
Web Applications & Web Containers 

Web Applications

The Web Container Model



Review
• The Servlet Model

– Form Parameters

– HTTP Methods: GET, POST, HEAD, OPTIONS, PUT, DELETE, 

TRACE

– Servlet (Servlet → Generic Servlet → HttpServlet → YourServlet)

– Servlet Life Cycle (init, service, destroy)

• The Web Application Process

– Step 1: Creating a Web application project

– Step 2: Creating the html with(out) form parameters, Servlets

– Step 3: Writing the code for Servlet & Compile

– Step 4: Building the Web application project

– Step 5: Deploying to a Web Server

– Step 6: Executing the application



Objectives
• Web applications

– File and Directory Structure

– Deployment Descriptor Elements

– WAR files

• The Web Container Model

– ServletContext

– Attributes, Scope, and Multithreading

– Request Dispatching

– Filters and Wrappers



Web Applications 

Overview

• A web application or webapp

– Is an application that is accessed via web browser over

a network such as the Internet or an intranet.

– Is also a computer software application that is coded in

a browser-supported language (such as HTML,

JavaScript, Java, etc.) and reliant on a common web

browser to render the application executable.

• Web applications are popular due to the ubiquity of

web browsers, and the convenience of using a web

browser as a client, sometimes called a thin client.



Web Applications 
File and Directory Structure 

Above structure is packaged into *.war file to deploy on Web Server



Web Applications 
File and Directory Structure

• A Place for Everything and Everything in Its Place.

– On Tomcat Server, it locates at CATALINA_HOME/webapps

– Execute: http://host:port/webappcontext/resourceIneed

• Construct the file and directory structure of a Web

Application that may contain:

– Static content,

– JSP pages,

– Servlet classes,

– The deployment descriptor,

– Tag libraries,

– JAR files and Java class files;

– and describe how to protect resource file from HTTP access.



Web Applications 
File and Directory Structure

• /WEB-INF/classes – for classes that exist as separate Java
classes (not packaged within JAR files). These might be
servlets or other support classes.

• /WEB-INF/lib – for JAR file. These can contain anything at
all – the main servlets for your application, supporting
classes that connect to databases – whatever.

• /WEB-INF itself is the home for an absolutely crucial file
called web.xml, the web deployment descriptor file.

• 2 special rules apply to files within the /WEB-INF
directory

– Direct client access should be disallowed with an HTTP 404 code

– The order of class loading the java classes in the /WEB-
INF/classes directory should be loaded before classes resident in
jar files in the /WEB-INF/lib directory



Web Applications 
The Deployment Descriptor

• The Web Deployment Descriptor file describes all of Web

components

• It is an XML file. Given that the name is web.xml.



Web Applications 
The Deployment Descriptor – web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee 
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<servlet>

<servlet-name>servlet name</servlet-name>

<servlet-class>[package.]classname</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>servlet name</servlet-name>

<url-pattern>/context Path/root</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>30</session-timeout>

</session-config>

<welcome-file-list>

<welcome-file>default page to show</welcome-file>

</welcome-file-list></web-app>



Web Applications 
The Deployment Descriptor – Example

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee 
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<servlet>

<servlet-name>HelloServlet</servlet-name>

<servlet-class>servlet.sample.HelloServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloServlet</servlet-name>

<url-pattern>/HelloServlet</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>30</session-timeout>

</session-config>

<welcome-file-list>

<welcome-file>HelloServlet</welcome-file>

</welcome-file-list></web-app>



Web Applications 
Packaging Your Web Application

• A WAR Is Not a JAR

– Although a WAR file can be produced in the same way as a JAR
file, and has the same underlying file format, it is different. The
most obvious difference is the file extension naming convention:
.jar for Java ARchive, and .war for Web (Application) ARchive.

– WARs are packaged for a different purpose: to make it as easy as
possible for a web container to deploy an application.

• A WAR file

– Several web containers have automatic deployment mechanisms.

– The server recommended for this course – Tomcat 6.0.26 – has a
“webapps” directory. Place a WAR file in this directory, and
Tomcat (by default) will un-jar the contents into the file system
under the webapps directory. It provides a context root directory
with the same name as the WAR file (but without the .war
extension) – then makes the application available for use.



