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SUMMARY 

In an attempt to reduce the dependence on fossil fuels, a variety of research 

initiatives has focused on increasing the efficiency of conventional energy 

systems.  

One such approach is to use waste heat recovery to reclaim energy that is 

typically lost in the form of dissipative heat. An example of such reclamation is 

the use of waste heat recovery systems that take the low-temperature heat and 

deliver cooling in space-conditioning applications. In this work, an ejector-

based chiller driven by waste heat will be studied from the system to component 

to sub-component levels, with a specific focus on the ejector.  

The ejector is a passive device used to compress refrigerants in waste heat 

driven heat pumps without the use of high-grade electricity or wear-prone 

complex moving parts. With such ejectors, the electrical input for the overall 

system can be reduced or eliminated entirely under certain conditions, and 

package sizes can be significantly reduced, allowing for a cooling system that 

can operate in off-grid, mobile, or remote applications.  

The performance of this system, measured typically as a coefficient of 

performance, is primarily dependent on the performance of the ejector pump. 

This work uses analytical modeling techniques and makes suggestions for 

ejector performance improvement. Specifically, forcing the presence of two-

phase flow has been suggested as a potential tool for performance enhancement.  

This study determines the design parameters for the test system to obtain high 

COP, also the flexibility of the system to utilize the low-grade energy and get 

the best outcomes for a reliable ejector cooling system.  
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INTRODUCTION 

As worldwide electricity demand increases and stresses electricity grids to the 

point of collapse, energy-saving devices have assumed increasing importance 

for demand-side management.  

To reduce the use of high-grade electrical energy, waste heat recovery systems 

are increasingly considered for applications in air conditioning and 

refrigeration. The drawback of many waste heat recovery systems is the 

unfortunate combination of large components and low efficiencies, mostly due 

to the low waste heat temperatures used.  

The ejector-based chiller considered in this work mitigates these issues by 

offering a solution that is scalable and has operational and mechanical 

simplicity. It replaces a large and complex compressor component with an 

ejector pump and does so using a pure, non-toxic refrigerant with low global 

warming potential.  

It obviates the need for lubricating oils, maintenance, or expensive repairs, and 

allows for waste heat recovery in previously inaccessible applications, including 

the mobile and/or remote applications that are characteristic of waste heat 

recovery applications.  

The main component of the ejector cooling system is the ejector device itself. 

This work investigates the ejector on a fundamental level, exploring the nuances 

of flow inside the ejector in an effort to improve its efficiency and related 

performance of the ejector cooling system as a whole.  
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Motivation  

Ejector cooling systems have been developed and investigated for their 

reliability as straightforward devices that can generate refrigeration effect from 

widely available low-grade heat reservoirs.  

The performance coefficient (COP) of a simple ejector cooling system is 

usually poor, from 0.2 to 0.6. Nevertheless, this depends on the low-grade heat, 

surrounding, and evaporator temperatures, the performance coefficient also rely 

majorly on the ejector performance[1].  

Also, advancement of the ejector potentially is the highest to improve the 

coefficient of performance for the whole system. Sadly, deeply investigating of 

the ejector has been a big challenge due to the complicated flow behavior, to the 

point that various investigators have described ejector design as more of an 

artistic work than a scientific one. 

However, here in this paper, the ejector performance will be optimized to give 

reasonable performance parameters considering rational working conditions and 

to be a very promising solution for the automotive industry and a potential to be 

utilized instead of the conventional vapor compression cycles. 
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Ejector nomenclature 

 

 
Superscripts  Description 

* Critical mode 
‘ Isentropic state 
as after shock wave  
c exit of the ejector 
co backflow mode 

comp compressor 
cond condenser 
Conf  Configuration 
ej Ejector 
e evaporator 
exp Experimental  
fls Flash tank 
g Generator 
In Inlet 
m Mixed  
Mech Mechanical  
Num Numerical 
out outlet 
p primary inlet 
p1 Primary nozzle exit 
py primary flow at sec.flow choking 
s Secondary inlet 
sy secondary flow at choking 
sub sub-cooling 
sup Super heating 
t Throttle 
Pump nomenclature 
𝑸𝒑 𝒎𝟑 𝒔⁄  Flow rate  

p Pascal Pump pressure 
𝜼𝒑𝒖𝒎𝒑  Pump efficiency 

Pump power kW Power 
Heat exchanger nomenclature 
P kW Thermal power 
δt K temperature 

difference between 
outlet and inlet on 
one side  

k 𝑾 𝒎𝟐𝑲⁄  heat transfer 
coefficient  

LMTD K Log. Mean 
temperature 
difference 

T1 K Hot-side inlet Temp. 
T2 K Hot-side outlet Temp. 
T3 K Cold-side Inlet Temp. 
T4 K Cold-side Outlet Temp. 

 

  

Symbol  Unit Description 

A 𝒎𝟐 Area 
a 𝒎 𝒔⁄  Speed of sound 
AR  Area ratio between the 

constant area section 
and the primary nozzle 
throat 

COP  Coefficient Of 
Performance 

D m Diameter 
ERS  Ejector Refrigeration 

systems 
fls  Flash tank 
GWP  Global Warming 

Potential 
h 𝑱 𝒌𝒈⁄  Enthalpy  
m 𝒌𝒈 𝒔⁄  Mass flow rate 
M  Mach Number 
NXP  Nozzle Exit Position 
ODP  Ozone Depletion 

Potential 
p Pa Pressure 
Q W Thermal power 

Exchanged  
s 𝑱 𝒌𝒈⁄ . 𝑲 Specific entropy 
SoERS  Solar ERS 
T K Temperature 
V 𝒎 𝒔⁄  Velocity 
W W Power 
x  Vapor quality 
Greek symbols 
ε  Absolute error 
η  Isentropic efficiency  
ω  Entrainment ratio 
Φ  Efficiency due to 

friction loss 
ρ 𝒌𝒈 𝒎𝟑⁄  Density 
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1.1. EJECTOR COOLING SYSTEMS 

The ejector based cooling cycles are powered by the low-grade heat, that uses 

excess heat dissipated for refrigeration in automotive to decrease the demand on 

fossil fuels usage and instead utilizes solar energy for air conditioning: it’s 

required to cool down some zone when the sun shines.  

 

The concept of the ejector existed through the last 100 years. Because it can 

produce negative pressure and after building up the pressure through the 

subsonic diffuser, it’s a good potential to be used in the cooling systems 

especially when the low-grade heat is easily provided through some applications 

such as automotive, solar and, manufacturing and industrial facilities etc. [2]. 

 

Nevertheless, the environmentally friendly working fluids are capable of being 

utilized, that reduces ozone depletion and simply emphasize the environment-

friendly concept achieving major energy saving.  

 

The ejector based chillers offer a feasible opportunity to obtain energy savings 

and clean environment, simple structure, building, and operation with minimum 

maintenance.  

 

Nonetheless, there at the moment, there is no ejector cooling system for 

commercial usage in markets because of the low COPthermal, while good 

COPmechanical [2]. 

 

1.2. Ejector working principles and cycles Configuration 

 

The operating concept mainly depends on this potential of high-pressure 

conversion of the primary flow into movement or velocity energy via the motive 

nozzle. As shown in Fig. 1, the device consists of a main (primary or motive) 

nozzle that accelerates the highly pressurized working fluid.  

 

 

Because of the effect of the Venturi, the motive flow drives the induced flow at 

the secondary nozzle. In the mixture part both fluids merge, the pressure 
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increases due to a shockwave and then the mixture decelerates, also through the 

diffuser. 

 

 

 

 

The biggest benefits of ejector are, as was mentioned by Chen et al. (2013b) [3], 

the simple structure and fitting, doesn’t require much maintenance besides the 

recovery and usage of the low-grade energy. But, the off-design performance is 

not that great.  

 

There are three different probabilities of performance could occur regarding the 

back pressure "𝑝𝑐", as a result of the involved flows in the ejector (Pianthong et 

al., 2007) [4].  

 

Figure 1-Geometry and pressure evolution in ejector [4]. 

http://www.sciencedirect.com/science/article/pii/S0140700716303723#bib0045
http://www.sciencedirect.com/science/article/pii/S0140700716303723#bib0165
http://www.sciencedirect.com/science/article/pii/S0140700716303723#bib0165
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The critical pressure Pc* is usually explained as the back pressure that 

entrainment ratio (secondary to primary mass flow rate ratio) ω stays constant; 

Figure 2.  

 

 

When the back pressure is lower than Pc*, the secondary and primary flows are 

under choking effect; therefore, the mass flow rate is highest. That behavior 

usually is known as the critical point. Higher pressure than Pc*, there is no 

more chocking in the secondary nozzle, although the primary is choked yet, the 

Pc increases when the entrainment ratio decreases.  

