequently, changes of

(@)

statistical features. We especially focus on the
recognition of common directional defects
associated with the change of weaving density or
defects that appear as thickly distributed along the
width or height of an image. In this paper, we will
introduce detection algorithm for automated visual
inspection based on a statistical approach. In the
experimental part, we will test algorithm for
recognition of simulated defects and finally, we
will show a few examples of recognition on real
samples too.

(b)

Fig. 1. (a) Warp interlacing point, (b) weft interlacing point.

B -

(@) (b)

2. Simulation of a Plain Weave

The convolution of an elementary unit (pattern of
repetition) and grid or pattern of repetition in the
spatial domain for a plain weave simulation was
used. Let h(x,y), g(x,y) and b(x,y) be the input
image, output image and convolution mask,
respectively, and convolution denoted by ® . At
each point (x,y), the response of the mask at that
point is the sum of products of the filter
coefficients and the corresponding neighbourhood
pixels in the area spanned by the mask (see
Gonzales, 2002; Escofet, 2001).

14

(©)
Fig. 2. (a) Convolution mask, elementary unit, (b) pattern of repetition, (c) result of convolution.

9(x ) =b(x, Y) @ h(x,y) = > 3 b(m,mh(x—m,y-n). (1)

m=0 n=0

Figures 1 (a) and (b) display an image of warp and
weft interlacing points respectively. The yarns are
represented by white, the space among them by
black. Warp and weft interlacing points can be
generated on the basis of input parameters, where
Pwa, Pwe represent warp and weft spacing, and d,
dye define warp and weft diameter in pixels.

The woven fabric was composed by two sets of
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mutually perpendicular and interlaced yarns. The
weave pattern or basic unit of the weave was
periodically repeated throughout the whole fabric
area with the exception of the edges. The
simulated output image of a periodic structure in
aplain weave g(x,y) can be simulated as
a convolution of an elementary unit b(x,y) and
an input image of pattern of repetition h(x,y).

The elementary unit (pattern of repetition in this
case) was created by the formation of warp and

weft interlacing points, depending on the type of
weave. For the simulation of common woven
fabric defects in this paper, we used plain weave
only. The result of the convolution theorem can be
seen in Figure 2 (c), which represents a grey level
image of plain weave in a spatial domain. The
size of the image is 200 x 200 pixels; the number
of grey levels is 256. Warp and weft yarn diameter
is set to 12 pixels, warp yarn spacing to 16 pixels,
weft yarn spacing to 20 pixels and parameter sp to
1 pixel.

(b)

(d)

O

®

Fig. 3. (a) - (f) Simulated defects in a plain weave.

3. Simulation of Woven Fabric Defects

Many different types of defects can be introduced
during fabric manufacturing. Our focus is on a few
examples of some of the common woven fabric
defects. According to ITS Publishing (1996),
woven fabric defects can be split into three basic
categories: the weft direction defects, warp
direction defects and defects with no directional
dependence. Some of the weft direction defects
are: irregular weft density (insufficient, excessive),
double pick, weft yarn defect, broken or short pick.
Defects in the warp direction are: broken end,
double end and warp yarn defect. Defects with no

15

directional dependence involve the following:
stains, holes, foreign bodies. Defected images
were modelled by using algebraic operations on
simulated images of plain weave structure and in
some cases, removing some of the rows or
columns.

Position, size and shape of defects were randomly
generated from uniform distribution. The
algorithm and graphical user interface in the
MATLAB software was created for realization. A
few examples of simulated common fabric defects
in a plain weave can be seen in Figures 3 (a) - (f).
Figures 3 (a) - (c) represent weft direction defects:
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broken picks, weft yarn defect, irregular weft
density (insufficient). Figure 3 (d) displays the
warp direction defect: broken end. No directional
defects: holes and stains, can be seen in Figures 3
(e) and ().

4. Second Order Grey Level Statistics

Texture statistics are frequently classified into
first-order, second-order and high-order statistics.
First-order statistics refer to the marginal grey
level distribution and can be derived from the grey
level histogram, e.g. mean, variance, energy etc.
The first-order statistics are highly dependent on
the lighting conditions and in common practice,

there should be elimination of the influence of
first-order statistics by making the grey level
histogram match a specific distribution. For
example, a match to a uniform distribution is
called histogram equalization.

This approach destroys any spatial information of
texture pattern and only retains their brightness
information. Second-order grey level statistics
refer to the joint grey level distribution of pairs of
pixels and it is based on grey level co-occurrence
matrices (GLCM). The GLCM are full

representation of the second-order grey level
statistics and retain both spatial arrangement and
relative brightness information.

(b1)

(c1)

(a2)

(b2)

(c2)
Fig. 4. al) - (c1) Texture images, (a2) - (c2) GLCM-256 grey levels, (a3) - (c3) GLCM-16 grey levels, d =1, §=0°.

(a3)

(b3)

(c3)
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5. Grey Level Co-Occurrence Matrices

The size of textured digital image f(x,y) is mxn and
its grey level resolution is G. GLCM is a square
matrix with a size equal to the number of grey
levels G contained in the texture image and is
defined with respect to two parameters: d, the
distance between two pixels and 6, the position
angle between two pixels (X1, Y1) a (X2, ¥2).

As can be seen in Figure 5, there are four
directions for the directional position angle: the
horizontal direction 8 = 0°, the right diagonal
direction @ = 45°, the vertical direction ¢ = 90°
and the left diagonal direction 8 = 135°. The four
kinds of relative positions R between the two
pixels can be defined in Haralick (1973) and Lin
(2002).

ISEE-] %W [0-1]

!

[El—s [o°110)

45°[1-1)

Fig. 5. Relative position angle between two pixels

ford=1.
d=0° RH(d) X2—X1=d yg—y1=0,
0=45° Rgp(d): Xo—x =d Y2—-Yy1=-4d,
6=90° Ry(d): xx—-x=0 y2—Yy1=-d,
0=135° Rip (d) Xo—X1=-d y2_yl:'d1
The relationship between a pixel pair and

co-occurrence probability of grey levels i and j
with respect to parameters d and & can be given by

P(i,j.d, 0°) = flay)=i fey2)=) }

P(ijd 45°) = #{Rep(d)f(xuy1)=i, (X, y2)=j }.

P@ijd 90°) = #Ry(d), f(xuy)=i, f(x.y2)=j },

P(ijd, 135°) = #{Rip(d), f(xwyn)=i, f(x2.y2)=] }-
Symbol # {} denotes the probability sum of

occurrence on all events in parentheses. P is a
function of the four parameters i, j, d,d, and the
matrix formed with them is referred as the grey
level co-occurrence matrix, c, cj is the element of
matrix. Let N be the total number of pairs, then
Cij=cij/N denotes the elements of the normalized
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GLCM, C. Normalized GLCM represents the joint
probability occurrence of pixel pairs with a
defined spatial relationship having grey level
values i and j in the image.

There are two ways that it is possible to define
co-occurrence matrices; namely, directional and
rotationally invariant. For the construction of a
rotationally invariant co-occurrence matrix, we
can pool co-occurrence matrices with a fixed
distance d and different angles surrounding the
pixel of interest. Directional co-occurrence matrix
captures directional information. We considered
only pairs of pixels that are at a certain distance
apart.

Examples in Figures 4 (al) - (c1) display texture
images of size 500 x 500 pixels with number of
grey levels G = 256. Figures 4 (a2) - (c2) show
directional grey level co-occurrence matrices
computed with parameters d = 1, & = 0°. Matrices
are visualised in the form of grey level images,
where the frequency of occurrence is represented
by grey level (zero occurrence - black, maximal
occurrence - white).

If we do not wish to have such a large and sparse
matrix, we may reduce the number of grey levels.
Figures 4 (a3) - (c3) represent grey level
co-occurrence matrices for the original images
scaled to grey levels G = 16 computed with the
same parameters. As can be seen from the figures,
GLCM for original image of random Gaussian
noise is isotropic, whereas GLCM for periodical
structures show anisotropic occurrence. Many
features can be computed from the normalized
GLCM. Standard set of features contains 15
features (see Carstensen, 1992).

We used CART (Classification and Regression
Trees) techniques for reduction of all features and
determination of the most important features. On
the basis of classification results, we have chosen
a set of five significant features. The sum of the
squares of normalised GLCM elements returns
Energy (measure of uniformity of image):

)

Correlation is a measure of grey level linear
dependencies in the image:
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G-1G-1(j — i C.
o §§ (=di=m)C,

y

Homogeneity or

3)

inverse difference  moment

measures the closeness of the distribution of
elements in the GLCM to the GLCM diagonal

G-1 Dk
IDM = 21+ R

k=0

(4)

Cluster shade and cluster prominence are given

by:
2G-2

A=Y (k-SA)°’S,,
k=0

2G-2

B= Y (k—-SA)*S,.
k=0

Q)

(6)

6. Defect Recognition in Simulated

Structures

The detection algorithm was tested first for
simulated structures of woven fabric in a plain
weave with randomly generated defects. On the
base of relations (2) - (6), we evaluated a set of p
= 10 features for m = 1000 randomly placed
windows of size 50 x 50 pixels in images of
simulated structures without defects. Five features
were extracted from GLCM with parameters d = 1
and @ = 0° (weft direction dependence) and five
features from GLCM with parametersd = 1 and 6
=90° (warp direction dependence).

We obtained m samples of p — dimensional normal
distribution. Then we evaluated Hotelling’s
multivariate control charts, which are a direct
multivariate equivalent of the Shewhart X
charts (based on Mahalanobis distance), for the
process mean with an upper control limit as shown
in Zamba (2006).

4 bd = .

Ed Ld {

3.8

I

1 =

FE=FRA o 6 R

EE_'II 200 g o o o

X,

400

- i

£ 4 b4

(@)

(b)

= e
dofh T ke
M s s e SRR o]

i {

(©
Fig. 6. (a) Warp yarn defect, (b), result of applied algorithm, (c) plot of the test statistic against control limit.
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Fig. 7. () Foreign body defect, (b), result of applied algorithm, (c) plot of the test statistic against control limit.
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m+1)\m-1)

_p(
ek= m(m—p) ()

l-a,p,m-1

where Fi,pma IS the (1 - «) percentile of the
F-distribution with p and (m-p) degrees of
freedom, m is number of multivariate observation
and p is number of variables. Then we applied
algorithm to detection of defects in simulated
structure. We counted the test statistic for i-th
individual observation of features extracted from
the sliding window moved over the whole image
in this form:

D? = (X; = X)'S (X, = X) (8)

where X is the mean and S is the
variance-covariance matrix. X; represents 10
values of features in window i. If D} is greater
then the upper control limit computed from the
“learning sample”, for a given level of

significance, a window is considered as the
window containing the defect. Size of images is
set to 500 x 500 pixels; Gaussian noise of mean 0
and variance 0.0025 is added to the images, a =
0.001 is used. A sliding window of size 50 x 50
pixels is moved systematically over the whole
image area with the step of size 25 pixels.

Windows with detected defects or imperfections
remaining in the image are displayed in a white
colour. In Figure 6 (a), a simulated warp yarn
defect (thick yarn) can be seen. Figure 6 (c) shows
the plotting of individual testing statistics against
the upper control limit. Figure 6 (b) represents the
results of detection algorithm, where white
windows are observed outside the control and
considered as containing defects. Figures 8 (a) - (f)
display the results of algorithm applied to
simulated images of common woven fabric defects
similar to Figure 3. As we can see from the figures,
the process is suitable for detection and
localization of directional defects in simulated
samples.
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Fig. 8. Result of the algorithm applied to simulated samples, white windows indicate defect.
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7. Directional Defect Detection

The same algorithm was tested for detection in
real samples, in a plain and twill weave. Images
were captured by a flat scanner with a resolution
of 400 dpi in 256 grey levels and stored in an
image matrix with a size of 500 x 500 pixels.
Equalization was used for contrast enhancement.
The UCL was counted from the image of the
structure without defects. A sliding window was
set again to a size of 50 x 50 pixels, a = 0.001 was
used. In a similar way, in Figure 7 (a), it can be
seen that the foreign body is the no directional
defect. Figure 7 (b) shows the results of applied
detection algorithm, where windows framed by
white colour are windows with a test statistic
greater then the upper control limit in Figure 7 (c).

Figures 9 (a) - (f) show a few examples of
recognizing before and after defects in real
structures. Examples in Figures 9 (a) - (¢)
represent real directional defects: irregular weft
density (insufficient), irregular weft density
(excessive) and double pick. Figure 9 (d) displays
the results of algorithm for warp directional defect:
warp yarn defect. Figures 9 (e) and (f) show
examples of no directional defects: a stain and
hole.
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A few samples were in a plain weave, for example
in Figures 9 (al), (el) and (f1) and the other in the
twill weave in Figures 9 (bl) - (d1). The method
has been also tested in other real cases.

8. Conclusion

Recognition algorithm based on second-order
statistical features extracted from a grey level
co-occurrence matrix is suitable for detection of
common woven fabric defects. By using this
method, we can detect defects associated with the
change of weaving density or defects that appear
thickly, distributed along the width or height of an
image, as well as for no directional defects.

Algorithm is tested first for simulated structures of
woven fabric with randomly generated defects,
where the convolution theorem is used for the
mathematical modelling of woven fabric
structures. For practical reasons of uncomplicated
modelling of woven structure and common woven
fabric defects, only the plain weave is used for
simulated samples.
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Fig. 9. (al) - (f1), Defected images before the (a2) - (f2) result of the algorithm applied to real samples,

white windows indicate defect, imperfection.

