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Abstract

This thesis deals with the general problem of Blind Source Separation (BSS), the
main focus being on audio sources. In an appendix, a research outside the topic of
BSS is disscused: The automatic classification of biomedical signals.

The general goal of the blind source separation is to estimate unknown source
signals from their measured mixtures, while there is no information about the mixing
process available. This task is too general and cannot be solved without additional
assumptions about the unknown sources. One such assumption is the mutual in-
dependence of the source signals. Methods performing the separation based on the
independence assumption are denoted as Independent Component Analysis (ICA).
Most algorithms described in this thesis are based on ICA.

The thesis consists of three main parts. The first part deals with the separation
of non-stationary instantaneous mixtures. The author contributed to the proposal of
an ICA algorithm called Block EFICA. This algorithm is proved to be asymptotically
efficient (i.e. gives the most accurate estimates of the sources possible) provided that
the source signals are block-wise stationary and have constant variances.

The second and third part concerns the separation of convolutive mixtures of
audio sources. This problem can be solved via ICA in the time domain, for ex-
ample by an existing method known as T-ABCD, which was proposed Koldovský
and Tichavský. Modifications for this method are presented. These modifications
improve the reconstruction of the sources in the case of imperfect ICA separation.
Furthermore, an "online" version of the T-ABCD algorithm is proposed. It is able
to adapt to the changes in the mixing system and to the non-stationarity of the
source signals.

The appendix deals with automatic classification of medical signals which orig-
inate in the screening examination of lower limbs arteries. This examination, per-
formed via inexpensive ultrasound units, aims at an early diagnostics of Peripheral
Arterial Disease. Automatic classifiers for the data measured by mentioned ultra-
sound units are designed and trained. These classifiers are able to assign the signals
to predefined classes, which reflect the degree of arterial occlusion.





Contents

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of figures and tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1
1.1 Blind source separation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Models of the mixing process . . . . . . . . . . . . . . . . . . 1
1.1.2 Source models and BSS methods . . . . . . . . . . . . . . . . 3

1.2 Motivation and goals of the thesis . . . . . . . . . . . . . . . . . . . . 7

2 Linear Independent Component Analysis 8
2.1 The goal of ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Design of an ICA algorithm . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Statistical principles and contrast functions . . . . . . . . . . . . . . 11

2.4.1 ICA methods assuming iid sources . . . . . . . . . . . . . . . 11
2.4.2 ICA methods assuming sources with a time structure . . . . . 14
2.4.3 Hybrid mixtures and generalized source models . . . . . . . . 16

2.5 Optimization techniques . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Objective evaluation of ICA algorithms . . . . . . . . . . . . . . . . . 17
2.7 Efficiency of ICA algorithms . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 The FastICA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 The EFICA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 The BGSEP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.11 Applications of ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 The Block EFICA algorithm 28
3.1 Parametric score function estimator . . . . . . . . . . . . . . . . . . . 28
3.2 Separation of block-wise stationary sources . . . . . . . . . . . . . . . 30

3.2.1 Block-wise stationary instantaneous model of ICA . . . . . . 30
3.2.2 Description of Block EFICA . . . . . . . . . . . . . . . . . . . 30

3.3 Performance analysis of the Block EFICA algorithm . . . . . . . . . 32
3.4 Experiments: modified EFICA with score function estimator . . . . . 34

3.4.1 Separation of the GGD sources . . . . . . . . . . . . . . . . . 34
3.4.2 Separation of GGD sources with absorbed Gaussian noise . . 35
3.4.3 Separation of BPSK signals with absorbed Gaussian noise . . 36
3.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Experiments with the Block EFICA algorithm . . . . . . . . . . . . . 37



Contents xii

3.5.1 Separation of block-wise stationary constant variance signals . 39
3.5.2 Separation of block-wise stationary sources with changing

variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.3 Separation of real-world speech signals mixed linearly . . . . 43
3.5.4 Separation of real-world mixtures of speech signals . . . . . . 43

4 Separation of Convolutive Mixtures 48
4.1 Separation via ICA in the time-domain . . . . . . . . . . . . . . . . . 49
4.2 Separation via ICA in the frequency-domain . . . . . . . . . . . . . . 51
4.3 The T-ABCD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Construction of observation subspace . . . . . . . . . . . . . . 52
4.3.2 Decomposition of the observation subspace via ICA . . . . . . 54
4.3.3 Mutual similarity of components . . . . . . . . . . . . . . . . 54
4.3.4 Clustering of independent components . . . . . . . . . . . . . 55
4.3.5 The reconstruction of source responses on microphones . . . . 56

5 Author’s Modifications of the T-ABCD Algorithm 58
5.1 Fuzzy clustering of the components . . . . . . . . . . . . . . . . . . . 58
5.2 Relational Fuzzy C-Means Algorithm . . . . . . . . . . . . . . . . . . 59
5.3 RFCM applied in T-ABCD . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Similarity/dissimilarity transforms . . . . . . . . . . . . . . . 60
5.3.2 Spreading transformation . . . . . . . . . . . . . . . . . . . . 61
5.3.3 Reconstruction of sources via the affiliations of ICs . . . . . . 61

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.1 Clustering of independent components . . . . . . . . . . . . . 62
5.4.2 Comparison of similarity/dissimilarity transformations . . . . 65
5.4.3 Separation results of T-ABCD with hard/fuzzy clustering . . 66
5.4.4 Utilization of modified T-ABCD for speech enhancement . . . 67

6 The Online T-ABCD algorithm 70
6.1 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.1 Step I: Independent Component Analysis via Simplified
BGSEP algorithm . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.2 Step II: Clustering of independent components . . . . . . . . 73
6.1.3 Step III: Reconstruction . . . . . . . . . . . . . . . . . . . . . 74
6.1.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.1 Comparison of online T-ABCD with block-wise applied batch

T-ABCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.2 Selection of the beta parameter within simplified BGSEP . . 76
6.2.3 Separation of sources with fixed positions . . . . . . . . . . . 80
6.2.4 Separation of moving sources . . . . . . . . . . . . . . . . . . 81
6.2.5 Computational demands . . . . . . . . . . . . . . . . . . . . . 82



Contents xiii

7 Conclusions and Future Work 84
7.1 Separation of non-stationary non-gaussian sources . . . . . . . . . . . 84
7.2 Modifications of the T-ABCD algorithm . . . . . . . . . . . . . . . . 84
7.3 Adaptive separation of audio signals . . . . . . . . . . . . . . . . . . 85
7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendix: Automatic Classifiers for Medical Data from Doppler Unit 87
8.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Automatic Classifier Design . . . . . . . . . . . . . . . . . . . . . . . 88

8.2.1 Measurement of Doppler waveforms . . . . . . . . . . . . . . 88
8.2.2 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.2.4 Detection of waveform periods . . . . . . . . . . . . . . . . . 92
8.2.5 Classifier types . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2.6 Training and testing of the classifiers . . . . . . . . . . . . . . 93

8.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3.1 Selection of features by the SFS algorithm . . . . . . . . . . . 94
8.3.2 Testing of the classifiers . . . . . . . . . . . . . . . . . . . . . 95
8.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 98
The list of cited papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
The list of author’s papers . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



List of Figures xiv

List of Figures

1.1 General blind separation problem . . . . . . . . . . . . . . . . . . . . 1
1.2 Example of speech signal propagation in the real environment . . . . 2
1.3 Geometric principle of SCA . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Speech signal and its spectrogram - a nonnegative signal . . . . . . . 6

2.1 Independent, mixed and whitened uniform random variables . . . . . 10
2.2 Derivatives of FastICA contrast functions . . . . . . . . . . . . . . . 20
2.3 Examples of pdfs which belong to the GGD family . . . . . . . . . . 22
2.4 Flowchart of the EFICA algorithm . . . . . . . . . . . . . . . . . . . 24
2.5 Flowchart of the BGSEP algorithm . . . . . . . . . . . . . . . . . . . 26

3.1 Flowchart of the Block EFICA algorithm. . . . . . . . . . . . . . . . 34
3.2 Separation of GGD sources . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Separation of GGD sources with absorbed Gaussian noise . . . . . . 36
3.4 BPSK signals with absorbed Gaussian noise . . . . . . . . . . . . . . 37
3.5 Separation of BPSK sources with absorbed Gaussian noise . . . . . . 38
3.6 Separation of 20 block-wise stationary sources . . . . . . . . . . . . . 39
3.7 Separation of 10 sub-Gaussian signals . . . . . . . . . . . . . . . . . 40
3.8 Influence of Q (considered number of blocks) on Block EFICA sepa-

ration results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 Example of the non-stationary Gaussian signals . . . . . . . . . . . . 42
3.10 Separation of non-stationary sources with changing variance (Gaus-

sian scenario) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.11 Separation of non-stationary sources with a changing variance

(Laplace scenario) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.12 Separation of real-world speech signals mixed linearly . . . . . . . . . 46
3.13 Separation of real-world mixtures via T-ABCD. ICA separation

within is performed via BGSEP or Block EFICA . . . . . . . . . . . 47

5.1 Flowchart of the T-ABCD algorithm . . . . . . . . . . . . . . . . . . 63
5.2 Scheme of the room where the mixtures for the experiment (the clus-

tering of ICs) were recorded. . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Accuracy of the ASR system for speech mixed with Gaussian noise . 69
5.4 Accuracy of the ASR system for speech mixed with other speech . . 69

6.1 Comparison of online/batch T-ABCD in the means of SIR . . . . . . 76
6.2 Comparison of online/batch T-ABCD in the means of SDR . . . . . 77
6.3 Course of the SIR in experiment with pseudo-convolutive mixtures. . 80
6.4 Flowchart of the online T-ABCD algorithm . . . . . . . . . . . . . . 83

8.1 Standard positions for blood flow velocity measuring via Doppler unit 89
8.2 Examples of Doppler waveforms . . . . . . . . . . . . . . . . . . . . . 90
8.3 Proposed features of the Doppler waveforms . . . . . . . . . . . . . . 91



List of Tables xv

8.4 Recognition score as a function of feature vector length . . . . . . . . 95

List of Tables

5.1 Number of incorrect clustering decisions . . . . . . . . . . . . . . . . 65
5.2 Computational burden of implemented clustering techniques . . . . . 65
5.3 Comparison of the dissimilarity transforms. . . . . . . . . . . . . . . 66
5.4 Separation results of the T-ABCD with fuzzy/hard clustering technique 67

6.1 Comparison of the online/batch T-ABCD averaged over all segments 76
6.2 Algorithms involved in the experiment with pseudo-convolutive mix-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Average SIRs achieved by separation of pseudo-convolutive mixtures 80
6.4 Results for separation of sources at fixed positions. . . . . . . . . . . 81
6.5 Results for the separation of data simulating dynamic conditions . . 82

8.1 Detailed results from the SFS algorithm’s first 9 steps . . . . . . . . 94
8.2 Recognition scores for different classifier types and settings . . . . . . 96
8.3 Sensitivity and specificity for different classifier types . . . . . . . . . 96



List of symbols

General notation
Y Matrix Y
yi or (Y)i The ith row of Y
Y(j) or (Y)∗j The jth column of Y
yi(j) or Yij The ij-th entry of Y

Most important symbols

d Number of sources
m Number of sensors/microphones

Within this thesis, determined case is assumed, i.e. d = m

S m×N matrix of the original signals
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Chapter 1

Introduction

1.1 Blind source separation

The general goal of Blind Source Separation (BSS, [1]) is to estimate unknown
sources from a set of observed mixtures. The estimation is performed with no prior
information about either the sources or the mixing process. In this general context,
the task cannot be solved. Therefore, specific restrictions are placed on the mixing
model and the source signals in order to limit the generality.

Figure 1.1: The general mixing transformation with weak assumptions on signals
and mixing models

1.1.1 Models of the mixing process

There are two basic noiseless models which describe the mixing transformation.
The linear instantaneous model defines observed mixtures as a weighted sum of
unknown source signals. Such transformation is then described as

X = A · S, (1.1)

where X is the known m × N matrix of mixtures, m is the number of mixtures
obtained by measurement on sensors and N is the number of available samples.
Matrix S contains the samples of the original unknown sources and is of size d×N ,
d is the number of unknown sources. A single row of X or S will be further denoted
as xi or si, a single column as X(n) or S(n) and a single element as xi(n) or si(n),
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respectively. The samples stored in S may be real valued or complex valued. The
unknown m× d matrix A represents parameters of the mixing model.

The linear instantaneous model is encountered in situations where the sampling
frequency is small in comparison to the propagation speed of the signals. Here,
all the signals reach the sensors at the same time. Moreover, this model takes
into consideration no delays or echoes which may originate due to the multi-path
propagation of the signals in the real environment. Methods based on (1.1) can be
applied in biomedical signal analysis, where e.g. the signals measured by electro-
encephalogram (EEG) or magneto-cardiogram (MEG) conform well to this model.

The linear convolutive mixing model is a generalization of (1.1), because the
observed mixtures contain delayed original sources and their echoes. This problem
is often encountered in acoustics, where it is called the cocktail party problem. It
can be described by

xi(n) =
d∑

k=1

Mik∑
τ=0

aik(τ) · sk(n− τ), (1.2)

where x1(n) . . . xm(n) are the signals observed on microphones , s1(n) . . . sm(n) are
the original unknown sources. The unknown parameters aik(τ) represent the source-
sensor impulse responses, i.e. impulse responses expressing the propagation of sound
from the location of each source to each microphone. The convolutive model coin-
cides with the instantaneous model, when Mik = 0.

Figure 1.2: An example of speech signal propagation in the real environment. The
observed mixtures should be modeled by convolutive model (1.2) due to presence of
delays and echoes.

Both above mentioned models can be extended to noisy models. For example,
the linear instantaneous model with additive noise is then given by

X = A · S + N, (1.3)
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where the m × N matrix N denotes the matrix of additive noise. The noise is
usually modeled as a Gauss vector random variable with zero mean, which elements
are mutually uncorrelated.

All methods described in this work are based on the noiseless models (both in-
stantaneous and convolutive). However, scenarios with background noise are among
presented experiments.

The linear models described above are approximative models, which are used
in many BSS methods for their theoretical simplicity. In most of the real world
situations this approximation is valid, but there are various situations where it does
not hold. For instance, when the sensors used to observe the mixtures are nonlinear
or the sensor saturation is encountered during the measurement. Here, the general
model of nonlinear mixtures needs to be considered.

The nonlinear mixing model is given by

X = A(S) + N, (1.4)

where A is a nonlinear transform. It can be either instantaneous, where input S(n)
outputs X(n) or global, operating on the whole sequence S. The BSS task based on
this model cannot be solved without additional constraints. Most of the methods
utilizing the nonlinear model assume mutual statistical independence of the sources
in S, but even with this assumption the problem does not have a unique solution. It
can be achieved by incorporating prior knowledge about the source statistics or by
constraining the mixing transform A. As an example of a nonlinear transform, the
so called post-nonlinear mixtures may be named. Here, the transform A consists of
linear instantaneous or convolutive transform followed by some nonlinear transform,
which operates component-wise.

The mixing transform may be constant during the observation of the mixtures
or may change in time. This will be further denoted as stationary mixtures
or dynamic mixtures, respectively. The separation of dynamic mixtures may
be done with the block-by-block application of a method intended for stationary
mixtures (further denoted as Batch method). The method may be modified more or
less to respect the continuity of the (de)mixing process, and the outputting signals
are synthesized from the separated signal blocks. In this thesis, such methods are
referred to as Online methods.

1.1.2 Source models and BSS methods

In order to allow the separation, general assumptions are placed on the unknown
sources. These assumptions determine techniques which can be exploited for source
estimation. Nowadays, following source separation methods are used most fre-
quently: Independent Component Analysis (ICA), Principal Component Analysis
(PCA), Sparse Component Analysis (SCA) and Non-negative Matrix Factorization
(NMF).

These methods are usually designed for the linear instantaneous model in (1.1).
If the problem to be solved is convolutive (or nonlinear), it needs to be transformed
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prior to the application of these methods. Such transformation will be described in
Chapter 4.

In general, the methods seek to decompose a known matrix X in (1.1) into two
new matrices. These matrices have a different meaning and properties, according
to the technique used. This task is called the inverse problem.

Solving of the inverse problem consists in solving the under-determined set of
equations in (1.1) because the whole right side of the equations is unknown. To
overcome this indeterminateness, the methods utilized for decomposition introduce
additional assumptions about A and S.

Independent Component Analysis [2] assumes that the unknown sources are
statistically independent random processes. The ICA techniques model the sources
according to one of the two following principles.

The sources can be considered as non-gaussian and temporally independent and
identically distributed random variables (iid). This leads to the utilization of higher
(mostly 4th) order statistics.

The sources can be modeled as gaussian with certain temporal structure (tem-
porally dependent). This leads to the utilization of second order statistics.

ICA is used as the separator within BSS methods introduced in this thesis and
will be discussed in more detail in Chapter 2.

Principal Component Analysis [3] is the simplest of the techniques men-
tioned above. It assumes a regular orthonormal matrix A. The signals si are
assumed to be uncorrelated and are called Principal Components. Moreover, the
principal components have the highest variance among all orthogonal transforms of
the mixtures X. The columns of A are computed as eigenvectors of the covariance
matrix of X.

The uncorrelatedness is a necessary condition of independence, therefore the
PCA is often used as preprocessing step prior to the utilization of ICA.

Sparse Component Analysis [4, 1] assumes that the unknown signals in S are
sparse in a specifically chosen domain, i.e. contain only a few significant non-zero
elements. An example of a sparse signal is speech, which is considered sparse in the
time-frequency domain.

Most of the SCA methods assume that at each sampling instant n, a single
source is significantly more active than the others. Let Ti ⊂ {1 . . . N} denotes a set
of sample indices where the ith source is the most active, then for all n ∈ Ti holds
|si(n)| >> |sj(n)| for i 6= j and therefore

X(n) ≈ si(n)A(i), (1.5)

where A(i) is the unknown ith column of the mixing matrix.
The equation (1.5) suggests that the points X(n), n ∈ Ti are aligned along the

straight line passing through the origin with the direction given by A(i). The
mixing matrix estimate Â can be determined e.g. by a clustering algorithm, where
the mixture samples in X are grouped into d clusters and the direction of each is
determined.
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Figure 1.3: Geometric principle of sparse component analysis. Two speech sig-
nals with disjoint temporal support and the alignment of their mixtures along the
columns of the mixing matrix.
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Subsequently, the source estimates are computed. In the case that d ≥ m, this
is done via (pseudo)inverse of Â. However, SCA is able to perform the separation
even in the case when d < m, i.e. the number of sources exceeds the number of
the observed mixtures. This is one of the most appealing properties of SCA. Here,
various binary masking techniques are often used.

Many of the real world sources are not sparse in the temporal domain. These
sources need to be, prior to the estimation, represented in some sparse domain. The
most often used representations are computed via the Short Time Fourier Transform,
wavelet transform or techniques known as joint sparse decompositions [1].

Most SCA methods, therefore, start with the application of some sparse trans-
form, which makes the supports of the sources as disjoint as possible. Subsequently,
the mixing matrix Â is estimated (e.g. via clustering) and the source estimates are
determined in the sparse domain. Finally, an inverse transform is applied to these
signals to obtain the sources in the original domain.

Non-negative Matrix Factorization [5, 1] assumes that the matrices in (1.1)
contain non-negative entries only. Non-negative signals arise e.g. in image or speech
processing, where the signals represent brightness values or magnitude spectra.
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Figure 1.4: Speech signal and its spectrogram - a nonnegative signal

However, unlike the ICA factorization, the existence of NMF is not guaranteed in
general. Often, an approximate factorization is searched, given by X ≈ AS, which
minimizes certain criterion. Such a criterion can be e.g. given by

J(A,S) = ‖X−AS‖2F , (1.6)

The properties of factorized matrices depend strongly on the criterion used. There-
fore, there are many different methods exploiting NMF, which are designed for
various specific applications.

In practice, other signal properties are encountered, which can be used as prior
information for the design of the separation algorithm. This leads to specific algo-
rithms, which are simple and robust. In digital communications, signals are often
discrete valued or cyclostationary. Methods for these types of signals were proposed
in [6] and [7], respectively. Furthermore, the properties of signals with distributions
with bounded support were exploited for the algorithm design in [8].
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1.2 Motivation and goals of the thesis

The previous section briefly summarizes the objectives and methods for BASS. This
section points out to some of the open questions in the discussed field and presents
the motivation and the goals for the research contained in this thesis.

Firstly, the thesis deals with the separation of instantaneous mixtures via ICA.
Although this problem has been studied since the early 1990s and is now well ex-
plored, there are still areas which deserve more research attention. Most of the
ICA methods assume that the sources are either iid random variables or Gaussian
random processes with a certain temporal structure. Although these models cover
many types of signals, there exist very important sources which do not follow these
assumptions. For example, speech is often modeled by Laplace distribution. More-
over, speech is stationary only in short intervals of 20-25 ms. This fact motivates the
proposal of an ICA method, which is able to efficiently separate the non-stationary
non-Gaussian sources. The algorithm design is discussed in Chapter 3.

Subsequently, the thesis deals with the blind separation of real-world audio
sources. Nowadays, this task is widely studied and has considerable practical uti-
lization. The main challenge here poses the separation in highly reverberant en-
vironments or the separation in presence of the background noise. Thanks to the
plausible assumption of the independence of the audio sources, the problem can be
solved via ICA. Recently, a method denoted as T-ABCD [9] has been proposed by
Koldovský and Tichavský. It solves the separation task via ICA in the time-domain.
The method exhibits an advantageous modular structure. This allows simple im-
plementation of modifications which improve the performance of the method. The
original T-ABCD assumes a perfect separation performed by ICA and reconstructs
the sources accordingly. This is usually not true in practice. Chapter 5 discusses
the modification, which aims at improvement of the reconstruction of the sources in
the case of imperfect ICA separation.

The original T-ABCD assumes that the mixing system is fixed and does not
change its inner parameters in time. This fact may not be entirely true in practice,
e.g. due to the changing positions of the sources. This motivates the proposal of a
new version of T-ABCD, further denoted as online, which is able to adapt to the
changes in parameters of the mixing system. This subject is presented in Chapter 6.



Chapter 2

Linear Independent Component
Analysis

2.1 The goal of ICA

The linear ICA is one of the methods solving the general BSS task. It is based
on the instantaneous mixture model (1.1). ICA can be used for the separation of
convolutive mixtures as well, provided that the convolutive model is transformed
prior to the application of ICA (for details see Chapter 4).

ICA seeks to decompose the observed signals in X into components which are
statistically independent. Based on the number of microphones m and the number
of sources d, there are three distinct ICA cases. However, the true number of sources
d is rarely known in practice and must be estimated.

