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Abstract

We consider an unsteady 1D singularly perturbed convection–diffusion problem. We discretize
such a problem by the linear finite element method (FEM) on a Shishkin mesh and by a discon-
tinuous Galerkin method in time. We present optimal a priorierror estimates for low order time
discretizations.
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Introduction

We focus ourselves on the analysis of the solution of an unsteady linear singularly perturbed
convection–diffusion equation. This type of equation can be considered as a simplified model
problem to many important problems, especially to Navier–Stokes equations, which describe
compressible flow.

We discretize our equation in space by the simple conforminglinear finite element method
on a Shishkin mesh and then we discretize the resulting system of ordinary differential equations
by the discontinuous Galerkin method.

The space discretization of such a problem is a difficult taskand it stimulated development
of many stabilization methods (e.g. a streamline upwind Petrov–Galerkin (SUPG) method,
local projection stabilizations) and layer–adapting techniques (e.g. Shishkin meshes, Bakhvalov
meshes). For the complete overview see [6].

Considering the space discretization on Shishkin meshes, wewill follow the theory for
stationary singularly perturbed problems based on the solution decomposition, which enables
us to derive a priori error estimates independent of the diffusion parameter even with respect
to the norms (seminorms) of the exact solution, which can be also highly dependent on the
diffusion parameter. For the details see [6].

The discontinuous Galerkin (DG) method is a very popular approach for solving ordinary
differential equations arising from the space discretization of parabolic problems, which is
based on the piecewise polynomial approximation in time. Among important advantages we
should mention unconditional stability for arbitrary order, which allows us to solve stiff prob-
lems efficiently, and good smoothing property, which enables us to work with inexact or rough
data. We should also mention that the DG method is suitable for changes in our computational
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domain and in computational spaces, which allows us to exploit adaptivity during the computa-
tional process. For introduction to the DG time discretization see e.g. [8].

In [1] and [4] the authors study the DG method in time and the local projection stabilization
respectively the DG method in space on standard meshes for singularly perturbed problems.
The error estimates in these papers contain norms of the exact solutions which go to infinity if
the diffusion parameter goes to 0.

There are only few papers dealing with finite elements in space on the special meshes com-
bined with any discretization in time. We should mention [3]and [5], where the backward
difference formula (BDF) time discretizations and theθ–scheme are used and a priori error
estimates are derived. In [5] the authors also study the DG time discretization and derive sub-
optimal error estimates.

In contrast to the results in [5], we present a sketch of the proof of optimal error estimates
for the DG time discretization for lower convergence ordersin L∞(L2) norm.

The main difficulty in proving optimal error estimates for the DG time discretization com-
bined with a space discretization on a Shishkin mesh is the fact that we cannot employ a standard
technique of the proof, which is based on the construction ofa suitable projection, which en-
ables us to eliminate a discrete time derivative in the errorequation, see e.g. [7]. This technique
enforces us to do the upper bound of the projection error contained in stationary terms, which
depends on a higher time derivative of the exact solution inH1 seminorm, which depends on
the diffusion parameter.

1 Continuous Problem

Let us consider the 1D parabolic singularly perturbed problem

∂u
∂ t

(x, t)− ε
∂ 2u
∂x2 (x, t)+b

∂u
∂x

(x, t)+cu(x, t) = f (x), ∀x∈ (0,1), t ∈ (0,T), (1)

u(0, t) = u(1, t) = 0, ∀t ∈ (0,T),

u(x,0) = u0(x), ∀x∈ (0,1),

where functionsf ∈ L2(0,1), u0 ∈ L2(0,1), 0 < ε << 1 and functionsb andc are sufficiently
smooth withb(x) > β > 0. By substitution in time variable we can achieve

c−
1
2

∂b
∂x

(x) ≥ c0 > 0. (2)

Let us define the bilinear form

a(u,v) =
∫ 1

0
ε

∂u
∂x

∂v
∂x

+

(

b
∂u
∂x

+cu

)

vdx. (3)

To simplify the text we will use the following notation.(., .) and‖.‖ areL2(0,1) scalar product
and norm,|.|1 and‖.‖1 areH1(0,1) seminorm and norm.