 

When the Pc keeps getting higher, the primary nozzle then stops being choked 

therefore, the entrainment ratio reduces and at the end it’s possible for the flow 

to go in the opposite direction.  

 

 

It was mentioned in Huang and Chang [3], the critical back pressure increases 

also the primary pressure, however, the critical entrainment ratio decreases 

significantly.  

 

 

 

 

 

 

Figure 2-Operational modes of ejector [4]. 

http://www.sciencedirect.com/science/article/pii/S0140700716303723#bib0090
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1.3.  Ejector cooling classifications: 

  

Ejector 
Refrigeration 
System (ERS)

1. Single 
ejector 

refrigeration 
system (SERS)

2. Solar-
powered 
ejector 

refrigeration 
system (SoERS)

3. ERC without 
a pump

4. Combined 
ejector-

absorption 
refrigeration 
syste (EAbRS)5. Combined 

ejector-
adsorption 
refrigeratio 

sytem (EAdRS)

6. Combined 
compression-

ejector 
refrigeration 

system

7. Multi-
components 

ejector 
refrigeration 

system (MERS)

8. Transcritical 
ejector 

refrigeration 
system (TERS)

Figure 3-Ejector classification [5] 
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The ejector usually categorized either by the position of the nozzle, design of 

nozzle or the working phases, as was shown in Table1. Giorgio Besagni [5]. 

 

Corresponding to the investigated works by the researchers, there are about 

seven configurations we’re interested in reviewing, besides the traditional 

reversed Rankine cycle[6]. 

 

Principle configurations in Figures. 4 to 9. The majority of other cycle 

topologies can be combined with them. 

 
 

Figure 4-Vapour compression cycle (Conf. 0). [4] 

Table 1 Ejector types and classifications [5] 

http://www.sciencedirect.com/science/article/pii/S1364032115009223
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The classic vapor compression cycle consists of a compressor to raise the 

pressure, a condenser to liquefy the hot high-pressure gas, expansion valve to 

drop the pressure and the evaporator to absorb the heat from the cooled space. 

Topology no. 1a, Figure 5, can be redesigned by exchanging the ejector and 

compressor to get configuration 1b [7]. configuration 2a Yu et al. [7], Figure.6, 

can be changed by exchanging the jet-pump (ejector that uses the liquid as a 

motive fluid) with an ejector, these two topologies use primary fluid from point 

7, to get configuration 2b, Zeng et al.  

 

 

The 3rd cycle layout in figure 7, is dual-phase uses a jet pump (high-pressure 

liquid is the motive fluid) for expansion [8, 9]. 

 

 

 

 

The researchers of this topic suggested installing an extra pump at the discharge 

of the condenser heat exchanger like the most general configuration of the jet 

pump cycle.  

Figure 5 –Ejector cycle with compressor (1a). [4] Figure 6 – Multi-stage compression cycle (2a). [4] 

Figure 7 – Jet pump cycle. [4] 



Technical University of Liberec                                                  Design of a test ejector cooling system 

 

7 
 

 

Nevertheless, it was clear in most cases that the pump isn’t needed [4]. 

 

Layout 4a in figure 8 is a complex cycle layout which makes it easy to use 

various working fluids in both the low and high-pressure cycles despite using 

only one working fluid in this investigation.  

 

 

This sort of arrangement is normally utilized for cooling at low temperature 

utilizing working fluids in an alternate scope of temperatures, be that as it may; 

it has been incorporated into this investigation to demonstrate its potential 

improving performance. 

 

While working fluid is utilized, the heat exchanger can be supplanted by a flash 

tank where the gas and liquid are isolated, utilizing the gas as the secondary 

stream of the ejector and the fluid is expanding in the valve to the evaporator 

[4]. 

 

Figure 9 – Booster with economizer (5a). [4] 

Figure 8 – Cascade cycle (4a). [4] 
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Layout.5a is an ejector boosting cycle with an economizer that is dedicated to 

pumping up the subcooling (cooling the liquid). The vapor generated at the 

economizer discharge is utilized at the primary intake of the ejector. 

 

A similar typology of the cycle was proposed by Yu et al. (2008)[7] for using a 

mixture of refrigerants with a different boiling temperature range, this cycle is a 

so-called auto-cascade cycle. A phase separator is placed after the condenser in 

order to split the mixture of refrigerants. 
 

 

In recent years, coupled Rankine and So ERC systems have been proposed, and 

they can be energy-efficient, reliable and flexible in operation. However, efforts 

are needed to optimize these cycles and for developing model sable to consider 

transient phenomena in every component of the cycle [5].  

 

Table 2 provides a general overview of solar-driven ERS performance and 

operating conditions. Another proposal, different from the previous ones and 

not reported above, is the coupled photovoltaic-heat pump systems for water 

heating. This system was proposed for and industry application. 

 

The system may suffer from control issues (i.e., difficulty of maintaining the 

vacuum required by the low evaporation temperature) and further studies are 

required.  
 

The numbers shown here in the table indicates to conditions range regarding every study.  

 

Table 2 Conditions and performance of operation (T) theoretical and (E) experimental study [4]. 
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1.4. Ejector cooling system without a pump 

 

The pump does not represent a major increase in investment or power usage 

(i.e., in Pridasawas W, Lundqvist P. [10] the pump demand of electricity 

consumption is about 0.18% of the received energy from the sun [5]. But, the 

pump demands extra maintenance than the rest of components due to being the 

only device with moving parts in the ERS. Therefore, to eliminate the pump, 

various ways were invented:  

 

 Gravitational-rotational ejector cooling cycle. 

 Bi-ejector cooling cycle. 

 Ejector cooling system with thermal pumping effect. 

 Heat pipe-ejector cooling cycle. 

 

Through these methods, the ejector cooling cycles obtain additional advantages, 

like the expected probability of prolonged lifespan requiring minimum 

maintenance, great reliability and zero moving parts. 

 

Therefore, a lot of research and development engineers have tried to find 

different ways to avoid those disadvantages. 
 

 

1.4.1. Gravitational and rotational ejector cooling system 

 
The configuration of a gravitational ejector cooling system is shown in Figure 

10 Kasperski suggested a gravitational ejector [7].  

 

Figure 10 –Gravitational ERS. [5] 

http://refhub.elsevier.com/S1364-0321(15)00922-3/sbref182


Technical University of Liberec                                                  Design of a test ejector cooling system 

 

10 
 

 

Regarding this layout, the heat exchangers supposed to be positioned on 

different heights, resulting in the pressure differences required among them. 

 

The highest pressure usually in the vapor generator and the least pressure in the 

evaporator. The self-regulation complicated mechanisms are in each heat 

exchangers condenser, generator, and evaporator. 

 

The vertical differences requirement in heights is the major drawback of the 

system (it depends on temperature differences and working fluid) and pipes 

total length (that results in heat loss and friction loss). 

 

At Tg (generator temp.) = 80 °C, Te (evaporator temp.) = 15 °C and Tcond 

(condenser temp.) = 35 °C, the COP (coefficient of performance) is 0.16. The 

concept of the gravitational ejector was developed by the same researcher to a 

rotational ejector Fig. 11, which decreases the total bulk of the gravitational 

system and the refrigerant (roughly1000 revolutions per minute) [5]. 

 

It has quite similar performance as the gravitational ejector: COP = 0.16 (Tg = 

90 °C, Te=15 °C, Tcond=35 °C). A solar-powered ejector system was 

investigated built on the natural convection by Nguyen et al.: liquid circulation 

is driven by gravity from the condenser to the generator (system height exceeds 

7.5m).  

 

The proposed cycle for HVAC usage uses water as working fluid (the 

refrigerant). In the winter season, this system is able to be used for heating and 

was assessed and built in an office building in the UK.  

Figure 11–Liquid working fluids Levels in Gravitational (a) and Rotational-Gravitational (b) Ejector cooling systems [7]. 
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The refrigeration effect of the prototype model was about 7 kW and reached a 

COP of 0.3. The payback time for the investment was 33 years [5]. 

 

Besides to the economic concerns, this system contains different critical points, 

especially, the huge thermal inertia, that slow down the starting and shut-down 

processes. Also, the usage of the extra burner is needed through an off-design 

operation for more heating as well as to eliminate thermal transients. 
 

1.4.2. Bi-Ejector cooling System 
 

In the bi-ejector cooling system, an extra ejector, instead of the pump, pumps 

the condensed liquid to the generator. Hence, the ejector is a vapor/liquid 

ejector. The configuration of a bi-ejector cooling system is presented in Fig. 12.  

 

In case of ideal operation, this system does not need electricity, that’s why it’s 

more attractive. Shen et al. did numerical studies for this layout, and the results 

obtained that the cycle COP is majorly affected by ω for the tested working 

fluids (R123, R134a, R502, and R717, water, etc.) [5].  

