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Abstract 

Left- and double-coset decompositions of space groups 
are systematically analysed by putting the emphasis on 
the introduction of special auxiliary groups. An 
algorithm is tailored to exploit the specific structure of 
space groups. The new results are, amongst others, an 
efficient alternative method to determine for space 
groups minimal sets of double-coset representatives and 
a general formula that gives the structure and number of 
left cosets that are contained in double cosets. Left-coset 
and double-coset decompositions of space groups are 
exploited in domain structure analysis. 

1. Introductory remarks 

The aim of this paper is to investigate left- and double- 
coset decompositions of space groups with respect to 
subgroups of finite index. Two approaches are avail- 
able, either to apply straightforwardly a theorem of 
Frobenius or, what we describe here in detail, to tailor 
an alternative procedure that exploits the specific 
structure of space groups. Both approaches have been 
implemented in a software package (Davies, Dirl, 
Zeiner & Janovec, 1993), the details of which will be 
described elsewhere. The main idea, based on 
Hermann's theorem (Hermann, 1929), is to split every 
group-subgroup relation into well defined subgroup 
chains. The first step is to reduce the group G to that t 
intermediate subgroup .M, where t is synonymous with 
translationsgleich (Hahn, 1992), whose point-group 
operations are confined to those of the given subgroup 
7-(. The second step is to reduce the group .A4 to the 
given subgroup 7¢ by thinning out the translations, 
which implies that ~ forms a k subgroup of the former, 
where k is synonymous with klassengleich (Hahn, 
1992). 

Physical applications of coset and double-coset 
decompositions of space groups with respect to sub- 
space groups follow the mathematical part. The role of 
symmetry considerations dealing with group-subgroup 
relations of space groups in structural phase transitions 
is widely accepted. Symmetry specifies transformation 

properties of the order parameter and determines the 
form of the Landau thermodynamic potential (Izyumov 
& Syromyatnikov, 1990; Stokes & Hatch, 1988; 
Tol6dano & Tol6dano, 1987). Whereas the order 
parameter is specified by symmetry operations pre- 
served at the transitions, for domain structures, lost 
operations are significant. The number and the relations 
between domain states and domain pairs can be found 
by grouping the lost operations into left and double 
cosets. Different types of domain states can be related to 
subgroups retaining characteristic domain properties. 
For more details, the reader is referred to Janovec 
(1972), Van Tendeloo & Amelinckx (1974), Janovec 
(1976), Janovec & Dvo~kovfi (1974), Janovec, 
Dvo~fikovfi, Wike & Litvin (1989), Izyumov & 
Syromyatnikov (1990), Janovec, Litvin & Fuksa 
(1995) where many other aspects are likewise treated 
and examples are discussed at length. Here we discuss 
also an example to demonstrate the usefulness of coset 
and double-coset decompositions in the analysis of 
domain structures. 

2. Double cosets of space groups 

2.1. Notations and conventions adopted for space 
groups 

Every space group ~ is fixed by its translation group 
T,  its point group 79, and its setting. In other words, we 
assume G = {T, 791o, we}, where o denotes its origin 
and w e -- {wjlRj 6 79} its set of fractional translations. 
The setting of space groups can be changed by shifts of 
the origin and/or reorientation operations. We say a 
space group is in a standard setting if it coincides with 
the settings given by Cracknell, Davies, Miller & Love 
(1979), which in almost all cases are identical with the 
first standard choices given in Hahn (1992) (see Stokes 
& Hatch, 1988). Recall that to describe space groups 
one can use either the algebraic approach (Ascher & 
Janner, 1965, 1968/69, Mozrzymas, 1 9 7 5 ) o r  the 
geometric approach (Hahn, 1992). In detail, the group 
elements of the space group ~ are symbolized by G ~ G, 
where G =  (Rjlwj+ta).  The entries ta ~ T denote 
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arbitrary elements of the translation group T ,  which are 
integral linear combinations of a fixed set of primitive 
basis translations {t~, t~, t3}. The entries wj are f r a c -  
t ional  translations that are uniquely associated with the 
rotational parts Rj of G ~ ~, and the symbols R: ~ 79 are 
the elements of the point group 79. We adopt the 
convention w i ~ E(T),  where E(T)  denotes the primi- 
tive cell of 7". The composition law of ~ reads 

(Rjlwj + ta)(Rklw k + t b) : (Rj~[wjk + tj~ -+- t~ + R:tt,), 

(1) 

where the fractional translations w:/, ~ E ( T )  are 
assigned to Rjk = RjR  k, respectively. Note that for the 
special translations tjk = wj + R j w  k - Wjk ~ T must 
hold. 

2.2. Genera l  remarks  on coset  a n d  double -cose t  
decompos i t ions  

Here, the problem consists of decomposing a given 
space group G into double cosets with respect to a given 
g subgroup ~ ,  where g is synonymous with genera l  
subgroup. The subgroup 7-/ is determined by its 
translation group S, its point group ~ ,  and its setting 
that is partly fixed by the setting of G. In other words, 
we have 7-/= {S, Rio ' ,  zn}, where o' denotes its origin 
and z R -- {ZmlS m S 7~} its set of fractional translations. 
In detail, we have z m -- w m -11- tm n for all S m ~ ~ ,  where 
tm n s T together with Stun = Zm + Smzn -- Zm, ~ S for all 
S m, S~ ~ 7~ must be satisfied. Recall that the subgroup 
relations S C T and 7~ C 79 are only necessary condi- 
tions to establish group-subgroup relations between 
space groups (Senechal, 1980; Dirl & Davies, 1993). 
Note that in general the subgroup ~ refers to a different 
origin o' and hence need not necessarily be in a standard 
setting although the space group G is assumed to be a in 
a standard setting. However, here we do not deal with 
the problem of identifying g subgroups with their 
image-space groups in standard settings, which is a 
problem in its own right (Hatch & Stokes, 1985; Stokes 
& Hatch, 1988). Here, the group elements of the 
subgroup 7-/ are symbolized by H ~ 7-/, where 
H = (Sklz k + sh). The entries sb s S denote arbitrary 
elements of the subgroup S, which are integral linear 
combinations of a fixed set of primitive basis transla- 
tions {s 1, s 2, s3}. We assume 

s = t ~,  (2) 

where t = (tl, t2, t3) and s - (s 1, s 2, s3) are formally 
written as row vectors. Thus, the elements of the basis 
{s~, s 2, s3} are correlated with the elements of the basis 
{ t  1, t: 2, t3} by a non-singular integral matrix 1~ whose 
determinant is greater than one if S is a proper 
sublattice of T.  Recall that the entries z k ~ E(S) are 
fractional translations that are uniquely associated with 
the rotational parts S k of H ~ 7-(, where E(S) denotes 

the primitive cell of S and the symbols Sk ~ ~ are the 
elements of the subgroup ~ .  