Another reason is the determination of second
order features with high discriminatory power
which are nominated as the most important
features. We extracted five of the most significant

features from GLCM  with  parameters
corresponding to weft direction and five features
obtained from GLCM  with parameters

corresponding to the warp direction Then we used
the sliding window technique for detection and
localization of defects or changes of regular
structure.

The idea is based on the finding of the optimal
second order features corresponding to a certain
structure. We used Hotelling’s multivariate control
charts for upper control limit determination from
the structure without defect as a learning sample.

Consecutively, we executed automated inspection
in samples containing defects. We computed and
compared the test statistics for every window with
upper control limit. Exceeding of control limit
indicates changes in regularity of structure. The
same process was used for real samples. The
results show that the process is suitable for simple
simulated samples as well as for real samples with
different structures.
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The upper control limit is as a rule, acquired by
training on a non-defective part of fabric. From
this point of view, the parameters of structure (e.g.
yarn diameter, yarn spacing, the complexity of
weave) do not matter. The algorithm is applicable
and appropriate for undyed or uni-colour fabrics.
On the other hand, the selection of window size
can be important.

Multivariate control charts are useful tools to
integrate the multiple texture features and judge
the existence of defects. The advantages of
automated visual inspection are objectivity and
independence on the human inspectors. This
method is relatively fast and it can be used as an
online visual inspection of quality. In this paper,
we used the inspection window moving
systematically over the whole image area and the
image is static. In the case of online inspection,
the fabric moves while the image camera can be
static.

It will be reasonable to devise an optimised
method, which defines appropriate parameters for
a given structure (e.g. the size of a sliding
window). It means that the algorithm will detect
the parameters on the training data set and then
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these parameters will be used for defect detection
in real fabric structures. Other approaches (i.e.
spectral, structural) can be tested as well.
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Abstract: Image restoration using the spectral approach is applied to the problem of automatic assessing of weaving density.
A restored image of one set of yarns is obtained with the aid of two dimensional discrete Fourier transform. From the line
profile of restored images Fisher’s test of periodicity find out the significant periodical components of specific frequency and
defines model of time series. On the basis of frequency of model, the weaving density can be computed automatically. This
method is then used for detection of defects associated with the change of weaving density, i.e. the weft direction defects. The
detection is based on monitoring of weaving density in direction of length of fabric. Change of weaving density value against
expected value indicates failure of regular structure. Control charts were used as a tool for judge the existence of failure or

defects of regular structure.

Keywords: Weaving density, Spectral approach, Fourier transform, Control chart, Defect detection

Introduction

In textile industry there is a standard practice to measure
weaving density (number of warp and weft yarns per unit
length) by manual operations. It is a time consuming manual
activity requiring permanent attention of human inspector.
Therefore, textile industry takes concern in replacing human
inspection by a suitable automated assessing and monitoring
of weaving density.

Several approaches to this problem are known. A few
articles deal with the automatic inspection of weaving
density with the aid of a direct image analysis. Automatic
inspection of weaving density based on the co-occurrence
matrix algorithm was presented in [1]. The co-occurrence
matrices in weft and warp direction for several displacements
were counted from grey level images of woven fabric.
Feature contrast was obtained from such matrices and weaving
density was calculated from figure where the feature contrast
against distance pixels is plotted. This method is suitable
only for fabric in a plain weave.

Some papers deal with the spectral approach based on
Fourier transform [2-4]. Fourier transform is useful to describe
periodic patterns in grey level images due to the relationship
between the regular structure in the spatial domain and its
Fourier spectrum in the frequency domain. Significant
frequencies in frequency domain correspond to periodicities
of structure in spatial domain. Weaving density can be
obtained by finding such frequencies in Fourier spectrum.

The grey line profile method is introduced in paper [5].
Method is simple and can be applied for various weaves.
However, the direction of warp and weft yarns must be in
parallel way with the axes of the image of fabric. This can be
achieved for instance with the aid of Hough transform, as
shown in [6].

*Corresponding author: maros.tunak@tul.cz
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In the present paper we use the spectral approach based on
the Fourier transform. We demonstrate its easy and reliable
use for different textile structures, too. Application of this
method enables us not only to monitor weaving density in
direction of length of fabric but also to detect defects
associated with the change of weaving density of weft yarns.
To this end, an automated procedure has been developed and
their results are presented. Moreover, the spectral method is
less sensitive to possible rotation of image. The paper is
organized as follows: First, the method of spectrum analysis
and detection of main frequency components is recalled.
Then, the spectral approach is used for assessing the weaving
density in a fabric. Finally, the same approach is utilized to
the detection of sites with defects - changed density.
Proposed procedures are illustrated on examples dealing
with real plain weave fabric.

2D Fourier Transform

The spectral approach is based on two-dimensional discrete
Fourier transform (2D DFT). The Fourier spectrum is ideally
suited for describing the directionality of periodic patterns in
grey level images of texture. The directional characters of
grey level images clearly correspond to high-energy frequency
components in the Fourier spectrum. Let flx, y) be a two-
dimensional function, where x and y are the spatial coordinates
and the amplitude of f at any pair coordinates is the grey
level of the image of size mxn. The 2D DFT of f{x, y) and its
inverse 2D IDFT are given by following equations [7]

m—1n-1

F(u, V) — Z Zf(x’y)e—jbz(ux/m+vy/n) (1)
x=0y=0
and
1 m-1n-1
j2 m(ux/m+vy/n
foey) = =5 3 Fuv)e 7" )

u=0v=0
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Figure 1. (a) Image of plain weave fabric, (b) power spectrum after
logarithmic transformation, stripe of orientation (c) ¢=0"°, and (d)
»=90° with width Aw=7 pixels and (e), (f) restored images after
2D IDFT.

where #=0,1,2,...,n—1 and, v=0,1,2,...,m—1 are
frequency variables. The power spectrum P(u, v) is defined
as the square of the magnitude. To display power spectrum
in 8-bit grey level depth, P(u, v) is converted to

P(u,v) = log(1+|F(u,v)[") 3)

Information about major structural direction lines in the
spatial domain image is concentrated in the Fourier domain
image as a direction of high-energy peaks. The set of yarns
(directional lines of texture) can be removed by detecting of
corresponding high-energy frequency components in Fourier
domain image and setting them to zero. Then, after the
inverse FT transform of such a reduced spectrum we obtain
an image where only one set of yarns remain. Example in

Fibers and Polymers 2009, Vol.10, No.6 831

Figure 1(a) represents the grey level image of woven fabric
in a plain weave with the size 200x200 pixels, Figure 1(b)
shows corresponding power spectrum after the log transfor-
mation. Figure 1(c) and (d) display the power spectra where
the high-energy frequency components in orientation ¢=0"
and @=90° with width Aw=7 pixels remain and the frequency
components out of this stripe was set to zero. As can be seen
from Figure 1(e) and (f) restored images after the 2D IDFT
contain only warp set or weft set of yarns, respectively.
Hence, restored images can be used for automatic assessing
of weaving density.

Fisher’s Test of Periodicity

This part deals with the problem of evaluation a main
spectrum frequency, which is consequently used for the
weaving density assessing. Woven fabrics are periodically
structured, due to the characteristics of the weaving process
used in their formation. Grey levels along a line perpendicular
to a set of yarns can be obtained from the restored images.
Pixel values along such a line form a periodical time series,
where the high values represent yarns and low values spaces
between the yams. The elementary characterization of periodical
time series is the periodogram /(). For a finite sequence of
random variables y,,...,y, it is defined as a function of
variable @ in the form [8]

2
, —nmLosrw @)

1 n
—it

Zm Zyre 1o
t=1

The periodogram is a statistical tool for finding significant
periodic components in time series. One statistical method
for testing of periodicity in a time series is provided by the
Fisher’s test of periodicity [8]. Fischer’s test defines significant
frequencies in model of time series and the weaving density
of fabric can be evaluated. The null hypothesis in Fisher’s
test is given as

(o) =

Hyy, =¢ (5)

i.e. it is assumed that the series y, does not contain any
periodical components and it is equal to white noise e, with
distribution N(0, oﬁ) . The alternative hypothesis is defined
as

»
H;y, = u+ Z(%cos(a)jt)+ﬁ}sin(a)jt)) +¢g,t=1,...,n

j=1 (6)

where time series is a combination of a finite number of
goniometrical functions of different frequencies @, ..., ®,

with level x and added white noise &. Fisher’s test is based
on periodogram values of given time series y,,...,V,
computed for frequencies

n—1
< e
m<— 7
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If the null hypothesis is valid, then any of these periodogram
values are not significantly larger than values of noise.
Actually, the Fisher’s test replies to a question whether there
are some significantly large periodogram values. This is
connected with the presence of periodical components in the
time series. The periodogram values are standardized in order
to eliminate distribution dependence on unknown value of
o,. Namely, we standardize y,to Y,/s,, where s, estimates the
standard deviation of y-s provided the null hypothesis is
valid (see [8]). Then the test statistic is given by

W= max ()

Jj=1,...,m

®)

and null hypothesis will be rejected if W> g, where g is the
critical value of Fisher’s test on significance level a. If the
Fisher’s test finds out a significant periodical component
with specific frequency a);o (for this frequency I(a);o) =
max I(a);) holds), it is possible to search for possible
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another large significantly periodogram value: The value
I( a)}‘o) is omitted and the method is repeated (the value m is
replaced by the value m—1). This method defines all
significant frequencies @; of model (6) by using the statistical
test. Unknown parameters 4, o, and /3 can than be estimated
by the least square method.

Monitoring of Weaving Density

The weaving density of fabric can consequently be evaluated
by finding the main periodicity in restored image of sets of
yarns. Namely, the weaving density D is obtained from the
equation

R/2.54
T

where R is the image resolution (pixel per inch), 7=27x/ a)j*
and a)J* is the first most significant frequency determined
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Figure 2. Restored images of (a) warp and (b) weft set of yarns after 2D IDFT, (c), (d) line profile of grey levels, model of time series for first

most significant frequency.
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from Fisher’s test of periodicity. Example in Figure 2(a) and
(b) shows restored images of warp and weft yarns after 2D
IDFT of a fabric in a plain weave from Figure 1(a). Blue
solid line in Figure 2(c) and (d) corresponds to grey level
values along the lines selected in the middle of restored
images (lines are shown in figures (a) and (b), too). Red
dashed line represents the fitted model evaluated for the first
most significant frequency a)j* from equation (6). Figures
show good approximation of the model to real profile. Using
equation (9), we then calculated the value of the weaving
density for warp yarn, with result 22.95 yarns per centimetre.
Density of warp yarns measured by ravelling is 23.0 yarns/
cm. Similarly, the density of weft yarns measured by proposed
spectral analysis method was 16.62 yarns/cm, while the
measurement by ravelling yielded 15.5 yarns/cm.

Method of automatic assessing of weaving density was
tested on twelve solid samples. Eight samples were in plain
weave, two samples in twill weave and two samples in satin
weave. Images were captured by flat scanner with resolution
400 dpi in 256 grey levels and stored as image matrices.
Equalization was used for contrast enhancement. Table 1
contains results of weaving density measurement by ravelling
method (average of 5 measurements) and spectral method in
plain (P1-P8), twill (T1, T2) and satin weave (S1, S2). The
results show good accuracy of examined spectral method.
Proposed method was also tested on images of plain weave
fabric with check pattern. The whole process is automatic,
input variable is the resolution of image R (pixel per inch)
and output value is the weaving density D (yarns per
centimetre). The method is relatively fast and non-destructive.

Defect Detection

A lot of common directional defects in woven fabrics are
associated with the change of weaving density in a specific

Table 1. Results of weaving density measurement

Density, yarns/  Density, yarns/

Sample code Weave centimetre centimetre
(warpx weft) (warpx weft)
ravelling method spectral method

P1 Plain 23.0x15.5 22.95x16.62
P2 Plain 23.0%20.5 22.95x18.99
P3 Plain 23.5%24.0 22.95%23.74
P4 Plain 22.3%9.0 22.95x8.70
P5 Plain 22.3%x13.4 22.95x13.45
P6 Plain 22.4x17.2 22.95x18.20
P7 Plain 22.8%22.2 22.95%22.16
P8 Plain 22.7%23.2 23.74x23.74
T1 Twill 23.7x21.9 22.95%22.16
T2 Twill 23.0x21.7 23.74x22.16
S1 Satin 22.9%22.0 22.95%22.16
S2 Satin 23.0%21.6 23.74x21.37
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region, for example irregular weft density (insufficient,
excessive), broken pick etc. The idea of weft direction
defects detection is based on monitoring of weaving density
in direction of length of fabric. Change of weaving density
value against expected value indicates failure of regular
structure. In order to detect such a change, we propose the
application of control charts (namely the X-bar charts)
approach. It will be used in the following manner:

In a row of fabric image » windows are randomly selected.
In each window the weaving density D is evaluated by the
automatic method described in the preceding parts. Those
values, from the point of view of the control chart construction,
represent n observations in one subgroup of repetitive
measurement obtained practically in the same time. Then,
when fabric is shifted, we obtain consecutive subgroups
Vi,...,V, of the same size n. Subgroup averages x; and
estimates of standard deviations 5, are computed for every
subgroup ¥, from corresponding values Dy, j=1,...,n,
i=1,...,m. We assume that the distribution of subgroup
averages is normal N(y, o*/n) and variables D;; are mutually
independent. The unknown process mean g is estimated by
% (see [9]), where

m

= 1l
¥x=—%% 10
X m;lx, (10)
the process standard deviation s is estimated by
R 1 m _
=—7YN"5 11
o= oY (1)

where the constant ¢, is tabulated for different values of ».
The X chart is then used for checking whether the process
variability is in the state of statistical control. In other words,
we check whether the values of weaving density along the
fabric length are stabilized around the central line X. The
upper control limit (UCL) and lower control limit (LCL) for
an X chart are given as

UCL,ICL =5 + X2 (12)

n
where constant K represents 100(1-c/2) percentile of the
standard normal distribution and ¢ is the level of significance.