 

The highest COP obtained was 0.26 with R717. But, Wang and Shen analyzed a 

solar version using R123. The results clarified that increasing generator 

temperature ω of the two ejectors results in different behaviors: one increases 

and the other decreases. 

 

 

 

Figure 12 – Bi-ejector cooling system without pump by Wang and Shen (2009) [5]. 
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Hence, the overall optimum thermal efficiency for this cycle is 0.13 (Tg = 105 

°C, Te = 10 °C, Tcond= 35 °C). In case of increasing Tc, the ω of both ejectors 

and the whole system efficiency will be decreased [5]. 

 

 

1.4.3.  Ejector cooling system using thermal pumping effect 

 

Ejector cooling system using thermal pumping effect may be workless-

generator-feeding or multi-function generator. 

 

Huang et al. proposed a multifunction generator: the system contains one more 

generator, both of them composed by a boiler and an evacuation chamber. The 

liquid is heated by the boiler, and the cooling effect is provided by the 

evacuation chamber. 

 

The system consists of many components, that results in a usage of thermal 

energy. The experiment results reported COP = 0.22 (Tg = 90 °C, Te = 8.2 °C, 

Tcond = 32.4 °C), regardless the extra heat requirements for the multi-function 

generator operation. Considering the extra heat requirements, the overall COP is 

decreased to be 0.19. 

 

To change R141b, Wang et al. investigated the ejector system using R365 MFC 

(Mixed Flow Cascaded). It resulted in a conclusion R365 MFC can be used 

instead of R141b keeping the performance of the system. 

 

At Tg = 90 °C, COP ejector = 0.182–0.371, the total COP = 0.137 to 0.298, and 

cooling capacity= 0.56 kW to 1.20 kW for Te = 6.7 to 21.3 °C. Sri Sastra et al. 

introduced a workless-generator-feeding, using R141b, without a pump [5]. 

 

 

1.4.4. Heat pipe-ejector cooling system 

 

The combination of an ejector with the heat pipe will result in the high-

performance compact system, without the need of the work of pump. Solar 

energy or hybrid sources can be utilized and so decrease electricity demand and 

also fossil fuel usage. 
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The elementary cycle of the heat pipe-ejector cooling system appears in Fig. 13. 

The framework comprises a heat pipe, ejector, evaporator and thermostatic 

expansion valve. The low grad energy is added to in the generator segment. At 

that point, the refrigerant dissipates and courses through the motive nozzle of 

the ejector. 

 

Consequently, it expands and decreases the evaporator pressure. In this way, the 

cooling cycle can be closed. At the condenser, a portion of the refrigerant back 

to the generator by the wicked activity, while the rest was expanded to the 

evaporator through the expansion valve. 

 

Not at all like other reversed Rankine cycle, which is driven by mainly electric 

power generated by huge plants, the heat pipe-ejector cooling systems do not 

need any electric power, Ziapour et al. investigated an energy and exergy 

examination in light of the 1st and 2nd laws of thermodynamics [5].  

The results of the simulation were analyzed with accessible experimental data 

for ejector cooling system. The COP of methanol was greater than that of the 

rest of fluids, approximately 0.7. In general, COP~0.5 is possible utilizing low-

grade thermal energy working parameters [5].  

 

1.4.5. Ejector-absorption combined cooling cycle 

 

Absorption cycles are able to utilize low-grade thermal energy, i.e. the Sun 

power, waste heat or the fuel burning exhaust. Nevertheless, due to its 

complicated cycle and poor performance, vapor compression cycles are more 

attractive in this case.  

 

Figure 13 – Heat Pipe - Ejector cooling system configuration [7]. 
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Integrating the conventional absorption system to ejector is one of the 

impressive solutions. The suitable system building is able to enhance the cycle 

COP nearly as a multi-effect absorption chiller.  

 

Nevertheless, because of the simple construction of the ejector/absorption 

cooling chiller, its initial price is relatively cheaper than other traditional 

efficient absorption chillers [11]. Lately, Sozen et al. suggested a solar-powered 

ejector- absorption cycle (shown in Fig. 14) utilizes ammonia-water refrigerant 

with Turkish ambient parameters. 

 

 

The ejector was positioned at the inlet of the absorber that recovered the 

pressure from evaporator with ease. Regarding results out of this study, with the 

ejector usage, there was about 20% of COP increase [7]. 

 

Wang et al. analyzed a combination of ejector/absorption cooling cycle and 

power using ammonia-water as a working fluid. This system in Figure.15 

composed of the ejector-absorption cooling cycle with Rankine cycle and can 

make a cooling effect and power output at the same time. 

 

Figure 14 –Ejector-Solar Absorption Combined Refrigeration Cycle [7]. 
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This consolidated cycle presents an ejector between the condenser and the 

rectifier and gives a positive change in performance without extraordinary 

complications in the cycle.  

 

 

The correlations of the parametric outcomes among a comparative joined cycle 

without ejector and this cycle demonstrated that cooling capacity raised from 

149 kW to 250 kW at -8°C evaporator and generator temperature of 87°C [7]. 

 

Keeping in mind the end goal to influence adequate utilization of high-quality 

heat with a basic structure cooling cycle, Hong et al. suggested a novel ejector-

absorption cooling cycle (appeared in Fig. 16). 

 

 

At the point when the temperature of the high-temperature reservoir is 

sufficiently high, the system would function as a dual cycle. Both of the 

generators were utilized as a part of the cycle, with the goal that the pressure of 

the high-pressure generator and that of the low-pressure generator could be 

enhanced to get the highest performance for any required operating parameters. 

 

Figure 15 –Ejector-Absorption Refrigeration combined with Power Cycle [7]. 
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The investigation outcomes demonstrated that cycle COP was 30% greater than 

that of the regular absorption cooling system [7].  

 

Notwithstanding, no testing results were accessible. Conceptual and test 

investigation of solar based ejector absorption cycle was investigated by 

Abdulateef et al [7]. 

 

The impacts of the working parameters on the COP and the refrigeration limit 

were examined. A numerical model was produced for outline and performance 

assessment of the ejector cooling systems. 

 

 

 

1.5. Summary of improvement methods 

 

Ejector cooling systems excluding the usage of a pump are very attractive 

because of the potential for energy consumption reduction.  

 

The suggested systems are attractive, however with low performances and the 

large-scale work and modeling techniques suffer from a lack of experimental 

Figure 16 – Ejector-Absorption Cycle [7]. 
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investigation. Especially the gravitational and the ejector cooling system with 

thermal pumping effect was studied experimentally. 

 

Solar ejector cooling system natural convection based have a cost payback time 

of 33 years and current criticality, especially the huge thermal inertia, that 

impacts the starting and shutting down characteristics.  

 

 

Furthermore, the usage of an extra burner is needed through off-design working 

for more heating and to avoid thermal transient. Between the various 

configurations, the rotational or gravitational cycle is attractive and it’s potential 

to be used in many commercial applications (i.e. food storage, air-conditioning, 

etc.). 

 

Though it’s some disadvantages to be noticed, as the problematic studies while 

performing experiments. 

 

Nevertheless, it must be noticed that the rotational system requires a motorized 

rotor powered by electric energy. Hence, this configuration works without the 

pump, though requires electric power. 

 

The heat pipe-ejector system seems to be promising: the performance is 

expected to be close to the absorption ejector system, however in heat pipe-

ejector system cost less, also doesn’t need a lot of maintenance, smaller and 

without moving components. Lamentably, there is no available experimental 

analysis [7]. 
 

 

1.6. Thermodynamic design and layout of the cycle 

One of the targets of this study is to create a simple design of ejector cooling 

cycle, so this cycle will include a pump and ejector and will exclude the 

compressor as in figure 17 & 18 to decrease the dependence on the high-grade 

energy, also to decrease the maintenance and running costs. This cycle has to be 

designed to be used for already working systems. Environmentally friendly and 

safer operation. As efficient as possible. 
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Figure 17-Ejector cooling cycle 

In figure 17 the working fluid will go through the evaporator and then through 

the ejector together with the fluid that comes from the generator, will mix and 

go to reject heat through the condenser and then split again.  

 

 

 

 

 

 

 

 

 

 

 

Figure 18-Ejector cooling P-h diagram  
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The first part in figure 18 (high-pressure) will go to complete the generator 

cycle by increasing the pressure using a pump (4-5) and then getting the heat 

from the generator (5-6) and go the ejector again (6-3). 

 

The second part (low-pressure) of the fluid will go through the expansion valve 

(4-1) and then to the evaporator to carry the heat from the conditioned space (1-

2) and then to the ejector (2-3) and so on. 

 

1.6.1. Working fluid and temperatures ranges selection 

 

In literature, there are a lot of refrigerants that can be used in this cycle i.e. 