Left- and double-coset decompositions of the space 
group G with respect to the fixed subgroup 7~ are written 
symbolically as follows: 

G = U G ,  ~ (3) 
G~(7-/) 

g = U 7-/.  G .  7-/, (4) 
Ge za~7(7-/) 

where the asterisk • indicates set multiplication. The 
entries 2(7-/) denote sets of coset representatives of G 
with respect to 7-/while the entries AG(7-/) denote sets of 
double-coset representatives of G with respect to 7-/. 
Once a left-coset decomposition of ~ with respect to 7-/ 
is determined, the task is to find an admissible minimal 
subset AG(7-/) ___ ~(7-() such that (4) holds. Every double 
coset ~ • G • 7-/must contain left cosets G ' G  • ~ as a 
whole entity. This entails that 7-/. G .  7-( must be 
representable as a union of mutually disjoint left cosets 
G ' G  • 7-[, where G' ~ ~. Let 7-/(G) = H  :q G • H • G -1 , 
then we may state the well known theorem. 

Theorem: Let ~ • G • 7-( be a double coset of G with 
respect to the given subgroup 7-/and 7-( ---- UA A • ~ ( G )  
a left-coset decomposition of ~ with respect to the 
intersection group 7-/(G), where ~ [ ~ ( G ) ]  = {A} de- 
notes a set of left-coset representatives, then we have 

7-[ • G • 7-[ = [ .JAG • 7-[. (5) 
A 

From this, the theorem of Frobenius, it follows 
immediately that the number of the left cosets A G  • 7-[ 

contained in the double coset 7-/• G • 7-( is identical to 
the index of the intersection group ~ ( G )  with respect to 
the subgroup 7-/ of •. For more details or some other 
aspects concerning double-coset decompositions, the 
reader is referred to standard references (Frobenius, 
1895a,b; Bradley & Cracknell, 1972; Speiser, 1937; 
Hall, 1959; Kurosh, 1960; Huppert, 1967; Scott, 1964; 
Kochend6rffer, 1966). Symbolically, we write 

17-[ * G • 7-[ • A G  • 7-[I = ]~  " H(G)I, (6) 

which we especially employ in the case of space 
groups since the double and left cosets that we 
consider are infinite (countable) sets whose relative 
indexes are assumed to be finite. We show that the 
construction of intersection groups 7-/(G) and the coset 
decompositions of ~ with respect to the various 7-/(G) 
can be circumvented when decomposing G into 7-/ 
double cosets. We also give the 7-/ left-coset decom- 
positions of 7-( double cosets ~ .  G .  ~ without using 
the Frobenius theorem but compare the results with 
the Frobenius theorem in the case of t and k 
subgroups. 
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2.3. Double -cose t  decompos i t ion  with respect  to t 
subgroups  

Let G be a space group and ~ a fixed t subgroup, 
which implies S = 7- and T ¢ c  79, respectively. Once 
we know a double-coset decomposition of 79 with 
respect to TO, namely 

79 = [.J T¢ • B a • TO, (7) 
Ba~ AT~(R) 

where Ba ~ 79(R) symbolizes its left-coset representa- 
tives and A79(R) _ _ ( R )  a minimal set of double-coset 
representatives, then the corresponding double-coset 
decomposition of ~ with respect to the t subgroup 
reads as follows: 

= [_J 7-( • (Balwa) * 7-(. (8) 
aa~AP(~) 

Here, the entries w e are the fractional translations that 
are uniquely assigned to the rotational parts B e ~ ~ ( ~ ) .  
Though trivial, we also state for the sake of complete- 
ness the decomposition of the ~ double cosets into 
left cosets. We have 

, ( B a l w a ) ,  ~ = [.J (SllWt)(Balwa) • 7-[, (9) 
S~R__[~(Ba)] 

where S l ~ __R[Tg(Ba)] are left-coset representatives of R 
with respect to TC(Ba). This result is in one-to-one 
correspondence with the Frobenius theorem (5) since 
the intersection group ~ C3 (Balwa) • 7-[ • (Balwa) -~ 
reduces to a space group whose point group is confined 
to the intersection group TC(Ba) -- T¢ ~ B a • T¢ • Bg ~ . 

2.4. Double -cose t  decompos i t ion  with respect  to k 
subgroups  

Now let ~ be a space group and 7-( a k subgroup. This 
implies not only that S c 7- and 7~ = 79 has to be 
satisfied but also that the sets of fractional w e and zp are 
compatible in the previously stated sense. To deduce a 
coset decomposition of G with respect to its k subgouv 
~ ,  we state at first coset decompositions of ~ and of 7-( 
with respect to their translation groups. In detail, we use 
the expressions G = I,_J_R:~, (Rjlwj)  • 7- and likewise 
7 - [ = I , . J R : ~ , ( R i l z j ) , S .  Next, we employ the coset 
decomposition of 7- with respect to S, namely 
7- = I,]tc (Eltc) * S, which entails 

= [.J(Eltc) * ~ (10) 
tc 

with tc ~ W(S) N 7-, where W(S) denotes the Wigner- 
Seitz cell of the sublattice S. 

Because of 7-/• (Eltc) * 7-( = ~ • (EIRjtg • ~ ,  we 
infer that 7~ • (EIRjtc) * 7-( contains all cosets 
(EIRjtg , ~ ,  where Rj ~ 79 varies over the whole 
point group. Moreover, let 79(tc) = {Rj ~ 791Rjt c = 
t~+t(Rj)} be the group of the t~ vector, where 

t(Rj) ~ S  is assumed. Then, every double coset 
• (EIt~) • 7-( can be expressed by 

7-( • (Eltc) • ~ = I,.J (EIRkt~) • 7-(, (1 1) 
Rk ~E[P(tc)] 

where 79179(tc) ] denotes a set of coset representatives of 
79 with respect to 79(tc). We define for every 
t~ ~ W(S) n 7- its left-coset decomposition of 7:' with 
respect to the corresponding 79(tc), which allows one to 
fix subsets AW(S) ___ W(S), hereafter called represen-  
tation domains ,  that contain from each tc star S(tcl7 9) 
one and only one element. Following the usual 
conventions, we denote by S(tc179)= {ta E 7-1L = Rktc, 
R k e 7 9} the t c star where t~ ~ zaW(S)n  7-. Thus, we 
arrive at 

G = U H * (Eltc) * H, (12) 
t,.~AW(Sy3T 

which represents the desired double-coset decomposi- 
tion of ~ with respect to the k subgroup 7-(. The proof of 
(12) is straightforward. Recall that the decompositions 
of 7-/double cosets into ~ left cosets is given by (1 1). 
To prove their one-to-one correspondence with the 
Frobenius theorem (5), one merely has to verify that 
every intersection group ~ f3 (Eltc) * ~ * (Eltc)- coin- 
cides with that t subgroup of 7-/whose point is restricted 
to 79(tg. 