It is possible to show that the solution has in general the boundary layer atx = 1. When
we assume sufficiently compatible data, we can avoid the existence of interior layers, which
enables us to concentrate on the boundary layer only, see [6]. Moreover, it is possible to prove

∣

∣

∣

∣

∂ k+ ju(x, t)
∂ kx∂ jt

∣

∣

∣

∣

≤C

(

1+
1

εkeβ (1−x)/ε

)

, ∀k, j ≥ 0. (4)

This result shows dependence of space derivatives onε, which complicates deriving of standard
a priori error estimates.
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1.1 Discretization

We want to discretize the problem (1) by the standard finite element method on Shishkin meshes
in space. This technique allows us to derive a priori error estimates that are independent ofε.
We define the parameter

σ =
5
2

ε
β

log(N), (5)

whereN is the number of mesh points. We assume our mesh points are equidistantly distributed
in intervals[0,1−σ ] and[1−σ ,1], with the same number of mesh points in both intervals. Let
us define the conforming linear finite element spaceVN on our mesh.

To discretize the problem (1) in time we assume the time partition 0= t0 < t1 < .. . < tr = T
with time intervalsIm = (tm−1, tm), time stepsτm = |Im|= tm− tm−1 andτ = maxm=1,...,r τm. We
denote the function values at the nodes asvm = v(tm). To be able to use the Galerkin type of
discretization we denote the space of piecewise polynomialfunctions

Vτ
N = {v∈ L2(0,T,VN) : v|Im =

q

∑
j=0

v j,mt j , v j,m ∈VN}. (6)

For the functions from such a space we need to define the valuesat the nodes of time partition

vm
± = v(tm±) = lim

t→tm±
v(t) (7)

and the jumps

{v}m = vm
+−vm

−. (8)

Definition 1 We say that the function U∈Vτ
N is the approximate solution to the problem (1) if

∫

Im
(U ′,v)+a(U,v)dt+({U}m−1,v

m−1
+ ) =

∫

Im
( f ,v)dt, (9)

∀v∈Vτ
N, ∀m= 1, . . . , r

(U0
−,v) = (u0,v) ∀v∈VN.

2 Error Analysis

We define the weighted norm

‖v‖2
ε = ε|v|21 +‖v‖2, ∀v∈ H1(0,1). (10)

It is possible to show that

a(v,v) ≥ min(c0,1)‖v‖2
ε ≥ 0. (11)

2.1 Stationary Problem

In this part we want to go through some well known results for the singularly perturbed prob-
lems (for the details see [6]). Let us assume a related stationary problem

a(u,v) = ( f ∗,v), ∀v∈ H1
0(0,1), (12)
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with some f ∗ : L2(0,1), and the corresponding discrete finite element problem on the layer–
adapted mesh. Let us define the Ritz projectionR : H1

0(0,1) →VN satisfying

a(u−Ru,v) = 0, ∀v∈VN. (13)

It is possible to prove following estimates:

‖u−Ru‖ε ≤ CN−1 log(N), (14)

‖u−Ru‖ ≤ C(N−1 log(N))2, (15)

with C independent ofε. For the proof see e.g. [6].

2.2 Radau Quadrature

Let us define the Radau quadrature on each intervalIm

Q[ f ] =
q

∑
i=0

wi f (tm,i), (16)

wheretm,i are Radau quadrature nodes inIm with tm,0 = tm. Such a quadrature has the algebraic
order 2q and the coefficients of the quadrature satisfy 0≤ wi ≤ τm.

