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Symmetry of possible domain walls of orientations (1 11) and (100) in fulleren is considered as an 
example of the use of scanning tables which should appear in a scheduled Vol. E: "Srrbpenodic 
Groups" of the International Tables for Crystallography. hllerene molecules have icosahedrd 
symmetry. Possible orientation states of molecules of C ~ O ,  compatible with the symmetry Po3, 
are those. in which one of the three-fold axes of icosahedron coincides with one of the cubic three- 
fold axes. The orientation in each position is characterized by an angle 6 by which it deviates 
from the orientation in which the icosahedral mirror planes passing through the axes alao coincide 
with respective cubic mirror plan=. Domain s t ah  and domain pairs are described in k m s  of 
these orientations. There exist only two seta of equivalent domain pairs; a translational pair with 
symmetry Cmce and a rotational pair with symmetry R3m. Sectional layer groups of these space 
symmetries are determined with use of scanning tables. These layer groups determine the site point 
symmetries in respective walls and hence the possible orientation states of c60 molecules within 
the wall as well as their modulation towards the region of domain states. 

Keywords: Structure of domain walls, scanning group, scanning tables, fullenne 

1.  INTRODUCTION 

The symmetry of a planar section of a crystal is a layer group just if the section 
has a crystallographic orientation. In this connection, it is calied a sectional layer 
group, a term introduced by Holser' in consideration of twinning. Such groups can 
be introduced without reference to particular crystal structures. The sectional layer 
group contains exactly those operations of the space group which leave the sectional 
plane invariant. For a given space group, the sectional layer groups depend on the 
orientation of the sectional plane and on its location which can be determined by 
intersection of the plane with a complementary straight line. The procedure of the 
determination and presentation of the dependence of sectional layer symmetry on 
the location of the sectional plane of a given orientation along a straight line in a 
direction d complementary to this orientation received the name of the "scanning of 
space groups for sectional layer groups" 2. The direction d is called the "scanning 
direction" and it has been shown how to solve the problem systematically with use 
of so-called "scannzag groups" on the ground of the "mwniltg theorem". 

The scanning process is a part of the search for the structure of feasible domain 
walls3*'*'. As a planar edifice, a wall has the symmetry of a layer group which pre- 
determines tensor properties of the wall and its microscopic structure. This structure 
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depends on tlie orientation and location of tlie wall. A n  analogous procedure can be 
applied to consideration of grain boundaries6; in  this connection tlie term "bicrystal- 
Jography" is coined for problems of planar junctions between two various orientations 
of the same phase7. 

Tlie intention to treat the scaiining problem systematically motivated standard- 
ization of Herinann-Mauguin symbols of layer groups in conjunction with other sub- 
periodic groups. Such standards are now prepared in Vol E: "Subperiodic Groups"of 
the International Tables for Crystallography which will include so-called "Scanning 
Tables". While particular cases have been analyzed in the literature 'v10 a complete 
description of tlie scanning of sectional layer groups is now therefore available. 

As an example of its use, the syininetries of possible domain walls of orientations 
(1 11) and (001) in  a simple cubic phase of fullerene CG0 will be found and conclusions 
about consequences for niicroscopic structure of walls will be discussed. 

2. ORIENTATION STATES OF FULLERENE MOLECULES I N  CUBIC ENVI- 
RONMENT 

Carbon atoms in the molecule of fullerene Ceo are arranged on vertices of a body 
which is close to Archimedean truiicated icosahedron. In its solid cubic form, the 
centres of molecules Cm are located at points of the face centred cubic lattice. At 
higher temperatures, the molecules are assuined to rotate so they can be considered 
as spheres with resulting space symmetry Fm%n. To discuss possible locations 
and orientations of these niolecules in lower symmetry Pa3, intermediate syinmetry 
F d  and in feasible. domain walls we overview briefly the relationship of icosahedral 
sy niinet ry to t lie cubic. 

A n  icosahedron can be inscribed into a cube as shown on fig. 1. from the book 
by Altniann and Herzig". Tlie circles i n  this figure represent corresponding carbon 
atoms of buckminster fullerene CGo. The coiiiiiion symnietry of the icosaliedron and of 
tlie cube is the point group TIL = ins, the symmetry of an inscribed tetrahedron. Like 
tetrahedron, the icosahedron can be inscribed into tlie cube in two ways. Rotation of 
tlie icosahedron througli 90" about any of the fourfold axes, reflection in tlie inirror 
planes (IIO), (IOI), (011) or any other operation of the coset to ni3 in ni%n swaps 
the two orientations. 