Web Applications 
Manual Deploying

• Setup the environment for JAVA
and TOMCAT

– Win XP: click Properties of “My
Computer”, Choose Advanced,
Click “Environment Variables”, to
set following environment variables

– Win Vista and Win 7: click
Properties of Computer, choose
“Advanced System Setting”,
choose Advanced, Click
“Environment Variables”, to set
following environment variables

• Go to the Installed_Tomcat\bin
directory, click startup.bat or
tomcat6w.exe



Web Applications 
Manual Deploying

• Testing on web browser
• Delete the war file and the directory to

undeploy application
• Press Ctrl + C to stop server



Web Applications 

Web Application Development Process

• Requirement tools: NetBeans 6.9.1

• Step 1: Creating a Web application project

• Step 2: Creating the Servlets

• Step 3: Writing the code for Servlet & Compile

• Step 4: Package Servlet into WAR file

• Step 5: Deploying to a Web Server

• Step 6: Executing the application



The Web Container Model 
The Servlet Container

• Is a compiler, executable program.

• Is the intermediary between the Web server and the servlets in the
container.

• Loads, initializes, and executes the servlets.
– When a request arrives, the container maps the request to a servlet, translates the

request, and then passes the request to the servlet.

– The servlet processes the request and produces a response.

– The container translates the response into the network format, then sends the
response back to the Web server.

• Is designed to perform well while serving large numbers of requests.

• Can hold any number of active servlets, filters, and listeners.

• Both the container and the objects in the container are multithreaded.
– The container creates and manages threads as necessary to handle incoming

requests.

– The container handles multiple requests concurrently, and more than one thread
may enter an object at a time.

– Therefore, each object within a container must be threadsafe.



The Web Container Model 
The Servlet Container

• Fortunately,
– We are a web component developer, not a web container

developer.

– So we can take for granted much of what is built into the

web container.

• We are a consumer of what the web container

provides, and

• We have to understand the infrastructure only

insofar as it affects our own business applications



The Web Container Model 
The ServletContext

• A servlet container can manage any number of distinct applications.
– An application consists of any number of servlets, filters, listeners, and static

Web pages.

– A set of components working together is a Web application.

• The container uses a context to
– Group related components. The container loads the objects within a context as a

group, and objects within the same context can easily share data.

– Provide a set of services for the web application to work with the container

• Each context usually corresponds to a distinct Web application.

→ A servlet context is considered as a memory segment that
– Collects all method that is used for particular Web application in server

side and they support to interact with Servlet container

– Stores some object in server side that all web’s component can access



The Web Container Model 
The ServletContext – Example

• For example, the directory structure below describes two

contexts, one named orders and one named catalog. The

catalog context contains a static HTML page, intro.html.

webapps

\orders

\WEB-INF

web.xml

\catalog

intro.html

\WEB-INF

web.xml



The Web Container Model 
The ServletContext – Initialization Parameters
• Providing some fundamental information available to all

the dynamic resources (servlets, JSP) within the web
application is allowed by
– Using servlet initialization parameters in the deployment

descriptor with the getInitParameter(String parName) method to
provide initialization information for servlets

– The servlet initialization parameters is accessible only from its
containing servlet

• Setting up the Deployment Descriptor

<web-app>

<context-param>

<param-name>parName</param-name>

<param-value>parValue</param-value

</context-param>

…

</web-app>



The Web Container Model 
The ServletContext – Initialization Parameters
• Example

– Building the web application have the counter function that

allows the web site can account the number of accessed users

– The application’s GUI should be same as



The Web Container Model 
The ServletContext – Initialization Parameters

• Writing Code to Retrieve ServletContext Initialization Parameters

ServletContext sc = getServletContext();

String var = sc.getInitParameter(“parName");



The Web Container Model 
The ServletContext – Initialization Parameters



The Web Container Model 
The ServletContext – Initialization Parameters



The Web Container Model 
The ServletContext – Initialization Parameters



The Web Container Model 
The ServletContext – Initialization Parameters



The Web Container Model 
The ServletConfig interface

• To pass as an argument during initialization, the servlet container uses an object of
ServletConfig interface

• Configuring a servlet before processing requested data

• Retrieve servlet initialization parameters

Methods Descriptions

getServletName

- public String getServletName()

- Searches the configuration information and retrieves name of 

the servlet instance

- String servletName = getServletName();

getInitParameter

- public String getInitParameter (String name)

- Retrieves the value of the initialisation parameter

- Returns null if the specified parameter does not exist

- String password = getInitParameter(”password”);

getServletContext

- public ServletContext getServletContext()

- returns a ServletContext object used by the servlet to interact 

with its container.

