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Abstract

In the recent decades, modeling and designing the various kinds of control

schemes for robot manipulators provide several challenges. This disserta-

tion takes into account the problem of finding optimal control inputs and

desired optimal trajectories (optimal dynamic motion planning) for open-

chain robot manipulators whose dynamics are highly nonlinear and coupled.

In doing so, we require a precise dynamic model of the considered system.

Thus we develop an experimental identification procedure to estimate the

dynamic and friction parameters of our main case study, i.e. the KUKA

robot available in the robotic laboratory of Mechatronic faculty of TUL.

Next, this work proposes two new methods to solve the problem mentioned

above. In the first proposed method, the unconstrained optimal control

problem of robot manipulators is solved with presenting a completely inno-

vative method which yields a global optimal solution for this problem. Our

first method finds the optimal solution neither using calculus of variations

(indirect methods) nor direct methods, but with a completely different ap-

proach obtains the global optimal solution of the considered cost functional.

This method has been presented under a theorem with a detailed proof dur-

ing which we have shown the application of this method in the case of robot

manipulators for both point to point motion and trajectory tracking tasks.

However, this method has a restriction which can not support the physi-

cal constraints on a robot manipulator. Eventually, the proposed method

which is a model-based controller is extended into a more general case in

which an exact model of the robot is not available, namely designing an

adaptive optimal control scheme for robot manipulators.

The second proposed method is a combined optimal control method which

solves the constrained optimal control problem of robot manipulators. This



approach includes iterative linearization (IL), iterative learning control (ILC)

and parametric optimization (PO). In this method, it is assumed that the

robot is performing a repeated task such as pick and place parts in an as-

sembly line. Accordingly, in each trial which the robot performs the task,

a linear time varying (LTV) version of its nonlinear dynamic model is ob-

tained (using IL) and at the same time an optimal control input for this

LTV is computed by parametric optimization method. The optimal solu-

tion of each trial is stored in memory of the system to compute the optimal

solution in the next trial (ILC). This procedure is repeated so that after a

finite number of trials, the sequence of optimal solution of LTVs converge

to the robot’s optimal control inputs (joint torques or actuator voltages).

Eventually, the proposed algorithm is applied into all kinds of the standard

manipulator structures (e.g. SCARA, spherical, cylindrical and angular

(Puma 560, ABB IRB140 and KUKA) robots). In these case studies the

various comparisons are made between the proposed method with the other

methods such as direct multiple shooting and spline-based optimal control

methods. Briefly, these comparisons yield some efficient capabilities and

results for this proposed method which have been presented in chapter 5,

in detail.

Keywords: Robot manipulator, Adaptive global optimal control, Robot

identification, Excitation trajectory, State dependent coefficient.
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Chapter 1

Introduction

Modern industrial robots are electro-mechanical systems whose history dates back a few

recent decades. However, antecedents of robots which are mechanisms and linkages,

have a history of a few centuries. The word robot is Slave in origin, related to the

words for work and workers. This word firstly was introduced by Karel Capek, a

Czech novelist, in his novel “Rossum’s Universal Robots” in 1920. In this novel an

engineer made machines that were modeled on human beings. The first industrial

robot was manufactured by George Charles Devol, in 1954 called Unimation. After

that various universities and companies designed and built different industrial robots

such as Puma 560, Stanford, SCARA and etc. Generally, industrial robots are an

inspiration of human skeleton and actually they were built to perform intolerable and

hazardous task instead of human being. Like human body, the members of each open

chain manipulator include: waist, shoulder, elbow, wrist and end effector (hand). In

fact, these are the joints of the robot by which the robot links are connected to each

other. For studying the robots, it requires to consider some interdisciplinary fields

consist of kinematics, statics and dynamics, identification, trajectory planning, motion

control, force control, artificial intelligence and so on which each of these subjects are

subset of mechanical, electrical and computer sciences.

1



1. Introduction

1.1 Motivation

For a manipulation task carried out by a robot manipulator, there are many paths along

which the robot can move. However, the robot should accomplish the desired task in

an optimal manner with respect to an appropriate performance criterion. This is the

subject considered in this study to solve the well known “optimal control problem”

(OCP) for robot manipulators. In other words, the main goal in this thesis is to

derive the robot dynamics and then present the new method(s) to obtain the optimal

control inputs (joint forces/torques) and generate the optimal trajectories for an open

chain robot manipulator. Therefore, the considered objectives of this thesis can be

categorized in three main branches:

1. Kinematic and dynamic modeling of the robot arms in closed-form and developing

a robot identification procedure to estimate the dynamic and friction parameters

of this robot;

2. Solving unconstrained OCP of robot manipulators;

3. Solving constrained OCP of robot manipulators.

The first subject examined in this thesis is to derive the kinematic and dynamic

models of robot manipulators in closed-form and developing an identification experi-

ment. In fact, one of the necessary tools to design an optimal controller is possessing

a real dynamic model of the system in question. Thus, these subjects is addressed in

this thesis generally under the name “robot modeling”.

In the second subject, we consider the unconstrained OCP of robot manipulators.

The main motivation in this part of our study is to present a method which yields a

global optimal solution to the considered unconstrained OCP. Most existing methods

such as indirect and direct methods solve this problem by satisfying some necessary

conditions which eventually obtain a local optimal solution. We present a completely

innovative approach under which a global optimal solution is obtained to the uncon-

strained OCP of robot manipulators. This method is addressed under a theorem in

which we define a cost functional and then by a detailed proof we obtain the minimum

value of this functional as well as during this proof we show how this method can be

applied in the case of robot manipulators.
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The third subject considered in this thesis is to solve the OCP of robot manipulators

by considering the physical constraints on a real robot. Most existing methods consider

the robot dynamics to solve the OCP. These dynamics have a highly nonlinear and

coupled form so that the resulted OCP is too difficult to solve. The second proposed

method in this thesis is a compound optimal control scheme whose sub-methods are

iterative linearization, iterative learning control and parametric optimization. In this

method, which is suitable for robots performing the repeated tasks, a sequence of

optimal trajectories is obtained in successive trials so that the limit of this sequence

is the optimal solution of the considered time-energy OCP. This method is applied

into all types of standard robot arm structures (i.e. SACRA, cylindrical, spherical and

revolute articulated robot arms) and a comprehensive comparison is made between the

proposed and two other methods, namely multiple shooting and spline based optimal

control methods.

1.2 Background

1.2.1 Robot Kinematics

Kinematics of robot manipulators is the study of the motion robot links without consid-

ering the forces and torques which cause it. The kinematic model of each robot can be

described by four quantities for each robot links. These quantities are called Denavit-

Hartenberg parameters which can be obtained in two ways : Denavit-Hartenberg (DH)

notation and modified Denavit-Hartenberg (MDH) notation [35; 55]. In general, robot

kinematics involve two parts: direct kinematics and inverse kinematics. In direct kine-

matics, one obtains the relationship between the individual joint variables of the robot

manipulator and the position and orientation of the tool or end-effector. In fact, one

wishes to determine how the end-effector position and orientation vary in terms of

the joint variables [66]. In contrast, inverse kinematics addresses the finding of joint

variables given the position and orientation of the end-effector.
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1.2.2 Robot Dynamics and Identification

In contrast with kinematic equations that describe the motion of the robot without

taking into account the forces and torques producing it, the dynamic equations ex-

plicitly represent the relationship between force and motion. In the case of robot

manipulators, these equations are used to design the control system of the robot and

to simulate the robot by computer. The dynamic equations of the robot can be derived

by use of either Lagrange’s equations analytically or recursive Newton-Euler equations

numerically [58; 70].

As with the robot kinematics problem, the robot dynamics problem is divided into

two parts: direct dynamics and inverse dynamics problems. In direct dynamics the

goal is to calculate the generalized coordinates given the forces and/or torques of the

robot joints. The objective in inverse dynamics problem is to compute the torque/force

of each joint given the joint positions, velocities and accelerations. The Newton-Euler

formulation is an efficient linear recursive approach for inverse dynamics [38].

There is a set of dynamic parameters including the mass, inertia and location of

mass center of each robot link as well as the viscous and Coulomb friction parameters

in the dynamic equations of the robot. These parameters usually are not provided by

robot manufacturers and robot researchers have to measure these parameters them-

selves. This task is performed under a procedure called robot identification by which

dynamic and friction parameters of the robot are estimated by means of either off-line

or on-line methods [25; 45].

1.2.3 Optimal Control of Robot manipulators

With growing applications of robot manipulators in industrial factories, one of the key

features which has been considered is high productivity with low energy consumption

as much as possible. One of the factors in increasing the productivity is using industrial

robots which perform industrial tasks with high speed and accuracy. There are two

ways for robots to work in higher speed. The first way is that the robot manufacturers

use more powerful actuators that drive the robots to move at higher speed. However,

this method causes bigger actuators which in turn the robots need to consume more

energy. Thus, this method is not logical and economical. The second way is to design a

controller for the robot manipulators to perform the respective task in minimum time
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and minimum energy consumption. Hence, designing such controllers is the goal in the

optimal control technique. The OCP of the robot manipulators can be described as

follows:

Consider an n-axes robot manipulator whose actuators are DC motors and in a

desired task it must move from an initial configuration to a final one. Find the opti-

mal control inputs (voltages) for the motors of the robot and optimal robot trajectories

so that a performance criterion characterized the energy consumption by the robot or

traversal time from initial configuration to final one (or a compound of energy con-

sumption and traversal time) is minimized without exceeding the preassigned maximum

velocities, accelerations and jerks for all joints.

In general, there are three main approaches to solve the (continuous or discrete)

OCP of nonlinear dynamical systems [36]:

� indirect methods (variational approaches),

� dynamic programming,

� direct methods.

Indirect methods obtain the solution of the considered constrained OCP by solving

a two-point boundary-value (TPBV) problem constructed from optimality conditions

represented by Pontryagin’s maximum principle, adjoint equations and the transver-

sality (boundary) conditions [74].

Dynamic programming employs the principle of optimality which finally leads to the

Hamiltonian-Jacobi-Bellman (HJB) equation [15; 77]. It actually is a partial differential

equation which must be solved to obtain the solution of OCP [67].

Direct methods are those that solve the OCP by minimizing the considered cost

functional (performance criterion) directly versus the indirect methods. In fact, these

methods transfer the OCP into a nonlinear programming problem (NLP) which can be

solved by different numerical optimization methods such as SQP (Sequential Quadratic

programming) [17; 51]. There are, however, other methods that can be used to solve the

OCP such as nonlinear model predictive control (NMPC). NMPC is a modern control

strategy which actually solves the OCPs in closed loop feedback form [62].

Early the time-OCP of robot manipulators was solved by indirect methods. In

fact, this problem was seriously considered by Bobrow in his Ph.D dissertation [21].
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He proposed a new method in which a modified Pontryagin’s minimum principle is

used to calculate the optimal control torque of each joint of a robot manipulator. In

this method a so-called position-velocity phase-plane algorithm is introduced according

to which the desired path is parameterized by an arc length parameter “s” and then

the robot dynamics is represented in terms of this parameter s which reduces the robot

dynamics to second order. Then the resulted second order OCP is solved in phase plane

easily. After this proposed method, some other researches were presented by which a

set of improvements were applied to the Bobrow’s first work [20; 83], for instance

considering the singularity problem appeared in OCP [81; 84]. Several other works

then parameterized the desired path and applied a parametric optimization algorithm

to obtain the time optimal trajectories which avoid obstacles [39]. Some other studies

added a energy term to the cost function [82] and also actuator dynamics [71].

Dynamic programming method also was employed to obtain the minimum-time

optimal trajectories [8; 37; 85]. In [85], the Bobrow’s method was used to solve the OCP

of robot manipulators, but for computing the optimal controls, a dynamic programming

algorithm has been developed to derive the reduced set of second order differential

equations in terms of path parameter and in this way they loosed the problem of

“curse of dimensionality” appeared in dynamic programming method.

Although two above methods have been used successfully in many applications,

but they have been replaced by direct methods in recent years. The basic idea of this

method, in the case of robot manipulators, is that the joint trajectories are approxi-

mated by a parametric function such as spline functions and then using a nonlinear

programming, the optimal values of the parameters in used approximating function

are achieved. One of the main advantages to this approximations is that usually the

resulted parametric optimization problem has a feasible solution. Many researchers

presented different approaches to generate the optimal joint trajectories. Among these

works, polynomial cubic spline functions and B-splines have been used in many stud-

ies [19; 42; 48; 87; 88; 95]. In [19], B-spline functions were used to parameterize the

joint motions and derive a general optimization technique for robots using Denavit-

Hartenberg parameters of the robot and the full robot dynamics. In [87], the cubic

spline trajectories is used to converting the OCP into a finite dimensional optimization

problem by considering maximum values of velocity, acceleration and jerk for all robot

joints. Point to point trajectory parametrization was performed in [88] by means of
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cubic B-splines. [95] proposes a method to obtain a global solution to OCP of robot

manipulators. Incorporating Both acceleration and jerk as the objectives is consid-

ered in [48]. Eventually in [42] an efficient algorithm is proposed to solve the OCP by

using polynomial cubic spline functions. There is also another sub-part of the direct

methods called shooting methods. These kinds of methods, which include single shoot-

ing, collocation and multiple shooting methods, use a constant piecewise function to

parametrize the control inputs (robot joint’s torques and forces) of the system. These

methods have been considered in [22; 36], in detail.

In most studies mentioned above, the obtained optimal solution is a local one

whereas a little number of researches is found on obtaining the global optimal solu-

tion to the OCP of robot manipulators. In the our first proposed method we consider

this subject so that it yields a global optimal solution to the considered unconstrained

OCP in a completely innovative and different approach versus of the methods men-

tioned above. In the second proposed method we present a combined optimal control

method through which the constrained OCP of robot manipulators is solved. In this

approach which is appropriate for robots performing the repeated tasks, in each repeti-

tion (trial) a linearized version of robot dynamics is obtained and using the parametric

optimization method the OCP is solved in each trial so that after a finite number of

trials, the sequence of optimal trajectories converge to the optimal trajectory of the

original dynamic system (robot dynamics). This method is applied into all standard

types of robot manipulators, i.e. SCARA, spherical, cylindrical and angular robot

arms.

1.3 Contributions of the Thesis

The first subject dealt with in this thesis, is modeling of open-chain robot arms. As a

main case study, the direct and indirect kinematic models of a KUKA robot available

in the robotic laboratory of Mechatronic faculty of TUL are obtained in closed-form

through a MDH notation. The dynamic model of this robot are derived by applying a

Euler-Lagrange formulation in closed-form as well. These models are verified through a

writing task accomplished by the robot in the simulation environment (robotic toolbox

of MATLAB) by considering some arbitrary values for dynamic parameters of the

robot. Of course, in this thesis the dynamic equations of all standard manipulator
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structures are derived in the different chapters.

Then, so as to obtain a dynamic model of the considered KUKA robot an experi-

mental identification is developed through which the dynamic and friction parameters

of this industrial robot are estimated. But before performing this task, one require

to obtain a mathematical model of the robot so-called “regression model” which is

linear in terms of the dynamic parameters of the robot. Thus, it is shown that how

the regression model is obtained for the KUKA robot through an QR decomposition

method to use in the next step of identification. Also from other key issues in the robot

identification is to design an appropriate excitation trajectory along which the robot

should be moved during the identification experiment. The practical and theoretical

subjects to obtain this trajectory through an optimization problem are addressed and

the best choice of the cost function for this problem in the case of the KUKA robot is

investigated. Then, the dynamic and friction parameters of this robot are estimated

by applying a weighted least square method. It is worth to note that the above proce-

dure to estimate the dynamic parameters of the KUKA robot can be applied into any

angular robot manipulator.

In this thesis two proposed methods are introduced to solve the OCP of robot

manipulators. The first method solves this problem through a completely innovative

manner unlike the existing methods which solve this problem via calculus of varia-

tions (indirect method), direct and dynamic programming methods. Most of these

approaches present a local optimal solution through satisfying a series of necessary

conditions. In contrast with these methods, the proposed approach results in a global

optimal solution for the considered cost functional. This method is presented under

a theorem and during its proof which is given in detail, the application of the theo-

rem in the case of robot manipulators is explained. From the other features of this

method is that it can be used in both point to point motion tasks (e.g. pick and place

parts or spot welding tasks) and trajectory tracking tasks such as painting or welding

tasks. However, the proposed method has a restriction so that it can not support the

physical constraints on the robot. Eventually, the proposed method which is a model-

based controller is extended into a more general case in which an exact model of the

robot is not available, namely designing an adaptive optimal control scheme for robot

manipulators.

The second proposed method addressed in this thesis is a compound optimal control
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method through which the constrained time-energy OCPs of robot manipulators can

be solved. The sub-methods used are iterative linearization, parametric optimization

and iterative learning control methods. Let a robot which is performing a repeated

task then the proposed method solves the OCP of this robot during a finite number

of repetitions (trials). Accordingly, an efficient and robust numerical algorithm is

developed to accomplish the procedure of this method. This algorithm is capable to

support any kind of constraints and cost functional whether linear or nonlinear. It also

generates the smooth trajectories for the robot to avoid exciting the resonance modes

of the robot dynamics. Another important feature of this proposed method is that

the optimal solution is obtained through a finite number of trials, hence the load of

computation is partitioned on these trials so that it can be used as an on-line optimal

control method for robot manipulators which is performing repeated tasks.

This thesis eventually presents a comprehensive optimal results by applying the pro-

posed method into all standard types of the manipulator structures including SCARA,

spherical (Stanford), cylindrical and angular manipulators. Then the advantages and

disadvantages of the proposed method are compared with multiple shooting and spline

based optimal control methods through solving the OCP of the SCARA, spherical and

cylindrical robots. Eventually, the optimal trajectories of three well known industrial

robots, i.e. Puma 560, ABB IRB140 and KUKA robot are presented using the proposed

method.

1.4 Outline

This dissertation has six chapters as follows: chapter 1 is an introduction to robot

kinematics, dynamics and identification, as well as the OCP. Chapter 2 deals with

the subjects such as robot kinematics, dynamics and identification, in detail. In this

chapter the results of KUKA robot identification is presented. Chapter 3 addresses

the subjects relating to the OCP formulation and the different methods to solve this

problem. In chapter 4, we present our first proposed method to solve the unconstrained

OCP of robot manipulators. Then, the proposed method to solve the constrained OCP

of robot manipulators is dealt with in chapter 5. Eventually, in chapter 6 the concluding

remarks are presented.
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Chapter 2

Robot Kinematics, Dynamics and

Identification

Kinematics is the science of describing the motion of an object without considering the

external forces exerted on this object. In fact, kinematics deals with computing the

position, velocity and acceleration of a body. In contrast, dynamics is the study of the

factors caused the motion of a body, i.e. forces and torques.

In this chapter, we will first address the kinematics of the robot manipulators by

which the relation between pose (position and orientation) of the end-effector and con-

figuration of the robot can be obtained. We then deal with dynamics of the robot in

which the relations between joint positions, velocities, accelerations and torques are

obtained. Furthermore, the system identification is discussed to estimate the friction

and inertial parameters of the robot. All subjects mentioned above are used to de-

rive an exact dynamics of a KUKA industrial robot available in robotic laboratory in

mechatronics faculty of TUL.