2.5. Double-cose t  decompos i t ion  with respect  to g 
subgroups  

Finally, let ~ be a given space group and 7-/ an 
admissible g subgroup, which implies not only that 
S C T and T¢ C 79 simultaneously but also that the 
corresponding sets of fractional translations w e and z R 
are compatible. Remember the straightforward 
approach consists of applying directly the Frobenius 
theorem by passing over immediately to the g subgroup 
7-/without invoking any intermediate step. This would 
require the analysis of the structure of the intersection 
groups 7-((G) = ~ N G • ~ • G -1 , where G = (Rjlwj + 
L) e G and to decompose 7~ into left cosets with respect 
to the various ~ (G)  to eliminate redundant double 
cosets. 

However, we prefer to describe our combined 
approach. The first step of this approach is to reduce 
G to its corresponding t subgroup .M. The second step 
consists of reducing .AA to the given subgroup 7-(, which 
by definition forms a k subgroup of the former (see, for 
instance, Wondratschek & Jeitschko, 1976). First, we 
comment on the decomposition of G into ~ left cosets. 
The corresponding left-coset decompositions read 

= I,.J (BdlWd) * .A,4 (13) 
BdeE(~) 
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M -- U (gltc) * 7-/ (14) 
t,.E W(S)f~T 

G = UU(BdlWd)(EIL)  * ~ ,  (15) 
B d t,. 

where the last one is due to the sequence ~ $ .M $ ~ .  
To fix our conventions, we use exclusively the form 
(BdlWd)(Eltc) for the left-coset representatives of G with 
respect to 7-(. Their labelling is unique by fixing 
B d ~ ( R )  and likewise t~ E W ( S ) ~ 7 - .  Note in 
passing that the index of 7-/ in ~ can be expressed by 
I~" 7~1 = 1~(7~)IIW(S) n 7-1. 

2.5.1. Decomposit ion o f  ~ into ,AA double cosets. 
Since .A// always exists and by definition presents a t 
subgroup of ~, we merely have to apply (8) to express 
in terms of .A4 double cosets. 

= U M * (BdlWd) * M ,  (16) 
BdE ATg(~) 

where B d E ~ ( R )  varies over the minimal subset 
A79(7~) _ ~(7~) of left-coset representatives that define 
the corresponding double-coset decomposition of 7 9 
with respect to R.  Thus, the remaining task consists of 
expressing every .M double coset .M • (BdlWd) * A4 in 
terms of 7-[ double cosets. 

2.5.2. Decomposition o f  A4 double cosets into 7-[ 
double cosets. Here, we discuss all features of .M 
double cosets . M , ( B d l W d ) , . M  expressed by .M 
double cosets, which are independent whether 7-[ is a 
symmorphic or a non-symmorphic space group. By 
virtue of (14), we arrive at 

M * (BdIWd) * M = U 7-[ * (BdlWd)(Eltc) * 7-~ 
t,.eW(S)nT 

(17) 

since every translation vector satisfying tc + B d t  e = 
s a E S, where to, t e ~ W(S) ~ 7- can be re-absorbed 
into 7-/. Accordingly, the remaining task is to reduce 
W(S) to minimal sets AW(B d, S)___ W(S) such that 
H * (BdIWd)(EIt~) * H ~ H * (BdlWd)(Elte) * H = 121 for 
every pair of translations t c, t e E AW(B d, S) A 7-. Note 
in particular that the subsets A W ( B  d , S ) C W ( S )  in 
general depend explicitly on B d ~ A79(TeQ. 

The first restriction of W(S) to smaller subsets 
comes from the invariance of the double cosets 
7-[ • (BdlWd)(EIt~) , 7-[ with respect to arbitrary 
elements s o, s b ~ S, which can be written as 

7-[ * (BdlWd)(Eltc) , 7-[ 

-- 7-( * (BdlWd)(EIt~ + Bd~S~ + S b) * H. (18) 

By virtue of the invariance relation (18), which must 
hold for all Sa, S b ~ S, we infer that whenever 
tc = B d ~ Sa + s b E W(S) M 7- is realized, then 
7"[, (BdlWd)(Eltc) , 7-[ = 7-[ * (BdlWd) , 7-[ must be 
valid since every t~ = Balsa + sh can be re-absorbed. 

Note in particular that, for every fixed B d E A~(']'~), the 
sets of translations defined by 

S ( B d )  = {t ~ T i t  = n d l S a  + S b, S a, S b E S }  = S ~ n d l S  

(19) 

form subgroups of the translation group 7-, which may 
contain S itself as a proper subgroup. In other words, 
S c S (Bd)c  7-, which implies that we must have 
S N BdS cc_ S and likewise S t~ Balls C 7-, whereas 
the union sets S U B ~ S  in general do not form groups 
though S and B ~ S  are proper subsets of 7-. Apart from 
this, it follows from (17) and (18) that 

.All , (BdIWd) , .A4 = U 7"( * (BdlWd)(Elt~) * H, 
t c E W[S(B d )]A'/- 

(20) 

where W[S(Bd) ] denotes the Wigner-Seitz cell of the 
intermediate lattice S(Bd), which apart from special 
cases are proper subwedges of W(S),  i.e. 
W[S(Bd)] c W(S) since in general S(Bd) contains S 
as a proper subgroup. After these preliminary restric- 
tions of W(S) to smaller subsets, which do not rely upon 
the specific structure of symmorphic or of non- 
symmorphic k subgroup 7-/, we consider separately in 
the following the implications coming from sym- 
morphic and from non-symmorphic space groups. 

