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ABSTRACT

The viscous behavior of the fiber-reinforced composite materials with rubber-like
matrix is modeled in the continuum mechanics framework by the Helmholtz free energy
function and the evolution equations of the internal variables. The decomposition of the free
energy function and the chosen viscoelastic model are bases for formulation and description of
the viscous characteristics of these anisotropic materials. Numerical simulations to predict the
response of these materials in finite strains are performed.

The dissertation focused on experimental evaluating the purely elastic and viscoelastic
material parameters of proposed models via some standard experiments on relaxation, such as
simple tension, pure shear and biaxial tensile tests. Both the i1sotropic and anisotropic materials
were tested.

Several numerical examples were implemented in FEM software COMSOL
Multiphysics and compared with the experimental results. The applications of the model were
enlarged to predict other viscoelastic phenomena i.e. creep and influence of loading velocities
on stresses. The influence of the directions of reinforcing fibers was also examined. The
viscoelastic model was applied to a practical example that is an air-spring with two fiber
reinforcements undergoing an internal pressure.

An extension of nonlinear theory for rubber-like anisotropic composites was applied to
magneto-sensitive (MS) elastomers under an external magnetic field. The constitutive
equations of both magnetic and mechanical fields were presented. Some numerical
computations of a coupling of magnetic and mechanical problems were illustrated in order to
describe a nonlinear characteristic of MS elastomer.

ABSTRAKT

Viskozni chovani kompozitnich materiald s pryZovou matrici vyztuZzenou kordy ije
modelovano v ramci mechaniky kontinua pomoci Helmholtzovy funkce volné energie a
vyvojovych rovnic pro wvnitini proménné. Rozklad funkce volné energie a zvoleny
viskoelasticky model jsou zakladem pro formulaci a popis viskozni vlastnosti téchto
anizotropnich materiali. Jsou uvedeny numerické simulace pro piepovéd odezvy téchto
materialt na koneéné deformace.

Disertaéni prace se zaméfuje na experimentalni uréeni elastickvch a viskoelastickych

materialovych parametri navrhovanych modeld pomoci nékterych standardnich test jako je
tahova zkouska, Cisty smyk a dvouosé tahové zkousky kvazistatické 1 relaxa¢ni. Byly testovany
izotropni a anizotropni (kompozitni) materialy.
Né&kolik numerickych piipadd je implementovano do MKP prostiedi COMSOL Multiphysics a
srovnano § experimentalnimi vysledky. Aplikace modelu byly rozsifeny o numerickou
piedpovéd’ dalsich viskoelastickych jevi jako je teéeni a vliv rychlosti zatizeni na napéti. Vliv
sméru vlakenné wvvztuze byl rovnéz zkouman. Viskoelasticky model byl aplikovan na
numerickou simulaci vnitfnim pretlakem zatizené vzduchové valcové pruziny, jejiz pryZovy
plast je vyztuzen dvéma skupinami kordu.

Nelinearni materialovy anizotropni model byl rozsifen na piipad magneto-sensitivnich
elastomertl mechanicky zatiZenvch ve vnéj§im magnetickém poli. Numerické simulace odezvy
télesa s magneto-mechanickou vazbou jsou uvedeny s cilem popsat nelinearni vlastnosti
magneto-sensitivnich elastomerti.
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7. Conclusions, discussions and future perspectives

In this dissertation, the viscoelastic behavior of the fiber-reinforced
elastomer has been studied. The wiscous characteristics of the anisotropic
composites were identified by the suitable free energy function and the chosen
viscoelastic models. Herein, the generalized Maxwell element model was used in
two approaches with either inelastic strains or overstresses playing a role of
internal variables.

Some standard experiments such as simple tensile, pure shear and biaxial
tensile tests for isotropic rubber-like materials and composite elastomers
reinforced by two families of fibers under many relaxation stages were carried
out. The non-contact optical stereo-correlation technique was used to determine
precisely for experimental measurements of large deformations and evaluation of
strains. The evaluation results were in good agreement with experimental data.

The implementation of the set of constitutive equations and evolution
equations mto a finite element program, Comsol Multiphysics, was established
for modeling viscoelastic behaviour of both hyperelastic isotropic and anisotropic
composites. The ability of the model to predict nonlinear viscoelastic behavior of
isotropic and anisotropic materials was examined by comparing the theory to
experimental results. Several examples relevant to viscoelastic responses, for
instance the influence of the loading velocities, one- or multi- step relaxations and
a creep were presented. More simulations of complicated boundary value
problems of an air-spring tube with two fiber reinforcement were performed using
the fimite element method. The comparison between two approaches in overstress
and inelastic strain variables was considered, this is just the initial step towards
the nonlinear approach in inelastic strain variables.

The remaining task of the study was to develop a formulation of
constitutive equations for anisotropic MS elastomers. We implemented several
numerical solutions of simple boundary problems of nonlinear magneto-
mechanical response of a body made of 1sotropic or anisotropic magnetosensitive
elastomer subjected to a static magnetic field. The finite element software used
proved a flexibility and ability of an easy implementation of fairly complicated
coupled problem. The FE simulations involved not only the edge effects due to
the fimite geometry of the body but also the influence of the large displacement of
the boundaries. The free energy functions that we have used are very simple
forms and represent only a first approach towards a valuable constitutive model.
Appropriate experiments which are in preparation will allow the elaboration of
the constitutive relations. The constitutive model should involve also the complex
dissipative (viscoelastic) behaviour of the material.
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1. Introduction

Fiber-reinforced elastomers (FREs) also well-known as anisotropic
hyperelastic composites are widely used in practice, including industrial
engineering, automobile, aircraft, biomechanics and medicine, for example gas
pipes, automotive tyres, absorbers, belts, man-made (elastomeric) composites,
etc...

These composites have many potential advantages due to high specific
stiffness and strength, good corrosion resistance and thermal insulation. The
typical anisotropic behavior is often formed by a number of fiber cords (usually
one or two fibers coincide at each point) which are systematically arranged in a
rubber-like matrix material. However, these materials not only have a highly non-
linear behavior and possess anisotropic mechanical properties but also exhibit
viscoelastic material behavior. Furthermore particularly important to this behavior
is the heating of the structure because of internal dissipation and the temperature
dependence of the material parameters. Therefore the ability to accurately predict
the mechanical behavior of these materials is an important technological problem
that is still far from being completely understood.

The main objective of the thesis is to identify and simulate the viscous
characteristics of the fiber-reinforced composite materials with rubber-like matrix.
The identification of the material parameters and the implementation of the
numerical simulations that base on the chosen viscoelastic model are presented.

In this work both a mechanical experiment and a numerical simulation have
been used in an effort to gain better insight into the mechanics causing the
observed behavior and to facilitate ability performance of a viscoelastic model.
There are many proposed viscoelastic models to deal viscoelastic problems of
isotropic rubber-like materials as well as anisotropic hyperelastic composites with
rubber-like matrix. However we focus on an approach in the continuum
mechanical point of view.

In particular, to describe a viscoelastic behavior of anisotropic hyperelastic
materials the existence of the Helmholtz free-energy functions is postulated. The
free energy function is splitted into equilibrium and non-equilibrium parts
governing the equilibrium (hyperelastic) and non-equilibrium (viscoelastic)
responses, respectively. The non-equilibrium contribution of the free energy
function depends not only on external variables, which are measurable and
controllable quantities, but also on internal variables (hidden to the external
observers). We use two approaches for the viscous response:
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e The first approach is formulated for internal stress-like variables (so
called overstresses) and the formulation of the evolution equations is
linear for loading close to thermodynamic equilibrium.

e The second approach with nonlinear evolution equations is formulated
for internal strain-like variables (so called inelastic strains) by assuming
parallel multiplicative decompositions of the deformation gradient into
elastic and viscous parts.

We use rheological models such as Kelvin-Voigt or Maxwell models to
establish evolution equations for internal variables.

Finally, we expand attention to develop constitutive formulations of
anisotropic magneto-sensitive (MS) elastomer materials. Owing to the magnetic
field is considered as a preferred direction in the reference configuration, hence
the MS elastomers are subjected simultaneously to the action of the mechanical
loading and magnetic field as similar to composites reinforced by fiber families.
The theory of nonlinear magnetoelasticity for MS elastomers is applied to a
number of simple boundary-value problems.

In order to achieve the above objectives, many tasks related to
experimental and numerical FEM calculations should be implemented, namely
some main tasks as follows:

e Propose the free energy functions used in the research.

e Formulate explicit expressions of equilibrium stress in deformation
plane.

e Perform experiments in relaxation to measure the forces and the strains.
e Develop a Matlab program for evaluating the material parameters.

e Establish the wviscoelastic model in FEM to calculate numerical
simulations of viscoelastic materials.

e Extend constitutive equations of the anisotropic MS elastomers.

e Compute numerically some examples of MS elastomers in FEM.



2. Overview of literature

In this thesis, the viscoelastic behavior of the isotropic as well as
anisotropic rubber-like materials is studied in the continuum mechanical theory by
means of the free energy functions. The constitutive equation which interrelate
the stress components and the strain components within a nonlinear regime can be
found out, for example, Holzapfel (2000) or Truesdell & Noll (1992). The
viscoelastic model of the anisotropic materials depends on the choice of internal
variables and evolution equations. Evolution equations of overstresses proposed
by Holzapfel & Gasser (2001) in the theory of linear viscoelasticity is quite
simple to utilize for evaluating material parameters by experimental performances
and implementing numerical simulations in FEM. However this model is believed
in not credible the general problem of large deformations and large perturbations
away from thermodynamic equilibrium, such as full thermo-mechanical coupling
or high strain rates. Therefore, for this reason, the nonlinear viscoelastic model
proposed by Nguyen et al (2007) is also given.

The constitutive formulation of magnetic and mechanical equations for MS
elastomers 1s provided in series of recent studies by Brigadnov & Dorfmann
(2003) and Dorfmann & Ogden (2003-2005). Specially, the influence of the
magnetic field on the mechanical stress in the deforming body is incorporated
through a magnetic stress tensor instead of through magnetic body forces
included to the mechanical equilibrium equation, because the resulting total
Cauchy stress tensor has the advantage of being symmetric, it can be referred to
Dorfmann & Ogden (2004). The magnetic induction vector B and the magnetic
field vector H are regarded as fundamental field variables and defined by the total
free energy function.

3. The decomposition of free energy function

The decomposition of the equilibrium part Vo of free energy function
within the isothermal regime is postulated to describe each contribution
(volumetric, isotropic and anisotropic isochoric) which allows modeling an
isotropic rubber-like material and a composite in which a rubber-like matrix
material is reinforced by families of fibers. In all cases incompressible composite
materials are assumed. The isotropic (isochoric) part of the free energy function is
usually used classical models such as neo-Hookean, Mooney-Rivlin and Ogden
models. To represent the anisotropic behaviour of the composite the anisotropic
contribution of the free energy function can be chosen by either polynomial or
exponential functions.

6.2. FEM solutions of MS anisotropic materials

a) Orientation of particle chains: ¢ = 0°

b) Orientation of particle chains: ¢ =30° at B=0T and B= 1T
Figure 23 — Deformation of the MS anisotropic block without and with a uniform
magnetic field
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4. Experiments and material parameter identification

For simplifying numerical estimations three assumptions are issued as
follows

- Load is applied suddenly.
- Time in a relaxation process is long enough.
- Strain is unchanged throughout a relaxation process.

The elastic and viscoelastic parameters are evaluated by fitting
experimental data by means of using linear and nonlinear least-square methods in
Matlab software.

4.1. Isotropic composite materials

Evaluation of material parameters of the viscoelastic isotropic rubber-like
materials is performed via basic experiments, namely simple tension, pure shear
and biaxial tensile tests.

Simple tension
45 155
4l # Experiment  iooccecoceenicenceeenlississsnsismens s
Neo-Hookean
= Mooney-Rivlin
=3 —— Ogden
i e I Y R
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r
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£
a
i
=
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The first principal stretch 7L1

Figure 1 — Estimation of elastic coefficients of the isotropic material by a simple
tensile test with different models
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Figure 2 — Estimation of viscoelastic coefficients of the isotropic material by a simple
tensile test with neo-Hookean and Ogden models

Table 1 — Elastic coefficients of the isotropic material by the simple tensile test

Model Neo-Hookean Mooney-Rivlin Ogden

¢1=0,3441 MPa | p;=0,5428 MPa; o, = 2,25

Material coefficients ¢=0,3678 MPa c2=0,0492 MPa | 11, = 0,00056 MPa; oty = 7.99

Shear modulus u=0,7356 MPa | 1 =0,6883 MPa u=0,6115MPa

Table 2 — Viscoelastic coefficients of the isotropic material by the simple tensile test

Model Neo-Hookean Ogden
Relaxation time t=114,2 [s] 7=118,9 [s]
Scale coefficients B=0.278 B =0,293
Pure shear test

Table 3 — Elastic coefficients of the isotropic material by the pure shear test

Model Neo-Hookean Ogden’s 2 parameters Ogden’s 4 parameters
Material i, =0,3161 MPa i, =-0,0001 MPa; oy =-15,41
: =0,2537 MP ’ : ’ ’
coefficients o 2 oy = 2,84 W= 64,776 MPa: o, = 0,016
Shear modulus | p=0,5074 MPa u = 0,4483 MPa u = 0,5054 MPa

Table 4 — Viscoelastic coefficients of the isotropic material by the pure shear test

Model Neo-Hookean Ogden
Relaxation time t=135,4 [s] t=153,9 [s]
Scale coefficients B =0.16 B =0,003
8

6. Magneto-sensitive elastomer materials

We adopt the formulation of Dorfmann & Ogden (2003-2005) as the
starting point. The general formulation of constitutive equations for anisotropic
magnetoelastic interactions are based on Dorfmann & Ogden (2005) for both
compressible and incompressible magnetoelastic materials.

The influence of the magnetic field on the mechanical stress in the

deforming body may be incorporated through a magnetic stress tensor (see
Dorfmann & Ogden, 2005).

For incompressible MS elastomers the volumetric component of the free
energy function is chosen in the form

¥,y =-p(J-1) (1)
where p is the hydrostatic pressure.

In order to simulate behaviors of the incompressible magnetoelastic
elastomer, we refer and inherit a simple form of the free energy function as
proposed in Dorfmann’s paper (2005). The isotropic and anisotropic
contributions of the free energy function are used as follows

v, =%[(1+y)(71—3)+(1—;V)(72—3)] )
¥, = (al,+pIs) 3)
L
or L Mlo(afd +Bf5)+g(f? _1)2 4)

here 1,,1,,1,,1.,1, are invariants of the right Cauchy-Green C and the magnetic
field B, G=G,(1+n,,), Gy is the field independent shear modulus and
k =k,(1+n,1,) represents the anisotropic characteristic of MS elastomers.

6.1. FEM solutions of MS isotropic materials

B=0 B=1T

r""’ .

Figure 19 — Deformation of the block in horizontal magneti?: field
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Viscoelastic behavior of an air-spring
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5.3. Viscous responses of internal stress-like and strain-like variables
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Figure 17 — Two approaches for the viscous response of the fiber-reinforced composite
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Figure 4 — Estimation of viscoelastic coefficients of the isotropic material by a pure
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Biaxial tensile test

The evaluating results by biaxial tensile test are incredible due to the
imperfect form of the specimen, specifically the effective cross-sectional area of
the specimen arms. This effect can be eliminated by slits made in each of arms as
recommended in Kuwabara et al (1998).
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4.2. Fiber-reinforced composite materials

We implement experiments for composites reinforced with different fiber
angles as 30°, 40°, 50° and 60° in multi-step relaxations, in which rectangular
sheets with 30mm high and 4,5x220mm cross section.
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Figure 14 — Displacement and Piola-Kirchhoff stress of the anisotropic composite with
fiber angles by 30° in relaxations

™
ECL:
=,
5 0.18 : : ’. : '
% : : ’ — Isofropic Overstress
= "o — Anisotropic Overstress
] o _ ‘
© = 0.12 : :
O g
= i
= =)
O = ; i
E E—' O.CB .....................................................................................................................................
= &
E 5 5 : :. z s
E 0‘04 ........................ L T L R E T LTINS R S . N
x : : :
(o]
1.02 1.04 1.06 1.08 1.1 1.12 1.14 OO 500 1000 1500 2000 2500

The first principal stretch 5!.1 Time £ [s]
Figure 6 — Estimation of elastic coefficients of the composite reinforced with different Figure 15 — The components of overstresses in the pure shear deformation

fiber orientations by a pure shear test

10 15



Prediction of creep process
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5.2. Fiber-reinforced composites

Equilibrium response of fiber-reinforced composite in pure shear

The first principal stressa, MPa]

Figure 13 — Equilibrium Cauchy stress with different fiber directions in pure shear
deformation (points denote experimental data, solid lines denote numerical results)
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5. Numerical simulations of viscoelastic composites Viscoelastic behavior of isotropic materials

In this section we will represent some numeric simulations of hyperelastic e
as well as viscoelastic behavior of composite materials. The main goal is to verify
the performance of constitutive viscoelastic models presented associating with the
material parameters determined from the evaluation of experiments.
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ABSTRACT

The viscous behavior of the fiber-reinforced composite materials with rubber-like
matrix is modeled in the continuum mechanics framework by the Helmholtz free energy
function and the evolution equations of the internal variables. The decomposition of the free
energy function and the chosen viscoelastic model are bases for formulation and description of
the viscous characteristics of these anisotropic materials. Numerical simulations to predict the
response of these materials in finite strains are performed.

The dissertation focused on experimental evaluating the purely elastic and viscoelastic
material parameters of proposed models via some standard experiments on relaxation, such as
simple tension, pure shear and biaxial tensile tests. Both the isotropic and anisotropic materials
were tested.

Several numerical examples were implemented in FEM software COMSOL
Multiphysics and compared with the experimental results. The applications of the model were
enlarged to predict other viscoelastic phenomena i.e. creep and influence of loading velocities
on stresses. The influence of the directions of reinforcing fibers was also examined. The
viscoelastic model was applied to a practical example that is an air-spring with two fiber
reinforcements undergoing an internal pressure.

An extension of nonlinear theory for rubber-like anisotropic composites was applied to
magneto-sensitive (MS) elastomers under an external magnetic field. The constitutive
equations of both magnetic and mechanical fields were presented. Some numerical
computations of a coupling of magnetic and mechanical problems were illustrated in order to
describe a nonlinear characteristic of MS elastomer.

Key words:

Composites, rubber-like matrix, fiber-reinforced, viscoelasticity, magneto-sensitive elastomers,
experimental, FEM.
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ABSTRAKT

Viskézni chovani kompozitnich materiald s pryzovou matrici vyztuzenou kordy je
modelovano v ramci mechaniky kontinua pomoci Helmholtzovy funkce volné energie a
vyvojovych rovnic pro vnitini proménné. Rozklad funkce volné energie a zvoleny
viskoelasticky model jsou zakladem pro formulaci a popis viskozni vlastnosti téchto
anizotropnich materialii. Jsou uvedeny numerické simulace pro piepovéd odezvy téchto
materialii na kone¢né deformace.

Disertaéni prace se zaméfuje na experimentalni urceni elastickych a viskoelastickych

materidlovych parametra navrhovanych modeli pomoci nékterych standardnich testi jako je
tahova zkouska, Cisty smyk a dvouosé tahové zkousky kvazistatické 1 relaxa¢ni. Byly testovany
1izotropni a anizotropni (kompozitni) materialy.
Né&kolik numerickych piipada je implementovano do MKP prostiedi COMSOL Multiphysics a
srovnano s experimentalnimi vysledky. Aplikace modelu byly rozsifeny o numerickou
predpovéd’ dalsich viskoelastickych jevii jako je teCeni a vliv rychlosti zatizeni na napéti. Vliv
sméru vlakenné vyztuze byl rovnéz zkouman. Viskoelasticky model byl aplikovan na
numerickou simulaci vnitfnim pretlakem zatizené vzduchové valcové pruziny, jejiz pryZovy
plast je vyztuzen dvéma skupinami kordu.

Nelinearni materialovy anizotropni model byl rozsifen na piipad magneto-sensitivnich
elastomerti mechanicky zatizenych ve vnéj§im magnetickém poli. Numerické simulace odezvy
télesa s magneto-mechanickou vazbou jsou uvedeny s cilem popsat nelinearni vlastnosti
magneto-sensitivnich elastomerti.