2.1 Kinematics

A rigid body is an object in which the distance between particles is constant and

invariance in time regardless of the external forces exerted on it. A robot manipulator

consists of a chain of rigid bodies, known as links of the robot, connected by revolution

or prismatic joints driven by actuators. The first link of this chain is known as the
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base link fixed to the ground, while the end-effector (tool) is mounted on the last link.

This tool can be any device intended to manipulate objects (grippers) or to transform

them (welding or paint tools).

In order to study the motion of this mechanical structure, it is necessary to consider

the motion of all links relative to the other links. For this reason, a coordinate frame is

allocated to each link and the position and orientation of each frame is computed with

respect to other frames. Therefore, in this way we are able to describe the position and

orientation of an object intended to manipulate by the robot. Let us now consider point

p , as shown in Figure 2.1, whose coordinates relative to frame B are pB = (xB, yB, zB).

For computing the coordinates of this point with respect to the frame A, we use the

following coordinate transformation:

pA = RpB + d, (2.1)

where R ∈ R3×3 represents the rotation part of the transformation while d ∈ R3 is its

translation part. The matrix R has two basic attributes:

� it is an orthogonal matrix, that is, RTR = I or RT = R−1,

� its determinant is +1 (det(R) = +1).

The set of 3 × 3 rotation matrices R which have two proprieties mentioned above, is

known as special orthogonal matrices set (SO (3)). In fact, the matrix R describes the

orientation of the frame B w.r.t frame A which can be presented by Euler angles or

quaternions.

Notice that, the transformation (2.1) is not linear, so with defining the homogeneous

coordinates p = (x, y, z, 1), it can be modified into a linear transformation as follows:[
pA

1

]
=

[
R d

0 1

]
·

[
pB

1

]
= T

[
pB

1

]
, (2.2)

where T ∈ R4×4 is called homogeneous transformation matrix and includes both rota-

tion and translation parts in a single matrix. The set of 4 × 4 homogeneous transfor-
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Figure 2.1: Describing the coordinate frames with respect to each other

mation matrices T is called special Euclidean set SE (3), i.e,

SE (3) =

{
T =

[
R d

0 1

]
| R ∈ SO (3) , d ∈ R

}
. (2.3)

2.1.1 Robot Kinematics

The problem of robot manipulator kinematics is divided into two parts:

� direct (forward) kinematics : given an n-axes manipulator, where n is the number

of robot’s degrees of freedom. For this robot, the joint angle vector is defined

as q (t) = (q1 (t) , q2 (t) , . . . , qn (t)). The objective in the direct kinematics is to

compute the position and orientation of the end-effector in terms of elements of

this vector.

� inverse kinematics : in the inverse kinematics we are interested to calculate the

joint angles in terms of the end-effector position and orientation.

This section deals with these two problems for serial robot manipulators. Let us

now consider an n-axes robot manipulator, as shown in Figure 2.2, constituted of n+1

links L0, L1, . . . , Ln connected by n joints J1, J2, , . . . , Jn, where the base link (link 0)

has been fixed to the ground. As shown in this figure, a coordinate frame is adopted

to each link so that the position and orientation of the last link, i.e., the pose of
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Figure 2.2: Robot manipulator

frame {n}, relative to the base link frame {0} is described by the following coordinate

transformation:
0Tn =0A1

1A2 . . .
n−1An, (2.4)

where i−1Ai denotes the homogeneous transformation of frame i relative to frame i−1.

In order to describe the relationship between coordinate frames of a robot we can use

either Denavit-Hartenberg (DH) notation or modified Denavit-Hartenberg (MDH) one

[55] which we will use the latter to obtain the kinematic model of the KUKA robot. In

the MDH notation, the origin of the frame i corresponding to the link i, is placed in

the intersection of the axis of the joint i and common perpendicular axis of the joint

i and axis of the joint i + 1. In addition, the axis z of this frame is along the axis of

the joint i and x axis is along the common perpendicular axis of the joint i and axis

of the joint i+ 1. Eventually, the y axis of frame i is specified according to right hand

rule. Then, the transformation matrix i−1Ai describing frame i w.r.t i − 1 is given as
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Figure 2.3: MDH frames of joints i and i− 1

follows:

i−1Ai =


Cqi −Sqi 0 di

CαiSqi CαiCqi −Sαi −riSαi
SαiSqi SαiCqi Cαi riCαi

0 0 0 1

 , (2.5)

where S and C stand for functions “sin” and “cos” as well as di, αi, qi and ri are MDH

parameters of the link i of the robot which can be obtained as follows: (see Figure 2.3)

� qi : angle between axes xi−1 and xi about zi,

� αi : angle between axes zi−1 and zi about xi−1,

� di : distance between zi−1 and zi along xi−1,

� ri : distance between xi−1 and xi along zi.

Let us now solve the kinematics problem of a KUKA robot manipulator, as shown

in Figure 2.4, which has six degrees of freedom. Generally, in industrial robot manip-

ulators the first three joints (major joints) are responsible for tunning the position of
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Figure 2.4: IR 364/10 KUKA Robot

the end-effector, while the last three joints are used to set the orientation of the end-

effector. In the optimal control problem of robot manipulators, usually the torque of

the joints which are used to set the position of the end-effector, are subjected. There-

fore, we assume that the last three joints of the robot are fixed in their home positions,

i.e. q4 = q5 = q6 = 0. According to MDH convention, the desired frames are assigned

to each link of the KUKA robot as depicted in Figure 2.5 and the MDH parameters are

obtained as given in Table 2.1. In addition, the transformation matrices of the robot

are obtained as follows:

Table 2.1: MDH parameters of KUKA robot
i αi di qi ri
1 0 0 q1 0.65
2 −π/2 0.3 q2 0
3 0 0.6 q3 0
4 −π/2 0.145 q4 = 0 0.6
5 π/2 0 q5 = 0 0
6 −π/2 0 q6 = 0 0.14
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Figure 2.5: Local frames of KUKA robot according to MDH convention

0A1 =


C1 −S1 0 0

S1 C1 0 0

0 0 1 0.65

0 0 0 1

 ,1A2 =


S2 C2 0 0.3

0 0 1 0

C2 −S2 0 0

0 0 0 1

 ,

2A3 =


C3 −S3 0 0.6

S3 C3 0 0

0 0 1 0

0 0 0 1

 ,3A4 =


1 0 0 0.145

0 0 1 0.6

0 −1 0 0

0 0 0 1

 ,

4A5 =


1 0 0 0.6

0 0 −1 0

0 1 0 0

0 0 0 1

 ,5A6 =


1 0 0 0

0 0 1 0.14

0 −1 0 0

0 0 0 1

 .

(2.6)

By computing the general transformation matrix 0T6 by referring to (2.4), the kine-

matics model of KUKA can be obtained by considering the last elements of the rows
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1, 2 and 3 of 0T6 which are as follows:

px = C1 (0.74C23 + 0.145S23 + 0.6S2 + 0.3) ,

py = S1 (0.74C23 + 0.145S23 + 0.6S2 + 0.3) ,

pz = 0.145C23− 0.74S23 + 0.6C2 + 0.65,

(2.7)

where px, py and pz are the coordinates of origin of the last frame <6 with respect

to the base frame <0 as well as S23 and C23 stand for sin (q2 + q3) and cos (q2 + q3),

respectively.

Let us now consider the inverse kinematics problem of this robot. In order to solve

this problem, we use the geometry model of the robot as shown in Figure 2.6. Based

on this figure, the inverse kinematics equations of this robot are obtained as:

q1 = Atan2(py, px),

q2 = Atan2

(
D1,

√
1−D2

1

)
− Atan2

(
D2,

√
1−D2

2

)
,

q3 = Atan2

(√
1−D2

3, D3

)
− Atan2

(
D4,

√
1−D2

4

)
,

(2.8)

where

D1 =
d2 + 0.62 − 0.742 − 0.1452

2× 0.6× d
, D2 =

pz − 0.65

d
,

D3 =
d2 − 0.62 − 0.742 − 0.1452

2× 0.6×
√

0.742 + 0.1452
, D4 =

0.74√
0.742 + 0.1452

,

(2.9)

and d =
√

(px − 0.3 cos (q1))2 + (py − 0.3 sin (q1))2 + (z − 0.65)2.

2.1.2 Verification of KUKA Inverse Kinematics Model

Let us now consider a writing task, as shown in Figure 2.7, which is to be carried

out by the robot in the vertical x − z plane. In this figure, the traversed path by

end-effector of the robot in x− z plane, x and z profiles together with velocity profile

of the end-effector are provided. Notice that the value of y equals 0.4m for the given

writing task and the sample time is 5ms. The joint trajectories q1 (t) , q2 (t) and q3 (t),

corresponding to the given writing task are obtained by means of equations (2.8) and
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Figure 2.6: Geometry model of the KUKA robot

Figure 2.7: Robot writing task together with velocity profile
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Figure 2.8: Corresponding trajectories of writing task

(2.9), as shown in Figure 2.8.

In order to verify the correctness of the inverse kinematics equation (2.8) and (2.9),

we used the MATLAB Robotic Toolbox (MRT). In this toolbox we first created a robot

object having the KUKA specifications and using functions fkine and ikine the inverse

kinematics trajectories corresponded to the writing task are obtained. As depicted in

Figure 2.9, the difference between MRT trajectories and trajectories shown in Figure

2.8 are obtained. As seen, there is only round-off error which shows the correctness of

the inverse kinematics model of KUKA robot given in (2.8).

2.2 Dynamics of Robot Manipulators

Robot dynamics deals with the equations of robot manipulator motions which describe

the dynamic behavior of the robot and most of the researches are nearly made by

such equations; since they are useful to simulate a robot by computer as well as to

design the control systems for the robots. In this section, the dynamics of open chain

robot manipulators are considered which includes forward and inverse dynamics. In

order to derive dynamic equations of motion of a robot arm, usually two conventional
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Figure 2.9: Verifying the correctness of KUKA inverse kinematics solution

formulation approaches can be used: Euler-Lagrange (EL) and Newton-Euler (NE)

formulations. The EL formulation generates the dynamic equations analytically, while

the NE approach derives the motion equations by use of recursive relations [66].

2.2.1 Euler-Lagrange Formulation

The dynamic model of a robot manipulator can be expressed in matrix form by the

following equation:

M (q (t)) q̈ (t) + C (q (t) , q̇ (t)) q̇ (t) + G (q (t)) + F (q̇) = τ (t) , (2.10)

where

� q (t) , q̇ (t) and q̈ (t) are n × 1 vectors of joint variables, velocities and accelera-
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tions, respectively,

q (t) = (q1 (t) , q2 (t) , . . . , qn (t))T ,

q̇ (t) = (q̇1 (t) , q̇2 (t) , . . . , q̇n (t))T ,

q̈ (t) = (q̈1 (t) , q̈2 (t) , . . . , q̈n (t))T .

(2.11)

� τ (t) is an n× 1 vector of generalized torques, expressed as

τ (t) = (τ1 (t) , τ2 (t) , . . . , τn (t))T . (2.12)

� M (q (t)) is the acceleration-related symmetric matrix:

Mik =
n∑

j=max(i,k)

Tr
(
UjkJjU

T
ji

)
i, k = 1, 2, . . . , n. (2.13)

� Vector C (q, q̇) includes Coriolis and centrifugal terms:

C (q, q̇) = (C1, C2, . . . , Cn)T , (2.14)

where Ci =
∑n

k=1

∑n
m=1 cikmq̇kq̇m, i = 1, 2, . . . , n and

cikm =
n∑

j=max(i,k,m)

Tr
(
UjkmJjU

T
ji

)
i, k,m = 1, 2, . . . , n. (2.15)

� Vector G (q) contains gravity terms

G (q) = (G1, G2, . . . , Gn)T ,

Gi =
n∑
j=1

(
−mjg

TUji rj
)

i = 1, 2, . . . , n,
(2.16)

where ri = (xi, yi, zi, 1)T .
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� Vector F (q̇) contains friction terms

F (q̇) = Fvq̇ + Fc SGN (q̇) . (2.17)

Notice that, in the equations (2.10) to (2.17), the following matrices have been

used:

Uij =

{
0Aj−1Qj

j−1Ai for j ≤ i

0 for j > i
,

Uijk =


0Aj−1Qj

j−1Ak−1Qk
k−1Ai i ≥ k ≥ j

0Ak−1Qk
k−1Aj−1Qj

j−1Ai i ≥ j ≥ k

0 i < j or i < k

,

Ji =


−Iixx+Iiyy+Iizz

2
I ixy I ixz mixi

I ixy
Iixx−Iiyy+Iizz

2
I ixy miyi

I ixz I iyz
Iixx+Iiyy−Iizz

2
mizi

mixi miyi mizi mi

 ,

(2.18)

Qi =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 for revolute joints,


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 for prismatic joints,

g = (0, 0,−g, 0) , g = 9.81,

(2.19)

where i−1Ai is the coordinate transformation from frame {i} to frame {i− 1}, repre-

sented in the last section. I ixx, I
i
yy, I

i
zz are principal moments and I ixy, I

i
xz, I

i
yz denote

products of inertia of link i. xi, yi and zi are coordinates of mass center of the link
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Figure 2.10: Force and moments in RNE formulation

i and mi is mass of the same link. As a result, according to the equations above, the

dynamic model of a robot manipulator is obtained which has a highly nonlinear and

coupled form. These equations can be used to derive the dynamic model of KUKA

robot.

2.2.2 Newton-Euler Formulation

Let us consider the recursive Newton-Euler (RNE) formulation to derive the dynamics

model of the KUKA robot. RNE algorithm has a numerical nature in which during

two iterative procedures, the dynamic equations of the robot are obtained. In the

first iteration called forward iteration, the angular velocity and acceleration of the

robot links are calculated from link 0 to link n while in the second iteration (backward

iteration) the set of forces and torques interacted between adjacent links from last link

to the link 0 are computed. Before dealing with RNE algorithm, let us define some

principal notations as follows (see Figure 2.10):

� τi : torque applied to joint i;

� τfi : friction torque acting on joint i;

� zi : unit vector along axis of joint i;
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�
iIi : inertia tensor of link i w.r.t its frame, i.e. <i, expressed as

iIi =

Ixxi Ixyi Ixzi

Ixyi Iyyi Iyzi

Ixzi Iyzi Izzi

 ;

� mi : mass of link i;

� MSi : first moments of inertia of link i about the origin of the its frame, i.e. <i;

� Fi : resultant of external forces on link i;

�
jPi : origin of frame <i w.r.t frame <j;

� Fci : Coulomb friction parameter of joint i;

� Fvi : viscous friction parameter of joint i;

� Mi moment of external force on link i about its COG;

� fi force exerted on link i by link i− 1;

� ni moment about origin of <i exerted on link i by link i− 1;

� Iai : moment of inertia of the rotor of actuator i and of its transmission system

referred to the joint side.

�
i−1Ri : rotation submatrix of transformation matrix i−1Ai

� σi =

{
0 if joint j is revolute

1 otherwise;

� if a =

axay
az

⇒ â =

 0 −az ay

az 0 −ax
−ay ax 0

.

RNE algorithm:
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Forward iteration: let i = 1, 2, . . . , n

iωi−1 =iRi−1
i−1ωi−1,

iωi = iωi−1 + σ̄i q̇i
izi,

iω̇i−1 =iRi−1
i−1ω̇i−1 + σ̄i

(
q̈i

izi +i ωi−1 × q̇i izi
)
,

iUi = i ˆ̇ωi +i ω̂i
iω̂i,

iV̇i−1 =iRi−1

(
i−1V̇i−1 +i−1 Ui−1

i−1Pi

)
+ σi

(
q̈i

izi + 2 iωi−1 × q̇i izi
)
,

iFi = mi
iV̇i−1 + iUi

iMSi,

iMi−1 = iIi−1
iω̇i−1 +i ωi−1 ×

(
iIi−1

iωi−1

)
+ iMSi × iV̇i,

(2.20)

with initial values: 0ω0 = 0, 0ω̇0 = 0 and 0V̇0 =
[
0 0 9.81

]
.

Backward iteration, let i = n, . . . , 1

ifi = iFi + ifi+1,

i−1fi = i−1Ri
ifi,

ini = iMi + iRi+1
i+1ni+1 + iPi+1 × ifi+1,

τi =
(
σi

ifi + σ̄i
ini
)T izi + τfi + Iai q̈i,

τfi = Fci sign (q̇i) + Fvi q̇i.

(2.21)

In the subsequent subsections, we will present a Graphical User Interface (GUI) of

MATLAB to derive the dynamic equations of a three or six degrees of freedom robot

manipulator.

2.2.3 Robot Dynamics Modeler

One of the useful tools in MATLAB is to create Graphical User Interface (GUI) which

enables programmers to design an interactive form that enables user to work with an

algorithm easily. Therefore, we used this capability to develop a Robot Dynamics Mod-

eler (RDM) GUI , as shown in Figure 2.11, by which the user can derive the dynamic

equations of an open chain robot manipulator. In this GUI whose main program is the

relations represented in the previous subsections (EL or RNE algorithms) , the user

can select either 3 or 6 degrees of freedom robot and after entering the MDH Parame-
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Figure 2.11: Robot Dynamics Modeler (RDM) GUI

ters and clicking the “Compute Dynamic Model” button, the dynamic equations of the

robot are provided and written into some *.txt files saved in the desktop of computer

that each file contains the dynamic equation of each joint of the robot. These equations

are simplified by means of some MATLAB commands such as simple or simplify.

2.2.4 Verifying the Correctness of KUKA Model

As with verifying the inverse kinematics model correctness, let us now verify the dy-

namic KUKA model obtained by RNE. We reused the writing task given in Figure 2.7

as well as some arbitrary dynamic parameters for the robot as listed in Table 2.2.

Table 2.2: Arbitrary dynamic parameters of KUKA robot to validate its dynamic
model

Link mi Center of mass pos. Ixxi Iyyi Izzi Ixyi Iyzi Ixzi
1 0 (0, 0, 0.4) 0 0.35 0 0 0 0
2 17.4 (0.15, 0, 0) 0.13 0.524 0.539 0 0 0
3 8 (0.3, 0, 0) 0.066 0.086 0.0125 0 0 0
4 0 (0, 0.2, 0) 0 0 0 0 0 0
5 0 (0, 0, 0.05) 0 0 0 0 0 0
6 0 (0, 0, 0) 0 0 0 0 0 0
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Figure 2.12: The torque computed with arbitrary parameters for writing task

These data are input into dynamic model and the required torques to perform the

writing task are computed, as shown in Figure 2.12. These torques also are computed

by Robotic Toolbox of MATLAB using function rne which solves the inverse dynamic

of robots by RNE method. Eventually, we obtained the difference between two series

of torques as depicted in Figure 2.13 which illustrates the correctness of our KUKA

model.

2.3 Robot Identification

In order to design an model-based control system or a computer simulator of a robot

manipulator, we require a precise dynamic model of this robot. Robot manufacturers

usually don’t provide dynamic and friction parameters of the robot manipulators, such

as mass, moments of inertia and center of mass (COF) location of each link as well as

viscous and Coulomb friction parameters. Hence, the researchers should measure these

parameters themselves thorough one of the following approaches:
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Figure 2.13: Correctness of inverse dynamic equations of KUKA robot

� Physical experiments, thorough which the robot is disassembled and these

parameters are measured by physical measurement devices or special experiments

[6].