FIGITRE 1 Buckniiiister fullerene 
iu cubic environ~nent. parameter 

FIC:I.JRE 2 Definition of angular 
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It is important for present consideration to see that the conversion from one 
standard orientation of the icosahedron to another can also be performed by rota- 
tion about the cubic threefold axes through an angle 24" rn 44.48" or through an 
angle z 75.52" which complements 24, to 120" depending on the axis and direc- 
tion of the rotation and on the original and final orientation. These angles or their 
trigonometric functions are universal geometric constants which express the relation- 
ship between cube and inscribed icosahedron. To define uniquely the orientations of 
fulleren molecules in cubic structure, we denote the two standard orientations by A 
and B in the same manner as in the paper of Brooks Harris12. The orientation in 
fig. 1 is the standard orientation B and it can be obtained from the standard ori- 
entation A by rotation through 24, about the axis [ l l l ]  in the negative (clockwise) 
direction. 

If we look now down the threefold axis [Il l] ,  then the two triangles in fig.2. 
represent the ( 1 1 1 )  face of icosahedron in the two standard orientations A and B.  
In these orientations three mutually perpendicular mirror planes of the icosahedron 
coincide with cubic mirror planes (loo), (OlO) ,  and (001). We allow the icosahedron 
to rotate freely about the axis [I 111. In  the middle between standard orientations A 
and B there is an orientation in which the icosaliedral mirror planes containing the 
axis [ l l l ]  coincide with tlie cubic mirror planes (lie), (TOl), and (017). We set the 
atigle which describes the orientation of icosahedron at zero i n  this position. Every 
possible orientation of the icosahedron in which its threefold axis coincides with the 
cubic [111] axis is then described by an angle q5 in the niargins 60" 2 4 2 -60". The 
values Q = 4, = 22.24", -6" = -22.24" correspond to standard orientations A and 
B,  respectively. Analogously, the orientations of icosahedron, in which its threefold 
axis coincides w i t h  one of the cubic axes [TTl], (In, FIT], are described by one 
angle d through which the icosahedron is rotated from the orientation in which its 
mirrois coincide with respective mirrors of the cube. 

The marginal angle q5 = 60" corresponds to an orientation of icosahedron in 
which its niirror planes again coincide with the cubic mirror planes. This orientation 
is also obtained when the icosahedron in orientation with an angle 4 = 0" is reflected 
through the plane perpendicular to the three-fold axis. The angles with absolute 
value (dl > GO" are equivalent to angles within the margin GO" 2 q5 2 -60". 

This the orientation states of icosaliedroii and consequently of the iiiolecule of 
fulleiene are described by the rotation axis which is one of the cubic axes 3,, 3,, 
:j,,, 3 ,  a i d  hy the rotation angle 4. If this angle is $", then tlie orientation is the 
standard orientation A, if it is -&, then the orientation is the standard orientation 
B. independently of the rotation axis. 

3. THE SECTIONAL LAYER GROUPS 

Domain states and doniain pairs were already coti~idered'~ and it was found that 
there exist only two classes of domain pairs: a translational and a rotational pair. 
\Ve assigii a label I I  to the first domain state i n  which the origin P of coordinate 
systeni is occupied by a molecule rotated through positive angle q5, which means from 
the central orientation towards the standard A orientation, about 3,-axis. The label 
1 2  is assigned to the domain state in which niolecule of this orientation is located 
at P + (a + b)/2 and the label 21 to the doinain state in which the molecule at 
the origin P is rotated about 3,-axis through negative angle of the same magnitude 
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orbit 
(hkl) 

(001) 

(100) 

(010) 

which means towards the standard B orientation. 
The symmetries of these states are F(11f = Pa3, F(12) = Pa3 [(a + b)/2], 

F(21) = Pb3. The symmetry Pa3  is a standard space group described by the 
diagram in Vol. A of the International Tables for  Crystallography. The symbol 
Pa5 [(a+b)/2] has the meaning of the same group shifted in space by [(a+ b)/2], 80 

that its symmetry elements are located in the same way with reference to the origin 
at P + [(a + b)/2] as the elements of P a 3  are located with reference to origin at P .  
The symbol Pb3 is nonstandard and we choose it for the group which is conjugate 
to Pa3  by a mirror {rne~IO}p which is Seitz symbol for a mirror of orientation (lTO), 
passing through the origin P. 

The symmetries of ordered pairs are then the intersections F(11’ 12) = Pbca and 
F(l l121)  = RSP. Adding the operations which transform the domain states between 
themselves, which is the translation [(a + b)/2] in the first case and the reflection 
{rn,#}p in the second case, we receive the symmetry groups of pairs (unordered): 

,7(11,12) = Crnce (new symbol for Cmca)  and J(11’21) = RZPm. 

These two groups are to be scanned now for the sectional layer groups. The first 
table below is the scanning table for orthogonal scanning of the group Crnce; for the 
group R3m we display only the  line necessary for our case. 