It is seen that the construction of control limits (a training
phase) requires non-overlapping windows, both in each
subgroup and between subgroups. Then, when using the
procedure in praxis, we may relax the condition of independent
subgroups, i.e. we allow them to overlap. On the other hand,
if values in one subgroup are dependent, it is better to use the
chart for individual values [9], hence here for subgroup
averages X; .

Real Data Examples

The method has been tested on real specimen of fabric.
Figure 3(a) presents an image of woven fabric in a plain



834  Fibers and Polymers 2009, Vol.10, No.6

weave of size 1000x1000 pixels. Defect, weft stripe, occurs
approximately in the middle of image and is extended across
the full width of the fabric.

From the spectral approach the density of weft yarns was
evaluated for »=5 randomly selected windows of size
100x100 pixels in the same row of image matrix. It was
done for m=1000 subgroups in the image of woven fabric
without defects. The distribution of subgroup averages was
approximately normal. From equation (11) the estimation of

< (€) e
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Figure 3. (a) Image of woven fabric in a plain weave with defect
weft stripe, (b) defective region, (c) control chart for weaving
density of weft yarns (1 pixel shift in vertical direction), and (d)
control chart for weaving density of weft yarns (20 pixel shift in
vertical direction).
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standard deviations was counted, consequently upper and
lower control limit for level of significance a=0.05 were
obtained from (12). The constant ¢,=0.94 in this case. The
weaving density of weft yarns for fabric in plain weave in all
following figures is X =CL=20.12, lower control limit
LCL=18.03 and upper control limit UCL=22.21.

Then we applied monitoring process for image in Figure
3(a). Weft yarn density was counted for subgroups of n=5
windows randomly selected in every row - they were shifted
mutually, in vertical direction, by 1 pixel. Subgroup averages
are then plotted into the control chart. They are represented
by blue dots in Figure 3(¢). Green line represents the central
line and red lines are lower and upper control limits. Violation
of upper control limit, points out to a higher concentration of
weft yams (excessive weft yarn density) in region approximately
between 335-th and 465-th pixel. Defective region is
displayed in Figure 3(b). In praxis, larger shift, for example
by half of window-width is quite sufficient for defect detection
and reduces the amount of computations. Figure 3(d) shows
control charts of subgroup averages for 20 pixels shift in
vertical direction.

Figure 4(al)-(a3) illustrates other three types of weft
direction defects: (al) insufficient weft density, (a2) change
of weft density (insufficient) and (a3) change of weft density
(excessive). Original images are of size 1000x1000 pixels,
but displayed images are cutout of size 500x500 pixels for
better details visibility. Figure 4(b1)-(b3) represents again
control charts for weaving density of weft yarns. First
example in Figure 4(al) shows low values of weft density
below the lower control limit in region from 190-th to 280-th
pixel. This indicates the defect of insufficient weft density or
broken pick which can be caused by absence of one or
several weft threads and visible as a partially transparent
place in the fabric. Low values of weft density from 200-th
pixel can be seen from Figure 4(b2). Decreasing values
characterize again irregular weft density, insufficient weft
density in this case. Inverse case can be seen in Figure 4
(b3). Increasing values of weft density from 90-th pixel
indicate the defect of excessive weft density.

Conclusion

Image restoration method using the two-dimensional Fourier
transform was applied for the task of automatic assessing of
weaving density and detection of defects in fabric. The
whole process of density evaluation is automatic, where the
input variables are image matrix and resolution of image,
output value is the weaving density. We compared the weaving
density of weft and warp yarns measured by proposed
spectral method and measured by ravelling. The results
show that the method is suitable for real samples with
different structure. The algorithm was tested for solid
samples, but it could be used for adorned fabric too. In that
case, yarns in restored images have different grey level
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Figure 4. (al)-(c1) Images of woven fabric in a plain weave with weft direction defects, (b1)-(b3) control charts for weaving density of weft
yarns.
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Figure 5. Graphical user interface for monitoring of weaving density.

values depending on colour or pattern. Some transformation
can be used for elimination of this non-uniformity. We used
top-hat transformation followed by histogram equalisation
for contrast enhancement. This procedure was tested on
images of plain weave fabric with check pattern.

The advantage of proposed method is that it can be used
for woven fabric where sets of yarns are not mutually
perpendicular, i.e. with a tilted set of yarns.

Further, it was shown how the method of automatic
assessing of weaving density can be used for monitoring and
detection of defects associated with the change of weaving
density. This method is suitable for detection of weft
directional defects which are extended across the full width
of the fabric, for example insufficient weft density, excessive
weft density, broken pick etc. The idea of detection is based
on monitoring of weft yarns density in direction of length of
fabric. Change of weaving density against expected value
indicates changes in regularity of structure. Control charts
were used as a tool for detection of sites of potential defects.
The method is rather reliable and computation fast, so that it
is convenient for the on-line fabric inspection under real
conditions. In this paper the fabrics was inspected in
windows moving systematically over the whole image area,
while the image was static. In the case of on-line inspection
the fabric moves while the image camera could be static.

The procedure is at present time implemented for laboratory
on-line experiments. For this reason the graphical user
interface for monitoring weaving density was created in
MATLAB environment which can be seen in Figure 5.
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Two methods for modelling and random simulation of progressive deformation and breaks in a bundle of
parallel fibres are proposed. First, a stochastic load-sharing reliability model of a parallel system and of its
resistance against a stress is utilized. The method of its statistical analysis is presented, too. In order to
improve certain limitations of such model, a complementary method based on the Monte Carlo simula-
tion is introduced. The bundle of fibres is modelled as a grid consisting of a set of nodes and connecting
arcs. The deformation and breaks are caused by an external load stretching the grid. The first objective is
to find an optimal, stabilized, states of the grid corresponding to each load level. Optimal configuration is
found with the help of Markov Chain Monte Carlo (MCMC) procedures. In order to model the breaking
process, the load is increased sequentially. It is shown that the model is applicable also to other struc-
tures, namely to the plain weave fabric and its defects simulation. The results with bundle of fibres are
compared with real stress-strain curves. The parameters for simulation were selected in such a way that
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obtained stress-strain curve corresponds to a real experiment with carbon fibres.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In contrast to metal structures that generally exhibit ductile
behaviour, composite materials tend to be brittle. That is important
feature, because they can be described by theories based on the
weakest link concept. In general, the failure of component depends
on the material strength, on loading and the structural behaviour,
which also includes interaction between components, boundary
conditions and so on. The joint effect of probabilistic description
of loading, structural response and material strength is dealt with
by reliability analysis of composite material structures (see [4] for
review).

In the present contribution we first model strength of bundle
composed from m fibres as the reliability (survival) of a system
composed from a set of parallel components. We will consider a
model of redistribution of load among the fibres, namely the Dan-
iels load-sharing model (see [1] or [2]). In this model it is assumed
that the applied load is distributed equally among the surviving
(unbroken) fibres and further, the breaking strengths of individual
fibres are independent and identically distributed random vari-
ables. The model neglects the interactions between fibres, which
arise when the fibres are twisted to form a yarn or they are set
in matrix to form composite. Daniel’s model provide links between
the probabilistic theory of brittle materials, such as glass, carbon or
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Kevlar, and bundles of fibres, tow and strands, which are used as
the reinforcement phase in many composites. Thus, the theory al-
lows for prediction of the characteristics of reinforcing bundles in
composite.

However, as it has been said, the model neglects several impor-
tant features of real bundles, as the interaction between fibres or
possible piece-wise character of fibres, which is typical for fibres
used in composites, but also for textile yarns. The Monte Carlo ap-
proach described in part 3 is able to incorporate also these aspects.
The bundle is still composed from parallel fibres (which could be a
limitation of the model), however it allows to consider interrupted
fibres, their friction or other interaction, and also a local load-shar-
ing in large bundles. After a proper modification the model is appli-
cable also to other fibres structures. The part 4 shows its
adaptation to the case of a plain weave fabrics and its progressive
deformation. In both cases, the structure is modelled as a grid con-
sisting of a set of nodes and connecting flexible (to some extent)
arcs. In the case of bundle, one set of arcs represents the interaction
among fibres. The deformation and break of arcs are caused by an
external load stretching the grid. The objective is to find optimal,
stabilized, states of the grid, for each load level, and to simulate se-
quence of fibres breaks. Hence, the problem can be reformulated as
the problem of optimal configuration of a random field of points
with local dependencies, which is one of typical problems solved
with the aid of Monte Carlo Markov Chains (MCMC) procedures.
To do so, the prior distribution of nodes is given by local condi-
tional distributions, further; the potential function is defined as a
tension in grid arcs. Optimal configuration then can be found with



1418 M. Tundk et al./ Composites Science and Technology 69 (2009) 1417-1421

the help of Metropolis—Hastings algorithm, possibly accompanied
with simulated annealing. The method complements the one de-
scribed in [3]. An example dealing with the stretching a bundle
of fibres shows that the parameters of our simulation procedure
can be selected in such a way that obtained results are comparable
with real experimental stress-strain curves of sequential breaks of
fibres.

2. The model for counting process of breaks of fibres

Let us imagine that the fibre bundle is stretched by a load
increasing from O up to the level breaking the bundle (i.e. all its fi-
bres) - or up to a given maximal load S,,,,x when the experiment is
terminated. This testing experiment is relatively fast, so that the
time of duration of the tension does not play any role. Therefore,
we use more or less standard survival analysis approach, however,
instead the time, the tensile strength is the variable of interest.

The global load affecting the bundle is observed. However, as
the break of a fibre leads to an immediate redistribution of the
force to the other fibres (so that to the abrupt increase of the force
affecting each individual fibre), the consequence is the break of
several of remaining fibres (not necessarily of all, because their
load - resistance is random). Therefore, in such a case we actually
do not know the precise level of the load causing the break of indi-
vidual fibres. Moreover, we are not able to register the order in
which they broke. So that, in the case of multiple fibres break,
we know exact load causing the break of one fibre (we do not know
which one, but in the case of ‘identical’ and independent fibres it is
not important), and intervals of loads, which caused the breaks of
the other fibres. From these considerations it is seen that the part
of the data has a complicated interval-censored structure. Fortu-
nately, if we observe a sufficient number of breaks, we register also
a sufficiently large set of uncensored data (see [1]).

Let us first consider one individual fibre and the random vari-
able U - its breaking strength. We assume that it has a continuous
distribution on [0, 00) with a distribution function F(u), density f{u),
hazard function h(u ) f(u)/( — F(u)) defined on u € [0,S] such that
FS)<1.ByH(t fo u)du we denote cumulative hazard function.
The ‘fate’ of a ﬁbre durmg the increase of tensile strength u is de-
scribed by two random processes, by the counting process N'(u)
and identificator I'(u). I'(u) = 1 if the load u affecting the fibre is ob-
served, otherwise I'(u) = 0. Specifically, I'(u) = 0, if the fibre is al-
ready broken, if the experiment is terminated, and also for values
of u during an abrupt step-wise increase of the load. We assume
that trajectories of I'(u) are left-continuous. As regards N'(u),
N'(0) = 0and N'(u) jumps to 1 at the load level u;, causing the break
of the fibre, provided I'(uy) = 1.

2.1. The model for bundle of fibres

Let us consider a bundle composed from m fibres. Let us as-
sume, that the survival of fibres is described by independent iden-
tically distributed random variables Uj,j = 1,..m, with distribution
given by flu), F(u), h(u), H(u) respectively. Now, we assume that
at each moment the applied load is distributed equally among sur-
viving (unbroken) fibres. Observed data has following structure:
Let us imagine that the breaks of fibres occurred for three ‘global’
tensile strengths affecting the bundle, 0<s; <s; <53 <S5 that
on levels s;, s the numbers k;, k, of fibres broke and, finally,
remaining ks fibres broke on level s3, with k; + k, + k3 = m. There-
fore, just before the first break the load stretching each fibre was
Uy = s1/m, while at the moment of the second break it was u, = s,/
(m — kq)(naturally affecting only m — k; remaining fibres) and at
the moment of the last break this ‘individual’ load affecting the last
m — ky — k fibres was us = s3/(m — k; — k) = s3/ks. As regards the

‘observed’ breaks (i.e. the breaks caused by a known load), we actu-
ally observed only three, caused by u4, u, and us, respectively.

Other breaks were caused by unknown (unobserved) loads from
intervals (uy,u; = s1(m — ky + 1)), (uz, Uy = s2(m — ky +ky + 1)) and
(us, U3 = S3), respectively for k;—1, k,—1, k3—1 fibres. Moreover, if kq
(or ko, or k3) > 1, we do not know the order in which the fibres broke.
We can assume that the maximal load Sy, is sufficiently large (e.g.
Smax > S - m) in order not to terminate experiments too early.

Taking into account the assumption that the probability distri-
butions of U; are continuous, then there cannot be two breaks at
the same level of tensile strength. In other words, fibres break
one after another, not simultaneously (though we do not know
their order). Then the intervals of breaking strengths can be spec-
ified even more precisely than (uy,u,) above. However, as it has
been said, we do not intend to use the information about inter-
val-censored strength values. That is why we are not going to dis-
cuss this aspect here.