� CAM/CAD softwares, by which a 3D model of the robot is developed by some

special software packages which calculates the inertia parameters of the robot.

� Experimental identification, which deals with estimation of robot dynamic

and friction parameters by means of commanding the robot with a particular

trajectory, known as excitation trajectory, and then measure the torque of each

link. These data are used in a statistical framework, such as least square or

maximum-likelihood method, to estimate the robot model parameters. In the

robot identification, there are three types of parameters: 1- fully identifiable 2-

identifiable in linear combinations 3- completely unidentifiable. In fact, during

the identification experiment, some dynamic parameters can not be identified be-

cause of restricted motion near the base link, while the rest ones can be identified

by the form 1 or 2. There are a series of literature that consider the robot identi-
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fication problem (RIP) [25; 50; 68; 90] which some of them have been considered

as on-line identification like [50] whereas others used off-line methods such as

[90]. In these papers, the RIP has been solved by one of the methods: Least

square (LS) [61], weighted least square (WLS) [40; 44], Extended Kalman filter

(EKF) [45], maximum likelihood or batch adaptive techniques. It must be noted

that one of the interesting methods, has been presented in [25] (and also in [50])

in which the iterative learning control (ILC) has been used to solve the RIP.

In other words, using the capabilities existed in ILC for controlling the robots,

it is possible to combine the ILC and identification experiment so that after a

finite numbers of trials, the dynamic parameters of the robot can be identified.

However, after some researches we found that off-line methods provide us more

precise results. Thus, for KUKA robot we used the WLS method to estimate its

dynamic and friction parameters which its details are presented in the subsequent

subsections.

2.3.1 Regression Model

From identification point of view, there is a helpful property in dynamic equations of

the robot which are linear in terms of dynamic and friction parameters of the robot.

This property leads us to use the linear regression method to estimate the dynamic

and friction parameters. In other words, the dynamics model obtained from equation

(2.10) can be expressed as follows:

τ = τd + τf = Y (q, q̇, q̈) · θd + F (q̇) · θf , (2.22)

where Y ∈ Rn×md (md = 11n) is a matrix whose entries are nonlinear functions of q, q̇

and q̈ as well as F ∈ Rn×mf (mf = 2n) is a function of joint velocities q̇. Furthermore,

θd ∈ R11n×1 is a vector whose elements are masses, inertial parameters and Cartesian

location of the mass center of robot’s links and θf ∈ R2n is a vector contains the friction

parameters of the robot’s joints as follows:

θd = [θd,1θd,2 · · ·θd,n]T ,

θf = [θf,1θf,2 · · ·θf,n]T ,
(2.23)
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with

θd,i =
[
Ixxi, Ixyi, Ixzi, Iyyi, Iyzi, Izzi,mixi,miyi,mizi,mi, Iai

]T
,

θf,i = [ Fci, Fvi]
T .

(2.24)

2.3.2 Identification of Friction Parameters

As stated above, the friction torque on jth joint can be given by

τfj = Fcj sign (q̇j) + Fvj q̇j, (2.25)

where Fcj is Coulomb friction parameter and Fvj is the viscose friction one. The fric-

tion parameters of each joint are estimated separately by applying a constant velocity

motion (for instance, a sinusoid motion with constant velocity) on each joint while

other joints are rest in their current positions. Thus, if only one joint, say joint j, of

the robot is allowed to move, the dynamic equation of the system can be represented

as :

Jj q̈j + hj sin qj = τj − τfj, (2.26)

where hj is a coefficient of the gravity term, Jj is the equivalent moment of inertia of

the joint and τfj is obtained according to (2.25). Note that if the joint axis is parallel

with the direction of gravity then hj = 0 and otherwise Jj together with hj should be

identified with Fcj and Fvj. Therefore, the friction parameters of each joint of the robot

can be estimated by collecting its position and torque data. In fact, these parameters

are estimated using weighted least square method which is explained later in detail.

2.3.3 Base Inertial Parameters (Identifiable Parameters)

The minimum set of necessary parameters to calculate the dynamic model of a robot

is called base inertial parameters or identifiable parameters. This set is obtained by

eliminating some parameters in matrix θ which have no effect on the robot dynamics

or by grouping some of them. In order to obtain such set, the following procedure

requires to be done.
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After determining the friction parameters, the dynamics model (2.22) can be rewrit-

ten as follows:

τd = τ − τf = Yθd. (2.27)

Let us now apply the model (2.27) at ` time instances (with `� 11n) on a trajectory

which leads to the following equation (regression model):

Γ = Wθd, (2.28)

where W ∈ R(`n)×md is called the observation matrix, or regressor, represented as

follows:

W =


Y (q (t1) , q̇ (t1) , q̈ (t1))

...

Y (q (t`) , q̇ (t`) , q̈ (t`))

 , (2.29)

and Γ = [τd (t1) , . . . , τd (t`)]
T .

Let us now consider the following rules to obtain the base inertial parameter set:

The first rule states that those parameters in θd whose correspondent columns in

matrix W (equation (2.28)) are zero have no effect on robot dynamics , i.e. if we

denote jth column of W as Wj, then Wj = 0 shows that the corresponding parameter

in θd has no effect on the robot dynamics, and therefore such column and parameter

can be eliminated.

The second rule used to obtain the base inertial parameter set is applied by grouping

some parameters in vector θd. These grouped parameters are obtained by checking the

rank of matrix W. If it is a rank-deficient matrix then by dividing this matrix into

two parts so that equation (2.28) can be rewritten as:

Γ = [W1 W2]

[
θd1

θd2

]
, (2.30)

where part W1 contains independent columns of W while dependent columns of W are

contained in W2 as well as, θd1 and θd2 are the corresponding parameters of matrices
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W1 and W2, respectively. Thus, two matrices W1 and W2 can be related as

W2 = kW1, (2.31)

where k is a constant matrix. Therefore, the parameters θ2 can be grouped with θ1

by considering equation (2.30) as follows:

Γ = W1 [θd1 + kθd2] = W1θB, (2.32)

where θB is the grouping parameter vector which contains the base inertial parameters

set.

It can be shown that the number of base inertial parameters is equal the rank

of matrix W and base parameters are corresponding to independent columns of such

matrix. Note that in order to obtain the independent columns of matrix W, the QR

decomposition can be used as follows:

QTW =

[
R

0

]
, (2.33)

where Q is an orthogonal matrix and R is an upper-triangle matrix. Let us now

consider a lemma in linear algebra which states the independent columns of matrix W

correspond to the zero elements on diagonal of the matrix R. Therefore, in this way

we can obtain the base inertial parameters set of the robot dynamics.

2.3.4 Regression Model of the KUKA Robot

According to the procedure stated in the previous subsection, the regression model of

the KUKA robot has the following form

Γ = W1θB, (2.34)

where the elements of the matrix Y1 ∈ R3×15 and vector θB ∈ R15×1 are given in

Appendix A. It means that the base parameter set of KUKA robot has 15 elements

which together with friction parameters this number equals 21.
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2.3.5 Excitation Trajectory

In each system identification an excitation trajectory is required to be obtained. In

the case of robot identification, it is a special trajectory along which the robot must

move during the identification experiment. Actually it is a trajectory which “excites”

all dynamics of the robot as well as, the sensitivity of the least square method, which is

used to estimate the base dynamic parameters, with respect to noise and model errors

can be minimized along this trajectory [5; 26].

Excitation trajectory for a robot identification can be obtained by solving an opti-

mization problem. In fact, in the least square methods it is proved that to attenuate

the effect of the noise in the computations, the condition number of the observation

matrix given in (2.32), i.e. W1 must be minimized. Hence, the excitation trajectory

is obtained by the follows optimization problem:

min Jc = cond (W1) , (2.35)

where cond stands for condition number and subject to joint position, velocity and

acceleration constraints. In order to solve such problem, a parametric optimization

method can be used. It means that the following finite Fourier series have been used

to parameterize the nonlinear expression existed in Jc.

qd,i = q0,i +

Ni∑
j=1

1

jω
[ai,j sin (jωt)− bi,j cos (jωt)] ,

q̇d,i (t) =

Ni∑
j=1

ai,j cos (jωt) + bi,j sin (jωt) ,

q̈d,i (t) =

Ni∑
j=1

(jω) (−ai,j sin (jωt) + bi,j cos (jωt)) ,

(2.36)

where ω is a given value and the coefficients q0,i, ai,j and bi,j should be calculated

through optimization procedure. Therefore, the infinite dimension optimization prob-

lem is converted into a finite one and the Fourier coefficients are computed after solving

such problem [90].

After solving the optimization problem mentioned above for the KUKA robot by

function fmincon in MATLAB, the calculated minimum value of condition number
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Figure 2.14: Excitation trajectories of KUKA robot

became 6.77. Figure 2.14 shows the excitation trajectories for KUKA robot after

solving the optimization problem, given ω = 2π × 0.1 and t ∈ [0, 10] as well as N1 =

N2 = N3 = 100.

2.3.6 Estimation of Dynamic Parameters by Weighted Least

Square (WLS) Method

In order to estimate the base dynamic parameters of the robot, the most common tool

is WLS method. After substituting the data collected in the identification experiment

in the equation (2.32), the following equation called identification model of the robot

is obtained:

Γ = W1θB + ε, (2.37)

where ε is the (`n × 1) error vector. According to the LS method the estimated base

parameters are calculated as the solution of the following optimization problem:

θ̂B = min
θB
‖ε‖2 . (2.38)

The solution of such LS problem can be obtained in the closed form, provided that the

observation matrix W1 is full rank:

θ̂B = W1
+ Γ (2.39)
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where W1
+ =

(
W1

TW1

)−1
W1

T is called pseudo-inverse matrix. This solution is

not so accurate due to noise existed on the measured data, even though they are

filtered. Since we can not design an ideal filter and some data are lose in the filtering

step. Hence, the WLS can be used to obtain more accurate estimated parameters

which is the solution of equation (2.37) according to which the pseudo-inverse matrix

is converted to the following one:

W1
+ =

(
W1

THW1

)−1
W1

TH, (2.40)

where matrix H is a diagonal weighted matrix whose diagonal elements are determined

as follows:

Σ =

[
1

σ̂1
ε

· · · 1

σ̂`ε

]
, (2.41)

where σ̂jε is the error standard deviation in the row j in the equation (2.37) which can

be calculated as follows [40; 44]:

σ̂jε =
‖εj‖√

`− length (θB)
. (2.42)

Notice that we filtered data obtained from the measurement tool (measurement

part of the Simotion control system, explained in the next subsection) with a low pass

butter worth filter with the cutoff frequency equals 10Hz. Eventually, applying the

following recursive algorithm, the solution of WLS can be obtained [40]:

θ̂B (k + 1) = θ̂B (k) + P (k + 1)W T
1 (k + 1)

(
Γ (k + 1)−W1 (k + 1) θ̂B (k)

)
, (2.43)

where

P (k + 1) = P (k)− P (k)W T
1 (k + 1)(

I +W1 (k + 1)P (k)W T
1 (k + 1)

)−1
W1 (k + 1)P (k) . (2.44)

The results of estimated parameters by recursive algorithm mentioned above, have

been shown in Figure 2.15. The steady values of dynamic parameters and their standard
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deviations are given in Table 2.3. Furthermore, the estimated friction parameters are

given in Figure 2.16 and their final values together with standard deviations are given

in Table 2.4.

Table 2.3: The value of the base dynamic parameters and their standard deviations of
KUKA robot

Parameter Estimated value σθ̂
θB1 30.25 0.25
θB2 13.45 0.92
θB3 -2.85 0.57
θB4 12.15 0.88
θB5 -1.65 0.27
θB6 95.76 0.89
θB7 0.153 0.14
θB8 -35.88 0.65
θB9 8.152 0.47
θB10 4.2 0.25
θB11 -0.446 0.15
θB12 -3.7 0.27
θB13 16.4 0.35
θB14 4.72 0.57
θB15 -4.46 0.64

Table 2.4: The value of the estimated friction parameters and their standard deviations
of KUKA robot

Parameter Estimated value σθ̂
Fc1 15.2 0.57
Fv1 46.5 0.66
Fc2 18.56 0.48
Fv2 71.74 0.88
Fc3 19.85 0.54
Fv3 38.84 0.68

2.3.7 Simotion Control System (SCS)

The original control unit of the KUKA robot which is used for this experiment is no

longer used as a control system. For the purpose of such experiments was equipped
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Figure 2.15: Estimated base dynamic parameters θB1 to θB15 of KUKA robot
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Figure 2.16: Estimated friction parameters of KUKA robot
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Figure 2.17: Simotion Control System (SCS)

with a new control system consisting of the standard features of the Siemens Industrial

Automation. The advantages of this system are mainly in its openness, which allows

both to monitor any variable with which the system works (actual current, speed,

position values of the axes etc.), but also allows influencing the position cascade con-

trol structure of each axis. The last but not least the system gives the possibility to

implement kinematics and dynamic model of the mechanism.

The power level is formed by the servo drive SINAMICS S120 that performs control

of each axis based on cascade position control (see Figure 2.17). As a superior control

unit is used the motion controller SIMOTION D435, which enables higher positioning

control method, such as leading a position of the axes along the pre-defined position

profiles, synchronization of the axes on the each other, but also gives scope for creating

of the control code such as relations for kinematics or dynamics of the mechanism.

As mentioned above SIMOTION controller allows to control the position of indi-

vidual axes in accordance with pre-defined position profiles and simultaneously record

physical quantities such as actual torque, speed, position of these axes, together with

their timestamps. These measurements can be viewed by the software scope or ex-

ported to the data file and process them by means of other software as MATLAB. This

has been advantageously used in our experiments.
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Figure 2.18: Validation trajectory to check the estimated model

2.3.8 Validation

The accuracy of the estimated parameters can be validated by some different trajec-

tory shown in Figure 2.18. In doing so, we command the robot to move along these

trajectories and then measure the torques by both SCS and estimated model. Figures

2.19 to 2.21 show the torques of the first three joints of the KUKA robot obtained from

SCS and our estimated model, respectively. The average values of the error between

these torques are 2.66%, 1.04% and 7.43%, respectively.
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Figure 2.19: Validation results for actual and estimated Γ1

Figure 2.20: Validation results for actual and estimated Γ2
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Figure 2.21: Validation results for actual and estimated Γ3
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Chapter 3

Optimal Control of Robot

Manipulators

3.1 Introduction

In both classical and modern control theories, the objective is to obtain the control

input(s) (or control law(s)) for dynamic systems so that the output(s) of the system

can follow the desired input(s) (tracking problem) or reaches to the constant desired

input(s) (regulating problem). In recent decades, some advanced control strategies have

been introduced to design control systems with better performance such as optimal

control, robust control, adaptive control, iterative learning control and so on.

Optimal control theory is one of the interesting subjects that was seriously re-

searched by Pontryagin [74]. Roughly speaking, optimal control which is an extension

of calculus of variations, deals with designing a control input for a dynamic system

so that a performance criterion is minimized without exceeding the constraints on the

system. It has a lot of applications in the different scopes such as designing of control

system for spacecrafts [53], robot manipulators, chemical processes [76] and so on [46].

In fact, in these systems the power (energy or fuel) consumption and elapsed time for

executing a task are very important; therefore, designing an optimal control system is

the best choice.

The application of this kind of control methodology can be appropriate in control-

ling of mechanical robots. For instance, for increasing the productivity of a factory
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in which there are a few industrial robots, it is necessary that robots operate as fast

as possible. One solution is using more powerful actuators that drive the robots to

move at higher speed. However, this method causes bigger actuators which in turn the

robots need to consume more energy. Thus, this method is not so economical. The

other possibility is to control the robots optimally. That is, they operate so that a

performance criterion characterized the traversal time or energy consumption or both

can be minimized at the same time. This topic has taken the time of many researchers

to design the optimal controller for dynamic systems and specifically mechanical robot

manipulators. In this chapter, the OCP of manipulators and some important and effi-

cient methods to solve the OCP of robot manipulators shall be defined and discussed.

3.2 Optimal Control Problem and Various Perfor-

mance Criteria

First, let us formulate an OCP:

P11 : Given the following dynamical system, described by a differential equation in

the state space:

ẋ = f (x (t) ,u (t) , t) , x (t0) = x0. (3.1)

Find an admissible optimal control u∗ : [t0, tf ] → Ω ⊆ Rm so that the dynamic

system (3.1) is transfered from the initial state x (t0) = x0 into an admissible final

state x (tf ) ∈ S ⊆ Rn and the corresponding state trajectory x (.) satisfies the state

constraint x (t) ∈ Ωx (t) ⊆ Rn at all the time instances of interval t ∈ [t0, tf ] as well as

the cost functional

J = φ (x (tf ) , tf ) +

∫ tf

t0

L (x (t) ,u (t) , t) dt (3.2)

is minimized. Notice that tf and x (tf ) can be either fixed or free, either one or both

of them. Besides, in OCPs attention must be paid to existence and uniqueness of its

solution. Moreover, bear in mind that the optimal control can be in closed-loop or

1In the next sections, we refer this problem as “P1”
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3. Optimal Control of Robot Manipulators

open-loop forms; hence, if u∗ (t) = e (x (t) , t); then the optimal control is closed-loop

and if u∗ (t) = e (x (t0) , t), it is an open-loop.

As the problem “P1” indicates, the performance criterion is the distinguished point

than the other control strategies. Therefore, it is convenient to be examined more. In

the sequel, different types of performance criteria are listed [52; 56]:

� Minimum-time problem: In the problem “P1”, the system is supposed to

transfer from initial position (state) x (t0) to some admissible final position (state)

x (tf ) in minimum time; So

J = tf − t0 =

∫ tf

t0

dt. (3.3)

� Terminal control problem: In the problem “P1”, if the objective is to minimize

the difference between final state of the system and its desired value evaluated in

tf , i.e. r (tf ), then

J = ‖x (tf )− r (tf )‖2
H = [x (tf )− r (tf )]

T H [x (tf )− r (tf )] , (3.4)

which H is a positive semi-definite matrix (very often as diag (hii)).

� Minimum-control-effort problem: In problem “P1”, consider that the system

is forced to change its state from initial position (state) x (t0) to some admissible

final position (state) x (tf ) with minimum consumption of energy; thus

J =

∫ tf

t0

[
uT (t)Ru (t)

]
dt =

∫ tf

t0

‖u (t)‖2
R dt, (3.5)

which R is a Hermitian symmetric positive definite matrix.

� Tracking and minimum-control-effort problem: In problem “P1”, if the

system is to be excited to follow the desired trajectory r (t), it is necessary that

the deviation of the state trajectory of the system from this desired (reference)

trajectory is minimized in all the time instances; that is:

J = ‖x (tf )− r (tf )‖2
H +

∫ tf

t0

[
‖x (t)− r (t)‖2

Q(t) + ‖u (t)‖2
R(t)

]
dt, (3.6)

45



3. Optimal Control of Robot Manipulators

where Q (t) is a real symmetric n×n positive semi-definite matrix, R (t) is a real

symmetric m×m hermitian positive definite matrix and H is the real symmetric

n× n positive semi-definite matrix.