It is possible to express our method (9) by

Q[(U ′,v)]+Q[a(U,v)]+({U}m−1,v
m−1
+ ) = Q[( f ,v)], ∀v∈Vτ

N. (17)

Since the equation for the continuous solution (1) is definedat every pointt ∈ Im, we can see
that

Q[(u′,v)]+Q[a(u,v)]+({u}m−1,v
m−1
+ ) = Q[( f ,v)], ∀v∈Vτ

N. (18)

2.3 Projections

We define the space

Vτ = {v∈ L2(0,T,H1
0(0,1)) : v|Im =

q

∑
j=0

v j,mt j , v j,m ∈ H1
0(0,1)}. (19)

We define the time projectionP : C([0,T],H1
0(0,1)) →Vτ , such that

Pu(t) =
q

∑
i=0

ℓi(t)u(tm,i), (20)

whereℓi is a Lagrange interpolation basis function for the quadrature nodetm,i. Since

RPu(t) = R
q

∑
i=0

ℓi(t)u(tm,i) =
q

∑
i=0

ℓi(t)Ru(tm,i) = PRu(t), (21)

we can see that projectionsP andR commute. We define the space–time projectionπ = PR:
C(0,T,H1

0(0,1)) →Vτ
N.

Now, we present some basic approximation properties of our projectionsP andπ.
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Lemma 1 Let u be the exact solution of (1). Then

sup
Im

‖Pu−u‖ ≤ Cτq+1, (22)

where the constant C does not depend onτ.

The proof can be made by standard arguments. It is an analogy to e.g. [2, Theorem 3.1.5] in
Bochner spaces.

Lemma 2 Let u be the exact solution of (1). Then

sup
Im

‖πu−u‖ ≤ C(τq+1 +(N−1 log(N))2), (23)

where the constant C does not depend onτ or N.

The proof of the lemma follows directly from estimates of theprojectionP andR and from the
triangle inequality.

2.4 Main Result

We are ready to present the main result.

Theorem 1 Let u be an exact solution of (1) and U∈Vτ
N be its discrete approximation given by

(9) with q= 0,1. Then

max
m=1,...,r

sup
Im

‖U −u‖ ≤C
(

(N−1 log(N))2 + τq+1) . (24)

To prove the theorem we divide the errorU −u into projection partη = πu−u andξ =
U −πu∈ Vτ

N. Then we subtract the equation for the exact solution (18) from the equation for
the discrete solution (17) and we obtain

∫

Im
(ξ ′,v)+a(ξ ,v)dt+({ξ}m−1,v

m−1
+ ) (25)

= −Q[(η ′,v)]− ({η}m−1,v
m−1
+ )−Q[a(η ,v)].

SincePu(tm,i) = u(tm,i), we get

Q[a(η ,v)] =
q

∑
i=0

wia(Ru(tm,i)−u(tm,i),v) = 0 (26)

we need to estimate the rest of the right–hand side only.

Lemma 3 Let u be an exact solution of (1). Then

Q[(η ′,v)]+({η}m−1,v
m−1
+ ) ≤ τmC

(

τq+1 +(N−1 log(N))2)sup
Im

‖v‖, (27)

∀v∈Vτ
N.
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The proof of the lemma is rather long and technical and will bepublished in detail in forthcom-
ing paper.

We can estimate the right–hand side of (25) by Lemma 3. Then weobtain by settingv= 2ξ

‖ξ m
−‖

2−‖ξ m−1
− ‖2 +‖{ξ}m−1‖

2 +2min(c0,1)
∫

Im
‖ξ‖2

εdt (28)

≤ τmC
(

τq+1 +(N−1 log(N))2) sup
Im

‖ξ‖.