Kli¢ova slova:
Kompozity, pryzova matrice, kordova vyztuz, viscoelasticita, magneto-sensitivni elastomery,
experiment, MKP.
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Notation and Symbols

We attempt to employ notations that reflect as clearly as possible differences of kind
among mathematical entities. The scalar quantities are denoted by Latin or Greek italic letters
while vectors and second-order tensors and/or matrices are represented by the boldface
characters and blackboard bold letters denote fourth-order tensors. Subscript indices i, j, ... of
vectors, matrices and tensors signify specific components of the corresponding vectors,
matrices and tensors.
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a, Unit vector of the a-th fiber direction in reference configuration

A Almansi strain tensor
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b Left Cauchy-Green deformation tensor

B Magnetic induction vector or magnetic flux in spatial configuration

B, Magnetic induction vector in reference configuration

B;, B, Component of B in x and y directions

cy, C2 Mooney-Rivlin coefficients

C Right Cauchy-Green tensor deformation

C Modified right Cauchy-Green deformation tensor

C;, Elastic component of the right Cauchy-Green tensor of the matrix phase
C. Elastic component of the right Cauchy-Green tensor of the fiber phase
C, Viscous component of the right Cauchy-Green tensor of the matrix phase
C. Viscous component of the right Cauchy-Green tensor of the fiber phase
dl Current element length

dL Material element length

e Orthogonal base vectors

E Green-Lagrange strain tensor

E, Spring stiffness in the r-th branch of the Maxwell model

f, Body force
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F Deformation gradient

E, Elastic component of deformation gradient of the matrix phase
| Elastic component of deformation gradient of the fiber phase
F,, Viscous component of deformation gradient of the matrix phase
F; Viscous component of deformation gradient of the fiber phase
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I Iy Elastic principal invariants
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I Fourth-order unit tensor

J Jacobian determinant
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P Hydrostatic pressure
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Q. Overstress tensor
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Chapter 1
INTRODUCTION

Fiber-reinforced elastomers (FREs) also well-known as anisotropic hyperelastic
composites are widely used in practice, including industrial engineering, automobile, aircraft,
biomechanics and medicine, for example gas pipes, automotive tyres, absorbers, belts, man-
made (elastomeric) composites, etc., as illustrated in Figure 1.1.

These composites have many potential advantages due to high specific stiffness and
strength, good corrosion resistance and thermal insulation. The typical anisotropic behavior is
often formed by a number of fiber cords (usually one or two fibers coincide at each point)
which are systematically arranged in a rubber-like matrix material. However, these materials
not only have a highly non-linear behavior and possess anisotropic mechanical properties but
also exhibit viscoelastic material behavior. Furthermore particularly important to this
behavior is the heating of the structure because of internal dissipation and the temperature
dependence of the material parameters. Therefore the ability to accurately predict the
mechanical behavior of these materials is an important technological problem that is still far
from being completely understood.

(a) Automobile tyres (b) Gas pipes (c) Air-springs

Figure 1.1 — Some applications of FREs

The main objective of the thesis is to identify and simulate the viscous characteristics
of the fiber-reinforced composite materials with rubber-like matrix. The identification of the
material parameters and the implementation of the numerical simulations that base on the
chosen viscoelastic model are presented.
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In this work both a mechanical experiment and a numerical simulation have been used
in an effort to gain better insight into the mechanics causing the observed behavior and to
facilitate ability performance of a viscoelastic model. As introduced in Chapter 2, there are
many proposed viscoelastic models to deal viscoelastic problems of isotropic rubber-like
materials as well as anisotropic hyperelastic composites with rubber-like matrix. However we
focus on an approach in the continuum mechanical point of view.

In particular, to describe a viscoelastic behavior of anisotropic hyperelastic materials
the existence of the Helmholtz free-energy functions is postulated. The free energy function is
splitted into equilibrium and non-equilibrium parts governing the equilibrium (hyperelastic)
and non-equilibrium (viscoelastic) responses, respectively. The non-equilibrium contribution
of the free energy function depends not only on external variables, which are measurable and
controllable quantities, but also on internal variables (hidden to the external observers). We
use two approaches for the viscous response:

The first approach is formulated for internal stress-like wvariables (so called
overstresses) and the formulation of the evolution equations is linear for loading close to
thermodynamic equilibrium,

The second approach with nonlinear evolution equations is formulated for internal
strain-like variables (so called inelastic strains) by assuming parallel multiplicative
decompositions of the deformation gradient into elastic and viscous parts.

We use rheological models such as Kelvin-Voigt or Maxwell models to establish
evolution equations for internal variables. More details in fundamental theory of viscoelastic
models are described briefly in Appendix B.

Finally, we expand attention to develop constitutive formulations of anisotropic
magneto-sensitive (MS) elastomer materials. Owing to the magnetic field is considered as a
preferred direction in the reference configuration, hence the MS elastomers are subjected
simultaneously to the action of the mechanical loading and magnetic field as similar to
composites reinforced by fiber families. The theory of nonlinear magnetoelasticity for MS
elastomers is applied to a number of simple boundary-value problems.

In order to achieve the above objectives, many tasks related to experimental and
numerical FEM calculations should be implemented, namely some main tasks as follows:

e Propose the free energy functions used in the research.

e Formulate explicit expressions of equilibrium stress in deformation plane.
e Perform experiments in relaxation to measure the forces and the strains.

¢ Develop a Matlab program for evaluating the material parameters.

¢ Establish the viscoelastic model in FEM to calculate numerical simulations of
viscoelastic materials.

¢ Extend constitutive equations of the anisotropic MS elastomers.

¢ Compute numerically some examples of MS elastomers in FEM.
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QOutline of the dissertation
The dissertation is organized as follows:
Short introduction to the subject of dissertation thesis is in Chapter 1.
The overview of the recent literature concerning the subject of thesis is in Chapter 2.

Some used free energy functions are proposed in Chapter 3. The suitable form of free
energy contributions are chosen by means of the decomposition of the free energy function
into volumetric, isotropic and anisotropic parts. Additionally in this chapter explicit
equilibrium stress responses for both isotropic and anisotropic materials are derived and a
finite element formulation with consistent linearization 1s used for solving evolution equations.

Chapter 4 presents the experimental performance and the evaluation of material
parameters for both isotropic and anisotropic materials. Some Matlab programs are developed
for fitting the chosen model to experimental data.

In Chapter 5, the numerical simulations of the viscoelastic composite materials are
implemented by Comsol Multiphysics™. Some basic problems are computed to compare to
the experimental results. The effects of fiber directions, loading velocities and material
coefficients on the viscous characteristics are also illustrated.

Chapter 6 1s devoted to study an elastic behavior of MS elastomers. First relevant
constitutive equations of MS elastomers are summarized concisely, some free energy
functions are proposed and at the end of this chapter there will be some examples of the MS
elastomers implemented in the finite element code Comsol Multiphysics™ which is suitable

for the simulation of coupled-field problems.
Some conclusions, discussions and future perspectives are presented in Chapter 7.

Appendix A summarizes concisely some kinematical aspects of the motion and
deformation of a continuum body used in large deformation analyses. The notion of stress,
which is responsible for the deformation of materials, is introduced. Some important forms of
stress measures, namely Cauchy stress and Piola-Kirchhoff stress tensors, and conjugate
strain tensors are shown. A brief review of the mathematical equations of the balance
principles governing the motion of a continuum is also presented therein.

In Appendix B constitutive equations for anisotropic rubber-like composite derived by
a Helmholtz free-energy function is taken out. Evolution equations are given for both internal
variables including inelastic strain and overstress tensors.

The basic implementations of the finite element code in Comsol Multiphysics are
included in Appendix C.

Finally, a typical program code developed in Matlab is illustrated in Appendix D.






Chapter 2
OVERVIEW OF LITERATURE

Keeping track of achievements of research of isotropic hyperelastic elastomers we see
a large amount of results which were obtained in course of last decades. It can be realized that
the formulation of the constitutive theory of the isotropic composites at finite strains has
reached a certain completion. Several constitutive models can be derived based on the
statistical theory of networks of non-Gaussian flexible chains to study homogeneous
deformations of isotropic, incompressible hyperelastic rubber like materials, for example we
can refer to Elias- Zufiiga (2006). Even the constitutive model which is derived in Drozdov &
Dorfmann (2001} can correctly describe the stress-strain curves up to the break points. Beside
that some simplified constitutive models based on macroscopic studies were proposed to be
so good enough to predict the nonlinear behavior of isotropic hyperelastic materials. Apart
from classical constitutive models such as neo-Hookean, Money-Rivlin and Ogden models
(see Holzapfel, 2000), we can find out relatively simpler models such as the model proposed
by Gao (1997) and used by Guo & Sluys (2006) which showed a good performance in tension
as well as in compression. Alternatively another elasticity model that is based on the
logarithmic strain tensor proposed by Hencky and studied in detail by Pozivilova (2002) and
Plesek & Kruisova (2006), this model represents an extremely effective description of the
mechanical behavior of rubber-like materials, but it encounters some computational
disadvantages.

Numerous amounts of numerical simulations for large deformation of rubber-like
materials have rapidly increased recently. The finite element formulation of isotropic
incompressible hyperelastic membranes that was employed simply by means of the Newton-
Raphson incremental-iterative method with displacement control was presented in Jiang &
Haddow (1995) and Reese & Wriggers (1997). A general formulation of thin incompressible
membranes using the finite element method based on the principle of virtual work was
discussed by Holzapfel et al. (1996) and Basar & Itskov (1998). Specially, nonlinear
membrane theories for rubber-like membranes or shells accounting for large elastic strains
performed by FEM calculations have a significant interest, for instance the study of large
deformation of a nonlinear rubber-like membrane concerning inflated structures Guo (2001),
Pamplona et al. (2006) or Ibrahimbegovic & Gruttmann (1993). These numerical examples
demonstrate a very satisfying performance of the proposed formulation. In addition, a
comparison between three-dimensional continuum elements and shell elements in solid
mechanics has been implemented by Wriggers et al. (1996) and Eberlein & Wriggers (1999)
for finite elastoplastic deformations. An innovative brick element formulation for large
deformation problems in finite elasticity is discussed by Reese et al. (1998). Then a locking
effect as the so-called hourglass instability for large deformation problems was dealt in the
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work by Reese et al. (2000) and Reese (2003b) by remaining the stabilization matrix to be
always positive definite.

Recent progress in computer-aided polymer processing analysis demonstrates the need
for accurate description of the viscoelastic material behaviour. The continuum formulation for
viscoelastic 1sotropic materials at finite strains is based on the multiplicative decomposition of
the isochoric component of deformation gradient into elastic and viscous contribution and the
generalized Maxwell rheological model, for example a three-dimensional thermo-dynamical
model was proposed by Le Tallec et al. (1993). This approach i1s then applied in some
numerical results by Bonet & Profit (2000), Bonet (2001) and Amin et al. (2006). However in
this framework a simplification of the formulation when dealing with viscous materials 1s
commonly restricted to small perturbations away from thermodynamical equilibrium means
that the strain rate has to be close to zero. Therefore in the work of Reese & Govindjee
(1998a) a theory for nonlinear viscoelasticity, which validates for deviations any size away
from thermodynamic equilibrium, i.e. valid for large deformation rates is developed. Besides,
a micromechanically motivated material model for the thermo-viscoelastic material behavior
of rubber-like polymers was derived by extending the transient network theory, see Reese
{2003a), it is based on deformation-like internal variables. Alternatively, the problem of
Mullins’ effect in carbon black-filled rubbers is constructed from a micro-mechanically
viewpoint by Govindjee & Simo (1991).

A number of the computational simulation of the inflation membranes in the case of
finite viscoelastic materials were implemented in Karamanou et al. (2006). A general
variational formulation of finite viscoelasticity models was proposed by Fancello et al.
(2005), they focused on comparison of the capacity of Hencky and Ogden type models to
reproduce observed nonlinear viscous behavior in shear tests. It showed that Ogden models
performed better. In the paper of Kleuter et al. (2007) an algorithm for the identification of
material parameters for large strain viscoelasticity in data of multiple experiments was carried
out by minimizing a least squares functional. Coupled thermo-mechanical simulations of large
cyclic deformations of rubber cylinders were also implemented by the use of the finite
element code Johnson & Chen (2002, 2005) to allow accurate predictions of the strain and
temperature distributions in rubber components induced by viscoelastic heating. As well as a
finite element implementation of a thermo-viscoelastic material behavior of rubber-like
polymers that utilizes a nonlinear evolution law to include thermal effects by using the non-
equilibrium free energy of the material was presented by Reese & Govindjee (1998Db).

The observations and the identification of material parameters which are affected by
temperature and strain rate can be found out by fitting the experimental data, such as Drozdov
& Christiansen (2009), Oman et al. (2009).

However the approach of viscoelastic response, which is based on the formulation of
nonlinear evolution equations in inelastic strains, 1s complicated relatively in mathematical
aspects. Simo (1987), Holzapfel & Reiter (1995) and Holzapfel & Simo (1996) have all
proposed linear differential equations to simulate the stress relaxation in the viscous
component of the linear rheological mechanical model The assumption of splitting the elastic
and non-equilibrium stresses into volumetric and deviatoric responses respectively by the
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multiplicative procedure is discussed by Holzapfel (1996) Moreover the extension of the
specific model of finite strain viscoelasticity proposed by Simo (1987) is pointed out in
Govindjee & Simo (1992) by the micro-mechanical considerations and simultaneously
efficient algorithms for performing numerical computations are exploited to adjust the model
for large-scale simulations.

Recently the characterization of the material properties and the development of
constitutive laws for anisotropic nonlinearly elastic solids is also a topic of considerable and
increasing interest. Constitutive equations of anisotropic materials can be derived by using the
free energy function which can be decoupled separately into isotropic and anisotropic
contributions, as proposed by Holzapfel (2000). Anisotropic models were proposed by Bonet
& Burton (1998) and Chevaugeon et al. (2000) using an isotropic hyperelastic strain energy
function that is expressed in terms of 5 invariants to describe orthotropic transversely
isotropic materials. A discussion of influence of the fifth invariant /s on the response of the
transversely isotropic materials is presented in Merodio & Ogden (2005) under simple
deformations. Alternatively, an expression for the effective energy—density function of the
composite in terms of the properties of the phases was developed by deBotton et al. (2006),
Guo et al. (2007) based on theoretical homogenization to capture more accurately the overall
response of the transversely isotropic composite under any general loading modes.
Constitutive models of anisotropic materials reinforced by two fibers were also studied by
using the isotropic free energy function expressed in terms of 8 invariants Holzapfel (2000).
The analogy between the material description — usually based on the right Cauchy—Green
tensor — and the spatial formulation — typically in terms of the Finger tensor was proven in
Menzel & Steinmann (2002). This approach was proved successful to describe the highly
nonlinear and anisotropic behavior of biological structures as composites reinforced by two
fiber families in FEM, such as Eberlein et al. (2000), Holzapfel et al. (2000a, b), Kroon &
Holzapfel (2008), Gasser et al. (2001). The models were demonstrated to be suitable for
predicting the anisotropic elastic response of materials in the large strain domain. An
application to the modeling of orthotropic hyperelastic cylindrical thick shells under pressure
1s implemented by Haussy & Ganghoffer (2002).

Otherwise, one orthotropic hyperelastic constitutive model was proposed by Itskov
(2001) by using a non-linear extension of the orthotropic St. Venant-Kirchhoff material and it
was described in each principal material direction by arbitrary isotropic tensor function
coupled with the corresponding structural tensor. An effectual model was developed by Reese
{2000, 2003c) and Reese et al. {2001) to describe the hyperelastic behavior of pneumatic
membranes reinforced with roven-woven fiber in which the fibers are modeled by means of
truss elements.

The mechanical testing of anisotropic nonlinearly elastic solids is also a subject of
attractive interest. The results of such testing are important, in particular, for the
characterization of the material properties and the development of constitutive laws that can
be used for predictive purposes. Bischoff proposed one model (Bischoff et al., 2000) which is
derived from an orthotropic unit cell of eight representative fibers by means of the Gaussian
statistic theory and the material parameters of the model was evaluated by fitting uniaxial
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compression data (Bischoff et al , 2001). We should also note that Holzapfel & Ogden (2008)
pointed out some errors prior researchers misled and claimed that planar biaxial testing cannot
fully characterize the three-dimensional anisotropic elastic properties of soft tissues. They
explained the limitations of biaxial testing to identify the mechanical properties of anisotropic
solids capable of large elastic deformations. More about the determination of material models
for orthotropic composites from uniaxial extension tests and histostructural data can be
referred to Holzapfel (2006). In addition, an essential application for modeling the mechanical
response of arterial walls which may consist of two or more concentric layers, in which each
layer of the material is regarded as consisting of two families of mechanically equivalent
helical fibers, 1s considered by Ogden & Schulze-Bauer (2000). The nonlinear elasticity
theory to obtain general formulas for the pressure and axial load in the symmetrical extension
and inflation of a thick-walled tube is derived. Residual stress in the unloaded circular
cylindrical configuration is also included in the formulation.

For viscoelastic anisotropic hyperelastic materials a constitutive description i1s a
challenging research topic and the list of publications in this field are quite spare. Generally,
in the continnum mechanical point of view to characterize a visco-hyperelastic behavior of
anisotropic materials a Helmholtz free-energy function is used, in addition the assumption of
the free energy is decoupled in two parts: the first part describing the rate-independent
material behavior and the second incorporating time-dependent or viscous effects, for instant
see Holzapfel & Gasser (2001), Nguyen et al. (2007). An important point in developing
viscous models is the choice of the evolution equation for the internal variables which can be
taken either the inelastic strain or the overstress tensors. The formulation of evolution
equations in strain variables is based on assuming parallel multiplicative decompositions of
the deformation gradient into elastic and viscous parts, for example Diani et al. (2006),
Nguyen et al. (2007), Nedjar (2007). Whereas the description of viscous responses in
overstresses 1s considered in the recent papers of Holzapfel & Gasser (2001), Holzapfel et al.
(2001) and Kaliske (2000) by means of the split of the stress tensor into volumetric, isotropic
and anisotropic contributions corresponding to each compound of the composite materials.
All these approaches have in common that the evolution equations are formulated by means
of one of two standard viscoelastic models: Maxwell-type (Holzapfel & Gasser, 2001) and
Kelvin-Voigt-type (Pefia et al., 2007) to exhibit a viscoelastic behavior. Besides, other
approaches on the micromechanical theory for the large-deformation time-dependent behavior
of the composite can be referred to as Bischoff et al. (2004), Bischoft (2006).

Examples of finite element formulations and numerical computations for modeling
nonlinear viscoelastic response of reinforced elastomers can include the works of Holzapfel &
Gasser (2001), Areias & Matous (2008), Pefia et al. (2007) and Nguyen et al. (2007).

The comprehensive review of the basic principles, theories and equations in mechanics
and electromagnetism can be found in the paper of Pao (1978) where the corresponding
constitutive equations for solids and boundary conditions are discussed as well. Modern
consistent electromagnetic theory is presented in the recent book by Kovetz (2000) where the
complete set of laws of electromagnetism, mechanics and thermodynamics is treated.
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While the theory of magnetoelasticity 1s well-known and advanced, the theoretical
basis of most current research in the field of MS elastomers is very recent. The full system of
equations suitable for deformable MS solids in an electro-magnetic field was first considered
by Brigadnov & Dorfmann (2003) who suggested a simple energy function for isotropic MS
elastomers and derived the basic system of constitutive relations. The strain tensor and the
magnetic induction vector are chosen as the basic vanables. They presented also a numerical
simulation of the simple shear of an incompressible MS elastomer between two infinite
parallel plates subjected to a magnetic field perpendicular to shear direction.

In the recent series of papers of Dorfmann & Ogden (2003-2005) a theory of nonlinear
magnetoelasticity for MS elastomers was developed and applied to a number of simple
boundary-value problems. Other recent related theoretical works are those by Steigmann
(2004, 2009) and Kankanala & Triantafyllidis (2004, 2008). Important guidelines for the
experimentalists and for people involved in numerical simulations of MS elastomer response
can be found in further papers of Dorfmann et al. (2005) and Bustamante et al. (2006). In the
recent paper of Ottenio et al. (2008) the linearized equations governing incremental effects in
a magnetoelastic solid subject to finite deformation in the presence of a magnetic field are
derived and the tensors of magnetoelastic moduli are defined. These equations are then used
to examine the problem of surface stability of a homogeneously pre-strained half-space.

However for the most part of exact solutions to representative boundary-value
problems are idealized in the sense that they apply only to bodies of infinite extent in one or
more directions so that edge effects are not considered. The first numerical simulation of a
boundary-value problem involving finite geometry is reported by Bustamante et al. (2007). In
their paper the problem of a circular cylindrical tube of finite length that is deformed and then
subjected to an axial magnetic field is examined.

The unique characteristic of magneto-rheological elastomer (MRE) is that its shear
modulus can be continuously controlled by the external magnetic field (Gong et al, 2005).
Shearing of the cured composite in the presence of the magnetic field causes particle
displacement from their low energy state, thereby requiring additional work. This work rises
monotonically with applied magnetic field, thus resulting in a field dependent shear modulus.
It has been reported (Jolly et al., 1996) that the maximum increase in the shear modulus due
to the MR effect is about 50—60% of the zero-field modulus, depending on the matrix
elastomer. For hard elastomers like natural rubber the relative increase has typically been 30-
40%. The field-induced modulus increase is substantial even at kilohertz mechanical
frequencies (Ginder et al., 2002). Such properties make MREs promising in many
applications 1n automotive industry as variable stiffness suspension systems and active
damping components (Carlson & Jolly, 2000, Albanese-Lerner & Cunefare, 2008; Kalio et
al., 2007, Deng & Gong, 2007).