- ServletContext ctx = getServletContext();



The Web Container Model 
The ServletConfig – Initialization Parameters

• Setting up the Deployment Descriptor

<servlet>

<servlet-name>servletName</servlet-name>

<servlet-class>servletClass</servlet-class>

<init-param>

<param-name>parName</param-name>

<param-value>parValue</param-value>

</init-param>

</servlet>

• Writing Code to Retrieve ServletConfig Initialization Parameters

ServletConfig sc = getServletConfig();

String name = sc.getInitParameter(“parName");



The Web Container Model 

The ServletConfig interface – Example



The Web Container Model 

The ServletConfig interface – Example



The Web Container Model 

The ServletConfig interface – Example



The Web Container Model 

The ServletConfig interface – Example



The Web Container Model 

The ServletConfig interface – Example



The Web Container Model 
Attributes, Scope, and Multithreading

• Problems:

– How to remember an user that has already logged into the

particular website?

– How to store a collection of selected products online when

the user has already chosen while the HTTP is a stateless

protocol? Besides, they can search and choose other products

• Solutions:

– Store data or object as long as user still browses the web site

– Attributes is a qualified candidate: Attributes are a collection

of <attribute-name, value> pairs that is stored in a scope

(segment) in server

– Life cycle of them is long as its defined scope.



The Web Container Model 
Attributes, Scope, and Multithreading

• Parameters vs. Attributes

– Parameters allow information to flow into a web application
(passed to web application via form or query string). They exist
in request scope

– Attributes are more of a means of handling information within the
web application. They can be shared or accessed within their
defined scope

• The web container uses attributes as a place to

– Provide information to interested code: the way supplement the
standard APIs that yield information about the web container

– Hang on to information that your application, session, or even
request requires later.

• The developer can access the attribute value with
attribute’s name



The Web Container Model 
Attributes, Scope, and Multithreading

• Defines how long a attribute is available in its scope.

• There are 3 scopes
– Request Scope

• Lasts from the moment an HTTP request hits a servlet in the web
container to the moment the servlet is done with delivering the HTTP
response.

• javax.servlet.ServletRequest

– Session Scope
• Session scope comes into play from the point where a browser window

establishes/ open session contact with the web application up to the point
where that browser window is closed, session is closed, session is time
out, server is crashed.

• javax.servlet.http.HttpSession

• HttpSession session = request.getSession();

– Context (Application) Scope
• Is the longest-lived of the three scopes available to you.

• Exists until the web container is stopped.

• javax.servlet.ServletContext



The Web Container Model 

Attributes, Scope, and Multithreading
Methods Descriptions

getAttribute

- public Object getAttribute(String name)

- returns the value of the name attribute as Object

- Ex: String user = (String)servletContext.getAttribute(“USER”);

setAttribute

- public void setAttribute(String name, Object obj)

- Binds an object to a given attribute name in the scope

- Replace the attribute with new attribute, if the name specified is 

already used

- servletContext.setAttribute(“USER”, “Aptech”);

removeAttribute

- public void removeAttribute(String name)

- Removes the name attributes

- Ex: servletContext.removeAttribute(“USER”);

getAttributeNames

- public Enumeration getAttributeNames()

- Returns an Enumeration containing the name of available 

attributes. Returns an empty if no attributes exist.



The Web Container Model 

Attributes, Scope, and Multithreading

• Choosing Scopes

– Request Scope: attributes are required for a one-off

web page and aren’t part of a longer transaction

– Session Scope: attributes are part of a longer

transaction, or are spanned several request but they are

information unique to particular client

• Ex: username or account

– Context Scope: attributes can allow any web resource

to access (e.g. public variables in application)



The Web Container Model 

Attributes, Scope, and Multithreading
• Multithreading and Request Attributes

– request attributes are thread safe (because everything will only ever

be accessed by one thread and one thread alone)

• Multithreading and Session Attributes

– session attributes are officially not thread safe.

• Multithreading and Context Attributes

– context attributes are not thread safe

– You have two approaches to solve the multithreading dilemma:

• Set up servlet context attributes in the init() method of a servlet that loads

on the startup of the server, and at no other time. Thereafter, treat these

attributes as “read only”.