The case when d = m is denoted as the determined mixtures. Here, the
matrix A is square and regular. The goal of ICA is to estimate the demixing matrix
W = A−1 so that the estimated signals

Ŝ = Ŵ ·X, (2.1)

are as independent as possible. The matrices Ŝ and Ŵ denote the estimates of S
and W, respectively. The rows of Ŝ are called Independent Components (ICs). In
the case of determined mixtures, the identification of matrices A and S stands as
equivalent tasks.

The case when d > m is referred to as the under-determined mixtures. In
this scenario, the identification of transform A and the estimation of independent
components S are two distinct tasks. The demixing matrix W cannot be obtained
by the inversion of A. Hypothetically, if matrix A was available, there would still
exist an infinite number of solutions. Another prior information is necessary in order
to guarantee the uniqueness of the components. Such information could be e.g. the
sparseness of the sources or that the samples in S are integer-valued. The most
basic form of S computation is the pseudoinverse,

Ŝ = ÂT (ÂÂT )−1X. (2.2)

The case when d < m is called the over-determined mixtures. In this case,
the mixtures are usually reduced to a determined case in order to save the compu-
tational burden and to allow the application of algorithms designed for determined
mixtures. The reduction may be performed e.g. via PCA.
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The ICs Ŝ exhibit several ambiguities compared to true original sources S. It
is not possible to determine the variances of the components, since multiplying a
component by an arbitrary positive number does not affect the mutual independence.
In practice, a unit variance is often assumed, i.e. E{s2

i } = 1.
Even with the assumption of a unit variance, the components are estimated up

to a multiplicative constant ±1 (real sources) or with an unknown phase (complex
sources). Furthermore, the original order in S cannot be determined since any
permutation of Ŝ still results in independent random variables.

Within this thesis, only the determined cases are considered.

2.2 Design of an ICA algorithm

In most cases, the ICA methods exhibit a similar structure and can be divided into
three distinct parts.

Prior to the application of ICA on observed mixtures X, some preprocessing
technique may be exploited in order to ensure the ICA assumptions about the data.
This includes e.g. the removal of the sample mean. Some methods assume that the
mixtures are uncorrelated, then the orthogonalization transform called Whitening
is performed. For details on whitening see Section 2.3.

The ICA algorithm itself often consists of the formulation of a certain objective
(contrast) function, which is subsequently optimized via an optimization technique.
The contrast function is used to quantify the mutual dependence of components and
its global extrema matches the solution of the separation problem.

The properties of an ICA method as a whole depend on both elements mentioned
above. Statistical properties, like asymptotical accuracy or robustness, depend on
the choice of the contrast function. The algorithmical properties, like the speed of
convergence or numerical stability, depend on the chosen optimization technique.

The ICA methods differ in the manner the components are estimated. Algo-
rithms can estimate the components one after another, which is called One-Unit.
The other way is to estimate the components all at once, which is called Multi-
Unit. Methods can differ in the way they analyze input data. The mixtures can
be available upon the execution of the method, such algorithms are called Batch.
The other possibility is that the algorithm acquires the data in successive steps dur-
ing the computation and the separating matrix Ŵ is continuously updated. These
methods are denoted as Online.

2.3 Preprocessing

The preprocessing techniques ensure that the observed data X satisfy the assump-
tions of an ICA method about the input data.

Most of the ICA algorithms assume that the sources have a zero mean, i.e.
E{si} = 0. Therefore, the mean value X is subtracted from the data.
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The mutual uncorelatedness of xi is a necessary condition of the independence
and the variance of the sources cannot be retrieved. Therefore, many ICA methods
apply a technique called Whitening on X. It substitutes the signals X − X by
an orthogonal system of signals Z. The signals Z span the same space as mixtures
X and are mutually uncorrelated. Moreover, the orthogonality constraint simplifies
the formulation of the separation criterion, as will be discussed further.

When the sources have unit variance, their covariance matrix is (due to their
mutual independence) equal to the identity matrix, i.e. E[SST ] = I. The signals
S are said to be spatially white. Let M be a whitening transform matrix such that
Z
4
= MX is spatially white. Then the transformation MA is a rotation because it

relates two white vectors S and Z = MAS. This means that a separating matrix
W can be factorized into W = WRM, where M is the decorrelation transform and
WR is a rotation matrix.

The whitening transform M is not uniquely given because when multiplied by
any orthogonal matrix, the matrix product will still be a whitening matrix. The
matrix M can be determined for example by PCA.

Spatial whiteness imposes d(d+ 1)/2 constraints and leaves d(d−1)/2 unknown
rotation parameters to be determined by ICA. The orthogonality constraints are,
therefore, very favorable from the algorithmic point of view, but may restrain the
statistical efficiency of the algorithm.
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Figure 2.1: Scatter plot (joint distribution) of independent uniformly distributed
signals s1(n) and s2(n), mixed signals X = AS and whitened signals Z = MX.
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2.4 Statistical principles and contrast functions

Many various ICA algorithms have been proposed since the topic was first introduced
in the early 1990s. This section discusses the basic common underlying principles of
ICA methods and the relations among them. A detailed overview of the discussed
topic is covered e.g. [1, 2, 10].

Many ICA algorithms assume the unknown sources in a form of i.i.d. random
variables. Here, the separation is carried out through the optimization of a criterion,
which is based on one of the following, closely related, principles: Maximum Like-
lihood Estimation, Mutual Information or Entropy. These methods rely on higher
order statistics.

Other methods assume a certain time-structure of the unknown sources. Most
often, the components are modeled as Gauss random variables with a changing
variance or wide sense stationary random processes with distinct spectra. These
methods exploit second order statistics.

Throughout this section the determined noiseless mixtures are considered.

2.4.1 ICA methods assuming unknown sources in the form of iid
random variables

This section describes principles of the ICA methods based on the assumption of the
iid model of the source signals. The methods also assume that not more than one
of the sources has Gaussian distribution. It stems from the fact that any orthog-
onal transform applied on two independent Gaussian distributions results in two
independent Gaussian variables. Only Gaussian distribution exhibits this property.
Hence, the orthogonal rotation matrix WR (see Section 2.3) cannot be uniquely
estimated for Gaussian variables.

A very popular approach for estimating the ICs is the Maximum Likelihood
Estimation (MLE). This approach has a significant advantage when the pdfs of
the unknown sources are known. Then the methods based on this principle are
asymptotically efficient, i.e. they give asymptotically the best estimate which an
unbiased estimator can provide.

The likelihood function for the ICA noise-free model is derived in the following
manner. The probability density pX of the mixture vector can be formulated as

pX(X) =
∣∣det A−1

∣∣ pS(A−1X) =
∣∣det A−1

∣∣∏
i

psi((A
−1X)i). (2.3)

Assuming that N independent observations of X are available, the likelihood func-
tion L(Ŝ|Â) can be formulated for the estimated sources Ŝ = Â−1X according
to

L
Â−1X

(Ŝ|Â) =
N∏
n=1

∣∣∣det A−1Â
∣∣∣ d∏
i=1

psi((A
−1Â)iŜ(n)). (2.4)
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Finally, the logarithm of the likelihood function is given as

1
N

logL
Â−1X

(Ŝ|Â) =
1
N

N∑
n=1

d∑
i=1

log psi((A
−1Â)iŜ(n)) + log

∣∣∣det A−1Â
∣∣∣ . (2.5)

To simplify the notation, the likelihood function can be written as

1
N

logL
Â−1X

(Ŝ|Â) = Ê{
d∑
i=1

log psi((A
−1Â)iŜ(n))}+ log

∣∣∣det A−1Â
∣∣∣ , (2.6)

where Ê represents the sample mean operator. A global maxima of this function
with respect to the elements of Â gives the ML estimate of the ICs.

The MLE is closely related to the Kullback-Leibler divergence, which is for two
probability density functions p(y) a q(y) on Rd defined as

K(p|q) 4=
∫
y
p(y) log

p(y)
q(y)

dy. (2.7)

The divergence between densities of two random vectors y and z is denoted as
K(y|z). An important property of K(y|z) is that K(y|z) ≥ 0. The divergence
is zero if and only if the two random vectors have the same distribution. The
divergence Kullback-Leibler is not symmetric, though (K(y|z) 6= K(z|y)).

Lets assume that the number of available samples tends to infinity, i.e. N →∞,
then (2.6) equals

1
N

logL
Â−1X

(Ŝ|Â) N→∞→ −K(Â−1X|S) + const. (2.8)

This shows that (up to a constant) the log-likelihood logL(Ŝ|Â) is an estimate
of −K(Â−1X|S) and that it minimizes the divergence between the original signals
S and the estimated signals Â−1X. The MLE is, therefore, associated with the
contrast function

JML(Ŝ) = K(Ŝ|S), (2.9)

which should be minimized with respect to the model parameters Â.
Another popular principle serving as a basis for ICA contrast functions is the

Mutual Information of entries in Â−1X.
The MLE approach is based on the fixed hypothesis about the distribution of

the sources. Here, a problem may arise when the hypothesized distribution differ
greatly from the true one. Therefore, the divergence K(Ŝ|S) should be minimized
with respect to Â (via the distribution of Â−1X) as well as with respect to the
distribution of S [1].

Let us denote as S a random vector with independent entries which are dis-
tributed in the same way as entries of Ŝ. Then for any matrix S with independent
entries it holds that

K(Ŝ|S) = K(Ŝ|S) +K(S|S). (2.10)
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The equation (2.10) shows that K(Ŝ|S) is minimized with respect to S by min-
imizing K(S|S). This can be achieved by assuming (S = S) ⇒ K(S|S) = 0 since
K(Ŝ|S) does not depend on S.

Now the minimization of the divergence K(Ŝ|S) with respect to Ŝ leads to the
minimization of the contrast function

JMI(Ŝ)
4
= K(Ŝ|S). (2.11)

The Kullback-Leibler divergence K(Ŝ|S) between a distribution and the closest dis-
tribution with independent entries is called the mutual information between entries
of Ŝ. It is always non-negative and is zero if and only if Ŝ is distributed as S. By
definition of S, this requires the mutual independence of entries in Ŝ. The function
JMI(Ŝ), therefore, measures the independence between the entries of A−1X and is
thus a valid ICA contrast function.

The contrasts JML in (2.9) and JMI in (2.11) are related via

JML(Ŝ) = JMI(Ŝ) +
d∑
i=1

K(ŝi|si), (2.12)

where K(S|S) =
∑d

i=1K(ŝi|si) because of the independence of entries in S and
S. This shows that the maximization of JML(Ŝ) with fixed assumptions about the
sources consists of two terms: the first one is the mutual information as a measure
of independence and the other one measures divergence of the marginal distribution
of the estimates from the assumed distributions of the sources.

The contrast JMI can be simplified under the Orthogonality Constraint
EŜŜ = I discussed in Section 2.3. It holds that JMI is equal up to a constant term
to the sum of Shanon entropies of each output [11]. Therefore, the minimization of
the mutual information between elements of Ŝ is equivalent to the minimization of
the sum of entropies of the elements, i.e.

JENT (Ŝ)
4
=
∑
i

H(ŝi), (2.13)

where H(y) is a Shanon entropy of a random variable y with pdf p(y) given as

H(y) = −
∫
p(x) ln p(x)dx. (2.14)

The mixing of elements of S increases their entropies. The original sources, therefore,
may be found as signals with minimal marginal entropies.

Moreover, −H(ŝi) is (up to a constant term) the Kullback-Leibler divergence
between the distribution of ŝi and the zero-mean unit variance Gaussian distribution
[10]. This can be explained by the Central Limit Theorem, which states that a
sum of random variables will have distribution closer to Gaussian than any of the
original random variables. In order to separate the random variables, the separation
technique should drive the distribution away from normality. The ICA methods built
upon this principle are often called non-gaussianity based.
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All the contrasts JMI(Ŝ), JML(Ŝ) and JENT (Ŝ) require the knowledge of the
distributions of the unknown sources. These distributions may be known a priori or
at least some of their features may be known, like moments or bounded support. In
many cases though, the densities are completely unknown and must be estimated
in a certain manner.

The estimation of a probability distribution is essentially a nonparametric task.
An ICA method using a nonparametric density estimation was proposed e.g. by
Boscolo et al. in [12], where the authors use a kernel technique [13] to estimate the
pdfs and their derivatives.

The nonparametric density estimation is known to be a difficult and computa-
tionally demanding problem, however. Many methods avoid it by the approximation
of the unknown distribution by a family of densities that are characterized by a lim-
ited number of parameters. An algorithm known as Infomax, based on maximum
likelihood approach and using parametric density approximation, was proposed by
Bell and Sejnowski in [14]. A fixed-point algorithm called FastICA, based on ap-
proximation of entropy, was introduced by Hyvärinen and Oja in [15].

Another approach how to deal with unknown source distributions represents the
utilization of higher order statistics. It can be used for the definition of contrast
functions, which are approximations to those derived from the maximum likelihood
approach. High order information is most simply expressed by cumulants (see [2]).
The minimization of mutual information based on the approximation via cumulants
was proposed by Common in [11]. The properties of cumulants and cumulant based
tensors were utilized for the contrast function formulation by Cardoso, who proposed
the algorithms FOBI (Fourth Order Blind Identification) [16] and well known JADE
(Joint Approximate Diagonalization of Eigenmatrices) [17].

2.4.2 ICA methods assuming sources with a time structure

The methods discussed in the previous section assume unknown sources to be inde-
pendent and identically distributed random variables. The key assumption in this
scenario is that the distributions of the sources are non-gaussian. Methods based
on the second order statistics (SOS) cannot separate such sources. Here, the SOS
can be exploited in preprocessing, but it cannot determine the orthogonal rotation
matrix WR.

In practice, many sources exhibit some temporal structure. The separation of
such sources can be done by the techniques presented in the previous section. How-
ever, then the temporal information is not used directly.

When the second order characteristics of the sources exhibit sufficient diversity,
the separation can be based on SOS alone, ignoring the higher order characteristics.
Moreover, the SOS based ICA techniques are able to separate Gaussian sources,
which is not possible for the methods described in Section 2.4.1.

The SOS based methods can be basically divided, based on model of the source
signals, into two groups. One group consists of methods assuming the sources in
the form of wide-sense stationary processes, the other group consists of methods



2.4. Statistical principles and contrast functions 15

assuming the sources to be Gaussian random variables with a changing variance.
In this section, the ICA model in (1.1) becomes

X(t) = AS(t), (2.15)

where t = 1 . . . N has the meaning of time. The equation (2.15) emphasizes the
time index because the time structure of the sources is important for SOS based
methods. Unlike the iid case, where an arbitrary permutation can be applied to the
samples (identical for all mixtures) before the application of an ICA method.

Spectral diversity based methods assume sources to be Gaussian wide-sense
stationary processes (WSS). The Gaussian WSS process is fully characterized by
its correlation function, which depends only on the time difference between two
sampling instants, not on the sampling instant itself.

In the case of an existing time structure, the correlation function is generally non
zero for all time instants τ ≥ 0. In the case of iid sources, the only non zero value
is for τ = 0. Correlations between two and more different signals can be grouped
together in time-lagged covariance matrix RX[τ ] given by

RX[τ ] = E{X(t)X(t− τ)T }, (2.16)

where X(t− τ) denotes mixtures, which are delayed by τ samples.
The sources S are mutually independent and all their lagged covariance matri-

ces RS[τ ] are diagonal. Therefore, the ICA methods based on SOS often take on
the form of the simultaneous diagonalization of multiple matrices RX[τ ]. Diago-
nalization of a single matrix RX[τ ] is not sufficient because it makes the mixtures
uncorrelated but not independent. Moreover, the separation is possible if and only
if the sources have distinct spectra (for details see e.g. [1, 18]).

The simultaneous diagonalization of square matrices is performed using a tech-
nique called the approximate joint diagonalization (AJD), which will be described
in more detail in Section 2.5.

The non-stationarity based methods assume the unknown sources in the form
of Gaussian random variable with a changing variance. The signals are now de-
scribed by the covariance matrix at different time instants τ , i.e.

RXX[τ ] = E{X(t− τ)X(t− τ)T }. (2.17)

In practice, the mixtures are segmented into blocks and the estimates of RXX[τ ]
are computed in each block separately.

The non-stationarity based methods estimate the demixing matrix W by forcing
the mixtures to be uncorrelated at every moment. Such a way of separation is pos-
sible because (due to nonstationarity) the RXX[τ ] are time dependent. Hence, the
noncorrelatedness at each time instant is a stronger condition than simple whiten-
ing. The separation is achievable if and only if the sources have distinct variances
in at least one time instant τ (see [2]).

The following ICA algorithms are based on the principles described in this sec-
tion. A simple AJD based ICA algorithm called AMUSE, jointly diagonalizing two
matrices RX[τ ], was proposed by Tong et al. in [19].
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An extension of AMUSE, an algorithm called SOBI (Second Order Blind Iden-
tification) based on the diagonalization of several matrices RX[τ ], was introduced
by Belouchrani et al. in [20].

The AJD of several matrices RXX[τ ] was used for design of the BGL algorithm
(Block Gaussian Likelihood) by Pham and Cardoso in [21].

2.4.3 Hybrid mixtures and generalized source models

Recently, separating methods for instantaneous mixtures based on the combina-
tion of source models have been proposed. These techniques are based on the
fact that in real-world mixtures it may happen that no single model offers correct
representation of all sources.

For example, in biomedicine both spectral-diversity-based and non-gaussianity-
based methods are studied. The combination of these two models was demonstrated
on EEG data by Gorodnitsky and Belouchrani in [22].

A technique which separates mixtures of iid sources and Gaussian AR processes,
was proposed by Tichavsky et al. in [23]. The introduced technique combines the
algorithms EFICA [24] and WASOBI [25].

An ad-hoc algorithm unifying all three models was proposed by Hyvärinen in
paper [26].

Other methods generalize the basic models in some way, for example by adding
the non-stationarity of the data. These techniques deal with situations, when the
sources are well described as iid random variables or Gaussian AR processes, however
the parameters describing the signals gradually change. The separation such sources
usually proceeds via segmentation into blocks, where the signal characteristics can
be considered as constant.

An asymptotically efficient algorithm called BARBI (Block AutoRegressive
Blind Identification), which is designed for sources modeled as block-wise stationary
Gaussian AR processes, was proposed by Tichavsky et al. in [27].

An asymptotically efficient method separating block-wise stationary non-
gaussian sources called Block EFICA was proposed by Koldovský and the author of
the thesis in [28].

2.5 Optimization techniques

In general, the estimation of the separation matrix W cannot be solved in the closed
form, i.e. written as a function of the sample set which outputs the entries of W.
Instead, the solution is based on the numerical optimization of the cost functions
introduced in Section 2.4.1 whose extrema provide the solutions. This section briefly
introduces some typical optimization algorithms and their properties. At the end
of the section, the Approximate Joint Diagonalization (AJD) of regular matrices is
discussed. This technique is often used in ICA techniques based on SOS.

The Gradient Method is the basic numerical technique for the minimization
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of objective function J(·). It is given by

∆w = −α∂J(w)
∂w

, (2.18)

where w is the vector of searched parameters (a row of the demixing matrix from
(1.1)). The gradient method has the advantage of low computational demands. Its
disadvantage consists in the choice of parameter α, which influences the length of
the minimization step. When the selected step length is unsuitable, the algorithm
converges slowly or diverges. The gradient method has a linear convergence rate.

The Newton’s method is a well known method for finding the roots of a set
of equations. It can be used to find local minima or maxima of a function. In this
case, it solves the equation where the derivative of a function is put equal to zero.
The Newton’s method is given by

∆w = −
(
∂2J(w)
∂w2

)−1

· ∂J(w)
∂w

. (2.19)

This method is one of the most effective numerical techniques for the minimiza-
tion of the given criterion, which provides a fast quadratic convergence rate. Its
disadvantage consists in high computational demands as it requires the computa-
tion of Hessian matrix inverse in each iteration.

In the context of SOS based ICA methods, the Approximate Joint Diago-
nalization (AJD) is often used for the estimation of the demixing matrix W. AJD
attempts to fit a set of real symmetric square matrices RX[r], r = 0 . . . R− 1 of the
size d× d by structured matrices of the form

RX[r] = WRS[r]WT , (2.20)

where RS[r] represents the unknown diagonal matrices. Usually, W cannot be ex-
pressed exactly according to (2.20). Instead, it is estimated approximately through
minimization of a certain criterion, e.g.

JLS(W) =
T−1∑
i=0

∥∥off(W−1RX[r]W−1 T )
∥∥2

F
, (2.21)

where off is an operator which sets the diagonal elements of a matrix to zero and
‖.‖F denotes the Frobenius matrix norm.

2.6 Objective evaluation of ICA algorithms

The objective evaluation of ICA algorithms and their mutual comparison is per-
formed via Signal to Interference Ratio (SIR) or Interference to Signal Ratio (ISR).
Both criteria are defined through the elements of Gain matrix given as

G = ŴA, (2.22)
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which can be computed if the mixing matrix A is known. If the components are
estimated exactly and source signals have a unit variance, then the matrix G is a
matrix of zeros, with an exactly single non-zero element in every row and column,
which is equal to ±1. SIR and ISR criteria are defined, provided that the sources
have a unit variance E{s2

i } = 1 and the order of the estimates is correct, as follows

SIRk =
G2
kk∑d

i=1,i 6=k G2
ki

(2.23)

and

ISRk =

∑d
i=1,i 6=k G2

ki

G2
kk

. (2.24)

The values of SIR and ISR are usually given in the logarithmic scale. In the case
of perfect separation, the value of SIR = +∞ = +∞dB and the value of ISR = 0 =
−∞dB.

2.7 Efficiency of ICA algorithms

This section addresses the statistical concept of an efficient estimator and subse-
quently, the efficiency of ICA algorithms is discussed.

Suppose we have a parametric model with unknown parameters θ = θ1 . . . θM
and data sampled from this model x = x(1) . . . x(N). Let T (x) be an estimator
for the unknown parameters θ. The estimator is said to be unbiased if E{θ̂} = θ,
where T (x) = θ̂.

Let C
θ̂
be the covariance matrix of errors of the estimator T (x) given by C

θ̂
=

E{(θ−θ̂)(θ−θ̂)T}. Let T (x) be an unbiased estimator. The Cramér-Rao inequality
states that the entries of the matrix C

θ̂
are bounded from bellow as

C
θ̂
≥ (Fθ)−1, (2.25)

where Fθ is the Fisher information matrix of the model with parameters θ given by

Fθ = E

[(
∂

∂θ
ln p(x|θ)

)(
∂

∂θ
ln p(x|θ)

)T]
. (2.26)

The term p(x|θ) denotes the joint distribution of the measurements x with the
parameter vector θ. The matrix inequality in (2.25) means that the matrix C

θ̂
−

(Fθ)−1 is positive semidefinite.
An unbiased estimator T (x) is said to be a finite sample efficient estimator if

it achieves the lower bound in the Cramér-Rao inequality (2.25) for all θi ∈ θ and
a finite sample number N . The estimator is called asymptotically efficient if it
achieves the equality with N →∞.