In this thesis, the viscoelastic behavior of the isotropic as well as anisotropic rubber-
like materials is studied in the continuum mechanical theory by means of the free energy
functions which are proposed in Chapter 3. The constitutive equation which interrelate the
stress components and the strain components within a nonlinear regime can be found in
section B.1 of Appendix B, more details see also, for example, Holzapfel {(2000) or Truesdell



Chapter 2. Overview of literature

& Noll (1992). The viscoelastic models of the anisotropic materials depending on the choice
of internal variables and evolution equations are summarized in section B.2 of Appendix B.
Evolution equations of overstresses proposed by Holzapfel & Gasser (2001} in the theory of
linear viscoelasticity is quite simple to utilize for evaluating material parameters by
experimental performances and implementing numerical simulations in FEM. However this
model is believed in not credible the general problem of large deformations and large
perturbations away from thermodynamic equilibrium, such as full thermo-mechanical
coupling or high strain rates. Therefore, for this reason, the nonlinear viscoelastic model
proposed by Nguyen et al. (2007) is also given.

The constitutive formulation of magnetic and mechanical equations for MS elastomers
is provided in series of recent studies by Brigadnov & Dorfmann (2003) and Dorfmann &
Ogden (2003-2005). These governing equations are summarized briefly in section 6.1 of
Chapter 6. Specially, the influence of the magnetic field on the mechanical stress in the
deforming body is incorporated through a magnetic stress tensor instead of through magnetic
body forces included to the mechanical equilibrium equation, because the resulting total
Cauchy stress tensor has the advantage of being symmetric, it can be referred to Dorfmann &
Ogden (2004). The magnetic induction vector B and the magnetic field vector H are regarded
as fundamental field variables and defined by the total free energy function.

10



Chapter 3

FREE ENERGY FUNCTIONS AND CONSTITUTIVE RELATIONS FOR
EQUILIBRIUM AND VISCOELASTIC RESPONSE OF RUBBER-LIKE
COMPOSITE

An overview of the theory of modelling of anisotropic composites with rubber-like
matrix is presented in the Appendix B of this thesis. General constitutive relations are derived
there on the basis of a free-energy function ‘¥ and evolution equations for internal strain-like or
stress-like variables are given. Hence, the aim of this chapter is to specify several appropriate
forms of strain-energy functions within the constitutive theory of finite hyperelasticity and
viscoelasticity and to derive constitutive relations of stress response in two dimensional
problems, namely simple tension, pure shear and biaxial tensile deformations. In the first two
sections of this chapter we present several free energy functions and constitutive relations for
the equilibrium response of isotropic and anisotropic material. In the third section we introduce
the numerical formulation of the evolution equations for stress-like and strain-like nonelastic
variables.

3.1. Free energy functions

In particular, a selection of representative examples of the equilibrium part Weq of free
energy function (B.2, B.4) within the isothermal regime is presented to describe each
contribution (volumetric, isotropic and anisotropic isochoric) which allows to model an
isotropic rubber-like material and a composite in which a rubber-like matrix material is
reinforced by families of fibers.

3.1.1. Volumetric free energy function
Since we consider only incompressible composite materials hence the volumetric part
of the free energy function may be chosen in the following form Holzapfel (2000)

P = p(J-1) (3.1)

vl

where p is the Lagrange multiplier that can be determined from the equilibrium equations and
the boundary conditions.

11
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3.1.2. Isotropic (isochoric) free energy functions

Neo-Hookean model The strain energy function of neo-Hookean model is the simplest
form of the isotropic free energy function which is expressed in a term of the first principal
invariant 7, , defined by (B.13),, refer to PoZivilova (2002)

W2 = 1y (1,-3) (32)

130

where the shear modulus is defined by g =24,,, .

Mooney-Rivlin model The Mooney-Rivlin model is often employed in the description
of the behavior of isotropic rubber-like materials. The strain energy function of this model is
expressed in terms of the first two principal invariants 7, and 7, of the modified right Cauchy-
Green tensor C, refer to (B.3) and (B.13)

Yo = v (Tl _3) * g, (fz _3) (3.3)

where 1, and p,, are the material constants of Mooney-Rivlin model (Holzapfel, 2000).
The shear modulus is defined by y = 2( My + e, ) _

A general form for strain energy function of incompressible rubbers attributable of
Mooney-Rivlin can be extended as an infinite series in terms of 7, and 7,

pEe - iZcm (I,-3)"(7,-3)" with ¢,=0 (3.4)

=0 p=0

where ¢, are material constants, Hartmann (2001).

Ogden model The Ogden model (Holzapfel, 2000) with a strain energy function
formulated in terms of principal stretches A4, A, and A, has shown to be of grate accuracy in
spite of a relatively complicated numerical realization In which A°, 1 and 1. are well-
known as the eigenvalues of the symmetric tensor C. It was built originally for incompressible
materials where 44,4, =1. Ogden proposed the strain energy function of the principal
stretches A, (a =1, 2, 3) in the form

WEe e (77 7) =3 M (R 4 A 4 2 -3) (3.5)

r=1 ar

where N is a positive integer determining the number of terms in the strain energy function, g,
are material constants (shear moduli) and ¢, are dimensionless constants (determined by
experiments), ¥ =1, ..., N.

For consistency with linear theory the parameter ¢ denotes the classical shear modulus

and material constants i, and ¢, are related by

N
H= %Z 1o, with ua, >0 (3.6)
#=1

12
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The neo-Hookean model is considered as a special case of Ogden model with ¥ =1,
o, =2, we have

W = g, (AP + A+ A -3) (3.7)

L=

where the constant u,,, = %

The Mooney-Rivlin 1s referred to a special case of Ogden’s model for incompressible
materials which obtain by setting N =2, o, =2, o, =2

oo = g (’le + A_'*.E + A_'sz - 3)"‘)&%32 (;'_'l_2 ""1_'2_2 + A_'s_z _3) (3.83)

3.1.3. Anisotropic (isochoric) free energy functions

The component of strain energy function for anisotropic properties is related to the free
energy stored in fibers. Since I, and I, given by (B.13); and (B.25);, equal the square of
stretches in two fiber directions (Holzapfel, 2000}, for simplicity, the anisotropic free energy is
only considered as a function of these two invariants.

The simplest form of the anisotropic free energy is as a polynomial fuinction of pseudo-
invariants (Nam, 2004)

anf

E‘Q_ﬁ 7 0y
¥ _2(14 1) (3.9)

(for one fiber-reinforced composites).

k = 1 k- -
b &5 :?1(14—1) +7‘(15-1) (3.10)

(for two fiber-reinforced composites).

On the other hand the energy stored in the fibers is also assumed to be governed by an
exponential function, Holzapfel & Gasser (2001), and given in the forms

k - 2
lI’E(':.':—l{ex [k,. I, -1 ]—1} 311
TR (T-1) (3.11)
(for one fiber-reinforced composite materials).
"ngzﬁ{exp[ka (. —1)2]—1}+k—3{exp[k (7. —1)1—1} (3.12)
i 2k2 2 3 2]{4 3 &

(for two fiber-reinforced composite materials).
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3.2. Equilibrium stress responses in plane-stress deformations

In order to provide a fundamental theory for evaluating material parameters equilibrium
stress expressions need to be defined explicitly. Herein principal stress responses of both
isotropic and anisotropic materials in plane stress are formulated in terms of principal stretches
undergoing some basic deformation states, namely simple tensile, pure shearning and biaxial
tensile deformations. For two fiber-reinforce (anisotropic) composite the arrangement of the
fibers in the deformation plane are assumed to be symmetric with respect to loading directions,
it means the principal stress directions and the principal stretches are identical.

According to Holzapfel (2000), the principal stress can be defined from the free energy
function in terms of principal stretches as follows

o3 =A f— a:1,2,3 313
Y p ( ) (3.13)
- For isotropic materials;
= 0¥,
G = tse _ 3.14
« =M Ton P (3.14)
- For anisotropic materials;
(¥, ¥
o :A’ fse 4 ami | _ 315
‘ (a;t oA, J P G139

but since the arrangement of the fibers in the plane strain the third principal stress is out of the
plane strain and independent on the anisotropic components so that

.= A —_p=0 3.16
,= A an P (3.16)
leads to
p:_% (3.17)
oA,

where the constraint of incompressible materials is fulfilled by 41,4, =

3.2.1. Isotropic rubber-like materials

Relationships of isotropic invariants to principal stretches are given by

A
A7

"“"'I

T (3.18)
e |

-

Using (3.14), (3.17) and (3.18) we obtain explicit principal stress expressions as

-7
=7 B S Ry

14
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- Neo-Hoockean model:

(3.19)
= 1
g, = 23” NH - Ig _Ag
- Mooney-Rivlin model:
2y 72 1
G, :2(1”;\4}21 +ﬂ;\m2’12 )(’11 - /.l—'lg —3}
(3.20)
23| 72 1
G,= 2(:“;\4}21 + g, A ) >~ FE
- Ogden model:
N —u 1
J] =Z)ur J’l T _ariar
- A (.21)

N - 1
g, = fur ;L:‘xr T Faaa
=2 [ A A J

Note, however, that the first and second principal stresses of simple tensile and biaxial
tensile deformations in plane stress problems can be defined by the expressions (3.19) + (3.21),
whereas for the pure shearing deformation is merely a special case as setting 1, =1.

3.2.2. Composites reinforced by two families of fibers

The properties of two families of fibers are assumed to be identical. The fiber
orientations compared to the first principal direction are defined by angles ¢. Then the pseudo-
invariants 7,, 7, are given by

I,=I.=17cos’ ¢+ sin’ ¢ (3.22)
When the decomposition of the stress into i1sotropic and anisotropic parts is used we

have

Gk = Gf'sok + Gam'k (k= 1 .12.13) (3 23)

here the isotropic components of the principal stresses &, are defined to be identical for the
1sotropic materials such as expressions (3.19) - (3.21).

The expressions of the anisotropic principal stresses are defined by the chosen
anisotropic energy function, particularly for the anisotropic energy functions are

- Polynomial function (3.10):

15
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o, =M (74 - 1) cos” @
= (3.24)
O iz = AR ([4 - I)Sin2 ¢
- Exponential function (3.12):
Oomt =4, exp[ o (T, 1) (T, -1) 7 cos” g
(3.25)

c,., =4k, exp[k2 (Z - 1)2](1_4 - 1) Alsin® ¢

It can easily realize that at small deformation, i.e. Z — 1, the stress response in the
exponential form (3.25) is coincident to the response (3.24).

3.3. Non-equilibrium stress responses

Since the total stress is decoupled into equilibrium and non-equilibrium parts, then next
task is to indicate how to calculate the non-equilibrium stress from evolution equations of
internal variables. Herein, we will present solutions of non-equilibrium stresses for two
approaches through overstress or inelasti¢ strain tensors as internal variables.

In a finite-element framework, the time integration of the evolution equations for the
internal variables is performed at the integration point level. At time ¢, =7, + A?, the updated
variables are evaluated assuming that the values of all variables at previous time ¢, are known.

3.3.1. Solution of evolution equations for overstresses

For the formulation of viscoelastic responses in overstresses, the non-equilibrium stress
contribution is able to be integrated directly from evolution equations (B.32), in which
equilibrium isochoric stress contributions Sif;)‘T are defined from the equilibrium 1sochoric parts
of the free energy function. The closed form solution of the linear evolution equation is given
by the convolution integral and the recurrence update formula (Holzapfel & Gasser, 2001) for

the internal stresses

Q. =exp(-T/2,, Q%+ [ exp[~(T-1)/z,, ] BL.S e (1) (3.26)
fora=1,...m, and a=12,4,...,8.
(Q..), =exp(26..)(Qu.) +ep(..) B[ (52.), - (50.), | (3.27)

with £, =—-At/27, and Ar=1 1.
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3.3.2. Solution of evolution equations for inelastic strains

The approach of viscoelastic responses in inelastic strain variables can derive the non-
equilibrium stress from the non-equilibrium contribution of the free energy function, equation
(B.9),. Therefore the integration of the isotropic evolution equation (B.39) for C, of the
matrix and the anisotropic evolution equation (B.42) for C.. of the fiber phase is required.

The time discretization of evolution equations for C;, and C} is applied to give
nonlinear equations for the updated values as follows

(C),., —280(Vy)), (L), -(C5,), =0 (3.28)
(Cr),, —284(Vi'), (Tr),.,—(C7), =0 (3.29)

where V!, T,, are defined by equations (B.40) and (B.41) for the matrix phase and V', T,

are defined by equations (B.43) and (B.44) for the fiber phase, respectively. More in details for
the solution algorithms it can be referred to (Nguyen et al, 2007).
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Chapter 4
EXPERIMENTS AND MATERIAL PARAMETER IDENTIFICATION

4.1. Experimental equipments and specimens
4.1.1. Universal testing machine TIRAtest 2810

The TIRAtest 2810 machine (Figure 4.1) can be used for routine tests and
investigations by tension, compression and bending with a high level of technology, accuracy
and exact measuring results in the shortest time. The maximum of loading is applied up to
10kN. The machine is controlled by either the remote control unit EDC60/120 box or the
“PC-control” mode using the “TIR Atest” software (Figure 4.2).

'Egén@ - mgﬂaiﬁ.?»ﬁ{:' :

Figure 4.1 — Universal testing machine Figure 4.2 — The main window application of
TIR Atest 2810 TIR Atest software

4.1.2. Biaxial testing equipment

The biaxial testing equipment (Figure
4.3) fabricated for testing textile materials
therefore has a low capacity of 300N in each
perpendicular direction and only in tension. A
biaxial specimen @ is fixed by a set of clamps
@. Applying load is turned by the screws @
which are connected to the test frame @ for a
requirement of a symmetric strain distribution.
The values of the forces are measured by two
force sensors @ that can transmit a signal via the

cables ® to a computer. Figure 4.3 — Biaxial testing equipment
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4.1.3. System Q-400 digital cameras Dantec Dynamics

The Digital Image Correlation System is an optical instrument for full-field, non-
contact and three-dimensional measurement of deformations and strains on components and
materials. We use the system with two high resolution digital cameras (Figure 4.4) to record
surface changes of the object under investigation while loaded. The recorded images are
analyzed and compared by a special correlation technique which allows the determination of
the surface displacements with high local resolution. The measuring principle of the Q-400
system is based on digital image correlation. More details of the correlation technique are in
the chapter seven of the PhD thesis of Nam (2004).

Figure 4.4 — Digital cameras Figure 4.5 — Main window of Istra 4D software

The “Istra 4D” software (as shown in Figure 4.5) is designed for controlling the
measurement system Q-400 and for evaluating the data. To use this software we must obey
the following steps:

Step 1: Activation of Hardware. This step is used to connect the cameras to the
controlling program.

Step 2: Calibration of Cameras. A calibration target is chosen that the image must
be filled as much as possible. The calibration target must be in the focus of both
cameras. It could be necessary to adjust the intensity.

-

Step 3: Acquisition of Images. We can capture images either by manual
acquisition or by trigger signal acquisition.

Step 4: Evaluation. We do successively a chain of operations including: start a new
evaluation, select the evaluation settings, create a mask, search of start points and
perform the evaluation.

Step 5: Visualization, in order to display results in graphics and analyzing and
export data by the Gauge method.
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4.1.4. Specimen preparation

We prepared several specimens cut from both isotropic “E-Styrene-Butadiene” rubber-
like materials and “Nitrile-Butadiene” rubber-like matrix composites with two families of
viscose fiber reinforcements for tensile, pure shear and biaxial tests. The shapes of
experimental specimens are shown in Figure 4.6, namely for tensile and pure shear tests the
specimens have a rectangular shape whereas the biaxial specimen has a cruciform shape. The
interest regions of the specimens are marked randomly by white-painted points that are
recorded by video extensiometry to evaluate the deformation and strains by means of the
image correlation method as mentioned above.

Figure 4.6 — Shapes of specimens for simple tensile, pure shear and biaxial tests

4.2. Experiments and identification methods
4.2.1. Experimental descriptions

All the tests are performed at a room-temperature about 20°C with isothermal
conditions. First for excluding a Mullins effect on the behavior of the material during the test
we have performed a preconditioning of all the samples by cyclic tests about eight times
loading and unloading, an illustration of Mullins effect shown in Figure 4.7. As can see after
the first cycle the Mullins effect is nearly eliminated.

After excluding the Mullins effect the specimens are kept in a stress-free state within 2
to 3 hours before relaxation tests are performed. In order to determine all viscoelastic
characteristic of materials, a driven displacement is set-up with many steps to control the tests,
namely velocities in loading stages are constant up to Imm/s and then during each relaxation
process the displacement is held constantly for 15 minutes.

For simplifying numerical estimations three assumptions are issued as follows
- Load is applied suddenly.
- Time in a relaxation process is long enough.

- Strain is unchanged throughout a relaxation process.

Z1
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Figure 4.7 — Mullins effect in cyclic tests

Due to the form of the specimen and its boundary conditions during the test are
symmetric. We assert that the stress and strain measured in the loading direction are the
principal stress and strain respectively. In the second assumption the forces at the end of
relaxation processes will play a role as the equilibrium forces. Furthermore the stress
distribution in the central region of specimen is supposed to be uniform. The principal Cauchy

stress is therefore defined by

o, =£ (4.1)

A,

where 4, F, are the principal stretch and the applied force, respectively, along to the
measured direction and A, is the initial cross-section area perpendicular to the load 7.

Figure 4.8 — Strain evaluation by the image correlation
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Owing to the third assumption, it is only necessary to capture an image of the
undeformed specimen as a reference image. Another image of the deformed specimen at the
end of each relaxation process 1s also taken to evaluate the strains by the image correlation
method. Figure 4.8 illustrates an evaluation of a strain spectrum.

4.2.2. Identification methods

In order to simulate precisely a viscoelastic characteristic of isotropic rubber-like
materials as well as fiber-reinforced composite materials we need to show which model the
best 1s to recur completely the working ability of these materials. For fulfill this desire we
start from a numerical evaluation of constant material parameters concerning the model by
experimental data.

Every numerical evaluation is divided into two main steps including
- Estimate constant elastic parameters of composites.
- Estimate constant viscoelastic parameters of composites.

The number of the elastic parameters needs to be estimated depending on a chosen
model by means of the free energy function. We have postulated the decomposition of the

free energy into volumetric and isochoric parts, 1.e.
lP = vaoI + le'so (42)

For anisotropic composite materials the isochoric free energy is additionally split into

isotropic and anisotropic (isochoric) parts, therefore
lP = leJf + lP:'so + “Pam' (43)

An additional assumption of all the composite materials is incompressible, 1.e. the
constraint J =1, hence the volumetric part can be chosen in the following form (3.1).

The 1sotropic (isochoric) component of free energy function may be involved by the
strain energy function of Neo-Hookean (3.2), Mooney-Rivlin (3.3) or Ogden (3.5) models.

The anisotropic (isochoric) part of free energy function for fiber-reinforced composites
is used to relate to the fiber stretches referred to as a polynomial function of two pseudo-
invariants 7, and I, equation (3.10). Herein the two fiber families are assumed to exhibit the
same mechanical properties.

The explicit expressions of the principal Cauchy stresses in the plane deformation are
derived in the previous chapter.

For estimating the viscoelastic parameters the linear viscous Maxwell model is used,
in which only one element represents a viscous response of the isotropic material and two
elements represent separately viscous response of the matrix and fiber phases for fiber-
reinforced composites. We suppose that the overstress can be expressed in a Prony series,
particularly
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N
0 T
q=2 qe (4.4)
=1
where N=1 is for the isotropic materials and N=2 is for the fiber-reinforced composites, 7, is
relaxation time and ¢, are initial overstresses determined at the beginning 7 =0.0" .

We consider the first assumption of suddenly applied load because it determines the
initial condition of the overstresses. Let us observe a standard Maxwell element, as shown in
Figure 4.9. When a load is applied suddenly it means that the stretches of the elastic springs
are identical, therefore

E;>0 —> €
AAAAAAA and
o Cioa = L€ (4.6)
—. ———
B 5 Na>0 then
— MWW =720tk = o, ()
—_— a

Figure 4.9 — A standard Maxwell element

Substituting equation (4.7) into equation (4.4) we have explicit expressions of

overstresses needed to be evaluated as follows
t

q = ﬁ:’.s-ogiif)e e (48)
for the isotropic materials, and

t t

g=PB.c% » +B. o (4.9)

1507 180 am T oam

for the anisotropic materials.

These elastic and viscoelastic parameters are classified into 2 types which are linear
and nonlinear coefficients. The linear coefficients can be evaluated immediately by using the
linear least-square method to fit a linear model to data. An effective operator in Matlab which
is the backslash operator “\” is used to solve a system of linear equations for these unknown
coefficients. On the other hand, nonlinear models are more difficult to fit than linear models
because the coefficients cannot be estimated using simple matrix techniques. Instead, an
iterative approach is required by using an available function as “Isqnonlin”. More details for
estimating processes it can look at Appendix D.

4.3. Isotropic composite materials

First we will begin evaluating material parameters of the viscoelastic isotropic rubber-
like materials via basic experiments, namely simple tension, pure shear and biaxial tests.
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4.3.1. Simple tension

The controlled displacement is set-up as presented in Figure 4.10 including 14 loading
steps. The displacement in each step is increased by 15 mm up to total displacement 210 mm,
each relaxation process lasts 900s.