134a, 1234yf, Ammonia, R744, R717, R123, R113, R141b, R142b, water, etc. 

Considering environmental impact, availability and technical characteristics, 

water was found to be very suitable for this environmentally friendly project. 

Also, water has very high critical pressure compared to other refrigerants 

(220.64 bar), which will allow using high pressures in the cycle avoiding any 

complexity from dealing with trans-critical cycles. 

 

Regarding the temperature ranges, for the generator temperature depends on the 

automotive exhaust temperature which varies within the range of 300-600 

°C.[12] For the condenser, the higher the more suitable to different weather 

conditions, from a practical point of view the average is about 40°C.  

 

But for the evaporator, the lower it gets, the lower COP we obtain, also the 

temperature difference needs to be significant to have good heat transfer, so to 

achieve reasonable results the evaporator range can be from 5-10 °C. 
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2. Models 

2.1. A mathematical model of the ejector 

Motive flow in the nozzle and suction chamber 

Figure 19 shows the critical sections through the ejector which is needed for 

calculations. 

 

 

 

Considering intake total pressure, Pp, and temperature, Tp, the mass flow rate of 

primary flow down the nozzle, mp, is obtained by the isentropic flow equation 

[3] 

 

𝑚𝑃 =  
𝑃𝑃𝐴𝑡

√𝑇𝑃
× √𝛾

𝑅
(

2

𝛾+1
)

(𝛾+1)/(𝛾−1)

× √𝜂𝑃     

 

Where ηp is the isentropic efficiency of the nozzle. Utilizing conservation of 

energy-mass, the fluid mechanic's equations for isentropic flow between the 

Mach number at the nozzle exit, Mp1, the exit cross-sectional area, Ap1, and the 

pressure at the exit, Pp1, is obtained by 

 

(
𝐴𝑃1

𝐴𝑡
)

2
=

1

𝑀𝑃1
2 [

2

𝛾+1
(1 +

𝛾−1

2
𝑀𝑃1

2 )]
(𝛾+1)/(𝛾−1)

   

 

𝑃𝑃

𝑃𝑃1
= (1 +

𝛾−1

2
𝑀𝑃1

2 )
𝛾/(𝛾−1)

    

 

 

Because the motive flow jets out without being mixed with the secondary flow, 

the primary flow from sections 1-1 to y-y is simplified utilizing isentropic 

[1] 

[2] 

[3] 

Figure 19 – Geometry and sections in ejector [3]. 
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equations, and the Mach number, Mpy, of the motive flow at the y-y section is 

given by 

𝑃𝑃𝑦

𝑃𝑃1
=

(1+
𝛾−1

2
𝑀𝑃1

2 )
𝛾/(𝛾−1)

(1+
𝛾−1

2
𝑀𝑃𝑦

2 )
𝛾/(𝛾−1)  

 

Also the cross-section area of the motive flow at the y-y section, Apy, can be 

obtained by: 

 

𝐴𝑃𝑦

𝐴𝑃1
=

(𝜂𝑃𝑦 𝑀𝑃𝑦⁄ )[(2 (𝛾+1)⁄ )(1+((𝛾−1) 2⁄ )𝑀𝑃𝑦
2 )]

(𝛾+1)/(2(𝛾−1))

(1 𝑀𝑃1⁄ )[(2 (𝛾+1)⁄ )(1+((𝛾−1) 2⁄ )𝑀𝑃1
2 )]

(𝛾+1)/(2(𝛾−1))
  

 

The isentropic efficiency, ηp, is considered for the primary flow losses from 

sections 1-1 to y-y 

 

 
𝑇𝑃

𝑇𝑃𝑦
= 1 +

𝛾 − 1

2
𝑀𝑃𝑦

2  

 

 

Induced flow from the inlet to section y-y (mixing process begins just after 

this section) 

 

Critical point [3] 

 

Regarding the operation of the critical point, it is considered that the secondary 

flow is chocking at section y-y. For this case, these equations can be used: 

 

𝑀𝑠𝑦 = 1,  

 

𝑃𝑠𝑦 = 𝑃𝑠𝑦
∗ ,  

 

Also for the total pressure Ps, P*sy is calculated by 

 

𝑃𝑠𝑦
∗ = 𝑃𝑠 (1 +

𝛾−1

2
𝑀𝑠𝑦

2 )
−𝛾/(𝛾−1)

  

 

Regarding the total pressure, Ps, and temperature, Ts, hs is the isentropic 

efficiency for the secondary flow, the mass flow rate of secondary flow through 

the nozzle, ms, is given at critical point working condition: 

 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 
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𝑚𝑠 =
𝑃𝑠𝐴𝑠𝑦

√𝑇𝑠
× √𝛾

𝑅
(

2

𝛾+1
)

(𝛾+1)/(𝛾−1)

√𝜂𝑠  

 

 

Sub-critical mode [3] 

 

For sub-critical mode operation, it is assumed that there is an effective area 

where the velocity of the induced flow is the highest (but lowers than the speed 

of sound in this case). As such, the following equations are valid: 

 

𝑀𝑠𝑦 < 1  

 

𝑃𝑠𝑦 > 𝑃𝑠𝑦
∗   

 

Utilizing conservation law of energy and mass, also isentropic equations, the 

following equations are given: 

 

𝑇𝑠𝑦

𝑇𝑠
= (

𝑃𝑠𝑦

𝑃𝑠
)

(𝛾−1) 𝛾⁄

 

 

𝑃𝑠𝑦𝑣𝑠𝑦 = 𝑅𝑇𝑠𝑦 

 

𝑉𝑠𝑦 = √2𝐶𝑃(𝑇𝑠 − 𝑇𝑠𝑦) 

 

𝑚𝑠 =
𝑉𝑠𝑦𝐴𝑠𝑦

𝑣𝑠𝑦
√𝜂𝑠 

Where ηs is the isentropic efficiency coefficient of the induced nozzle. The area 

of section y-y is A2 where 

𝐴𝑝𝑦 + 𝐴𝑠𝑦 = 𝐴2  

 

Apy and Asy are the areas for motive and secondary flow, accordingly [3]. 

 

 

Mixed flow at the m-m section (fluids are mixed), shock upstream [3] 

Motive and secondary fluids start to form a mixture after section y-y. Utilizing 

the energy-momentum conservation between sections y-y and m-m, the 

relations include 

 

𝜓𝑚(𝑚𝑝𝑉𝑃𝑦 + 𝑚𝑠𝑉𝑠𝑦) = (𝑚𝑃 + 𝑚𝑠)𝑉𝑚  

  

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[12] 

[11] 

[10] 
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𝑚𝑃 (𝐶𝑃𝑇𝑃𝑦 +
𝑉𝑃𝑦

2

2
) + 𝑚𝑠 (𝐶𝑃𝑇𝑠𝑦 +

𝑉𝑠𝑦
2

2
) = (𝑚𝑃 + 𝑚𝑠) (𝐶𝑃𝑇𝑚 +

𝑉𝑚
2

2
)  

 

Where Vm is the velocity of the mixture and ψm is the coefficient representing 

for the frictional losses (Aphornratana and Eames; Huang et al.). Vpy and Vsy 

are the gas velocities of motive and secondary flows at section y-y and can be 

calculated as 

 

𝑉𝑃𝑦 = 𝑀𝑃𝑦𝑎𝑃𝑦  

 

𝑎𝑃𝑦 = √𝛾𝑅𝑇𝑃𝑦  

 

The Mach number of the mixture can be calculated utilizing these equations: 

 

𝑀𝑚 =
𝑉𝑚

𝑎𝑚
  

 

𝑎𝑚 = √𝛾𝑅𝑇𝑚  

 

Mixed flow through the shock from m-m to 2-2 [3] 

A normal shock is set to exist at section N-N. Assuming that the mixed flow 

after the shock undergoes an isentropic process, the mixed flow between 

sections m-m and 2-2 inside the constant area section has a uniform pressure, 

P2. Therefore, the gas dynamic relations are 

 
𝑃2

𝑃𝑚
= 1 +

2𝛾

𝛾+1
(𝑀𝑚

2 − 1)  

 

𝑀2
2 =

1+
𝛾−1

2
𝑀𝑚

2

𝛾𝑀𝑚
2 −

𝛾−1

2

  

 

The Mixture through the diffuser  

The pressure recovery process of the mixed flow is obtained through going in 

the subsonic diffuser, considering isentropic process: 

 

𝑃𝑐

𝑃2
= (1 +

𝛾−1

2
𝑀2

2)
𝛾/(𝛾−1)

  

 

 

 

 

 

[19] 

[22] 

[23] 

[24] 

[25] 

[26] 

[21] 

[20] 
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Procedure  

For a given nozzle throat diameter dt (or area of nozzle throat At) in figure 19, 

nozzle exit diameter d1 (or area of nozzle exit A1), and constant area section 

diameter d2 (or area of constant area section A2), the performance of an ejector 

is characterized by the total pressure and temperature at the primary nozzle inlet 

(Pp, Tp), and the total pressure and temperature (Ps, Ts) at the suction chamber 

inlet [3].  