Symmorphic 7~: decomposition of  M double cosets 
into 7-( double cosets: First we assume that ~ forms 
a symmorphic k subgroup of .A//, which represents 
the simpler situation. Let 7~ • (BdlWd)(Eltc),  7-( be a 
given 7-/ double coset, where B d ~ A79(7~) and 
t c E W[S(Bd) ] A 7-, then 7-[ • (BdlWd)(Eltc),  7-[ = 
7-[ * (SjBdS~XIWd + Vjd)(ElSktc), 7-[ for all Sj, S k E 
and where V j d -  Sj.w d - w  d can be interpreted as a 
Bd-dependent shift of the origin. This implies that all 
elements (SjgdS~llWd +Vjd)(ElSit,. ) are likewise con- 
tained in the 7-( double cosets 7-( • (BdlWd)(Eltc),  7-(, 
respectively. To prove this, one has to use the 
composition law of • and in addition that zj = wj = 0 
for all Sj E ~ since the g subgroup 7-[ is assumed 
to be symmorphic and G in a standard setting. Here it is 
worth emphasizing that the space-group elements 
(SjBdSk I ]Wd+Vjd ) cannot be factorized since in general 
neither (SjBdSklIWa) E ~ n o r  (EIVjd) E ~ holds true. 
However, if we take S i = BdQiBd 1 E ~(Bd)  with some 
Qj ~ 7~ and in particular S[  ~ :- Bd~SflBd = Qf~, then 
the coset representative B d E AT'(R) is mapped onto 
itself and one arrives at the identities 7-[,(BdlWd)- 
(Eltc) * H = 7-/* (BdlWd)(EIBdlVjd + Skt~) ,  7-/, which 
hold for all Sj, S k E ~ .  Moreover, note that Vjd E 7- 
must hold for all Sj ~ ~(Bd) ,  which implies that Vjd can 
be interpreted as a trivial shift of the origin. If we take 
some Sj ~ l ~ ( B d )  together with S k = E ,  then 
B d e A79(R) is mapped onto some equivalent element 
of the same ~(7~; Bd) orbit ~(7~; Bd)= {B e E ~(7~)lBe = 
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SeB d, S e ~ T4[7~(Bd)]} and hence must lead to an 
equivalent but different 7-[ double coset. 

For this reason, we restrict the range of variation of 
the point-group elements to the intersection group 
TZ(Bd) in order to ensure that the respective 
B d ~ A79(~)  remains unchanged. Next, we have to 
analyse for fixed B d and any given translation 
t¢ ~ W[S(Bd)  ] the following set of translations 
S[t~l~(Bd)] = {L s T I L = Q j t c + v ~ d } ,  where QjET"~(Bd) 
and the special translations V)~d = QjBdlWd- -Bd lWd 
have to be taken into account. For obvious reasons, 
every set S[t~IT~(Bd) ] is called a generalized TZ(Bd) star 
since it may contain a shift of the origin in the case of 
non-symmorphic space groups G. Of course, if the 
space group G is symmorphic then all T'(~) stars reduce 
to ordinary stars. However, if ~7 is non-symmorphic 
then at least one generalized R(Bd)  star must be 
investigated. Now, if we take from each TZ(Bd) star 
one and only one element, then the corresponding 
subset ,4W[,-q(Bd) ] c W[S(Bd) ] contains a minimal set 
of coset representatives. Hence, we arrive at the final 
expressions 

M * (BdlWd) * M = U 7-[ • (BalWd)(Eltc) * 7-t 
tc6AW[S(Bd)]AT 

(21) 

G - U U "It • (Bdlwd)(Eltc) * 7-[, (22) 
B d E AP(T~) t c E AW[S(B d)]nT 

where the first formula represents the desired double- 
coset decomposition of every A4 double coset into its 
corresponding 7-[ double cosets and where the second 
formula is straightforwardly obtained by combining 
(16) and (21) in consecutive order. 

To summarize (22) presents the double-coset decom- 
position of the space group ~ in terms of the 
symmorphic g subgroup 7-[. For convenience, we 
recapitulate the basic steps of our approach to determine 
systematically double-coset decompositions of given 
space groups into double cosets of symmorphic g 
subgroups. In detail, one has to determine (i) the 
minimal set A79(7~) _ ___(~), (ii) the auxiliary transla- 
tion groups S(Bd) = S t~ B d I S  c T ,  (ii!) the Wigner- 
Seitz cells W[S(Bd)  ] c W(S), (iv) the 7~(Bd) stars 
S[tclTC(Bd) ], and (v) the corresponding representation 
domains AW[S(Bd)  ] c_ W[S(Bd)], in order to be able to 
write down the double-coset decompositions (22) where 
only in step (iv) does the symmorphic structure of the g 
subgroup enter essentially. 

Non-symmorphic 7-[: decomposition o f  .A4 double 
cosets into 7-( double cosets: Here we assume that 7-( 
forms a non-symmorphic g subgroup of the space group 
G. It is immediate from the preceding discussion that up 
to (20) the reduction steps are identical since they do not 
depend on the peculiarities of symmorphic or non- 
symmorphic space groups. Thus, we may start from 
(20) where the translations t,. ~ W ( S ) n  T again are 

restricted to the sets W[S(nd) ] 0 "1" that refer to the 
corresponding intermediate translation groups S(Bd), 
which have been defined in (19). Recall that since ~ is 
non-symmorphic we have zj = w j  + ~ ,  which must 
hold for all Sj 6 7~, where, due to the conventions 
t~ ~ E(S) N T,  the special translations ~ are uniquely 
determined. By the same arguments, which now are 
more involved, one ends up with the following 
identities: 

7-t • (Belwd)(EIt c) • 

= ~ * (Bdlwe)(EIQjt¢ + yj + ~)  * ~ ,  (23) 

where the extra symbols yj _ v)d ~ + xj,; V)d~ ~. QjBd 1 w d -- 
BdlWd, Xj = B dlw I -- wj, ~ = B d ' ~ "  - ~ are intro- 
duced as shorthand notations, and where Qj ~ Tg(Bd) is 
assumed. Recall that the fractional translations w d and 
wyj are assigned to B d and to BdQjBd 1 , and the primitive 
translations t~ and ~d are assigned to Qj and to 
BdQjBd I . We define generalized TZ(Bd) stars as follows: 
S~s[tclT~(Bd) ] = {t a E TIL - Qjt,. + yj + ~}, where V)~d 
define some shift of the origin, but xj, apart from 

~ T ,  some non-trivial transformations. If we ignore 
these subtleties, it allows us to define representation 
domains AWns[S(Bd) ] C W[,S(Bd) ] by taking from each 
T~(Bd) star Sns[tclTg(nd) ] one and only one element. 
Thus, we arrive at 