2.2. Estimation of cumulated hazard rate

The first objective is to propose an estimator of cumulative haz-
ard function H(u) of distribution of breaking strength of one bun-
dle. Let us consider that n ‘identical’ and independent bundles
are tested. Denote by U random variables (survivals), Ni(u), I;(u)
related individual counting and identificator processes for j-th fibre
of i-th bundle (j=1,2,...,m, i=1,2,...,n). Further, denote

=3 I = Niw),
i1

j=1 j=1

Based on those data, the most common estimator of cumulative
hazard function, namely the Nelson-Aalen one, can be constructed:

- “dN(v)
Hp(u) = / ,

"= T
where we set 0/0 = 0. It is seen that the ability of the estimator to
approximate well the ‘true’ H(t) depends on the identificator pro-
cess, i.e. on observability of counting processes for all values of load

u in the interval of interest [0,S]. More details on properties of this
estimator in considered case can be found in [5].

2.3. Distribution of breaking strength

Let us now consider the ‘reverse’ problem. Namely, let us as-
sume that we know the characteristics of survival distribution of
individual fibres and our aim is to derive these characteristics for
the whole bundle composed from m identical (and independent) fi-
bres. More precisely, the question is how to estimate or compute
the probability that the bundle will not survive the load s? Let this
probability be given by the distribution function Fg(s)=P(R<5s),
where R is the random variable describing the survival of the bun-
dle. If we denote by U1y < Uz) < ... < Uy the order statistics created
from Uy, Uy,...Uy, then evidently,

- s
PR <) = {ig U < ——}-

However, computation is not easy. For instance, for the simplest

case k =2 we obtain
s/2
<y <sp=2 [ { [ rmavjrwe
/ Fafodu.

PR <s) :P{U

fpor
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Another and a quite simple approach to evaluation of distribu-
tion of random variable R consists in the simulation experiments.
The following example illustrates such a simulation of survival of
the bundle:

Example 1. Let us consider the bundle composed from m =20
fibres and assume that the survival of each fibre (i.e. random var-
iable Uj) has the Weibull distribution, i.e. cumulative hazard func-
tion is

o= )

We simulated the breaks of n = 1000 such bundles. The results
observed for one of them with parameters =2 and 0 =3 are in
Figs. 1(a) and (b). Naturally, the global load t under which the bun-
dle broke was observed, too. We thus obtained a sample of
n=1000 realizations t; of random variable R - the breaking
strength of the bundle. The empirical distribution function

EMO:%EHM<¢

constructed from this sample is displayed in Fig. 2(b). Other empir-
ical characteristics can be easily derived, too. For instance, the esti-
mate of cumulative hazard function is given either as — In(1 — Fg(t))
or directly from ordered sample: Let (i) be order of t; in ty,t,...,t,,
then

N(u)

I(w)

Fig. 1. (a) Process N(u) of observed breaks (---) and process of all breaks (solid
line), (b) process I(u) of fibres in risk.
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Fig. 2. (a) Nelson-Aalen estimator of H(u) and its comparison with the cumulative
hazard function of Weibull distribution with parameters =2 and 0=3, (b)
empirical distribution function Fg(u), estimator of Hg(u), where u = t/m is load per
fibre.
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i=

It actually is again the Nelson-Aalen estimator.

3. Simulation of a bundle of fibres stretching

While the objective of the preceding part consists in analysing
hazard rates of fibres, of the whole bundle, and predicting its sur-
vival, the present method is aimed to the simulation of the process
of bundle stretching and breaks. The objective is also to select such
parameters of simulation algorithm to obtain results comparable
with real cases. Such a comparison is than made through stress-
strain curves. For simulation, let us imagine each (horizontal,
say) fibre as a set of ‘finite elements’, nodes and arcs. In the sim-
plest case — parallel set of fibres, no vertical connection exists be-
tween lines representing individual fibres. Each fibre breaks
maximally once, when stretched.

In more advanced model we assume a friction between fibres -
there is a resistance against shifts of one fibre against another,
which actually is also another source of stress, when the whole
bundle is stretched. In that case each fibre can break more than



1420
10 ‘ED T L L L L | LY
S LEEEEREEEE=mms:
5 5 CEEFF AR
EmLEREEEEEEREE R
] . s 0 ; " "
1] 10 20 0 10 20
10 10 7 X7 1
EEasrsrEmEamEamma:
5 5 B e
H¥ors l.‘lll\#llll_
0 0 —
0 10 20 0 10 20
s S = eeaeas,
LWL Y I’c T 11 I .Y {\ P 1
5 R T e s B e H
_,-H:'FJ/AIIIIII - "J w Il LT TTIT]1 11
0 10 20 0 10 20
CisssT——n | @
L !!.’ 2 - - -'.'! 'll]IIIAIl'i.{.'I
[ 5 A S -
3 - o
0 0
0 10 20 0 10 20

Fig. 3. Development of simulation from initial state to the state with all fibres
broken.

once. Moreover, a real yarn is made (twisted) from pieces of fibres,
of a random length and beginning, so that fibres are interrupted (it
actually gives an effect similar to that of broken fibres sticking to-
gether thanks to friction).

The random generation proceeds in such a way that the changes
of ‘nodes’ are proposed, in horizontal direction only. Total stress is
the sum of stresses from their extension (stress is a power function
of extension, with exponent larger than one) and from friction
(here depending linearly on the shift of a fibre with respect to
neighbouring ones). If total stress exceeds a certain (again random-
ised) level, the fibre breaks. Fig. 3 shows one such simulated exper-
iment, while Fig. 4 displays corresponding stress—strain curve. The
parameters for simulation were selected in such a way that ob-
tained stress-strain curve corresponds to a real experiment with
carbon fibres.

M. Tundk et al./ Composites Science and Technology 69 (2009) 1417-1421
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Fig. 4. Simulated stress-strain curve of 10 C wires.

4. Simulations of a defect snag in a plain weave

This section shows an application of the modified Monte Carlo
model introduced in previous part. Fig. 5 shows a grid consisting
of a set of nodes (representing interlacing points) and flexible arcs
(now representing real yarns), a simple model of fabric in a plain
weave. Defect snag appears as the picks displaced out of alignment
and sometimes also jammed, a lumpy fault occurs with locally dis-
placed lines of weft yarns, i.e. the picks are not in alignment. The
offending warp yarn is either broken or at least highly tensioned.
Similarly, a defect hole is caused by a several absent yarns varying
in form and size. These defects can arise when one or more picks
are snagged on a rough or knotted warp and are shifted or broken.
We assume that direction of stress is perpendicular to weft set of
yarns and borders of simulated grid are fixed.
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Fig. 5. Simulation example of consequence of vertical pressure, acting from above to central nodes of a grid, and results when the pressure increases gradually.
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Stress is redistributed through grid, causes extensions and
stresses in grid arcs. When it exceeds a certain (randomised) level,
the arc breaks. Additionally, we consider also changes of angles of
arcs connecting grid nodes and assume that when angle exceeds its
critical magnitude, corresponding arc ‘breaks’, too. Different com-
binations of stress caused by change of length of arcs and by
change of their angles, together with critical levels for breaks, en-
able us to generate cases corresponding to various real situations,
different types of strain, and materials with different characters.

5. Conclusion

In order to study the process of composite reinforcement defor-
mation we have analysed a standard stochastic load-sharing model
and then, in the same setting, we have proposed Monte Carlo
experiments simulating the influence of stress to a simplified mod-
el of composite reinforcement structure. We examined both the
deformation of the fabrics as well as the process of extension and
breaks of its fibres. Numerical results were obtained with the help
of Markov Chain Monte Carlo computation, where joint combined
distribution of grid node and grid arc was modelled as Gibbs distri-
bution (Gibbs random field) of a special form. In example of part 3

it was also shown that a proper adjustment of procedure parame-
ters, namely the nonlinear dependence of stress on deformation
and random breaking strength level, could yield the results corre-
sponding to real data cases.

Acknowledgements

This work was supported by the Czech Science Foundation un-
der Grant No. 106/03/H150 and by the Projects of MSMT CR No.
1MO06047 and No. LC06024.

References

[1] Belyaev YuK, Rydén P. Non-parametric estimators of the distribution of tensile
strengths for wires. Research report. University of Umea; 1997.

[2] Crowder M], Kimber AC, Smith RL, Sweeting TL. Statistical analysis of reliability
data. London: Chapman and Hall; 1991.

[3] Harthelius K, Carstensen JM. Bayesian grid matching. IEEE Trans Pattern Anal
Mach Intell 2003;25:162-73.

[4] Sutherland LS, Guedes Soares C. Review of probabilistic models of the strength
of composite materials. Reliab Eng Syst Saf 1997;56:183-96.

[5] Volf P, Linka A. On reliability of system composed of parallel units subject to
increasing load. Int ] Reliab Qual Saf Eng 2000;7(4):271-84.



Priloha 5

[5] TUNAK, M., Bajzik, V., and TESTIK, M. Monitoring Chenille Yarn Defects
using Image Processing with Control Charts. Teztile Research Journal, 81(13),
2011, 1344-1353. 18SN: 0040-5175. IF=1.102.

64



Textile
Research
Journal

Original article

Textile Research Journal

81(13) 1344-1353

© The Author(s) 2011

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0040517511402123
trj.sagepub.com

®SAGE

Monitoring chenille yarn defects using
image processing with control charts

Tunak Maros', Bajzik Vladimir' and Testik Murat Caner?

Abstract

In this paper, a control chart is introduced for monitoring various defect types occurring on chenille yarns. To implement
the control chart, a grey level image of chenille yarn is captured as an image matrix. Image preprocessing is applied and
this involves thresholding to a binary image and a morphological opening operation for removing small objects from the
image. The height of the pile yarn, measured from the processed images, is selected as the monitored quality charac-
teristic. Since the monitored quality characteristic was highly autocorrelated, a first-order autoregressive AR(1) model
was found to be appropriate for modelling the autocorrelation structure. Due to estimation of the AR(l) process
parameters, a modified exponentially weighted moving average (EWMA) control chart for residuals is implemented as a
tool for monitoring and detecting defects. It is shown that the modified EWMA control chart can be used successfully for

monitoring different types of chenille yarn defects.

Keywords

Chenille yarn, exponentially weighted moving average, control charts, defect detection

Introduction

Quality control of textile products is an important part
of production in the textile industry. Quality improve-
ment of final products increases manufacturers’ com-
petitiveness as well as reducing costs. Consequently,
automated methods for monitoring of quality charac-
teristics based on computer vision are still in develop-
ment. In the literature, several studies have dealt with
the applications of digital image processing for fibrous
materials. Various techniques and algorithms for the
measurement of yarn hairiness have been proposed.'
Measurement of yarn hairiness by an image analysis
algorithm based on various edge detectors has been
reported.® Assessment of yarn snarls with the aid of
digital image processing and signal processing has
been presented,® and image analysis and similarity
based clustering method have been used for automatic
determination of geometric parameters of slub yarn.’
The principal purpose of this paper is to describe an
objective method for monitoring of chenille yarns’
homogeneity and recognition of defects as an indicator
of chenille yarns’ quality. Statistical process control
provides objective statistical methods for monitoring
such quality characteristics. Furthermore, statistical
process control combined with digital image processing

technologies might eliminate the subjectivity of the
human inspection process.

Methods that utilize control charts (the most widely
used tool of statistical process control) for monitoring
fabric defects have been proposed®’ in the literature.
Based on image restoration, control charts were used in
the automatic inspection of weaving density of woven
fabric.® In this study, assessment of weaving density
was obtained by using a spectral approach based on
the 2D Fourier transform. Changes of weaving density
value, relative to the expected value, were monitored
with the aid of Shewhart control charts. This method
was shown to be suitable for real samples with different
structures.® On the other hand, multivariate control
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charts were also proposed when the quality of a process
was characterised by multiple quality characteristics.’
In this study, a vector of quality characteristics, based on
second-order grey level texture features (obtained from
grey level co-occurrence matrix), represented a multivar-
iate observation. Hotelling’s chi-squared chart, as a
direct multivariate extension of the Shewhart chart, inte-
grated multiple quality characteristics for monitoring
regularity of a structure.

In the current study, we propose a method that uses
image analysis followed by a control chart application
for monitoring various types of defects occurring on
chenille yarns. Image processing requirements and the
control chart found to be suitable for this problem are
explained. Homogeneity and height of pile yarns are
important quality characteristics of chenille yarns. A
control chart is used here as a tool for recognising
places along the chenille yarn where there is an irregu-
lar structure. An easy and reliable automated procedure
is demonstrated by using examples of real defect types.
It is shown that the proposed approach can be useful in
detection of various types of defects that may occur on
chenille yarns during production.

Chenille yarns

Yarns called fancy yarns are the group of yarns that
differ in their construction from single and folded yarns
by deliberately produced irregularities in their construc-
tion.® Chenille yarn is a pile fancy yarn’ that consists of
two types of yarns — core and pile. Chenille yarns are
manufactured by placing short lengths of yarns, called
pile yarns, between two core yarns and then twisting the
yarn together. The structure of a chenille yarn can be
seen in Figures 1 and 2a. Core yarns provide the
strength to the yarn, whereas pile yarns give soft and
pleasant hand and also influence the volume and
appearance of a chenille yarn. Chenille yarns can be

pile yarns

Core yarns

Figure . Structure of a chenille yarn.

found in a wide range of products from garments
(sweaters, outerwear fabrics) to decorative fabrics,
upholstery, bedspreads.'®!'" In addition to many desir-
able properties, a major undesirable property of che-
nille yarns that must be monitored is the high mass loss
of pile yarns when the product is rubbed.