• If there are context attributes where you have no option but to update them

later, surround the updates with synchronization blocks.



The Web Container Model 
Need for using RequestDispatcher

MiddleServlet



The Web Container Model 
Need for using RequestDispatcher



The Web Container Model 
Need for using RequestDispatcher



The Web Container Model 
Request Dispatching

• Is a mechanism for controlling the flow of control
within the web resources in the web application

• The ServletRequest and ServletContext support the
getRequestDispacher(String path) method

– Returns RequestDispacher instance

– The path parameter can be a full path beginning at the context
root (“/”) – requirement with ServletContext

– The ServletContext offers the getNameDispatcher(String
name) method that requires providing the resource’s name to
want to execute (e.g. the name must match one of the <servlet-
name>)

• A RequestDispacher object

– Is created by the servlet container

– Redirect the client request to a particular Web page



The Web Container Model 
Using RequestDispatcher

Methods Descriptions

forward

- Redirect the output to another servlet

- Forward the request to another Servlet to process the client request.

- Ex: 

RequestDispatcher rd = request.getRequestDipatcher(“home.jsp”);

rd.forward(request, response);

include

- Include the content of another servlet into the current output stream

- Include the output of another Servlet to process the client request

- Ex

RequestDispatcher rd = request.getRequestDipatcher(“home.jsp”);

rd.include (request, response);



The Web Container Model 

Using RequestDispatcher – Example 



The Web Container Model 
Using RequestDispatcher – Example



The Web Container Model 
Using RequestDispatcher – Example

Change the RequestDispatch – forward method to include method



The Web Container Model 
Filter

• Are components that add functionality to the request and response
processing of a Web Application

• Is tool that acts as an interface or a passage between the client and the web
application, such as JSP and servlet in the server

• Are basically a set of steps through which request and response must pass
for required modifications

• Supports dynamic modification of requests and responses between
client and web applications.

• Categorized according to the services they provide to the web applications

• Resides in the web container along with the web applications

• Intercept the requests and response that flow between a client and a
Servlet/JSP.

• Dynamically access incoming requests from the user before the servlet
processes the request

• Access the outgoing response from the web resources before it reaches
the user

• Was introduced as a Web component in Java servlet specification version 2.3



The Web Container Model 

Filter
• Usage

– Authorize request

– Altering request headers and modify data

– Modify response headers and data

– Authenticating the user

– Comprising files

– Encrypting data

– Converting images

– Logging and auditing filters

– Filters that trigger resource access events



The Web Container Model 
Filter

• Benefits – Advantages
– Optimization of the time taken to send a response

– Compression of the content size before sending

– Optimization of the bandwidth

– Security

– Identify the type of request coming from the Web client, such as
HTTP and FTP, and invoke the Servlet that needs to process the
request.

– Retrieve the user information from the request parameters to
authenticate the user.

– Validate a client using Servlet filters before the client accesses the
Servlet.

– Identify the information about the MIME types and other header
contents of the request.

– Facilitate a Servlet to communicate with the external resources.

– Intercept responses and compress it before sending the response to
the client



The Web Container Model 

Filter Life Cycle
• Working of Filter

– The filter intercepts the request

from a user to the servlet

– The filter then provides

customized services

– The filter sends the serviced

response or request to the

appropriate destination

Instantiation 
and Loading

Initialization 
init()

doFilter()

destroy()

Unavailable



The Web Container Model 
Filter API

• Creates and handles the functionalities of a filter

• Contains three interfaces

– Filter Interface, FilterConfig Interface, FilterChain Interface

• Filter Interface

– Must be implemented to create a filter class extends javax.servlet.Filter

– An object performs filtering tasks on the request and the response

Methods Descriptions

init

- public void init(FilterConfig fg);

- Called by the servlet container to initialize the filter

- Called only once

- Must complete successfully before the filter is asked to do any filtering work

doFilter

- public void doFilter(ServletRequest req, ServletResponse res, FilterChain chain) 

throws IOException, ServletException

- Called by the container each time a request or response is processed

- Then examines the request/response headers & customizes them as per the requirements

- Passed the request/response through the FilterChain object to the next entity in the chain

destroy

- public void destroy();

- Called by the servlet container to inform the filter that its service is no more required

- Called only once. 



The Web Container Model 
Filter

• In Web Deployment Descriptor
<web-app>

….