M • (BdlW d) * M -- U 7-[ • (BdlWd)(Eltc) • 7-[, 
t: ~ A Wns[S(B d)]f'l"T 

(24) 

which looks identical to (21) but in fact differs 
essentially in the definition of the generalized 
T~(Bd) star S,s[tcl~(Bd) ] and their corresponding 
representation domains AWns[S(Bd) ]. Once the 
representation domains AWn~[S(Bd) ] are determined, 
the last step consists of combining (16) with (24) to 
arrive at 

g = U U H * (BdlWd)(Eltc) * H, 
Bd~ A_PP(7~ ) t,.~ A W~[S( Bd )]nl r 

(25) 

which represents the desired double-coset decomposi- 
tion of the superspace group G into a minimal number of 
7-t double cosets. As in the symmorphic case, we may 
summarize the procedure" In detail, one has to 
determine (i) the minimal set AP(T£) c_/9(/~), (ii) the 
auxiliary translation groups S(Bd) = S ~ T ~ - I s  c 7-, 

(iii) the Wigner-Seitz cells W[S(Bd) ] ~ W(S), (iv) the 
l~(Bd) stars Sns[tc[TZ(Bd) ] and (v) the corresponding 
representation domains AWns[S(Bd) ] c_ W[S(Bd) ] in 
order to be able to write down the double-coset 
decompositions (25) where only in step (iv) does the 
non-symmorphic structure of the g subgroup enter 
essentially into the discussion. 
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2.6. Decomposition of  double cosets into left cosets 

The remaining task is to decompose the 7-( double 
cosets 7-( • (BdIWd)(Eltc) * 7-[ that occur in (22) and (25) 
into their corresponding left cosets (BllWl)(Elta)* 7"[. 
This can be done simultaneously for both types of 
subgroups. The most natural strategy is use the 
decomposition of 7-[ into ./V" d left cosets, where the 
auxiliary subgroups .N" d of 7-t are determined by 
restricting in 7-[ the point group R to the corresponding 
intersection groups R(Bd) with B d ~ z iP(R) .  

~ =  I,,J (S/Iz/) * A:d. (26) 
S:~[~(Sd)] 

This implies that when acting from the left on the coset 
(BdlWd)(E[tc) • 7-[ in order to determine the distinct 7-/left 
cosets, we take for the ~ space-group elements the 
sequential order (S/IzI)(EISa)(Rj]zj), where R j =  
BdQjBd 1 ~ R(Bd) and s a ~ S, and finally S /~  R[R(Bd) ] 
is assumed. The idea is that (Rjlzj) and likewise (E[so) do 
not change ( B d l W d ) ,  whereas only the last step, namely 
the application of every (S t Iwl) transforms (B d [Wd) into 
different elements (B t [wt) mod H. 

The elements (Sjlzj)(ElSo)(Rj[zj) are applied to the 
left cosets (BdlWd)(Eltc). H in consecutive order. The 
first step consists of proving (Rjlzj)(Ba[Wd)(Elt~). 7-[= 
(Bd]Wd)(E]tj) • 7-l, where Rj = BdQjB d' ~ R(Bd) has to 
be taken into account. A straightforward manipulation 
yields for the corresponding translations tj ~ T the 
expressions tj = Qjt c + ~ + yj, which are in coinci- 
dence with the definition of the generalized R(Bd) stars. 

To label for fixed B d ~ ziT'(R) and given 
t c ~ ziW[S(Bd) ] A T ,  the translational part tj of the 
corresponding left-coset representatives that come from 
the application of (BdQjBd llzj) with varying 
Qj ~ R(Bd), we proceed as follows: For a given 
tc ~ ziW[S(Bd) ] N 7 ,  we construct its corresponding 
stabilizer group R(tclBd) = {Qj E R ( B d ) I Q j t  c =- tc} and 
likewise determine a set {Fj} of left-coset representa- 
tives of R(Bd) with respect to R(tclBd). Accordingly, 
we define for t~ the elements of the corresponding 
~(Bd) orbits according to the following conventions: 
t~j = Fit c + ~ + yj, where Fj ~ R(Bd) : R(tclBd) is 
assumed. Thus, for fixed B a, fixed tc and varying Qj, 
the number of different 7-( left cosets coincides with the 
order IS[t~lR(Ba)]l of the corresponding R(Bd) star. 

The second step consists of applying (ElSa) to the left 
cosets (BdlWd)(Eltcj) • 7-[, where in particular 
tcj ~ S[tclR(Ba)] and so ~ 8 is assumed. A straightfor- 
ward application of the composition law of G yields 
(EISo)(BdIWd)(EItcj) = (BdIWd)(EItcj + B~S,,). Accord- 
ingly, if the translations s a = sk ~ S are chosen such 
that Bd~S, = s~ ~ S(Bd)" 8 are the (left) coset repre- 
sentatives of 8(Bd) with respect to 8 ,  then 

(Elsk)(Balwa)(Elic) * 7-t = (Balwa)(Elicj + s~) • 7~ 

(27) 

defines additional mutually disjoint 7-t left cosets 
that are contained in the original ~ double coset 
7-(.(BdlWd)(Eltg.7-[. Thus, for fixed tcj e S[t~IR(Bd)], 
the number of different 7-t left cosets coincides with 
I8(Bd) " 8[, which is the index of 8 in 8(Bd). 

The final step consists of applying the left-coset 
representatives (Stz/) to the left cosets (Bd[Wd)(E[tcj + 
S~k) * 7-t, where S t ~ R[R.(Bd) ], in order to determine the 
remaining associated 7-t left cosets. We adopt the 
conventions R l = StB d in order to fix the left-coset 
representatives that refer to z iP(R) .  Again, simple 
manipulations ^yield the following identities: 
(Sllzt)(BdlWd)(gltcj + s~) -- (Rtlwt)(Eltcj + s~ + Tt) with 
T / = B s 1 [ S l l ( t l d + ~ ) ]  as special translations and 
where t/d -- W t + Rtw d -- W/d ~ T has to be taken into 
account. What remains to be checked is whether the 
special translations T t can be re-absorbed or contribute 
non-trivially to the translational part of the left-coset 
representatives. Apart from this technical detail, we 
arrive at the final formulae 

, (BdlWd)(Eltc), 7-[ = I,](Rtlwt)(Elicj + s~ + T/) * 7-/ 
tkj 

(28) 

N ( n a l t c ) -  IR : R(Bd)IIS(Ba) : 811R(Bd) : R(tclna)l, 
(29) 

where N(Baltc) denotes the number of 7-/left cosets that 
are contained in the corresponding H double coset 

• (BdlWd)(Eltc) • 7-[. Accordingly, the non-trivial by- 
product of our analysis is that we can give a closed 
expression, namely (29), for the number of 7-/left cosets 
that are contained in 7-/double cosets without referring 
to the Frobenius theorem. 