We need to deal with the term at the right–hand side. For the case q = 0 we know that
‖ξ‖ is constant with respect to time and we can exchange the last expression by the term
τmC(τq+1 + (N−1 log(N))2)‖ξ m

−‖. Then it is sufficient to employ Young’s inequality and the
discrete Gronwall lemma to finish the proof of the theorem. The caseq= 1 is still quite simple.
Forq = 1 the term‖ξ‖ is linear with respect to time and so we can find its supremum atone of
the end points of the intervalIm. If the supremum occurs at the pointtm, we can follow the same
idea as in the caseq = 0. If the supremum occurs at the pointtm−1, we can divide our term

‖ξ m−1
+ ‖ = ‖ξ m−1

+ −ξ m−1
− +ξ m−1

− ‖ ≤ ‖{ξ}m−1‖+‖ξ m−1
− ‖. (29)

Then we need again to employ carefully Young’s inequality and the discrete Gronwall lemma
to finish the proof of the theorem.

Conclusion

For simplicity, we assume the main result withq = 0,1 only. Nevertheless, the result holds
true even for arbitraryq≥ 0. Then the proof of the theorem will be more complicated and we
will not consider such cases. The result holds also true for consistent stabilization methods and
general layer–adapted meshes with a slightly different term describing convergence behavior
with respect to space. It is also not important to restrict ourselves to 1D. We can simply extend
the results from [3] discussing multidimensional case. Thefully general result with complete
detailed proofs will be publishes in forthcoming paper.

Acknowledgments

The first author is a junior researcher of the University centre for mathematical modelling,
applied analysis and computational mathematics (Math MAC).

Literature

[1] AHMED, N.; MATTHIES, G.; TOBISKA, L.; XIE, H.: Discontinuous Galerkin time step-
ping with local projection stabilization for transient convection-diffusion-reaction prob-
lems.Comput. Methods Appl. Mech. Eng., 200(21-22): pp. 1747-1756, 2011.

[2] CIARLET, P. G.: The finite element methods for elliptic problems.Repr., unabridged re-
publ. of the orig. 1978. Classics in Applied Mathematics. 40.Philadelphia, PA: SIAM.
xxiv, 530 p. , 2002.
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OPTIMÁLN Í ODHADY CHYB NESTACIONÁRNÍCH SINGULÁRNĚ

PERTURBOVANÝCH PROBLÉMŮ PRO DISKRETIZACE ŃIZK ÉHO ŘÁDU

Uvažujeme nestaciońarńı jednodimenziońalńı singúalrně perturbovańy probĺem. Diskretizu-
jeme tento probĺem v prostoru pomocı́ metody koněcných prvk̊u na Shishkinov́ych śıtı́ch a včase
pomoćı nespojit́e Galerkinovy metody. Uḱažeme optiḿalńı apriorńı odhady chyb prǒcasov́e
diskretizace ńızkéhořádu.

OPTIMALE SCHÄTZUNGEN NICHTSTATIONÄRER SINGULÄR GESTÖRTES

PROBLEME FÜR DIE DISKRETIERUNG NIEDERERORDNUNG

Wir betrachten ein nichtstationäres eindimensionales singulär gesẗortes Problem. Wir diskretie-
ren dieses Problem im Raum mit Hilfe der Methode der finiten Elemente auf den Shishkin’schen
Netzen und in der Zeit mit Hilfe der nichtkontinuierlichen Galerkin-Methode. Wir zeigen die
optiamlen A-priori-Scḧatzungen von Fehlern für die zeitliche Diskretierung niederer Ordnung.

OPTYMALNE SZACOWANIE BŁE֒DÓW NIESTACJONARNYCH OSOBLIWIE

ZABURZONYCH PROBLEMÓW DLA DYSKRETYZACJI NISKIEGO RZE֒DU

W artykule opisano niestacjonarny jednowymiarowy osobliwie zaburzony problem. Problem
ten jest dyskretyzowany w przestrzeni przy pomocy metody element́ow skónczonych na sieci-
ach Shishkina oraz w czasie przy pomocy niecia֒głej metody Galerkina. Pokazano optymalne
a priori szacunki bł֒edu dla czasowej dyskretyzacji niskiego rze֒du.
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