Intensity of pile yarn shedding during abrasion is
affected by friction forces between pile and core
yarns. Chenille yarns with cotton pile yarns have a
higher abrasion resistance than the ones produced
from viscose and acrylic fibres."" The type of fibres,
yarn twist, and pile yarn length are the most important
characteristics influencing mass loss during abra-
sion.!® ' In addition to material characteristics, the
production parameters of machines also determine che-
nille yarn parameters, e.g. appearance, volume, and
abrasion resistance.' Besides the influence of yarn con-
struction on the abrasion resistance, dimensional stabil-
ity of yarns and knits was also investigated in the
literature. It was shown that the yarn construction
affects dimensional stability after laundering or dry-
cleaning'® and shrinkage of yarns in boiling water."”

In the textile terminology, a defect is defined as any
visible difference or change from expected standard or
norm that causes quality reduction of textile products.
Many different types of defects can be introduced
during chenille yarn manufacturing and the presence
of a defect can be attributed to many factors. Defects
occurring in chenille yarns can be as a result of pile or
core yarn imperfections, mistakes during manufactur-
ing, dyeing or final finishing processes. From this stand-
point, a thorough control of pile yarn homogeneity
must be maintained after the manufacturing and sub-
sequent finishing processes. Omission of this important
step of production can cause quality reduction of the
final article. Basic parameters describing structure of
chenille were introduced by Ceven and Ozdemir."?

The uniform height of pile yarn along the resultant
yarn is an important parameter of chenille yarns.
During chenille yarn manufacturing processes, some
types of defects can occur:

e Knot — appears as a thick place caused by change in
yarn thickness (Figure 2b)

e Empty place — appears as a result of pile yarns being
absent in a certain region (Figure 2c)

e Sporadic yarn — appear as imperfections in the
homogeneity with pile yarns missing in short sec-
tions (Figure 2d)

e Fly — appear as outstanding yarns in some places
(Figure 2e)

Low abrasion resistance of chenille yarns causes
problems in applying classical measurement instru-
ments for detecting yarn defects. These problems arise

Downloaded from trj.sagepub.com at Technicka Univerzita on August 1, 2011
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(b)

(c)

(d)

Figure 2. Chenille yarn defects, (a) non-defect, (b) knot, (c) empty place, (d) sporadic yarn, (e) fly.

Figure 3. Chenille yarn (a) before and (b) after measuring on Uster Tester, where the yarn was pulled from right to left.

due to contact with, either the measuring equipment or relative to long axis of the core yarn) of the rest of the
the guiding parts that move the yarn into the measuring pile yarn can be changed (Figure 3). Measurement of
device. During measurements, the pile yarn can be uniformity of pile yarn height is also not possible once
pulled out or the ‘direction’ (orientation of pile yarn, the pile has acquired a ‘direction’.
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(b)

(c)

Figure 4. Image preprocessing, (2) grey level image, (b) binary image, (c) morphological opening.

In this study, digital image analysis followed by
statistical data analysis are performed to implement
a modified exponentially weighted moving average
(EWMA) control chart of Testik'® for monitoring
the defects on a folded chenille yarn. The width obser-
vations obtained from the image of the yarn follow an
autoregressive process of order 1 (AR(1)). Hence, the
modified EWMA control chart is specifically designed
for monitoring an AR(1) process. Since the process
parameters are unknown, these are estimated from
a training dataset. Details are discussed in the
following.

Digital image processing

In this study, 100% acrylic chenille yarns of fineness
4.0 Nm with twist level 875 T/m and pile length 1.2 mm
were used. Images of the chenille yarn were obtained by
using a digital desktop scanner HP ScanJet 8270 with a
resolution of 600 dpi to give a uniformly illuminated sur-
face of chenille yarns and sufficient resolution of resulting
images. Chenille yarns were stretched on a black base
plate, which ensures sufficient contrast between yarn
and background for the following image preprocessing.
Note that a very important part of image capturing is to
ensure a uniform illumination of chenille yarns. This
would significantly reduce requirements for preprocess-
ing of resulting images.

Images were captured as image matrices in 8-bit grey
level range (Figure 4a). The binary image (Figure 4b)
was converted from greyscale by using a threshold
(level 0.2), where background is displayed by black
(level — 0) and object is displayed by white (level — 1).
Note that segmentation to a binary image simplifies
and accelerates subsequent image operations due to
the application of binary logical operations. In such

prepared images, it is easier to carry out subsequent
operations such as measurements of sizes, areas, orien-
tations etc. of objects since they have exactly defined
borders in contrast to grey level images. Small objects
may also be visible around the image of the yarn. These
objects can be caused by dust particles; fragments of
fibres, random noise etc., and represent undesirable
parts of the image. Hence, it is necessary to remove
these from the image for a better representation. The
morphological opening of the binary image is used to
remove these small connected objects (connectivity 8)
that consist of fewer than 50 pixels (Figure 4c) without
failure of regions of interest, i.e. the yarn shape. Note
that the images illustrated in Figure 4a—c belong to the
same yarn.

The binary images of chenille yarns were captured in
the resolution of 1000 x 7500 pixels. To monitor the
height of the pile yarns along the length of the yarn,
the width, measured as the number of white pixels from
the first to the last white pixel in the y-axis of the image,
is selected to be the monitored quality characteristic.
Note that there is a width measurement corresponding
to each of the 7500 pixels along the length, i.e. the
x-axis of the image. To smooth these width measure-
ments, the 7500 pixels along the x-axis of the image
were divided into sequential and disjoint sets of
5 pixels each and the averages of the width measure-
ments in each set were used in defect monitoring (i.e.
1500 average values of the width were treated as the
observations).

Although it is the scope of a follow-up study for
implementation, it is important to mention that a con-
tactless image capturing device (for example a line scan
camera) would be necessary in the case of online mon-
itoring of chenille yarn quality at real production set-
tings. In such cases, the image camera would be static
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(b)

Figure 5. Detection system, (a) laboratory machine for online monitoring, (b) detail of monitored chenille yarn.

while the chenille yarn is moving. Hence, a prototype
machine is also designed for simulating online quality
monitoring settings (see Figure 5a and b), where the
images are captured by a line scan camera.

The prototype machine consists of an aluminium
frame, a DC motor, LED illumination and a line scan
camera. This prototype machine is intended for wind-
ing of chenille yarn and thus to represent the behaviour
of a continuous process. Characteristics of the proto-
type machine are provided below:

Yarn delivery: There are two rollers on the sides that
straighten the yarn to stay straight. One of the rollers is
driven by a Maxon MCD EPOS 60W motor, which
offers the controls of acceleration, break, velocity,
and the cycle count.

Hllumination and image capture: Two lines of high
bright red LEDs were built into the latch (Figure 5b).
Picture acquisition is performed by using a Basler
L401k monochrome line scan camera with resolutions
4080 px, i.e. about 8 px/mm.

Analysis system: Maximum line rates of 7.2kHz
would yield the top speed of about 54 m/min.
However, real winding speed here is limited by the
lighting conditions, yarn properties, and mostly by
the complexity of successive processing, rather than
by technical parameters of the hardware components.

Process modelling

A yarn without any defects was selected by a visual
inspection and the measurements on it were used as
the training dataset. The training dataset was first ana-
lyzed to define the in-control settings of the control
chart. In this phase I analysis, the observations (1500
averages of the yarn width measurements) were found
to be highly autocorrelated and also note that the tra-
ditional control charts have the assumption of serially
independent observations. Autocorrelation has been
shown to significantly distort the performance of a

control chart and often an appropriate time series
model (for example, an autoregressive integrated
moving average (ARIMA) model) is first used to
model the autocorrelation structure of observations
and then a control chart is used to monitor the residuals
from the time series model.'®!”

To fit an appropriate ARIMA model, often autocor-
relation and partial autocorrelation plots are useful.?
It can be observed from Figure 6a and b, respectively
for the sample autocorrelation plot and the sample par-
tial autocorrelation plot of the training dataset, that an
AR(1) model is an appropriate fit in this study (depend-
ing on the application, other ARIMA models can also
provide a better fit to the data). The vertical axis in
Figure 6a and b are the autocorrelation and partial
autocorrelation coefficients, respectively. The horizon-
tal axis corresponds to the lag between the observa-
tions. The significant autocorrelations and partial
autocorrelations are the points exceeding the 95% con-
fidence limits (horizontal lines) in the Figure 6a and b.
Note that the strongly significant autocorrelations
slowly decay and only the first-order partial autocorre-
lation is significant for an AR(1) process.

Suppose that the yarn data can be modelled by an
AR(1) model

(1

where ¢ is a constant, —1 < ¢ < + 1 is the autoregres-
sive parameter, ¢ is the index, and « is an independent
and identically distributed normal random sequence
with mean zero and variance o2. The minimum mean
squared error forecast?® of this process at index value
for index value 7+ 1 is

Xp=c+ex—1 +a;

)’(\:[_’_]I[ = (pr. (2)
Hence, the residuals ¢, may be calculated as
€r = Xt — 3ACt+l|t 3)
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Figure 6. (a) Autocorrelation function, (b) partial autocorrelation function for chenille yarns data with 95% confidence limits.
Table I. Estimates of parameters
Type Coefficient Standard error t-value p-value
AR(1) 0.74 0.0215 34.22 0.000
Constant 18.53 0.1211 152.95 0.000
Process mean 69.80 0.4563
Residuals SS=14668.4 MS=147 df.=998

Since the process parameters are unknown, these
parameters can be estimated?’ from the training data-
set. To estimate the AR(1) parameters, the middle 1000
observations in the training dataset were used and the
obtained model was validated by using the remaining
500 observations. The AR(1) model obtained is

X, = 18.53 +0.74x,_1 + a, (4)

with the AR(1) process mean being 69.80. The esti-
mates of the parameters along with the standard
errors, t-values, and p-values are provided in Figure
7a and Table 1. The first-order autocorrelation coeffi-
cient is 0.7345. Furthermore, the histogram of the resid-
uals (Figure 7b) indicates that the normal distribution
would fit well to model the residuals.

An AR(1) model has the same form as a simple
linear regression model, where the observation at
index value 7+ 1 is the dependent and the observation
at the index value ¢ is the explanatory variable. Here,
the positive correlation between consecutive observa-
tions (the first-order autocorrelation) occurs due to
the tendency for the piles to remain at the same
height from one observation to the next.

Using the fitted AR(1) model, the residuals and the
corresponding autocorrelation function and partial

autocorrelation function were calculated (Figure 8a
and b). In Figure 8, again the 95% confidence limits
are provided. Since all the points plot inside the confi-
dence limits, we conclude that the AR(1) model
explains the autocorrelation structure well and the
residuals are independently distributed.

Yarn quality monitoring using the modified
EWMA control chart

The EWMA control chart for the yarn width data was
constructed based on the suggestions of Testik.'® Note
that Testik'® recommends a modification of the stan-
dard EWMA control chart applied to residuals of a
time series model, when the time series process param-
eters are unknown but estimated. This practical modi-
fication might reduce the signal probability of a control
chart for a false defect since process parameters are
often unknown but estimated in practice. The EWMA
control statistic, which is plotted on the control chart
over time, for monitoring the residuals is defined as

zi=(1 =z + 2e )
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Figure 8. (a) Autocorrelation function of residuals, (b) partial autocorrelation functions of residuals with 95% confidence limits.

where 0 <A<1 is the smoothing parameter and the
starting value is z,=0 since residuals are expected to
have a mean zero.

Pairs of control limits are also plotted on the control
chart to facilitate decision making with regard to the
status of the process. A plotted point on the control
chart that exceeds either of the control limits is taken
as an indication of the existence of a defect. The control
limits of the chart are set to

+Lo. (6)
where L is the control limit width and o is the standard
deviation of the EWMA statistic. In designing the

modified EWMA control chart, the smoothing param-
eter A was selected to be 0.2 and control limit width L
was selected as 3. For the in-control data, variance of
the residuals is 14.67 (standard deviation is 3.83).
Therefore, the variance of the EWMA statistic can be
computed as (see'® for details)

6vy/(1 —¢?)/n
+
(I —vg)

14+ ve
+n(1 - v¢)} M

2 _ »(1—v)
oz_aa(1+v){1

where, v=1-/ and » is the number of observations in
the training dataset that are used in estimating the
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AR(1) model parameters. The variance of the residuals
e, in equation 3 is used as an estimate of the term o2 in
equation 7. In the chenille yarn monitoring study con-
sidered, the variance of the EWMA statistic, (7_3 is found
to be 2.79 (standard deviation is 1.67) by using the
values; 0.74 for ¢, 3.83 for 02, 0.8 for v, and 1000 for
n, in equation 7. Hence the upper and lower control
limits, UCL and LCL, were set at 5 by using the
equation 6.

First, consider the EWMA control chart for the
training dataset, which is known to be free of defects
(Figure 9a). An observation exceeding either the UCL
or the LCL (obtained from equation 6) normally sig-
nals a defect. Since it is known that the chenille yarn is
defect free here, the signal can be classified as a ‘false
defect’. A control chart always has a probability of a
false signal for a defect. However, by appropriate

selection of the control limits, this false signal proba-
bility can be significantly reduced. In our design, the
control chart is expected to signal a false alarm about
once in 10000 observations, on average. Note that the
values of the control limits calculated here also depend
on the process model and the yarn characteristics of the
manufacturer; hence, different applications might
necessitate other designs.