3. Physical applications 

3.1. Left-coset decompositions and single domain states 

Let us consider a structural phase transition accom- 
panied by a symmetry reduction. Then, the space group 
7-[ of the ordered (distorted) phase is a proper subgroup 
of the space group G of the disordered (parent) phase, 
7-t C G. Owing to this symmetry reduction, the ordered 
phase is degenerate: it can appear in several crystal- 
lographically equivalent (with respect to 9-') homoge- 
neous ordered structures that differ only in orientation 
and/or position with respect to the coordinate system of 
the disordered phase. These crystallographically 
equivalent ordered structures are called single-domain 
states (SDS's) or variants (Van Tendeloo & Amelinckx, 
1974), and will be denoted ~l ,  ~2 . . . . .  ~,,. 

The set of all SDS's forms a G orbit (we shall further 
use the term orbit for G orbit unless mentioned 
otherwise), Go  ~l  - {~l, ~2 . . . . .  ~.}. This means 
that for any two SDS's ~/, ~j there exists an operation 
G ~ ~ such that ~j - G <> ~i. The stabilizer (isotropy 
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group) Staba(~j) of ~j in G is the maximal subgroup of 
that leaves ~j invariant, 

~ j  = Staba(~j) = {G ~ ~;IG <> ~j. = ~j},j -- 1,2 . . . . .  n. 

(30) 

The space group 7-/j describes the symmetry of the 
single-domain state ~j. For simplicity and better 
correspondence with §2, we put ~1 =7-/, i.e. we 
choose for ~1 a SDS for which ~ is the stabilizer. 

There is one-to-one correspondence between the left 
cosets of 7-/ in the decomposition [compare with (3), 
now the coset representatives are endowed with sub- 
scripts] 

G = U Gt*7-[ (31) 
Gte~_(H) 

and the single-domain states of the orbit ~ o ~l ,  

<> ~1 = {~1, ~2,,  ~,,} (32) 

with ~ t = G t < > ~  where Gt, l =  1,2 . . . . .  n, are the 
representatives of the 7-[ left cosets in the decomposition 
(31) and where for the representative G1 of the first 
left coset the identity operation is chosen. The stabilizer 
of the domain state ~t = Gt<>~] is equal to 
7 ~ t = G t . H . G t  -1. The number n of SDS's equals 
the index of 7-[ in ~, n = I~:~l (see e.g. Janovec, 
1972; Van Tendeloo & Amelinckx, 1974). 

In a general case, 7-[ is a g subgroup of ~. Then there 
always exists an intermediate group .AA that is a t 
subgroup of ~ and k supergroup of ~ (see §2.5) and the 
decomposition of ~ into left cosets of 7-/ can be 
performed in two steps: (i) The decomposition of 
into m left cosets of .A4 [see (13)], m = I~:MI = 
1791 : 17el, where 79 and 7~ are point groups of ~ and .M, 
respectively, and 1791 and I~1 are the order of 79 and ~ ,  
respectively. (ii) The decomposition of .A4 into d left 
cosets of 7-[ [see (14)], d = I.A4:7-/I = I T : S I  = 
I t ~ l =  Vs: V~r, where 7 and S are translation groups 
of .M (and of 9-3 and 7~, respectively, I t~l is the 
determinant of the matrix t~ [see (2)] and V s and VT- are 
the volumes of the primitive unit cells of S and 7", 
respectively. 

The set of all n = md left cosets of 7-/can in this way 
be partitioned into m subsets each consisting of d ~ left 
cosets and, correspondingly, the n single-domain states 
of the orbit ~ <> ~1 can be divided into m subsets, each 
of which comprises d SDS's. From (13) and (14), it 
follows that the SDS's of the first subset 
{~I, ~2 . . . . .  ~d} can be related by pure translations 
(EIt~) from the set W ( S ) ~  7", which can be identified 
with translations lost at the transition from ~ to 7-(. 
Every other subset of SDS's consists of other d SDS's 
that can again be related by (generally other) trans- 
lations lost at the transition. Thus, each subset 
comprises all SDS's with the same macroscopic 
tensorial properties. The stabilizer of the first subset is 

equal to the group .M. From (13), one can deduce that 
different subsets are related by operations containing 
rotations or rotoinversions and possess, therefore, 
different tensor properties. The subsets thus correspond 
to ferroic (orientational, tensorial) single-domain states 
or orientational variants. The number d can be called 
translational degeneracy of ferroic domain states. This 
partitioning enables one to introduce a convenient 
labelling of SDS's: The subscript l = (j, a) of a SDS 
~t = ~(j.,,) consists of two numbers: the first one, 
j = 1,2 . . . . .  m, specifies the ferroic SDS, the second 
one, a = 1,2 . . . . .  d, specifies the position of each SDS 
within the subset. This label can also be written in a 
short form, namely j , .  Other divisions of SDS's, e.g. 
according to their tensor properties, can be performed 
and is discussed elsewhere (see e.g. Janovec, Litvin & 
Fuksa, 1995; Fuksa 8,: Janovec, 1995). 

3.2. Double cosets and orbits of domain pairs 

Structures of SDS's can coexist in a domain structure 
that consists of domains (connected regions with 
homogeneous bulk structures of SDS's) and domain 
walls (boundaries between neighbouring domains). To 
study possible relations between structures of two 
domains, a concept of a pair of domain states, domain 
pair for short, has been introduced (Janovec, 1972). 

An ordered domain pair (ODP) consists of the first 
SDS ~; and a second SDS ~i, both from the same orbit 

~ ~l;  such an ODP will be denoted (&i, ~j). An ODP 
with a reversed order of SDS's is called a transposed 
ordered domain pair, (~j, ~i) - (~i, ~j)T. An ODP 
(~i, ~j) is unequal to the transposed ODP (~j, ~i) unless 
i = j  (trivial ODP). Two ODP's (~i, ~/) and (~k, ~t) 
are crystallographically equivalent with respect to G if 
an operation G ~G exists such that ( ~ k , ~ l ) =  
(G <> ~i, G o ~i)" The ODP's can be classified in the 
following manner. An ODP (~i, ~j) is transposable 
(ambivalent) if it is crystallographically equivalent with 
the transposed ODP (~j, ~i), i.e. if such an operation 
G ~ ~ exists that (~j, ~ i )  = (G <> ~i, G <> ~j). If this 
condition cannot be fulfilled, the ODP is non-transpos- 
able (polar). Then the ODP and the transposed ODP are 
called complementary non-transposable ODP's. 