� General Case: The general form of cost functional can be as follows

J = ϕ (x (tf ) , tf ) +

∫ tf

t0

L (x (t) ,u (t) , t) dt, (3.7)

where ϕ and L are a nonlinear function of their variables.

3.3 Different Approaches for Solving Optimal Con-

trol Problems

The different kinds of OCPs can generally fall into two categories: discrete and con-

tinuous which, in turn, each of which has several subcategories. On the other hand,

this categorization can be done on the basis of how the OCOs are solved: analyti-

cally or numerically. In general, there are three main approaches to solve the OCPs of

dynamical systems:

� dynamic programming method

� indirect method

� direct method

These methods will be considered in the next subsections.

3.3.1 (Discrete) Dynamic Programming Method

In this method, with discretization of the system’s dynamic equations and quantizing

control input and state variables and then applying the principle of optimality, we can

derive a recurrence equation called Bellman’s recurrence equation by which the optimal

policy (control law) can be obtained [16; 56].
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3.3.2 Hamilton-Jacobi-Bellman Method (Continuous Dynamic

Programming)

Hamilton-Jacobi-Bellman (HJB) equation is a partial differential equation by which

the solution of the OCPs can be obtained [64]. In the case of problem P1 given in

section 5.3.2, first a function called Hamiltonian is defined as follows:

H (x (t) ,u (t) , J∗x, t) = L (x (t) ,u (t) , t) + J∗Tx (x (t) , t) [f (x (t) ,u (t) , t)] . (3.8)

In order to obtain the optimal control u∗ (t), it is proved that J∗ must be obtained

from the following partial differential equation so-called HJB equation{
0 = J∗t (x (t) , t) +H (x (t) ,u∗ (x (t) , J∗x, t) , J

∗
x, t)

Boundary condition: J∗ (x (tf ) , tf ) = φ (x (tf ) , tf )
. (3.9)

Notice that HJB equation is a time continuous analogous of the Bellman’s recurrence

equation given in dynamic programming method.

3.3.3 Indirect Methods

Generally, Calculus of Variations (variational techniques) is a field of mathematics

which handles the functionals instead of ordinary functions. As mentioned earlier, the

most tasks in optimal control are to optimize an integral function characterized the time

or consumed energy by the system. The Lagrange’s equation in calculus of variations

is used for solving the unconstrained OCPs while the Pontryagin’s minimum principle

can be used to solve the constrained OCPs [46]. Since we face with constrained OCPs

for mechanical systems, the Pontryagin’s minimum principle is dealt with more more.

This principle is expressed under the following definition and theorem:

Definition: H(x,u, λ, t) = L (x (t) ,u (t) , t) + λT (t) f (x (t) ,u (t) , t) is called

Hamiltonian where λT (t) ∈ Rn.

Theorem (Pontryagin’s Minimum Principle):

If f (x (t) ,u (t) , t) is continuous in (x,u, t) and the derivatives ∂
∂t

f and 5xf exist and

are continuous in (x,u, t), then the necessary conditions that control u∗ be an optimal
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control are

ẋ∗ (t) = ∂H
∂λ

(x∗ (t) ,u∗ (t) , λ∗ (t) , t) ,

λ̇∗ (t) = −∂H
∂x

(x∗ (t) ,u∗ (t) , λ∗ (t) , t) ,

H (x∗ (t) ,u∗ (t) , λ∗ (t) , t) ≤ H (x∗ (t) ,u (t) , λ∗ (t) , t) ,

for all u (t) ∈ Ω,[
∂φ
∂x

(x∗ (tf )− λ∗ (tf ))
]T
δxf +

[
H (x∗ (tf ) ,x

∗ (tf ) ,x
∗ (tf ) , tf ) + ∂φ

∂t
(x∗ (tf ) , tf )

]
.

(3.10)

The necessary conditions (3.10) result in a two-point boundary-value (TPBV) prob-

lem whose solution is very difficult to obtain and very often is analytically impossible.

Therefore, the numerical methods such as steepest descent, quasilinearization or gradi-

ent projection methods can be used for solving them [46; 52; 56; 75]. One limitations of

these numerical methods is that it is necessary to guess an appropriate initial solution

which is usually a cumbersome task.

3.3.4 Direct methods

The basic idea in the direct methods is that the solution of OCP is obtained by di-

rectly minimizing the cost functional given in OCP. In doing so, firstly the infinite

dimensional OCP is converted into a finite nonlinear programming problem (NLP) via

a parameterization procedure and then this NLP can be solved using the existing stan-

dard methods like sequential quadratic programming (SQP). Note that direct methods

can be categorized as follows [22; 36]:

� Single shooting

� Collocation

� Multiple shooting

� Spline based optimal control

In the next sections we will firstly formulate the OCP of robot manipulators and

then we shall explain the multiple shooting and spline based optimal control methods

in the case of robot manipulators which will be used in the chapter 5 to compare with

the proposed method.
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3.4 Optimal Control Problem of Open-Chain Robot

Arms

In this section, we formulate the OCP of robot manipulators. In doing so, we require

the state space representation of the dynamic model of the robot. In the following

subsections these subjects are presented.

3.4.1 State Space Representation of Robot Manipulators

As represented in the previous chapter, the motion equations of an n-axes robot ma-

nipulator can be expressed as

M (q) q̈ + C (q, q̇) q̇ +G (q) + F (q̇) = τ (3.11)

where q is the n×1 vector of joint displacements, q̇ is the n×1 vector of joint velocities,

τ is the n × 1 vector of input torques, M (q) is the n × n symmetric positive definite

inertia matrix, C (q, q̇) is n× n matrix of centripetal and Coriolis torques, G (q) is the

n × 1 vector of gravitation torques obtained as the gradient of the robot’s potential

energy due to gravity, and F (q̇) is the n× 1 friction torques [58]. The robot dynamics

(3.11) can be rewritten as follows

M (q) q̈ +N (q, q̇) = τ, (3.12)

where

N (q, q̇) = C (q, q̇) q̇ +G (q) + F (q̇) . (3.13)

In order to study the dynamic systems, it is better to represent them in the state

space. Thus, because M (q) is invertible, the equation (3.12) can be written as

q̈ = −M−1 (q)N (q, q̇) +M−1 (q) τ. (3.14)

Then by defining the position/velocity state x ∈ R2n as

x =

[
x1

x2

]
=

[
q

q̇

]
, (3.15)
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the state space representation of (3.14) will be in the form

ẋ =

[
x2

−M−1 (x1)N (x1, x2)

]
+

[
0

M−1 (x1)

]
τ. (3.16)

Therefore, equation (3.16) can be written as

ẋ = f (x) + g (x) τ, (3.17)

where

f (x) =

[
x2

−M−1 (x1)N (x1, x2)

]
, (3.18)

and

g (x) =

[
0

M−1 (x1)

]
. (3.19)

3.4.2 Formulation of Robot OCP

First of all, It is worth to be noted that the cost functional used in the OCP of robots

can be one of the following cases: [11; 14; 57; 89]:

� minimum time

Jc =

∫ tf

0

dt = tf tf is free, (3.20)

� minimum energy consumption

Jc =

∫ tf

0

n∑
i=0

(τi (t))
2 dt tf is fixed, (3.21)

� minimum power consumption

Jc =

∫ tf

0

n∑
i=0

(q̇i (t) τi (t))
2 dt tf is fixed, (3.22)
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Hence, the OCP of robot manipulators can be formulated as follows:

min
τ
Jc

subject to
(3.23a)

robot dynamics: ẋ = f (x (t)) + g (x (t)) τ (t) , (3.23b)

constraints:



torque constraints: |τi| ≤ τi,max , i = 1, 2, . . . , n

position constraints: |qi| ≤ qi,max , i = 1, 2, . . . , n

velocity constraints: |q̇i| ≤ q̇i,max , i = 1, 2, . . . , n

position boundary conditions: qi (0) = qi0 , i = 1, 2, . . . , n

velocity boundary conditions: q̇i (0) = q̇i0 , i = 1, 2, . . . , n

end conditions: qi (tf ) = qif , i = 1, 2, . . . , n

path constraint: h(q) = 0.

(3.23c)

Usually, the OCP (3.23) is given rise to a constrained nonlinear programming which

will be dealt with in the next subsection.

3.5 Constrained Nonlinear Programming (NLP)

As explained earlier, the direct methods convert the OCPs into a constrained nonlinear

programming. The NLP can be represented as follows [13; 18],

min
x∈X

f (x)

subject to

Gi (x) = 0 , i = 1, 2, . . . ,me,

Gi (x) ≤ 0 , i = me + 1, . . . ,m,

(3.24)

where X ⊂ Rn, x ∈ X includes designed parameters, f : X → R and G : X → Rm

are continuous functions. The function f is called cost (objective, criterion) function.

Moreover, each of Gi (x) , i = 1, 2, . . . ,me is called inequality constraint, while each
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of Gi (x) , i = me + 1, 2, . . . ,m is called an equality constraint. In addition, a vector

x ∈ X satisfying all the constraints is called a feasible solution to the problem; the

collection of all such points forms the feasible region. The goal in the NLP problem

(3.24) is to find a feasible point x∗ so that f (x) ≥ f (x∗) for each feasible point x. In

the sequel, the method to solve NLP problem is given.

Let us first define a new function called Lagrangian:

L (x, λ) = f (x) +
m∑
i=1

λi ·Gi (x) , (3.25)

where λis are called Lagrange’s multipliers. Therefore, the optimal solution of the

constrained NLP (3.24) is obtained by satisfying the following equations referred to as

the so-called Karush-Kuhn-Tucker (KKT) equations:

∇L(x∗, λ∗) = 0,

λiGi (x
∗) = 0 , i = 1, 2, . . . ,me,

λi ≥ 0 , i = me + 1, . . . ,m,

(3.26)

where ∇ is the gradient operator.

It must be noted that (KKT) equations (3.26) are just the necessary conditions for

obtaining a local optimal solution to the NLP (3.24). However, if both functions f (x)

and G (x) are convex, the KKT conditions are necessary and sufficient for finding a

global optimum point. Usually the solution of KKT equations is obtained numerically

by iterative methods. One of the conventional iterative methods is Sequential Quadratic

Programming (SQP) which is expressed as

xk+1 = xk + ∆xk, (3.27)

λk+1 = λQPk , (3.28)
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where ∆xk and λQPk are the solutions of the following quadratic problem (QP):

min
∆x

[
1

2
∆xTAk∆x+∇f (xk) ∆x

]
,

subject to

Gi (xk) +∇GT
i (xk) ∆x = 0 , i = 1, 2, . . . ,me,

Gi (xk) +∇GT
i (xk) ∆x ≥ 0 , i = me + 1, . . . ,m,

(3.29)

where Ak is the approximation of the Hessian of the Lagrangian, namely

Ak ≈ ∇2L (xk, λk) , (3.30)

and ∇Gi is the constant Jacobian. Note that there are different methods for computing

approximate Hessian, for example, Gauss-Newton method.

In MATLAB, there is some toolbox called Optimization toolbox which supports

various kinds of optimization problem. For example the command fmincon() is the

one which solves the constrained NLP [63].

3.6 Parametric Optimization (Spline-Based Opti-

mal Control)

As explained in section 3.3, the different subbranches of direct method can be used to

solve the OCPs. In particular, in the resent decades most of the researches have used

these methods to solve the OCP of robot manipulators [27; 30; 69; 92]. The basic idea

in the spline-based optimal control method is that the state or control trajectory of

the system is approximated by some kind of parameterized approximating functions

such as spline functions (cubic splines, B-splines or Bezier splines) which actually the

objective is to convert the infinite dimensional OCP into a finite dimensional one. In

the case of robot manipulators, the chosen trajectory should have sufficient smoothness

properties; since it give rise to avoid the excitation of the mechanical resonance modes

of the manipulator which damage the actuator of the robot. If the acceleration of

the used trajectory is continuous function so that the value of the jerk (derivative of

acceleration) is bounded, the resonance modes are not excited. This feature can be
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found in the cubic spline functions or B-splines.

Let us now suppose a robot manipulator modeled as

M (q) q̈ + C (q, q̇) + F (q̇) +G (q) = τ, (3.31)

where q and τ are n-vectors of joint variables and of generalized forces, respectively.

M (q) is the inertia matrix, C (q, q̇) the Coriolis/centripetal vector, F (q̇) the friction

vector and G (q) the gravity vector. After some simplifications, equation (3.31) can be

expressed as

M (q) q̈ +N (q, q̇) = τ, (3.32)

where N (q, q̇) = C (q, q̇) + F (q̇) +G (q).

Note that the state, control and boundary constraints and also cost functional can

be considered as

cost functional: J = φ (q (T ) , q̇ (T )) +

∫ T

0

L (q (t) , q̇ (t) , τ (t)) dt, (3.33)

constraints:


qimin ≤ qi (t) ≤ qimax, i = 1, 2, . . . , n,

τ imin ≤ τ i (t) ≤ τ imax, i = 1, 2, . . . , n,

qi (0) = qi0, q
i (T ) = qiT , i = 1, 2, . . . , n.

(3.34)

Let us now consider a cubic spline function shown in Figure 3.1 as

S (t) =


s1 (t) t1 ≤ t < t2,

s2 (t) t2 ≤ t < t3,
...

...

sN−1 (t) tN−1 ≤ t < tN ,

(3.35)

where si is a third degree polynomial defined by

si (t) = ai (t− ti)3 + bi (t− ti)2 + ci (t− ti) + di, (3.36)

for i = 1, 2, . . . , N − 1. So as to achieve a smooth trajectory, the following conditions

should be met:
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Figure 3.1: A typical spline function

1. s1 (t1) = q0, sN−1 (tN) = qT ,

2. ṡ1 (t1) = q̇0, ṡN−1 (tN) = q̇T ,

3. s̈1 (t1) = 0, s̈N−1 (tN) = 0,

4. si (ti+1) = si+1 (ti+1) for i = 1, 2, . . . , N − 2,

5. ṡi (ti+1) = ṡi+1 (ti+1) for i = 1, 2, . . . , N − 2,

6. s̈i (ti+1) = s̈i+1 (ti+1) for i = 1, 2, . . . , N − 2.

It is clear by satisfying the above conditions, some of the parameters ai, bi, ci and di

are dependent while others are independent. The number of independent parameters

is calculated by m = N + 3−α where α is the number of boundary conditions in each

joint position of the robot which usually α = 4, then m = N − 1 [95]. Substituting

equation (3.35) and its first and second derivative into dynamics (3.32), converts it

into a set of parametric differential equations by which the parametric control inputs

are obtained in terms of parameters of ai, bi, ci and dis. Then, with substituting the

parametric states and control inputs into the cost functional (3.33), it is obtained as

J (a1
i , a

2
i , . . . , a

n
i ) where i = 1, 2, . . . , N − 1 and n is the robot’s degree of freedom.
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Figure 3.2: A generic B-spline basis and curve

Hence, in this way the original infinite problem is converted into a finite NLP which

can then be solved by the common methods for solving NLPs such as SQP or genetic

algorithms.

As stated above, B-spline functions can also be used to convert the OCPs into

parametric optimization problems. In the sequel, a brief explanation concerning this

kind of spline functions is brought. In general, they have the following form

q (t) =
n∑
i=0

Ni,p (t)Pi, (3.37)

where Ni,ps are B-spline basis functions of degree p and Pi’s are referred to as the control

points while n is the number of these control points. The B-spline basis functions are

defined recursively as

Ni,0 (t) =

{
1 ti ≤ t ≤ ti+1

0 otherwise
,

Ni,p (t) =
t− ti
ti+p − ti

Ni,p−1 (t) +
ti+p+1 − t
ti+p+1 − ti+1

Ni+1,p−1 (t) .

(3.38)

For instance if p = 4, then cubic B-spline curves is obtained. Figure (3.2) shows

some generic B-spline basis and curves. Note that in this case the control points are

used as parameters in nonlinear programming. Moreover, the most important feature

of the B-spines is that the variation a control point does not change shape of the whole

B-spline curve. It means that the influence of control points is local not global.
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3.7 Multiple Shooting Method

Multiple shooting method, as mentioned earlier, is one of the subbranches of direct

methods [24; 36]. In this section we attempt to consider the algorithm used in this

method.

Let us now formulate the OCP of robot manipulators as follows:

min
τ
J, (3.39)

where J ∈ R is defined as

J = φ (x (T )) +

∫ T

0

L (x (t) , τ (t)) dt, (3.40)

subject to

dynamic equation of robot: ẋ = f (x) + g (x) τ, (3.41)

boundary conditionsx (0) = x0, x (T ) = xT , (3.42)

constraints:


xmin ≤ x (t) ≤ xmax,

τmin ≤ τ (t) ≤ τmax,

h (x (T )) = 0.

(3.43)

The procedure in which multiple shooting method solves the OCP includes the

following steps:

� Step 1:

Partition the time interval [0, T ] to N segments (see Figure 3.3).

� Step 2:

Consider a piecewise control history for τ (t) so that in the subinterval [ti, ti+1] it

is

τ (t) = ai. (3.44)

� Step 3:

Solve the dynamics of the system independently on each subinterval, considering
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an assumed initial condition

ẋi (t) = f (xi (t)) + g (xi) ai,

xi (t) = bi.
(3.45)

Therefore, in this step, we obtain a sequence of state trajectories {xi (t; ai, bi)}N−1
i=0 .

� Step 4: Calculate the cost functional (numerically) in each subinterval by trajec-

tory obtained on that subinterval, i.e.

Ki =

∫ ti+!

ti

L (xi, ai) dt. (3.46)

� Step 5: Obtain the sequence of continuity conditions in each grid point, i.e.,

{bi+1 = xi (ti+1; ai, bi)}N−1
i=1 .

� Step 6: Solve the following NLP obtained from the above steps

min
ai,bi

J = φ (bN) +
N−1∑
i=0

Ki,

subject to

b0 − x0 = 0

bi+1 = xi (ti+1; ai, bi) , i = 0, 1, . . . , N − 1,

xmin ≤ bi ≤ xmax = 0, i = 1, 2, . . . , N,

τmin ≤ ai ≤ τmax = 0, i = 0, 2, . . . , N − 1,

h (bN) = 0.

(3.47)

3.8 Iterative Learning Control (ILC)

In this section, the iterative learning control method which is one of the modern control

techniques for robot arms is dealt with. Let us consider the robots which perform some

special task repeatedly; for instance, those which operate in assembly lines to pick and
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Figure 3.3: Piecewise constant control (Multiple shooting method)

place parts. In order to control such robots, firstly Arimoto in [4] proposed a new

method so-called ILC. The basic idea in this method is based on learning [3; 4; 93; 94].

Let us consider a perceptible example in which a basketball player should exercise

many times to be able enter the ball in basket from penalty point and the player tries

to improve his or her performance in each time to throw the ball in a correct path

to put it into the basket. In fact, this procedure is also used in ILC schemes. For

instance, for controlling a robot in a learning manner, it learns to perform a task with

high performance in some finite time interval through several learning courses (trials)

and in each new trial, it improves its performance by correcting the previous errors

such that after a series of trials, the error sequence converges to zero and the robot finds

the best performance in the sense of tracking problem. The proposers of this scheme

believe that for controlling the repeated systems, ILC requires very little information

about dynamic model of the system, i.e., there is no need to an exact model of the

system.