After the phase I study to construct the control
chart, the chart designed is used to monitor chenille
yarn defects. The modified EWMA control charts for
detecting different types of defects are provided in
(Figure 9b—d). The control charts are very effective
for detecting defects (points on the control chart that
exceed the UCL or LCL indicate presence of defects)
on the chenille yarns. Furthermore, the points exceed-
ing the control limits in these control charts also

(a)

EWMA control chart

(b)
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Figure 9. EWMA control chart of residuals, (a) non-defect, (b) empty place, (c) knot, (d) sporadic yarn.
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Figure 9. Continued.

provide some information on the location and type of
defect encountered.

Conclusions

The proposed approach of monitoring chenille yarn
defects is based on image processing followed by meth-
ods of statistical process control. The height of pile
yarn was selected as the monitored quality characteris-
tic. An autocorrelation analysis showed that the width
measurements along the yarn image are highly autocor-
related and classical control charts (such as a Shewhart
type chart) cannot be successfully implemented since
too many ‘false defects’ may be encountered. An
AR(1) model was found to represent the autocorrelated
observations well and is used to remove autocorrelation
from the observations. The modified EWMA control
chart proposed by Testik'® is used to monitor the

residuals of the fit AR(1) model. Effectiveness of the
control chart in detecting various types of defects on
chenille yarns was illustrated, where violation of con-
trol limits pointed out the defective region of the yarn.
It can be concluded that the modified EWMA control
chart is suitable for detection of defects occurring in
chenille yarns or monitoring of the homogeneity of
pile yarns.

The pile distribution in chenille yarns is in 3D and a
projection from the 3D space to 2D image may cause
false signals for defects. False signals for defects can be
reduced, for example, by use of two devices for captur-
ing images in two directions and the proposed analyses
could proceed separately. Here, only the methodology,
which is based on image analysis for monitoring irreg-
ularities of pile yarns, has been proposed. The algo-
rithm is computationally simple and fast for computer
implementation and it only requires autocorrelation
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model parameters to be determined from a training
dataset and setting up the control chart as recom-
mended in Testik.'® In order to increase the computa-
tion speed, the proposed algorithm could also be
implemented in C++ programming language with
the use of OpenCV library. Further research is being
planned for investigating the proposed approach in
production settings and development of a computer
software program for implementation. For this pur-
pose, a prototype machine is developed to simulate
real production settings.
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METHODS FOR RECOGNITION OF WOVEN STRUCTURE DEFECTS

Tunak Maros, Linka Ales

Dept. of Textile Materials, Technical university in Liberec, Halkova 6, 461 17 Liberec 1, Czech Republic

Introduction

In the textile industry the current inspection process
of quality of textiles still depends on human visual
inspection. It is a time consuming and repetitive
activity requiring permanent attention in order to
detect defects. According to all that, there is many
human mistakes in this process. Therefore, textile
industry takes concern in replacing human visual
inspection with a suitable automated visual
inspection.

In this paper, we will introduce automated visual
inspection based on the statistical approach and we
will show usage for the directional defect detection.
Woven fabric is normally composed of two sets of
mutually perpendicular and interlaced yarns. The
weave pattern or basic unit of the weave is
periodically repeated throughout the whole fabric
area with the exception of the edges, thus images of
woven fabric are homogenously structured and can
be consider as textured images. These periodicities
correspond to periodicity of second-order grey level
statistic features. We especially focus on recognition
of common directional defects associated with the
change of weaving density or defects that appear as
a thick place distributed along the width or high of
an image. In this paper we will test algorithm for
recognition of simulated defects and finally we will
show a few examples of recognition on real samples,
too.

Second order grey level statistics

Texture statistics are frequently classified into first-
order, second-order and high-order statistics. First-
order statistics refer to the marginal grey level
distribution and can be derived from the grey level
histogram, e.g. mean, variance, skewness, energy
etc. The first-order statistics are highly dependent on
the lighting conditions and in common practice
should be eliminating the influence of first-order
statistics in texture analysis by making the grey level
histogram match a specific distribution. This
approach destroys any spatial information of
textures pattern and only retains their brightness
information. Second-order grey level statistics refer
to the joint grey level distribution of pairs of pixels
and it is based on grey level co-occurrence matrices.
The grey level co-occurrence matrices (GLCM) are
full representation of the second-order grey level

statistics and retain both spatial arrangement and
relative brightness information.

Grey level co-occurrence matrices

The size of textured digital image f(x,y) is mxn and
its grey level resolution is G. A GLCM, ¢, is a
square matrix with size equal to number of grey
levels G contained in textured image and is defined
with respect to two parameters, d, the distance
between two pixels, and 6, the position angle
between two pixels (Xq, Y1) a (X2, ¥2). An element of
GLCM, c;j, is the number of times a point having
grey level i occurs in position given with respect to
parameters d, ¢ to a point having grey level j.
Normalized GLCM, C, is the joint probability
occurrence of pixel pairs with a defined spatial
relationship having grey level values i and j in the
image. A lot of features can be computed from the
normalized GLCM, in this contributions we
extracted a set of four features. For example,
measure of the intensity contrast between a pixel and
its neighbour over the whole image is given by [1],

[2]:

[

G-1G-1
I =

i- j‘zcu ) (1)

i=0 j

]
o

Defect detection in simulated structures

The algorithm was tested first for simulated
structures of woven fabric (size 500 x 500 pixels) in
a plain weave with randomly generated defects. The
simulated output image of a periodic structure in
a plain weave can be simulated as a convolution of
an elementary unit (pattern repeat) by aninput
image of pattern of repetition. Images of a plain
weave contained common directional defects were
modelled by using algebraic operations on simulated
images of plain weave structure, in some cases with
removing some rows or columns. Position, size and
shape of defects were randomly generated from
uniform distribution, see [3]. We evaluated a set of
eight features for m = 1000 randomly placed
windows of size 50 x 50 pixels in image of
simulated structure without defects. Four features
extracted from GLCM with parametersd =1 and =
0° (weft direction) and four features from GLCM
with parameters d = 1 and &= 90° (warp direction).
We obtained m samples of p — dimensional normal
distribution. Then we evaluated a multivariate



Shewhart control charts for the process mean with
upper control limit [4]:

L p(m+1)m-1)

- m(m _ p) Fl—a,p,m—l' (2)

u

where m is number of multivariate observation and p
is number of variables. Then we applied algorithm to
detection of defects in simulated structure with
defects. We counted the test statistic for ith
individual observation of features extracted from
sliding window moved over the whole image and
compared against control limit in the form;

D'Z = (Xi - Km )' S o (Xi - Km ) (3)

where S, is a variance-covariance matrix. If any
observation was outside the limit, for a given level
of significance a, the window was considered as the
window containing defect. Size of images was set to
500 x 500 pixels; Gaussian noise of mean 0 and
variance 0.0025 was added to images. Sliding
window of size 50 x 50 pixels was moved by the
step of size 25 pixels. Windows with detected defect
or imperfection remained in image and were
displayed with red colour. Fig. 1 show plot of
individual observation against control limit, red
windows are outside the control. Figure 2 (a) — (c)
display result of applied algorithm to some few
simulated images of common directional defects:
broken pick, warp yarn defect, irregular weft density
(insufficient). As we can see from figures, process is
suitable for simulated images of directional defects.

Fig. 1. Plot of individual observation against control limit.
Directional defect detection

The same algorithm was tested for the defects in real
samples in a plain and twill weave. Images were
captured by flat scanner with resolution 400 dpi in
256 grey levels and stored in an image matrix of size
500 x 500 pixels. Equalization was used for contrast
enhancement. Figure 2 (d) — (f) show a few
examples of recognition of defects in real structures.
Examples represent real directional defects. Sliding
window was setting to 50 x 50 pixels.

(e) ®

Fig. 2 Result of the applied algorithm, (a)-(c) in simulated
samples, (d)-(f) in real samples, where red window
indicate defect, imperfection.

Conclusion

Recognition algorithm based on second-order
statistical features extracted from grey level co-
occurrence matrix is useful for simulated samples of
common woven fabric directional defects. By using
this method we can detect defects associated with
change of weaving density or defects that appear as
a thick place distributed along the width or height of
an image and for no directional defects too. The
advantages of automated visual inspection are
objectivity and independence on the human
inspectors. This method is relatively fast and it could
be used as online visual inspection of quality.
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Inspection system of fabric based on texture segmentation
utilizing Gabor filters

Jiri Kula, Maros Tunak and Ales Linka

Abstract

In presented contribution we talk about our implementation of Gabor filters that we use for
texture description and subsequent texture segmentation in order to obtain efficient method
for detection of dissimilarities of fabric during its quality inspection process. Design of Gabor
filter is presented both in spatial and frequency domain.

Introduction

There are many approaches in the development of automated system for quality evaluation of
surface properties. In textile industry, one can most often see manual methods of inspection of
quality of fabrics. This process involves human operator to watch the surface of material and
mark the faulty areas by hand. Advanced loom machines are able to detect some faults by itself,
however, there is still significant amount of defects, that needs to be inspected later, after the
weaving stage. Those defects, that can not be detected on the loom, are particularly certain
variations in the appearance of the product. Defects like broken pick or coarse yarn are sort
of defects that can be detected directly on the loom. In contrast, those defects like appearance
fault, a stain, a hole or a weft kinks, belong to class of defects that remain unnoticed by any
other systems than the visual.

Gabor filter

Gabor filter is a finite impulse response filter first proposed by Gabor [2]. Generalized 2D filters
are widely used in image processing for line and edge enhancement. Filters impulse response in
spatial domain is defined as Gaussian envelope modulated by periodic function
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which means that the filter consists of real and imaginary parts, each of which is phase shifted
by /2.

Let’s explain parameters of equation [1]. Since this article talks about digital implementation of
filter, each of variables here are of discrete nature. The x, y refers to spatial domain, while £ and
7 respectively, denote position of filter origin in (z,y) plane. The extent of Gaussian envelope
is defined by o for both axes, it’s circularity is expressed with v parameter that adjusts the



7th International Conference - TEXSCI 2010 September 6-8, Liberec, Czech Republic

(a) (b)

Fig. 1: Gabor filter in spatial domain; (a) real (b) imaginary part.

extension of the filter along y axis. Another two properties of filter orientation and harmonic
function phase are expressed by 6 and ¢ value respectively. Phase offset explains the relationship
between real and imaginary part of the filter. It is natural to write equations for both parts as
equations [2] and [3]. Last parameter, A refers to wavelength of harmonic function. Selected
examples of filters built using various parameters are shown in Fig. 2. The sample images differ
from image shown in Fig. 1.
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Spatial filter is used for image convolution. However, this work deals with filtering images
in frequency domain. In accordance to convolution theorem, filtering in frequency domain
and convolution in spatial domain produce equivalent results, though. Operation of spatial
convolution of digital image and its relation to convolution theorem is expressed in equation
[4], in which symbols f(z,y), g(x,y), h(x,y) denote input image of size M x N pixels, Gabor
kernel of size R x C pixels and result of their convolution respectively, that is of 1 x 1 in size at
(z,y) position. Also note, that lower case letter refers to spatial domain while capital denotes
it’s frequency representation using frequency coordinates u, v.

h(z,y) = f(z,y) * g(z,y) = 2 22: gle;r) - flw—ecy—) (4)
f(@,y) x g(z,y) ~ F(u,v) - H(u,v) (5)

Convolution of two signals can thus be obtained by multiplying the corresponding components
of frequency representation of these signals. Gabor filter in frequency domain is defined by
equation [6].
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(6)

Gabor kernel in frequency domain is a bandpass filter. The principle of using the filters in fre-
quency domain consists of multiplying the spectrum of input image by a set of (non overlapping)
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(d) (e)

Fig. 2: Influence of various parameters; (a) increased aspect ratio v (y > 1), (b) reduced
wavelength A, (c) reduced extent o, (d) non-zero rotation angle 6, (e) phase offset ¢.

kernels that together cover the entire area of the spectrum. The frequency representation of spa-
tial input image is obtained by Fourier transform with DC component shifted to the center of
frequency space. It is appropriate to carry out the design of kernels in polar coordinates, which
is consistent with the previous definition of the filter in equation [6]. Here the symbols w,
denote frequency - while describing spectrum in polar coordinates - {2 equals the distance from
center of the frequency space w; © refers to angular distance of the origin of the kernel measured
relatively to the horizontal axis; o, and o, denotes axial (frequency) and radial (orientation)
bandwidths of the kernel. Construction of Gabor filter in frequency domain is illustrated in Fig.
3(a). Note that this illustration shows only the 1% quadrant of frequency space.