 

A critical step is to calculate the value of P*c, then gives a back pressure value 

Pc. If Pc is lower than P*c, the ejector is at critical operation. Otherwise, the 

ejector is at sub-critical operation.  

 

The output of the analysis includes the primary mass flow rate mp, the 

secondary mass flow rate ms and the entrainment ratio ɷ. In the present model, 

all the default coefficients are taken from Huang et al. (1999).  

 

The coefficients accounting for the losses in the primary flow nozzle and from 

the exit of the nozzle to the section y-y are taken as ηp = 0.95 and ηpy = 0.88, 

respectively. The coefficient accounting for the loss in the induced flow is taken 

as ηs = 0.85.  

 

The coefficient accounting for the frictional loss in the mixing section, Ψm, is 

sensitive to the area ratio, A2/At, such that the empirical relation presented is 

used [3]: 

 

𝜓𝑚 = {

0.8, 𝑓𝑜𝑟  𝐴2  𝐴𝑡 > 8.3⁄              

0.82, 𝑓𝑜𝑟 6.9 ≤  𝐴2  𝐴𝑡 ≤ 8.3⁄

0.84, 𝑓𝑜𝑟  𝐴2  𝐴𝑡 < 6.9⁄             
  

 

As specified over, the greater part of the relations is comparable with the model 

suggested by Huang et al. (1999) in light of a similar 1D concept based on the 

mass, conversations equations of energy and momentum. 

 

However, the itemized methodology flowchart for the critical point is 

dissimilar. In Huang's model, Pc* the critical back pressure is a self-standing 

parameter (acquired from test information), and then the resolution strategy is 

iterated till the theoretical value of critical back pressure equalized to the 

experimental Pc* by varying A2. 

 

Hence, the entrainment ratio is obtained using the theoretical A2 or required A2 

(not the testing result A2). Their aim was to get the connection between the 

required A2 and critical back pressure and motive pressure [3].  

[27] 
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According to the current mock-up, the critical back pressure Pc* isn’t used as an 

independent variable, the entrainment ratio is obtained by experimental A2 

value, and Pc* is an outcome parameter.  

 

The major goal of this study is to expect the performance of ejector for the 

whole operating domain for same ejector design [3]. 

 

2.2. Thermodynamic cycle model 

Cooling load =  𝑚𝑠 × (ℎ2 − ℎ1) 

Gen. Power =  𝑚𝑝 × (ℎ6 − ℎ5) 

Cond. load =  𝑚𝑚 × (ℎ3 − ℎ4) 

𝑃𝑢𝑚𝑝 𝑝𝑜𝑤𝑒𝑟 = 𝑄 × 𝑝 × 100 η𝑝𝑢𝑚𝑝⁄  

COP =  
𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑜𝑎𝑑

𝑃𝑢𝑚𝑝 𝑝𝑜𝑤𝑒𝑟+𝐶𝑜𝑛𝑑.𝑙𝑜𝑎𝑑
  

COP𝑡ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =  
𝑇𝑒

𝑇𝑔 − 𝑇𝑒
 

 

 

2.3. Heat exchanger model 

The overall heat transfer coefficient calculations considering fouling resistance 

is given by [13]: 

1

UA
  =  

1

(ηhA)i
 +   Rf,i  +

1

Skw
+ Rf,o +   

1

(ηhA)o
  

P = m ·𝐶𝑝· δt (for sensible heat transfer)  

P = m · ∆h (for phase change) 

LMTD =
∆T1−∆T2

ln
∆T1

∆T2

  

∆T1 = T1–T4 

∆T2 = T2–T3 

 

 

 

[28] 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[36] 

[37] 

[38] 

[39] 

[35] 
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3. Results 

3.1. Ejector mathematical model results 

In this section, the performance behavior depending on different parameters is 

defined. 

The Effect of changing Primary, secondary pressures and temperatures on 

the performance curves will be elaborated in the following data. 

 

Changing Tp total for 3 different values of Pp. 

Table 3 Changing primary flow total temp. For 3 different primary pressures 

  
Tp  
K 375 390 405 420 435 450 465 480 495 510 525 

Pp = 
60 
bar 

Pc 
bar 

0.135
5 

0.135
7 

0.135
8 

0.135
9 

0.135
9 

0.135
9 

0.135
9 

0.135
9 

0.135
8 

0.135
7 

0.135
6 

ω 2.57 2.65 2.74 2.82 2.90 2.97 3.05 3.12 3.19 3.26 3.33 

Pp = 
80 
bar 

Pc 
bar 

0.156
6 

0.156
8 

0.156
9 

0.157
0 

0.157
1 

0.157
1 

0.157
2 

0.157
2 

0.157
2 

0.157
2 

0.157
2 

ω 1.94 1.98 2.02 2.05 2.09 2.12 2.16 2.19 2.23 2.26 2.29 

Pp = 
100 
bar 

Pc 
bar 

0.177
5 

0.177
7 

0.177
9 

0.178
0 

0.178
1 

0.178
2 

0.178
2 

0.178
3 

0.178
3 

0.178
3 

0.178
2 

ω 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.78 1.81 1.84 

 

 

As shown in figure 20, the back pressure didn’t have that significant change 

driven by the primary temperature change, while the entrainment ratio noticeably 

increased relatively with the primary temperature increase.  

In figure 21 when primary flow total pressure increases; the whole curve will be 

moved up showing an increase in the back pressure “𝑝𝑐”, also the entrainment will 

decrease because of the increase in the motive flow mass flow rate.  
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Figure 20-Back pressure and Entrainment ratio changing with primary temp. 
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Figure 22- Back pressure change with Entrainment ratio for 3 different primary pressure values and changing sec. pressure. 
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Changing Ps for 3 different Pp values 

Table 4 Changing Ps for 3 different Pp values. 

  Ps bar 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 

Pp = 60 bar 
Pc bar 0.37 0.53 0.69 0.85 1.01 1.17 1.34 1.5 1.66 1.8 1.99 

ω 12.8 19.2 25.6 32 38.4 44.8 51.2 57.5 63.9 70.3 76.7 

Pp = 80 bar 
Pc bar 0.382 0.540 0.7 0.861 1.022 1.184 1.346 1.509 1.67 1.83 2 

ω 9.59 14.39 19.18 23.98 28.77 33.57 38.36 43.16 48 52.8 57.5 

Pp = 100 

bar 

Pc bar 0.401 0.556 0.715 0.875 1.036 1.197 1.359 1.521 1.67 1.85 2.01 

ω 7.67 11.51 15.34 19.18 23.02 26.85 30.69 34.52 38.36 42.2 46 

 

                                   

Figure 21-Back pressure change with Entrainment ratio for 3 different primary pressure values and changing primary temp. 
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Figure 23- Back pressure change with Entrainment ratio for 3 different secondary pressure values and changing primary 
pressure. 

When Pp increases in Pc increases, also ω decreases because of the increase of the 

motive flow rate in figure 22 (a). As the secondary pressure raises, the entrainment 

ratio increases too figure 22 (b).   

 

Changing Pp for 3 different values of Ps 

Table 5 Changing Pp for 3 different values of Ps. 

  Pp bar 5 10 15 20 25 35 45 55 65 75 85 

Ps= 0.1 bar 

Pc bar 0.084 0.088 0.09 0.096 0.1 0.11 0.12 0.13 0.14 0.152 0.162 

ω 38.36 19.18 12.8 9.59 7.67 5.48 4.26 3.49 2.95 2.56 2.26 

Ps= 0.2 bar 

Pc bar 0.166 0.168 0.17 0.175 0.18 0.19 0.196 0.21 0.22 0.225 0.235 

ω 76.72 38.36 25.6 19.18 15.34 11 8.52 6.97 5.90 5.11 4.51 

Ps= 0.3 bar 

Pc bar 0.247 0.25 0.25 0.256 0.26 0.27 0.274 0.28 0.29 0.3 0.31 

ω 105.5 52.74 35.2 26.37 21.1 15.1 11.72 9.59 8.11 7.03 6.20 

 

 

   

 

When Pp increases in figure 23, Psy and Ppy increase which increases P2 and 

therefore Pc increases and ω increases because of boosting the induced flow rate.  

Also when the secondary pressure rises, the entrainment ratio steps up. Due to the 

secondary flow rate increase. 
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Figure 24-Sec. pressure change with Mach no. in the sub-critical mode. 