The structure of an ILC is shown in Figure 3.4 according to which the control

input of the system in the current trial (step) uk+1 (t) is updated by considering the

previous value of the error ek (t) which has been stored in memory of the system. The
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Figure 3.4: A Typical PID iterative learning control scheme

previous error ek (t) equals the difference between desired output yd (t) and current

actual output yk (t). For a PID− ILC, the control input for the next trial is given by

uk+1 (t) = uk (t) + ΓP · ek (t) + ΓD ·
dek (t)

dt
+ ΓI ·

∫ t

0

ek (t) dt, (3.48)

where ΓP , ΓD and ΓI are called learning gains which must be determined and T is

final time. It must also be noted that the system is homed after finishing each trial,

i.e. the initial condition for all trials is the same.

In [4], for a class of nonlinear systems, i.e. equation (3.49) which also includes

dynamics of the robots, an D iterative learning control scheme has been proposed

(refer equation (3.48) and Figure 3.4 with ΓP = ΓI = 0). In this work, it is assumed

that the state space representation of the system is obtained as follows:{
ẋ = f (t, x (t)) +Bu,

y = Cx,
(3.49)

where x, f ∈ Rn, u, y ∈ Rr, C ∈ Rr×n and B ∈ Rn×r, as well as it is assumed that

xk (0) = x0. In this paper, it has been proved that the following conditional relation

must be satisfied so that it can be used to compute the D learning gain of the ILC

controller, namely

‖Ir − CBΓD‖∞ < 1, for all t ∈ [0, T ] , (3.50)

where ‖·‖∞ is infinity norm which for a vector a = [a1, a2, . . . , an]T , for example, this
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norm is defined as follows

‖a‖∞ = max (|a1| , |a2| , . . . , |an|) . (3.51)

Arimmoto and his co-workers in this paper showed that a robot manipulator has a

similar dynamics given by (3.49) which is obtained by the Hamiltonian mechanics and

then applied the above procedure to control a robot manipulator whose end-effector is

tracking a desired path. In the recent years, there exists a series of researches whose

authors have combined the ILC and optimal strategies like those presented in [2; 65; 91].
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Chapter 4

First Proposed Method

4.1 Introduction

In order to solve the OCP of robot manipulators, our studies are generally divided into

two main parts. The first part is presented in this chapter and the second one will be

dealt with in the next chapter. What we present in this chapter is a new method which

solves the optimal control problem of robot manipulators globally. Usually the existing

methods result in a local optimal solution for this problem, obtained by fulfilling a series

of necessary conditions such as those presented in Ponntryagin’s maximum principle

or necessary KKT conditions in direct methods, as discussed in the previous chapter.

Our first proposed method solves the unconstrained optimal control problem of

robot manipulators by a completely innovative approach without using the calculus

of variations (indirect method), direct methods or dynamic programming approach.

These methods, as explained in the previous chapter, yield a local optimal solution for

the considered problem and actually they satisfy some necessary conditions to find the

stationary point of the considered cost functions. Unlike these methods, the proposed

method in this chapter results in a global optimal solution for the considered OCP.

In addition, this method can be used for both set-point regulating tasks (e.g. pick

and place parts or spot welding tasks) and trajectory tracking tasks such as painting

or welding tasks. However, the proposed method has a limitation so that it can not

support the physical constraints on robot manipulators. Instead, it can be used as

an on-line optimal control algorithm which produces the optimal solution without
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performing any kind of optimization algorithms which require time to find the optimal

solution.

In this chapter, we first present some preliminary definitions and theorems from

theory of control and then we shall address our proposed method under a new theorem.

We shall prove this theorem in detail and present the necessary discussions regarding

its various parts. After that, the procedure of realization this theorem in the case of

robot manipulators will be considered. Eventually, the proposed method is applied

into some case studies.

4.2 Preliminary Discussion

As shown in the previous chapter, the equations of robot motions are in the form

M (q) q̈ +N (q, q̇) +G (q) = u, (4.1)

where q, q̇, q̈ and u are the n-vectors of joint displacements, velocities, accelerations

and torques, respectively, M (q) is the n×n symmetric positive definite inertia matrix,

N (q, q̇) is n × n matrix of centripetal and Coriolis terms and G (q) is the n-vector

of gravitation torques obtained as the gradient of the robot’s potential energy due to

gravity. Generally, robot dynamics (4.1) may be rewritten in the form

F (q, q̇, q̈) = u. (4.2)

On the other hand, in mathematics usually the following nonlinear differential equa-

tions are dealt with

ẋ = f (x) , (4.3)

or in the control theory the following dynamic systems are considered

ẋ = f (x, u) . (4.4)

Namely, a general differential equation can be supported in the form

H (ẋ, x, u) = 0 (4.5)
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which can be solved owing to ẋ.

However, the physical laws lead to the form (4.2) that corresponds the solvability

of (4.5) owing to u. Often it is much more better to consider the system dynamics

(4.2). Therefore, if we have any trajectory q = q (t) for disposition as well as dynamics

(4.2) is an accurate equation of motion, then by substitution of

q = q (t) (4.6)

into (4.2) we obtain a control law as

u (t) = F (q (t) , q̇ (t) , q̈ (t)) . (4.7)

In order to represent the robot dynamics (4.1) as (4.4), the following classical trans-

formation can be applied

x1 = q, x2 = q̇ = ẋ1, x =

(
x1

x2

)
≡

(
q

q̇

)
.

Then, (4.1) can be rewritten as

M (x1) ẋ2 +N (x)x2 +G (x1) = u.

Since M is non-singular we have

ẋ1 = x2,

ẋ2 = −M−1N x2 −M−1G+M−1u,
(4.8)

which corresponds ẋ = f (x, u) .

There are usually two types of cost functionals of the form

J1 = ϕ (q (tf ) , q̇ (tf ) , tf ) +

∫ tf

0

f0 (q, q̇, q̈) dt (4.9)

and

J2 = ϕ (q (tf ) , q̇ (tf ) , tf ) +

∫ tf

0

f00 (q, q̇, q̈, u) dt. (4.10)
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However, substitution (4.1) or (4.2) into (4.10) yields functional (4.9). Therefore,

we may solve the problem of minimizing cost functional (4.9) which is the problem of

calculus of variations. It, of course, may be used whenever that there are no constraints

on the state x and the control u. Hence, for obtaining the optimal trajectories it

is necessary to minimize J1 from (4.9) whose special type is quadratic functionals.

Similarly as quadratic equations, we can try to alter (modify) the criterion (functional)

into more suitable form.

Let us now review some definitions used in the subsequent sections.

Definition 1. The matrix A of type n× n is called stable matrix if and only if all its

eigenvalues have negative real parts.

Definition 2. The real symmetric n× n matrix A is said to be positive definite if and

only if xTAx is positive definite, namely,

xTAx ≥ 0 and
(
xTAx = 0⇔ x = 0

)
.

Definition 3. The matrices A and B are called similar, if and only if there is a non-

singular matrix T , such that

A = T−1BT (that is iff TA = B T ) . (4.11)

Definition 4. The matrices A and B are called congruent, if and only if there is a

matrix P , such that

B = P TAP. (4.12)

In addition, there is a well known theorem which is very often used in the theory

of control:

Theorem. Let P be a given stable matrix and let S be any positive definite symmetric

matrix. Then there exists a unique matrix X such that

XP + P TX = −S. (4.13)

Moreover, the matrix X is symmetric and positive definite. This theorem will play a

key role in the different parts of the proposed method. The proof of this theorem will

be omitted, since belongs into well known theorems.
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4.3 New Proposed Theorem

In this section we present our novel approach which solves the unconstrained optimal

control problem of robot manipulators globally. This new method will be presented

under the following theorem and its application for robot manipulators is considered

in the subsequent sections.

Theorem. Let A, B be positive definite matrices and let they be congruent, such

that B = P TAP . Suppose P is stable and P TA = AP . Then the criterion

J =

∫ ∞
0

(
ξ̇TAξ̇ + ξTBξ

)
dt (4.14)

has the global minimum value

Jmin =
1

2
ξT (0) C ξ (0)

on the set of differentiable curves ξ (t) such that limt→∞ ξ (t) = 0. The optimal

solution is ξ (t) = ePtξ (0). The matrix C is −2AP .

Proof.

J =

∫ ∞
0

{
ξ̇TA ξ̇ +

[(
Pξ − ξ̇

)
+ ξ̇
]T
A
[(
Pξ − ξ̇

)
+ ξ̇
]}

dt =∫ ∞
0

{
ξ̇TA ξ̇ +

(
Pξ − ξ̇

)T
A
(
Pξ − ξ̇

)
+
(
Pξ − ξ̇

)T
A ξ̇ + ξ̇TA

(
Pξ − ξ̇

)
+ ξ̇TA ξ̇

}
dt =

2

∫ ∞
0

ξ̇TA ξ̇ dt+

∫ ∞
0

(
Pξ − ξ̇

)T
A
(
Pξ − ξ̇

)
dt+

∫ ∞
0

[
(Pξ)T A ξ̇ + ξ̇TAPξ

]
dt

− 2

∫ ∞
0

ξ̇TA ξ̇ dt

Thus, we have

J =

∫ ∞
0

(
Pξ − ξ̇

)T
A
(
Pξ − ξ̇

)
dt+

∫ ∞
0

(
ξTP TA ξ̇ + ξ̇TAP ξ

)
dt.
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Because P TA = AP , we may rewrite the second integral

J =

∫ ∞
0

(
Pξ − ξ̇

)T
A
(
Pξ − ξ̇

)
dt+

∫ ∞
0

(
ξTAP ξ̇ + ξ̇TAPξ

)
dt =∫ ∞

0

(
Pξ − ξ̇

)T
A
(
Pξ − ξ̇

)
dt+

∫ ∞
0

d

dt

(
ξTAPξ

)
dt =∫ ∞

0

(
Pξ − ξ̇

)T
A
(
Pξ − ξ̇

)
dt+

[
ξ (t)T APξ (t)

]∞
0
.

But the second term is[
ξ (t)T AP ξ (t)

]∞
0

= lim
t→∞

ξ (t)T AP ξ (t)− ξ (0)T AP ξ (0) = −ξ (0)T AP ξ (0) ,

because it was postulated limt→∞ ξ (t) = 0. Therefore, we obtain

J =

∫ ∞
0

(
Pξ − ξ̇

)T
A
(
Pξ − ξ̇

)
dt− ξ (0)T APξ (0) . (4.15)

We can prove −AP is positive definite. In fact, the matrices A and P are given. Let

us define C = −2AP = −AP −P TA. Hence AP = −1
2
C and P TA = −1

2
C. Evidently,

C is symmetric, but we don’t know if C is positive definite. Obviously,

B = P TAP = P T

(
−1

2
C

)
= −1

2
P TC

and

B = P TAP =
(
P TA

)
P = −1

2
CP

Thus CP = P TC and

CP + P TC = −4B (4.16)

The matrix P is stable and 4B is positive definite. Using the previous theorem together

with (4.13) follows that the matrix C exists and only one and that C is symmetric and

positive definite in (4.16).

Now, let us consider an equation

XP + P TX = −C
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and use the previous theorem (with (4.13)) again. We see there is unique matrix X,

which is positive definite, but from the definition of C we know

AP + P TA = −C,

so it must be X = A.

We proved C = −2AP is positive definite and hence (4.15) may be rewritten as

J =

∫ ∞
0

(
Pξ − ξ̇

)T
A
(
Pξ − ξ̇

)
dt+

1

2
ξ (0)T Cξ (0) (4.17)

Now it is seen that the minimum of J is

Jmin =
1

2
ξ (0)T Cξ (0)

and is equal zero only for ξ (0) = 0. The necessary and sufficient condition is

ξ̇ = Pξ (4.18)

and this equation can be solved very easy. It must be noted that the solution of (4.18)

is the global minimum of (4.17).

How to solve (4.18):

From ξ̇ − Pξ = 0 by multiplication we obtain e−Pt
(
ξ̇ − Pξ

)
= 0 and hence e−Ptξ̇ −

e−PtPξ = 0 and from this we have

d

dt

(
e−Ptξ

)
= 0. (4.19)

Integrating (4.19) from 0 to t, we have e−Ptξ (t) = e−P0ξ (0), and so

ξ (t) = ePtξ (0) . (4.20)

Further, the condition limt→∞ e
Ptξ (0) = 0 is truth, because matrix P is stable and
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so

lim
t→∞

ξ (t) = 0

Remark. The theorem can be proved by calculus of variation, but it is too difficult

to prove the global optimality.

4.3.1 Asymptotic Behavior

It is known that ePt is a fundamental matrix of the linear system ξ̇ = Pξ. From

theory of ordinary differential equation it is known that every element of ePt is of the

form
∑k

j=1 pi (t) e
λjt, where pj (t) is a polynomial of degree not more than (nj − 1),

where λ1, λ2, . . . λk are the distinct eigenvalues of P and λj has multiplicity nj, such

that n1 + n2 + . . . + nk = n. If ρ is chosen such that ρ > maxj=1,2,...,k (Realλj), then∣∣theλjt∣∣ = theRe(λjt) < eρt for t large enough, and every term in the sum
∑
pj (t) eλjt

is at most Meρt (0 ≤ t ≤ ∞) for some constant M . Since there are at most n2 such

terms in the matrix ePt, then ∥∥ePt∥∥ ≤ Keρt

for K = M̃n2, where M̃ is the largest of the n2 values of M .

We also remark that the constant ρ may be chosen as any number greater than or

equal to the largest of Reλ1, Re λ2, . . . , Re λn, whenever every eigenvalue whose real

part is equal to this maximum is itself simple. In particular, this is always true if P

has no multiple eigenvalues.

The previous discussion was made for arbitrary matrix P . But in our case P is

stable, so we can assert the following result:

Lemma.

If all eigenvalues of P have negative real parts, then every solution ePtξ (0) of the

system

ξ̇ = Pξ

approaches zero as t → ∞. More precisely, there exist constants σ > 0, K̄ > 0 such

that ∥∥ePtξ (0)
∥∥ ≤ K̄e−σt for 0 ≤ t (4.21)

Proof. We can choose −σ (σ > 0) as any number larger than the real part of every
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eigenvalue (−σ plays the role of ρ in the previous discussion). Every solution has the

form ePtξ (0). Then

∥∥ePtξ (0)
∥∥ ≤ ∥∥ePt∥∥ ‖ξ (0)‖ ≤ K ‖ξ (0)‖ e−σt = K̄e−σt

that is because there is K > 0, such that

∥∥ePt∥∥ ≤ Ke−σt for 0 ≤ t

as was shown earlier.

4.3.2 Estimation of Precision

If there is given some small ε > 0, then for all t > −σ−1 ln ε
K̄

is

‖ξ (t)‖ =
∥∥ePtξ (0)

∥∥ < ε. (4.22)

That follows from (4.21). Thus, if any control process is from 0 to t = T , then for

T > −σ−1 ln ε
K

this method can be used. If T ≤ −σ−1 ln ε
K

then it can not be used.

4.3.3 Solved Example

Let be done a functional

J =

∫ ∞
0

(
ξ̇2 + ξ2

)
dt

with conditions ξ (0) = 1, ξ (∞) = 0.

a) Let us solve it by classical calculus of variation. If F = ξ̇2 + ξ2, then the Euler

equation is Fξ− d
dt
F ξ̇ = 0, so ξ̈−ξ = 0. The characteristic equation is λ2−1 = 0,

so λ = ±1. The solution is

ξ = c1e
−t + c2e

t.
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The boundary conditions are

lim
n→∞

ξ (t) = 0⇒ c2 = 0

ξ (0) = 1⇒ c1 = 1;

Therefore, we obtain a solution ξ = e−t.

b) Let us use the developed method.

n = 1, A = 1, B = 1, B = P TAP ⇒ 1 = p2,

for p = ±1. But P must be stable, so p = −1 and hence

ξ (t) = ePtξ (0) = e−t.

4.4 Realization 1

Let the robot is precisely described by the equation

M (q) q̈ +N (q, q̇) +G (q) = u, (4.23)

and let qd (t) is any desired trajectory of robot motion.

Let us mark ∆q (t) = q (t) − qd (t) the difference between the actual and desired

trajectories. Then ξ ≡ ∆q, ξ (0) = ∆q (0) = q (0)− qd (0) and from our theory follows

∆q (t) = ePt∆q (0) ,

because ∆q̇ = P∆q (as was ξ̇ = Pξ), we obtain ∆q̈ = P∆q̇ = P 2∆q and hence

q∗ (t) = qd (t)+ePt∆q (0) , q̇∗ (t) = q̇d (t)+ePt∆q (0) , q̈∗ (t) = q̈d (t)+ePt∆q (0) , (4.24)

if we substitute q∗, q̇∗, q̈∗ from (4.24) into (4.23), we obtain the optimal control

u∗ (t) = M (q∗ (t)) q̈∗ (t) +N (q∗ (t) , q̇∗ (t)) +G (q∗)
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as the function of t. This is rightful for precisely description equation (4.23), not for

incorrect.

Remark 1. Especially, if qd (t) = qd (T ) = Cons., then q̇d = 0, q̈d = 0 and we obtain

the optimal control to transfer the robot from initial configuration q (0) into final one

qd (T ).

Remark 2. In the realization above, we can only set the initial value of joint dispo-

sition variable and no any capability exists to set the initial value of the joint velocity

and acceleration. In the next discussion we can present a new realization of our the-

orem to take into account both initial joint disposition and velocity variables but no

acceleration.

4.5 Realization 2

For robot equation

Mq̈ +Nq̇ +G = u (4.25)

let us define a state

x = (q1, q̇1, q2, q̇2, . . . , qn, q̇n)T . (4.26)

Now define

e = xd − x (4.27)

where e is a m× 1 vector with m = 2n. Let us study the problem to find a matrix T

such that

ξ = −T e (4.28)

where ξ ∈ Rn×1 and T ∈ Rn×m. Our aim is to find a suitable form of matrix T .

From ξ̇ = Pξ given in (4.18) we obtain T ė = PTe and so for e (0) = e0 we have

ξ (0) = −Te0. Thus, we achieve the following matrix equation

T ė = PTe (4.29)

which will play an important role. The state equation of (4.25) is

ẋ = f (x) + g (x)u (4.30)
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and so

ė = ẋd − ẋ = ẋd − f (x)− g (x)u,

where x = xd − e. The vector equation (4.30) may be written as

ẋi−1 = xi

ẋi = fi (x) +
n∑
j=1

gij (x)uj

for i = 2, 4, 6, . . . ,m, or we can write it as

ẋ2k−1 = x2k

ẋ2k = f2k (x) +
n∑
j=1

g2k,j (x)uj
(4.31)

for k = 1, 2, 3, . . . , n.

4.5.1 Option of Matrix T

The equation (4.29) can be written as (m > n)

@ T11 T12 A T13 T14 T15 · · · T1m

T21 T22 @ T23 T24 A T25 · · · T2m

T31 T32 T33 T34 @ T35 · · · T3m

...