Filters, like the one shown at Fig. 3, are constructed to cover the whole frequency space in such
a way that meet certain criteria. There is considerable redundancy when adjacent filters overlap
[3], which can be reduced by means of following filter design. Radial (angular) bandwidth o, is
a constant value for the entire set of filters. Axial bandwidths of the filters are set one octave
wide depending on the distance () of the filter from the origin O. Let’s consider two different
frequencies wy, wy such that 2wy = wy. Then, the distance between these two frequencies is
called to be one octave wide. Let’s take the third frequency wo, which is twice as high as the
second frequency: wy = 2w; = 2 X 2wy = 2%wy. The distance between frequencies wy and wy is
two octaves wide. It follows that the number of octaves k, that spread between two different
frequencies wmin, Wmaz, 1S given by equation [7].

k = logy maz (7)

min

The value of i-th bandwidth B, ;, in axial direction, equals to its lower frequency limit w;, as
show in Fig. 4. The center of each filter is placed in the middle of i-th octave. In order to
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Fig. 3: The design of Gabor filter in polar coordinates; (a) only the first quadrant of frequency
space is visible, so that O is placed at the center of frequency space; (b) the frequency space is
distributed into multiple channels by the set of Gabor filters.
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Fig. 4: Explanation of octave; w; denote increasing frequency, B; vales denote band width of
respective octave. The width B; or width of i-th octave equals w;_1.

avoid redundancy produced by overlapping adjacent filter, their extents are designed so that
neighbouring filters touch at half of filters peak value Filters take values between < 0,1 >; the
peak stands in the center of Gaussian and decreases outwards. The size of standard deviation

in axial direction o, can be derived from Fig. 4, where the width of the i-th band is denoted
Ba,i/2

B;. Following equation (6) we get "2 ) = 0.5, thus, the i-th standard deviation in axial
direction is given by ¢! = #‘;’(2) The number n of filters is a constant value for all bands
n

and it defines the bandwidth of the filter in radial direction B, = %’T The size of the standard
deviation in the angular direction is therefore also a constant, o, = 2\/%.

Thanks to the symmetry of the Fourier spectrum about the origin, it is sufficient to perform
the processing on only the half of the domain. At the moment of preparing bank of filters, it
is therefore sufficient to include only the filters at angles between < 0, (5 — B,) >. Resulting
filter bank for B, = 30° and octave count k = 7 is shown in Fig. 5. It is worth to mention how
the filter bank is used during the process of texture description and segmentation. In textile
industry, the inspection system has to deal with large images. In order to analyse them, the
approach of local analysis is used instead of capturing global information about the input image
that is acquired from the surface of fabric. Local analysis is carried out by means of dividing
the area of input image into two dimensional rectangular sub ranges. The later analysis is
performed within each range independently. This process is also called a tessellation of spatial
domain. Within each range, the Fourier transform is carried out and then shifted so that the
DC components appears in the center of spectrum domain. After that, each filter from the
bank is used as a mask of given spectrum, in order to perform band pass filtering. In frequency
domain, filtering is carried out by multiplying corresponding pixels of the spectrum and the
filter. There are certain examples of filtering the input image by Gabor filters of various settings
shown at Fig. 6. There are both the spectrum and the filter superimposed in odd rows and the
result of filtering on even rows. The result here is presented as the inverse Fourier transform
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Fig. 5: A bank of Gabor filters.

of filtered spectrum. The special feature of Gabor filter, which lies in the fact that it gives
information about certain frequency at specified orientation, is perfectly usable in conjunction
with patterned textiles.

Gabor filters are used in this work for the task of detection of defects in woven fabric. The
detection is based on principle of comparison of similarity between the reference texture and the
texture being processed. The degree of similarity is expressed by calculating Euclidean distance
between two vectors, each of which is describing features of the texture. Let’s assume that there
is a bank of 30 filters. When processing given spectrum, each of these filters is multiplied with
this spectrum, resulting in 30 filtered planes. If we take the mean p and standard deviation
o of the spectrum coefficients that remained after the filter was applied, we get two vectors fi,
&. These two vectors, combined together so that their elements interlace, constitute a single
vector that is treated as texture descriptor ¢. The algorithm of detection takes two phases. The
first phase consists of dividing the reference texture into multiple regions and determining the
descriptor for each of these sub images. In case there is low variability in reference texture, which
should be, we are able to calculate the mean of these vectors and treat it as a reference vector
7. A reference texture and its vector denote the texture that does contain no visible defect,
and its vector respectively. There has to be a supervisor, that is responsible for definition of
such reference area. The second stage consists of processing another texture while comparing
its descriptor with the reference one. Reusing last example, there is a set or a bank of 30 filters,
each of which has its 2, ©, g,, 0, parameters. Filtering with this set of filters, we get vector
U = (po,00, 41,01, ...y 29, 029). Comparison of vector u with vector r yields the measure of
similarity between the two textures. Elements of both vectors i, and 7 are scaled into interval
< 0,1 >, thus the dissimilarity measure defined by equation (8) reaches zero for the similar and
one for completely different textures.

It becomes obvious that the similarity measure, defined by equation (8), of fabric texture that
meets the specified visual appearance parameters, does not rise up from zero as much as the value
that comes from defective area. The texture segmentation proposed in this paper is therefore
based on the principle of thresholding. The threshold value for specific texture is set in the first
phase also. After the reference vector was found, the area of reference image is divided again.
The division into sub windows is random and maximum dissimilarity value found over these
windows is taken as threshold value in later inspection.



7th International Conference - TEXSCI 2010 September 6-8, Liberec, Czech Republic

||
4 g

M

WA

=4 Y
LY %

I
il "ll Illll 'l'|||| '|I| "‘Lh I
(I

|||| l.‘l"\lyll “l,l:

'll l“ || n‘ |

Il l| [l |\l
|| |||||‘ “l |||| llh '!L

inputimage (© =0, =10) (©=0,Q = 46) (©=0,0=097)

spectrum

(©=Z,0=230) (6= Z,Q=100)

Fig. 6: Output of filtering the spectrum of an input image (see upper left corner) by various
Gabor filters. Superimposed spectrum with the filter is show in the 1% and the 3¢ row. There
is also a radius vector printed on each image that connects the center of the spectrum plane
with the origin of the filter. Pictures below show inverse Fourier transform of filtered spectrum.

Implementation

The performance of an algorithm, in the manner of accuracy, false alarm rate or speed, may
differ significantly during a development process and under real world environment. In order to
see how the system would work when deployed, it is implemented in software and it undergoes
various tests on dedicated laboratory machine. There is no doubt that interpreted computer
languages offer great productivity to software developers. However, these languages does not
necessarily bring such great leap in productivity to applications themselves. It is reasonable
to begin the development using a robust software tool like Matlab. Writing an application in
Matlab will, in fact, result in managed application. Although the time spent on developing
managed applications is relatively short, this is compensated by the slow behavior of programs
during runtime, due to large number of idle operations and just-in-time compilation.

For manipulation with hardware devices and large sets of data that we encounter in image
processing, it is suitable to implement the software with native programming language that is
compiled directly into processor instructions. Such a program runs directly on the architecture,
for which it is built for, without unnecessary overhead. Besides implementing the Gabor filter
with C++ language, we have built a special machine that consists of endless strap of inspected
fabric, DC motor and array of line scan cameras. In order to handle all aspects of relatively
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(a) (b)

Fig. 7: Implementation of texture segmentation utilizing Gabor filters; (a) image of woven fabric
which shows a defect, (b) rectangular grid responses the filtering at each sub range, dissimilarity
is displayed with gray level scope in which the dark areas denote high similarity whereas white
rectangle highlights significant dissimilarity between the reference texture and the texture at
the current rectangle.

complicated system of hardware synchronization, data acquisition, image processing and re-
sult presentation, while maintaining the platform sufficiently modular, we based our software
solution on DirectShow, COM and ATL architectures. The solution we develop is standard
Windows application that serves as a host for independent software components. The host ap-
plication allows for connecting components in various orders, thus constituting form of a graph,
a chain or a diagram. Each component is also called a filter and it shows itself as blocks in
the graph, bearing connection points called pins. Through these pins the filters connect. After
the connection is established, it represents a video and or arbitrary data pathways. Presented
approach allows almost infinite number of ways to design the algorithm of image processing
during runtime without the need to modify source code and re-compile. Finished topology also
gives a visual picture of the operations that are applied to the data. Changing one filter does
not have any influence on the rest of the graph. Most of these features are inherited from the
DirectShow architecture. Filters themselves are COM components. The COM stands for Com-
ponent Object Model, a binary protocol for language independent, location transparent, object
oriented architecture that allows for cooperation among various pieces of software. Neither the
programming language, nor the physical location of the binary is important when programming
for this model. Active Template Library, or ATL, simplifies COM development by providing a
set of template classes, thus reducing the amount of code that would otherwise be necessary to
write by hand.

Current implementation allows for displaying the plot of dissimilarity index over entire input
image. An example of such plot is shown in Fig. 7. There is a woven fabric show on the
left. The defect of oil staining appears as a dark spot in lower right corner of Fig. 7(a). It
is automatically detected and market in accordance with the proposed procedure of texture
segmentation. Taking a look inside of the procedure, we can extract the dissimilarity values
over the inspected area, which is shown in Fig. 7(b). Main window of application is depicted
in Fig. 8(a). It contains a typical graph in which acquired images of whole fabric are taken by
the array of line scan cameras. As the acquisition completes, these separate images are merged
into a single one by Multiplexor filer. Merged data are delivered downstream to the Gabor filter
component. Gabor filter outputs the video unchanged and adds the information about locations
of detected defects on separate pin. Another downstream filter accepts both of these types of
data and it draws rectangular markers around each defect. These markers are displayed as a
result on computer display. Additional option is to insert data into database and explore them
off-line. Fig. 8(b) shows three examples of certain components . Input pins are placed on the
left, whereas output pins occupy the right side of the filter.
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Fig. 8: Software implementation of inspection system for fabric; (a) application’s main window
is horizontally divided into two parts that display the data flow of current processing pipeline
and the result of detection, (b) selected filters show general design of processing components.

Conclusion

Gabor filters were implemented both in spatial and frequency domain. Application of filters
in frequency domain was used for calculation of similarity between a set of different textures.
The principle of similarity estimation was also used for inspection of woven textiles in terms of
defect detection and localization. In order to evaluate the possibility of deploying Gabor filters
for surface inspection under real conditions, we built dedicated laboratory device. The device
acquires digital image of moving fabric surface with an array of line scan cameras. Image is
provided to software and processed in real-time. The application provides a robust platform
for high performance software component, which implement specific task and allows connection
of these components into comprehensive processing pipeline. Gabor filters, implemented in
such environment, proved itself to be suitable method of inspection in real-time with sufficient
accuracy on certain types of visible defects.
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Abstract

This contribution deals with a procedure of monitoring fabric production process in terms of defect detection.
Detection algorithm is based on spectral approach with 2D Fourier transform, which has shown to be suitable
method of describing periodic and almost periodic structure of fabrics. Multivariate control charts are used as
a tool for monitoring several quality variables. In order to make an off-line and on-line quality monitoring of
fabrics possible, we built up a prototype machine, which consists of aluminium frame, DC motor, LED lights and
a line scan camera. Fabric width is 50¢m and maximum winding speed of about 16m /min can be achieved. The
core of detection algorithm utilizes relatively time consuming Fourier analysis, so we split an acquired image into
independent parts and let the work be done concurrently. Writing native, multi-threaded and scalable code, that
takes advantage of modern multi-core machines, is one of our main objectives. Based on Visual C++ language
and additional libraries, we are able to to check 1m? of fabric in about 1.5 second on Intel Core2 Quad CPU. We
use OpenCV library together with Intel Threading Building Blocks templates for the most part.

1 Introduction

Quality control has gained major importance in today’s manufacturing process. In textile industry espe-
cially, the monitoring is still performed by human observation. This process involve a group of workers
repeatedly checking the product many times again. The human visual inspection makes the final product
much more expensive, moreover, such way of control does not achieve more than 70% of all defects to
be detected. Goal of our research is to investigate and develop new algorithms for the detection of defect
in textured materials (textiles) using automated visual inspection. These algorithms are expected to offer
high detection rate with low level of false alarm.

Fabric is, as a rule, composed of two sets of mutually perpendicular and interlaced yarns. The weave
pattern of basic unit of the weave is periodically repeated throughout the whole fabric area with the
exception of the edges. Due to the periodical nature of woven fabrics, their images are homogeneously
structured and can be considered as texture images. Considering the periodic nature of fabric, we are
able to describe the relationship between the regular structure of woven fabric in spatial domain and
its Fourier spectrum in the frequency domain. The directional feature of periodical structure of woven
fabric correspond to high energy frequency component in the Fourier spectrum. Therefore, the Fourier
transform seems to be appropriate for graphical representation of planar anisotropy of images in spatial
domain, as it is shown Tunak & Linka (2007). A presence of defect in this periodical structure causes
changes in periodicity and consequent changes of spectral features.

In his paper, we especially focus on recognition of common directional defects associated with the
change of weaving density or defects that appear as a thick place distributed along the width or height
of an image. The method will be illustrated by certain examples of analysis of real fabrics with various
defects. The basic principle of detection method lies in estimation of periodic characteristics over the en-
tire fabric sequentially by a concept of sliding window. At each step, statistical comparison is performed
in order to recognize those parts that contain defects. Multivariate statistical process control is used to
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make such decision. Other approach, e.g. statistical approach based on second-order statistical features
extracted from a grey level co-occurrence matrix for automatic detection of defects in woven fabrics can
be found in Tunak & Linka (2008).

Aim of the final quality inspection of woven fabric is efficient detection and localisation of defective
regions. Multivariate statistical process control as a technique for monitoring of multiple quality variables
simultaneously, with the aid of Hotelling’s multivariate control charts, is used for automatic detection.

In addition to development of algorithms for defect detection in textiles, we constructed a special
laboratory device that allows us to acquire the image of moving fabric. This device, among the other
parts, consists of line scan camera, step motor and associated PC that takes care about the control of
these devices and that performs overall data processing. In this article, we also explain some fundamental
concepts that make the on-line process control possible.