Sub-Critical mode iterations 

Table 6 Sub-Critical mode iterations 

Sub-Critical Mode 

Msy Psy Pa Tsy K Vsy m/s ν m3/kg ms kg/s 

0 1228 286.00 0.00 198.91 0.0000 

0.05 1225.961 285.88 31.40 198.83 0.0004 

0.1 1219.868 285.53 62.76 198.58 0.0007 

0.15 1209.796 284.94 94.04 198.17 0.0011 

0.2 1195.87 284.12 125.21 197.60 0.0015 

0.25 1178.258 283.08 156.22 196.88 0.0019 

0.3 1157.169 281.82 187.05 196.00 0.0022 

0.35 1132.85 280.33 217.65 194.97 0.0026 

0.4 1105.577 278.64 247.99 193.79 0.0030 

0.45 1075.65 276.75 278.04 192.48 0.0034 

0.5 1043.389 274.67 307.77 191.03 0.0038 

0.55 1009.125 272.40 337.14 189.45 0.0042 

0.6 973.1933 269.96 366.14 187.76 0.0046 

0.65 935.9296 267.36 394.74 185.95 0.0050 

0.7 897.6633 264.61 422.91 184.03 0.0054 

0.75 858.7123 261.71 450.63 182.02 0.0058 

0.8 819.3795 258.68 477.88 179.91 0.0062 

0.85 779.9486 255.54 504.65 177.72 0.0066 

0.9 740.6815 252.28 530.92 175.46 0.0071 

0.95 701.8167 248.93 556.68 173.13 0.0075 

1 663.567 245.49 581.92 170.74 0.0080 
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It describes the effect of the Mach no. at the start of the mixing section (Y-Y) Fig. 

19 on the secondary pressure at the same point. When the Mach no. increases the 

pressure decreases, which is logical according to the isentropic equations for ideal 

gases. 

 

3.2. Ejector mathematical model iterations 

From all iterations that were done, some of them were chosen to clarify the 

effect of changing the throttle diameter on the COP and the condenser 

temperature, to figure out the most suitable configuration for our requirements. 

 

Dt = 0.001 m, generator temp. = 300 C, Primary pressure = 80 bar 

Table 7(a)  Dt = 0.001 m, generator temp. = 300 C, Primary pressure = 80 bar iteration 

  Primary flow Secondary flow Mixed  Flow 

Flow Sec. throttle 1-1 Y-Y 1-1 Y-Y m-m 2-2 C-C 

D (m) 0.001       0.045   0.047983   

A (m2) 7.854E-07 1.3707E-06 0.000218   0.00159   0.001808   

M 1 2 7.51   1 2.54 0.495   

m (Kg/s) 0.0082 0.0082 0.0082 0.0036 0.0036 0.0118 0.0118   

P (Pa) 8000000 1037499.01 663.57   663.57   4801.96 5633.93 

T (K) 573 345.18 55.66   245.49 189.26     

V (m/s)     1387.26   388.18 866.46     

η 0.99 0.99 0.95 0.98 0.98       

 

 

Table 7(b)  Dt = 0.001 m, generator temp. = 300 C, Primary pressure = 80 bar iteration 

Rg (KJ/Kg K) 461.5 Pump Power (KW) 0.0654 
γ 1.33 Cooling load (KW) 8.528 
Ψm 0.80 Gen. Power (KW) 21.62 
ω 0.44 Cond. load (KW) 30.476 
Cond. Temp. (K) 308 COP 0.3933 
Cp  (J/Kg K) 4180.00 COP theoretical  0.9757 

 

 

In this iteration as shown the throttle diameter is only 1 mm, condenser 

temperature is 35 C, and the COP is 0.393, which is really good for an ejector 

cooling cycle. 
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Dt = 0.0012 m, generator temp. = 300 C, Primary pressure = 80 bar 

Table 8 (a) 2.8.2. Dt = 0.0012 m, generator temp. = 300 C, Primary pressure = 80 bar iteration 

  Primary flow Secondary flow Mixed  Flow 

Flow Sec. throttle 1-1 Y-Y 1-1 Y-Y m-m 2-2 C-C 

D (m) 0.0012       0.045   0.049239   

A (m2) 1.131E-06 1.9739E-06 0.000314   0.00159   0.001904   

M 1 2 7.51   1 2.79 0.474   

m (Kg/s) 0.0118 0.0118 0.0118 0.0036 0.0036 0.0154 0.0154   

P (Pa) 8000000 1037499.01 663.57   663.57   5798.05 6712.64 

T (K) 573 345.18 55.66   245.49 178.64     

V (m/s)     1387.26   388.18 923.48     

η 0.99 0.99 0.95 0.98 0.98       

 

Table 8 (b) Dt = 0.0012 m, generator temp. = 300 C, Primary pressure = 80 bar iteration 

Rg (KJ/Kg K) 461.5 Pump Power (KW) 0.094 
γ 1.33 Cooling load (KW) 8.4833 
Ψm 0.80 Gen. Power (KW) 30.9853 
ω 0.30 Cond. load (KW) 39.4091 
Cond. Temp (K) 311.2 COP 0.273 
Cp  (J/Kg K) 4180.00 COP theoretical  0.9759 

 

It’s very clear that when the throttle diameter increased keeping the other given 

parameters, the condenser pressure increased and so does the condenser 

temperature to be 38.2 C. 

On the other hand, the COP decreased as the generator load increased for the 

same cooling load. 

 

Dt = 0.0014 m, generator temp. = 300 C, Primary pressure = 80 bar 

Table 9(a) Dt = 0.0014 m, generator temp. = 300 C, Primary pressure = 80 bar 

  Primary flow Secondary flow Mixed  Flow 

Flow Sec. throttle 1-1 Y-Y 1-1 Y-Y m-m 2-2 C-C 

D (m) 0.0014       0.045   0.050682   

A (m2) 1.5394E-06 2.6867E-06 0.000427   0.00159   0.002017   

M 1 2 7.51   1 2.98 0.460   

m (Kg/s) 0.0160 0.0160 0.0160 0.0036 0.0036 0.0196 0.0196   

P (Pa) 8000000 1037499.01 663.57   663.57   6625.64 7609.37 

T (K) 573 345.18 55.66   245.49 170.65     

V (m/s)     1387.26   388.18 963.89     

η 0.99 0.99 0.95 0.98 0.98       
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Table 9(a) Dt = 0.0014 m, generator temp. = 300 C, Primary pressure = 80 bar 

Rg (KJ/Kg K) 461.5 Pump Power (KW) 0.1281 
γ 1.33 Cooling load (KW) 8.4546 
Ψm 0.80 Gen. Power (KW) 42.0462 
ω 0.22 Cond. load (KW) 50.7431 
Cond. Temp (K) 313.56 COP 0.2005 
Cp  (J/Kg K) 4180.00 COP theoretical  0.9759 

 

The COP is decreased as expected; on the other hand, the temperature of 

condenser has increased to be 40.56 C which is more favorable. 

 

Dt = 0.0016 m, generator temp. = 300 C, Primary pressure = 80 bar 

Table 10(a) Dt = 0.0016 m, generator temp. = 300 C, Primary pressure = 80 bar 

  Primary flow Secondary flow Mixed  Flow 

Flow Sec. throttle 1-1 Y-Y 1-1 Y-Y m-m 2-2 C-C 

D (m) 0.0016       0.045   0.052298   

A (m2) 2.0106E-06 3.5091E-06 0.000558   0.00159   0.002148   

M 1 2 7.51   1 3.12 0.451   

m (Kg/s) 0.0209 0.0209 0.0209 0.0036 0.0036 0.0245 0.0245   

P (Pa) 8000000 1037499.01 663.57   663.57   7299.86 8340.13 

T (K) 573 345.18 55.66   245.49 164.63     

V (m/s)     1387.26   388.18 993.10     

η 0.99 0.99 0.95 0.98 0.98       

 

 

Table 10(b) Dt = 0.0016 m, generator temp. = 300 C, Primary pressure = 80 bar 

Rg (KJ/Kg K) 461.5 Pump Power (KW) 0.1673 
γ 1.33 Cooling load (KW) 8.4235 
Ψm 0.80 Gen. Power (KW) 54.7354 
ω 0.17 Cond. load (KW) 63.676 
Cond. Temp (K) 315.3 COP 0.1534 
Cp  (J/Kg K) 4180.00 COP theoretical  0.9759 

 

As shown, the COP decreased significantly, when the condenser temperature 

increased to 42 C that means it’s a necessity to balance between the COP and 

condenser temperature. 
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Dt = 0.00126 m, generator temp. = 300 C, Primary pressure = 80 bar 

Table 11(a) Dt = 0.00126 m, generator temp. = 300 C, Primary pressure = 80 bar 

  Primary flow Secondary flow Mixed  Flow 

Flow Sec. throttle 1-1 Y-Y 1-1 Y-Y m-m 2-2 C-C 

D (m) 0.00126       0.045   0.04966   

A (m2) 1.25E-06 2.18E-06 0.00035   0.0016   0.00194   

M 1 2 7.51   1 2.85 0.469   

m (Kg/s) 0.013 0.013 0.013 0.0036 0.0036 0.0166 0.0166   

P (Pa) 8000000 1037499 663.57   663.57   6063.7 7000.43 

T (K) 573 345.18 55.66   245.49 176     

V (m/s)     1387.26   388.18 937.06     

η 0.99 0.99 0.95 0.98 0.98       

 

Table 12(b) Dt = 0.00126 m, generator temp. = 300 C, Primary pressure = 80 bar 

Rg (KJ/Kg K) 461.5 Pump Power (KW) 0.1038 
γ 1.33 Cooling load (KW) 8.4654 
Ψm 0.80 Gen. Power (KW) 34.0964 
ω 0.30 Cond. load (KW) 42.6415 
Cond. Temp (K) 311.2 COP 0.2475 
Cp  (J/Kg K) 4180.00 COP theoretical  0.9759 

 

This iteration has an acceptable value COP, besides 38 C as a condenser 

temperature, which is practically suitable for normal operating conditions. 