In the context of linear instantaneous ICA with iid sources, the error covariance
matrix can be expressed for the terms of the gain matrix G given as G = ŴA. It
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reflects the mean value of residual interference among estimated sources Ŝ. In [29]
it is proven that

var(Gij) ≥ CRB(Gij) =
1
N

κj
κiκj − 1

(2.27)

where i, j = 1 . . . d, var(Gij) is the variance of the entries of G, CRB denotes the
Cramér-Rao Bound and κi is given by definition as

κi
4
= E[ψ2

i (·)]. (2.28)

The function ψi denotes the score function of the ith source, i.e. ψi(x) = −p′i(x)
pi(x)

.
An asymptotically efficient version of the famous algorithm FastICA [15] was

proposed by Koldovský et al. in [24].
The CRB for the case when the sources are modeled as Gaussian AR processes

was derived for the variance of estimation errors (Ŵ −W) by Dégerine et al. in
[30]. It was extended and reformulated as a function of the gain matrix G by Doron
et al. in [31].

An asymptotically efficient version of the SOBI algorithm [20] called WASOBI
(Weights Adjusted SOBI) was proposed by Yeredor in [25]. The original WASOBI
technique was very computationally demanding for a higher number of sources (be-
yond five). Tichavský et al. in [32] proposed a computationally affordable scheme
that can be employed in WASOBI, reducing its computational burden.

Other efficient ICA algorithms designed for the separation of non-stationary
sources were mentioned already in Section 2.4.3. The algorithm called BARBI
separating block-wise stationary AR processes was proposed by Tichavsky et al. in
[27]. A method for separation of non-stationary non-gaussian sources called Block
EFICA was proposed by Koldovský and the author of this thesis in [28].

2.8 The FastICA algorithm

The FastICA algorithm is one of the most popular ICA techniques, mainly due to
its speed, accuracy and relatively simple implementation. It was proposed by Appo
Hyvärinen and Erkki Oja in [15] and later extended in [33]. This section covers a
brief description of FastICA, because it is the basis of the algorithms EFICA [24]
and Block EFICA [28], which are discussed in later chapters.

FastICA starts with a preprocessing step called whitening (see Section 2.3). It
consists in the removal of the sample mean and in the decorrelation of X in (1.1).
It is given by

Z = R̂−1/2(X− X̄), (2.29)

where R̂ is the estimate of the mixture covariance matrix, such that
R̂ = (X− X̄)(X− X̄)T /N , X̄ is a sample mean of X and Z is the matrix of trans-
formed orthogonal mixtures. The whitening matrix R̂−1/2 is computed via eigen-
value decomposition R̂ = UΛUT , where U is a unitary matrix of eigenvectors and
Λ is a diagonal matrix of eigenvalues. It is given as

R̂−1/2 = UΛ−
1
2 UT . (2.30)
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FastICA’s main part is iterative. A fixed-point iteration scheme is used to es-
timate the rows of the demixing matrix W. It was introduced in two variants:
one-unit or symmetric technique. In the one-unit approach, the components are
estimated sequentially via finding the extrema of a contrast function given by

J(w) = E{G(wTZ)}, ‖w‖ = 1, (2.31)

where E is the expected value operator and w is one row of the demixing matrix
W. The function G(·) represents an approximation of entropy (2.13) and is applied
element-wise on wTZ.

The common choices of G(·) include functions 1

G1(x) = x4

G2(x) = ln coshx

G3(x) = − exp(−x2/2) (2.32)

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

g(
x)

 

 
g

1
=x3

g
2
=tanh(x)

g
3
=x exp(−(x2)/2)

Figure 2.2: Derivatives of FastICA contrast functions

The one-unit iteration process starts with initialization by a random vector w
and continues according to

w← Ê{Zg(wTZ)} − Ê{g′(wTZ)w}
w← w/ ‖w‖ , (2.33)

1If the densities of all sources pi(x) were known, the function Gopt(x) = − log(pi(x)) would be
optimal, because −E{log(pi(x))} is the entropy itself. Therefore, the log-densities of some known
important probability distributions are often utilized as G(x).
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until convergence is achieved. The functions g(·), g′(·) denote the first and the second
derivative of G(·) respectively. The convergence is reached when

wT
(k−1)w(k) ≈ ±1, (2.34)

where w(k) denotes the estimate of w computed in the kth one-unit iteration. Vec-
tors w(k−1),w(k) need not point in the same direction, because w and −w define
the separation of the same component multiplied by −1.

During the one-unit iterations, it is not known in advance which one of the com-
ponents is being estimated. This depends largely on the initialization. A Gaussian
signal cannot be retrieved by one-unit iterations. In practice, multiple convergence
into a single solution is prevented by enforcing the orthogonality on the estimated
components.

One manner of introducing the orthogonality constraint represents the defla-
tion approach. The components are estimated in sequence and the currently
estimated signal is enforced to be orthogonal to all previously estimated ones. This
is performed via the one-unit iteration followed by e.g. the Gramm-Smidt orthogo-
nalization [2]. Here, the orthogonal projections of all previously estimated vectors w
are subtracted from the currently estimated vector w. The order of the components
still depends on the initialization. A major drawback of the deflation approach con-
sists in the cumulation of estimation errors from previously estimated components.

The symmetric approach estimates all the rows of W in parallel. One-unit
iteration is performed on each row and subsequently symmetric orthogonalization
of the rows is performed. The symmetric iterations can be written as

W← g(WZ)ZT − diag{g′(WZ)1N}W
W← (WWT )−1/2W, (2.35)

where 1N has the meaning of N × 1 vector of ones.
The symmetric approach allows the estimation of the possible Gaussian signal

and may improve the estimation of some components that are not easily estimated.
On the other hand, signals which would be accurately estimated by the one-unit
approach may be degraded by the effect of symmetric orthogonalization.

2.9 The EFICA algorithm

The EFICA algorithm is an extension of FastICA, which was introduced in [24].
It is proven to be asymptotically efficient under the assumption that the probabil-
ity distribution of the independent components belongs to the class of Generalized
Gaussian Distribution (GGD) with the parameter α < 2. This section focuses on
a brief description of EFICA, because it is the basis of the Block EFICA ([28],
Chapter 3) algorithm, proposed partially by the author of this thesis.

First, let us introduce the Generalized Gaussian Distribution, which plays
an important role in EFICA. GGD is a family of parametric continuous distributions
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on the real line. It is given by a single positive parameter α that controls the
exponential decay rate of the distribution.

A random variable y, E{y} = 0,E{y2} = 1, belongs to the GGD family if its
probability density function is given by

f(y, α) = a(α) · exp{−[b(α) · |y|]α}, (2.36)

where a(α) = α · b(α)/2Γ(1/α), b(α) =
√

Γ(3/α)/Γ(1/α) and Γ(·) is a Gamma
function.

The Gaussian distribution is given as f(y, 2). Distributions with α < 2 are called
Supergaussian, with kurtosis higher than Gaussian distribution, e.g. the Laplace
distribution with α = 1. The distributions with α > 2 are Subgaussian, e.g. the
uniform distribution (α→∞).
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Figure 2.3: Examples of pdfs which belong to the GGD family

EFICA measures the independence by the entropy approximations in the form
of suitable non-linear functionsG(·), i.e. in the same manner as the original FastICA.
EFICA stems from the idea that FastICA can be run with distinct nonlinearity
Gi(·) for each of the sources. An optimal choice on nonlinearity Gopti (·) is the
integral of the estimated source’s score function (see footnote in Section 2.8), i.e.
Gi(x) =

∫
ψi(x)dx = − log pi(x). The source distributions are unknown, but EFICA

models all sources as if they have GGD with an appropriate parameter α. The
function g(·) used further in this section denotes the first derivative of G(·).

Moreover, during the symmetric orthogonalization, it is possible to compute
auxiliary constants which minimize mean square error in one row of the estimated
matrix Ŵ. It is possible to compute these constants in parallel for each of the rows,
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thus obtaining Ŵ that asymptotically achieves CRB. This holds when the true score
functions are used as nonlinearities in the iterations.

The algorithm consists of three steps. In the first step, the sources are estimated
via (I) the symmetric FastICA with standard nonlinearity g(x) = tanh(x). Here
the Test of Saddle Points [34] is performed in order to get reliable source estimates.
The test detects cases when the FastICA gets stuck in the local minima of the
contrast function and corrects the incorrectly estimated sources.

The second step resides in (II) the adaptive choice of nonlinearity Gi(x).
The nonlinearity is selected according to the estimates of the score function of the
signals obtained in step (I). It is assumed that the sources are distributed according
to GGD. The free parameter α is estimated by equaling the sample fourth-order
moment of the source estimates by the theoretical fourth-order moment of the GGD.

The GGD score function is proportional to

ψGGD(x, α) = sign(x) · |x|(α−1) . (2.37)

A problem with the function ψGGD(x, α) is that it is not continuous for α ≤ 1, and
thus is not a valid FastICA nonlinearity. Here, EFICA distinguishes two cases.

In the case of subgaussian sources (α > 2), it selects the optimal nonlinearity as
gi(x) = ψGGD(x, α̂i) where α̂i denotes the estimated value of α for the ith source.
In the case of supergaussian (α < 2) sources, the nonlinearity is given as an ad-hoc
function

gi(x) = x · exp−η |x|, (2.38)

where η = 3.348.
The final step of the algorithm is called (III) the refinement. Here, several

one-unit FastICA iterations (2.33) are performed for each of the source estimates
from step (I) with the nonlinearity selected in step (II). These iterations are called
fine-tuning.

Finally, auxiliary constants ck`; k, ` = 1 · · · d are computed which minimize the
mean square error of the rows of Ŵ so that the algorithm attains the CRB (2.27).
The computation proceeds as follows, for details see [24]2.

For each k, ` = 1 . . . d compute

ck` =


V 1U

k`

V 1U
`k +1

, k 6= `

1, k = `,
(2.39)

where V 1U
k` reflects the theoretical asymptotic performance of one-unit FastICA it-

erations. It is given (see Section 2.7 for details) in the terms of the variance of
non-diagonal elements of the gain matrix G = Ŵ1UA as

var[G1U
k` ] ≈ 1

N
V 1U
k` , k 6= ` (2.40)

2In fact, the definition of weights in (2.39) slightly differs from [24]. It originates from [28], where
it was introduced, because it is more suitable for the proposal of the Block EFICA algorithm in
Chapter 3.
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More specifically, the terms V 1U
k` are given by

V 1U
k` =

γk
τ2
k

, k 6= `, (2.41)

with

µk =E[skgk(sk)] γk =βk − µ2
k

νk =E[g′k(sk)] τk =νk − µk
βk =E[g2

k(ŝk)], (2.42)

In practice, when a finite number of data samples is available, the expected values
in formulas (2.42) are replaced by respective sample means.

The constants ck` are used to form the matrix

W+
k = [ck1w1/‖w1‖, . . . , ckdwd/‖wd‖]T , (2.43)

where wi, i = 1 . . . d are the rows of the demixing matrix Ŵ, estimated by the fine-
tuning iterations. The k-th row of the matrix (W+

k W+
k
T )−1/2W+

k is the kth row of
the final demixing matrix Ŵ estimated by EFICA.

Figure 2.4: The flowchart of the EFICA algorithm. m̂4i denotes the sample estimate
of the 4th order moment of the ith source estimate.

2.10 The BGSEP algorithm

BGSEP (Block Gaussian SEParation) is an ICA algorithm which uses AJD to sep-
arate the sources modeled as block-wise stationary iid Gaussian random variables.
This asymptotically efficient and computationally undemanding technique was pro-
posed by Tichavský and Yeredor in [32]. This section deals with a brief description
of BGSEP because it is used as a separator within the T-ABCD algorithm (the
batch version as well as the online version).

BGSEP jointly diagonalizes the sample estimates of covariance matrices RXX[τ ]
from (2.17). To do so, BGSEP utilizes low complexity diagonalization scheme
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called WEDGE (Weighted Exhaustive Diagonalization with Gauss itErations). The
WEDGE technique is completely general and its use on different regular matri-
ces results in different ICA algorithms. Two other ICA techniques are proposed
by Tichavský in [32]: a computationally effective alternative for WASOBI [25] in-
tended for the separation of stationary AR processes and the BARBI [27] algorithm
separating block-stationary AR sources.

There are two forms of the WEDGE iteration: an unweighted (or uniform
weighted) alternative U-WEDGE and complete WEDGE introducing arbitrary pos-
itive definite weighting matrices K. BGSEP performs several U-WEDGE iterations
first in order to obtain a consistent estimate of the sources. Subsequently, the
(re)estimation of optimal weight matrices (computed from the source estimates) al-
ternates with single WEDGE iteration refining the estimates, until convergence is
achieved.

Let us denote by R̂XX[r], r = 0 . . . R − 1 the set of sample covariance matrices
to be diagonalized and by the upper index I the sequence index of iteration. The
BGSEP iterations proceed as follows: first, the estimated demixing matrix is ini-
tialized by an initial guess, e.g. Ŵ0 = I, where I denotes the identity matrix. Then
during the Ith iteration the target matrices R̂XX are partially diagonalized as

R̂I
S[r] = ŴI−1R̂XX[r](ŴI−1)T , r = 0 . . . R− 1 (2.44)

Subsequently, the demixing matrix is updated via

ŴI = (ÂI)−1ŴI−1, (2.45)

where ÂI has ones on its main diagonal, and the off-diagonal elements are obtained
by solving the 2× 2 systems[

ÂI
kl

ÂI
lk

]
=
[

rTllK[kl]Irll rTkkK[kl]Irll
rTkkK[kl]Irll rTkkK[kl]Irkk

]−1 [
rTllK[kl]Irkl
rTkkK[kl]Irkl

]
, (2.46)

where rkl is a R× 1 vector given by

rkl = [(R̂I
S[0])kl, . . . , (R̂I

S[R− 1])kl]T (2.47)

for k, l = 1, . . . , d, k > l and K[kl] denotes square R×R matrix of weights. For the
initial U-WEDGE iterations, the weight matrix K[kl] = I. The weighted iterations
introduce diagonal weight K[kl] in the form

K[kl] = diag

(
1

(R̂I
S[0])kk(R̂I

S[0])ll
, . . . ,

1

(R̂I
S[R− 1])kk(R̂I

S[R− 1])ll

)
(2.48)

This iterating continues until convergence is achieved.
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Figure 2.5: The flowchart of the BGSEP algorithm

2.11 Applications of ICA

The ICA methods can be applied to a wide variety of practical problems. Let us
name some technical areas, where ICA can be usefully exploited.

The ICA methods can be used for solving of the cocktail party problem
mentioned earlier. However, the instantaneous ICA model (1.1) does not take the
basic properties of sound into account. The mixing of acoustic signals is better
modeled by the convolutive model (1.2). Prior to the utilization of ICA on sound
mixtures, the convolutive mixing needs to be transformed into instantaneous one.
This process will be explained later in Chapter 4.

ICA may be applied to recordings originated from non-invasive brain mapping
techniques, like EEG and MEG. For these signals the instantaneous noiseless ICA
model holds well. The evoked potentials measured via EEG are truly mutually
independent. Moreover, the speed of propagation of the electrical brain activity is
high enough, for the mixtures recorded on electrodes to be considered instantaneous.
The mixing process is stationary due to the mutual fixed position of the brain
centers. On the other hand, there is one theoretical violation of the ICA model:
The EEG and MEG signals are not stationary. This is solved by the block-wise
application of the ICA methods on analyzed data, where the data in each block are
considered stationary.

In the context of EEG, ICA is usually used for artifact removal. Here, the
artifact is a signal which is not produced by the brain activity. It is created via
some external influence, like muscular activity, eye movement or heart activity. The
artifact may originate even from some external electro-magnetical phenomenons, e.g.
the power supply voltage of 50 Hz may influence the measured EEG. The artifacts
and brain signals are truly mutually independent. The artifacts can be located even
when their energy is much lower than the energy of brain signals. More details can
be found in [35].

ICA can be utilized for image coding and noise reduction. The image can
be expressed as a linear superposition of several basis images (functions) as

I(x, y) =
k∑
i=1

ιi(x, y)ai, (2.49)

where I(x, y) is the brightness of image I on coordinates x, y, ai are some coefficients
(which vary for different images) and ιi(x, y) are the basis images. The most suitable
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basis images can be learned directly from pictures encoded via ICA.
For practical computation, the target image is fragmented into small areas. The

values of brightness of each such area stored in the columns of X, the basis images
are represented by a mixing matrix A and the columns of S contain the unknown
weighting coefficients for all fragments.

The noise reduction consists in the fact that the basis functions with lower
coefficients ai usually represent noise. Therefore, the image is reconstructed from
basis images with ai higher than a selected threshold only. For detail information
to this topic see [36].

ICA may be used for financial data analysis. There are situations where
parallel financial time series are available, e.g. the stock portfolio values over time or
the currency exchange rates. The independent components in this scenario represent
seasonal/annual variations or factors which have a sudden effect on customers, such
as changes in commodity prizes. The components may also have a specific meaning
in the context of the analyzed time series, e.g. the current situation in the country
using the currency. Nevertheless, the meaning of specific components needs to be
determined. This poses a considerable complication for the ICA application on
financial data.

An example of the ICA application on financial data may be found in [37]. Here,
the cash flow of forty stores that belong to the same retail chain is analyzed. The
analysis aims at finding common factors which affect cash flow. ICA was used to
predict the exchange rates in [38].



Chapter 3

The Block EFICA algorithm

This chapter centers on a thorough description of the Block EFICA algorithm,
which is designed for the separation of non-stationary and non-gaussian sources.
The algorithm is proven to be asymptotically efficient, provided that the variances
of unknown sources are constant.

The algorithm is based on the EFICA algorithm ([24], Section 2.9). There are
two major differences between EFICA and Block EFICA algorithms.

The first modification consists in the implementation of the parametric score
function estimator. The estimated score function is used as a contrast in the one-
unit iterations within the fine-tuning part of the method. This approach is described
in Section 3.1 and paper [39].

The second realized modification consists in the introduction of non-stationarity
into the EFICA’s model. The Block EFICA assumes the sources to be block-wise
stationary. This approach is described in detail in Section 3.2 and papers [28] and
[40].

3.1 Parametric score function estimator

This section introduces the utilization of a parametric score function estimator
within (Block) EFICA. The term score function has already been discussed in Sec-
tion 2.7. For the sake of clarity, let us restate it first.

The optimal contrast function Goptk (x) for the kth source in the FastICA criterion
J(w) (2.31) is obtained by taking Goptk (x) = − ln(pk(x)). Then J(w) expresses
directly the entropy.

The function Goptk (x) itself is not present in the FastICA/EFICA iteration. The
iteration contains its derivative denoted as goptk (x). The function goptk (x) = ψk(x) =
[− ln(pk)(x)]′ = −p′k(x)/pk(x) is called the score function of probability density
pk(x) and can be estimated directly from available realizations of the random vari-
able.

The original EFICA implements the score function estimator for the GGD
sources. This section considers more general score function estimator which is not
restricted for GGD sources and thus can be more accurate for a wider range of distri-
butions. It is suitable for FastICA based algorithms because it provides continuous
and differentiable functions. Moreover, the proposed estimator is computationally
undemanding, which is advantageous for the implementation within Block EFICA.
Here, the score function may be different in each analyzed block.
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The proposed modification is following. Within the adaptive second step of
EFICA, the function gk(x) is selected as a score function estimate for each of the
sources separately. This is done prior to the first one-unit iteration and the non-
linearity is re-estimated after each iteration.

Several parametric and non-parametric score function estimators/probability
density estimators have been considered for the utilization within the modified
EFICA algorithm. More specifically, following approaches have been investigated:
the non-parametric density estimator with the Gauss kernel [12], the parametric
density estimator for the Generalized Gaussian Density family [41], the parametric
density estimator for the generalized gamma density [42], the score-function estima-
tion through the Pearson parametric system of rational functions [43].

Finally, the parametric score function estimator based on the minimization of
mean squared error [44] was selected as the most suitable estimator for the utilization
in the modified EFICA. Its main advantages include stability and computational
simplicity.

This estimator minimizes the criterion given as the mean squared error between
the true unknown score function Ψ(y) and its searched estimate h(y|θ), i.e.

E[(Ψ(y)− h(y|θ))2], (3.1)

where θ is the vector of parameters which is subject to minimization and E stands
for the expected value operator.

The square of (3.1) gives

E[Ψ(y)2]− 2E[h(y|θ)Ψ(y)] + E[h(y|θ)2]. (3.2)

Equation (3.2) can be expressed without dependence on the unknown score func-
tion using the following theorem from [44] and [45]

E[h(y|θ)Ψ(y)] = E[h′(y|θ)]. (3.3)

From (3.2) by using (3.3) and by leaving the term independent on θ, the unknown
vector Θ is expressed in the form

Θ = arg min
θ

E[h(y|θ)2]− 2E[h′(y|θ)] (3.4)

To simplify the optimization problem, the function h(y|θ) is considered to be a
linear combination of functions h1(y), ..., hk(y), i.e.

h(y|θ) =
k∑
i=1

θi · hi(y), (3.5)

This allows to express (3.4) in the form

Θ = E[hT (y) · h(y)]−1 · E[h′(y)], (3.6)

where h(y) = [h1(y), ..., hk(y)]T and h′(y) = [h′1(y), ..., h′k(y)]T .
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The functions hi(y) are called basis functions and their selection is an important
issue. It is possible to choose hi(y) = yi. In this case, the function h(y|θ) is a
polynomial, which was used for example in [45]. Another possible approach is to
select the functions hi(y) as score functions of some important distributions. This
approach is suggested in [46]. A suitable choice for the utilization in the Block
EFICA iteration is the set of functions which were used as contrast functions in the
FastICA algorithm. This approach is described in [39]. Based on this observation,
following functions are chosen as basis functions for the separation of super-gaussian
and sub-gaussian components, respectively:

h1(y) = x/(1 + 6 |x|)2, h2(y) = x3. (3.7)

3.2 Separation of block-wise stationary sources

In the following text, the term block-wise stationary model is discussed. Subse-
quently, the BlockEFICA algorithm, which is based on the model, is proposed.

3.2.1 Block-wise stationary instantaneous model of ICA

In the case of non-stationary source signals, the samples of si are not identically dis-
tributed. One way to model the non-stationarity is to assume that the distributions
of the sources differ in each time instant or have fixed distributions with varying
parameters, e.g. variances.

To allow practical estimation, it is expected that there are Q blocks in S of the
same integer length. In these blocks, the distribution of the signals does not change.
In this section, the upper index (I) is used to denote random variables or functions
which are related to the Ith such block.

The source signals si are in blocks i.i.d. random variables. Thus, the instanta-
neous model in (1.1) holds in each considered block, i.e.

X(I) = A · S(I), I = 1 . . . Q. (3.8)

3.2.2 Description of Block EFICA

The Block EFICA consist of three steps, which are similar to those in the original
algorithm (see Section 2.9). The flow of the algorithm is illustrated in Figure 3.1.