The crystallographical equivalence divides the set of 
all ODP's that can be formed from G <> ~,, into orbits 
(classes of crystallographically equivalent ODP's) 
~ ( ~ i ,  ~j). The representative ODP's of the orbit 

<> (~i, ~j) can always be chosen in such a way that the 
first SDS is ~ ,  i.e. a representative ODP has the form 
(~1, ~k). The attributes transposable (ambivalent), non- 
transposable (polar) and complementary are class 
properties, i.e. ODP's in an orbit are either all 
transposable or all non-transposable and all transposed 
ODP's of a non-transposable orbit constitute another 
disjoint complementary non-transposable orbit. 
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Recall that the group G can always be decomposed 
into disjoint double cosets of its subgroup 7-[ [compare 
with (4)]: 

G =  [3 7-[ * Gt * 7-[, 1 =  1 . . . . .  q, q < n. (33) 
G! E A__~( 7"[ ) 

An inverse ( ~  , G t , 7-[) -1 : H , G[ - 1 ,  7-[ of the 
double coset 7 - [ , G t , 7 - [  is either identical with 
7-/, G l ,7-/ or forms another double coset disjoint 
with ~ ,  G t ,7-[ .  We shall call the former type of 
double cosets self-inverse (ambivalent) double cosets 
and disjoint double cosets 7-[ • G l * 7-[ and 7-( • Gt  I • H 
complementary polar  double cosets. Then, a relation 
between double cosets 7-[ • Gt * 7-[ of the decomposition 
(33) and all possible orbits of ODP's formed from the 
orbit ~<> ~1 is expressed by the following theorem 
(Janovec, 1972): 

Theorem: There is a one-to-one correspondence 
between self-inverse (ambivalent) and complementary 
polar double cosets of the decomposition (33) and 
transposable (ambivalent) and complementary non- 
transposable orbits of ODP's. The representative 
ODP's of these orbits can be found in the form 
(~I' Gt <> ~1)' where G l E ~ are representatives of the 
double-coset decomposition (33). 

This theorem enables one to find from the double- 
coset decomposition (33) the number q of ODP orbits, 
their type (transposable or complementary non-trans- 
posable) and the representative ODP's for all orbits of 
ODP's. The ODP's from different orbits differ in at 
least some inherent properties, whereas ODP's from the 
same orbit have 'essentially equal' properties, i.e. after 
performing an operation G t ~ G their structures can be 
brought into coincidence. The division of ODP's into 
orbits thus reduces the task of examining n ( n - 1 )  
ODP's to a considerably lower (especially for large n) 
number q of representative ODP's. Properties signifi- 
cant for the whole orbit of ODP's [e.g. tensor 
distinction of domains (Janovec, Litvin & Fuksa, 
1995)] can be found by examining the representative 
ODP's of the orbits. Some conclusions can be drawn 
already from the type of the double coset, e.g. a 
necessary condition for the appearance of an incom- 
mensurate phase connected with a Lifshitz invariant is 
the existence of a complementary double coset in the 
decomposition (33) (Janovec & Dvoi'fik, 1986). Finally, 
we note that in the described analysis of orbits of ODP's 
the only input data are just two space groups 7-[ c G and 
no further information, e.g. crystal structures of both 
phases, is needed. 

3.3. Example 

To illustrate the procedure of finding double- and left- 
coset resolutions and their significance in domain 
structure analysis, let us consider the triply commensu- 

rate charge-density-wave domain states in the 2H 
polytype of TaSe 2 (Dvo~fik & Janovec, 1985). The 
ordered phase has • = P63/mmc (No. 194) symmetry 
and the disordered commensurate phase exhibits 
7-[ = Cmcm (No. 63) symmetry with tripled primitive 
translations along two hexagonal primitive lattice 
translations, hence 

3 0 0 
~ =  0 3 0 (34) 

0 0 1 

The group 7-[ is, therefore, a g subgroup with reduced 
point-group symmetry 7~ c 79 and reduced translation 
symmetry S c 7". There are m = 16/mmm :mmml = 
24 : 8 = 3 ferroic (orientational) SDS's and within each 
of them d = I~1 - 9 SDS's related by lost translations 
may exist. Thus, in all there are n - 3.9 - 27 SDS's. 
We shall perform the coset resolutions of G with respect 
to H following the procedure consisting in three steps 
described in §2.5 and 2.6. 

Step 1: Determination of the translationsgleiche 
subgroup A4 of G and double-coset decomposition of 

with respect to A4. In Hahn (1992), we find that 
.M = Cmcm (No. 64) with primitive lattice translations 
t 1, t 2, t 3 identical with that of the group ~. The double- 
coset decomposition of G with respect to .A4 is 
determined by double-coset decomposition of the 
corresponding point group 79 with respect to 7~. Since 
179 : 7~1 - 3, 79 consists of three left cosets of 7~. We 
choose the operation 6 (rotation of 60 ° around the 
sixfold axis) as the representative of the second left 
coset. The intersection group T~(6)= 2z/m z, hence 
from the Frobenius theorem it follows that the non- 
trivial double coset comprises two left cosets and the 
rotation 6 can be chosen as the representative of this 
double coset. The corresponding operation of the space 
group G is (61½t3) and the decomposition of ~ is 

= .M u A4 • (611 t3 ) , .A4. (35) 

Step 2: Decomposition of .A4 double cosets into H 
double cosets. The left coset decomposition of .A4 with 
respect to 7-[ is 

.A4 = [_J (11nlt 1 + n2t2) • 7-/. (36) 
n|.n2=O, 1,2 

The union translation groups [defined by (19)] are 
S(1) = S ( 6 ) =  S since the point-group operation 6 
leaves the sublattice $ invariant. The next task consists 
of determining generalized S[tclT~(Bd) ] stars, which are 
abbreviated by S(tclBd): 

S(tclBd) = {t,~ ~ TIt~ = Qktc + Yk + t~}, (37) 

where Qk E 7~(Bd) and the translations tc are elements 
of the corresponding Wigner-Seitz cell W[8(Bd) ] that 
can be likewise replaced by corresponding primitive 
cell E[S(Bd) ]. One can prove that Yk = ~ = 0 for all 
Ok E 7~(Bd) .  Simple manipulations yield 
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8(011) = 8(016) = {0} (38) 

S(tll 1 ) --- {t I , 2t I , t~ + t 2, 2t I + t2} (39) 

S(tall) = S(t216) = {to, 2t2} (40) 

S(t~ + 2t211) = S(tl + 2t216)= {tl + 2t2, 2tl +t2} (41) 

S(tl + t216) = {tl + to, 2tl + 2t2}. (42) 

(To adhere more closely to the international symbols, 
we have replaced in this example the symbol E of the 
identity operation by 1.) We can choose as representa- 
tion domains 

A W , , s [ S ( 1 ) ]  = {0, t 1 , t2, t l  -4- 2 t  2 } (43)  

AW,~[S(6)] = {0, t~, t 2, t I -4- t2, t~ + 2t2}, (44) 

which yields to the following double-coset decomposi- 
tions: 

A4 = 7-[ U 7-[ • (lit1) • ~ U 7-( • (lit2) • 7-t U. 