 

Dt = 0.00152 m, Ds = 0.065 m, generator temp. = 330 C, Primary pressure = 

110 bar 

Table 13(a) Dt = 0.00152 m, Ds = 0.065 m, generator temp. = 330 C, Primary pressure = 110 bar 

  Primary flow Secondary flow Mixed  Flow 

Flow Sec. throttle 1-1 Y-Y 1-1 Y-Y m-m 2-2 C-C 

D (m) 0.00152       0.065   0.070964   

A (m2) 1.815E-06 3.167E-06 0.000637   0.00332   0.003955   

M 1 2 7.84   1 2.86 0.469   

m (Kg/s) 0.0253 0.0253 0.0253 0.0075 0.0075 0.0328 0.0328   

P (Pa) 11000000 1426561.2 663.57   663.57   6082.67 7021 

T (K) 603 363.25 54.12   245.49 181.67     

V (m/s)     1428.92   388.18 953.51     

η 0.99 0.99 0.95 0.98 0.98       
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Table 13(b) Dt = 0.00152 m, Ds = 0.065 m, generator temp. = 330 C, Primary pressure = 110 bar 

Rg (KJ/Kg K) 461.5 Pump Power (KW) 0.2784 
γ 1.33 Cooling load (KW) 17.6683 
Ψm 0.80 Gen. Power (KW) 66.5283 
ω 0.29 Cond. load (KW) 84.3009 
Cond. Temp (K) 312.1 COP 0.2645 
Cp  (J/Kg K) 4180.00 COP theoretical  0.8844 

 

This iteration has higher COP than the previous cycles, because of the increase 

of generator temp. and pressure with 1-degree higher condenser temperature.  

 

Dt = 0.00128 m, Ds = 0.0548 m, generator temp. = 330 C, Primary pressure 

= 110 bar 

Table 14(a) Dt = 0.00128 m, Ds = 0.0548 m, generator temp. = 330 C, Primary pressure = 110 bar 

  Primary flow Secondary flow Mixed  Flow 

Flow Sec. throttle 1-1 Y-Y 1-1 Y-Y m-m 2-2 C-C 

D (m) 0.00128       0.0548   0.059817   

A (m2) 1.29E-06 2.2458E-06 0.00045   0.00236   0.00281   

M 1 2 7.84   1 2.85 0.469   

m (Kg/s) 0.0180 0.0180 0.0180 0.0053 0.0053 0.0233 0.0233   

P (Pa) 11000000 1426561.1 663.57   663.57   6076.16 7013.94 

T (K) 603 363.25 54.12   245.49 181.73     

V (m/s)     1428.92   388.18 953.17     

η 0.99 0.99 0.95 0.98 0.98       

 

Table 14(b) Dt = 0.00128 m, Ds = 0.0548 m, generator temp. = 330 C, Primary pressure = 110 bar 

Rg (KJ/Kg K) 461.5 Pump Power (KW) 0.1974 
γ 1.33 Cooling load (KW) 12.5582 
Ψm 0.80 Gen. Power (KW) 47.178 
ω 0.30 Cond. load (KW) 59.813 
Cond. Temp (K) 312.1 COP 0.265 
Cp  (J/Kg K) 4180.00 COP theoretical  0.8844 

 

After diameters optimizations, this cycle obtained the highest COP with a 

reasonable condenser temperature of 39.1 C. 

So, it’ll be selected and discussed further in this paper for components 

selections, such as the pump, heat exchangers and expansion valve. 

For thermodynamics calculations for this cycle, the specific enthalpies have to 

be obtained. 
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During calculations, Zittau’s Fluid Properties Calculator will be used to figure 

out the working fluid (water) properties through the cycle. 

Table 15 Thermodynamic values of the cycle 

Point Temperature T (K) Pressure P (Bar) Enthalpy h (kJ/kg) 

1 283 0.01228 159.2 

2 286 0.01228 2524.9 

3 401.52 0.0701394 2730 

4 311 0.0701394 159.2 

5 309.33 80 159.2 

6 573 80 2786.37 

 

4. Refrigerant pump 

There are many types of pumps to use in this cycle and here some of it 

4.1. Positive Displacement Pumps [14] 

This sort of pump makes an expanding volume on the suction side of the pump 

and a contracting volume on the outlet. This distinction makes pressure which 

pulls and pushes a liquid all the while, applying enough force to make a stream. 

Positive displacement pumps have two different categories 

 

Reciprocating pump  

Regarding this category, the vacuum is created using a piston which plunges 

into and pulls out of the material. Valves are utilized to make sure that it flows 

only in one way. That’s why the reciprocating pump pumps the liquid at similar 

periods. 

 

 

 

 

 

 

 

 

 Figure 25-Plunger pump scheme [14]. 

https://web1.hszg.de/thermo_fpc/index.php
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Rotary (i.e. gear) pump 

The rotary pump utilizes two gears that engage together. The motion of the 

gears generates high pressure on the outlet side which drives the flow. 

 

 

 

 

 

 

 

 

 

 

Because of the design, positive displacement pumps handle viscous material 

better.  

4.2. Centrifugal Pumps [14] 

This kind of pump is one of the most common in use today. Like other pump 

designs, it uses an impeller, which is a rotating blade to generate suction which 

then moves fluid through pipes. 

The rotating impeller creates what is known as centrifugal force, giving this 

pump design its name. The pump can be driven by an electric motor or engine. 

Centrifugal pumps are usually used for liquids which are low in viscosity and 

low in solid concentration.  

However, there is a centrifugal slurry pump which can move liquids with a large 

number of particles. 

 

Australian Pump Technical Handbook, The PIA (2007, p.30) categories 

impellers into three different designs  

Axial Flow  

The axial flow impeller discharges fluid along the shaft axis. For this reason, an 

axial flow pump is by definition not "centrifugal" in its pumping action.  
 

Figure 26-Gear pump [14]. 
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Radial Flow 

The fluid is discharged radially from the impeller perpendicularly to the shaft 

axis.  
 

Mixed Flow 

The fluid discharges from the impeller in a conical direction utilizing a 

combined axial and radial pumping action. 

 

Figure. 27-Pump flow types [14]. 

For the ejector cooling system, it requires high pressure so; the reciprocating 

(Plunger) pump is more suitable in this case. 

 

4.3. Pump selection 

From CAT Pumps co. 

Model: 4DX03ELR 4DX DIRECT DRIVE PLUNGER PUMP [15] 

Table 16 Plunger pump specs. 

Pump specs. Required specs. 

Max Flow: 1.14 lpm 1.08 lpm 

Min Pressure: 6.89 bar  

Max Pressure: 137.90 bar 110 bar 

Inlet Port Size: 3/8"NPT(F)  

Discharge Port Size: 3/8"NPT(M)  

RPM: 1750  

Drive Type(s): Direct  

Material: Brass (BB)  

 

This is a triplex (3-pistons) pump that uses an electric motor, it’s quite reliable 

for high-pressure applications when the flow rate is not high. 
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5. Heat exchangers 

 

The heat exchanger is defined as a thermal equipment, which mainly designed 

to transfer or exchange thermal energy, from one fluid to different fluid 

depending on the temperature differences.  

There are various types of the heat exchangers, it can be categorized according 

to the flow directions cross-flow, parallel-flow, or countercurrent.  

For the parallel flow heat exchangers, the cold and hot fluids are moving in 

parallel to each other.  

In cross flow exchangers, the cold and hot fluids are moving perpendicular to 

each other. This has the potential to produce the compact device, however, the 

countercurrent heat exchanger is more efficient.  

In the countercurrent heat exchanger, the hot fluid enters from the right, it cools 

against the already warmed up cold fluid from the left. The temperature 

differential is nowhere near as high as at the start of the parallel heat exchanger.  