(I) The symmetric FastICA [15] with the test of saddle points([34]) is ex-
ploited to obtain the pre-estimate of the demixing matrix Ŵ.

(II) The fine-tuning of the rows of Ŵ is performed. The computation proceeds
via modified FastICA one-unit iterations.

In order to reflect the non-stationary of the model (3.8), the Block EFICA
optimizes a different contrast function than EFICA. The Block EFICA contrast
function is given by

J(wk) = λ
(1)
k E{G(1)

k (wT
k Z(1))}+ . . .+ λ

(Q)
k E{G(Q)

k (wT
k Z(Q)))}, (3.9)
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where k = 1 . . . d, λ(I)
k are some weights and G

(I)
k are suitable nonlinear func-

tions. Note that this contrast function is not a simple linear combination of
Gk(x)(1), . . . , Gk(x)(Q), because the expectations in (3.9) depend on different distri-
butions from corresponding blocks of the whitened mixtures.

The extrema of (3.9) are computed through a fixed-point iteration given by

wk ← λ
(1)
k (E[Z(1)g

(1)
k (wT

k Z(1))]−wkE[g(1)
k

′
(wT

k Z(1))]) + . . .

· · ·+ λ
(Q)
k (E[Z(Q)g

(Q)
k (wk

TZ(Q))]−wkE[g(Q)
k

′
(wk

TZ(Q))]. (3.10)

In practice, when the number of samples is finite, the expectations are replaced
by sample means. Throughout the text, equation (3.10) is further referred to as
block one-unit FastICA iteration. The non-linearities g(I)

k (·) are computed using the
parametric score function estimator described in Section 3.1 and are re-estimated
after each one-unit iteration. Simultaneously, the weights λ(I)

k are updated. The
selection of the weights λ(I)

k is based on the theoretical performance analysis and is
discussed in the next section.

(III) The refinement consists in the computation of the auxiliary constants
ck`, k, ` = 1 . . . d, which minimize the mean square error of rows of Ŵ. In this
manner, the asymptotical efficiency of the algorithm is attained. The constants are
exploited to form the matrix

W+
k = [ck1w1/‖w1‖, . . . , ckdwd/‖wd‖]T (3.11)

Then, the k-th row of the matrix (W+
k W+

k
T )−1/2W+

k is the kth row of the final
demixing matrix ŴBEF estimated by Block EFICA. The selection of weights is
discussed in detail in the next section.

The number of blocks Q is usually unknown in practice. When a too high
value of Q is chosen, the overparametrization may occur and cause a higher estima-
tion error. The simulations in Figure 3.5.1 show that Block EFICA is not highly
sensitive to this parameter. Neither the overestimation nor the underestimation
decreases the performance significantly.

The selection of Q should reflect the characteristics of the signals to be separated.
For instance, when separating speech, the length of blocks should correspond to
20-25 ms where the speech is considered stationary. Blind estimation of number of
blocks is possible as well, based on the estimation of residual inter-signal interference
(signal-to-interference ratio - SIR) using analytical expressions from Section 3.3,
namely (3.18). Corresponding statistics are estimated from separated signals. In
the beginning, SIR usually improves with growing Q, but for larger Q the growth
is slower and slower. Q should be selected as a value where the increase of SIR
becomes slow; see Figure 3.8. Another possible approach for an automated choice
of Q can be found in [47].

At the end of this section let us mention one important detail concerning the
implementation of the parametric score function estimator in Block EFICA.
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In Section (3.1), two basis functions were proposed for the computation in the
estimator: One for super-gaussian sources and the other for sub-gaussian sources.

For the utilization in Block EFICA, it is reasonable to take into account the
identity function h3(x) = x as the third basis function. The identity function does
not have any relevance in the context of the original FastICA/EFICA. There, for the
stationary whitened data, it holds that E[ZZT ] = I. Thus, the effect of identity in
(2.33) is zeroed in all cases. On the other hand, in the context of BlockEFICA, the
block-wise stationary sphered data Z may not necessarily be sphered within each
considered block.

Inclusion of the identity function into the score function estimator, in fact, con-
veys the direct utilization of second-order statistics of signals. The consideration is
worthwhile especially when separating signals with a changing variance.

3.3 Performance analysis of the Block EFICA algorithm

The performance analysis of the Block EFICA algorithm determines the selection of
weights λ(I)

k and auxiliary constants ck`. Suitably selected values of these constants
allow Block EFICA to optimize its performance, and under some conditions, to
achieve the asymptotical efficiency. For details on the performance analysis see [40].

Throughout this section it is assumed that the variances of the sources are equal
to 1 in each block. This simplification is introduced, because the formulae for weights
λ

(I)
k become otherwise overparametrized and the weights are thus prone to estima-

tion errors. Although this fact restricts the theoretical performance, the simulations
prove that the performance of the algorithm is not distinctively deteriorated when
the variances of the signals are changing.

First, let us state the Cramér-Rao lower bound for the piecewise stationary
instantaneous ICA model with unit variance signals. As discussed in Section 2.7,
the performance of ICA algorithms is measured through variance of the non-diagonal
elements of the gain matrix G = ŴA. The Cramér-Rao lower bound of this variance
is given via

CRLB[Gk`] =
1
N

κ`
κk κ` − 1

k 6= `, (3.12)

where κk
def.= 1

Q

∑Q
I=1 κ

(I)
k and κk = E[ψ2

k(x)].
The variance of the gain matrix elements obtained from the block one-unit

FastICA iteration is approximately given by

var[GB1U
k` ] ≈ 1

N
V B1U
k` , k 6= `, (3.13)

where V B1U
k` is given by

V B1U
k` =

βk − µ2
k

τ2
k

, k 6= `, (3.14)
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with

βk =
1
Q

Q∑
I=1

(λ(I)
k )2β(I)

k µk =
1
Q

Q∑
I=1

λ
(I)
k µ

(I)
k

τk =νk − µk νk =
1
Q

Q∑
I=1

λ
(I)
k ν

(I)
k

µ
(I)
k =E[s(I)k g

(I)
k (s(I)k )] ν

(I)
k =E[g(I)

k

′
(s(I)k )]

β
(I)
k =E[g2(I)

k (s(I)k )] (3.15)

To achieve the best performance, the term V B1U
k` must be minimized with respect

to the free parameters λ(I)
k . The optimal weights are then given by

λ
(J)
k =

1
Q

(
τ

(J)
k

β
(J)
k

+AkBk
µ

(J)
k

β
(J)
k

)
, J = 1, . . . , Q, (3.16)

where

Ak =

(
Q∑
I=1

γ
(I)
k

β
(I)
k

)−1

and

Bk =
Q∑
I=1

µ
(I)
k τ

(I)
k

β
(I)
k

.

The final performance of Block EFICA is given after the refinement step III.
Here, the optimum constants ck` are exploited according to (3.11) such that the
Cramér-Rao lower bound for the performance is achieved. The constants ck` are
given by

ck` =


V B1U

k`

V B1U
`k +1

, k 6= `

1, k = `
, (3.17)

The final performance of Block EFICA, given in the terms of the gain matrix
GBEF = ŴBEFA, is expressed as

var[GBEF
k` ] ≈ 1

N

V B1U
k` (V B1U

`k + 1)
V B1U
k` + V B1U

`k + 1
, k 6= `. (3.18)

The optimum performance of Block EFICA occurs when the nonlinearities esti-
mated in step II equal the true score functions in respective block, i.e. gk(x)(I) =
ψ

(I)
k (x) for k = 1 . . . d, I = 1 . . . Q. Then it holds that β(I)

k = ν
(I)
k = κ

(I)
k , µ(I)

k = 1,
and τ (I)

k = γ
(I)
k = κ

(I)
k − 1. Next, the formula for λs (3.16) simplifies to a constant,

namely, λ(J)
k = 1/Q, however another constant value may be considered. Then

βk = νk = κk and µk = 1. Now, the performance (3.14) becomes equal to

V B1U
k` =

1
κk − 1

. (3.19)



3.4. Experiments: modified EFICA with score function estimator 34

Inserting (3.19) into (3.18) gives

var[GBEF
k` ] ≈ 1

N

κ`
κk κ` − 1

, k 6= `. (3.20)

When comparing (3.20) and (3.12), it can be seen that Block EFICA is asymptoti-
cally efficient for piecewise stationary sources with constant variance, provided that
the score functions are estimated correctly.

The uniformity of the weights λ(I)
k for the case gk(x)(I) = ψ

(I)
k (x) results in a

simplified version of the algorithm called Uniform Block EFICA. Here, all the
weights λ(I)

k are equal one. This reduces the number of parameters which need to
be estimated by dQ.

Figure 3.1: Flowchart of the Block EFICA algorithm.

3.4 Experiments: The modified EFICA with the para-
metric score function estimator

This section presents a series of experiments, which test the modified EFICA al-
gorithm with the parametric score function estimator. The experiments verify the
functionality of the estimator within the algorithm and suggest that the estimator
can be applied within the Block EFICA algorithm.

In the experiments, the performance of the modified EFICA is compared to other
well known ICA algorithms based on non-gaussianity. Namely, the FastICA with
the contrast function "tanh" [33], JADE [17] and the original EFICA algorithm [24]
were selected.

3.4.1 Separation of the GGD sources

This experiment deals with the separation of sources with pdfs belonging to GGD.
It proves that the modified EFICA algorithm with the score function estimator sep-
arates these signals as accurately as the original version, which is designed specially
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for these sources. The original EFICA is proven to be statistically efficient for the
GGD sources with α > 2.

The experiment proceeds as follows: five random signals of length 5000 samples
were generated for a fixed value α in the interval 0, 3 < α < 20. A random matrix
A was generated and the data were mixed according to (1.1). Four competing al-
gorithms performed the separation. Subsequently, the values of ISR were computed
and averaged over all sources.

Figure 3.2 shows the results of this experiment averaged over 100 Monte-Carlo
trials with respect to specific values α. The modified version of EFICA with the
score function estimator is denoted as "EFICA mod" in the legend, the original
version is labeled as "EFICA orig".

It can be seen that the performance of the original and of the modified algorithm
are very similar as expected. The modified algorithm has the advantage of the
general selection of a contrast function, while the original method assumes that the
sources belong to the GGD family of distributions. The experiment validates that
the selected score function estimator is suitable for the computation of a contrast
function in the EFICA/Block EFICA method.
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Figure 3.2: Separation of GGD sources

3.4.2 Separation of GGD sources with absorbed Gaussian noise

This experiment deals with the separation of sources which do not belong to the
GGD family. The example aims at showing the advantage of the general selection of
the score function without any assumptions about the distributions of the sources.

The experiment was designed in the following manner: five randomly generated
signals with a distribution from the GGD family with fixed α were summed with
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Gaussian noise whose variance was 0.2 times the variance of these signals. The
length of the signals was N = 2500 samples. The sources were mixed according to
(1.1) via a random square mixing matrix A and subsequently separated via four
compared algorithms. The evaluation is given in the terms of ISR averaged over all
sources.

The probability distribution of the sources separated in this example does not
belong to the GGD family. It stems from the fact that the sum of two random
variables has the probability density which is given as the convolution of the two
original distributions.

Figure 3.3 summarizes the results of the experiment. The mean ISR is averaged
over 100 Monte-Carlo trials. The modified EFICA outperforms the other algorithms
for α < 2. For α > 2, the results are comparable to the original EFICA algorithm.
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Figure 3.3: Separation of GGD sources with absorbed Gaussian noise

3.4.3 Separation of binary phase shift keying (BPSK) signals with
absorbed Gaussian noise

This example shows the ability of the parametric score function estimator to deal
with sources which have bimodal probability distributions.

The sources employed in this experiment are distributed according to
√

1− ε2b+
ε ·n, where b is a binary random variable equal to 1 or -1 with equal probabilities, n
is a standard Gaussian variable and ε ∈ [0, 1] is a free parameter, which determines
the shape of the distribution. The sources are binary random variables for ε = 0.
With growing epsilon, the probability density changes from a strongly bimodal to
unimodal Gaussian distribution when ε = 1. The pdfs for distinct values of ε are
shown in Figure 3.4.
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Figure 3.4: Probability density functions of BPSK signals with absorbed Gaussian
noise for ε = 0.1, 0.2, 0.6, 0.8 .

Five random signals of length N = 2500 samples were generated according to the
distribution described above and mixed with a random matrix A. Subsequently, four
competing algorithms were exploited for separating the sources back. The output
mean ISR values averaged all sources and 100 Monte-Carlo trials are presented in
Figure 3.5. It can be seen that the modified EFICA algorithm outperforms the
other algorithms, especially for ε ≈ 0, 2, where the separated signals have a strongly
bi-modal distribution.

3.4.4 Conclusion

All the implemented experiments show the advantage of general selection of the score
function via the parametric estimator. The performance of the modified EFICA
algorithm suggests that the estimator is suitable for the utilization in the second
adaptive step of the EFICA algorithm and can be exploited within the proposed
Block EFICA.

3.5 Experiments with the Block EFICA algorithm

Several various experiments were performed to verify the accuracy and stability of
the Block EFICA algorithm as a whole. The performance of the proposed algo-
rithm is compared to the most competitive algorithms for the given scenario. The
FastICA [15] with the nonlinearity g(·) = tanh(·), the EFICA [24] algorithm and
the Extended Infomax [48] are considered as representatives of the non-gaussianity
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Figure 3.5: Separation of BPSK sources with absorbed Gaussian noise

based approaches. Second order statistics based BGL [21] algorithm, designed for
separation of block-wise stationary Gaussian sources, is considered in several exam-
ples.

The NSNG algorithm proposed by Pham [49], which exploits both non-
stationarity and non-Gaussianity, stands here for a method which belongs to the
same class of algorithms as Block EFICA. NSNG yields excellent theoretical per-
formance. However, during the experiments, cases of instability were encountered.
NSNG seems to work well in scenarios where a small number of sources is considered
and their properties perfectly fit the given model. On the other hand, in experi-
ments with real-world signals, the method fails with a non-negligible probability.
The performance of NSNG is shown only in experiments where the method yields
meaningful results.

For several experiments, the computational demands of the algorithms are stated
in the legends of the corresponding figures. All simulations were performed in
MatlabTM on a PC with single core 3 GHz processor and 2 GB of RAM.

Several experiments presented in this section deal with the separation of artificial
sources with constant variance which correspond to the theoretical model of Block
EFICA. These experiments verify the performance analysis of Block EFICA pre-
sented in Section 3.3. The other experiments verify the robustness of Block EFICA
in scenarios where the respective model does not hold. This concerns the exper-
iments with artificial sources with a varying variance as well as real world speech
data. Moreover, the examples with real world data prove the practical contribution
of the algorithm.
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3.5.1 Separation of block-wise stationary constant variance signals

The experiments demonstrated in this section deal with signals which correspond
to the theoretical model of Block EFICA (3.8).

The first example considers the separation of twenty artificial block-wise station-
ary sources. The length of the signals is N = 10000 samples. Each signal consists of
four blocks of the same length N/4. The first and the third blocks have the Gaussian
distribution and the second and the fourth blocks have the GGD(α) distribution.
The parameter α is fixed for each of the 20 signals, where its values are uniformly
chosen from [0.1, 10]. The variance of all the distributions is one. Thus, the signals
have constant variance. For the purposes of the experiment, these signals are mixed
by a random matrix A. The results shown in Figure 3.6 are presented in the terms of
the mean interference-to-signal ratio and are averaged over 100 Monte Carlo trials.

Theoretical performance, marked in figures by "theory" in the legend, was es-
timated from separated signals using (3.14) and (3.18). Results of this experiment
corroborate the validity of the analysis due to the proximity of the theoretical re-
sults with the empirical ones. They also demonstrate the improved performance
of the proposed method compared to EFICA, as different distributions on the four
blocks of signals were considered. The performance of the NSNG algorithm is not
demonstrated here, because its original implementation is designed for sub-gaussian
signals only, and the method fails to converge in this experiment.
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Figure 3.6: Mean interference-to-signal ratio of the separated signals in the experi-
ment with 20 block-wise stationary sources, computed over 100 Monte Carlo trials.

A scenario with sub-gaussian signals is presented in Figure 3.7. Here, the perfor-
mance achieved through the separation of 10 sources, composed of Q = 10 blocks,
is shown. The kth signal, k = 1, · · · , 10, is uniformly distributed (with variance
one) in the first k blocks and Gaussian elsewhere. Again, the length of the signals
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is N = 10000 samples and the signals were mixed with a random mixing matrix A.
In Figure 3.7 the mean interference-to-signal ratio averaged over 1000 Monte Carlo
trials is shown.

Similarly to the previous experiment, this example demonstrates the strongest
point of Block EFICA, which consists in its ability to adapt to varying signal dis-
tribution. The same performance was achieved by the NSNG algorithm, and it
performed even better when a smaller length of data was considered, which is likely
owing to the lower number of parameters compared to Block EFICA. However, also
in this scenario, NSNG failed to converge in a few trials. To allow the presentation
of its performance, the trials where the divergence occurred had to be skipped.
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Figure 3.7: Mean interference-to-signal ratio for the separation of 10 sub-Gaussian
signals averaged over 1000 Monte Carlo trials.

The same setup as in the previous example was utilized in the experiment which
examines the influence of the input parameter Q (the assumed number of blocks
within sources) on the performance of Block EFICA. The parameter Q takes val-
ues from 1 to 40. The overall performance averaged over all sources is shown in
Figure 3.8.

Although the performance is optimal for the correct value of Q = 10, the dete-
rioration of the performance due to over- or underestimation of Q is not high. For
Q close to 1 the performance of Block EFICA approaches that of EFICA, which is
as expected. Certain local maxima can be observed for Q being a multiple of 10,
which occurs owing to fitting the boundaries of blocks exactly to the instants where
the distributions of signals are switched. Nevertheless, the negligible improvement
demonstrates the lower importance of the correct fitting.

The theoretical performance computed using (3.18) monotonically grows with
Q. Therefore, it becomes slightly overoptimistic for higher values of Q, because it
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does not take the practical effect of overparametrization into account. Nevertheless,
it may be used for the selection of an effective value of Q.
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Figure 3.8: Average interference-to-signal ratio for the separation of 10 sub-Gaussian
signals achieved by Block EFICA when changing the number of blocks Q considered
by the algorithm.

3.5.2 Separation of block-wise stationary sources with changing
variance

The experiments shown in this section deal with artificial non-stationary sources
with a changing variance. This type of signals does not correspond to the source
model of Block EFICA, which assumes a unit variance of signals within all blocks.

The experiments present a scenario where a signal having a variable variance is
separated from another signal that is stationary. The first (nonstationary) signal
has variances, respectively, equal to 1, σ, and σ2 in the three consecutive blocks
of the same length, and the second signal is Gaussian having a constant variance
equal to one. An example of the signals for a particular value of the parameter σ,
considered on interval (0, 1], are shown in Figure 3.9.

Two distinct situations which differ in the selected distribution of the first non-
stationary signal are considered. In the first setup, the distribution is Gaussian in
all blocks. Then, for σ close to one, where the two signals are almost stationary, the
mixture cannot be separated due to the Gaussianity of the signals. In the second
setup, the distribution is Laplacian, which makes the mixture separable even for σ
close to one. The signals can be separated for both cases when σ is close to zero.
Then, the first signal is strongly nonstationary and has a different variance-envelope
than the second signal, which is the general requirement of the BGL algorithm.
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Figure 3.9: Illustration of the (non-)stationary Gaussian signals of length N = 104

when the parameter σ that controls the nonstationarity of the first signal equals 0.1.

Figures 3.10 and 3.11 show the results obtained for both settings of the ex-
periment. Performance is evaluated for each considered value of the parameter σ
separately. It is presented in the form of the mean Interference-to-Signal ratio av-
eraged over 1000 Monte Carlo trials. The line denoted as CRLB represents the
Cramér-Rao bound for separation performance.

The first scenario with Gaussian signals fits the Block Gaussian model, where the
performance of BGL should be optimal. This fact is confirmed by the results shown
in Figure 3.10. Similar performance is achieved by the NSNG algorithm without
yielding any instability, which reveals its excellent ability to utilize the nonstation-
arity of signals in simple examples such as the two-dimensional one considered here.

The proposed Block EFICA algorithm achieves comparable results up to σ ∈
[0.7, 1] where the Gaussian signals are almost stationary, which makes them hardly
distinguishable for non-gaussianity-based methods. Hence, the drop in performance
is caused by failures of initialization brought on by the Symmetric FastICA in the
Step 1 of Block EFICA.

The plots marked by "Block EFICA (identity)" demonstrate further improve-
ment of Block EFICA achieved through including the identity function in the score
function estimator. The better performance shows that the option allows a more
effective exploitation of the nonstationarity of signals.

The second scenario simulates the case when the original signals exhibit both
the non-gaussianity and the non-stationarity since the distribution of the first sig-
nal is Laplacian. Here, Block EFICA yields performance that is superior to the
other methods. The BGL algorithm suffers from stationarity of the signals as σ is
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approaching one. Conversely, the original EFICA does not utilize effectively their
nonstationarity for σ close to zero. The implementation of the NSNG algorithm lacks
the ability to accurately estimate the score function of the Laplacian distribution.
It has significantly lower performance than EFICA and Block EFICA. Nevertheless,
its ability to profit both from non-stationarity and non-gaussianity is confirmed.

3.5.3 Separation of real-world speech signals mixed linearly

The proposed example demonstrates a practical contribution of the method, which
is shown to be robust when separating real world sources. These sources do not
follow the source model of Block EFICA (3.8).

Twenty speech signals of length 5000 samples are mixed linearly with a random
mixing matrix A and subsequently separated by the competing non-gaussianity-
based algorithms. The speech signals were selected randomly from a database of
utterances, which is along with the source code of the method available online [50].

The above described experiment was performed 1000 times and the results were
averaged over all trials and signals. The results are depicted in Figure 3.12 and are
quantified in the means of three distinct criteria. The proposed Block EFICA shows
improved separation results compared to the original EFICA, specifically 1dB ISR
improvement and 2,5dB SIR improvement.

3.5.4 Separation of real-world mixtures of speech signals

In the previous example, real-world data were mixed artificially and subsequently
separated. To demonstrate the strength of Block EFICA on true real-world mixtures
which are convolutive in nature, an example is presented where a convolutive mixture
of two speech signals recorded by two microphones is separated. The experiment
consists in the utilization of the Block EFICA algorithm as the ICA separator in
the T-ABCD [9] algorithm.

However, the evaluation of an ICA algorithm constructed in this manner is not
entirely accurate. The limitations stem from the fact that the ICA performance
within T-ABCD is restricted by the desired demixing filter length L and the optimal
solution is not unique due to the fact that the estimated signals are retrieved up to
an unknown filtering. Despite of these limitations, the experiment reflects well the
ability of ICA methods to deal with real-world signals/mixtures.