- 
of the scanning group group orbit 
a’ b’ d 7t sd 

a b C Gmca [od, id] 
[ad, $1 

[fsd, (is + i)d] 

[id, id1 
[fsd, (Its + &)d] 

c a b Abnra W, bdl 

b c a Bbcm [Od, ‘d] 

[id, $1 
[fsd, (is + $)d] 

No. 64 
Space Group Q = C L 2 a  m e  a 

1 Orientation I Conventional basis I Scanning I Translation 

Group type Cmce % Dit 

Sectional 
layer group 
t ( s 4  

c2/mll 
cm2a (a/4) 
cmll 

pbam 
pbaa (a’/4) 
uba2 

pbmn 
pbma W / 4 )  
pbm2 [(a’ + b’)/4] 

An excerption from scanning table of the space group = m m  

(0001) 11 a h  C Rha 

[fsd, ( f a  + i)d,  
(ks + $)d] 

p h  1 
psml [(2a + b)/3] 
psml [(a + 2b)/3] 

p3ml 
I I 
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The heading of each table is the space group Q to be scanned. The first row 
specifies the orientation of the set of planes among which we choose the domain wall. 
The second column defines a conventional basis of the scanning group 7l in terms of 
the conventional basis of the group Q. The scanning group, given in  the third column, 
is the equitranslational subgroup of the scanned group 9, the point group H of which 
is that subgroup of the point group G of Q which leaves the chosen orientation of 
planes invariant. The scanning group H is therefore defined by the scanned group Q 
and by the orientation of planes. According to the scanning theorem, the scanning 
of the group (3 for the sectional layer groups with given orientation of sections is 
identical with the scanning of the group 31 for the sectional layer groups with this 
orientation of section planes2. 

The fourth column refers to the locatioii of the section plane along the scanning 
line P + sd and the last column indicates the respective sectional layer group in 
the basis a’, b’ and with reference to the origin at P + sd. Thus we have a set of 
coordinate systems in section planes with the same basis and with the origin on the 
scanning line. The section planes are grouped into translational orbits under the 
action of the scanning group X. The sectional layer groups which refer to two planes 
of the same orbit are conjugate by those operations of 31 which move one plane of 
the orbit to the other. The structure is related in the same way to planes of the same 
orbit, in different ways to planes of different orbits. The orbits are distinguished in 
tables by square brackets. 

4. THE SYMMETRY AND THE STRUCTURE OF DOMAIN WALLS 

There is a close relationship between location properties of sectional layer groups and 
of domain walls. Groups themselves have certain location proper tie^'^. In particular, 
a nontrivial layer group can be localizfd by its plane as are the groups of special 
translational orbits. If the location of domain wall coincides with such plane, the 
respective sectional layer group is the symmetry of its central plane and determines 
the symmetry of the twin. Trivial layer groups are plane groups in three dimensions 
and they cannot be localized in the direction orthogonal to the orientation of the 
plane. There exists one such group for each orientation and it is ”floating” in the 
scanning direction. This group is always the intersection of sectional layer groups 
for special locations and it corresponds to a general translational orbit. From the 
scanning tables we retrieve the following information: 

Domain pair (11,12), orientation (001): 1. At the level Od: Sectional layer group is 
c2/mll.  The symmetry of twin is y2/bll [(a -+ b)/4]. 2. At  the level id: Sectional 
layer group is cm2a (a/4). The symmetry of twin is pb2b ( ~ / 4 ) .  3. At the general 
level sd: The floating layer group is cm11. The symmetry of twin is pbll (a/4). 

Domain pair (11,21), orientation (111): 1. At the level Od: Sectional layer groups is 
pTPml. The twin symmetry is ~ 3 ~ 2 1 .  2. At the general level sd: The floating layer 
group is p3,tnl. The synimetry of twin is $3,. 

The site point symmetries at locations of molecules of Cso in the low temperature 
phase of fullerene are 3rn and the angle Q completely determines the state; the 
orientation of each of the four molecules of the unit cell must be given be the same 
angle d about different axes. The symmetry of domain wall relaxes this condition and 
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the molecules have more degrees of freedom, depending on their location. Generally, 
the molecule can isotropically expand or shrink and it has three rotational degrees of 
freedom: Two parameters which determine the orientation of its threefold axis and 
one parameter, the angle 4, which determines the orientation of the molecule. 

The site point symmetries at the location of molecules coxh-01 their orientation in 
the central plane and i n  the wall. The sectional layer group is the symmetry of the 
central plane and from respective site point symmetries we determine the orientations 
of molecules in this plane. As we go into the domains, the site point symmetries are 
determined by the symmetry of the twin. The molecules are allowed to rotate towards 
their values in the two domain states. At the same time the lattice parameter in the 
scanning direction changes towards its value in single domain state. The symmetry 
of twin contains operations which correlate the orientations of molecules in the two 
domains; these are the operations which change simultaneously the normal to the 
wall and exchange the doinain states. 

The use of this information for analysis of domain wall of orientation (111) be- 
tween domains 11 and 21 is briefly described in the twin paper14. A complete de- 
scription of structures of all possible walls i n  this material is in preparation. 

CONCLUSION 

The function of scanniug tables and of standards of layer groups is not only the 
facilitation of scanning procedure. The final analysis of the structure of a domain 
wall requires meticulous description of orientation and location of involved space and 
layer symmetries. The standards should guarantee unique description. Latex files of 
the scanning for individual cases are available on request. 
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