Tn1 Tn2 · · · @ Tn,m−1 Tn,m A





ė1

ė2

ė3

...

ėm


=



P11 · · · P1n

...

Pn1 · · · Pnn





T11 T12 · · · T1m

T21 T22 · · · T2m

T31 T32 · · · T3m

...

Tn1 Tn2 · · · Tnm





e1

e2

e3

...

em


(4.32)

The matrix T is n×m and we choose its quasi-diagonal as non-zero elements, others

will be zero. The matrix P let be diagonal. Thus the matrix equation (4.32) can be
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rewritten in

T11ė1 + T12ė2 = P11T11e1 + P11T12e2

T23ė3 + T24ė4 = P22T23e3 + P22T24e4

...

Tn,m−1ėm−1 + Tnmėm = PnnTn,m−1em−1 + PnnTnmem

(4.33)

From ẋ2k−1 = x2k in (4.31) we obtain equations

ė1 = e2, ė3 = e4, · · · ėm−1 = em (4.34)

and so we can rewrite (4.33) in the form

T12ė2 = P11T11e1 + (P11T12 − T11) e2

T24ė4 = P22T23e3 + (P22T24 − T23) e4

...

Tnmėm = PnnTn,m−1em−1 + (PnnTnm − Tn,m−1) en

(4.35)

The equation (4.34) and (4.35) we may write

ė2k−1 = e2k

ė2k =
PkkTk,2k−1

Tk,2k
e2k−1 +

(
Pkk −

Tk,2k−1

Tk,2k

)
e2k

(4.36)

for k = 1, 2, · · · , n.

Because here we have a fraction
Tk,2k−1

Tk,2k
, it will be better to choose

Tk,2k = 1 (4.37)

and then for

Mk =

 0 1

PkkTk,2k−1 Pkk − Tk,2k−1

 (4.38)
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we may rewrite (4.36) as (
ė2k−1

ė2k

)
= Mk

(
e2k−1

e2k

)
(4.39)

How it is with stability?

Let us examine the eigenvalues of Mk as follows

det (Mk − λI) =

∣∣∣∣∣∣∣
−λ 1

PkkTk,2k−1 Pkk − Tk,2k−1 − λ

∣∣∣∣∣∣∣ = λ2−λ (Pkk − Tk,2k−1)−PkkTk,2k−1

The characteristic equation is det (Mk − λI) = 0, so

(λ− Pkk) (λ− Tk,2k−1) = 0.

Here we can write

λ1 = Pkk

λ2 = −Tk,2k−1

Pkk, Tk,2k−1 are real numbers, thus from theory of stability λ1 < 0, λ2 < 0 and hence

Pkk < 0

Tk,2k−1 > 0
(4.40)

Therefore, matrix P must be stable which it is our assumption of the previous theorem.

The matrix T then has the form

T =



T11 1 0 0 0 0 · · · 0

0 0 T23 1 0 0 · · · 0

0 0 0 0 T35 1 · · · 0
...

...
...

0 Tn,m−1 1


(4.41)

The numbers Tk,2k−1 can be chosen arbitrary, but positive.
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4.5.2 Solution of ei

Let a = PkkTk,2k−1, b = Pkk − Tk,2k−1. Then characteristic equation of (4.36) is

λ2 − bλ− a = 0⇒ λ1,2 =
b±
√
b2 + 4a

2
,

in which b2 + 4a = (Pkk − Tk,2k−1)2 + 4PkkTk,2k−1 = (Pkk + Tk,2k−1)2 ≥ 0, so

λ1,2 =
1

2
(Pkk − Tk,2k−1 ± |Pkk + Tk,2k−1|)⇒

{
λ1 = Pkk

λ2 = −Tk,2k−1

Thus

e2k−1 = ck1e
Pkkt + ck2e

−Tk,2k−1t

e2k = ė2k−1 = Pkkck1e
Pkkt − Tk,2k−1ck2e

−Tk,2k−1t
(4.42)

4.5.3 Global Optimal Feedback Control

From the equation

ė = ẋd − f (x)− g (x)u, (4.43)

we have

g (x) u = ẋd − ė− f (x) , x = xd − e. (4.44)

Now we can exploit two following ways to derive the optimal control u:

A. Multiplying (4.43) by T

T g (x) u = T (ẋd − f (x))− T ė, (4.45)

and according to (4.29) we will have

T g (x) u = T (ẋd − f (x))− PTe, (4.46)

Let us compute the multiplication T g (x) in the left hand side of the above
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equation:

T · g =



T11 1 0 0 0 0 · · · 0

0 0 T23 1 0 0 · · · 0

0 0 0 0 T35 1 · · · 0
...

...
...

0 Tn,m−1 1





0 0 · · · 0

g21 g22 · · · g2n

0 0 · · · 0

g41 g42 · · · g4n

...
...

...
...

0 0 · · · 0

gm1 gm2 · · · gmn


=


g21 g22 · · · g2n

g41 g42 · · · g4n

...
...

...
...

gm1 gm2 · · · gmn.

 (4.47)

Let us denote

g̃ =


g21 g22 · · · g2n

g41 g42 · · · g4n

...
...

...
...

gm1 gm2 · · · gmn.

 (4.48)

We see g̃ is a square matrix of type n × n and suppose det g̃ 6= 0; hence it is a

regular matrix and we can solve (4.46)

u (t) = (g̃)−1 T (ẋd − f (x))− (g̃)−1 P T e (4.49)

Therefore, in this way we obtained an optimal control of our problem by (4.49).

B. Remember, we can use the equation of robot motion (4.25) for establishing of

the control u (t). In fact, using (4.36) and (4.27) we obtained x = x (t) and from

((4.26)) we can get q (t) and q̇ (t) and by derivative of q̇ we have q̈ (t). If we

substitute these results into ((4.25)), we obtain the control vector u = u (t).

Remark 2. The method A is more general, because there is used the formula (4.30).

So we employ only method A to obtain the optimal control u (t).

Let us now consider two cases:
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Figure 4.1: Optimal feedback control schematic

a. Let be given e = e (t), for example by solving (4.39). Then by (4.27) we are able

to find x (t) and by a substitution into (4.49) we obtain the optimal control.

b. Contrarily, let be given an optimal control u = u∗ (t). Then by (4.30) we can

compute x (t) and then by substitution of these results into (4.43) we obtain a

vector ė (t), from which follows e (t). In this manner we opened a way into the

optimal feedback control for the precise model of robot (4.30). The feedback

control is schematically depicted on the Figure 4.1.

Really, we can mutually interchange the block ROBOT onto the relation (4.30),

because all positions and motions are precisely described by (4.30) about our

presumption.

This schematic can be adjusted onto an adaptive control, if the equation (4.30)

is not a precise model of robot motion.

4.6 Case Studies for Global Optimal Controller

In this section we apply the proposed method for some well known robot manipulators
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Figure 4.2: Vertical two links robot manipulator

4.6.1 Vertical Two Links Robot Manipulator

Consider a physical model of a vertical two-link robot, with each joint equipped with a

motor for providing input torque as shown in Figure 4.2 which the following notations

are used in this figure.

� qi the joint angle of joint i

� mi the mass of link i

� li the length of link i

� lci the location of mass center of link i with respect to coordinate system in joint

i.

� Ii the moment of inertia of link i about the axis passed through the mass center

and paralleled to the axis y.

The values given in Table 4.1 are used for these variable.

Let us first obtain the dynamic model of this robot by Lagrange-Euler method.

Let q1, q2 as the general coordinates of this dynamic system. Thus, the kinetic and

potential terms of two links are obtained as:
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Table 4.1: Some typical function spaces
m1 m2 l1 l2 lc1 lc2 I1 I2

2 kg 1 kg 0.6 m 0.4 m 0.3 m 0.2 m o.5 kg ·m2/rad o.5 kg ·m2/rad

� Joint 1

Kinetic energy: K1 =
1

2
m1 l

2
c1 q̇

2
1 +

1

2
I1q̇

2
1

Potential energy: P1 = m1 g lc1 sin q1

(4.50)

� Joint 2

Since the mass center of link 2, c2 = [c2x c2z] is given by

c2x = l1 cos q1 + lc2 cos (q1 + q2) ,

c2z = l1 sin q1 + lc2 sin (q1 + q2) .
(4.51)

Thus, we have

ċT2 ċ2 = l21q̇
2
1 + l2c2 (q̇1 + q̇2)2 + 2l1lc2 cos q2

(
q̇2

1 + q̇1 q̇2

)
(4.52)

Then,

Kinetic energy: K2 =
1

2
m2 ċ

T
2 ċ2 +

1

2
I2 (q̇1 + q̇2)2

Potential energy: P2 = m2 g (l1 sin q1 + lc2 sin (q1 + q2))
(4.53)

Let us now define Lagrangian as L = K1 +K2−P1−P2. Then, according to Lagrange-

Euler formulation we have
d

dt

(
∂L

∂q1

)
− ∂L

∂q1

= τ1 (4.54)
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thus,

τ1 =
[
m1 l

2
c1 + I1 +m2

(
l21 + l2c2 + 2l1 lc2 cos q2

)
+ I2

]
q̈1+[

m2 l1lc2 cos q2 +m2 l
2
c2 + I2

]
q̈2 −m2 l1 lc2 sin q2

(
2q̇1q̇2 + q̇2

2

)
+

m1 g lc1 cos q1 +m2 g (l1 cos q1 + lc2 cos (q1 + q2)) ,

(4.55)

and for joint 2 we have
d

dt

(
∂L

∂q2

)
− ∂L

∂q2

= τ2, (4.56)

hence,

τ2 =
[
m2 l1 lc2 cos q2 +m2 l

2
c2 + I2

]
q̈1 +

[
m2 l

2
c2 + I2

]
q̈2 +m2l1lc2 sin q2q̇

2
1+

m2 g lc2 cos (q1 + q2) .
(4.57)

The equations (4.55) and (4.57) can be rewritten as matrix form M (q) q̈+N (q, q̇) =

τ : [
M11 M12

M21 M22

][
q̈1

q̈2

]
+

[
−vq̇2 −vq̇1 − vq̇2

vq̇1 0

][
q̇1

q̇2

]
+

[
g1

g2

]
=

[
τ1

τ2

]
(4.58)

where

M11 = m1l
2
c1 + I1 +m2

(
l21 + l2c2 + 2l1lc2 cos q2

)
+ I2

M22 = m2l
2
c2 + I2

M12 = M21 = m2l1lc2 cos q2 +m2l
2
c2 + I2

v = m2l1lc2 sin q2

g1 = m1 lc1 g cos (q2) +m2 g (lc2 cos (q1 + q2) + l1 cos (q1))

g2 = m2 lc2 g cos (q1 + q2)

(4.59)

and N (q, q̇) =

[
N1

N2

]
=

[
−vq̇2 −vq̇1 − vq̇2

vq̇1 0

][
q̇1

q̇2

]
+

[
g1

g2

]
.
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The state space representation of this robot is obtained by considering the following

states

x =


x1

x2

x3

x4

 =


q1

q̇1

q2

q̇2

 , ẋ = f (x) + g (x) τ. (4.60)

Figure 4.3: Optimal profiles of vertical two links robot manipulator

Let inverse of M is denoted by MI whose ith row is represented as M i
I , then

f (x) =


x2

−M1
I N

x4

−M2
I N

 , g (x) =


0 0

M1
I

0 0

M2
I

 (4.61)

82



4. First Proposed Method

The boundary conditions considered here are

x1 (0) = 0, x2 (0) = 0

x3 (0) = 0, x4 (0) = 0

x1 (5) = 0.3 rad, x2 (5) = 0.8 rad

x3 (5) = 0, x4 (5) = 0

(4.62)

According to equations (4.40) and (4.41), we consider matrices P and T as follows

P =

[
−1 0

0 −2

]
, T =

[
2 1 0 0

0 0 3 1

]
(4.63)

Then using equation (4.42) the following error terms are obtained

e1 = c11e
−t + c12e

−2t

e2 = −c11 − 2c12e
−2t

e3 = c21e
−2t + c22e

−3t

e4 = −2c21e
−2t − 3c22e

−3t

(4.64)

where constants cki are obtained according to initial error

e (0) = xd (0)− x (0) =
[
0.3 0 0.8 0

]T
(4.65)

which yields c11 = 0.6, c12 = −0.3, c21 = 2.4, c22 = −1.6. Then optimal controls can be

obtained by steps given in subsection 4.5.3. Eventually, Figure 4.3 shows the optimal

profiles contain joint dispositions, velocities and torques of this robot. In addition, the

minimum value of (4.14) in the case of this robot is obtained 13.32 by considering The

following matrix A

A =

[
1 1

−1 1

]
which is a positive definite matrix.
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4.6.2 KUKA Robot

In chapter 2, we obtained the dynamic model of a KUKA industrial robot through an

experimental identification and the resulted dynamic equations have been presented in

Appendix A. In this subsection, we attempt to apply the above proposed method in

this KUKA robot for two purposes: 1- Set-point regulating case 2- Trajectory tracking

Case.

� Set-point regulating case

In this case which is actually the point to point motion, the objective is to transfer

the robot from an initial configuration into a final one so that the cost functional

(4.14) is minimized. Let us consider the following boundary conditions

q0 =

0

0

0

 , qf =

0.3

0.8

0.5

 (rad) , q̇0 =

0

0

0

 , q̇f =

0

0

0

 (4.66)

as well as the following matrices which are required in the proposed method

A =

 2 −1 0

−1 2 −1

0 −1 2

 , T =

2 1 0 0 0 0

0 0 3 1 0 0

0 0 0 0 4 1


where A is a positive definite matrix and matrix T is chosen according to (4.41).

Then the optimal trajectories are obtained as shown in Figure 4.4. The minimum

value of the cost functional (4.14) in this case study is 22.32.

� Trajectory tracking Case

In this item the objective is to command the KUKA robot to move along the

following reference (desired) trajectories

qd1 = 0.3 + 0.1 sin (π t)

qd2 = 0.8 + 0.2 sin (2π t)

qd3 = 0.5 + 0.3 sin (3π t)

(4.67)

so that the cost functional (4.14) is minimized.
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Figure 4.4: Optimal trajectories of KUKA robot obtained by the proposed
method in set-point regulating case
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Utilizing the matrices used in the previous item, the optimal trajectories are

obtained as shown in Figure 4.5. Note that the robot is in its home position in

t = 0. Of course, it can be in any other initial configuration. In this case the

minimum value of the cost functional (4.14) is 50.138.

4.7 Adaptive Optimal Control of Robot Manipula-

tor

In the previous sections of this chapter we developed an unconstrained global optimal

controller for robot manipulators which actually is a model-based controller. However,

very often, there are some uncertainties in the dynamic model of the robot manipula-

tors. One possibility in controlling such systems whose exact models are not available

is adaptive control technique [7]. In recent years, many adaptive control schemes have

been developed for robot manipulators, such as [59; 97], which usually are in the frame-

work of the adaptive control methods given in [86].

In this section we attempt to extend our proposed controller in the more general

case in which an exact model of the considered robot does not exist. In fact, our

objective is to design an adaptive optimal controller (AOC) whose central core is the

optimal trajectory generator (OTG) proposed in the previous sections of this chapter.

As explained in the chapter 2, the dynamic model of an n-axes robot manipulator

can be expressed as the regression form

Y (q, q̇, q̈) θ = τ (4.68)

where Y is an n × m matrix whose elements are nonlinear functions of q, q̇, q̈ and

θ ∈ Rm×1 is a vector whose entries are identifiable parameters of the considered robot.

The elements of vector θ are functions of dynamic and friction parameters of the robot

whose values usually are not provided by robot manufacturers and researchers have to

measure these values themselves by robot identification experiments (as explained in

section 2.3, in detail). In the sequel, we use the regression model in order to design the

proposed AOC for robot manipulators.

Let us now consider the structure of the proposed AOC as illustrated in Figure 4.6
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Figure 4.5: Optimal trajectories of KUKA robot obtained by the proposed
method in trajectory tracking case
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Figure 4.6: General structure of adaptive optimal controller of robot manip-
ulators

which actually is an adaptive self-tuning controller. In this structure the values of the

elements of vector θ are estimated in an on-line manner and then the estimated control

input of the robot (τ̂) is calculated on the basis of these estimated parameters in each

time instance. In fact, the on-lone estimator existed in this structure estimates the

unknown parameters of the system based on the measurements of input and output

signals of the system. Before explaining the internal structure of the on-line estimator,

we require to introduce some variables in the proposed AOC:

� predicted torque defined as τ̂ (t) = Y (q (t) , q̇ (t) , q̈ (t))θ̂ (t)

� exact value of unknown parameters, denoted θ

� parameter estimation error defined as θ̃ = θ̂ − θ

� prediction error defined as e (t) = Y θ̂ (t)− Y θ (t)

The basic idea in designing the on-line estimator is that θ̂ should be updated so

that e (prediction error) is reduced in each time instance. In doing so, we can use the

procedure used in the standard least-square (LS) scenario. In fact, the estimation of

the parameters can be obtained by minimizing the following total prediction error with

respect to θ̂

J =

∫ t

0

∥∥∥τ (s)− Y (q (s) , q̇ (s) , q̈ (s)) θ̂ (s)
∥∥∥2

ds. (4.69)
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According to LS method, the solution of the above minimization problem is obtained

with satisfying the following relation by θ̂

θ̂ (t) =

[∫ t

0

Y TY ds

]−1 ∫ t

0

Y T τ (s) ds. (4.70)

However, in computation point of view, the equation (4.70) is not efficient and it can

be converted into a more appropriate form with defining the following square matrix

Φ (t) =

[∫ t

0

Y TY ds

]−1

. (4.71)

whose derivative is

d [Φ−1 (t)]

dt
= Y T (q (t) , q̇ (t) , q̈ (t)) Y (q (t) , q̇ (t) , q̈ (t)) . (4.72)

Let us now consider the following identity

d

dt

[
ΦΦ−1

]
= Φ̇Φ−1 + Φ

d

dt

[
Φ−1

]
= 0, (4.73)

and so

Φ̇ = −ΦY TY Φ . (4.74)

Eventually, the unknown parameters can be updated by the following causal equation

which is obtained by differentiating (4.70) and using (4.71)

˙̂
θ = −Φ (t) W T e . (4.75)

For investigating the convergence of the above on-line estimator, it is easy to obtain

the following equation using equations (4.72) to (4.75)

d

dt

[
Φ−1 (t) θ̃ (t)

]
= 0, (4.76)

and hence

θ̃ (t) = Φ (t) Φ−1 (0) θ̃ (0) . (4.77)

Therefore, if smallest eigenvalue of the integral
∫ t

0
Y T Y ds (according to (4.71)) goes

to infinity as t → ∞, then in (4.77) Φ → 0 and so θ̃ → 0 and each trajectory that
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Figure 4.7: A simple linear system

satisfies this condition is called persistent excitation trajectory. It is worth to be noted

also that, according to (4.77), if the initial value Φ (0) is large enough, then it results

in smaller parameter error.

In the next section we shall apply the proposed AOC in the different case studies

and more discussions shall be given for each cases.