Figure 3.13 (a) shows data 1 containing real recordings of two speakers (played
over loudspeakers) simultaneously saying the digits from one to ten in English
and in Spanish, respectively. The loudspeakers were placed close to the micro-
phones (60 cm), so direct-path signals and possibly early reflections from the closest

1This data are available online on the web page of T-W. Lee
http://www.cnl.salk.edu/˜tewon/ Blind/blind_audio.html.
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Figure 3.10: Results of the experiment with nonstationary signals with a changing
variance. In this scenario the signal #1 was Gaussian.
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Figure 3.11: Results of the experiment with nonstationary signals with changing
variance. In this scenario the signal #1 was Laplacian.
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Figure 3.12: Separation of real-world speech signals mixed linearly

objects are much stronger than other reverberations in the recorded convolutive
mixture.

Since the rhythms of the speech signals are similar and synchronized, there occur
many short segments (say of length 6000 samples - the sampling frequency is 16kHz)
where the dynamics of the speech signals are very close. Owing to possible changing
mixing conditions (e.g. moving sources), the aim is to separate as short segments
of signals as possible. However, the similar dynamics of sources in short segments
cause malfunctioning of nonstationarity-based methods. From this point of view,
the methods that use not only the nonstationarity but also the non-gaussianity of
speech are more flexible because they do not fail in such situations.

To demonstrate this, Figures 3.13 (b) and 3.13 (c) show the results of separation
with L = 20 via non-stationarity based BGSEP [32] and Block EFICA, respectively,
when only using a short segment of data for the mixture identification (learning
data). Then, the resulting separating filters are applied to the whole signals. Since
the mixture is stationary here (loudspeakers and microphones remain in their po-
sitions during the whole recording), the separated signals reveal the ability of the
ICA methods to separate them using data from the given data segment only.

Since the dynamics of signals are too similar in the chosen segment, the
nonstationarity-based BGL algorithm yields poorly separated components of X̃ so
that average SIR of the finally separated sources is 3.3dB 2, while the original SIR
of the mixed signals is 3.4dB. By contrast, the Block EFICA algorithm succeeded
to separate the signals yielding average SIR of 12.2dB, which means a "good" result
in this convolutive audio source separation task.

2The Signal-to-Interference ratio was evaluated by means of the BSS_EVAL toolbox from [51].
Lee’s separated signals were used as the reference true sources.
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Mixed signals

(a)

Separated signals by using the BGL algorithm

(b)

Separated signals by using the Block EFICA algorithm

(c)

Figure 3.13: Results of the separation of real-world convolutive mixture of two
speech signals recorded by two microphones. Respective ICA methods were applied
to the subspace generated by a selected data segment of 6000 samples. The segment
is delimited by vertical lines in the graphs.



Chapter 4

Separation of Convolutive
Mixtures

The linear convolutive mixture model (1.2) is well suited for audio applications
because it takes the propagation of sound in the real environment into consideration.
Sound does not reach all microphones at the same time because its propagation speed
is limited. This introduces delays into the mixing. Moreover, sound reflects on walls
and other obstacles, which introduces multiple echoes of a single source into the
mixing process.

For the sake of clarity, let us restate that the convolutive mixture model is given
by

xi(n) =
d∑

k=1

Mik∑
τ=0

aik(τ) · sk(n− τ), (4.1)

where d is the number of estimated sources, m is the number of microphones,
x1(n) . . . xm(n) are known signals recorded on microphones, s1(n) . . . sm(n) are the
original unknown sources. The unknown aik(τ) represent the source-sensor im-
pulse responses, i.e. impulse responses expressing the propagation of sound from
the location of each source to each microphone. The convolutive model is thus a
generalization of the instantaneous model, which is obtained by setting Mik = 0.

The separation usually proceeds via filtering of the mixtures with some estimated
MIMO filter via

ŝk(n) =
m∑
i=1

L−1∑
τ=0

wki(τ) · xi(n− τ), (4.2)

where L is the length of the demixing MIMO filters wki.
The estimated sources are determined up to several ambiguities, similar to the

ambiguities of ICA. It is not possible to determine the ordering and amplitude of the
estimated sources. Moreover, the sources are determined up to an arbitrary filtering
caused by the propagation in the environment because the source-sensor impulse
responses are unknown. Therefore, the sources are estimated as spatial images
(responses) of the sources on microphones, rather then the sources themselves.

The response of the kth source on the ith microphone is given by

sik(n) =
Mik∑
τ=0

aik(τ) · sk(n− τ). (4.3)

To allow practical separation, a general prerequisite of the mutual independence of
unknown sources is often assumed. This allows the utilization of an ICA method as
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a separator. Prior to the utilization of ICA, the convolutive mixing model needs to
be transformed into an instantaneous one. There exist two basic approaches for this
transformation. It can be performed either in the time-domain or in the frequency
domain.

4.1 Separation via ICA in the time-domain

The transformation in the time-domain expresses discrete convolution via matrix
multiplication. Two matrices S̃ and X̃, which have (usually, not necessarily)
the block-Toeplitz structure, are introduced. The rows of these matrices repre-
sent delayed source signals or mixtures, respectively. The matrices have the size
mL× (N − L+ 1), where L is the desired length of the demixing filter. The linear
space spanned by the rows of S̃ and X̃ is called source space or observation space,
respectively. The matrices have following structure:

S̃ =



s1(L) . . . . . . s1(N)
s1(L− 1) . . . . . . s1(N − 1)

...
...

...
...

s1(1) . . . . . . s1(N − L+ 1)
s2(L) . . . . . . s2(N)

s2(L− 1) . . . . . . s2(N − 1)
...

...
...

...
sd(1) . . . . . . sd(N − L+ 1)


, (4.4)

and

X̃ =



x1(L) . . . . . . x1(N)
x1(L− 1) . . . . . . x1(N − 1)

...
...

...
...

x1(1) . . . . . . x1(N − L+ 1)
x2(L) . . . . . . x2(N)

x2(L− 1) . . . . . . x2(N − 1)
...

...
...

...
xm(1) . . . . . . xm(N − L+ 1)


. (4.5)

Using this notation, the convolutive mixing model in (4.1) may be approximated
via

X̃ = ÃS̃, (4.6)
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where Ã is defined like

Ã =



a11(0) a11(1) . . . a11(L− 1) a12(0) . . . . . . a1d(L− 1)
0 a11(0) a11(1) . . . a11(L− 1) a12(0) . . . a1d(L− 2)
...

...
...

...
...

...
...

...
0 0 . . . a11(0) 0 0 . . . a1d(0)

a21(0) a21(1) . . . a21(L− 1) a12(0) . . . . . . a2d(L− 1)
0 a21(0) a21(1) . . . a21(L− 1) a22(0) . . . a2d(L− 2)
...

...
...

...
...

...
...

...
0 0 . . . am1(0) 0 0 . . . amd(0)


.

(4.7)
The approximation gets more accurate with L approaching to Mik. However, even
for high values of L, (4.6) is not exact. The reason is the truncation of impulse
responses located near the bottom rows of blocks in Ã. The equality can be achieved
for rectangular Ã only (see [52]).

With this approximation, it is possible to estimate the demixing filter coefficients
contained in matrix Ŵ via an ICA method described in Chapter 2. The independent
components C, obtained via C = ŴX̃, correspond to the original sources up to an
unknown order and filtering.

The time-domain generalization (4.6) has a major drawback: a rapid growth of
dimension when expanding mixtures xi(n), i = 1 . . . d into X̃. The suitable filter
length L differs according to application, but can reach hundreds of samples. The
ICA problem dimension grows in the same rate, i.e. by factor mL.

Various methods performing the separation of convolutive mixtures via ICA in
the time domain have been proposed in the recent years. The methods can be
classified based on the fact whether they perform complete or partial decomposition
of the observation space X̃ into subspaces corresponding to the estimated sources.

The partial decomposition consists in the estimation of one dimensional
subspaces (components). These components are subsequently utilized for the recon-
struction of the source responses on the microphones. The partial decomposition
approach makes the problem of rapid dimension growth of X̃ easier. On the other
hand, the performance of the methods doing it depends largely on the initialization
of the applied convergence scheme. These methods may find two components re-
lated with a single source and skip another source completely. From this point of
view, the complete decomposition is a more reliable choice at the cost of a higher
computational burden.

A natural gradient based method performing partial decomposition was proposed
by Amari et al. in [53]. A more robust extension of this algorithm was proposed by
Douglas et al. in [54].

The complete decomposition with constraints lowers the computational
demands of the methods by introducing some simplifying assumptions about the
decomposing transform or the observation space. One of such constraints is the
block-Toeplitz or block-Sylvester structure of the matrix Ã in (4.7).
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A generalization of the ICA algorithm SOBI for convolutive mixtures, performing
complete constrained decomposition, was proposed by Belouchrani et al. in [55].

A time-domain algorithm, using both non-stationarity and spectral diversity of
the sources mixed with a convolutive transform, was proposed in [56] by Buchner
et al.

The utilization the Joint Block Diagonalization (for details see [55]) on the ob-
servation space with an applied orthogonal constraint was proposed by Févotte et
al. in [52].

The complete constrained decomposition assumes that all estimated subspaces
have the same dimension, which may be a possible drawback. The complete
unconstrained decomposition need not assume this and therefore provides a way
to utilize the available data as effectively as possible. In the general form stated in
this section, the complete decomposition may be considered to be computationally
too demanding, however.

A modular algorithm performing complete the unconstrained decomposition was
proposed by Koldovský and Tichavský in [9] and subsequent extensions. In the
papers, the authors propose several improvements to the common decomposition
scheme, which allow to circumvent partially its computational burden. The algo-
rithm is described in Section 4.3.

4.2 Separation via ICA in the frequency-domain

Another effective possibility for the separation of convolutive mixtures via ICA
constitutes the separation in the frequency-domain. It consists in the application
of the Fourier Transform (FT) on the mixtures. This procedure exploits the basic
property of FT; the convolution in the time-domain is mapped to the multiplication
in the frequency domain. The application of FT on both sides of (4.1) gives

Xi(ω) =
d∑
j=1

Aij(ω) · Si(ω), (4.8)

where Xi(ω), Aij(ω) and Si(ω) are the Fourier transforms of xi(n), aij(n) and si(n).
The application of FT in the time-domain transforms the convolutive mixtures into
instantaneous mixtures in the frequency-domain. The mixing matrix A is a function
of ω in (4.8), unlike the instantaneous model (1.1), where it is constant.

In practice, the computation of FT is performed through the Short Time Fourier
Transform (STFT). The frames of the mixtures are weighted by a window function
(like Hamming or Gauss Window) and the Fast Fourier Transform (FFT) is applied
on each frame. Subsequently, the computed spectra Xi(ω) are split according to the
frequencies ω into segments and ICA is applied on each such spectral segment (for
each ω) separately. The separation is complicated by the fact, that the mixtures
Xi(ω) and the demixing matrix W(ω) are complex valued.

The separation in the frequency domain has a major drawback called the Per-
mutation Problem. The ambiguities of ICA (the order and signs of rows in W) still
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apply for the estimated matrices W(ω). In each frequency bin, the order may differ
and it is necessary to re-order the rows of W(ω) so that the respective independent
components have the same order in all the spectral segments, which is vital for the
reconstruction in the time-domain.

An advantage of frequency based methods lies in the ability of computing long
separating filters, which is very favorable in audio applications. On the other hand,
the computation of such filters requires long recordings, in order to generate sufficient
amount of data for each frequency bin (for details see [57]).

The utilization of various instantaneous ICA techniques for the separation of
convolutive mixtures in the frequency domain was proposed e.g. by Smaragdis in
[58] and by Mitianoudis et al. in [59].

A robust way how to deal with the permutation problem was proposed e.g. by
Sawada et al. in [60] or Nesta et al. in [61].

4.3 Time-domain Audio Source Blind Separation Based
on the Complete Decomposition

This section introduces the algorithm designed for separation of convolutive mix-
tures, which was proposed by Koldovský and Tichavský in [9] and later extended
in [62]. The modifications of this method proposed by the author are described
separately in Chapter 5. The algorithm will be denoted as T-ABCD further in the
text, which stands for Time-domain Audio source Blind separation based on the
Complete Decomposition. The T-ABCD is based on unconstrained separation via
ICA in the time-domain according to (4.6).

The algorithm consists of five consecutive steps. In the first step, the convolutive
model from (4.1) is transformed into an instantaneous one (4.6). The matrix X̃ (or
its generalized form) is constructed from the known mixtures xi(n). The second step
consists in the application of an arbitrary ICA method on X̃ and its decomposition
into independent components (ICs). The goal of the third step is to compute a
measure of similarity among ICs. This measure forms the basis for the clustering of
ICs into groups corresponding to original sources. The clustering is performed in the
fourth step of the algorithm. Finally, the responses of the sources on microphones
are reconstructed, based on the determined clusters. A mono channel estimate of
each source can be formed if desired. Each part will now be described in details.

4.3.1 Construction of observation subspace

The T-ABCD algorithm starts with the construction of the observation subspace X̃
and the transformation of the convolutive model (4.1) into instantaneous one (4.6).
Two distinct ways of the construction were proposed for the utilization within T-
ABCD. The T-ABCD algorithm assumes that the number of sources d is equal to
the number of sensors m.

The common construction of matrix X̃, similar to most time-domain BSS
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methods, is done according to (4.5). This approach has a serious limitation tied with
the computational demands of the algorithm. In order to increase the separating
filter length by one, m rows need to be added into X̃. Therefore, the dimension of
W̃ grows linearly with L.

The generalized construction of X̃ was proposed in the paper [63]. It allows
(in theory) to compute separating filters of infinite length L, without increasing the
dimension of X̃. A generalized observation subspace is for a given set of invertible
filters fi,` defined as

X̃ =



{f1,1 ? x1}(1) . . . . . . {f1,1 ? x1}(N)
{f1,2 ? x1}(1) . . . . . . {f1,2 ? x1}(N)

...
...

...
...

{f1,L ? x1}(1) . . . . . . {f1,L ? x1}(N)
{f2,1 ? x2}(1) . . . . . . {f2,1 ? x2}(N)

...
...

...
...

...
...

...
...

{fm,L ? xm}(1) . . . . . . {fm,L ? xm}(N)


, (4.9)

where ? denotes the convolution operator.
The linear combinations of rows of X̃ defined in this way correspond to outputs

of MIMO filters with a generalized feed-forward structure, which were introduced
in [64]. The filters fi,` are referred to as eigenmodes. The generalized observation
subspace defined in (4.9) coincides with the one in (4.5) when fi,` = δ(n − ` + 1),
where δ(n) stands for the unit impulse function. In this case fi,` realizes a backward
time-shift by `−1 samples. The multiplication of X̃ defined via (4.9) with W̃ allows
T-ABCD to apply a long separating filter (even IIR) without increasing L.

In practice, the authors of T-ABCD propose to select the eigenmodes as the
Laguerre filters, which have the feed-forward structure (see [64] for details). The
Laguerre filters fi,` are for all microphones (omitting the lower index i) defined
recursively through their transfer functions F` as

F1(z) = 1, (4.10)

F2(z) =
µz−1

1− (1− µ)z−1
, (4.11)

Fn(z) = Fn−1(z)G(z), n = 3, . . . , L, (4.12)

where

G(z) =
(µ− 1) + z−1

1− (1− µ)z−1
, (4.13)

and µ is a free parameter which takes values from (0, 2).
The construction of X̃ through Laguerre eigenmodes includes (4.5) as a special

case for µ = 1 (because F2(z) = G(z) = z−1 and f2(n) = g(n) = δ(n− 1)). This is
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the only case where the Laguerre filters are FIR of the length L. For µ 6= 1, these
filters are always IIR.

The effective length of the Laguerre filters L∗ is defined as the minimum length
needed to capture 90% of the total energy contained in the impulse response. For
the Laguerre filters, according to [65], it is approximately

L∗ = (1 + 0.4|µ− 1| log10 L)L/µ. (4.14)

It can be seen that L∗ > L for µ < 1 and vice versa.

4.3.2 Decomposition of the observation subspace via ICA

The independent component analysis can be performed via an arbitrary algorithm
described in Section 2.4. Two algorithms were implemented as the ICA separators
within T-ABCD, the EFICA algorithm ([24], Section 2.9) and the BGSEP algorithm
([32], Section 2.10).

The result of ICA is the estimate of a demixing matrix W̃ denoted as Ŵ and
the independent components given by C = ŴX̃. The ith row of C is denoted as ci
and its nth element as ci(n).

In the case of perfect separation and when the rows of S̃ are truly independent,
the independent components represent the attenuated and delayed versions of the
original sources. However, the rows of S̃ in (4.4) are not independent, due to the
temporal structure of the audio/speech sources. In this case, the components become
arbitrary filtered copies of the unknown sources, i.e. the sources estimated from
components exhibit random coloration.

The number of components is greater than the number of sources, due to di-
mension of X̃. Therefore, it is possible to find groups of components where all the
components are related to a single original source. These groups are found via clus-
tering, which is based on the mutual similarity of components, and are exploited for
the final reconstruction of the sources.

4.3.3 Mutual similarity of components

Two different similarity measures were proposed for utilization within the T-ABCD
algorithm. The first measure consists in the projections of component ci on the
subspace spanned by the delayed component cj (see [9]). The other measure is
based on generalized correlation coefficients known as GCC-PHAT (see [66]).

The projection approach is based on the following similarity measure, where
the similarity Dij between components ci and cj is defined as

Dij = Ê{Picj}2 + Ê{Pjci}2, (4.15)

where Ê denotes the sample mean operator and Pi is a projection on subspace Ci

spanned by the delays of component ci, i.e.

Ci =

 ci(1) . . . ci(2 ∗ L+ 1)
...

...
...

ci(N − 2 ∗ L) . . . ci(N)

 . (4.16)
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The operator of projection on subspace Ci is given by

Pi = I−Ci(CT
i Ci)−1CT

i . (4.17)

The generalized correlation approach consists in the computation of
generalized-correlation coefficients known as GCC-PHAT [66]. These coefficients
are invariant to the magnitude spectra of the signals and depend on their phase
spectra only, which makes them appropriate for similarity evaluation since the ICs
have random magnitude spectra.

Let Ci(k) and Cj(k) denote the Fourier transform of the ith and jth component,
respectively, i, j = 1, . . . ,mL and k denotes the frequency index. The GCC-PHAT
coefficients of the components, denoted by gij(n), are equal to the inverse Fourier
transform of

Gij(k) =
Ci(k) · Cj(k)∗

|Ci(k)| · |Cj(k)|
, (4.18)

where ∗ denotes the complex conjugation. Fast computation of gij(n) can be done
by means of the FFT.

If the components correspond exactly to the same source, i.e. without any
residual interference, gij(n) is equal to the delayed unit impulse function, where
the delay cannot be greater than L. Hence, the similarity between the ith and jth
component can be measured by

Dij =
L∑

n=−L
|gij(n)| i, j = 1, . . . ,mL, i 6= j, (4.19)

The diagonal elements of D have no importance for the clustering and are all set to
one.

4.3.4 Clustering of independent components

Within the original prototype of T-ABCD from [9], the clustering of independent
components is done via Standard Agglomerative Hierarchical Non-overlapping algo-
rithm (SAHN) with average linking strategy [67].

The SAHN algorithm produces so-called Hard Partition; it consists in compu-
tation of the affiliation matrix U of size d ×mL, which describes the affiliation of
each component to each cluster. Each element of U takes values 0 or 1 depending
on the fact whether the component belongs to the cluster or not. Indeed, in the
case of perfect separation, each component is completely affiliated with one of the
clusters (sources) only.

In the case of imperfect separation though, each component contains the inter-
ference of all sources to a certain degree. This fact is better expressed by a fuzzy
clustering technique where the elements of U take values from the close range [0,1].
This type of affiliation is called the Fuzzy Partition. The utilization of a fuzzy
clustering technique within T-ABCD was proposed by the author and is described
in details in Chapter 5.
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4.3.5 The reconstruction of source responses on microphones

The reconstruction aims at transforming the clustered components into source re-
sponses on microphones.

First, the observation subspace is reconstructed according to the affiliation
of the components to the kth cluster via

Ŝk = Ŵ−1diag{Λk1, . . .Λk(mL)}ŴX̃, (4.20)

where the coefficients Λkj are suitable positive weights which are computed from
the values contained in the hard partition matrix U.

When a perfect separation is assumed [9], then the binary weights are set to

Λkj = Ukj , (4.21)

i.e. the weights of components affiliated with the source are equal to 1 and the
weights of the non-affiliated components are equal to 0.

In practice, the separation is rarely perfect, e.g. due to an insufficient demixing
filter length L. Here, the idea of fuzzy weights [62] appears to be suitable. Each
component is affiliated with each of the sources to a certain degree. The clusters
are still determined based on the SAHN algorithm, but the non-negative weights
are determined via

Λkj =

(∑
i∈Kk,i 6=j Dij∑
i/∈Kk,i 6=j Dij

)α
, (4.22)

where Kk contains the indices of components affiliated with the kth cluster and α
is a free parameter which determines the "fuzziness" of the weights. With growing
parameter α the fuzziness of the weights diminishes.

Subsequently, the estimates of source responses on microphones are com-
puted.

In the case of the common construction of X̃ according to (4.5), the estimate
of the response of the kth source on the ith microphone is acquired by

ŝik(n) =
1
L

L∑
`=1

(Ŝk)(i−1)L+`,n+`−1, (4.23)

where Ŝα,β is the αβth coefficient of Ŝ.
In the case of the generalized construction of X̃ according to (4.9) the

estimation proceeds in the following manner: let f−1
i,` be the inverse of filter fi,`, ` =

1 . . . L. Then the estimate of the response of the kth source on the ith microphone
is acquired by

ŝik(n) =
1
L

L∑
`=1

{f−1
i,` ? (Ŝk)(i−1)L+`,∗}(n), (4.24)

where Ŝα,∗ is the αth row of Ŝ. The reconstruction via (4.24) coincides with (4.23)
if fi,`(n) = δ(n− `+ 1).
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Responses ŝik(n) can be exploited for the computation of a single channel esti-
mate ŝk(n). This is done via the Delay and Sum Beamformer. It chooses a
single reference response of the kth source. The cross-correlation functions of the
reference response with the other ones are computed. The maxima of these func-
tions correspond to the mutual delay of the responses. The single channel estimate
is formed by the summation of the respectively delayed responses.



Chapter 5

Author’s Modifications of the
T-ABCD Algorithm

This chapter describes several modifications of the algorithm for the blind audio
source separation called T-ABCD (see Section 4.3) that were derived and imple-
mented by the author of this thesis. The results of this chapter were published in
paper [68].

The proposed changes consist in the utilization of a fuzzy clustering technique for
the clustering of ICs (T-ABCD, Step 4). Since the separation performed by ICA is
not perfect, the components cannot be simply clustered into groups corresponding to
the original sources. It is more plausible to assume that the components are affiliated
to a certain extent with all sources. These degrees of affiliation can be established
through fuzzy clustering and utilized in the process of source reconstruction.