250 T T T

(]
=
=]

W
[=]

Controlled Displacement u [rmim]
=
a

Lo
[=]

| | i
] 2000 4000 B000 a000 10000 12000
Tima t[g]

Figure 4.10 — Controlled displacement in the simple tensile test

Apllied Force F [N]

i i i
0 2000 4000 RO00 a000 10000 12000
Time t[g]

Figure 4.11 — Applied force in the simple tensile test

The force in the simple tensile test is shown in Figure 4.11. From the measured force
the first principal Cauchy stress can be defined in equation (4.1). We obtain 14 value sets of
stretches and stresses in the equilibrium state.

By using the fundamental theory mentioned in equations (3.19) + (3.21), the
evaluation results for chosen elastic models are depicted in Figure 4.12. The evaluated elastic
coefficients and corresponding residual estimations are listed in Table 4.1. As it can be seen
the Ogden model with 2 terms (corresponding to 4 material parameters) describes the
equilibrium behavior of isotropic materials well.
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Figure 4.12 — Estimation of elastic coefficients of the isotropic material by a simple tensile

test with different models

Table 4.1 — Elastic coefficients of the isotropic material by the simple tensile test

Model

Neo-Hookean Mooney-Rivlin

Ogden

Material coefficients

c; =0,3441 MPa

c=03678MPa | ' _ 0407 MPa

W = 0,5428 MPa; o, = 2,25
1, = 0,00056 MPa; o, = 7,99

Shear modulus

pn=0,7356 MPa p = 0,6883 MPa

w=0,6115 MPa

Error

(XA,

/> y*100%)

5.73% 6.84%

0,89%

For evaluating viscoelastic material coefficients neo-Hookean and Ogden models are
used for representing the behavior of the isotropic material, the viscoelastic response is
modeled by one Maxwell element. Using expression (4.8) to fit the model to the experimental
data the results are presented in Figure 4.13, the viscoelastic coefficients are found out as in

Table 4.2.

Table 4.2 — Viscoelastic coefficients of the isotropic material by the simple tensile test

Model Neo-Hookean Ogden
Relaxation time t=114,2 [s] 7=118.9 [s]
Scale coefficients £=0,278 £ =0,293
Residual (Z|Ay,. 2) 40,3403 7.4678
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Figure 4.13 — Estimation of viscoelastic coefficients of the isotropic material by a simple
tensile test with neo-Hookean and Ogden models

4.3.2. Pure shear test

Pure shear strain state was obtained by using a rectangular sheet about 30mm high and
2,9x220mm” section subjected to uniaxial displacement. Figure 4.14 signifies the controlled
displacement with 9 steps, the increasing displacement in each step is 1,5mm. The applied
force is measured as in Figure 4.15. Due to a special shape of a specimen the width is much
larger than the height (5//~7,5) so that the second principal stretch during the test is close
to 1, as illustrated in Figure 4.16.

Controlled Displacement u [mm]

i i i i i |
0 1000 2000 3000 4000 5000 6000 7000 000
Timat [5]

Figure 4.14 — Controlled displacement in the pure shear test

Since A, =1 the Mooney-Rivlin is coincident with the neo-Hookean model, hence we
only use neo-Hookean and Ogden models for estimating elastic coefficients, in which Ogden
models are applied with one and two terms corresponding to 2 and 4 parameters, respectively.
The estimation is shown in Figure 4.17, whereas the elastic coefficients are collected in Table
4.3. We can realize that the Ogden model with 4 parameters describes the equilibrium of the
isotropic material quite adequately.
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Table 4.3 — Elastic coefficients of the isotropic material by the pure shear test

Model Neo-Hookean | Ogden’s 2 parameters Ogden’s 4 parameters
: : =0,3161 MPa =-0,0001 MPa; o, =-15.41
Material coeffi =0,2537 MP R M=t = °
aterial coctlictents | ¢=0, a o = 2,84 .= 64,776 MPa; s = 0,016
Shear modulus u=0,5074 MPa w=0,4483 MPa u=0,5054 MPa
Error
6,02% 4,91% 3,09%

(Xla,

/> y*100%)

The estimation of viscoelastic material coefficients by means of using different models
for representing the purely elastic behavior of isotropic materials is presented in Figure 4.18.
The viscoelastic coefficients are summarized in Table 4.4.

-s=--==- EXperiment

L
Neo-Hookean ; J ‘\%&_

The firstprincipal stressa, tPa)

i i i i i
0 1000 2000 3000 4000 5000 gooo 7000 €000
Timet[s]

Figure 4.18 — Estimation of viscoelastic coefficients of the isotropic material by a pure shear
test with neo-Hookean and Ogden models

Table 4.4 — Viscoelastic coefficients of the isotropic material by the pure shear test

Model Neo-Hookean Ogden
Relaxation time 7=135,4 [s] 7=153,9 [s]
Scale coefficients B =0,16 B =0,003

Residual (Z|Ay,. 2) 2.7875 07707

4.3.3. Biaxial tensile test

By utilizing the biaxial testing apparatus we can control simultaneously the
deformation of specimen in two perpendicular directions step-by-step displacement, the
equilibrium force is measured after a relaxation in 10 minutes and the corresponding strains
are evaluated quite precisely by the two digital cameras.

Three material models that are neo-Hookean, Ogden with 2 parameters and Ogden
with 4 parameters are used for estimating constant material coefficients. The estimation
results are shown as in Figure 4.19. However, the four calculated parameters of Ogden model
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were useless as they did not fulfill the condition (3.6);. The elastic coefficients of the
remaining models are estimated in Table 4.5.
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Figure 4.19 — Estimation of elastic coefficients of the isotropic material by a biaxial tensile
test with different models

Table 4.5 — Elastic coefficients of the isotropic material by the biaxial tensile test

Model

Neo-Hookean

Ogden’s 2 pars

Ogden’s 4 pars

Material coefficients

¢ =1,0240 MPa

1w = 1,0917 MPa
o =3.86

Shear modulus

W = 2,0480 MPa

1w =2,1076 MPa

Error

(Xla,

/3 y*100%)

3,09%

2,82%

In fact the shear moduli of the same material evaluated by different experiments
should be identical. However the shear modulus evaluated by the biaxial tensile test is much
bigger than by the other experiments, there are two possible reasons: A subjective reason is
caused by the imperfect form of the specimen, specifically the effective cross-sectional area
of the specimen arms. This effect can be eliminated by slits made in each of arms as
recommended in Kuwabara et al. (1998).

4.4. Fiber-reinforced composite materials

Due to the restriction of the biaxial apparatus is discussed above and since fibers of the
composite are cut into short segments for simple tensile test. Hence only a pure shear test is
performed for the fiber-reinforced composite material. We implement experiments for
composites reinforced with different fiber angles as 30°. 40° 50° and 60° in multi-step
relaxations, in which rectangular sheets with 30mm high and 4,5x220mm cross section. The
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values of forces and strains measured at the end of each relaxation process are considered
equivalently as the equilibrium quantities.

In this section only neo-Hookean model is used to describe elastic behavior of the
matrix, whereas the polynomial function (3.10) of the anisotropic energy component is used
for representing anisotropic behavior of fibers. The evaluation result is shown in Figure 4.20,
elastic coefficients are identified as follows: shear modulus g =3,5MPa , anisotropic
constant £ =8,73MPa . The numerical results are in good accordance with the experimental
data.

The first principal stressc, MPa]

1.02 1.04 1.06 1.08 11 1.12 1.14
The first principal stretch :"l.1

Figure 4.20 — Estimation of elastic coefficients of the composite reinforced with different
fiber orientations by a pure shear test

For describing a viscoelastic behavior of fiber-reinforced composites a Maxwell model
with two elements is used, therefore overstresses can be expressed in a Prony series by
equation (4.9). Since the elastic material parameters were evaluated in the first stage, the
equilibrium isotropic and anisotropic stress components are already defined. Applying an
iterative approach by means of the nonlinear least-square method in Matlab the estimation
result is shown in Figure 4.21 with calculated viscoelastic coefficients as follows

B, =0,06; T = 26978
B 50112 T..=54 §
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Figure 4.21 — Estimation of viscoelastic coefficients of the composite reinforced with
different fiber orientations by a pure shear test
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We see that the estimated curves are quite close to experimental data. The viscoelastic
coefficients were assumed to be constant in our simple formulation. However, it is believed
that rate-dependent models with constant parameters cannot represent well the experimentally
observed rate-dependent phenomena of rubber and rubber composites (Amin et al, 2006).
There is a future task to generalize the models and to introduce a dependence of the
parameters, for example, on stress, on deformation or on some internal variables. On the other
hand, simple models have the advantage that their material parameters can be identified by
classical experimental tests and their material equations are well suited to be implemented
into computer programs for structural analyses as e.g. finite element programs.
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Chapter 5
NUMERICAL SIMULATIONS OF VISCOELASTIC COMPOSITES

In this chapter we will devote to represent some numeric simulations of hyperelastic as
well as viscoelastic behavior of composite materials. The main goal is to verify the
performance of constitutive viscoelastic models presented in previous chapters associating
with the material parameters determined from the evaluation of experiments.

5.1. FEM implementation in COMSOL Multiphysics

The Finite Element Method (FEM) is applied for numerical analysis of viscoelastic
fiber-reinforced composite implemented in Comsol Multiphysics which is a scientific and
CAE design analysis software environment for the modeling and simulation of any problem
of physics described by system of partial differential equations. This software allows the easy
modifications or the new definitions of constitutive equations after any user convenience and
its main feature is a possibility to solve simultaneously coupled physic problems.

We use the Structural Mechanics Module in combination with PDE modes, in which
the Structural Mechanics Module is used to compute a quasi-static behavior of structure
whereas the PDE modes are added for the integration of evolution equations of the viscous
response that can be referred to section C.1 of Appendix C.

Instead of the common approach, using the conjugate pairs second Piola-Kirchhoff
stress and Green-Lagrange strain, Comsol uses the first Piola-Kirchhoff stress P and its
conjugate strain the displacement gradient Vu. The reason for this is to utilize the capability
of Comsol Multiphysics to automatically differentiate an expression, thus making it easy to
modify only the strain energy function. The first Piola Kirchhoff stresses are calculated as

o
P=— 5 (5.1)

The Cauchy stress ¢ and the second Piola-Kirchhoff stress S can then be calculated
from the first Piola-Kirchhoftf stress by equations (A.33) and (A 34).

Additionally, materials that are nearly incompressible cannot be solved using only
displacement variables. The remedy is to introduce the pressure p as a dependent variable.
The hyperelastic material model supports both the normal displacement-based formulation
and the so-called mixed formulation that includes the pressure.
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The definition of the free energy function can be modified directly in a “Swbdomain
Settings — Equation System” table as shown in section C.3 of Appendix C, hence it is easy to
define the suitable free energy function corresponding to the chosen model. The constitutive
equations as well as the evolution equations can be expressed in the scalar expression table
(see sections C.2 and C .4 of Appendix C).

When we study the relaxation problem, a load at the beginning is applied
instantaneously, hence we can choose between two approaches: Either the load is applied over
a short period of time in the beginning of the time stepping, or a separate static analysis is
used for obtaining the initial conditions. However, as the latter method is used for the loading
stage, 1.e. the load is understood implicitly to be applied suddenly, therefore it will be
necessary to create correct initial conditions for the internal variables.

Triangle meshing elements are used for all the simulations in 2-D problems. In
addition, an incremental nonlinear Newton-Raphson solution algorithm 1s used to solve the
quasi-static boundary value problem. In order to generate a controlled loading with one- or
multi- step values suitable to relaxation and/or creep simulations we use the function
definition as mentioned in section C.5 of Appendix C.

5.2. Isotropic (hyperelastic) rubber-like materials

In this work the isotropic rubber-like materials are assumed to be incompressible and
able to suffer a nonlinear large deformation that the purely elastic behavior can be described
independently by the free energy function, herein neo-Hookean (3.2) and Ogden (3.5) models
are used for equilibrium responses. The values of material parameters used in simulations are
given in Table 4.1 and Table 4.3,

5.2.1. Equilibrium stress-strain responses

In order to compare numerical and experimental results we will consider two basic
problems that have been presented in the previous chapter, namely the simple tensile and pure
shear deformations, both of them are studied in quasi-static plane-stress states for isotropic
materials.

A schematic sketch of these deformations is depicted in Figure 5.1(a). The thickness
of the material 1s 2,9mm. Due to both the geometries of the body and the loading conditions
are symmetric so the symmetric model and loading conditions are used to solve. The finite
element (FE) models are shown in Figure 5.1(b). In the both simulations the displacement is
controlled at the boundary of the body, for the simple tension case the extension increases up
to 167% whereas for the pure shear the maximum extension is 80%.
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Figure 5.1 — Geometries and FE models in simple tension and pure shear deformations
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Figure 5.2 — First principal stress versus stretch of simple tension deformation
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Figure 5.4 — Stress distribution of simple tension and pure shear
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The relationships between the principal stress and the principal stretch at a center of the
body by means of using neo-Hookean and Ogden models are compared to the experimental
data of pure shear and simple tension deformations as shown in Figure 5.2 and Figure 5.3,
respectively. The agreement between the numerical results and the experimental data is very
good for Ogden’s model, nevertheless neo-Hokean model gives good results in the range of
small deformations as well.

The distribution of Von Mises stress at large deformations for both simple tension and
pure shear states are displayed in Figure 5.4. The state of stress is homogeneous in the whole
specimen except at the specimen boundary where the stress concentration is evident owing to
the boundary conditions.

5.2.2. Viscoelastic behavior of isotropic materials

In this section we only consider the simple tension problem in order to investigate
some viscoelastic responses, particularly effect of loading rates, one- and multi- step
relaxations and prediction of creep will be presented. The neo-Hookean model is used to
describe the pure elastic behavior of material whereas the evolution equation of overstresses
formulated by using Maxwell’s model with one spring-dashpot element to represent the
viscous characteristic of isotropic material governing the viscous behavior. The chosen
material parameters are inferred from the fitting of the experimental data, namely as follows:
Shear modulus w=0,7MPa, viscous constant coefficient #=0,27 and the relaxation time
r=115s.

5.2.2.1. Effect of loading velocities

The strip of filled rubber of dimensions 60x24,4x2,9 mm® is loaded in tension by a
series of velocities v=1/12, 1/6, 3, .. mm/s. The applied load is controlled by a displacement
of specimen boundary up to the extension 100% with different loading velocities. The results
of numerical simulations are compared with the experimental measurements in Figure 5.5.
We can realize that the stress increases together with the increasing loading rate owing to the
viscoelastic behavior. It means that the stress-strain responses are significantly different due
to a viscous material behavior relating to a loading velocity. This coincides with an
experimental observation in practice. In addition, the stress curves corresponding to the cases
of the infinite loading velocity and no including viscous behavior are upper and lower bounds,
respectively.
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Figure 5.5 — Stress-strain response at different loading velocities
(points denote experimental data, solid lines denote numerical results)

5.2.2.2. One-step and multi-step relaxations

Next we simulate a relaxation of isotropic rubber strip of dimensions 60x24,4x2,9
mm?® undergoing a simple tensile test in a sufficiently long-standing period. The controlled
displacement is applied suddenly at different extensions as 20, 40, 60, 80 and 100%, after this
stage the displacement is kept constant in course of the relaxation stage. The deformation and
the distribution of Von Mises stress by applied different extensions are shown in Figure 5.6.
The time dependency of the total Cauchy stress and the viscoelastic part of stress so-called
overstress at different stretches are plotted in Figure 5.7. It can be easily realized that after a
sufficient holding time the overstresses go to zero and that the stresses reach their equilibrium
values. Further, the larger is the stretch the higher is the initial overstress.

Ext. 20% Ext. 40% Ext. 60% Ext. 80% Ext. 100%
Figure 5.6 — Deformation of isotropic materials in a simple tension at different extensions
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Figure 5.9 — Displacement and Cauchy stress of simple tension in multistep relaxations

The distribution of the Von Mises stress at different times is shown in Figure 5.8. At
time t = 0.0" corresponding to the beginning of the relaxation process the body is deformed by
the sudden load, after t = 900s the stress can be identified to be decreasing significantly
fluctuating around 20% with respect to the beginning of stresses.

The next simulation is a simple tension where the displacement is set up with three-
loading steps in which the loading velocities in every increasing load stage are 3mm/s. The
Cauchy stress in the multi-step relaxation is shown in Figure 5.9.

5.2.2.3. Prediction of creep process

As the controlled load is replaced by a force that is held constantly in a sufficient long
time period we have a creep process. Figure 5.10 represents the controlled force and the first
principal stretch response of simple tension in a creep, as we can see during the creep the first
principal stretch goes to be close to the equilibrium value. The difference between
experimental and numerical results is quite significant due to the simplification of chosen
viscous model only as a linear viscous model.
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Figure 5.10 — Controlled force and displacement of simple tension in a creep

5.3. Fiber-reinforced composites
5.3.1. Equilibrium response of fiber-reinforced composite in pure shear

A pure shear deformation of two symmetrically fiber-reinforced composites is
considered in this subsection in order to compare to the experimental result. As can be seen in
Figure 5.11, due to the geometry of the material as well as the loading conditions are designed
to be symmetric therefore only a quarter of the body is computed and the symmetric boundary
conditions are applied. The fibers are arranged symmetrically with respect to the loading
direction and inclined by an angle ¢. The dimensions of the plate are 220x20x4,5mm’.
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Figure 5.11 — Geometry and FE model of fiber-reinforced composite in pure shear
deformation



Elastic and viscoelastic behaviour of composites with elastomer matrix

can be seen in Figure 5.12. The stress decreases along with the increase of the magnitude of
the fiber angles. The numerical response in the equilibrium state corresponds to the

The neo-Hookean model (3.2) is chosen to represent the equilibrium response of the
isotropic part of material. The anisotropic energy contribution of fibers is expressed in a
polynomial function (3.10). Here the material parameters includes the shear modulus
u =3,5MPa , the anisotropic constant & =8,73MPa.

The stress response induced by the same deformation depends on the fiber angles as

experimental results as shown in Figure 5.13. It is clear that the change of the stress is
nonlinear with respect to the fiber angles.
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Figure 5.12 — Deformation and stress distribution of composite with different fiber angles
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Figure 5.13 — Equilibrium Cauchy stress with different fiber directions in pure shear
deformation (points denote experimental data, solid lines denote numerical results)
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5.3.2. Elastic response of a rectangular fiber-reinforced composite plate with a hole

We verify our model by calculus of deformation and stress in a rectangular fiber-
reinforced composite plate in plane stress state with a centric circular hole. We combine
different configurations of the reinforcement fibers. The dimensions of the plate are
100x100x4,5mm’ and the radius of the hole is =20 mm. The material parameters are shear
modulus g =3,5MPa and anisotropic constant & =8,73MPa.We use the symmetric
geometry and apply appropriately boundary conditions. The plate is loaded in tension by the
displacement uy at the right boundary (the y displacement here was uy = 0).

The deformed form and the stress distribution of the plate with regard to different fiber
configurations are depicted in Figure 5.14.
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Figure 5.14 — Deformation and stress distribution of a composite plate with a hole
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The change of the Cauchy stress at the same position in the plate, denoted by red
points in Figure 5.14, with respect to different fiber angles is obvious from Figure 5.15.
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Figure 5.15 — Cauchy stress versus the first principal stretch of a composite with a hole

5.3.3. Viscoelastic response of fiber-reinforced composite

To investigate a viscoelastic behavior of anisotropic hyperelastic materials we
simulate numerically the pure shear deformation of the composite strip reinforced by two
fiber families, as depicted in Figure 5.11, in several relaxation steps. The fibers are arranged
symmetrically with respect to the loading direction and make an angle 30° with the loading
axis. The Maxwell model with two spring-dashpot elements is used separately for the matrix
and fiber phases to govern isotropic and anisotropic overstresses, respectively. The
viscoelastic parameters are B, =0,06; 7,, =269 s for the matrix phase and g, =0,11,;
t,. =54 s for the fiber phase.

50

The load is displacement controlled and the displacement is held constant in course of
15 minutes in each of three consecutive relaxation steps. Displacement and stress time
histories are shown in Figure 5.16. The Cauchy stress always attempts to reach corresponding
equilibrium value in course of the relaxation process. In Figure 5.14 the anisotropic (fiber
induced) overstress and the isotropic (intrinsic to rubber) overstress are outlined separately.
The anisotropic overstress is largely dominating as expected. The total overstress increases
with the increasing deformation.
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Figure 5.16 — Displacement and Piola-Kirchhoff stress of the anisotropic composite with fiber
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0.16 u u
—Isofropic Overstress

o — Anisotropic Qversiress
5 0,12 e i i e M R R S e i S F o s e e R R
5

&

2
o-' O.CE ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 3

@

@
t 0.04 : I A AU
g ° é |
o

O0 500 1000 1500 2000 2500

Time t[g]

Figure 5.17 — The components of overstresses in the pure shear deformation
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5.4. Viscoelastic behavior of an air-spring

In order to study a viscous behavior of a structure in practice we simulate numerically
a response of a tubular shell of an air-spring. The material of the tube is assumed to be made
from the rubber composite reinforced by two families of fibers. The material parameters were
evaluated experimentally in the Chapter 4, specifically the shear modulus u=3,5MPa,
anisotropic constant k=8 73MPa and viscoelastic parameters S, =0,06; 7, =269 s ;
B,.=0.11and 7, =54 s.