4.8 Case Studies for Adaptive Optimal Controller

4.8.1 A Simple Linear System

In order to investigate the features of the proposed AOC, in this subsection we attempt

to design an adaptive optimal controller for a simple linear system shown in Figure 4.7

which it is assumed that the value of the mass and friction parameter of the system are

parameters which are estimated by the control system while the exact value of these

parameters are m = 10 kg and b = 0.2 sec−1. The dynamic model of this system can

be easily obtained by Newton’s laws as follows:

mẍ+ bẋ = u

where x (t) is the position of the mass m in time t and u is the exerted force as the

input control. This dynamic model can be rewritten as the vector form

[
ẍ ẋ

]
︸ ︷︷ ︸

Y

[
m

b

]
︸︷︷︸
θ

= u ⇒ Y θ = u (4.78)

Figure 4.8 shows the structure of the proposed AOC for this linear system. In this

structure, r (t) is the desired motion trajectory and also note that two unknown pa-
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Figure 4.8: Adaptive optimal control system for linear system

rameters m̂ and b̂ are estimated by the equations given in on-line estimator of this

control system.

Let us now apply the above control system into the following cases

� Motion of mass m from x = 0 to x = 1.5:

Figure 4.9 shows the optimal disposition, velocity and force trajectories of the

system in this case. In addition, Figure 4.10 illustrates the estimation parameters

results for this case as well. In this case we consider the following initial condition

for on-line estimator

Φ (0) =

[
1000 1

2 1000

]
, θ̂ (0) =

[
0

0

]

� Motion of mass m along the desired trajectory r (t) = 0.3 + 0.1 sin (π t):

Considering the same initial conditions as previous case, the optimal disposition,

velocity and force trajectories are shown in Figure 4.11. The estimation results

also are depicted in Figure 4.12.
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Figure 4.9: Optimal point-to-point motion of linear system

Figure 4.10: Estimated parameters of linear system for point-to-point motion
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Figure 4.11: Optimal motion of linear system in the case of motion tracking

Figure 4.12: Estimated parameters of linear system for motion tracking case
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Figure 4.13: Optimal trajectory of two links robot obtained by applying AOC

As seen from the estimation results in Figure 4.10 and 4.12, the above control system

has good robustness with respect to noise and disturbance. The other feature in the

estimator of the proposed control system is that it converges fast initially, but slowly

afterward.

4.8.2 Vertical Two Links Robot Manipulator

In the subsection 4.6.1, we examined this robot to design its optimal controller in the

case that we have the exact dynamic model of this robot. In this subsection, it is

attempted to apply the proposed adaptive optimal control for this robot. First of all,

we require a regression model of this robot which is as follows:

[
Y11 Y12 Y13 Y14 Y15

Y21 Y22 Y23 Y24 Y25

]
·


θ1

θ2

θ3

θ4

θ5

 =

[
τ1

τ2

]
(4.79)
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where

Y11 =l21q̈1 + gl1 cos (q1) ,

Y12 =2l1 cos (q2) q̈1 + l1 cos (q2) q̈2 + g cos (q1 + q2)− l1 sin (q2)
(
2q̇1q̇2 + q̇2

2

)
,

Y13 =q̈1, Y14 = q̈1 + q̈2, Y15 = g cos (q1) ,

Y21 =0, Y22 = l1 cos (q2) q̈1 + l1 sin (q2) q̇2
1 + g cos (q1 + q2) , Y23 = 0,

Y24 =q̈1 + q̈2, Y25 = 0,

and

θ1 = m2, θ2 = m2 lc2, θ3 = I1 +m1 l
2
c1, θ4 = I2 +m2 l

2
c2, θ5 = m1 lc1.

In this case study, the exact values of the dynamic parameters of the system are

those given in Table 4.1. Therefore, the exact values of the parameters θi are θ1 =

1, θ2 = 0.2, θ3 = 0.68, θ4 = 0.54, θ5 = 0.6. The on-line estimator for this robotic

system has the following form 

˙̂
θ1

˙̂
θ2

˙̂
θ3

˙̂
θ4

˙̂
θ5


= −Φ (t) Y T e,

where Φ (t) is a 5× 5 matrix whose elements are obtained from the following equation

which is a matrix differential equation

Φ̇ (t) = −Φ (t)Y TY Φ (t) .

and e = Y θ̂ − Y θ. The objective is that the joints of the robot track the following

desired trajectories:

qd1 = 0.3 + 0.1 sin (π t)

qd2 = 0.8 + 0.2 sin (2π t)

Therefore, assuming a disturbance as d (t) = o.5 sin (50t) in the system, the optimal
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Figure 4.14: Estimated parameters of two links robot
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Figure 4.15: SCARA robot

trajectories are obtained as shown in Figure 4.13. In this figure the blue dashed trajec-

tories are actual ones while the trajectories with continuous line are desired trajectories.

In addition, Figure 4.14 depicts the estimation parameters θ̂1 to θ̂5 existed in dynamic

model of the system. As these figures show, the tracking task is performed completely

after t = 5.65 sec.

4.8.3 SCARA Robot

In this subsection, we wish to apply the proposed AOC into a SCARA robot shown in

Figure 4.15. This robot is a 4 degrees of freedom robot whose first, second and fourth

joints are revolute while its third joint is prismatic. The regression model of this robot

can be obtained as follows [29]:


Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19

Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29

Y31 Y32 Y33 Y34 Y35 Y36 Y37 Y38 Y39

Y41 Y42 Y43 Y44 Y45 Y46 Y47 Y48 Y49





θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9


=


τ1

τ2

τ3

τ4

 (4.80)
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where

Y11 =q̈1, Y12 = C2 q̈1 + 0.2C2 q̈2 − S2 q̇2 (q̇1 + 0.5q̇2) , Y13 = q̈2

Y14 =0, Y15 = −q̈4, Y16 = q̇1, Y17 = Y18 = Y19 = 0

Y21 =0, Y22 = 0.5C2 q̈1 + 0.5S2 q̇2
1, Y23 = q̈1 + q̈2, Y24 = 0,

Y25 =− q̈4, Y26 = 0, Y27 = q̇2, Y28 = Y29 = 0,

Y31 =Y32 = Y33 = Y35 = Y36 = Y37 = Y39 = 0, Y34 = q̈3 − g, Y38 = q̇3,

Y41 =Y42 = Y43 = Y44 = Y46 = Y47 = Y48 = 0, Y45 = − (q̈1 + q̈2 − q̈4) , Y49 = q̇4,

and

θ1 =m1x
2
1 +m2

(
a2

1 + x2
2

)
+ (m3 +m4)

(
a2

1 + a2
2

)
+

4∑
i=1

Izzi,

θ2 =2 [a1x2m2 + a1a2 (m3 +m4)] , θ3 = m2x
2
2 + a2 (m3 +m4) +

4∑
i=2

Izzi,

θ4 =m3 +m4, θ5 = Izz4, θ6 = Fv1, θ7 = Fv2, θ8 = Fv3, θ9 = Fv4

(4.81)

In the regression model (4.80), qi, τi ( for i = 1, 2, 3, 4) denote the disposition and

torque variables of joints of the SCARA robot, respectively, as well as C2, S2 stand

for cos(q2), sin(q2), respectively. In addition, the following variables have been used in

equation (4.81):

� mi: mass of link i,

� Izzi: principal moments of inertia of joint i around the z axis of the principal

frame of link i,

� x1, x2: center of mass of links 1 and 2,

� l1, l2: length of links 1 and 2,

� Fvi: viscose friction parameter of joint i.

for i = 1, 2, 3, 4.

In the case of presence of a disturbance as d (t) = 0.5 sin (20t), the estimation results

are shown in Figure 4.16. In addition, Figure 4.17 and Figure 4.18 show the desired

and actual trajectories obtained by applying AOC scheme into this SCARA robot.
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Figure 4.16: Estimated parameters of SCARA robot
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4. First Proposed Method

Figure 4.17: Desired and optimal trajectories of joints 1 and 2 of SCARA
robot

Figure 4.18: Desired and optimal trajectories of joints 3 and 4 of SCARA
robot
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Chapter 5

Second Proposed Method

5.1 Introduction

In this chapter the second proposed method is introduced by which the constrained

OCP of robot manipulators is solved. In chapter 2 and 3 the necessary tools for this

method were provided. Among these tools we can refer to the obtained exact dynamic

model of the robot manipulator, the spline-based optimal control, iterative learning

control and multiple shooting methods. The OCP dealt with in this chapter can be

stated as follows:

let an industrial robot manipulator that should perform a desired task repeatedly in

a given finite time, for instance pick and place parts in assembly lines. The OCP in

this case is to design a controller to steer the robot to move from an initial configuration

to final one in each repetition (trial) and at the same time some performance criterion

(cost functional) is optimized (usually minimized).

This cost functional used in the OCP of robot manipulators can be the execution

time [33; 92], actuator effort [87; 89], absolute value of the jerk (derivative of accel-

eration) [57; 73], or a combination of these variables. The goal of minimizing of the

execution time is obvious which is used to increase the productivity in the industrial

factories in which robot manipulators are employed. In the case of actuator effort, one

attempts to minimize the total value of power consumption by the mechanism. The

last case, i.e. minimizing the absolute value of the jerk, is an important subject to plan

the trajectories for robot motions. Since high jerk values can cause the wearing in the
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5. Second Proposed Method

robot joints, and actually excite the resonance modes of the robot structure.

The basic idea in the proposed method in this chapter is to combine some meth-

ods as the building stone of a new optimal control scheme to solve the OCP of robot

manipulators. In fact, the proposed method includes iterative linearization and ILC

techniques as well as the spline-based optimal control method. Of course, the lin-

earization used here is not the ordinary one in which Taylor expansion is used for

approximation of nonlinear systems. The linearization employed here has an iteration

nature and yields a global linearized version of the original nonlinear system. The only

necessary condition to use this method is that a matrix associated with the nonlinear

system must be locally Lipschitz. Actually, the optimal control inputs of the robot

are obtained by solving a sequence of finite dimensional, linearized OCPs whose solu-

tions are increasingly convergent to the solution of the original problem; hence these

linearized OCPs are consistent approximation of the original problem. The solution of

the linearized OCPs can be obtained using the standard programming techniques as

explained in the subsection 3.5.

In the subsequent sections, the various parts of the proposed method will be pre-

sented and examined. Then, the proposed algorithm will be applied into all kinds

of standard manipulator structures, i.e SCARA, spherical (Stanford), cylindrical and

angular manipulators (such as Puma 560, ABB IRB 140, KUKA robots). It will be

shown that the proposed method is very effective in the sense that it is easy to apply

for any kind of complexity of robot dynamics and constraints and also its convergent

is too fast. Also, it will be shown that the proposed method solves the OCP during a

finite number of trials and so we can divide the time necessary to solve the optimiza-

tion problem over these trials. Therefore, the optimal control obtained after converging

the sequence of optimal solutions can be applied into the rest of repetitions without

performing any computation.

5.2 Iterative Linearization

As stated earlier, one of the sub-methods in the proposed method is iterative lineariza-

tion of nonlinear dynamic systems. In this section, this subject is examined in detail.
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5. Second Proposed Method

5.2.1 Some Preliminary Definitions

Definition 1. Let f : Rn → Rn be a differentiable function, then the derivative Df of

this function is given by the n× n Jacobian matrix

Df =

[
∂fi
∂xj

]
, (5.1)

for i, j = 1, 2, · · · , n.

Definition 2. In the reminder of this text we use the following operator norm defined

for operator L : Rn → Rn:

‖L‖ = sup
x∈Rn

|L (x)| , (5.2)

where |·| is the Euclidean norm.

Definition 3. Suppose E is an open subset of Rn and let A (x) be a matrix-valued

function. Then, it is said that A (x) is locally Lipschitz on E if for each point x0 ∈ E
there exist K and an open ball of radius ε centered at x0 denoted by Nε (x0) ⊂ E, such

that for all x, y ∈ Nε (x0)

|A (x)− A (y)| ≤ K |x− y| , (5.3)

K can be chosen

K = max
|x−x0|≤ε/2

|DA (x)| . (5.4)

Definition 4. Logarithmic norm of a n× n matrix A is defined as follows

µ (A) = lim
h→0+

‖I + hA‖ − 1

h
, (5.5)

where I is the identity matrix. This norm can be computed in the following forms:

� µ1 (A) = supj

(
Re (ajj) +

∑
i,i 6=j |aij|

)
;

� µ2 (A) = α
(
A+ AT

)
/2 where α

(
A+ AT

)
is the maximal real part of the eigen-

values of A+ AT ;

� µ∞ (A) = supi

(
Re (aii) +

∑
j,j 6=i |aij|

)
.

103
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Notice that unlike other norms, the logarithmic norm can have a negative value and so

it is not norm in the classical meaning. For instance if A = λ where λ is a constant,

then ‖A‖ = |λ| while µ (A) = Re (λ). One of the important properties of this norm is

that ∥∥etA∥∥ ≤ etµ(A), (5.6)

which is used in the theory of control.

Definition 5. Let W ⊂ Rn be a complete space. Then, sequence {xn} ⊂ W is called

Cauchy, if for any positive real number ε, there is a positive integer k so that for all

integer numbers i and j greater than k the following relation is satisfied:

‖xi − xj‖ < ε. (5.7)

In fact, a Cauchy sequence is a convergent sequence whose elements converge to some

existing limit.

5.2.2 Successive Approximations of Nonlinear Dynamic Sys-

tems

The linearization methods of nonlinear dynamic systems can be categorized into two

groups: local and global linearization methods. In the case of local linearizations in the

phase space, the nonlinear system is linearized about its equilibrium points [72]. On

the other hand, there exist some other methods which result in global linearizations

such as Lie algebraic methods. The iterative linearziation method is also a type of

linearizing methods through which one can obtain a global linearized version of the

original nonlinear system. The procedure used in this method to linearize a nonlinear

dynamic system can be justified via theory of connections in the differential geometry.

This theory states how the tangent vectors to a compact differentiable manifold can be

transported along a curve so that the properties of their parallelness and consistence

are held from one point of a curve to another [9].

The basic idea in this kind of linearization is that the original nonlinear system can

be approximated by a sequence of linear time varying (LTV) systems whose solutions

eventually will converge to the solution of the original nonlinear system [10; 78; 79; 98].
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In the next sections, we shall consider this method to use in the case of robot manipu-

lators. Let us now consider an autonomous unforced nonlinear dynamical system given

by

ẋ (t) = f (x (t)) , x (0) = x0, (5.8)

where f : E → Rn is a continuously differentiable function on E which is an open

subset of Rn. Let us now approximate the equation (5.8) as the following form referred

to as the state dependent coefficient (SDC) form

ẋ = A (x)x, (5.9)

in which it is assumed that xe = 0 is the equilibrium point as well as the matrix A (x)

is locally Lipschitz on E, for guaranteeing existence and uniqueness of the solution.

It is worth to note that the replacement of (5.8) by (5.9) can be justified by the

geometry concept of differential equations which is described by compact differentiable

manifolds and it is proven that the dynamic system (5.9) is topologically equivalent

with the original nonlinear system (5.8) in region E [72; 79]. Note also that the matrix

A is not unique; however if two matrices A1 and A2 represents the same system, then

they have to satisfy the following relation

(A1 (x)− A2 (x))x = 0, (5.10)

which implies that the difference between A1 and A2 is a matrix B = A1 − A2 whose

null space includes x for any x ∈ Rn.

Next, based on this method, the SDC form given in (5.9) can be iterated by the

following sequence of linear time varying (LTV) dynamic systems:

ẋ[1] (t) = A
(
x[0] (t)

)
x[1] (t) , x[1] (0) = x0,

ẋ[2] (t) = A
(
x[1] (t)

)
x[2] (t) , x[2] (0) = x0,

...

ẋ[i] (t) = A
(
x[i−1] (t)

)
x[i] (t) , x[i] (0) = x0,

(5.11)

for i > 1; where the first approximation is a linear time invariant (LTI) system, since
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we can choose x[0] (t) = x0 that is constant, while the rest approximations are linear

time vary systems; since matrix A in each iteration is a function of solution of the

previous approximation. However, the initial chosen solution x[0] (t) can be set to an

appropriate function to achieve a faster convergence to the original solution.

Let us now have a convergence analysis in the sequence of the solutions obtained in

(5.11). It can be shown that the sequence of these solutions is Cauchy. It means that

the limit of the sequence
{
x[i] (t)

}
i≥1

equals x (t) for t in any compact time interval,

[0, T ]. First of all, let a compact set as follows:

N0 = {x ∈ E | |x− x0| ≤ b} ,

where b = ε/2 (see Definition. 3 in the previous subsection). Let

M = sup
x∈N0

|A (x)x| .

Then, we can write

sup
[0,T ]

∣∣x[i−1] (t)− x0

∣∣ ≤ b. (5.12)

Since the solution of (i− 1)-th LTV in (5.11) is

x[i−1] (t) = x0 +

∫ t

0

A
(
x[i−2] (τ)

)
x[i−1] (τ) dτ,

for t ∈ [0, T ]. Then,

∥∥x[i−1] (t)− x0

∥∥ ≤ ∫ t

0

∥∥A (x[i−2] (τ)
)
x[i−1] (τ)

∥∥ dτ ≤M T.

Thus, choosing 0 < T ≤ b/M , it causes the establishment of (5.12).

Let us now consider i and (i− 1) th LTVs in (5.11)

ẋ[i] (t) = A
(
x[i−1] (t)

)
x[i] (t) ,

ẋ[i−1] (t) = A
(
x[i−2] (t)

)
x[i−1] (t) .

(5.13)
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Subtracting these two equations results in

ẋ[i] (t)− ẋ[i−1] (t) = A
(
x[i−1] (t)

)
x[i] (t)− A

(
x[i−2] (t)

)
x[i−1] (t) ,

+ A
(
x[i−1] (t)

)
x[i−1] (t)− A

(
x[i−1] (t)

)
x[i−1] (t) .

(5.14)

Then we have

ẋ[i] (t)−ẋ[i−1] (t) = A
(
x[i−1] (t)

) [
x[i] (t)− x[i−1] (t)

]
+
[
A
(
x[i−1] (t)

)
− A

(
x[i−2] (t)

)]
x[i−1] (t) .

Thus,

x[i] − x[i−1] =

∫ t

0

Φ[i−1] (t, τ)
[
A
(
x[i−1] (τ)

)
− A

(
x[i−2] (τ)

)]
x[i−1] (τ) dτ, (5.15)

where Φ[i−1] (t, τ) is the state-transition matrix of the corresponding (i− 1)-th LTV.

Now, (5.15) can be rewritten as

∥∥x[i] − x[i−1]
∥∥ ≤ ∫ t

0

∥∥Φ[i−1] (t, τ)
∥∥∥∥A (x[i−1] (τ)

)
− A

(
x[i−2] (τ)

)∥∥ ∥∥x[i−1] (τ)
∥∥ dτ.

So according to definition of µ2 (A) and property (5.6) in the previous subsection we

have

∥∥x[i] − x[i−1]
∥∥ ≤ ∫ t

0

eµ(t−τ)K
∥∥x[i−1] (τ)− x[i−2] (τ)

∥∥ b dτ ≤
sup
t∈[0,T ]

{
eµ(T−t)} bK T

∥∥x[i−1] (τ)− x[i−2] (τ)
∥∥ . (5.16)

Let us now suppose α = supt∈[0,T ]

{
eµ(T−t)} bK T < 1, then we can claim that

x[i] (t)→ x (t). For establishing the recent condition, it is necessary that the final time

T is small enough. A such procedure is used in linearizing the nonlinear dynamics of

robot manipulators in the next sections.