First, a comparison of several fuzzy clustering methods is presented. The most
suitable method for utilization within T-ABCD is selected based on experimental re-
sults. Subsequently, the separation performance of the algorithm modified by fuzzy
clustering is compared with the original separation technique with hard clustering.
It is shown that fuzzy clustering improves the performance of T-ABCD. Finally,
the modified algorithm is tested in an experiment which deals with the speech en-
hancement. The results are verified through an automatic speech recognition system
developed for the Czech language on the Institute of Information Technology and
Electronics by the Technical University of Liberec.

5.1 Fuzzy clustering of the components

As stated in the introduction of the chapter, the separation performed by ICA is
not perfect. The independent components contain some residual interference. This
causes that each component is (to a certain extent) affiliated with more than one
source.

The clustering of ICs within the original T-ABCD neglects this fact. It computes
the hard partition (see Section 4.3.4), which is subsequently transformed into fuzzy
weights Λ via an ad-hoc formula (4.22).

The approach proposed in this section applies the idea of component affiliation
to multiple sources/clusters directly to the clustering step. It replaces the SAHN
[67] clustering algorithm, computing the hard partition by a method which produces
the fuzzy partition.
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Let a fuzzy partition be described by the affiliation matrix U which is given by
the set of equations

Ukj ∈ [0, 1]∑c
k=1 Ukj = 1∑K
j=1 Ukj > 0,

(5.1)

where K is the number of clustered objects/components and c is the number of
clusters.

In general, the clustering techniques can be divided according to the way they
represent the clustered objects. There are two basic possibilities [69]: the first one
is referred to as the object description. Here, each object is described by a feature
vector of an arbitrary length. This vector contains information which describes
the object unambiguously. The other possibility is called the relational description.
Here, the individual properties of objects are not available. Instead, the data are
described as a whole, by a matrix of mutual similarities (or distances) of size K×K.

In T-ABCD, a suitable measure for similarity of ICs is defined via projections
(4.15) or GCC-PHAT coefficients (4.19). This approach leads to a matrix of pair-
wise similarities D, i.e. to a relational description.

The following relational clustering methods were implemented for utilization
in the T-ABCD algorithm: RFCMdd - Relational fuzzy c-medoids [70], RPCM
- Relational possibilistic c-means [71] and RFCM - Relational fuzzy c-means [71].
RFCM was found experimentally (see Section 5.4.1) to be the most suitable method.

5.2 Relational Fuzzy C-Means Algorithm

The RFCM algorithm is a relational version of the well known clustering method
Fuzzy c-means (FCM) [72]. The input of the FCM algorithm consists ofK objects to
be clustered into a known number of clusters c. The objects are described by feature
vectors y1 . . .yK . The FCM seeks the optimum matrix U of object affiliations via
minimization of the objective function

Jf (U,G) =
c∑

k=1

K∑
j=1

(Ukj)fVkj , (5.2)

where c is the number of clusters and f > 1 is a fuzzyfication parameter which
determines to what extent is a clustered object affiliated with more than one cluster.
Further, G = [g1 . . .gc] is a matrix of cluster prototypes which are computed as
average feature vectors according to

gk =
K∑
j=1

(Ukj)fyj/
K∑
j=1

(Ukj)f k = 1 . . . c (5.3)

and V is a matrix of Euclidean distances between prototypes and clustered objects,
i.e.

Vkj = ‖gk − yj‖2 . (5.4)
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The algorithm is iterative. First, it is initialized by a random fuzzy partition U satis-
fying (5.1), number of clusters c and the fuzzyfication parameter f . Subsequently, it
alternates the prototypes updates (5.3) and the recomputation of affiliation matrix
U via

Ukj =
( c∑
i=1

(Vkj/Vij)1/(f−1)
)−1

, (5.5)

until convergence is achieved.
The RFCM algorithm allows the utilization of FCM on relational data where

the feature vectors y1 . . .yK are not known and the cluster prototypes cannot be
explicitly expressed by (5.3). Here, the data are described by matrix B of pair-
wise distances (dissimilarities) between the clustered objects. RFCM assumes the
distances in B to be Euclidean. The RFCM expresses the object-prototype distances
Vkj as functions of matrices U and B according to

Vkj = (Bµk)j −
1
2
µTkBµk, (5.6)

where

µk = [(Uk1)f , . . . , (UkK)f ]T /
K∑
j=1

(Ukj)f . (5.7)

In the paper [73] is proven that if the dissimilarities in B are computed via
Bij = ‖yi − yj‖2 then the distances Vkj computed via (5.4) and (5.6) are equal.
Moreover, the sequences of partitions U produced by FCM and RFCM using (5.5)
are identical.

5.3 RFCM applied in T-ABCD

The following text describes the details of RFCM implementation in T-ABCD and
the utilization of the output affiliation matrix U for the reconstruction of the sources.

5.3.1 Similarity/dissimilarity transforms

The application of RFCM in T-ABCD starts with the computation of the matrix
of pair-wise distances (dissimilarities) between components B. The distances are
calculated from the matrix of similarities D given by (4.15) or (4.19). Note that
there are K = mL objects/components to be clustered.

The elements of D are positive with range [0,∞]. In this general case, it is
possible to compute B according to a reciprocal transform

Bij =

{
1/Dij i 6= j

0 i = j.
(5.8)

Another possibility for the dissimilarity computation gives the normalization of
the entries of D to range [0, 1] by D = D/max{Dij} and the computation of weights
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according to a subtractive transform

Bij =

{
1−Dij i 6= j

0 i = j.
(5.9)

The experiments presented in Section 5.4.2 show that the performance of RFCM
is invariant to the choice of the similarity/dissimilarity transform. Either of these
transforms are suitable for utilization in T-ABCD.

5.3.2 Spreading transformation

The RFCM algorithm requires the dissimilarities B to be Euclidean. However, the
measures of similarity (4.15) or (4.19) do not possess this property. Thus, the object-
prototype distances V from (5.6) might be negative. In order to avoid this and to
guarantee the convergence of RFCM, the Spreading Transform [71] is applied to V
and B.

The spreading transform consists in the addition of a positive number ϕ to off-
diagonal elements of B in the case that Vkj < 0 for any k = 1 . . . c, j = 1 . . .mL,
i.e.

Bij ←

{
Bij + ϕ i 6= j

0 i = j.
(5.10)

The exact computation of ϕ involves a computationally expensive eigenvalue
problem. On the other hand, the usage of a gross overestimate of ϕ may result
in the distortion of B and a possible loss of cluster information. The paper [71]
proposes a sufficiently accurate approximation of ϕ. It uses the by-products of
the calculation of V, which lowers the computational demands. The computation
proceeds as follows.

If Vkj < 0 for any k = 1 . . . c, j = 1 . . .mL then

ϕ = max{−2(Vkj)/(‖µk − ej‖2)}, (5.11)

where ej is a mL× 1 vector of zeros with the jth element equal one. Subsequently,
the substitution

Vkj ← Vkj + ϕ ‖µk − ej‖2 (5.12)

is performed for k = 1 . . . c, j = 1 . . .mL along with (5.10).

5.3.3 Reconstruction of sources via the affiliations of ICs

The output matrix of fuzzy affiliations U is used in the reconstruction step within
the modified T-ABCD algorithm. The reconstruction is still performed via (4.20),
however the weights Λ are determined according to one of the following approaches.

The indirect application: The fuzzy partition U is transformed into a hard
affiliation by assigning each component to the cluster with the highest affiliation
degree. The weights Λ are computed (as in original T-ABCD) via (4.22).
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This approach exploits fuzzy clustering for the determination of the clusters
only. The weights are computed according to a formula from the original version of
T-ABCD, which is known to be suitable for the reconstruction of sources.

The modified application: The weights Λ are defined by

Λkj =
(

Ukj

1−Ukj

)α
, (5.13)

where α denotes a positive adjustable parameter. We select α = 2.
This approach fully exploits the information contained in the fuzzy partition U.

It is designed to emphasize the ICs with the highest affiliation to the cluster.
The direct application: The fuzzy affiliations Uij are applied directly as

weights to the components, i.e.

Λkj = (Ukj)α. (5.14)

The experiments presented in Section 5.4.3 reveal that the direct application
of the fuzzy affiliations U leads to the best separation results from all considered
possibilities.

5.4 Experiments

The following experiments deal with the comparison of the considered fuzzy clus-
tering techniques. The RFCM algorithm [71] is shown to achieve the best results
among the competing methods.

The ICA separation is performed in all experiments in this section via the
BGSEP algorithm [32].

In this section, similarities D are computed via the GCC-PHAT coefficients
(4.18). The calculation of generalized correlations is computationally less demanding
than the computation of projections. Moreover, (4.18) can be easily evaluated block-
wise, which is exploited in the online version of T-ABCD.

Our choice of the fuzzyfication parameter is f = 1.5.

5.4.1 Clustering of independent components

The following experiment compares the clustering results of relational fuzzy clus-
tering techniques with the results of the SAHN algorithm. The algorithms were
exploited for the clustering of ICs in T-ABCD. The similarities D were transformed
into distances B via the reciprocal transform (5.8).

For the purposes of this experiment, an ideal hard clustering method was de-
signed, which serves as a reference for the comparison. The reference clustering
is based on the idea that the component is assigned to a cluster/source where it
achieves the highest SIR value. These SIR values can be computed if the true re-
sponses of the sources on microphones are known. Let ŵi be the ith row of matrix
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Figure 5.1: The mixing of the utterances in the environment and the flowchart of
the T-ABCD algorithm with implemented fuzzy clustering.
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Ŵ, then SIR of this component subject to the kth source is equal to

SIRki =
(ŵiS̃k)(ŵiS̃k)T

(ŵi(X̃− S̃k))(ŵi(X̃− S̃k))T
, (5.15)

i.e. as energy of the kth source in the ith component divided by the energy of other
sources in this component. The matrix S̃k exhibits a similar structure to X̃. It is
constructed from the responses of the kth source on microphones when the other
sources are silent, i.e.

S̃k =



s1k(L) . . . . . . s1k(N)
s1k(L− 1) . . . . . . s1k(N − 1)

...
...

...
...

s1k(1) . . . . . . s1k(N − L+ 1)
s2k(L) . . . . . . s2k(N)

s2k(L− 1) . . . . . . s2k(N − 1)
...

...
...

...
smk (1) . . . . . . smk (N − L+ 1)


, (5.16)

The experimental data consisted of two distinct sounds (replayed on loudspeak-
ers) recorded on eight microphones in a room depicted in Figure 5.2. Five times two
sources were mixed together. There were six distinct sources available, including
two male voices, two female voices, a typewriter sound and a Gaussian noise.

For the experiment, two of the eight microphone recordings were selected in order
to obtain the determined mixtures. There are 7 ·8/2 = 28 possibilities how to do so.
When all five recorded source combinations are considered, it gives 5 · 7 · 8/2 = 140
different separation scenarios, which means 140 · 2L clustering decisions.

Figure 5.2: Scheme of the room where the mixtures were recorded.

Assuming that the reference clustering described above gives correct decisions,
these decisions were compared to the ones obtained by the SAHN method. To allow
the comparison with the results of fuzzy techniques, the fuzzy partition was reduced
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into a hard one. Each component was assigned to a cluster/source where it achieved
the highest fuzzy affiliation.

Table 5.1 shows the number of incorrect decisions obtained by the methods for
various separating filter lengths L. The experiment shows that RFCM achieves
a lower number of incorrect assignments compared to all other algorithms for all
available filter lengths L.

L=16 L=21 L=26 L=31
SAHN 610 782 988 1260
RFCM 599 770 958 1232

RFCMdd 763 1087 1458 2108
RPCM 1530 1971 2520 3048

Total decisions 4480 5880 7280 8680

Table 5.1: The number of incorrect component assignments compared to ideal clus-
tering

During the experiment, the computational burden of implemented techniques
was measured in terms of the time necessary to complete all 140 clustering tasks.
The experiment was performed in Matlab 7.9 on a PC with a double-core 2,66GHz
processor and 2GB RAM. The results are shown in Table 5.2. As can be seen, the
iterative fuzzy algorithms are almost five times faster than SAHN.

L=16 L=21 L=26 L=31
SAHN 13.34 13.01 13.42 14.53
RFCM 2.77 2.85 2.91 2.97

RFCMdd 2.36 2.36 2.38 2.55
RPCM 3.70 3.74 3.77 3.85

Table 5.2: The time (in seconds) necessary to accomplish all 140 clustering tasks

5.4.2 Comparison of similarity/dissimilarity transformations

This section investigates how the computation of dissimilarity influences the results
of the clustering. In Section 5.3, two possible similarity into dissimilarity transfor-
mations were described, namely the reciprocal transform (5.8) and the subtractive
transform (5.9).

To determine which transform is better suited for clustering of components, the
experiment from Section 5.4.1 and the ideal clustering defined there were exploited.
For each of the 140 clustering scenarios, the similarities among components D were
computed via generalized correlations (4.19). Subsequently, two distance matrices
B were computed via both mentioned transforms. Finally, the components were
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clustered via implemented fuzzy algorithms and the results were compared with the
ideal clustering. The filter length was set to L = 26.

The numbers of incorrect decisions are summarized in Table 5.3. The exper-
iment indicates that the partition determined by RFCM and RFCMdd is rather
invariant to the choice of the dissimilarity transform. On the other hand, the num-
ber of incorrect assignments computed by RPCM is lower by 22% when the chosen
transformation is subtractive.

(Total 7820) RFCM RFCMdd RPCM
Subtractive 942 1482 1986
Reciprocal 958 1458 2520

Table 5.3: The number of incorrect clustering decisions. Comparison of two formulas
for the dissimilarity matrix B computation.

5.4.3 Separation results of T-ABCD with hard/fuzzy clustering

The experiment compares the separation results of T-ABCD with the hierarchical
clustering and the results of modified T-ABCD with RFCM. Again, the data from
Section 5.4.1 were separated. All available 140 combinations of sources and micro-
phone distances were considered. The data were sampled at 16kHz. The similarities
D were transformed into distance through the subtractive transform (5.9). The in-
ner parameters of T-ABCD were as follows: L = 26, N = 6000, α = 2, f = 1.5. The
reconstruction weights were within the original T-ABCD with SAHN computed via
(4.22).

The separation quality was evaluated via the BSS_EVAL toolbox [51] in the
form of three criteria: (i) Signal-to-Interference ratio (SIR), (II) Signal-to-Distortion
ratio (SDR) and (iii) Signal-to-Artifact ratio (SAR).

The experiment compares various possibilities for the computation of the recon-
struction weights Λ. In Section 5.3 following variants were proposed: The indirect
utilization of the fuzzy partition U, the modified utilization via (5.13) and the di-
rect application. The results, averaged over all scenarios and sources, are shown in
Table 5.4.

The experiment suggests that the separation results of T-ABCD with hierarchical
clustering and T-ABCD with indirectly determined weights are nearly identical.
This means both clustering techniques are similarly successful when clustering the
ICs, because they determine the demixing weights in the same manner.

Slightly better results are obtained by the direct application of the affiliations
U to reconstruction weights.

The modified computation of the reconstruction weights outputs estimates which
are characterized by high values of SIR and low values of SAR. The direct listening to
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SIR[dB] SDR[dB] SAR[dB]
SAHN 7.56 5.74 12.69

RFCM - Indirect 7.53 5.72 12.71
RFCM - Direct 7.73 5.98 13.12

RFCM - Modified 11.92 5.35 7.11

Table 5.4: The separation results of the original T-ABCD with hard clustering
and the modified version with implemented fuzzy clustering. Three formulas for
the computation of the reconstruction weights Λ from the fuzzy partition U are
considered.

the estimated signals uncovers that the signals are fairly well separated but heavily
distorted.

It can be concluded that the utilization of RFCM within T-ABCD and the direct
application of affiliations U as reconstruction weights result in a slight improvement
of the separation results. Moreover, the RFCM algorithm is less computationally
demanding than SAHN (provided that the number of clusters/sources is known) and
has a favorable iterative computation scheme. This feature is advantageous when
non-stationary mixing is considered and the necessity of demixing filter updates in
time arises. This topic is discussed further in the chapter which describes the online
version of T-ABCD.

5.4.4 Utilization of modified T-ABCD for speech enhancement

A large series of experiments is disscused that prove the ability of the modified T-
ABCD to separate speech from interfering noise. Speech signals employed in the
experiment were taken from the European database of recorded broadcast news
that was collected in the COST278 action in 2003 [74] and later also in 2005. The
database contains complete recordings of TV news in 10 European languages. The
Czech part of the database was exploited in order to be able to perform speech
recognition by means of the Czech Automatic Speech Recognition (ASR) system.
The exploited ASR system [75] was developed by the Institute of Information Tech-
nology and Electronics, Technical University in Liberec. The test set included 653
utterances taken from 9 Czech broadcast news shows. They represented a large vari-
ety of spoken data, from clear studio speech of professional speakers to spontaneous
utterances recorded in very noisy conditions. The total number of words in the test
set was 10,322. When transcribed by the ASR from [75], the overall recognition rate
for this set was 81.02%.

Two types of interference were simulated: 1) a test utterance mixed with a
Gaussian noise and 2) a test utterance mixed with another utterance (from the
same data set).

Each mixture obeys the convolutive mixing model (4.1). The mixing of two
sources recorded on two microphones is considered d = 2,m = 2. The convolving
filters were randomly generated for each mixture so that aij(τ) has the Gaussian
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distribution with a zero mean and variance τ−2. The length of the filters was 2000
taps, which corresponds to 125 ms of reverberation time at a 16kHz sampling rate.
Each mixture was separated by a filter of length L = 21 that was estimated by the
BSS algorithm using only segment of 6000 samples where both the speech and the
interfering signal were active. The remaining inner parameters of T-ABCD were
α = 2 and f = 1.5. The similarities between ICs were computed via projections
(4.15) and transformed into distances via (5.8).

The mixed utterances as well as the separated ones were sent to the recognizer
and the recognition performance was evaluated in terms of accuracy defined as

Acc = 100(C −D − I − S)/C (5.17)

which is computed through a comparison of a reference text with the recognized one.
Here, C is the number of words in the reference text, D is the number of deletions,
I is the number of insertions, and S denotes the number of substitutions.

In the two series of experiments mentioned above, different mixing conditions
with respect to SNR were simulated. In the first one, a Gaussian noise of varying
power was added to each test utterance. In the other one, interfering speech with
a varying gain was added. For each value of SNR, a recognition accuracy value
was obtained from the ASR system. After that, the proposed BSS method was
applied to separate the utterances back. They were sent to the ASR system again
to evaluate the accuracy achieved for the enhanced signals. The level of enhancement
received for selected SNR values can be observed from the diagrams in Figure 5.3
and Figure 5.4.

Let us discuss, for example, the 10 dB SNR case. It can be seen that the addition
of a Gaussian noise reduced the recognition accuracy (from the original value 81.02
%) to 35.16 %, but after applying the BSS method, the score was increased to 63.13
%. In case of added speech and the same 10 dB SNR situation, the method helped
to enhance recognition accuracy from 44.57 % to 52.52 %.

In general, the results confirm a significant improvement of the recognition rate
after applying the separation algorithm, especially, in cases of low SNR (≈ 0dB). A
slight decline of accuracy was observed for very high SNR (30dB). This is caused by
some distortion of the separated signal due to a higher value of the parameter α in
(5.14). For instance, by taking α = 1 instead of the default value α = 2, accuracy
grows from 76.13% to 77.73%.
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Figure 5.3: Accuracy of the ASR system for speech mixed with Gaussian noise

5 10 15
0

20

40

60

80

input SNR [dB]

A
cc

ur
ac

y 
[%

]

 

 
mixed
separated

Figure 5.4: Accuracy of the ASR system for speech mixed with other speech



Chapter 6

The Online T-ABCD algorithm

This chapter is concerned with an adaptive algorithm for the blind separation of
audio sources via ICA in the time-domain. The proposed algorithm is based on
the T-ABCD method described in Section 4.3 and will be further denoted as online
T-ABCD. The algorithm was published in [76].

The motivation for designing an online version of T-ABCD is the ability of the
batch T-ABCD to estimate the demixing filters using short data segments only.
Moreover, many improvements proposed for the batch method can be exploited
in the online version as well, e.g. the generalized construction of the observation
subspace from (4.9).

Although the mixing process considered by online T-ABCD is potentially dy-
namic, e.g. due to moving sources, it is assumed that it changes slowly and may
be considered stationary within short data segments. Therefore, during a mixture
interval of length P , the classical convolutive mixing problem, which is described
by (4.1), is considered. The original sources are assumed to be independent, which
allows ICA to be the basis of the separation. More specifically, the fast converg-
ing ICA algorithm BGSEP is utilized for the decomposition. The online T-ABCD
algorithm assumes that the number of sources d remains the same throughout the
whole recording.

The basic idea of online T-ABCD consists in the block-wise utilization of its
batch counterpart on the stationary segments of the mixtures. The batch variant
is modified in such a way that it respects the continuity of the mixing process
by introducing memory into the algorithm. The demixing filters are updated via
a single iteration of ICA and clustering in each segment. The adaptivity of the
algorithm is controlled by learning parameters, which control e.g. the convergence
speed of the BGSEP method.

The algorithm is shown to achieve good separation results with relatively short
demixing filters (L ≈ 30). The online version outperforms its batch counterpart (in
the terms of average output SIR) even when the source positions are fixed, because
it is capable of better adaptation to the non-stationarity of the audio signals.

6.1 Description of the algorithm

The input of online T-ABCD consists of m mixture signals, each of length N . The
proposed algorithm starts with the segmentation of these signals into overlapping
blocks of length P , with the shift of T samples such that R = P/T is an integer.
The overlap length of two consecutive blocks is thus P − T .
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The Ith block of the jth input signal will be denoted by

xIj (n) = xj((I − 1) · T + n), n = 1, . . . , T. (6.1)

The uppercase superscript I will be used to denote the data and quantities related
to the Ith block. A separation procedure described below is successively applied
to blocks of input signals and outputs blocks of separated microphone responses
(spatial images) of the source signals.

Like the batch variant, the online procedure first constructs some form of the
observation matrix. For the sake of simplicity, let us assume that the traditional
form (4.5) is utilized. Subsequently, it (I) applies a simplified BGSEP algorithm
to decompose the data matrix into its independent components and (II) uses a
relational fuzzy clustering method to group the independent components to form
independent subspaces that represent the separated sources. The third step (III)
consists in the reconstruction of the separated signals in each block and averaging
the signals in the overlapping windows.