5.4.1. Equilibrium responses of an air-spring tube

First we consider a case when the tube is subjected to an internal static pressure. An
outline of air-spring geometry is depicted in Figure 5.18a. The dimensions of air-spring tube
are given as follows: internal radiusz = 40mm , thickness of shell 7 =4.5mm and entire length
of tube /=120mm , the two fiber arrangements are supposed to be symmetric with respect to
the tube axis and the fiber directions are assigned by ¢ with respect to the circumferential
direction of the tube.

The axisymmetric FE model and boundary conditions are used to solve the problem due
to axisymmetry of the tube geometry and of the loading conditions. The FE model is shown
as in Figure 5.18b.

Notice that while the constant internal pressure is applied in the spatial configuration
deformations and stresses are computed in the reference configuration, thus it is necessary to

use a mapping transformation for the pressure given by
pref :pUJF_TN (52)

40mm
P u=0. w =0

P Free

v

] T Symmetric plane

120mm

a) Sketch scheme of geometry b) FE model

Figure 5.18 — A sketch scheme of geometry and FE model of an air-spring tube subjected
an internal static pressure
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Since a process of pressure change caused by a volume change inside the tube, which
is computed by means of the boundary integration variables referred to section C.6 of
Appendix C, is considered to be isothermal obeying the Boyle-Mariotte’s law. Hence the
internal pressure change corresponding to the volume change is defined by a following
expression

pV =pV, (5.3)

We calculate the force acting on the top of the tube from the equilibrium condition in
the axial direction

p.=px [(r}-1) (5.4)

where p is the pressure inside the tube in the spatial configuration, r; and r, are interior and
exterior radii of the tube, respectively.

After applying the loading and boundary conditions on the FE model we compute
stress-strain responses of the tube reinforced by different fiber angles undergoing a quasi-
static pressure, the deformation and Von Mises stress distribution on the tube at an internal
pressure by 0,9MPa depending on the fiber angles are illustrated in Figure 5.19. As can see
that at the same loading condition the swell of the tube is proportional to the fiber angles.
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Figure 5.19 — Deformation and stress in the tube inflated by an internal pressure 0,9MPa
the angle of fibers (from left to right) © = 30°, 35" and 40"

Figure 5.20 shows the deformation and stress distribution in the tube with fiber angle
o = 40" at different internal pressures. We can see here a “stretch inversion phenomenon” (in
the low pressure domain the tube is shortened during the inflation process).

The “stretch inversion phenomenon” (shortening of the tube when inflated) and the
relationship between the internal pressure and the longitudinal stretch are presented in Figure
5.21. We see that if the angle between fibers and the circumferential direction is smaller than
0=35" the tube shortens in the course of inflation. This phenomenon is used in construction of
“pneumatic muscles”.
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5.4.2. Viscous responses of an air-spring tube

Next we study a viscous behavior of the fiber-reinforced composite tube in a creep
process. We assume that the tube inflated by the constant internal pressure 0,9 MPa is
subjected additionally to an external force as shown in Figure 5.22. This force is constant for

a certain period in course of the creep process.

The deformed shape and the stress of the tube at different time instants in the creep are
displayed in Figure 5.23. As observe carefully throughout the creep process we can see that
the height of the tube decreases continually while the tube diameter increases.
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Figure 5.22 — External force acts on the tube in a creep
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Due to the viscous properties of the material the shape of the tube is changing and this
causes a change of internal pressure. Figure 5.24 presents the time dependency of the internal
pressure and the displacement of the top of the tube in course of the creep. The internal
pressure has been increased by 5% and the top front of spring fell by 1,9 mm which is about
3,2% of the initial length of the tube.
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Figure 5.24 — The viscous behavior of the tube in the creep process

5.5. Viscous responses of internal stress-like and strain-like variables

Finally in order to compare two ways of approaches based on internal variables we
attempt to implement numerical simulations of viscoelastic fiber-reinforced composites
undergoing a simple tensile test by using internal stress-like variables (overstresses) and
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internal strain-like variables (inelastic strains). Both of wviscous solutions are used two
Maxwell elements that represent the viscoelastic response of the (isotropic) matrix and the
{(anisotropic) fiber phases.

Here the material is considered to be incompressible. The equilibrium components of
the free energy function are decomposed separately, specifically volumetric, isotropic and
anisotropic parts, refer to Holzapfel & Gasser (2001), given by

W = -p(J-1) {5.5-a)
iue T T -
P = . [(1+7) (T -3)+(1-y )T, -3)] (5.5-b)
yEe k‘ﬁ[e%m(ﬂ—"}z _ 1} _i_ﬁ[e’fzeq(frl]: _1] (5.5-¢)
- ZkZeq Teq

In the first approach the evolution equations (B.32) are solved for the overstress
variables representing the viscous characteristics of the matrix and fiber phases. Meanwhile
the second approach concerns the evolution equations for inelastic strain variables (B.39) and
(B.42) along with the specific non-equilibrium components of the free energy function.
Conveniently, the non-equilibrium energy parts are chosen to have the same form of the
equilibrium parts, namely as

; )unec Te T
P = o [(1 +y)(Ts =3)+(-9)(T5, - 3)] (5.6-2)
e S {e ) 1} ro [e"fm(*"%‘l3‘z - 1} (5.6-b)
Fads 2k2 neq 2k2 s f

The material parameters of elastic and viscoelastic are given in Table 5.1.

Table 5.1 — Elastic and viscoelastic material parameters of anisotropic composites

)ueq [Wa] }/ kl eg [I\/[Pa] k ﬁ 5o 1'-r's-:'-- [S] ﬁ anf 1'-(;mn' [S]

2eyg

0,4225 0,6 2 0,5 | 50 | 5

Furthermore, in order to two approaches being equivalent we have relationships
between constant material parameters of the equilibrium and non-equilibrium energy parts

that )uneq /fueq = 51.';0 * klneq /kleq = ﬁani * k2neq = k2eq and ??MS = ri.';o)uneq’ ??Fl = ??Fz = 47am'klneq (lt
can be referred to Nguyen et al., 2007).

Both the approaches are applied to study a viscous response of a thin rectangular plate
with a reinforcement of two fiber families, its dimensions are 120x50x4,5mm’. Hence the
deformation response of the plate is considered in a plane stress state. A loading is controlled
by three loading steps, in which the controlled loading is held constant within 50s in each
step. If the loading is applied by a displacement control, the process will happen under
relaxations, inversely the loading control is a force we have creep processes.
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The viscous responses of the fiber-reinforced composite in relaxations are shown as in
Figure 5.25. As a result the equilibrium stresses in two cases are similar, but the distinction of
the instant stresses expresses more clearly at a larger deformation. While the viscous
responses in creeps with regard to two approaches are nearly similar, it can be observed in
Figure 5.26. From observation of experiments in relaxation, for example as can be seen in
Figure 4.18, the initial value of the overstress is higher at the larger deformation it seems that
the viscoelastic formulation in overstress variables for a relaxation process is more
appropriate than in the case for the formulation in inelastic strain variables. However the
formulation in overstresses applied to predict the viscoelastic behaviour of the material in a
creep process is not exact as we expect, see Figure 5.10, this is coincident the theoretical
judgment that this approach is invalid for high strain rates. To resolve this problem the
viscoelastic formulation in inelastic strain variable will be considered.
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Chapter 6
MAGNETO-SENSITIVE ELASTOMER MATERIALS

Magneto-sensitive elastomers, also called as magneto-rheological elastomers, are smart
materials composed of micron-sized ferrous particles dispersed in a polymer matrix.
Commonly, magnetic fields are applied to the polymer composite during cross-linking so that
chainlike columnar particle structures can be formed and fixed in the matrix after curing. On
the contrary in a case of curing without the magnetic field MS materials are obtained to be
isotropic. The unique characteristic of MS elastomer is that its shear modulus can be
continuously controlled by the external magnetic field (Gong et al, 2005).

The subject of MA thesis (Vlach, 2009) developed recently in our Department has been
the design and the implementation of equipment enabling measurement of the response of
magnetosensitive elastomers to the mechanical loading in a magnetic field. In this work
samples of silicone elastomer with columnar structure of iron particles were made and their
magneto-elastic characteristics were measured experimentally.

The constitutive equations of MS elastomers which work in a magnetic field are based
on the free energy function depending of two preferred directions parallel with the collums of
particles and with the direction of magnetic field respectively (Ottenio et al., 2008; Hoang &
Marvalova, 2009). The free energy function depends on invariants which are combinations of
the deformation tensor C, the direction of the collums of particles ao and the vector of
magnetic induction B (see section 6.1.4 of this work) similarly to the modelling of elastomeric
composite materials reinforced by families of fibers. In this chapter we employ our experience
in the numerical simulation of rubber-like composites considering the experimental findings of
Vlach (2009) to develop numerical methods of solution of simple problems of nonlinear
magnetoelasticity. We present numerical simulations of the nonlinear coupling between
magnetic and mechanical effects which were performed in Comsol Multiphysics.

Our approach is based on the general theory of nonlinear magnetoelasticity
incorporated with the theory of fiber-reinforced composites (more details see Kovetz, 2000
and Holzapfel, 2000).

We adopt the formulation of Dorfmann & Ogden (2003-2005) as the starting point.
First the relevant magnetic and mechanical balance equations and boundary conditions are
summarized. Then the general formulation of constitutive equations for anisotropic
magnetoelastic interactions are based on Dorfmann & Ogden (2005) for both compressible and
incompressible magnetoelastic materials and then specialized for specific application to
incompressible isotropic and anisotropic magnetoelastic materials.
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Finally some FEM solutions are implemented in Comsol Multiphysics to illustrate a
coupling of the magnetoelastic materials and the external uniform magnetic field. The
constitutive equations are based on a modified free-energy function that depends, in addition to
the deformation gradient, on the magnetic flux density vector as the independent magnetic
variable.

6.1. Governing equations

The balance equations for nonlinear magnetoelastic elastomers in a static magnetic
tield, as developed generally by Bridgadnov & Dorfmann (2003), Dorfmann & Ogden (2003-
2005), are summarized concisely in this section.

6.1.1. Magnetic equations

In the Eulerian description, Maxwell’s equations for magnetic induction B and
magnetic field H vectors in the absence of time dependence, free charges and free currents

reduce to
divB =0, curiH=0 (6.1)

which hold both inside and outside a magnetic material (for example, Kovetz, 2000;
Bridgadnov & Dorfmann, 2003), where div and curl relate to the spatial configuration.
Thus, B and H can be regarded as fundamental field variables. In the vacuum, we have
a basic relation between B and H as
B=.H (6.2)

where 1t = 47 107 is a universal constant.
Associated with the equations (6.2) are the boundary continuity conditions
[B]Jn=0, [H]xn=0 (6.3)
where [#] signifies a discontinuity across the boundary and n is its outward unit normal.

Lagrangian counterparts of B and H, denoted B; and H,, respectively, are only
considered in material domains to be given by (for example Dorfmann & Ogden, 2005)
B,=/F'B, H,=FH {6.4)
where the superscript  denotes the transpose of a tensor.

And these quantities equations (6.1) become
DivB, =0, CwriH, =0 (6.5)

where Div and Curl are ‘div’ and ‘curl’ operators relative to the reference configuration
respectively.

The boundary conditions (6.3) can also be expressed in Lagrangian form
(B,~JF'B)N=0, (H-FH,)xN=0 (6.6)
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in which B, and H, are the corresponding fields exterior to the material, but evaluated on the
boundary in the reference configuration.

6.1.2. Mechanical equations

The conservation of mass equation is written simply as
po=Jp (6.7)

where .J is a volume ratio, ./ = detF and F is the deformation gradient of the MS body.

The influence of the magnetic field on the mechanical stress in the deforming body may
be incorporated through magnetic body forces or through a magnetic stress tensor (see
Dorfmann & Ogden, 2005). Herein, we use the latter approach and denote the resulting total
Cauchy stress tensor by 7, which has the advantage of being symmetric. In case the absence of
mechanical body forces, the equilibrium equation for a magnetoelastic solid in Eulerian

configuration has the form
dive=0 (6.8)

By using the total nominal stress tensor, here denoted T, which is related to T by
T=JF't (6.9)

then the equilibrium equation (6.8) may be expressed in Lagrangian form as
DivT =0 (6.10)

The boundary condition involving the stress T, where traction rather than displacement

1s specified, may be written in the form
[*ln=0 (6.11)

and it can be noted that the traction Tn on the outer boundary includes a contribution from the
{(symmetric) Maxwell stress outside the material as well as any mechanical traction applied to
the surface of the body.

According to Dorfmann & Ogden (2005) as well as Bustamante et al. (2007) that the

Maxwell stress outside the material, denoted Ty, 1s given by

1, =H ®B —%(H*.B*)I (6.12)

where 1 is the identity tensor and B" and H' are the corresponding fields exterior to the
material evaluated on the boundary in the Lagrangian configuration, of cause B” = y,H .

6.1.3. Constitutive equations

For characterize isothermal deformations of MS materials we postulate the existence of
a Helmholtz free energy function ¥. According to Dorfmann & Ogden (2005) for isotropic
MS materials the free energy function depends on a deformation gradient tensor F and on a
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magnetic induction B;, denoted in the Lagrangian configuration. On the other hand for MS
anisotropic MS materials the free energy function additionally depends on a preferred direction
of ferrous particles signified by a,. Thus the total free energy function is expressed as

¥ =¥(F,B,) or ¥ =¥(F,a,,B,) (6.13)

From Clausius—Duhem inequality for electro-magnetic media, see Brigadnov &
Dorfmann (2003), we can analogously derive constitutive equations which are obtained by
differentiation of ¥ with respect to F and B; The total nominal stress tensor T and the
magnetic field H; are given by the simple formulas

A S g d (6.14)
F ‘B,
and for an incompressible material by
AV a oY
T=—-pF", H =— 6.15
oF Pr i 2B, ( )
where p is a Lagrange multiplier associated with the constraint detF =1.
The corresponding Eulerian quantities are given by
t:J"F@, H:F‘jrg (6.16)
F ‘B,
and
t:F@—pI, H:F‘jrg (6.17)
F ‘B,

where I is again the identity tensor.

6.1.4. The free energy function in terms of invariants

For isotropic magnetoelastic materials the material symmetry 1s similar to that
associated with a transversely isotropic elastic material, for which there 1s a preferred direction
in the reference configuration analogous to B;, However B, is not a unit vector so the theory
involves more one invariant than the case for transverse isotropy. Then the free energy
function depends on 6 invariants of C and B, refer to Brigadnov & Dorfmann (2003),
Dorfmann & Ogden (2005), in which the invariants are given by

I(C)=wr(C), 1,(C)= %[(JrrC)2 —rrCz}
L(C)=detC=J°, [I,(B,)=B,B, (6.18)
I,{C,B,)=B,CB,, [,(CB,)=B,CB,
Analogously, MS anisotropic elastomers with one preferred direction undergoing an
applied magnetic field is similar to composite materials reinforced by two fiber families (more

details refer to Holzapfel, 2000), hence the free energy function has to depend on 10 invariants
of C, a, and B;, where a, is the direction of the rectified particles. The six invariants /,, ..., /s
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are identical to those from the isotropic MS material presented in equation (6.16) and the
remaining invariants are defined as follows

L{Ca,)=a,Ca,, I[(C.,a,)=2a,C,
2 (6.19)
I,(C,a,,B,)=(a,B,)a,CB,, [,(a,B,)=(a,B,)

Since the invariant /o does not depend on the deformation therefore only the nine
invariants /y, .., /o remain for MS anisotropic materials,

We postulate the decomposition of the free energy function into volumetric, isotropic
and anisotropic parts that can be written as

lP:leI(J)-'-lP:’w (TIDTZ)-'-T(H::' (I-DTS?ZS) (620&)
or lP:leI(J)-'-lP:’so(TIJTZ)-'-IPGM(IMTSDI_G?IDI_SDI_‘)) (620b)
where 7, ..., I, are modified invariants and given by

I,=J7"1, (a=1579)

L=Jl (a (6.21)
L= . (a=2,63)

For incompressible MS elastomers the volumetric component of the free energy
function is chosen in the form
Y., =-p(/-1) (6.22)

where p is the hydrostatic pressure.

In order to simulate behaviors of the incompressible magnetoelastic elastomer, we refer
and inherit a simple form of the free energy function as proposed in Dorfmann’s paper (2005).
The 1sotropic and anisotropic contributions of the free energy function are used as follows

W, =%[(1+;z)(?. =3)+(1-7)(7--3)| (6.23)
Vo = i(061’4 +pI5) (6.24a)
or ¥ - ﬂio(aA + ;3?5)%(?; -1) (6.24b)

here we assume that G =G, (1+n,/,) is the shear modulus in the reference configuration, Go
is the field independent shear modulus (or zero-field modulus) and & =k, (1+7,./,) represents
the anisotropic characteristic of MS elastomers. The material parameters «,  and y are non-
dimensional material constants and 7 and 7 are material constants involving the magnetic
strength, these parameters need to be determined by coupling magnetic and mechanical
experiments.
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6.2. Numerical simulations of MS elastomers

To implement the coupled interaction of magnetic field and mechanical material we
claim that the magnetic field is solved in the spatial coordinates and the deformation response
is computed in the reference coordinates. We also suppose that the external boundary of the
surrounding space (vacuum) is far away from the boundary of the MS elastomer body, hence
the remote magnetic field is homogeneous.

The influence of the magnetic field on the surface of magnetoelastic body is expressed
via the corresponding boundary tractions in the material coordinates and defined as follow (see
more Otténio, 2008)

T, =/F't, N (6.25)

where 1., 15 the Maxwell stress defined by equation (6.12), and N is a unit outer normal vector
on the boundary of the undeformed body.

The stress and strain response of the body is calculated undergoing both magnetic and
external forces, the displacement components are passed simultaneously into the magnetic
solution by means of an advance technique as the Moving Mesh mode so that the magnetic
tield domain is changed in compliance with the large deformation of body. Therefore we can
investigate the effect of the magnetic field to the magnetoelastic materials during the
mechanical loading or vice versa.

6.2.1. FEM solutions of MS isotropic materials

In the following simulations we assume that the MS isotropic elastomer is described by
the strain-energy function (6.20a) with contributions given by equations (6.22), (6.23) and
{6.24a). The magnetic field inside the material is defined from the strain-energy function by
equation (6.17); and by using equation (6.2) for linear homogeneous magnetoelastic material
and interconnected to the outer magnetic field through the jump conditions (6.3). The total
nominal stress tensor (6.15) in the material is calculated by differentiation of the strain-energy
function with respect to F and satisfies the boundary conditions with the prescribed
displacements or the tractions comprising both applied and magnetic forces. All the
constitutive relations have been implemented into Comsol Multiphysics FE code.

Some plane strain and axisymmetric problems, namely a plane strain compression of
block, a simple shear strain of a plate and a pure shear deformation of a tube, will be
investigated in a static magnetic field with an uniform magnetic induction field B which
changes from O to 1T while the mechanical loading (displacements or tractions) is held. The
material parameters are chosen and bring out specifically in each below part.
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6.2.1.1. A plane strain compression of isotropic material block

In order to illustrate an influence of the

magnetic field direction to a magnetic material we m
consider a compressed block in plain strain with a ' B
uniform static magnetic field applied subsequently }
in horizontal and vertical directions. The block has R I u
dimensions 20x20cm and is compressed by a 4

I LA L]

l EEmE

I

Bf
GO=0,4MPCI;CI=].,6;02=O,4 Wk

a=01; $=0,2;1n,=0,9 Figure 6.1 — Compression of a block

constant displacement uy,=3 cm in y- direction

!
I'
(Figure 6.1). Material parameters are chosen as 'l‘
\

In Figure 6.2 and Figure 6.3 the deformation shape and the distribution of total stress
are displayed in the horizontal magnetic field and in the vertical magnetic field. The magnitude
and direction of the magnetic field affect strongly the magnitude of the compressive force
necessary to keep the block displacement constant. Figure 6.4 implies that the magnetic
direction parallel to the direction of the applied load causes a sharper increase of stiffness.

Figure 6.2 — Deformation of the block in horizontal magnetic field
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Figure 6.3 — Deformation of the block in vertical magnetic field
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Figure 6.4 — Loading depends on direction and magnitude of magnetic field
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6.2.1.2. A simple shear strain of isotropic material plate

A plate of uniform thickness subjected to
a unidirectional quasi-static shear deformation
along the x-direction (as shown in Figure 6.5).
The magnitude of the shear stress applied at the
top surface boundary comes up to 1o = 0,2,
where (G is a shear modulus of the plate in the
absence of magnetic field. The uniform vertical
magnetic induction field B acts across the plate.