However, as the temperature of the warm fluids drops, it gets exposed to the 

even colder cool fluid. This results in far more efficient cooling - which explains 

why counter flow is by far the dominant way to operate a heat exchanger. 

 

5.1.  Popular heat exchangers types 

 Shell and tube heat exchanger [16]  

It’s combined with a number of pipes that have a fluid going through it. The 

pipes are split into two groups: the 1st group carries the fluid to be cooled or 

heated.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28-Strait shell and tube heat exchanger [16]. 
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The 2nd group carries the fluid that drives the heat exchange, by adding or 

absorbing heat from or to the first group of pipes. While creating the design of 

this kind of exchanger, tube wall thickness and tube diameter must be selected 

carefully, to optimize heat exchanger efficiency.  
  

 Plate heat exchangers  

Plates are made of thin material and connected together, with a narrow space 

between each other, usually kept by a rubber gasket.  

It’s a big surface area, and the opening at corners of each rectangular plate 

through which fluid can pass through plates, transfer heat from the plates.  

 

The passages of fluid itself interchange cold and hot fluids, implying that heat 

exchangers can efficiently transfer heat. Thanks to having a plate with the large 

surface area in the heat exchangers, they are usually more effective than the 

shell and tube types. 

 

 

Figure 29-Plate heat exchanger [16]. 

 Regenerative Heat Exchanger  

For this type of heat exchangers, the same working fluid is flowing through both 

sides of the device, which can be either a shell and tube heat exchanger or a 

plate heat exchanger.  

 

Since the fluid temperature may increase steeply, the incoming fluid is used to 

cool the exiting fluid, keeping almost same temperature.  
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A great value of energy can be saved through a regenerative heat exchanger 

because the process is recurring, with roughly most of the heat being transferred 

from the discharging fluid to the entering fluid. For keeping the same 

temperature, only a little more heat requires to increase and decrease the overall 

fluid temperature. 
 

 

Figure 30-Regenerative heat exchanger [16]. 

For designing a suitable test unit for the ejector cooling system, the plate heat 

exchanger is more suitable for testing and experiments. 

 

5.2. Heat exchangers selection 

Condenser selection [17] 

R095 from Kaori 

It’s the newly-developed BPHE dedicated to environment-

friendly and high thermal transferring refrigerant. Its 10% 

higher efficiency than conventional BPHE and lightweight 

significantly reduce the carbon emission. 

Table 17 Condenser specs. 

Max. heat load (kW) 70.32 

Max. working temperature °C  200 

Min. test pressure (bar)  43 

Max. number of plates (N)  120 

Thickness (mm) - H  10.0+1.85*N 

Weight (kg)  2.73+0.154*N 

Max. working pressure (bar) 30 

Max. flow rate (LPM) 250 

Plate Heat Transfer Area (M2) 0.0475m^2 

Figure 31-Kaori condenser [17]. 
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As shown, it can handle mass flow rate up to 250 LPM, which is a lot more than 

what our cycle needs.  

Regarding the negative pressure, it’s not mentioned in the technical data, but it’s 

possible to contact the company and ask about their negative pressure test for 

the design validation. 

 

Generator selection [18] 

SIGMASHELL Laser-welded plate heat exchanger for liquids, vapor, and gases 

from Schmidt® SIGMASHELL. 

Working conditions borders: - Operating pressure from vacuum up to 150 barg. 

Temperature operation range from -200°C up to 550°C. 

 

Figure 32-Schmidt® SIGMASHELL heat exchanger [18]. 

 

Evaporator selection 

R050 from Kaori 

 It’s the same series as the condenser. 

Table 18 Evaporator specs. 

Max. heat load (KW) 35.16 

Max. working temperature °C  200 

Min. test pressure (bar)  43 

Max. number of plates (N)  120 

Thickness (mm) - H  10.0+1.80*N 

Weight (kg)  1.32+0.089*N 

Max. working pressure (bar) 30 

Max. flow rate (LPM) 240 

Plate Heat Transfer Area (M2) 0.0255 m^2 

 
Figure 33-Kaori evaporator [17]. 
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Still no information regarding negative pressure, but can be found from the 

manufacturer. 

 

6. Expansion Valve 

Expansion valve balance equations [19] 

P1+P4 = P2+P3  

P1 = Bulb Pressure (Opening Force)  

P2 = Evaporator Pressure (Closing Force)  

P3 = Superheat Spring Pressure (Closing Force)  

P4 = Liquid Pressure (Opening Force) 

 

Expansion valve selection [20] 

 

There are many types of expansion valves, but the most common are TXV’s 

(thermal expansion valve) and EXV’s (electronic expansion valves). 

 

For this testing cycle, it’s preferable to use the EXV as it’s more flexible, 

adjustable, reliable and very precise control. 

 

E2V Carel ExV 

 

It’s used for loads up to 40KW, dual directions and fits in all sizes. 

 

Figure 34-Electronic Expansion valves EXV [20]. 
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7. Test cycle summary 

 

The designed testing platform components are summarized in the following 

table: 

 
Table 19 Test Cycle Components 

Component Model 

Generator (Heat exchanger) SIGMASHELL Laser-welded plate heat exchanger for liquids, vapor, and gases 
from Schmidt® SIGMASHELL. 

Condenser (Heat exchanger) R095 from Kaori 
Evaporator (Heat exchanger) R050 from Kaori 

Ejector As Designed 

Pump (reciprocating) 4DX03ELR 4DX DIRECT DRIVE PLUNGER PUMP  

Expansion Valve (EXV) E2V Carel ExV 
 

 
Figure 35-cycle scheme with the selected components 

 

As shown in figure 35, the base cycle consists mainly of three heat exchangers; 

the generator (SIGMASHELL), the condenser (Kaori R095) and the evaporator 

(Kaori R050) were selected for reliable and feasible experimenting, besides the 

designed Ejector and the expansion valve (E2V Carel ExV) which is an 

electronic expansion valve for precision and accuracy aspects. 

 

Also the triplex plunger (reciprocating) pump (4DX03ELR 4DX), where chosen 

for the reliability and flexibility of operation under high pressure. 
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8. Conclusion 

 

The world is wasting extraordinary amount of energy as waste heat every day 

through different ways that can be used relatively efficiently through the 

ejector-based cycles, which will save millions of tons of fossil fuel every year in 

hot areas i.e. (India, Mediterranean counties, Australia, South America and parts 

of North America, major parts of Asia, Africa, etc.).  

 

Ejector cooling system is a promising technology for producing a cooling effect 

by using low-grade energy sources with different working fluids. In this paper, 

ejector technology, refrigerant properties and their influence over the ejector 

performance, the ejector refrigeration cycle was optimized for testing to 

dedicate results for automotive and HVAC applications. 

 

The simplicity and reliability of ejectors, through the absence of moving parts, 

promote the usage of it in mass production industries, such as automotive. 

Especially with the desperate need to increase fuel efficiency is pushing towards 

the usage of waste heat.  

 

Ejector allows the use of many refrigerants and many studies have tested the 

influence of the fluid on the refrigeration cycle.  

 

Both experimental and numerical studies have shown that operating conditions 

critically affect the optimum performance of an ejector. Slight changes in 

operating conditions result in the ejector operating away from its designed 

optimum performance 

 

Therefore, it is necessary to have variable geometry to cope with the variation 

of operating conditions, so as to give optimum performance in off-design 

conditions.  

 

For most of the average vehicles with internal combustion engines have a range 

of 300-600 °C for exhaust gases temperatures. As a result of the mathematical 

model calculations and the operating conditions, in this cycle, we used 330 °C. 

Also the reasonable condenser temperature of 39.1 °C, and evaporator 

temperature of 10 °C. 

 

Due to seeking balanced economic aspects and minimum environmental 

impacts, water has been assessed for our cycle which resulted in reasonable 

COP of 0.265 and compatible with the previously selected parameters. 

Whereas, the trans-critical cycles complexities have been avoided due to having 

the high critical pressure of water (220.64 bar). 
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After optimizing the cycle design, the other components were selected to 

complete the test-platform, such as the heat exchangers (generator, condenser, 

and evaporator), it was meant to be plate heat exchangers as it’s more compact 

and suitable for experimenting besides its availability, then the pump was 

selected to be triplex pump (3-piston pump), as it’s very much fitting with high-

pressure requirements especially with the adjustable pressure possibility and 

finally the Expansion valve which was chosen to be EXV (electronic expansion 

valve), due to the flexibility and accuracy of changing the cooling loads and 

operating conditions. 

 

In this paper, the versatility of ejector cooling systems which can be used in 

automotive applications has been demonstrated. I hope that this contribution 

will encourage new ideas and further research interest into the design and 

application of ejectors. 
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