6.1.1 Step I: Independent Component Analysis via Simplified
BGSEP algorithm

A simplified version of BGSEP is utilized as a separator within the online T-ABCD
algorithm. The original BGSEP ([32], Section 2.10) is a second order statistics
based ICA algorithm. It utilizes a general AJD scheme, incorporating arbitrary
weight matrices, called WEDGE (Weighted Exhaustive Diagonalization with Gauss
itErations). Based on the choice of the weight matrices, a specific algorithm is
formed. BGSEP and its weight matrices are optimized for sources which have a
Gaussian distribution and are piecewise stationary.

Unlike Section 2.10, the superscript I denotes here the index of data segment,
not the BGSEP iteration index. In fact, only a single iteration of the simplified
BGSEP is performed in each segment of the mixed data.

Let XI be the data matrix within the Ith block of input signals, which is defined
as

XI =



xI1(1) xI1(2) . . . . . . xI1(P )
xI1(2) xI1(3) . . . . . . xI1(P + 1)

...
...

...
...

...
xI1(L) xI1(L+ 1) . . . . . . xI1(P + L)
xI2(1) xI2(2) . . . . . . xI2(P )

...
...

...
...

...
...

...
...

...
...

xIm(L) xIm(L+ 1) . . . . . . xIm(P + L)


, (6.2)

where L is a free integer parameter, corresponding to the desired demixing filter
length.
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The goal of Step I is to find such a demixing matrix WI that the rows of
CI = WIXI are as independent as possible and correspond to the independent
components (ICs) of XI .

The matrix XI can be partitioned vertically intoM blocks of equal size, (mL)×
(P/M),

XI = [XI,1, . . . ,XI,M ]. (6.3)

The simplified BGSEP algorithm estimates WI by a joint approximate diagonal-
ization of a set of covariance matrices

RI,k =
M

P
XI,k(XI,k)T , k = 1, . . . ,M. (6.4)

For the sake of convenience and computational savings, it is assumed that the num-
ber of matrices M is equal to parameter R that appears in the division of the signal
to overlapping blocks. Then, in the transition {RI−1,k}Mk=1 → {RI,k}Mk=1, the set
of matrices remains unchanged, except the removed covariance matrix RI−1,1 and
added matrix RI,M .

The diagonalization proceeds by performing a single WEDGE iteration [32] with
the diagonal weight matrices that are optimized for the case when the signals obey
the gaussian piecewise stationary model. The algorithm uses the latest available
demixing matrix WI−1 to partially diagonalize the matrices in (6.4)

PI,k = WI−1RI,k(WI−1)T k = 1, . . . ,M. (6.5)

The demixing matrix WI is obtained by updating WI−1 as

WI = (AI)−1WI−1, (6.6)

where AI has ones on its main diagonal, and the off-diagonal elements are obtained
by solving the 2× 2 systems[

AI
kl

AI
lk

]
= βI1

[
rTllK[kl]rll rTkkK[kl]rll
rTkkK[kl]rll rTkkK[kl]̃rkk

]−1 [
rTllK[kl]rkl
rTkkK[kl]rkl

]
, (6.7)

where rkl is a R× 1 vector given by

rkl = [(PI,1)kl, . . . , (PI,M )kl]T , (6.8)

and K[kl] is a R×R matrix given by

K[kl] = diag
(

1
(PI,1)kk(PI,1)ll

, . . . ,
1

(PI,M )kk(PI,M )ll

)
(6.9)

for k, l = 1, . . . ,mL, k > l. The variable βI1 in (6.7) does not exist in the orig-
inal BGSEP algorithm. It is added here to control the convergence speed of the
algorithm. The choice of βI1 will be discussed later.
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6.1.2 Step II: Clustering of independent components

Due to the indeterminacy of ICA, the ICs of XI are arbitrarily filtered versions
of the original signals. There are groups of components which correspond to one
of the sources and form thus independent subspaces within CI . These groups are
determined via clustering of the ICs. Prior to clustering, a similarity measure among
the components needs to be established, which becomes the basis for the clustering.

Similarity of ICs is quantified via the generalized cross-correlation coefficients
known as GCC-PHAT [66]. These coefficients are invariant to the magnitude spectra
of the signals and depend on their phase spectra only, which makes them appropriate
for the similarity evaluation, since the magnitude spectra of the ICs are random and
contain no useful information.

Let CIi (k) and CIj (k) denote the Fourier transform of the ith and jth component,
respectively, i, j = 1, . . . ,mL, and let k denote the frequency index. The GCC-
PHAT coefficients of the components, denoted by gIij(n), are equal to the inverse
Fourier transform of

GIij(k) =
CIi (k) · CIj (k)∗

|CIi (k)| · |CIj (k)|
, (6.10)

where ∗ denotes the complex conjugation. Fast computation of gIij(n) can be done
by means of the FFT.

If the components correspond exactly to the same source, i.e. without any
residual interference, gIij(n) is equal to the delayed unit impulse function, where
the delay cannot be greater than L. Hence, the similarity between the ith and jth
component can be measured by

∑L
n=−L

∣∣∣gIij(n)
∣∣∣ and the matrix of mutual similarity

D can be computed according to

DI
ij =

L∑
n=−L

∣∣gIij(n)
∣∣+ β2 ·DI−1

ij , i, j = 1, . . . ,mL, i 6= j, (6.11)

where β2 is a learning parameter, 0 ≤ β2 ≤ 1. The diagonal elements of DI have no
importance for the clustering and are all set to 1.

The clustering algorithm utilized in online T-ABCD is the Relational Fuzzy
C-Means algorithm (RFCM) from [71], which allows tracking of continual changes
of the clusters. For the sake of simplicity, we assume that the number of sources
d is known and does not change in time. The goal is thus to find d clusters of
components according to their mutual similarity given by DI .

The affiliation of a component to a cluster is expressed by a value from [0, 1]
where 0 means that the component does not belong to the cluster and vice versa.
Let ΛI

kj be the kjth element of a d ×mL partition matrix ΛI and represents the
affiliation of the jth component to the kth cluster. By definition it holds that∑d

k=0 ΛI
kj = 1.

Now, let B denotes the dissimilarity matrix, whose elements are BI
ij = 1/DI

ij

for i 6= j and BI
ii = 0. Let µI,fk be a mL × 1 vector defined as µI,fk =
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[(ΛI
k1)f , . . . , (ΛI

k(mL))
f ]T /

∑mL
j=1(ΛI

kj)
f called the prototype of the kth cluster asso-

ciated with a “fuzzyfication" parameter f , f > 1. (The experimentally determined
value f = 1.5 is used). The transition of ΛI−1 to ΛI is given by one iteration of
RFCM given by

ΛI
kj =

( d∑
i=1

(Vkj/Vij)1/(f−1)
)−1

, (6.12)

where
Vkj =

(
BIµ

(I−1),f
k

)
j
− 1

2
(
µ

(I−1),f
k

)TBI µ
(I−1),f
k (6.13)

is the distance of the jth component to the prototype µI,fk (for details see [71]).

6.1.3 Step III: Reconstruction

The contribution of ICs of the kth cluster to XI is given by matrix

ŜIk = (WI)−1diag
[
(ΛI

k1)α, . . . , (ΛI
k,mL)α

]
CI , (6.14)

where α is an adjustable positive parameter. This matrix has an analogous structure
as XI in (6.2). In an ideal case ŜIk contains delayed microphone responses of the
kth estimated source only. The response of the kth source at the ith microphone is
therefore estimated by

ŝi,Ik (n) =
1
L

L∑
q=1

(
ŜIk
)
(i−1)L+q,n+q−1

, (6.15)

where
(
ŜIk
)
α,β

is the αβth element of the matrix ŜIk.
Finally, the overall outputs of the online algorithm are synthesized by putting to-

gether the estimated blocks of separated signals. The overlapping parts are averaged
using a windowing function, for example, the Hann window.

6.1.4 Implementation details

The ICA convergence speed can be driven through the parameter βI1 in (6.7). We
found it helpful to increase the speed when the clusters of ICs did not seem well
separated in the previous block of data. Otherwise, βI1 can be close to zero to
maintain continuity. Therefore, we take

βI1 = (1− γI−1)/2. (6.16)

γI is the Silhouette index [77] of the hard clustering, which is derived from the fuzzy
clustering. Let Kk be the set of indices of the components for which ΛI

kj = max` ΛI
`j

(the kth cluster is the closest one to them). The Silhouette index is defined through
γI = 1

mL

∑mL
i=1 γ

I
i , where

γIi =
minj /∈Kk

(BI
ij)− 1

|Kk−1|
∑

j∈Kk,i 6=j BI
ij

max{minj /∈Kk
(BI

ij),
1

|Kk−1|
∑

j∈Kk,i 6=j BI
ij}
. (6.17)
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The Silhouette index reflects the separateness of clusters as it takes values from
[-1,1], where negative values mean poor separateness and vice versa.

The whole algorithm can be initialized so that W0 is the outcome of the BGSEP
algorithm applied to X1 and the components W0X1 are grouped by the full RFCM
algorithm.

6.2 Experiments

This section presents various experiments which either explain the selection of vari-
ous design aspects of online T-ABCD or evaluate the separation performance of the
proposed algorithm.

All of the experiments in this section were evaluated via the BSS_EVAL toolbox
[51] (excluding the example with pseudoconvolutive mixtures).

6.2.1 Comparison of online T-ABCD with block-wise applied batch
T-ABCD

The experiment compares online T-ABCD and its batch counterpart applied block-
wise on the analyzed mixtures. It aims at proving that the proposed changes, which
are designed to respect the continuity of the data, improve the average performance
of the algorithm.

The example is designed as follows. Real-world mixtures of speech signals are
separated. The data are publicly available on Hiroshi Sawada’s web page.1 The
recordings consist of two simultaneously active sources recorded by two microphones.
The mixtures are 7s long, sampled by 8kHz, recorded in a room with an impulse
response of 130 ms using omni-directional microphones.

Online T-ABCD was applied to the mixtures and estimated the source responses
on microphones ŝik(n). Batch T-ABCD was applied on blocks of the data segmented
in the same manner as would be done by its online counterpart and estimated the
source spatial images in each such block. The inner parameters of both T-ABCD
versions were: P = 6144, T = 512, L = 30, α = 3 and f = 1.5.

The performance was evaluated block-wise and was averaged over both sources.
The results of the experiment as a function of a segment number are shown in
Figures 6.1, 6.2. The average performance is presented in Table 6.1.

Online T-ABCD is designed to respect the continuity of the sources. It uses the
information learned in previous data segments to separate the signals in the current
one. This can be done even when the separation is not possible in the current
segment, e.g. when the sources do not follow the assumption of non-stationarity
necessary for BGSEP. The performance of the original batch may deteriorate when
the method is applied on such a data block, whereas the online T-ABCD is able to
perform the separation. Due to this fact, the online method outperforms the batch
version applied block-wise on average.
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Figure 6.1: Comparison of the online method with its batch counterpart applied
block-wise. The results are presented in the terms of the SIR averaged over all
sources and microphones

Table 6.1: Comparison of the online T-ABCD with its batch counterpart applied
block-wise. The results are presented in the terms of the SIR/SDR, averaged over
all segments, sources and microphones

SIR[dB] SDR[dB] SAR[dB]
online T-ABCD 7.07 5.75 13.96

block-wise batch T-ABCD 5.64 4.57 15.05

6.2.2 Selection of the beta parameter within simplified BGSEP

The selection of the parameter β1 in (6.7) is investigated. The experiment aims at
proving that the dynamic choice of β1 improves the average performance of Step I
(ICA) of online T-ABCD. The section is structured as follows. At first, the nature
of the experiment is introduced and the objective criterion for the ICA performance
evaluation within T-ABCD 2 is proposed. Subsequently, the setup of the experiment
is showed and the achieved results are presented.

1http://www.kecl.ntt.co.jp/icl/signal/sawada/
2The proposed criterion is general and can be used for any time-domain BASS method based

on ICA
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Figure 6.2: Comparison of the online method with its batch counterpart applied
block-wise. The results are presented in the terms of the SDR averaged over all
sources and microphones

The performance evaluation of the ICA algorithm in time-domain BASS
method

Often, the evaluation of the performance of BASS algorithms (i.e. algorithms based
on the convolutive mixture model (4.1)) is performed via BSS_EVAL toolbox. How-
ever, when evaluating the performance of the ICA algorithm in a BASS method,
this approach has serious drawbacks which limit the accuracy of such a measure-
ment. More specifically, the performance of the ICA algorithm is limited by the
demixing filter length L and the optimal solution is not unique due to the fact that
the estimated signals are retrieved up to an unknown filtering.

To avoid these limitations, the presented experiment deals with the separation of
pseudo-convolutive mixtures as was proposed by Koldovský in [78]. This approach
consists in the construction of the source matrix S̃, similar as in (4.4), from known
sources and the subsequent computation of the mixtures via instantaneous mixing
X̃ = ÃS̃. The mixing process is thus not exactly convolutive and can (at least in
theory) be inverted perfectly via a demixing matrix W̃ = Ã−1.

However, since the corresponding rows of S̃ are not independent (due to the
temporal structure of the sources), ICA applied to X̃ tend to estimate arbitrarily
filtered versions of original sources, not the sources themselves. With respect to
this fact, the measure for the evaluation of the ICA performance within the time-
domain BASS method should reflect the separateness of the sources and should be
independent of random coloration.
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As stated earlier, the estimated ICs are affiliated with one of the sources and
thus form independent subspaces with minimized inter-source interference. To find
these subspaces, the clustering algorithm is used. However, a real clustering method
may introduce additional errors into the experiment by the incorrect assignment of
ICs to sources. To eliminate this effect, an optimum grouping of the components is
defined, based on SIR.

Consider the SIRij of the jth IC with respect to the ith source. Let C =

ŴÃS̃
def
= GS̃ be a dL × N matrix of ICs with G being the so called gain ma-

trix. Then the jth IC can be written as a linear combination of si(n) and its delays
plus the interference caused by all other sources and their delayed versions. The
SIR is then defined as a ratio of energies of these two sums via

SIRij =
Ê[
∑L

`=1 Gj,(i−1)L+`si(n− `+ 1)]2

Ê[cj(n)−
∑L

`=1 Gj,(i−1)L+`si(n− `+ 1)]2
(6.18)

The optimum clustering using SIR (6.18) affiliates the jth IC with the ith cluster,
where it has achieved the largest SIRij .

The SIR defined in (6.18) reflects the separateness of the original sources but
is independent of the unknown filtering of the respective ICs. This fact makes it
a good criterion for the comparison of the ICA methods’ performance (but not for
the overall separation quality of si(n)).

The ideal clustering gives the set of the indices Ji of the components which
belong to the ith cluster. The estimated ith source delayed by ` samples, i.e. the
estimate of the `th row of S̃ denoted by s`i(n), is obtained as

ŝ`i(n) =
∑
j∈Ji

(G)−1
(i−1)L+`,jcj(n), ` = 0, . . . L− 1 (6.19)

The computation through the inverse of G avoids unknown source permutations
given by ambiguities of ICA. The final estimate of the ith source is given by

ŝi(n) =
1
L

L∑
`=1

ŝ`i(n+ `). (6.20)

To compute the SIR of the jth estimate with respect to the ith source, the respective
components of the jth estimate need to be written as the signal plus interference as
suggested in (6.18). The ratio of their energies gives the desired ICA performance
criterion.

The setting of the experiment

The experiment was proposed as follows. Four different couples of real-world audio
sources of the same length N` = 100000 samples were exploited for the construction
of the source matrices S̃`, ` = 1 . . . 4. The number of delays L = 10. Subsequently,
these source matrices were concatenated into matrix S̃ = [S̃1, S̃2, S̃3, S̃4] of size
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(2L) × 4N1. The sources included two male utterances, one female utterance and
two music recordings.

Four random mixing matrices Ã` of size 2L × 2L were generated. These
matrices were exploited for the construction of a mixture matrix X̃ =
[Ã1S̃1, Ã2S̃2, Ã3S̃3, Ã4S̃4]. In this manner, a sudden change of the mixing sys-
tem is simulated in order to test the ability of the algorithms to adapt the demixing
matrix W̃.

Subsequently, the mixture matrix X̃ was segmented into overlapping blocks of
length P = 8000 samples, with a shift T = 200 samples. The competing algorithms
were applied on these blocks and the SIRs (6.18) were computed for both sources
in each block.

The following table summarizes five versions of the BGSEP algorithm which
were involved in the experiment. All online versions were in all segments (except
for the first one) initialized by Ŵ estimated in the previous segment.

Table 6.2: Algorithms involved in the experiment with pseudo-convolutive mixtures.
Algorithm Modification

Original BGSEP [32] None
Online BGSEP No U-WEDGE, single WEDGE, β1 = 1

Constrained BGSEP 0.3 No U-WEDGE, single WEDGE, β1 = 0.3
Constrained BGSEP 0.6 No U-WEDGE, single WEDGE, β1 = 0.6

Dynamic BGSEP No U-WEDGE, single WEDGE, β1 via (6.16),(6.17)

Table 6.3 summarizes the average SIR of the competing algorithms along with
its standard deviation given in brackets. Dynamic BGSEP outperformed all other
algorithms in the case of the first signal (the improvement of 1dB to the second
algorithm), but achieved worse results in the case of the second signal (about 0.4
dB worse than the best online algorithm).

It should be stressed that the Dynamic BGSEP achieved the lowest SIR variance
of all the online algorithms. This points out to the fact that the Dynamic BGSEP
provides the most stable performance.

It should also be noted that the experiment slightly favors the Original BGSEP,
which does not need to adapt to the sudden changes of the mixing matrix. It
converges directly into a new solution, thus achieving better results in the terms of
average SIR and a lower standard deviation.

An example of the SIR course with respect to the time position is shown in
Figure 6.3. The figure presents the separation of the first source. The results are
shown in the time interval when the mixing matrix Ã is suddenly changed.

It can be seen that the Dynamic BGSEP adapts quickly to the change of the
demixing system, e.g. more quickly then the Constrained BGSEP 0.3 does. On
the other hand, in the situations, when the demixing system does not change, the
Dynamic BGSEP tends to change Ŵ slowly, thus keeping stable results. Again, in
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Table 6.3: The SIRs achieved by separation of pseudo-convolutive mixtures averaged
over all data blocks. The standard deviations are given in brackets.

Algorithm SIR1[dB] SIR2[dB]
Original BGSEP 45.71 (8.76) 46.50 (10.45)
Online BGSEP 45.35 (9.82) 46.37 (10.76)

Constrained BGSEP 0.3 45.36 (10.94) 46.15 (11.17)
Constrained BGSEP 0.6 45.42 (9.90) 46.40 (10.86)

Dynamic BGSEP 46.59 (9.56) 46.01 (8.90)

comparison with the Constrained BGSEP 0.3, the Dynamic BGSEP achieves better
separation results on average.
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Figure 6.3: The course of the SIR during the separation of the first source within
the time interval of the first change of the demixing matrix Ã (6.25s).

6.2.3 Separation of sources with fixed positions

In this experiment, the online algorithm separates real-world stationary mixtures of
speech signals. The positions of the sources and the microphones are fixed. The
results of online T-ABCD are compared to the performance of its batch counterpart.

The experiment aims at showing that the online T-ABCD is able to adapt to
the non-stationarity of the speech signals. This improves its average performance
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even when the mixing system is stationary. The experiment uses publicly available
data from Hiroshi Sawada’s websites.3

The recordings of four sources using four microphones are considered. The
original signals are utterances of the length 7 s sampled by 8 kHz. The reverberation
time of the room is 130 ms. Omni-directional microphones are used to record the
mixtures.

The online and batch T-ABCD were both applied with L = 30. The other
parameters of the online method were set to P = 6144, T = 512, β2 = 0.95 and
α = 3. The separation results are evaluated block-by-block. The blocks are of the
same size as in the online method .

Unlike Section 6.2.1, the batch method is not applied block-wise. It estimates the
demixing transform using a single block of the data only. This should be sufficient,
since the mixing process is stationary. Table 6.4 summarizes the results averaged
over all blocks, microphones and sources.

Table 6.4: Results for separation of sources at fixed positions.
SIR[dB] SDR[dB] SAR[dB]

online T-ABCD 8.43 1.58 4.41
batch T-ABCD 5.01 0.08 5.79

Online T-ABCD achieves better results in terms of SIR and SDR than the batch
algorithm. This verifies the fact that the online method is able to adapt the sep-
arating filters throughout the recordings respecting the nonstationarity of sources
(not the changes in the mixing process which is stationary in this experiment). On
the other hand, the time-invariant separation done by batch T-ABCD produces less
artifacts as indicated by SAR.

6.2.4 Separation of moving sources

This experiment shows the ability of online T-ABCD to separate the mixtures of
moving sources. To this end, we consider data given in the task “Determined convo-
lutive mixtures under dynamic conditions” (Audio Signal Separation) in the SiSEC
2010 4 evaluation campaign. The campaign was organized as part of the LVA/ICA
2010 5 conference .

The data simulate dynamic conditions so that the maximum of two of six speakers
located at fixed positions around a stereo microphone array are active at a time. The
separating algorithm applied to the data thus needs to adapt to active speakers. The
distances between microphones were 2 or 6 cm and the sampling rate was 16 kHz.

We compare the proposed online T-ABCD with the frequency-domain BSS
method by Francesco Nesta et al [61, 79]. The online method was applied with

3http://www.kecl.ntt.co.jp/icl/signal/sawada/
4http://sisec.wiki.irisa.fr/
5http://lva2010.inria.fr/
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L = 30, P = 6144, T = 512, β2 = 0.95 and α = 4. The Nesta’s method uses FFT
of the length 4096 samples with 75% overlap. As the method works offline, it was
applied independently on disjoint blocks of 1 second where the maximum of two
sources were active.

Table 6.5: Results for the separation of data simulating dynamic conditions

2 cm SIR[dB] SDR[dB] SAR[dB]
o. T-ABCD 10.39 3.87 6.16

Nesta 11.21 4.59 6.54

6 cm SIR[dB] SDR[dB] SAR[dB]
o. T-ABCD 9.25 1.94 4.43

Nesta 7.90 1.85 5.37

The proposed method appears to be slightly inferior to the frequency-domain
method if the distance of the microphones is 2cm, but it achieves better results if
the distance is 6cm. It can be concluded that online T-ABCD seems to outperform
the frequency-domain algorithm in cases of larger microphone distances, where the
spatial aliasing occurs.6

Further experiments with non-stationary mixtures can be found in the
SISEC2010 evaluation campaign, which results are available online. More specif-
ically, it concerns Task 2 in scenario "Determined convolutive mixtures under dy-
namic conditions", which the author participated in. The results presented there
verify the ability of online T-ABCD to separate the non-stationary mixtures. How-
ever, in the competition with the presented frequency domain approaches, the online
T-ABCD was outperformed in some cases.