The
G, =0,25MPa,
B=0,2;n,=09

material
¢ =16;

are
a=01;

parameters
c,=0,4;

! !
I '
P e P i

Figure 6.5 — A geometric model to applied

simple shear
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Figure 6.6 — MS block in simple shear: a) Distribution of magnetic field,
b) Magnetic traction and Von Mises stress
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Figure 6.8 — Dependency of stress components and displacement on magnetic field

Figure 6.6 depicts a distribution of magnetic field inside and outside the body and the
Von Misses stress due to the application of the horizontal displacement at the top and
simultaneous action of a uniform and stationary magnetic field. Owing to the great

displacement of the boundary induced by the mechanical load the distribution of magnetic field
is not symmetric.

The variation of magnetic fields inside the material is shown in Figure 6.7. The field
component H, perpendicular to the direction of the applied field is antisymmetric and the
magnetic field strongly varies close to the body edges.

The dependency of the stress components and the displacement on the applied
magnetic field are presented in Figure 6.8. The field affects strongly the increasing normal
stresses sy and sy, while the component of shear stress is nearly unchanged.
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6.2.1.3. A pure shear deformation of isotropic material tube

In this example we consider a thick tube F
subjected to an axial force and an axial magnetic i
field. The magnetic far field is assumed to be axial

and uniform (Figure 6.9). The linear homogeneous Bm
MS elastomer is adopted. The dependence of ~  ___--1 A S
applied force and displacement on the magnetic
quantity B was determined.

The material parameters are given as
following

G,=0,4MPa; ¢, =1,6; ¢, =0,4 ;

i =2 a0 =071 B=0.2: n,=09 :

Figure 6.9 — Geometry of the tube
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Figure 6.10 — Magnetic flux density (left), magnetic field (right)
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Figure 6.13 — Loading depends on magnetic when applied displacement is constant

The obtained results of axisymmetric problem in Figures 6.10, 6.11, 6.12 and 6.13 are
in accordance with the results of Bustamante et al. (2007). The magnetic field changes strongly
the material properties of magnetoelastic composites especially when its direction coincides
with the direction of applied mechanical loadings.

6.2.2. FEM solutions of MS anisotropic materials

In order to simulate behaviors of incompressible MS anisotropic elastomers, we choose
the free energy function defined by equations (6.20b) with contributions given by equations
(6.22), (6.23) and (6.24b).

To illustrate the interaction of the MS anisotropic elastomers and the magnetic field we
use material parameters as listed in Table 6.1 for all following FEM examples.

Table 6.1 — Material parameters of an MS anisotropic composite

Go [MPa] ne [T7] ko [MPa] N [T7]
1,8 0.6 5,0 .
o [-] BL-] v
0,05 0,1 0,6
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6.2.2.1. Compression of anisotropic material block

First we consider an MS anisotropic block with different aligned directions of ferrous
particle chains embedded in a static uniform magnetic field parallel to its axis and
simultaneously subjected a compressive load as a constant pressure py=1MPa. A scheme
sketch of the MS anisotropic block together with an applied magnetic field is depicted in
Figure 6.14.
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Figure 6.14 — A scheme sketch of the compressive block in a magnetic field

We have obtained series of stress and strain responses of the block as well as the
distribution of the magnetic field interior and exterior domains of the MS anisotropic material.
In Figure 6.15 illustrates some achieved results of deformations and equivalent stress
distributions corresponding to ferrous particle orientations by 0° and 30" without and with the
magnetic field applied by B=IT, moreover the direction of the magnetic traction vectors
implies the body tends to lengthen along the direction of the applied field. In Figure 6.16 we
try to represent a distribution of the magnetic field and a magnetization of the body with the
chain orientation by 30’ and the magnetic flux density at that time as 0,5T, it can be seen that
owing to the change of the domains induced by the deformation of the block the distribution of
magnetic field does not remain to be symmetric and a strong dependency of the magnetic field
on the deformation of the material is still denoted by the distribution of the magnetization
inside the material.
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b) Orientation of particle chains: ¢ =30’ at B=0T and B= 1T

Figure 6.15 — Deformation of the MS anisotropic block without and with a uniform magnetic
field
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Figure 6.16 — Distribution of the magnetic field and the magnetization of the MS anisotropic
material

Next dependencies of horizontal and vertical displacements of the top surface on
orientations of ferrous particle chains and on an applied magnetic filed are shown as Figure
6.17, the stiffness of the body increases fast that is demonstrated by the deformed block
recovered nearly complete when the magnetic field reaches to IT.
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Figure 6.17 — Displacements of the top surface of the block versus the magnetic flux density
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6.2.2.2. Simple shear of anisotropic materials

In this subsection a rectangular MS anisotropic composite plate subjected a simple
shear state is investigated according to altered directions of an applied magnetic. Here we
assume ferrous particles are oriented in a vertical direction, only the modification of the applied
magnetic field is considered. The geometry of the plate and loading conditions are represented
in Figure 6.18. The direction of the magnetic field is defined by 6 compared to the vertical
direction. The external loading is set up by a constant traction as 7, = IMPa .

Figure 6.18 — A geometry of a plate subjected a simple shear state is embedded in a static
uniform magnetic field

In order to verify effects of the applied magnetic field on the MS body suffered a simple
shear state a direction of the magnetic field is changed and some deformation results are
obtained as in Figure 6.19. It can conclude that the magnetic forces always affect towards to
lengthen the MS body and enhance strongly the stiffness of the material. A high concentration
and a large alteration of the magnetic field through the interface of the material and the
surrounding space are shown in Figure 6.20. Certainly, inside a dense material the field is
distributed higher otherwise it still depends on the deformation of the body.
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Dependencies of a displacement of the top surface applied by the external loading and a
shear stress at the central position of the plate on the altered direction of the applied magnetic
field are investigated in Figure 6.21. Combination of both the displacement and the shear stress
results state that we should apply the contrary direction of the magnetic field against the
direction of the deformation in order to enhance a recovery back to the initial form of the
deformed MS material.

6.3. Conclusion

In this chapter we have obtained illustrative numerical solutions of simple boundary
problems of nonlinear magneto-mechanical response of a body made of isotropic or anisotropic
magnetosensitive elastomer subjected to a static magnetic field. The constitutive model that we
have used is a simplified model that should be correlated with further experimental data.
Nevertheless, the results of the numerical simulations indicate a good qualitative
correspondence with experimental findings.






Chapter 7
CONCLUSIONS, DISCUSSIONS AND FUTURE PERSPECTIVES

In this dissertation, the viscoelastic behavior of the fiber-reinforced elastomer has been
studied. The viscous characteristics of the anisotropic composites were described by the
suitable free energy function and the chosen viscoelastic models. Due to the assumption of the
free energy density was decoupled into (elastic) equilibrium and (viscous) non-equilibrium
components and then further into volumetric, isotropic and anisotropic components. This
allows separate stress relations and viscous flow rules to be specified for the separate
constituents of the composite.

The components of the equilibrium stress response were defined directly by the
differentiation of the free energy function consisting of volumetric, isotropic and anisotropic
parts with respect to the Cauchy-Green deformation tensor. The non-equilibrium response was
governed by evolution equations of internal variables which were derived by the use of
viscoelastic models. Herein, the generalized Maxwell element model was used in two
approaches with either inelastic strains or overstresses playing a role of internal variables. We
have mainly focused on describing the viscous response by linear evolution equations of
overstresses. Two Maxwell elements corresponding to the viscoelastic representation of the
isotropic matrix and anisotropic fiber phases were applied.

Some standard experiments such as simple tensile, pure shear and biaxial tensile tests
for isotropic rubber-like materials and composite elastomers reinforced by two families of
fibers under many relaxation stages were carried out. The non-contact optical stereo-
correlation technique was used to determine precisely for experimental measurements of large
deformations and evaluation of strains. Both purely elastic and viscoelastic parameters were
determined by fitting the chosen model to experimental data. But for the biaxial tensile test the
design optimized form of the specimen need to be improved in order to obtain uniform strain
distribution in the interest region. For dealing with this problem, the slits made in each of
specimen arms were suggested. In the remaining experiments the evaluation results were in
good agreement with experimental data. However, as mentioned, we can enhance a good
representation of linear viscoelastic models by introducing a dependence of the material
parameters on stress, on strain or on some internal variables as well as increasing the number
of elements of the Maxwell model.

The implementation of the set of constitutive equations and evolution equations into a
finite element program, Comsol Multiphysics, was established for modeling viscoelastic
behaviour of both hyperelastic isotropic and anisotropic composites. The ability of the model
to predict nonlinear viscoelastic behavior of isotropic and anisotropic materials was examined
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by comparing the theory to experimental results. Several examples relevant to viscoelastic
responses, for instance the influence of the loading velocities, one- or multi- step relaxations
and a creep were presented. More simulations of complicated boundary value problems of an
air-spring tube with two fiber reinforcement were performed using the finite element method.
The model provided a very efficient tool to determine realistic predictions of stress, strain and
strain rates distributions in the viscoelastic composite materials. Nevertheless as introduced in
chapter 1, the formulation of the evolution equations for overstresses is linear for loading close
to thermodynamic equilibrium, and then it can be believed that at a high strain rate it is
essentially necessary to consider another approach in inelastic strain variables. Consequently,
the comparison between two approaches in overstress and inelastic strain variables was
considered, this is just the initial step towards the nonlinear approach in inelastic strain
variables. However, these approaches are restricted within isothermal regimes, thus thermo-
viscoelastic behaviour of anisotropic materials will be a task in future, i.e. an interaction of
deformation and temperature in viscoelastic anisotropic materials need to be studied.

The remaining task of the study was to develop a formulation of constitutive equations
for anisotropic MS elastomers. Herein, our approach was established basing on the
incorporation of the general theory of nonlinear magnetoelasticity and the theory of fiber-
reinforced composites by considering an external magnetic field analogous to a preferred
direction in the reference configuration. The stress-strain responses were derived by the strain
energy function written in terms of invariants. Because a magnetic field is not a unit vector so
the MS elastomer placed in a magnetic field depends on more one invariant than in the case
without a magnetic field. We implemented several numerical solutions of simple boundary
problems of nonlinear magneto-mechanical response of a body made of isotropic or anisotropic
magnetosensitive elastomer subjected to a static magnetic field. The finite element software
used proved a flexibility and ability of an easy implementation of fairly complicated coupled
problem. The FE simulations involved not only the edge effects due to the finite geometry of
the body but also the influence of the large displacement of the boundaries. The free energy
functions that we have used are very simple forms and represent only a first approach towards
a valuable constitutive model. Appropriate experiments which are in preparation will allow the
elaboration of the constitutive relations. The constitutive model should involve also the
complex dissipative (viscoelastic) behaviour of the material.

As above assessed results, the study of viscoelastic behavior of fiber-reinforced rubber
matrix materials in the theory of linear viscoelasticity has reached a certain completion in all
three aspects including theory, experiment and numerical simulation. However, the formulation
of nonlinear viscoelasticity in internal strain-like variables should be interested to identify
material parameters of viscoelastic models proposed and verify through experimental
performances. Material parameter identification of MS elastomers corresponding to chosen
material models should be also considered. The future studies should include thermal
properties of composites with rubber-like matrix.
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Appendix A
OVERVIEW OF CONTINUUM MECHANICS

The method of continuum mechanics is used as a powerful and effective tool to explain
various physical phenomena successfully without detailed knowledge of the complexity of their
internal microstructures. From the physical point of view this is an approximation in which the
very large numbers of particles are replaced by a few quantities; we consider a macroscopic
system. Hence, the primary interface with nature is through these quantities which represent
averages over dimensions that are small enough to capture high gradients and to reflect some
micro-structural effects.

In order to explain the macroscopic behavior of physical objects, first of all we must
understand the motion and deformation that are caused by stresses in a material undergoing
forces and moments. Thus, we will focus to study the motion and finite deformation of a
continuum mechanics in this chapter.

The approach is introduced with both the notion ‘Lagrangian’ {material) and ‘Eulerian’
(spatial) descriptions. First the kinematical definitions and formulae are considered in finite
strains. The strain tensors in material and spatial configuration are defined. Next the stresses
and forces are presented in the deformable body during a finite motion. For that body the
concept of stress i1s introduced and the properties of traction vector and stress tensors in
different descriptions are discussed. Finally the balance or conservation of mass, linear
momentum, moment of momentum and energy are summarized concisely.

A.1l. Finite strain kinematics

In this section, a brief outline of those concepts and principles of finite strain kinematics
are summarized. The aim of this section is to introduce some basic kinematics to study the
motion and finite deformation of a deformable body. More comprehensive continuum
kinematics overview can be referred to many textbooks, such as Truesdell & Noll (1992) and
Holzapfel (2000).
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A.1.1. Motions of continuum bodies

The macroscopic study is to concern with the mechanics of a body in which both mass
and volume are continuous functions of continuum particles. Such a body is called a
continuum body, or just a continuum.

Reference Current
configuration configuration

Az,X3
timef=90
fime ¢

Eyer Xox2

Eve
ALX1

Figure A 1 — Configuration and motion of a continuum body

A continuum body @ with particle P € @ which 1s embedded in the three-dimensional
Euclidean space referred to a rectangular Cartesian coordinate system with a fixed origin O
and orthogonal base vectors e (i=1,2,3), as shown in Figure A 1, is considered at a given
instant of time ¢.

The continnum body @ occupies a geometrical region in undeformed state at time ¢ = 0
denoted by €. The configuration of such body is referred to as an imtial, reference or also
undeformed configuration. In reference configuration, a typical particle of the body occupying
the point P can be represented by the position vector X with respect to fixed origin of the
coordinate system. Now assume that the region €2, moves to a new region {2 which is
occupied by the continuum body @ at a time ¢ > 0. The configuration of @ at time ¢ is so-called
current {or deformed) configuration. The point P of the reference configuration moves to a
point P’ of the current configuration. The position vector x serves as a label for the associated
point P' with respect to the fixed origin O. The motion may be mathematically described by
equation between reference and current particle position as

x=x(X,7) (A1)
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The motion x carries point P located at €}, to places P’ in the current configuration £2.
The parametric equation (A.1) determines successive positions x of a typical particle P in
space. The function x is the trajectory of the point P.

Since no two distinct particles can have the same position in any configuration and no
two distinct points in a given configuration can be position of the same particle, the function
(A 1) 1s specified uniquely and the unique inverse function exists

X =X(x,7) (A2)

The component of vector X = X E, and x = x,e, are considered as being along the axes
introduced. Denote that X, 1=1,2,3, as the material (referential) coordinates of point P and x;,
as the spatial (current) coordinates of point P’. Since the same reference frame is agreed for
the reference and current configurations, which is why the basis vectors {E} and {e} are
identical.

Material and spatial descriptions

Problems in continuum mechanics may be formulated either with material coordinates
as independent variables - using the so-called material description of the problem or with
spatial coordinates as independent variables - using the spatial description. In the finite strain
analysis a careful distinction has to be made between the coordinate systems that can be chosen
to describe the behavior of the body whose motion is above consideration.

Both description of the motion (A.1) and (A.2) are equivalent, but not identical and
they are described by different functions. The material description in the first equation (A.1) is
a characterization of the motion with respect to the material coordinates and the time ¢z, the
independent variables (X, £) are referred to as material variables. A material description refers
to the behavior of a material particle as it moves. On the other hand, in the description of
motion given by {A.2) attention is paid to a point in space. This description is called the spatial
description and the independent variables (x, ¢) are referred to as spatial variables.
Traditionally, the material description is referred to as the Lagrangian and spatial description
is referred to as Eulerian. Due to the fact that the constitutive behavior of solids is often given
in terms of material coordinates we often prefer the Lagrangian description.

Displacement field
The vector field
U(X.7)=x(X,7)-X (A.3)

represents the displacement field of a typical particle and relates its position X in the
undeformed configuration to its position x in the deformed configuration at time 7. The
displacement field U which characterizes the material (Lagrangian) description of the
displacement field, is a function of the referential position X and time ¢.
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The displacement field in the spatial (Eulerian) description, denoted u, is a function of
the current position x and time 7, as
u{x,?)=x-X(x,7) (A4

The vectors U and u have the same values. They represent functions of different
arguments.

A.L.2, Deformation gradient

Deformation of a continuum body (1.e. the changes of size and shape) occur when
moved from the reference configuration {3, to current configuration 2. To qualify the
deformation of a material particle P, the changes of the immediate neighborhood of the particle
have to be analyzed. Consider a material particle Q in the neighborhood of a material P, see
Figure A.1. The position Q relative to P 1s given by the element vector dX as

dX=X,-X, (A.5)

After deformation the material particles P and Q have deformed to current spatial
positions P” and Q" and the corresponding element vector become
dx =X, —Xp. (A.6)

A key quantity in finite deformation analysis is the deformation gradient F, which is
involved in all equations quantities before deformation to corresponding quantities after (or
during) deformation. Defining the deformation gradient tensor as

x(X,f
F= —( ) (A7)
X
In indicial notation the deformation gradient tensor is expressed as
o,
F == i,j=123 A8
i an ( -} ; ) ( )
The inverse of F is
F'= 8_X (A9)
ox

In general, the nonsingular (invertible, i.e. detF#0) tensor F depends on X which
denotes a so-called inhiomogeneous deformation. A deformation of a body in question is said
to be homogeneous if F does not depend on the space coordinates. The components Fj; (i, j =
1, 2, 3) depend only on time.

Displacement gradient tensor

To combine the deformation gradient with the displacement vector we deduce from
(A.3) and definition (A.7) that
GradU = Gradx (X,t)- GradX =F(X,1)-1 (A.10)
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The second-order tensor GradU is called the displacement gradient tensor in the
material description.

The displacement gradient tensor in the spatial description is given from (A.4) and
definition (A.9) as
gradu = grads — gradX (x, ) =1-F'(X,¢) (A.1])

Jacobian determinant

The determinant of the deformation gradient F will be denoted by
J(X,t)=detF(X,7) (A.12)

in which J 1s also known as the volume ratio of the change in volume between the reference
and the current configuration at time #
dv=J(X,t)dV {A.13)

In the relation (A.13), d¥ and dv are denoted infinitesimal volume elements defined in
the reference and current configuration.

Because F is nonsingular, so that J=detF = 0. Because of the impenetrability of
matter, i.e. volume elements cannot have negative volumes, J < 0 will be rejected.
Consequently, the volume ratio must be greater than zero for all particles in undeformed

configuration and for all time ¢,
J=detF>0 (A.14)

therefore the inverse of deformation gradient F exits.

A.1.3, Strain tensors

In the previous subsection the deformation gradient i1s presented as the fundamental
kinematical tensor in finite deformation kinematics that characterizes changes of material
elements during motion. The purpose of this section 1s to determine these changes in the forms
of strain tensors related to either the reference or current configuration.

Infinitesimal strain tensor used in small strain analysis can be expressed in terms of the
derivatives of displacement field as

8:{[@_"]+(ﬂﬂ (A15)
AR ), ¢ X

The reason, why this tensor cannot be used in nonlinear mechanics is that for rigid body
rotation this strain measure does not vanish. It means that stresses arise in the body during the
rigid body rotation. For infinitesimal strains these stresses can be neglected but for large strain
analysis this tensor i1s usually useless.
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Material strain tensors are determined by the change along the length between two
neighborhood point P and Q with the element vector dX which 1s located in material
configuration, occurring during a motion to the new point P' and Q' with the element vector
dx, located in current configuration. The material and current elemental lengths squared to be
determined as (see Figure A.1)

dl’ =dXdX, dI* =dxdx {A.16)

The change in the squared lengths that occurs as the body deform the reference to
current configuration can be written in terms of the element material vector dX as

%(df —dl’) = (dx dx - dX.dX) = %(FdX.FdX - dX.dX)

1 1
=~ (dXF'FaX - dXaX)=aX (F'F-T)aX (A17)

= dX%(C -I)dX =dX EdX

where C is the right Cauchy—Green strain tensor, which is given in terms of the deformation
gradient F as
C=F'F (A 18)

Tensor E is known as the Green-Lagrange strain tensor, which is given as

E:%(C—I) (A.19)

Alternatively, spatial strain tensors are determined by the change in the squared
lengths that occurs as the body deform the current to reference configuration can now be
written in terms of the element spatial vector dx as

l(m2 —d*) = l(dx.dx —dxF7F'dx) = dx_l(l ~b™')dx = dx Adx (A.20)
2 2 2
where b is left Cauchy-Green strain tensor (or Finger deformation tensor), which is given in
terms of the deformation gradient F as
b =FF" (A.21)

Tensor A is known as the Almansi strain tensor (or Eulerian), which is given as

1 .
A:E(I—b ) (A.22)

Tensor C is related to the undeformed configuration €, and tensor b is related to the
deformed configuration 2. Both tensors C and b are symmetric and positive definite, i.e. for
every arbitrary non-zero vector and it holds that

T

C=FF=(FF) =C" and b=FF =(FF' ) =’ (A.23)
x'Cx>0and xX'bx>0 (A.24)
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A.1.4. Structural tensor

For anisotropic materials we introduce the stretch vector A, in the unit vector
direction a, characterizing the o-th fiber direction in each point X € ), which is defined by
M, (X, t)=F(X)a, (A.25)

with length A, =|A, | called stretch ratio or simply the stretch of a fiber. Then the square of A4
1s computed according to

A;=4, &, =Fa, Fa =a Ca =C:M, (A.26)

in which M, =a_, ®a_ (with Cartesian components (Ma ) u = 4.4, ) is defined to be a
structural tensor of order two in the reference configuration and ¢ =1 with one fiber-
reinforced composites (transversely isotropic materials) or o =1,2 with two fiber-reinforced
composites {orthotropic hyperelastic materials).