2 Two Dimensional Discrete Fourier Transform

The spectral approach is based on two-dimensional discrete Fourier transform (2D DFT). The Fourier
spectrum is ideally suited for describing the directionality of periodic or almost periodic patterns in grey
level images of textures. Let f(z,y) be a two-dimensional function, where 2z = 0,1,2,...,mm — 1 and
y=0,1,2,...,n — 1, are the spatial coordinates and the amplitude f at any pair coordinates is the grey
level of the image of size m x n. The 2D DFT of f(z,y) is given (Gonzales & Woods (2002))

m—1n—1
= >3 faye S ()
=0 y=0
wherew =0,1,2,....m—1andv =0, 1,2,...,n— 1 are frequency variables. The dc (direct current)
component is the origin of frequency domain F'(0, 0) and represents the origin of the system of frequency
coordinates. If f(x,y) is real, its transform is, in general, complex. The power spectrum is defined as
the square of magnitudes

P(u,v) = |F(u,v)| )

In order to display and analyse the power spectrum visually, it is convenient to reduce dynamic range
of coefficients by logarithmic transformation

Q(u,v) = log(1+ [F(u,v)[?) 3)

A typical woven fabric consists of two, mutually perpendicular arrays of yarns. The resulting periodic
structure can be nicely seen in both an image of spatial domain, even in an image of frequency domain.
It is also true, that any defect in weft or warp direction causes serious disorder in such periodic structure,
and as a consequence, takes significant effect in distribution of Fourier spectrum coefficients.

3 Anisotropy of Fiber Systems

One of the common operations of image analysis is called a segmentation. The purpose of segmentation
is to split the information captured by the image into logical parts that have close relation to objects
of a real world. These objects are either randomly distributed on the image background or they prefer
certain directional placement. In textile experience, the objects are considered to be fibers, threads and
cross-sections of fibers. Complex systems built of these basic objects can be represented by webs, fibre
layers, woven fabrics, knitted fabrics, non-woven textiles etc.

In our implementation, we consider a grey scale image to be a square matrix of size m x m. It is
convenient to let m be an odd number for correct definition of the center of the Fourier spectrum. All
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frequency components from the Fourier spectrum are summed in the directional vector of certain angle
. Since the transformation of real image function f(x,y) results in complex coefficients, the absolute
magnitudes of frequency components |F'(u,v)| are obtained according to relation (??). The sum of
frequency components S, in the directional vector is given by

(m+1)/2

Sa= > [F(u,v)l; 4)

i=1

where « forms an angle between the directional vector and u axis, | F'(u, v)| is a frequency component
of the directional vector at the coordinates (u,v) and m is the size of the image. The Bresenham’s line
algorithm is used to estimate coordinates of corresponding matrix elements.

4 Defect detection

4.1 Multivariate control charts

The objective of our work consists of efficient detection and localization of defective regions in the image
of fabric, which is important part of quality control. Because exploring each quality feature individually
could lead to inadequate results, we decided to keep track of multiple variables simultaneously. The
process of observing several quality features together is known as multivariate statistical process control.
Hotelling’s multivariate control charts, which are a direct multivariate equivalent of the Shewhart X
charts (based on Mahalanobis distance) for the process mean, are useful tool that integrates multiple
texture features and help judge the presence of defects.

We assume, that the observations come from p-dimensional normal distribution with known mean
vector g and known variance-covariance matrix 3. Then the test statistic D? for i-th individual obser-
vation has the form (Bersimis et al. (2007), Zamba & Hawkins (2006))

D? = (X; — 'S (X, — p) (5)

where X is the ¢-th, ¢ = 1,2, ..., m, observation that comes from p-dimensional normal distribution
Np(p,X). In real situation we often face the problem, that mean vector p and variance-covariance
matrix X are not known in advance. Therefore we obtain the data X;, j = 1,...,n while the process
is in statistical control. We consider these data to be a random sample from a p-dimensional normal
distribution N),(pt, ¥), where p and X are unknown. Sample mean and sample variance-covariance
matrix of this distribution are defined

- 1
X=-) X (6)
njzl
1 - -
§=—0 ;<X]~ -X)(X; - X)" ()

where X and S are unbiased estimates of p and X. Then the test statistic for an observed vector X;
is
D} = (X; - X)Ts1(X; - X) (8)

For later process control, that follows the initial calibration of control charts from a “’learning sam-
ple”, we define the upper control limit as
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Fig. 1: (a) Window with non-defective area, (c) window with defective area, (b),(d) polar plots of .S, in
10 degree step.

p(n+1)(n—1)
n(n —p)
where F), ,_,(1 — «) is the (1 — ) percentile of the F-distribution with p and (n — p) degrees of

freedom. In case of D? statistic exceeds the upper control limit at specified level of significance a, then
the observation is considered to be out of control.

UCL = Fpnp(1—a) )

4.2 Defect Detection using Multivariate Control Charts

We consider values of S, obtained from image of fabric as a vector of features X;. These features can be
used for evaluation of material homogeneity and searching for random imperfections in regular structure.
Images of the same or identical structure would have similar shape of estimated rose of direction, i.e.
almost the same values of S,. On the other hand, image of structure with defective area would have
different shape of polar plot of S,. This idea, supported by multivariate control charts, can find its
application of defect detection inside of a real structure.

Figures 1(a),(c) display windows of 50x50 pixels taken from regular and defective parts of the source
image (see Figure 4(g). Corresponding polar plots of S, with the 10 degree step obtained form equation
(9) can be seen in Figure 1(b),(d). Difference in shape of these polar plots is obvious.

At the beginning, values of S, are captured using 10 degree step over 1000 randomly selected sample
windows in a defect free area. As a result we get data matrix with n = 1000 samples of p = 18-
th dimensional normal distribution. Then the upper control limit given by formula (9) for a level of
significance @ = 0.001 is evaluated. Monitoring of fabric area is based on sliding window moving
systematically over the whole image area. The step between subsequent windows is half their size so
they fully overlap. For every window, i-th test statistic is evaluated using Mahalonobis distance from
equation (8). Then the distance is compared with given UCL. If any observation exceeds the limit, the
window is considered to be at the position of significant defect.

Example in Figure 2(a) represents image of real woven structure containing defect, concretely in-
sufficient weft density. Figure 3(c) shows the plot of i-th test statistic against the upper control limit.
Result of detection algorithm can be seen in Figure 2(b), where the marker windows represent defective
areas. In order to get even better idea, Figure 2(d) shows polar plots of S, with the step of 10 degrees,
where the dark curves represent the windows with regular structure and grey curves highlight the win-
dows where the structure does not match given criteria. Similarity in shape of polar plots can be seen for
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Fig. 2: (a) Defect in real structure, (b) results of detection algorithm, (c) plot of i-th test statistic, (d)
polar plots in 10 step.

non-defective structure, whereas the shape of polar plots of defective structure differ significantly. More
examples of defects in real structures after the application of detection algorithm can be seen in Figure
3, namely (a) foreign body, (b) double pick, (c) warp yarn defect, (d) snarl, (¢) abrasion mark, (f) broken
warp yarn.

It will be reasonable to devise an optimized method, which defines appropriate parameters for a
given structure in terms of size of a sliding window. Figure 4(b)-(1) displays result of applied algorithm
for detection of irregular weft density with various sizes of sliding windows.

5 Hardware

The algorithm that we talked about so far, was developed inside of Matlab using static images for pur-
poses of fine tuning and testing. However, any algorithm that performs well in laboratory conditions may
fail easily when applied in an industrial environment. For that reason we decided to build a laboratory
device that would imitate production conditions by acquiring an image of moving fabric and applying
the algorithms on-line. The experimental machine consists of aluminium frame, DC motor, LED illumi-
nation and a line scan camera. It’s intended for repeated winding of endless strap of fabric, and thus to
represent the behaviour of continuous process.

The apparatus is formed by a modular aluminium frame. A strap of a fabric can be up to 50cm wide
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Al

Fig. 4: Results of detection algorithm in real structures with different size of sliding window, (b) 30, (c)
60, (d) 90, (e) 120 pixels.
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and over 2m long. There is a roller on each side that keeps the fabric straight. Thanks to the modular
design of the frame, replacing the strap is quite easy, so various types of fabrics can be observed without
too much effort. One major property of such design has its advantage that turning this laboratory device
into industrial equipment consist only in mounting the camera on top of current inspection tables in the
factory. No other modification would be necessary.

EEREEEEERRED

EEErnaerenae

EEEREREEREGE

(2) (b)

Fig. 5: Laboratory device: (a) assembly; 1-frame, 2-line scan camera, 3-DC motor, 4-light array,
(b) Application window.

One of the roller is driven by fully programmable Maxon MCD EPOS 60W motor. We use the
cycle count property to track current position of the strap. The information about location of a defect is
especially important for the serviceman who can make the appropriate correction short after the process
has run out of control.

Image acquisition is performed using the monochrome Basler L401k line scan camera. It’s line res-
olution is 4080pz, so that 8 pixels cover 1mm of fabric. Maximum line frequency 7.2k H z yields the
theoretical top speed of about 46m/min with current optics and overall setup. However, real winding
speed is limited by lightning conditions, fabric properties and mostly, by the complexity of data pro-
cessing, rather than by technical parameters of each of hardware component. Camera’s exposition time,
line period, gain control and many other properties are exposed to the application and therefore can be
modified on demand at runtime.

Although the on-line control has continuous nature, we have to divide the process into discrete por-
tions by acquiring image into circular buffer. This concept comply with working principle of line scan
cameras. By using line scan camera, one gets just a single row of the whole image at a time. In order
to get the final image, subsequent rows need to be aligned into 2D array from capturing buffer. Ones we
have a portion of a fabric acquired, we can run the image processing and analysis stage. Although this
principle may involve serial processing, which would lead to serious problems in on-line control, there
is a way not to waste the available computing resources, as described in Fig. 6. The image acquisition
stage takes long time to complete. Specifically it takes image’s vertical resolution multiplied by camera’s
line period seconds. Serial program would wait for that time idling and then, as the image buffer gets
filled by data, it would perform the analysis. But the image acquisition would be forced to wait during
analysis stage while the motor would need to stop as well. If the movement did not stop, the application
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would leave some part of fabric undetected. There is relatively easy solution to this particular problem
that splits an acquisition and a processing into separate tasks and allows them to run in parallel.

6 Software

From the software perspective, we develop a standard Windows MFC application. There have been a
lot of approaches to implement an automatic machines for control of quality characteristics in fabric.
Despite these attempts, most implementations are either too simple and week or extremely expensive.
Algorithm that is based on Fourier transform takes a lot of time to complete, so one could say that it’s not
much suitable for on-line processing. Anyway we see this approach robust and promising enough. The
programming language we use is purely native Visual C++ that executes much faster than interpreted
Matlab code. There is also a user interface that inherits from Windows 7 Ribbon design which allows
quick and intuitive control over the on-line quality control process. The client area of the application’s
window is divided into two panes which logically relate to each other. There is a list of detected defect
in the left side. Each item in this list contains an information about defect location and size. These items
are references to the fabric preview pane on the right side of the window (Figure ??). Here a user can
see the image of the textile together with visually highlighted defects. The application takes care about
the control of the two major devices - motor and camera. Since the camera is line scan, the velocity and
the line period has to be synchronized carefully in order to get undistorted image. The OpenCV library
is used widely for image manipulation, processing and matrix operations.

Our aim is to produce cheap and commonly available, yet powerful equipment for quality control in
the factory of any size, so we build the system using standard PC. Despite of availability and low cost of
these machines, their powerful processors come equipped with at least two or four computational cores
these days. Our algorithm for defect detection is based on spectral analysis in such a way that the whole
image is divided into mutually independent sub-windows. We find the 2D Fourier spectrum inside each
of these separate parts and by summing the frequency components in different directions we get a vector
of desired characteristics. Then, we estimate the Mahalonobis distance of these characteristics from the
reference vector and consider the value as a measure of structure irregularity. Since all the computations
within every window are mutually exclusive from other windows, it allows to run the computation in
different locations concurrently. Although parallel programming is much more challenging than devel-
opment of a traditional serial program, well designed algorithm is able to fully extract the computational
power of multi core processor. We have obtained a linear speed up with respect to increasing number of
available processor cores. Intel Threading Building Blocks templates were used for writing the parallel

serial
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acquire image 0 acquire image 1 acquire image 2 acquire image 3
process image -1 process image 0 process image 1 process image 2

time

Fig. 6: Image acquisition and analysis cycle.



7th International Conference - TEXSCI 2010 September 6-8, Liberec, Czech Republic

algorithm that can check 1m? in about 1.5 second so far, running on Core 2 Quad processor.
7 Conclusion

Building a system of automatic visual quality control, that would support or even replace the quality con-
trol provided by human observation, is a complex problem that still provide enough topics for research.
Although there are suitable control systems for paper, wood, steel and drug production industry, obser-
vation and reliable defect detection systems for textiles are still quite rare. There are two major aspects
that make the inspection difficult for textiles. The first we mention lies in wide diversity of textile fabrics
in terms of weaving and printing patterns. The products itself is of inhomogeneous structure that tends
to tilt, stretch, etc. The algorithm has to be robust against the mistakes that can arise from such diversity.
Together with robustness there comes complexity that affects the speed of execution, which is crucial in
on-line quality control.

In our work we have implemented own algorithm for defect detection based on Fourier analysis.
The algorithm was tested with woven fabrics that proved the algorithm to be highly sensitive to random
irregularity in periodic structure. We also build a prototype machine that allows us to apply new algorithm
under real conditions.
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