6.2.5 Computational demands

The presented experiments were performed on a computer with single core 2.6 Ghz
processor with 2 GB RAM. Online T-ABCD was implemented in Matlab environ-
ment. The computational demands of the algorithm depend on the demixing filter
length L and the sampling frequency of the mixtures. The mixture signals in Section
6.2.4 were 3 minutes, 29 seconds long, sampled at 16kHz. Online T-ABCD separa-
tion lasted 14 minutes, 36 seconds (L = 30). This separation task can be performed
in real time, when the desired filter length L = 10. Mixtures of two sources sampled
at lower sampling frequency 8 kHz can be separated in real-time when L = 18.

6The values presented in Table 6.5 slightly differ (for the case 6cm) from values published in [76].
This is due to correction of an error which was encountered during computation of the evaluating
criteria in [76]. However, the recalculation of the values does not change the results (the meaning)
of the experiment.
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Figure 6.4: Flowchart of the online T-ABCD algorithm



Chapter 7

Conclusions and Future Work

This chapter summarizes the research presented in the thesis and points out to
future work ideas.

7.1 Separation of non-stationary non-gaussian sources

The author contributed to the development of the Block EFICA algorithm, which
is designed for the separation of non-stationary and non-gaussian sources.

The Block EFICA algorithm is based on the famous algorithm FastICA [15]
and its efficient variant EFICA [24]. It consists of three consecutive steps. In the
first step, the sources are pre-estimated via FastICA. Within the second step, the
score functions of the sources are estimated. Subsequently, the obtained functions
are used as non-linearities in the one-unit Block EFICA iterations, which refine the
estimates of the sources. The algorithm is finished by the computation of constants
which minimize the residual mean square error of the rows of the demixing matrix.
The method is proven to be asymptotically efficient provided that the sources are
block-wise stationary with a constant variance.

Extensive experiments show the ability of the proposed method to accurately
estimate all types of sources, including real world signals which do not obey the
model of the algorithm. Moreover, it is shown that the theoretical assumption of
the constant variance of the sources does not deteriorate the method’s practical
performance, when signals with varying energy are separated.

7.2 Modifications of the T-ABCD algorithm

The blind separation of audio sources can be performed by methods based on ICA
in the time-domain. An example of such a method is T-ABCD [9] proposed by
Koldovský and Tichavský. The algorithm exhibits an advantageous modular struc-
ture which allows simple implementation of new features.

The separation performed by ICA within T-ABCD is usually not perfect and a
single IC often contains interference from other sources. Therefore, in the clustering
step, the component cannot be uniquely assigned to a single source, but should be
affiliated with multiple sources to a certain degree. To reflect this ambiguity, the
author proposed the utilization of the Relational Fuzzy C-Means algorithm [71] for
clustering of the ICs.

The experiments suggest that RFCM slightly improves the separation perfor-
mance of T-ABCD compared to the original hard clustering method and is less
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computationally demanding. Moreover, RFCM features a favorable iterative struc-
ture, which enables it for exploitation within the online version of T-ABCD.

7.3 Adaptive separation of audio signals

The original batch T-ABCD assumes that that the mixing process does not change
its inner parameters in time. In practice though, the mixing may be non-stationary,
e.g. due to the movement of the sources.

The author proposed an online variant of the T-ABCD method which profits
from the fact that the original T-ABCD is able to estimate the demixing filters
using short data segments only. The method is based on the block-wise application
of the original T-ABCD, which is modified to respect the continuous changes in the
parameters of the mixing system. The adaptation is performed via a single iteration
of ICA/clustering algorithms in each of the blocks. The speed of adaptivity is
controlled by learning parameters.

The experiments suggest that the algorithm is able to adapt to the changing
position of the sources. Moreover, it is shown that the algorithm can adapt to the
non-stationarity of speech signals as well. Regarding the computational burden; the
separation can be performed in real time provided that the desired separation filter
is reasonably long.

7.4 Future work

The intended future research is focused on the online or batch T-ABCD algorithms,
since the remaining projects are concluded.

Online T-ABCD was subject to numerous tests. However, detailed testing re-
garding the influence of some of its inner parameters on the separation performance
has not yet been performed. This concerns especially the length and the shift of
the ICA segment along with the forgetting factor in (6.11). These parameter values
were selected in an ad-hoc manner. Moreover, cases of instability, which deterio-
rate the performance of the algorithm, occasionally occur, especially when a shorter
length of the ICA segment is used. These cases need to be revealed through test-
ing and corrected. The intended testing will include the objective criteria such as
SIR/SDR/SAR as well as listening tests.

Further development of the algorithm is directed towards simplification and ac-
celeration. The most computationally demanding part of the method is the compu-
tation of similarities among ICs. In the current version, the similarities are based on
the GCC-PHAT [66] coefficients. These can be replaced, for example, by spectral
coherence. It is a standard tool in the analysis of time series, which measures the
dependence between two time series. The computation of coherence is simpler than
the computation of GCC-PHAT. The computational burden could be further low-
ered by the computation of the similarities directly from the ICA demixing matrix
Ŵ, if it is possible and usable.
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The algorithm can be simplified by focusing on specific settings and scenarios.
Recently, a paper [80] concerning the implementation of online T-ABCD in C++
has been submitted. The paper focuses on the case of two sources recorded by two
microphones. Here, some algebraic simplifications can be exploited. For example,
the explicit formula for matrix inversion can be used. Furthermore, the affiliations
of ICs to clusters need to be computed for the first cluster only, the second is just
complement to one.

For the general case when multiple microphones are used, the algebraic sim-
plifications can be found as well. For example, the matrix inversion could be in
certain cases replaced by its Taylor expansion approximation. However, this ap-
proach needs to be further examined: the application of simplifications may lead to
the deterioration of the performance and stability of the algorithm.

Online T-ABCD is influenced by the ambiguity of the ordering within its ICA
step. In most cases, its consequence is suppressed, due to a short shift of the ICA
window and the continuous changes of the demixing matrix. However, if there
appears an interval in the data where the separation via ICA cannot be performed
and thus the continuity is disturbed, the estimated sources may switch channels.
This problem arises for example, when the source positions are located behind each
other and subsequently leave the cover. This situation could be probably solved by
the speaker diarization process. It detects various speakers in the data and groups
together the utterances spoken by the same speaker.



Appendix

Automatic Classifiers for Medical
Data from Doppler Unit

The appendix discusses research which does not concern blind audio source separa-
tion. This research was conducted by the author of the thesis during the first year
of his Ph.D. studies and was published in papers [81, 82]. It deals with the auto-
matic classification of medical data: signals originated in ultrasound measurement
of blood flow in the arteries of the lower limbs are analyzed. The measurement is
part of the screening examination for atherosclerosis.

The presented work is based on the results published in the author’s master
thesis. Unlike the original results introduced there, the author proposes a new set
of features which includes attributes used for the diagnostics by human experts.
The practical computation of the features is refined. The classifiers are re-trained
and their extensive testing is performed. The re-design of the classifiers leads to an
improvement of the recognition score by 5%. Moreover, the evaluation of the clas-
sifiers in the means of the sensitivity and specificity is performed. These measures
are often used for the evaluation of medical tests.

8.1 Introduction and motivation

Atherosclerosis and diseases of the cardiovascular system pose a serious threat for
the modern population. Typical risk factors are smoking, diabetes mellitus, hy-
pertension and the lack of movement. The manifestation of these diseases in hu-
man extremities is called the Peripheral Arterial Disease [83]. The illness has four
progress stages. In the early stage, the patient feels no subjective troubles. The last
stage is distinguished by tissue necrotization and gangrene, which is very dangerous
for patient’s extremities and possibly life threatening. The lower limb arteries are
afflicted more often than those in the upper limbs. The well-timed diagnostic of the
disease is important because it can considerably simplify the treatment.

Nowadays, there are many methods how to detect obstructions within arteries.
The simplest method is the physical examination of the limb: a medical doctor
inspects the color and the temperature of the extremity. The disadvantage of this
approach is that pathological changes are often detectable only after the disease
enters its final stages. The CT angiography is a very accurate state-of-the-art ex-
amination method, but there is some danger connected with its invasiveness. The
best noninvasive method appears to be the ultrasonic duplex scan, which is able to
visualize the profile of the artery along with the dynamic representation of blood
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flow within. Both above mentioned methods require expensive equipment, so these
examinations are used in clinical medicine, not in general medicine practice.

For fast noninvasive screening of PAD in diabetological and cardiological ambu-
lances, ultrasonic Doppler devices have been used for a long time. These inexpensive
units measure average blood flow velocity along with distant blood pressures on sev-
eral typical places of the lower limb. The resulting signal is usually denoted as a
Doppler velocity waveform. From the shapes of the waveforms (or the sound emitted
by the device into headphones) the expert can detect PAD. Doppler units are no-
tably cheaper than duplex scanners and are affordable in general medicine practice.

The following sections present a set of automatic classifiers which analyze the
measured waveforms and affiliate them with classes which reflect the progress of
PAD. These classifiers, along with the cheap Doppler probe, could help to identify
the first phases of the PAD in general practice surgeries. The automated examina-
tion performed by general practitioners could help to further improve the well-timed
diagnostics of PAD, because the traditional analysis is partly subjective and depends
to some extent on the experience of the expert.

8.2 Automatic Classifier Design

The proposed classifiers are designed according to the principle of supervised learn-
ing. In order to train them, a large database of real-world Doppler waveforms had
to be collected. In our case, the data come from the Regional Hospital in Liberec,
where it has been acquired during the last few years. Prior to their use for research
purposes, the data were made anonymous, all personal information of the patients
was deleted.

8.2.1 Measurement of Doppler waveforms

The waveforms were measured by the hand-held ultrasonic unit Multi Dopplex II
and sent to a PC for storing via the RS232 interface. They represent the mean
velocity of blood flow in the artery in a short time period. By default, the signals
are measured along with blood pressures. Five standard locations on each leg are
examined, i.e. there are 10 waveforms from one patient per one examination. The
standard positions examined are following: 1) artery femoralis, 2) a. poplitea, 3) a.
tibialis posterior, 4) a. tibialis anterior and 5) a. dorsalis pedis. These positions are
depicted in Figure 8.1.

Multi Dopplex II is a bi-directional device; the wave-forms could be displayed
as forward and backward flow or as a difference of these two signals in a combined
waveform. Examples of Doppler waveforms can be seen in Figure 8.2.
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Figure 8.1: Standard positions for examinations with the Doppler unit (picture taken
from utility software distributed along with the Doppler Unit - Dopplex Reporter)

8.2.2 Classes

In accord with literature [84] and with the expert’s opinion, four classes are chosen
for the classification. Three of the classes reflect various degrees of artery occlu-
sion. The remaining class contains waveforms which are deteriorated by some error
encountered during measurement.

The classes are proposed as follows:

• Normal course – Waveforms acquired by the examination of arteries without
PAD, e.g. Figure 8.2 (a).

• Stenotic course – Signals measured in arteries with a stenotic diameter, e.g.
Figure 8.2 (b).

• Occlusion– Signals measured in arteries with a total arterial obstruction, e.g.
Figure 8.2 (c).

• Incorrect course – This class covers four kinds of measurement errors which
are commonly encountered during examination, i.e.

1. The setting of the amplification factor is too high. The resulting wave-
form is clipped.

2. The signal is under strong influence of near veins, the dicrotic notch
usually present in the normal triphasic waveform is lost in the noise.
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(a) (b)

(c)

Figure 8.2: Representative waveforms of classes chosen for the automatic classifi-
cation. Directional waveforms acquired in (a) artery with no PAD, (b) artery with
stenotic diameter, (c) artery with total arterial occlusion.

3. Measured forward and backward velocities are echoes of each other, after
the calculation of the difference the combined signal is almost zero.

4. The signal was not measured at all. This could happen by the wrong
placing of the probe, but it could also mean the total obstruction of the
artery.

The expert of angiology classified part of the available database manually into
designed classes before training of the classifier. This prior knowledge is used in the
training process and also in the testing phase, when expert’s opinion is compared
with the results of the classifier.

8.2.3 Features

During the design process, 18 features were considered as potentially useful for the
classifier. These features describe the quality of measured signals in time domain,
frequency domain or have a special medical meaning.

Obtaining the exact values of velocities can be difficult with a simple Doppler
unit because the application angle of the probe strongly influences the amplitude of
the measured data. The standard angle ranges from 45◦ to 60◦. This fact is proved
true in experiment 8.3.1, where the most informative features are selected. The
features depending on exact values of velocities were not identified as useful for the
classifier. The most useful features found were those which use ratios of velocities.
These features reflect rather the shape of the waveform than their amplitudes.
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Figure 8.3: Proposed features of the Doppler waveforms

Based on the literature [84, 85, 86] and the expert’s information, the following
list of potential features was compiled.

• Brachial pressure index (BPI) – The ratio of the patient’s system blood
pressure (measured on a. brachialis) and distal pressure in the examined
position on the lower limb.

• Pulsation index (PI)

PI =
vmax − vmin

vavg
, (8.1)

where vavg is the average velocity during one pulse duration.

• Resistance (Pourcelot) index (RI)

RI =
vmax − vmin

vmax
, (8.2)

• Maximum velocity vmax - Maximum velocity during pulse.

• Minimum velocity vmin - Minimum velocity during pulse.

• Acceleration (A)
A =

vmax
Tr

, (8.3)

• Deceleration (D)

D =
vmax − vmin

Tf
, (8.4)

• Velocity-time index (VTI)

VTI =
vmax − vmin
Tr + Tf

, (8.5)
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• Artery Resistance Parameter (RP)

RP =
vmax
vmin

, (8.6)

• Log Energy

Energy = ln(
N∑
`=1

s(`)2), ` = 1 . . . N, (8.7)

where s(`) is a sample of the Doppler waveform; N samples are available.

• A set of 8 frequency features – The standard duration of measuring at one
position is 5 seconds using a 100 Hz sampling frequency. The spectrum is cal-
culated from the entire discrete signal via Fast Fourier Transform (FFT). The
most energy in the spectra is concentrated up to one quarter of the sampling
frequency. These spectral coefficients are multiplied by eight triangle windows
with a half overlap in order to get 8 frequency features F1 to F8.

Before computing the features, the signal is preprocessed by low pass filtering.
This suppresses high frequency noise, but keeps the shape of the waveform.

The Sequential Forward Search (SFS) algorithm [87] is used to determine the
most significant features. Its advantage consists in the fact that it utilizes the target
classifier. The iterative SFS algorithm works in the following manner.

In the first step, it identifies (via recognition with the target classifier) the feature
with the best score. In the nth step, the set of previously selected n − 1 features
is extended by adding that feature from the remaining ones which makes the best
classification with the n-feature set. The algorithm is terminated if the score in the
current step is lower than in the previous one or if the number of steps (and already
selected features) reaches a predefined limit. In this way we get the set of the M
most informative features for the target classifier.

8.2.4 Detection of waveform periods

All above mentioned features are calculated automatically in real time, without
human intervention. Most of them require that a single pulse is extracted and its
shape and size is analyzed.

The detection in the time domain is quite complicated. With growing stenosis in
the artery, the waveforms lose their shape and become non-pulsative. Also the pres-
ence of the vein signal (mostly in signals from a. femoralis, a. poplitea) complicates
this task.

The autocorrelation function is used for the detection of pulses in the signal.
Maxima in the waveform are traced to detect the beginning and end of one pulse.
The sample difference is used for identifying the extremes.
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8.2.5 Classifier types

Two basic types of classifiers were implemented during the design process: The mini-
mal distance classifier and the Bayesian classifier. The classifiers analyze waveforms
represented by a column feature vector of length M .

The minimal distance classifier (MDC) expresses each class by its best repre-
sentative called prototype, which is a sample with a minimum distance to all others
within given class. The implemented MDC classifier uses the Mahalonobis metrics,
where the distance between two feature vectors x,y is given by

d(x,y) =
√

(x− y)′Σ−1(x− y), (8.8)

where Σ is the sample covariance matrix of features within each class.
The Bayesian classifier (BC) represents each class Ci, i = 1 . . . 4 by a Gaus-

sian probability density function (pdf) in the M -dimensional feature space. Its two
parameters are the means and the variances. Since the classes have different oc-
currence rates, the class prior probabilities are also taken into account. The pdf is
defined as follows:

P (x|Ci) =
1√

(2π)M · det(Σ)
· exp[−0.5(x− x̄)′Σ−1(x− x̄)] (8.9)

8.2.6 Training and testing of the classifiers

For better modeling of the distributions of the feature vectors in theM -dimensional
space, it is useful to split data in each class into clusters and represent each of them
by a separate prototype or a separate pdf. In our case, the clusters are identified
via the well known K-Means algorithm in combination with the Linde-Buzo-Gray
algorithm (LBG) [88].

During the training phase, each diagnostic class is represented by one or more
clusters, where each one is described by its parameters, i.e. mean vectors, covariance
matrices and occurrence counts.

In the testing phase, the minimal distance classifier assigns the measured data
represented by a feature vector to the nearest prototype and decides to which class
the unknown data belong. The Bayesian classifier assigns the class whose posterior
probability is the highest one. The errors of incorrect course are detected before the
classification stage. If the signal is identified as incorrectly measured, the classifica-
tion is denied.

In order to train the classifiers and to make extensive tests, a large database of
real-world Doppler waveforms was prepared by an expert. He manually classified
data from 900 examinations. These were measured at 10 standard positions (5 on
each leg), i.e. there were 9,000 sample waveforms available. Approximately 15% of
all these signals were found incorrect. The reason lay mostly in setting amplification
too high on a. femoralis so that the signal was clipped. From the correctly measured
ones, 47% were assigned to the class Normal Course, 32% to the class Stenosis and
the rest 6% into the class Occlusion. In the experiments, data from 720 randomly
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chosen examinations were used for training the classifier; the remaining data (of 180
subjects) were left for testing. In each individual test, the result of the classifier
was compared to the expert’s decision. This was done for all test data and then the
recognition score was calculated as a ratio of the correctly assigned samples to all
available testing ones. The scores were calculated for each measured position and
later averaged over all positions. To make the results more significant, the random
database splitting into the training and testing part was repeated 5 times and the
final scores were calculated as the means from the 5 tests. In other words, all the
scores mentioned in the following section are averaged results from 9000 individual
classifications (180 subjects x 10 positions x 5 repetitions).

8.3 Experiments

8.3.1 Selection of features by the SFS algorithm

The results obtained by the application of the SFS algorithm on the set of 18 pro-
posed features are illustrated in Figure 8.4 and Table 8.1. It can be observed that the
best classification is acquired with 6 features, while adding more yields lower, and
then even higher degradation of performance. The SFS algorithm identified the fol-
lowing best 6 features: BPI, deceleration, resistance (Pourcelot) index , velocity-time
index and second and third frequency feature. As most of the energy of waveform
spectra is centered in low frequencies, the higher frequency features did not bring
any additional improvement.

If we compare these 6 most informative features with those used by human
experts in vascular labs, we can see that the PI feature often used by experts was
not selected by the SFS algorithm. This may be caused by the fact that the average
velocity in (8.1) can be influenced by less accurately detected borders of the pulse
when compared with a manual measurement.

Table 8.1: Detailed results from the SFS algorithm’s first 9 steps. The scores and
added features are shown.

M Score [%] Added Feature
1 81,75 VTI
2 87,5 BPI
3 88,78 F2
4 89,08 RI
5 89,18 D
6 89,19 F3
7 88,88 A
8 88,64 1st freq.
9 88,39 Energy
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Figure 8.4: Recognition score as a function of feature vector length M . Results
obtained by the SFS algorithm.

8.3.2 Testing of the classifiers

In Tables 8.2 and 8.3, the comparison of the results from the two classifiers and
their various settings are shown. The scores are based on correct decisions that
include a) the classification into a correct diagnostic class and b) a correctly detected
measurement error. It is evident that the best results were achieved by the Bayesian
classifier with multi-modal pdfs and prior probabilities. The best score was 89%,
i.e. the classifier and the expert agreed in 89% of the cases.

In medicine, the results are often indicated as sensitivity and specificity rates.
Sensitivity is defined as

Sensitivity =
True Positives

True Positives + False Negatives
(8.10)

and specificity is defined as:

Specificity =
True Negatives

True Negatives + False Positives
(8.11)

Because the rates are applicable for binary classifiers only, we had to identify as
positive such waveforms that contained pathological attributes (classes "Stenosis"
and "Occlusion"). The detection of measurement errors is not implicated in these
values. Human expert’s opinion acts here as the golden standard.

The strictest view on performance evaluation is given by the recognition rate
of the classifier that has to decide between 4 classes. In our experiments, the best
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Table 8.2: Recognition scores for different classifier types and settings
Classifier Setting Score[%]
MDC Mahalonobis - 1 cluster 81.98
MDC Mahalonobis - Multiple clusters 83.65
BC 1-modal pdf without prior prob. 80.17
BC 1-modal pdf with prior prob. 84.46
BC Multi-modal pdf without prior prob. 86.96
BC Multi-modal pdf with prior prob. 89.19

Table 8.3: Sensitivity and specificity for different classifier types
Classifier Setting Sensitivity[%] Specificity[%]
MDC Mahal. - 1 cluster 87.83 81.93
MDC Mahal. - Multiple clusters 90.95 85.77
BC 1-modal pdf without p.p. 93.05 75.38
BC 1-modal pdf with p.p 90.23 78.14
BC Multi-modal pdf without p.p. 90.15 87.90
BC Multi-modal pdf with p.p. 87.73 90.54

results were achieved by using the multi-modal BC with prior probability. The 89%
agreement can be considered fairly high if we realize that the boundaries between
the classes can be questionable in some cases, even for a human expert.

The evaluation of the classifier by means of the sensitivity and specificity rates
forces the classifier to accept only two classes. Here, the specificity of the MDC
and the one-modal BC is lower since these classifier settings often tend to erro-
neously assign border cases of the class "Normal" (Negative) to the class "Stenosis"
(Positive).

8.3.3 Discussion

During the testing of the classifiers, it was found that one of the most critical issues
is the detection of pulses, their description and measurement. Skilled experts can
do it easily, but for a fully automated system, it may pose a problem.

Further improvement may be achieved by the suppression of vein signals. The
author believes that this could be partly accomplished by a properly designed high
pass filter. The vein signal has a rate of 15 to 20 pulses per minute and appears as
a slowly changing trend in the data.

The extension of the feature set could be also useful, especially by adding features
that could be calculated even when the waveform is non-pulsative or distorted in
some way. Recently, the frequency attributes fulfill this role. It also seems useful to
extend the number of classes for a more precise classification of signals. The class
Stenosis could be split into two subclasses: the mild and the severe Stenosis.



8.4. Conclusions 97

8.4 Conclusions

Two types of automatic classifiers were designed for the Doppler waveforms. A
large database of anonymous waveforms was compiled and subsequently used for
training and testing of the classifiers. Based on the literature and the expert’s
opinion, the author introduced four diagnostic classes which reflect the progress of
arterial occlusion. Eighteen features were proposed to describe the waveforms; the
experiments revealed six most informative ones. The testing of the classifiers led to
89% agreement between the automatic classifier and the human expert.
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