A.2. Stress tensors

Stress tensors for a deformable body undergoing a finite motion are presented in this
section. A motion and deformations described by kinematics are generally caused by external
forces acting on a body. Stress is firstly defined in the current configuration in the standard
way as force per unit area. This leads to the well-known Cauchy stress tensor as used in linear
analysis. In contrast to linear small displacement analysis, stress quantities that refer back to the
initial body configuration can also be defined. This will be archived using work conjugate
concepts that will lead to the Piola-Kirchhoff stress tensors.

A.2.1. Cauchy stress tensor and equilibrium equation

There exits unique second-order tensor field o and P so that
t=on or f,=0.n, (A.27)

where t represents the Cauchy traction vector (force measures per unit surface area defined in
the current configuration, Figure A.2), exerted on ds with outward normal n, ¢ denotes a
symmetric spatial tensor field called the Cauchy stress tensor (or Cauchy stress)

¢=¢ orc, =0, (A.28)

In terms of Cartesian coordinates the Cauchy stress tensor ¢ is comprised of the
components of the traction vectors on three mutually orthogonal planes:
Jll 0-12 J13
6= [O'IJ =0, O, O, (A 29)
0-31 J32 0-33

The equilibrium equation of a deformable body in the current configuration is expressed

as
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dive+f,=0 inV (A.30)

where f}, is a body force.

Reference Current
configuration configuration

X3,X3
€3 time t

)

X2,X2
57)

e
X1,X1 !

Figure A.2 — Traction vectors acting on infinitesimal surface elements

A.2.2. Alternative stress tensors

In the finite deformation theory we have to take into account the change of geometrical
body and the stresses should be somehow related to strains. So if we are working with Green-
Lagrange strain tensor (which is related to original configuration) we must defined stresses
similarly with respect to original configuration. In this subsection the stress tensors used for
practical nonlinear analysis are presented.

Most of their components do not have a direct physical interpretation. Often it is
convenient to work which the so-called Kirchhoff stress tensor T, which differs from the
Cauchy stress tensor by the volume ratio J. It is a contravariant spatial tensor field

parameterized by spatial coordinates, and is defined by
t=Je¢ or 7, =Jo, (A31)

The vector which described the first Piola-Kirchhoff traction vector (force measures
per unit surface area defined in the reference configuration (Figure A.2)) can be expressed as

following form
T=PN or [,=PN, (A32)
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in which N is outward normal to boundary surface while P characterizes a tensor field called
the first Piola-Kirchhoff stress tensor (or Piola stress), in general, is not symmetric tensor.s

In the finite strain analysis, the Cauchy stress tensor is not the most suitable stress
tensor, however it is the only one which is of interest from engineering point of view. The
constitutive relations for finite strain follow from the equilibrium equations and the balance of
energy. The relation between the Cauchy stress tensor ¢ and the first Piola-Kirchhoff stress
tensor P may be written in the form

6=J"'PF or P=JoF~’ (A.33)

The stress tensor work conjugate with the Green-Lagrange strain is the second Piola-
Kirchhoff stress tensor S which is related to the Cauchy stresses
S=JF'esF' =F'P=§" (A.34)

with its inverse
o=/ 'FSF’ (A.35)

It should be noted that the second Piola-Kirchhoff' stress tensor has little physical
meaning. The second Piola-Kirchhoff stress tensor is invariant under rigid-body motion.
However, it plays an important role in expressing the basic principles of continuum mechanics.

The first and second Piola-Kirchhoff stress tensors are established basing on
conservation of mass principle and mathematical consistent consideration accounting the forces
which are transtormed from one configuration to another. These tensors are independent on
choosing a coordinate system and insensitive towards motion of total rigid bodies.

From equation of (A.34) a fundamental relationship between the first Piola-Kichhoft

stress tensor P and symmetric second Piola-Kichhoff stress tensor S is
P=FS (A.36)

A.2.3. Conjugate pairs of stress and strain tensors

The so-called energy conjugate stress and strain tensors play an important role in
formulation of the internal energy of deformable bodies. The stress measures described in the
previous sections can be used to express the internal energy of a body. However, if a decision
is made about the use of a certain strain measure, the stress tensor to be used in combination
can not be selected arbitrar. Therefore, choosing appropriate conjugate pairs of stress and
strain tensors is needed.

The tensor which conjugates to the Green-Lagrange strain tensor E is the second Piola-
Kirchhoft stress tensor S

S=JF'6F’ - E= %(C—I) (A37)

The stress tensor conjugates to the Almansi strain tensor is called Hill’s stress tensor

JF 6F
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JF6F & A= %(I—B") (A.38)

One of the conjugate pairs of stress and strain tensors above which is described by the
Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor is the best-known.

A.3. Balance principles

The fundamental balance principles, i.e. conservation of mass, the momentum balance
principles and balance of energy, are valid in all branches of continuum mechanics. They are
applicable to any particular material and must be satisfied for all time.

A.3.1, Conservation of mass

In non-relativistic physics mass cannot be produced or destroyed, so that the mass m of
a body is a conserved quantity. Hence, if a particle has certain mass in the reference
configuration it must stay the same during a motion. Additionally

From the definition of the mass densities at the points X and x we can get
dm(X)=p,dV and dm(x,t)=p(x,t)dv (A.39)

Substituting equation (A.42) into (A.41) we obtain
pdV = p(x,t)dv (A.40)

By recalling dv =./d} we can deduce that
po=pJ (A41)

It represents the continuity mass equation in the material description which is the
appropriate description in solid mechanics,

A.3.2. Momentum balance principles
The balance of linear momentum is postulated as

D D
[ pvdv=—{ p,VdV' = F (s A42
Dtipv‘ Drfj;p- (1) (A42)

By computing the integral form of Cauchy’s stress theorem and by using divergence
theorem we find out Cauchy’s first equation of motion in the local form with respect to the

current configuration as
X . ao, _
dive+b=pv or T”H‘)i =pv, (A.43)
ox .
F
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where o is the Cauchy stress tensor, b is the body force in the current configuration, v is a
spatial velocity field.

The equation of motion in the reference configuration is also obtained in the local form
: ob, .
DivP+B=pV or —L+B=pf (A.44)

4

where P is the first Piola-Kirchhoff stress tensor, B is the body force in the reference
configuration and V¥ denotes the material description of the velocity field.

The balance of angular momentum (or balance of moment of momentum or
balance of rotational momentum) is given by

D D ,
Eirxpvdlmag{rxponP =M(7) (A.45)

where r is the position vector.

From the global form of balance of angular momentum in the current configuration and
by means of Cauchy’s stress theorem and the divergence theorem we are able to deduce the
satisfaction of the Cauchy stress tensor to be symmetric, 1.e.

6'=6¢ o 0,=0, (A.46)

It is a local consequence of the balance of angular momentum, often referred to as
Cauchy’s second equation of motion.

A.3.3. Balance of mechanical energy

The balance of mechanical energy in the spatial description i1s a consequence of
Cauchy’s first equation of motion (balance of linear momentum) and described as following

%i%pvzdv+£c ddv = a'!)t.vd5+£[b.vcl'v' (A.47)

where d denotes the rate of deformation tensor.

It states that the rate of change of kinetic energy %pﬁ of a mechanical system plus the

rate of internal mechanical work done by internal stresses ¢ equals the rate of external
mechanical work done on that system by surface traction t and body force b.

Equivalently to (A.47) we have the balance of mechanical energy

e | Lpvidr+ [P:Fdy = [ TVdS+ [BVAV (A.48)
D¢ & 2 & a0 )

in the material description.
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A.3.4. Balance of energy in continuum thermodynamics

In many problems of physics and engineering both mechanical and thermal energy are
essentially considered. A continuum which possesses both mechanical and thermal energy is
called a thermodynamic continuum. In the case thermal power is added to a thermodynamic
continuum, the rate of internal energy equals the sum of the rate of internal mechanical work
and the rate of thermal work. Consequently, equation (A.47) becomes

% Q[% oV + ecjclv = a!}(t.v +q,)ds+ i(b.v +r)dv (A.49)

where ¢, is the internal energy per unit current volume and defined from
e, =¢:d-divq+r {A.50)

in which q is the so-called Cauchy heat flux (or true heat flux) defined per unit surface area in
the spatial configuration.

Equation (A.49) is also known as the first law of thermodynamics in the spatial
description.

The first law of thermodynamics in the material description reads

D [%pOV2+e]dV= [(TV+Q,)dS+ [(BV+R)dV (A.51)
2

D« & oo,
in which e 1s the internal energy per unit material volume and determined by
¢=P . F-DivQ+R (A.52)

It is referred as the local form of the balance of energy in the material description. Here
Q 1s the so-called Piola-Kirchhoff heat flux {(or nominal heat flux) determining per umt surface
area in the reference configuration.

In equations (A.49) and (A 50), g, and (), denote heat fluxes, determining heat per unit
time and per umt current and material surface area, respectively, whereas » and R denote heat
sources per unit time and per unit current and material volume, respectively.

The first-order partial differential equation is due to Kirchhoff and holds at any particle
of the body for all times.
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Appendix B
ANISOTROPIC VISCOELASTIC MODELS

In this part we will show constitutive equations for anisotropic viscoelastic rubber-like
composite derived by a free energy function and evolution equations of internal stress- and
strain- like variables. Both of these formulations are formed by using the generalized Maxwell
model. However, the linear evolution equations for overstresses are formulated by means of
each branch of the Maxwell model equivalent to separate components of the total stress tensor
(for example, Holzapfel & Gasser, 2001). On the other hand the evolution equations for
inelastic strains are based on assuming parallel multiplicative decompositions of the
deformation gradient into elastic and viscous (or inelastic) parts for both matrix and fiber
phases (Nedjar, 2007 and Nguyen et al, 2007). The formulation in inelastic strains is
proposed in the nonlinear viscoelastic theory far perturbations away from thermodynamic
equilibrium (refer to Reese & Govindjee, 1998a, b).

B.1. Constitutive equations
B.1.1. The decomposition of the free energy function

To characterize a viscoelastic behavior of anisotropic materials the uniquely defined
Helmholtz free-energy function ¥ was postulated, measured per unit reference volume.

In the following only homogeneous materials are considered, which means that the
associated free-energy functions are independent of position in the medium. Therefore, in an
isothermal condition, the value of the free energy can be determined by the changes of the
{1+n+m) variables, refer to Holzapfel & Gasser (2001) and Nguyen et al. (2007).

¥ =¥(CM,,T,), a=lLmr=1m (B.1)

where the right Cauchy-Green deformation tensor C, # structural tensors M, denoting the »
fiber orientations in the reference configuration and m (second order) internal state variables
I'; (not accessible to direct observation). The internal variables I'; are considered as inelastic
{viscous) strains akin to the strain measure C.

From experimental observations of elastomeric materials it is known that their
deformation response is almost isochoric in nature since the bulk modulus considerably
exceeds the shear modulus, then the influence of the bulk viscosity on the stress field is small.
For this physical reason it seems to be most beneficial to choose a decoupled representation of
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the free-energy function W which describes separately volumetric and distortional {or
isochoric, or volume-preserving) contributions, therefore
Y(CM,.I')=P2(J)+¥,(CM,.T,) (B.2)

EQ
ol

valid for some closed time interval 7 €[0,7]. Here P} represents the volumetric response to
be fully elastic of sufficiently slow processes, while the second part ‘¥, of the decoupled
free energy describes the purely isochoric response Furthermore C and T, are the modified
quantities of C and I' , respectively, associated with volume-preserving deformations of the
material and given by

C=J7"C, I =J7%T, (B.3)
Now we split the free energy ‘¥, into
¥, (CM,.T,)=¥2(C)+¥2(CM, )+ r"?(CM,.T,) (B.4)
=l

anf

elastic response as 1 — o« respectively, responsible for the thermodynamic equilibrium state,
and Y222 (C, Ma,l_“r) which may be seen as dissipative potentials determine the viscoelastic

130F

contribution, responsible for the thermodynamic non-equilibrium state of the material.

where P22 ((_'J,Ma) and Y22 ((_E,Ma) describe the isotropic and anisotropic (isochoric)

The free energy function therefore becomes

W=, = ()P (T) P (T M, )+ Y Y2 (T M, T,)  (BS)
r=1 3

]

equihbrin parts "
won—equilibrivm parts

For a detailed discussion of this issue it can be referred to Holzapfel (2000), Holzapfel
& Gasser (2001) and Reese & Govindjee (1998b).

B.1.2, Constitutive equations of stress responses

The stress response may directly be derived from the Clausius—Duhem inequality
which only considers for the case of an isothermal condition as (see Truesdell & Noll, 1992
and Holzapfel, 2000)

*

D =—¥+$:1C>0 (B.6)

2
here Dy the internal dissipation inequality, S the second Piola-Kirchhoff stress tensor, a colon
denotes the scalar product of two tensors, whereas the dot written above a quantity represents
its material time derivative.

The second Piola-Kirchhoff are defined from
o¥
S=2— B.7

For a detail on the derivation of constitutive equations for hyperelastic materials see,
for example, Holzapfel (2000).
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Due to the decoupled free energy function into equilibrium and non-equilibrium parts
(B.5), therefore from equation (B.7) we can obtain the decoupled stress given by

M é
S=2E=2&(‘{’EQ+‘{’J\'ZEQ)=SEQ+SJ\'FQ (BS)
where
M M
S =2 CaCEQ and Sus =2 (B.9)

Furthermore, it is advantageous to carry out a split of the equilibrium free energy into
volumetric, 1sotropic and anisotropic (1sochoric) parts, such that we have

2 EQ EQ
Vg Wi +25‘;’énf (B.10)

Spp =% +8% 185 =2

vl [27e3 anf

B.1.2.1. Transversely isotropic materials

Numerous materials are composed of a matrix material and one or more families of
fibers. These types of composites have strong directional properties and their mechanical
responses are regarded as anisotropic. A material which is reinforced by only one family of
fiber has a single preferred direction. The stiffness of this type of composite material in the
fiber direction is typically much greater than in the directions orthogonal to the fibers. It is the
simplest representation of material anisotropy, which we call transversely isotropic with
respect to this preferred direction.

For a transversely isotropic material, the equilibrium free energy can finally be written
in terms of the five independent scalar invariants ({,,/,,7,,1,,1;) of the right symmetric

Cauchy-Green tensor C and the structural tensor My, that M, =a, @a,, describing the fiber
direction. These invariants are defined as follows

I=0C1I,= %[tr(cz)—(trC)g]

(B.11)
I,=detC,1,=C:M,, I, =C*: M,
Therefore the free energy function is decoupled into
Vo (L1 L1 1) =8 () ¥R (LI ¥R (LT)  ®1)
where I are referred to as the modified invariants and are related to
I=J7"1, I=J"I,
— (B.13)

[ :J—'_’,B[‘h TS :J—-1-.-"3[S

3

Then, by use of the chain rule, the volumetric and isochoric parts of the second Piola-
Kirchoff equilibrium stress tensor are derived on the definitions (B.10)
E(J ME(T) &F MVEE(J
g LYEW)  WEO) U WE)

Cc'=JC" B.14
oC YR p (B.14)
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"IJEO T T W EC N
§2 - % 22 C;;”" {g% J 3]P’T] (B.15)
alPEQ f’z EQ
g% _ 5 2 (L.T) =225‘Pw a, . . JpT (B.16)
o aC <7 |ac

in which P’ defines the transpose of the fourth-order tensor PP called as the projection
tensor with respect to the reference configuration, therefore expressed through C. The
definition of the projection tensor [P is given by

=]I—%C‘1®C (B.17)

where I denotes the fourth-order unit tensor, I ,=6,6

it 0y 1s the Kronecker delta.

By using the fictitious second equilibrium Piola-Kirchhoff stress tensor §EQ, which 1s
here defined as
= Ve a‘PEQ RS Sl > OV af
SEQ = iso _(rm = Z sio Z i (B18)
eC = al, &L = al, o
Finally we arrive
Sy =JpC + 7P S, (B.19)

with the constitutive equations for the hydrostatic pressure {(or an indeterminate Lagrange
multiplier) p and the fictitious second Piola-KirchhofY stress S, defined by

av72())
=—r= 7 B.20
p T, (B.20)
o OEGLIL) o
Spo = e =71+7.C+7.M, +7, (M,C+CM,) (B.21)
with the response coefficients
Eg s EC
2 aleSO + [] C _I.SG . 772 — _2 aleSO
ol ol ar,
(B.22)
Nk 4 — W
BT, 2

Note that in the case we assume incompressibility of the isotropic matrix material, 1.e.
I, =1, we are able to postulate a free energy in terms of the remaining four independent
invariants which is enhanced by an indeterminate Lagrange multiplier p/2 to be identified as a
reaction pressure.

B.1.2.2. Two fiber-reinforced composite materials

In this section the constitutive equations for composite material with two families of
fibers are presented. The matrix rubber-like material is assumed to be hyperelastic and
reinforced by two families of fibers (textile cords). The preferential fiber directions in the
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reference configuration are denoted by the unit vector fields aq and by, relating with the
structural tensors M, =a, ®a, and M, =b, ®b,, respectively.

According to Holzapfel (2000) the strain energy function may be expressed in terms of
set of principal invariants /; — Ig. The first three invariants /;, f, and /; are presented in the
isotropic case, the pseudo-invariants /,, ., /g are associated with the anisotropy generated by
the two families of fibers. By use of the decoupled representation of the equilibrium free
energy we have

¥, (CM,M,) =2 ())+¥2(],1,,1,,..1,) (B.23)

vl 150

The invariants /, — [/, are identical to those from transversely isotropic materials in
equation (B.11) and the remaining invariants are defined by
I.=C:M,, I,=C* M,

B.24
I, = (CMM,) B2
and these corresponding modified invariants are
[_5 — J—2.-"316? T? _ J—4.-"31?? [_S — J—2.-"3[S (BZS)

Using arguments similar to those used for deriving the stress relation (B.19), we obtain
the explicit expressions

Sp, =JpC +J 7 P:S,, (B .26)
where
C AREILLIL)
Spo =2 e =y 1+7,C+y,M, +¥, (MIC+CM,)+ B.27)
+7,M, +7,(M,C+CM, ) +7, (MM, + M, M, )
with the response coefficients
Eg EQ EQ
oo B 7 P |yl 2P
ol al, - ol
O Ee O Ee B
AL N Lk e L v 4 (B.28)
ol ) ol ol
> _» owvE  _ ovre

y‘}' a-T? * ys a}—.s

In one specific case of composite materials with two families of fibers if a, b, =0, the
two families of fibers have orthogonal directions. Then, this material 15 said to be orthotropic
in the reference configuration with respect to the planes normal to the fibers and the surface in
which the fibers lie. The Helmholtz free energy function is a function of first seven invariants.

All explicit expressions of principal invariants as well as modified invariants and the
partial derivatives of them with respect to C can be found out in Holzapfel (2000).
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B.2. Evolution equations with internal variables

The existence of non-equilibrium states that do evolve with time is an essential feature
of inelastic materials. The Maxwell model (a dashpot is arranged in series with a spring) and
the Kelvin-Voigt model (a dashpot is arranged in parallel with a spring), two mechanical
models known from linear viscoelasticity, are frequently used to discuss relaxation and creep
behavior. In this work we only study the generalized Maxwell scheme with a free spring on
one end and a Maxwell elements arranged in parallel. There are two possible way to
formulate evolution equations which can be derived directly from this model depending on
used internal variables, namely internal strain-like variables (inelastic strains) and internal
stress-like variables (overstresses). The evolution equations have to satisfy with the inequality
equation (B.6).

B.2.1. Internal stress-like variables

According to Holzapfel (2000) the split of the free energy function into equilibrium
and non-equilibrium contributions whereas the equilibrium components of the free energy can
be written in terms of invariants, in particular

W=, (1,)+ > 2 (CM,,T,) (B.29)
=1
with a=12,...5; a=1 for one fiber-reinforced composites and «=12, .8, a=12 for two
fiber-reinforced composites.

Therefore the second Piola-Kirchhoff stress tensor is also decomposed into
equilibrium and non-equilibrium stress parts

S=S,+2.Q, (B.30)
=1

here the internal variables Q, .7 =1,...,# are used to be akin to stress-like tensors, which are

non-equilibrium stresses (or overstress) in the sense of non-equilibrium thermodynamics.
They are to be interpreted as conjugate variables to TI',, with the internal constitutive

equations Q_=-20Y ¢ /81“, , ¥=1,...m. At thermodynamic equilibrium the viscoelastic

T30F

anisotropic material responds as perfectly elastic recover the general finite anisotropic
elasticity.