<filter>

<filter-name>Name of Filters</filter-name>

<filter-class>implemented Filter Class</filter-class>

[<init-param>

<param-name>parameter name</param-name>

<param-value>value </param-value>

</init-param>]

</filter>

<filter-mapping>

<filter-name>FilterName</filter-name>

<url-pattern>/context</url-pattern>

</filter-mapping>

….

</web-app>



The Web Container Model 
Filter – Example

• Building the web application shows as the following GUI in sequence



The Web Container Model 
Filter – Example 



The Web Container Model 
Filter – Example 



The Web Container Model 
Filter – Example 

• Click Next Button



The Web Container Model 
Filter – Example

• Click Next Button

Fill your filter name

Fill/choose package 

name



The Web Container Model 
Filter – Example

• Click Edit Button to apply Filter the selected Servlet

• Otherwise, click Finish Button

Apply filter

Edit the Apply filter



The Web Container Model 
Filter – Example

Select the URL and

typing the URL

string, or Select the

Servlet and choose

the approximate

Servlet in combo

box



The Web Container Model 
Filter – Example



The Web Container Model 
Filter – Example



The Web Container Model 
Filter – Example



The Web Container Model 
Filter Chain

• There can be more than one filter between the user and the
endpoint – Invoke a series of filters

• A request or a response is passed through one filter to the next in
the filter chain. So each request and response has to be serviced by
each filter forming a filter chain

• If the Calling filter is last filter, will invoke web resource

• FilterChain Interface
– Provides an object through the web container

– The object invokes the next filter in a filter chain starting from the first filter from a
particular end. If the calling filter is the last filter in the chain, it will invoke the web
resource, such as JSP and servlet.

– Only implement doFilter() method.

– Forces the next filter in the chain to be invoked



The Web Container Model 
Filter Chain – Example 



The Web Container Model

Filter Chain – Example



The Web Container Model

Filter Chain – Example



The Web Container Model

Filter Chain – Example



The Web Container Model

Filter Chain – Example



The Web Container Model

Filter Chain – Example



The Web Container Model

Filter Chain – Example – Change pos



The Web Container Model

Filter Chain – Example



The Web Container Model

Why need a Wrapper Class



The Web Container Model

Why need a Wrapper Class



The Web Container Model

Why need a Wrapper Class



The Web Container Model
Wrapper Class

• To modify or intercept the request or response before they can reach their logical
destination, the required object can dynamically capture the request or response

• Wrapper class
– Creates the object to capture the request and response before they reach server and client

respectively

– The wrapper object generated by the filter implements the getWriter() and getOutputStream(),
which returns a stand-in-stream. The stand-in-stream is passed to the servlet through the wrapper
object

– The wrapper object captures the response through the stand-in-stream and sends it back to the
filter

Classes Descriptions

ServletRequestWrapper

- Provides a convenient implementation of the ServletRequest interface

- Can be sub-classed by developers wishing to send the request to a 

servlet

- To override request methods, one should wrap the request in an 

object that extends ServletRequestWrapper or 

HttpServletRequestWrapper

ServletResponseWrapper

- Provides a convenient implementation of the ServletResponse 

interface

- Can be sub classed by developers wishing to send the response from 

a servlet.



The Web Container Model

Wrapper Class – Altering Request

• Create filter class extends to
the ServletRequestWrapper
or
HttpServletRequestWrapper
class.

• The object captures the
HttpRequest object from the
client and sends it to the filers

• Through the objects filter
extends some services to the
request.



The Web Container Model

Wrapper Class – Altering Response

• Create filter class extends to the

ServletResponseWrapper or

HttpServletResponseWrapper

class.

• The object captures the

httpRequest object from the

client and sends it to the filers

• Through the objects filter extends

some services to the request.



The Web Container Model

Wrapper Class – Example



The Web Container Model

Wrapper Class – Example



The Web Container Model

Wrapper Class – Example

•Adding the MyPrinter class extends PrintWriter in FilterWrapper class



The Web Container Model

Wrapper Class – Example

•Modifying the ResponseWrapper class uses MyPrinter to output stream



The Web Container Model

Wrapper Class – Example



Summary

• Web Applications

• The Web Contain Model

Q&A



Next Lecture

• Sessions in Web Application

– Mechanism

– 4 Techniques

• Errors Handling in Servlets

– Reporting

– Logging