• (1 It1 + 2t2)* 7/ (45) 

. A 4 . 6 . . A 4  = ~ • (61 i t 3 ) .  7-/U 7-/• (61½t 3 + t l ) .  7-/ 

U 7-( • (611 t3 + t2) * 7-/U 

7-[ • (61½t 3 + t  I + t 2 ) .  7-[ U 

• (61½ t3 a t- tl + 2t2) • ~ .  (46) 

Step 3: Decomposition of the 7-[ double cosets into 7-/ 
left cosets (see §2.6). First, we determine the auxiliary 
subgroups N" d that appear in the decomposition (26). 
For B d - - l ,  we get .Af d = ~ .  For B d = 6 ,  the 
corresponding group .A/" d is the translationsgleiche 
subgroup of 7-( whose point group equals 7~(6)= 
2z/m z and the decomposition (26) is 

= A/'d U (21010) * A/'d, (47) 

where the twofold axis 210 is parallel to t I . The second 
task consists of determining the stabilizer groups 

T~(tclBd) -- {Qk ~ Tg(Bd)lQktc -= to}. (48) 

Straightforward calculations yield 

7E(011) = 7E (49) 

7"4(016)-- 7-4(6) (50) 

~ ( t l  I1) = 7~(t116) = 7~(t216) = R( t  1 + t216) 

- ~ ( t l  + 2t216) - {1,m z} (51) 

R(t211) = {1,201, m z, mi0 } (52) 

~(t~ + 2t211 ) = {1, 2~i, m z, mi2 }, (53) 

where the twofold axes along the secondary and tertiary 
symmetry directions are specified by the first two 
integer components of a vector along the symmetry axis 
and mirror planes perpendicular to the secondary and 
tertiary directions are specified by the first two Miller 
indices. These stabilizer groups provide the decomposi- 
tions of the ~ double cosets into the 7-[ left cosets. 

Table 1. Decomposit ions o f  the 7-[ double cosets into 7-[ 
left cosets 

Representatives of left cosets Type 

(110)(110) Self-inverse 
( 110)(11t2), ( 110)( l12t 2) Self-inverse 
(110)(1 It1), (110)(1 It1 + t2), (110)(112tl), 

(110)(112t 1 + 2t 2) Self-inverse 
(110)(11t~ + 2t2), ( 110)(112t~ + t2) Self-inverse 
(61½ t 3)(110), (310)(ll0) Self-inverse 
(61½t3)(1 Its), (61½ t3)(112h), (310)(11tl + t2), 

(310)(112tl + 2t2) Self-inverse 
(61½ t3)(11tl + 2t2), (61½t3)(112tl + t2), 

(310)(11tl + 2t2), (310)(112t~ + t 2) Self-inverse 
(61½ t3)( 1 It2), (61½ t3)(112t2), (310)( 1 It2), (310)(112t2) Complementary 
(61½t3)(llt~ + t2), (61½t3)(l12t~ + 2t2), (310)(llt~), ~ j polar 

(310)(112t I) 

The results are summarized in Table 1, where each 
row contains representative operations of all 7-/ left 
cosets that form one 7-( double coset. The representa- 
tives are expressed as products of two operations: The 
first one is the representative (BdlWd) of the .A4 left coset 
in the decomposition of ~ [see (13)]. There are three A4 
left cosets [with the representatives (110), (61½t3), (310)], 
which correspond to the three ferroic (orientationaI) 
domain states. The second operation of the product is 
the representative of the ~ left coset in the decomposi- 
tion of .A4 [see (14)]. There are nine such ~ left cosets 
[with representatives given in (36)] that correspond to 
possible locations of the ordered structure in each 
ferroic domain state. The last column specifies the type 
of the double coset [self-inverse (ambivalent) or 
complementary polar]. 

We see that six non-trivial double cosets are 
self-inverse (ambivalent), the last two are comple- 
mentary polar double cosets. Thus, 27 x 26 -- 702 
non-trivial ODP's  are partitioned into eight orbits 
and the representatives of these orbits are samples 
of all significantly different relations between two 
SDS's. 

Complementary polar double cosets are worthy of 
further attention since they indicate the possible 
appearance of incommensurate phases between parent 
and ordered phases. More detailed analysis (Janovec & 
Dvo~ik, 1985) has shown that one of these polar double 
cosets can generate 54 symmetry-equivalent coherent 
domain walls with negative energy; from these walls, 9 
different symmetry-equivalent incommensurate stripe 
phases, called block states, can be formed. These block 
states have equal energy and can, therefore, coexist in 
the form of blocks that are similar to domains. Rather 
complicated incommensurate structures consisting of 
such blocks were observed by electron microscopy 
(Chen, Gibson & Fleming, 1982). 

Finally, we summarize in tabular form the present 
example together with two other examples in order to 
demonstrate the obvious importance of software support 
(Davies, Dirl, Zeiner & Janovec, 1993). Further 
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Formula 

TaSe2 P63/mmc 
(No. 194) 

AusMn2 Fm3m 
(No. 225) 

IF 7 Im3m 
(No. 229) 

Table 2. Some comparative details of  three examples 

7-[ ~ d m n : dm n(n - 1) 

 mcm 
(No. 63) 3 9 3 27 702 

0 

C2/m [ 1 2 0 ]  
(No. 12) -2  3 0 7 12 84 6972 

0 0 1 

(No. 41) 2 0 8 12 96 9120 
0 2 

q - 1  

8 (1) 

9(1) 

30 (3) 

properties of domain pairs are discussed in Fuksa & 
Janovec (1995), Janovec, Litvin & Fuksa (1995) and 
Davies, Dirl, Janovec & Zikmund (1997). 

Recall that the entries n ( n -  1) in Table 2 give the 
number of the non-trivial ODP's ,  q -  1 the number of 
orbits of ODP's ,  and the numbers in brackets the pairs 
of non-self-inverse double cosets. The first example is 
described in detail in Dvoffik & Janovec (1985), the 
second in Van Tendeloo, Wolf  & Amelinckx (1977) and 
the third one in Tomaszewski (1992). 
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