In order to consider different contributions of the matrix material and families of fibers

on the non-equilibrium part, we divide the internal variables in
Sicr 2)
Q.= > Q. (B.31)

a=la#3

Hence the evolution equations are assumed to be linear and formulated separately for
e s . . I EQ .
each equilibrium isochoric stress contribution S,,,f;a corresponding to each branch of the

Maxwell model, as shown in Figure B.1, @=1,5 or 1,8 and & # 3, as in the form
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EQ

- Qra L
= .. Sisoa (B.32)

QFQ‘+

Fa

for r=1,..,m, where B,, € [0, 00) are given non-dimensional free-energy factors, which are
associated with the relaxation times 7, E(O,OO). We assume a stress-free reference

e 0 to be zero at reference time t=0.

configuration which requires the stress values Q,

??1>0 E1>0
[ AAAAAN

> . * >

n

nm = 0 Em > 0

II_ AAAAAA
I_ Vi

—

Figure B.1. The generalized rheological Maxwell model for internal stress-like variables

In equation (B.32) 7,, and B, relate to material parameters in the viscouselastic

model as

E
7 =—" and e B.33
Fa E ﬁf(l' E ( 2 )

¥ o

=

B.2.2. Internal strain-like variables

As considering the over-stresses as internal variables by virtue of the linearized
evolution equations, these models are restricted to small perturbations away from
thermodynamic equilibrium, in this subsection the inelastic strains will therefore be
considered as the internal variables.

The evolution equations of the internal-strain variables are formulated properly for
two orthogonal fiber-families in Nguyen et al. (2007) and let us review constitutive equations
in the following.

An essential assumption of the models is that both the fiber reinforcements and matrix
can exhibit distinct time-dependent behavior. As such, the constitutive formulation attributes
a different viscous stretch measure and free energy density to the matrix and fiber phases by
assuming parallel multiplicative decompositions of the deformation gradient into elastic and
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viscous (or inelastic) parts, refer to Diani et al. (2006), Nguyen et al. (2007). This
decomposition introduces the so-called inelastic intermediate configuration as sketched in
Figure B.2,

F=FF, =FF, (B34)

where the M, I subscripts represent respectively the matrix and fiber phases. From this, the
elastic and viscous right and left Cauchy—Green deformation tensors can be defined for the
matrix and fiber phases as

C, =(F,) F,.C,=(E,) E,.C;=(F) K. C,=(E)) F,  (B3%)

Figure B.2 — Multiplicative decomposition of deformation gradient

In additional, the free energy function is postulated as an isotropic function of the
objective Cauchy-Green deformation tensor C, the structural tensors denoting the fiber
orientations M, in the reference configuration, and internal state variables (m=2) I', = C},
and I', =C} for the viscous relaxation of the matrix and fiber phases. The free energy
function is additively assumed to be split into an equilibrium and non-equilibrium
contributions and then both the equilibrium and non-equilibrium components of the free
energy function are decomposed further into isotropic and anisotropic components in terms of
invariants (this formulation is analogous to the rheological model shown in Figure B.3)

Y(CM,.E, )= W2 (C)+ Y2 (CM, )+ ¥ (C )+ ¥ (C;)  m36)

Eguitibrivm parts Mon=equilthrivm parts

For a composite material with two fiber-families the components of the free energy are
expressed as 1sotropic functions of invariants

‘Pij:‘}’ﬁ(}l,[?}‘?), Tif:l{"?(lrﬂ]b[ﬁ’]%[fi)

He Heg = = = He Heg = = € € € (B‘3?)
Yy =V (IM, VRS Y3 )s W= ([a I (R N P )
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in which 7,..../; are the invariants of C, /,,,/,, ,/,, are invariants of Cj, in the matrix
phase, / ...,/ areinvariants of Cj in the fiber phase and given by

Ly, =Cy =0
I, =4(15, - ¢l W) =4(17, - cCy; s cC;y )

I, = detC;, = det(CC;, )

- C:M . - CCLC:M
I =C;, M,=——1 [, =C, M, =—F—1 B.38
F, F 1 C}:Ml’ Fy F 1 C;:Ml ( )
~ ‘M 2 -~ CC:M
1=y b, =S e _of oy, - EC CM
‘ C,:M,” "7 C.:M,
M,C:C.M,

_ 2)=(C;:M1)(C;:M2)

where M are the structural tensors in the intermediate configuration, o =1,2 .

74

Equilibrium matrix

Non-equilibrium matrix

E AAAAAN

Equilibrium fiber

——— MMWW——

Non-equilibrium fiber
[ AAAAAA
|

Figure B.3 — Rheological equivalent Mawell model for internal strain-like variables

The evolution equation for C}, is proposed to satisfy (B.6) respectively for the matrix
phase as

| _
ECM =VM’1 :TM (B39)
-1 1 v v 1 v v 1 v v
V, =—|C, 0C,—=C, ®C;, |+—C;, ®C;, (B.40)
21y, 3 M,
alPﬂeq
Tp=l— B.41
M 5C° (B.41)

M
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C,

My

where (C}, ©C}, ), =4(C;

My

+CM;L CM’JK) and 77,, and 77, are, respectively,

. “la . . -1 . .
the bulk and shear viscosities of the matrix material. The parameter V,; is the inverse of a
positive-definite, fourth-order, major and minor symmetric tensor.

The evolution equation (B.39) for describing a viscous behavior of the matrix phase
was also proven to be identical to the evolution equation proposed by Reese & Govindjee
(19984, b} for isotropic nonlinear viscoelasticity, see Nguyen et al. (2007).

The evolution equation for C5 of the fiber phase applying to the two orthogonal
fiber-families proposed to fulfill the satisfaction of the positive dissipation criteria for the
fiber phase is

| _

5C-=Vi T (B.42)
| 2 1 ¥ ¥ v v
Ve = Zl 4n (MorCF +CFMa)®(MaCF +CFMa) (B .43)
a= F,
o

T, =-2—= B.44
F 2" (B.44)

where V;l is also the inverse of a positive-definite, fourth-order, isotropic tensor possessing
both major and minor symmetry and related directly to the fiber viscosities 77 and the fiber
arrangement.

Note that, for the case of two non-orthogonal fiber families the evolution equations are
still used by means of defining orthogonal direction vectors
~ P+P, ~ P-P,
P=—- =
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Appendix C

IMPLEMENTATION OF USER MATERIAL MODELS IN COMSOL

MULTIPHYSICS

C.1. Definition of modules for viscoelastic problems

“Structural Mechanics Module” and “PDE Modes” modules are included in the
project, as shown in Figure C.1, for solving a viscoelastic response of composite structures.
The “Structural Mechanics Module” is applied for studying all mechanical problems in 2D,
3D and axial symmetrical coordinate systems. The “PDFE Modes” is utilized to solve partial
differential equations, namely herein evolution equations of internal variables (inelastic

strains or overstresses).

Model Navigator fz|
Multighysics | Comporent Library | User Companients |
Space dimensicn: 20 v i Mutiphysics
() Electromagnetics A [ Add J[ remove |
| I Flusd Dynarmics ;
| B[ Heak Transfer L,J GSU‘:[')E(EEL 2 _—
. &) Structural Mechanics =M PO, General Form(visco imet)
[ -1 PDE Modes ] # PCE, General Form (visco_fib)
| 3 Deformed Mesh fplane Stress (smps)
| @[ Electro-Tharmal Interaction
;B[ Fhuid-Thermal Interaction
E-53 ACIDC Module
- Acoustics Module
B _j Chemical Enoincering Mol Dependent varishles: uwp
#-{J) Earth Science Module
5-) Heat Tranefer Modus | Apphoation Mode Properties... |
£ MEMIS Madude [ Add Geometry.., ]
41+ RF Moduls
#f =) Structural Mechanics Module | v [ Add Frame... ]
Dependent bl | | Ruling apphcation made:
Appécation mode name: | | |PCE, General Fom (visco_mat) v
Elsment: l Mukiphysles I
Lok [ conced |[ Heb |

Figure C.1 — Define “Structural Mechanics Module” and “PDFE Modes” modules

C.2. Definition of constitutive equations

To define constitutive equations in COMSOL, first we can write all equations in txt
files then we import directly these files in a “Global Expressions” table via an icon open & as

in Figure C.2.
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P Neo-Hookean_Poly PlaneSiress - Motepad
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Ph12 -phil |beta_isol0.06
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El sintphi2*pi /180 bsta 0.1l
E2 =as (phi2spd /180 [Eau_eri 54
phiit 30
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F22 F22_smps ] wos(phi 1 *pif 130)
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114 JAE—E)’B *14 T = -
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116 /30416 P
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Figure C.2 — Define constitutive equations in “Global Expressions”

C.3. Redefine free energy functions

We must change the definition of free energy function to be suitable to a model which
we need. It can be easily performed in a “Subdomain Settings — Equation System’ table shown

in Figure C.3.

Suhdomain Settings

Equation System

Equation

Subdomain selection

ETS -

] Sedect by group

Reset Eguation
Differentiate

s, Fuja + doujd + 7O —

Fjc= =80 jdPu, &= -2F/du, y =T, f = -9F/3%u, a = -3l jou, fF =F
[clafflealda]al ] v]m Elunu-:|\ue.:k variables
Apphcation mae variables
Harme Exprassion Uit Description

chap_errps aart(reali)™2+raslv) =) i Total diaplacamant -~
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e e —
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ch_slnps F12_smps*F11_smps+F22_smps*F21_smps i Right Cauchy-Graan tansor 21 ..
(e22_smps F12_smps~g+Fz2_smps~2 It Fight Cauchy-Green tensor 22 ..
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Appendix C. Implementation of user material models in Comsol Multiphysics

C.4. Formulation of evolution equations

Evolution equations of internal variables need to formulate in the “PDE Modes” by
means of “Subdomain Settings - PDFE, General Form™ as denoted in Figure C.4.

Subdomain Settings - PDE, General Form (visco_iso)

Equation

e 8°ujat” + d_dujst + VT =F

{ Subdoma |r Fle,d i) Element | weak | clor |
Subdomain selection LRI
a— ‘

= dt_Qiso_11
dt_Qiso_12
dt_Qiso_z2
dt_Qiso_33
e |
Group:
[] sefect by group
Active in this domain

[ oK J[ Cancel ][ Apply ][ Help I

Figure C.4 — Formulate evolution equations

C.5. Define a function in COMSOL

In order to create a controlled step load we use a mode of defining function in
COMSOL, shown in Figure C.5.

Functions

Defined functions Function definition

(ControlDisplacament Function name:  ControlDisplacement

Arguments: t, k00, i, v

Expression; yiF k=400, *{ (= =t00) R <tOi+uifi ) )+ui((E >=t0i+uifvi))
Derivatives

@ Auto
) Marual;

[ May produce complex output for real arguments

o] (oomee ) (oo J (e ]

Figure C.5 — Define a user function
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C.6. Integration of volume

“Integration Coupling Variables” on a boundary is applied to calculate a volume
inside an air-spring tube in which the expression of integral is defined as a scalar quantity as
can see in Figure C.6.

Houndary Integration Yariables

Source | Dieskinztion !
BRI sl Mame Expression Integration order Global destination
&l | e [2*pi*{r-tuorr)~2¥(... |4 V] o
Z V] 1
: -
i ]
v
v
v/
v .
v
[ sefect by group B v
l oK l [ Cancel ] [ Apply l [ Help {

Figure C.6 — Integral volume of an air-spring tube

A-26



Appendix D
SOME M-FUNCTION AND SCRIPT FILES IN MATLAB®

In this appendix we would like to show some typical functions programmed in Matlab
in order to attend to evaluate all material parameters basing on the experimental data. One
evaluation process is apportioned to three steps including: Analyzing data, estimating purely
elastic parameters and estimating viscoelastic parameters. While each evaluating step is
separated into many functions to conveniently manage.

D.1. Some functions of analyzing data
D.1.1. “ConnectDataSteps™ function

Due to the data amount in each relaxation experiment is quite big therefore the
experimental performance is split into many steps. Hence this function has a task to connect
many experimental steps together and seek equilibrium forces corresponding to every step.

function [gdata,data eq,data rel]=ConnectDataSteps(angle,fileload,filestrain,step,A0)

gdata = []:

data end = [0,0,0];

for i = 1l:length(fileload)
data = loadi(filelocad{il}});

data(:,1] = data end(l] + datai:,1];
datal:,2) = data_end(2) + data(:,2):
data(:,3) = data_end(3) + datal:,3);
gdata = [gdata; datal:
data_end = gdatal(end,:);

end

gdata = gdata(l:500:end,:);

data str = loadifilestraini;

el =_data_str[:,l];
laml = 1l+el*le-3;

i=20;
k=l
il
data eq = [0];
temp = [];
data rel = [];
while i<size|gdata,l)
T =sde
if gdata(i,Z)>k*step
k = k+1;
data _eq = [data eq:F _eq]:
i=1;
row_st = [size(temp,l),angle;laml(k],0];
data rel = [data rel;row st];
data rel = [data rel;temp];
temp = []:
end
if gdata(i,Z2) == k*step
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F eq = gdatal(i,3);

stress = gdata(i,3)*laml(k+1l)/A0;
temp(j,:) = [gdata(i,l),stress];
5 =k

end
end
data eq = [data eq;F eq];
laml = laml(l:length(data eq]];
data eq = data_eq.*laml/A0;

data_eq = [laml,data eq]:

row_st = [size(temp,l),angle;laml(k+1),0];
data rel = [data _rel;row st]:

data rel = [data rel:temp]:

D.1.2. Main program of analyzing data

Applying the “ConnectDataSteps™ function to connect, analyze and save experimental
data in “mar” files.

dlgs «clear alls
A0 = 4.5*%220;

’

angle = [40,50,60]";
name step = [12,34];
step disp = 1;

Xdat = []:

for st = l:lengthiangle]
for i=l:length(name step]

file load{i}=strcat('MVL f',numZstriangleist]],’' step’,..
numZstr(name step(i)],'.txt"];

end
file strain = strcat('Strain_ Fiber',numZstr(angle(st)),'.txt");
[data load,data eq,data rel] = ConnectDataStepsiangle(st],file load,file strain,step disp,A0];
fileload = strcat|'Load ] Fiber',numZstrianglelst))):
fileequilibrium = strcat|'Equi stretchStress F r',numZstriangle(st))):
filerelax = strcat('Relax TimeStress Fiber',numZstrlangle(st))):
save(fileload, "data load');
save(fileeguilibrium, 'data eg');
save(filerelax, "data rel');

figureil); hold on;
plet(data_=q(:,1),data_eqg(:,2),"-r*"):

end

D.2. Estimation of purely elastic coefficients
D.2.1. “VolStress” function

We use this function to calculate the volumetric stress contribution.

function s vol = VolStress(coef,laml)

A-28



Appendix D. Some M-function and script files in Matlab

c = coef(l);
a_vol = -2*D./(laml.”2);

D.2.2. “IsoStress” function

We use this function to calculate the isotropic (isochoric) stress contribution.

function s _iso = IscStress(coef,laml)
- = coef(l);
s iso = Z*%c*laml.™Z;

D.2.3. “AniStress” function

We use this function to calculate the anisotropic (isochoric) stress contribution.

function s ani = AniStress(coef,laml,phi]
k = coef(Z2);

a0l = cos(phi*pi/180);

alZz = sin(phi*pi/180);

I4 = laml."2.*%adl."24a02."2;

g_ani = 4*k*laml.”2.*[I4-1).*a0l."2;

D.2.4. “FitElasticParameter” function

In order to use it for evaluating elastic material parameters by means of the linear least
square method.

function [coef,fval,error] = FitElasticParamerter(¥dat)

data = Xdat:
index 0;
yreal [1:
while [isempty(data)==0]
n = datail,l);
beta = datail,2);
laml = datai{zZ:n+l,1);
yreal = [yreal:data(Z::nt+l,2)]:
aldl cosbeta*pi/180);
a2 gin(beta*pi/180);

for i = l:lengthilaml)

T4 = lamlii)"2%adl™~2+4a02™2;
Alit+index,1) = 2*(laml(i)"~2=1/lamli{i)"~2):
Alit+index,2) = 4*laml{i)"2* (I4=1)*adl"2;
end
index = index+n;
data = datain+Z:end,:);
end
coef = A\yreal:;
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fval = yreal - A*coef;
error = sumlabs(fval))/sum{abs(yreal))*100;

D.2.5. The main program of evaluation of purely elastic parameters

elg: clear all:

angle = [30,40,50,60];
¥dat = [];
for st = l:lengthiangle]
fileequilibrium = strcat('E StretchStress_ Fiber',numZstr({angle(st))):
load(fileequilibrium);
row_add = [size(data_eq,1l),angle(st)];
Xdat = [Xdat:row add;data eq):
end

[coef elas,fval,err] = FitElasticParamerter(Xdat]):;
save ("NeoHookean I mial', 'coef elas');

muy=2*coef elas(l];

style point = {'*r','sm','oc','vb', '<k'};
St}-‘le_line - {u _|'| .|'| .|'| :ufu 'u}:
figure;

hold on; %title('Data points');

grid ;

Ydat = Xdat:

step = 0;

while (isempty(Ydat)==0)
step = step + 1;
n = Ydat(l,1);
beta = Ydat(l,2);
laml = Ydat{Z:n+1l,1);
y_real = Ydat(2:n+l,2):
plot(laml,y real(:,1),style point{step}):
Ydat = Ydat(ntZ:end,:):

end

lamlap = [linspace(l1,1.13,30)]17;
for i=1:lengthliangle)
beta = angle(i):
yap =
VolStress(coef elas,lamlap)+IsoStress(coef elas,lamlap)+tAniStress(coef elas,lamlap,beta):;
plot(lamlap,yap,style line{il, "linewidth',2];
end
xlabel [ "The E: E pal
ylabel | 'The first principal

D.3. Estimation of viscoelastic coefficients
D.3.1. “OverStress” function

We program it to define overstress components
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function Q = OverStress(beta,= eq,tau,time]

@ = beta*s eg*exp(-time/tau):

D.3.2. “FitLinearViscousCoeff” function

We program it for fitting linear viscous coefficients.

function [fval,coef 1lin] = FitLinearViscousCoeff(coef nonlin,Xdat,coef m,scale coef)
taul = ceoef nonlin;
tau2 taul/scale coef(Z2);
data Hdat;
index = 0;
q real = [];
A= 11
while (isemptyidata)==0)
Ny =idata il o1
phi = data(l,2):
laml datalZ,1):

time = data(3:nt+2,1);

time = time-time(l);

s _iso = Isc8tress(coef m,laml];

s vol = VolS8tress(coef m,laml];

s_ani = AniStress(coef m,laml,phi];

q real = [g real;data(3:nt2,2)-s vol-s isco-s_ani):

Al = [S_iso*exp[—timeftaul]+lfscale_coef[l]*S_ani*exp[—timeftaui]];
A = [A;Ri];

index = index+n;

data = data(n+3:end,:);

end

coef lin = A\g_real;
fval = g real-RA*coef lin:

D.3.3. “FitViscousParamerter” function

We use it for evaluating all viscous parameters in which non-linear viscous
coefficients are estimated by the nonlinear least square method.

function [coef,fval] = FitViscousParamerter(Xdat,coef m,scale coef]

coef 0 = [1];

fobj = @(x) nerm(FitLinearViscousCoeff (x,Xdat,coef m,scale coef]);

coef nonlin = lsgnonlin(fobj,coef 0];

[fval,coef 1lin] = FitLinearViscousCoeff([coef nonlin,Xdat,coef m,scale coef);
coef = [coef linjcoef nonlin];

D.3.4. Main program of evaluation of viscoelastic material parameters
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load 'NeoHookean Polynomial':

angle = [30,40,50,60];
Hdat = []:
for st = l:lengthlangle)

fileequilibrium = strcat('Relax TimeStress Fiber',numZstr(angle(st))):
load(fileequilibrium):
¥dat = [Kdat;data rel];

end
scale tau = 5;
scale beta = 1/2;
scale coef = [scale beta:scale taul:
coef vis = FitViscousParamerter(Xdat,coef elas,scale coef];
betal = coef vis(l]; - N
betaZ? = betal/scale beta;
taul = coef vis(Z);
tauZ = taul/scale_tau:
style point = {"*r',"sm’, Toc’, "vb', "<k'};
T

gtyle line = M=l lomh Soel bl lofan The

for st = l:lengthiangle)
fileequilibrium = strcat('Relax TimeStress_Fiber',numZstr(angle(st))):
load(fileequilibrium);

data = data rel;

time = [];
s _real = [];
index = 0;
s_app = []:

while (isemptyidata)==0)
n = data(l,1);
phi = data(l,2):
laml = dataiz,1l];
t step = datai3:n+2,1)-data(3,1);

time = [time;data(3:n+2,1)1]1;

s _real = [s real;data(3:n+2,2]];

s _iso = Iso8tress(coef elas,laml];

s _vol = VolsStress(coef elas,laml):

s _ani = AniStress(coef elas,laml,phi);
5 _eq = s vol+s isots_ani;

over s = OverStress(betal,s iso,taul,t step|+OverStressibetaZ,s ani,tauz,t step);
s_app = [s_appiover s+s_eql;
index = index+n;

data = data(nt3:end,:);
end

figureist);hold on;grid on;
plot(time,s_real,'--","linewidth',1.5];
ploet(time,s_app,style line{st}, 'linewidth',2):
xlabel ('Time t [s]'):

ylabel("The first principal stress \gigma 1 [MPa]'):
legend | 'Experiment', "Numerical',2);

end
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