Note that the above discussion can be extended to the forced dynamical system

ẋ = f (x, u) , (5.17)
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which according to iterative linearization method can be rewritten as the following

SDC form:

ẋ = A (x, u)x+B (x, u)u, (5.18)

so that its corresponding LTV system in the i-th iteration is

ẋ[i] (t) = A
(
x[i−1] (t) , u[i−1] (t)

)
x[i] (t) +B

(
x[i−1] (t) , u[i−1] (t)

)
u[i] (t) , x[i] (0) = x0,

(5.19)

where we can take u[1] (t) = 0 and x[t] (t) = x0 for initial chosen guesses. In the

next section, it will be shown how this extension can be applied in the case of robot

manipulator systems.

5.3 Main Proposed Method for Solving OCP of

Robot Arms

In this section, the various parts of the proposed method are examined. First, we will

consider the cubic spline interpolation (trajectory planning) which is consistent with

our algorithm. Then, the OCP of linear time varying systems is taken into account.

In the next step, the original problem, i.e., optimal control of robot manipulators will

be presented.

5.3.1 Cubic Spline Interpolation Consistent with Proposed

Method (Trajectory Planning)

One of the parts in designing any kind of robot control systems is trajectory (path)

planning. A path actually is a sequence of points (Cartesian coordinates) in task space

which describes the robot motion, namely motion route of the end-effector. On the

other hand, a trajectory is a curve in the state space of the robot which describes

the configuration of the robot in every moment. In fact, trajectory is a curve which

associates with the dynamics of the system.

Ordinarily, the robot motions are categorized into two groups: 1- motion along

a predetermined path such as those in spraying, gluing and welding tasks as well as
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motions for obstacle avoidance tasks, 2- motion through a sequence of points, well

known as point to point motions, e.g. those in spot welding or pick and place tasks. In

this work we study the point to point optimal paths along which the robot moves to

carry out the desired task and at the same time some factors (e.g. traversal time along

the path or energy consumption during the motion) are minimized. Therefore, the

motion planning can be performed either in task space or joint space. However, since

the robot motion equations usually are represented in joint space it is better to transfer

the sequence of points in the tasks space by an appropriate transformation (inverse

kinematics and Jacobian transformations) into joint space to accomplish the motion

planning in this space. It is worth to note that performing the motion planning in task

space is too difficult since it is necessary to transfer the actuator force/torque bounds

into corresponding bounds in the task space (Cartesian bounds) and due to highly

nonlinear and coupled robot dynamics it results in a high burden of computations.

There are a lot of works to solve the motion planning problem in the joint space

[28; 60]. However, some works such as [34] solved path planning problem in the task

level by deriving the smooth path in closed form using semi-algebraic sets and calculus

of variations.

In this subsection, the trajectory generation consistent with our algorithm is pre-

sented. Among the mathematic curves usually spline functions are used to approximate

a trajectory for robot joints via curve fitting method. A spline curve is a piecewise

polynomial function which can be used as a mathematical device allowing us to easily

design and control the shape of complex curves and surfaces. There are several kinds of

spline functions which can be used in the mentioned application including straight-line

splines, polynomial curves, cubic functions like Hermite cubic splines, Bezier curves,

B-splines and so on [23; 80]. In the case of robot manipulators cubic polynomial splines

can be used to plan a smooth trajectory with C2 continuity. In other words, they guar-

antee the continuity of angular velocity and acceleration in the joint space which causes

not exciting mechanical resonances and vibrations of the robot. In fact, non-smoothing

trajectories can damage the actuators of the robot and also cause undesirable error in

the path tracking tasks.

Let us now suppose two points (0, X0) and (T,XT ) through which we wish to

interpolate a function by a cubic spline curve as shown in Figure 5.1 [12]. A spline

function S : [0, T ]→ R consists of polynomial pieces sj : [tj, tj + 1)→ R as follows:
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Figure 5.1: Fitting a spline to data points

S (t;P ) =



s0 (t) + P04t
4 t0 ≤ t < t1,

s1 (t) t1 ≤ t < t2,
...

sj (t) tj ≤ t < tj+1,
...

sN−1 (t) + P(N−1),0 (t− tN−1)4 tN−1 ≤ t ≤ tN = T,

(5.20)

where N is the number of subpolynomials and sj and its first and second derivatives

have the following forms:

sj (t) = Pj0 + Pj1 (t− tj) + Pj2 (t− tj)2 + Pj3 (t− tj)3 ,

ṡj (t) = Pj1 + 2Pj2 (t− tj) + 3Pj3 (t− tj)2 ,

s̈j (t) = 2Pj2 + 6Pj3 (t− tj) .

(5.21)

In addition, if tj (which well known as knot, node or breakpoint) are equidistantly

distributed in the interval [0, T ], the spline is called uniform, otherwise it is non-
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uniform. Considering h = hk = tk − tk−1, k = 1, 2, . . . , N and knot vector as t =

(0, h, 2h, . . . , Nh), the following smoothing conditions should be met:

1. S (0;P ) = X0, S (Nh;P ) = XT ;

2. Ṡ (0;P ) = Xd0, Ṡ (Nh;P ) = XdT ;

3. S̈ (0;P ) = 0, S̈ (Nh;P ) = 0;

4. sj ((j + 1)h) = sj+1 ((j + 1)h) for each j = 0, 1, . . . , N − 1;

5. ṡj ((j + 1)h) = ṡj+1 ((j + 1)h) for each j = 0, 1, . . . , N − 1;

6. s̈j ((j + 1)h) = s̈j+1 ((j + 1)h) for each j = 0, 1, . . . , N − 1;

where in the condition 2, we suppose that the derivative of spline curve in the initial

time t = 0 and final time t = Nh = T are known as Xd0 and XdT , respectively.

Satisfying above conditions yields a set of equations in terms of spline parameters

Pji, j = 0, 1, . . . , N − 1, i = 1, 2, 3, 4. Note that we have 4N + 2 unknowns and

3N + 3 equations. In addition, these unknowns are dependent so that the number of

independent parameters denoted as α, is given by

α = N + 3− β, (5.22)

where β is the number of boundary conditions [95] which in our case according to

conditions 1 and 2, β = 4, then α = N − 1. Therefore, in our algorithm we considered

Pj3, j = 0, 1, . . . , N−2 as independent parameters. In other words, these N−1 param-

eters are those which are used as parametric variables in the nonlinear programming

examined in the next subsection. As a result, with satisfying the conditions 1 to 5
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mentioned above, the following matrix equation is obtained:

−h2I Z(N−1)×(N−1) − h2I Z(N−1)×1 U Z(N−1)×1

−2hI Z(N+1)×(N−1) U Z(N+1)×(N−1)

U Z(N+1)×(2N+1)

A

B

C

D




Pi0

Pi1

Pi2

PN−1,3

 =



h3Pk3

3h2Pk3

3hPk3

XT

XdT

X0

Xd0


for i = 0, 1, . . . , N − 1, k = 0, 1, . . . , N − 2;

(5.23)

where I is an (N − 1) × (N − 1) identity matrix, Z denotes a matrix with all zero

elements and matrix U and row vectors A, B, C, D are given as

A = [0, . . . , 0, A (N) , 0, . . . , 0, A (2N) , 0, . . . , 0, A (3N) , A (3N + 1)] ,

B = [0, . . . , 0, B (N) , 0, . . . , 0, B (2N) , 0, . . . , 0, B (3N + 1)] ,

C = [0, . . . , 0, C (2N + 1) , 0, . . . , 0, . . . , 0] ,

D = [0, . . . , 0, C (N + 1) , 0, . . . , 0, . . . , 0] ,

U =



−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

0 0 −1 1 · · · 0
...

...
...

...
...

...

0 · · · 0 −1 1 0

0 · · · 0 0 −1 1


,

(5.24)

where A (N) = h2, A (2N) = h, A (3N) = 1, A (3N + 1) = h3, and B (N) =

2h, B (2N) = 1, B (3N + 1) = 3h2, as well as C (2N + 1) = 1 and D (N + 1) = 1.

Notice that matrix equation given in (5.23) has a unique solution, i.e., the coefficient

matrix in this equation is nonsingular; since it can be shown that in this matrix for

each row |aii| >
∑

i 6=j |aij| where aij denotes the element in row i and column j.
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5.3.2 Optimal Control Problem of LTV Systems

In the proposed method, we require to solve the OCP for a sequence of LTV systems;

hence in this subsection it is considered to use in the next sections.

Consider an OCP, denoted by Σ1, of the form

Σ1 : min
u∈U

J (u) , (5.25)

where U ⊂ L2 ([0, T ] ,R2n) is the feasible set of controls u and J (u) ∈ R is the objective

function defined by

J (u) = φ (x (T ) , T ) +

∫ T

0

L (x, u, t) dt, (5.26)

subject to

System dynamics constraint: ẋ (t) = A (t)x (t) +B (t)u (t) , (5.27a)

Boundary conditions: x (0) = x0, x (T ) = xT , (5.27b)

State and control constraints: G (x, u) ≤ 0, (5.27c)

where x ∈ L2 ([0, T ] ,R2n), A ∈ R2n×2n and B ∈ R2n×m so that vectors x and u are

state and control input of the system, respectively. Moreover, in this OCP, the final

state is fixed, hence the final time T is assumed to be free. We also considered R2n to

match with the the number of robot degree of freedom which is n and so dimension

of the state vector of the system which consists of joint positions and velocities is a

2n-vector.

In the case of unconstrained form of the above problem and provided that the cost

function (5.26) be in quadratic form (see section )

J = ‖x (T )‖2
H +

∫ T

0

[
‖x (t)‖2

Q(t) + ‖u (t)‖2
R(t)

]
dt, (5.28)

then, the optimal control can be obtained as

u∗ (t) = −R−1 (t)BT (t)P (t)x (t) , (5.29)
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where P (t) is the solution of the standard Riccati equation

Ṗ (t) = −Q (t)− P (t)A (t)− A (t)P (t) + P (t)B (t)R−1 (t)B (t)P (t) ,

P (T ) = H.
(5.30)

However, in this method there are a series of limitations which makes it impossible to

use in the case of robot manipulators. The most important problem is that the optimal

solution (5.29) has been obtained for the unconstrained problems; while in the case of

robot manipulators there are a few of control and state constraints. Therefore, for

robot applications in order to loose the stated limitations one can solve the problem

Σ1 using parametric optimization method [31; 41; 43; 96].

Note that in this chapter, we usually consider the time-energy OCP. On the other

hand, when the robot dynamics is linearized by system (5.27a) in each trial, the state

variable x contains two general parts x =

[
x1

x2

]
=

[
q

q̇

]
, where q denotes the joint

position vector of the robot. Therefore, the problem Σ1 is converted into the following

form:

Σ2 : min
u∈U

J (u) , (5.31)

where the objective function defined by

J (u) =
1

2

∫ T=αtf

0

(
uT (t)Ru (t)

)
dt, (5.32)
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subject to

System dynamics constraint: ẋ =

[
ẋ1

ẋ2

]
= A (t)

[
x1

x2

]
+B (t)u (t) , (5.33a)

Boundary conditions: x (0) = x0, x (T ) = xT , (5.33b)

Position Constraint: max
t∈[0,T ]

|x1| ≤ PC, (5.33c)

Velocity Constraint: max
t∈[0,T ]

|x2| ≤ V C, (5.33d)

Acceleration Constraint: max
t∈[0,T ]

|ẋ2| ≤ AC, (5.33e)

Jerk Constraint: max
t∈[0,T ]

|ẍ2| ≤ JC, (5.33f)

Control Constraint: max
t∈[0,T ]

|u| ≤ UC, (5.33g)

where the dimension of x, A, B are the same as problem Σ1 and PC, V C, AC, JC are

n-vector of constraints on joint positions, velocities, accelerations and jerks, respec-

tively, as well as UC is a m-vector of constraints on the force/torque of robot joints.

Also since the final state is fixed, hence the final time T is free and actually we require

to compute it as minimum time. Therefore, we can parametrize it as T = αtf , where

tf can be given for the different systems.

The OCP Σ1 is a infinite optimization problem. It means that subspace U is a in-

finite dimensional of control functions. In order to convert the problem Σ1 into a finite

dimensional optimization problem, one can parameterize the state or control variables

of the system by an appropriate mathematical tools. As explained in the subsection

5.3.1, this tool can be cubic spline functions which are characterized by N − 1 parame-

ters, where N is the number of subpolynomials in the spline function. Let us denote a

spline function in the interval [ti−1, ti] as Si (t;P ). Now, if we construct the x1 part of

the system state in (5.33a) by spline function S (t;P ), then control u can be obtained

in terms of cubic spline function S (t;P ) via the system dynamics (5.33a). Substi-

tuting the reconstructed state and control variables into objective function (5.28) and

constraints (5.27b) and (5.27c), the OCP Σ1 is converted into following optimization
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problem, denoted by ΣP :

ΣP : min
α,P

N∑
i=1

Ji, (5.34)

where

Ji =

∫
hi=ti−1−ti

(
uTi Rui

)
dt, (5.35)

such that T =
∑N

i=1 hi and subject to the following constraints:

Boundary conditions: S1 (0) = x0, SN (T ) = xT , (5.36a)

Position Constraint: max
t∈[ti−1,ti]

|Si (t;P )| ≤ PC, (5.36b)

Velocity Constraint: max
t∈[ti−1,ti]

∣∣∣Ṡi (t;P )
∣∣∣ ≤ V C, (5.36c)

Acceleration Constraint: max
t∈[ti−1,ti]

∣∣∣S̈i (t;P )
∣∣∣ ≤ AC, (5.36d)

Jerk Constraint: max
t∈[ti−1,ti]

|
...
S i (t;P )| ≤ JC, (5.36e)

Control Constraint: max
t∈[ti−1,ti]

|ui| ≤ UC, (5.36f)

for i = 1, 2, . . . , N .

In fact, ΣP is an optimization problem with N degrees of freedom contains N − 1

parameters in vector P and α. The resulted finite dimensional optimization problem

ΣP can be solved through standard, nonlinear programming (NLP) techniques, as

explained in section 3.5. Therefore, with solving ΣP , N parameters are produced by

which the state and control variables of the system are described and in such a way

the constrained OCP Σ2 is solved.

5.3.3 Proposed Algorithm

Let us now combine the explained techniques, i.e. iterative linearization, ILC and

parametric optimization methods to solve the OCP of the robot manipulators.

First, consider a robot with following dynamics which performs a special repeated

task

M (q) q̈ + V (q, q̇) +G (q) = τ, (5.37)
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with the boundary conditions

q (0) = q0, q̇ (0) = qd0,

q (T ) = qf , q̇ (T ) = qdf .
(5.38)

By considering the following states:

x =

[
x1

x2

]
=

[
q

q̇

]
, (5.39)

the state space representation of the robot can be written as follows (as explained in

section (3.4.1))

ẋ (t) = f (x (t)) + g (x (t)) τ (t) , x (0) = x0, x (T ) = xT ,

f (x) =

[
x2

−M−1 (x1)N (x1, x2)

]
, g (x) =

[
0

M−1 (x1)

]
,

(5.40)

which can be rewritten as the following SDC form:

ẋ = A (x)x+B (x)u, (5.41)

where, without loss of generality, xe = 0 is its equilibrium point and

A (x) = ∇xf (x) , B (x) = g (x) , u = τ. (5.42)

Then the matrices A and B are achieved as follows

A (x) =

[
Zn×n In×n

−5x (M−1 (x1)N (x1, x2))

]
, B =

[
Zn×n

−M−1 (x1)

]
, (5.43)

where Z and I are zero and identity matrices, respectively, with the specified dimen-

sions. Now we are going to obtain the optimal control of the considered robot which

is performing the desired repeated task. Therefore, the following linear dynamics is

considered as the model of the robot in the first trial

ẋ[1] (t) = A
(
x[0] (t)

)
x[1] (t) +B

(
x[0] (t)

)
u[1] (t) , x[1] (0) = x0, x

[1] (T ) = xT , (5.44)
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as well as the cost functional considered in this trial is

J [1] = φ
(
x[1] (T ) , T

)
+

∫ T

0

L
(
x[1] (t) , u[1] (t) , t

)
dt. (5.45)

where can be as the form cost function (5.32) or any other form.

As explained in the previous subsection, the above OCP can be solved by param-

eterizing states of the system by spline functions S (t;P ). After solving the obtained

parametric optimization problem, the optimal parameter matrix P ∗[1] is obtained for

the first trial. Accordingly, the optimal control of the first trial is obtained as follows

u[1] (t) =
[
Zn×n M

(
x

[0]
1 (t)

)]([ẋ[1]
1 (t)

ẋ
[1]
2 (t)

]
−

[
Zn×n In×n

−5x

(
M−1

(
x

[0]
1

)
N
(
x

[0]
1 , x

[0]
2

))][x[1]
1

x
[1]
2

])
,

(5.46)

where x
[1]
1 (t) = S

(
t;P ∗[1]

)
and x

[1]
2 (t) = ẋ

[1]
1 (t) = Ṡ

(
t;P ∗[1]

)
. In addition, let us

define an error variable as

e[1] (t) = u∗[1] (t)− u∗[0] (t) , (5.47)

where it is assumed u∗[0] (t) = 0. The optimal state x∗[1] and control u∗[1] together

with e[1] are stored in memory of the system. Other variable stored in memory of the

system from first trial is first order optimality, denoted δ[1]. It is a variable produced

by nonlinear programming algorithm which actually shows the variation of the cost

functional, i.e. δJ [1]. If u∗[1] is optimal solution, then δ[1] must vanish on u∗[1].

As such in the first trial, the above procedure is performed in the subsequent trials

so that in the trial i-th, the optimal state and control of trial (i− 1)-th is used

ẋ[i] (t) = A
(
x[i−1] (t)

)
x[i] (t) +B

(
x[i−1] (t)

)
u[i] (t) , x[i] (0) = x0, x

[i] (T ) = xT , (5.48)

with considering the following cost functional in this trial:

J [i] = φ
(
x[i] (T ) , T

)
+

∫ T

0

L
(
x[i] (t) , u[i] (t) , t

)
dt. (5.49)
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Note that in this iteration, the control input is

u[i] (t) =
[
Zn×n M

(
x

[i−1]
1 (t)

)]([ẋ[i]
1 (t)

ẋ
[i]
2 (t)

]
−

[
Zn×n In×n

−5x

(
M−1

(
x

[i−1]
1

)
N
(
x

[i−1]
1 , x

[i−1]
2

))][x[i]
1

x
[i]
2

])
,

(5.50)

and accordingly, the error variable is

e[i] (t) = u∗[i] (t)− u∗[i−1] (t) , (5.51)

which together with the first order optimality of this iteration, i.e. δ[i], are stored in

memory of the system.

Let us now define two predetermined positive constants ε1, ε2 which are close to

zero and are used as the stop criteria of the proposed algorithm.

Here, we present the proposed algorithm whose steps are listed as follows (see

Figure 5.2):

1. Obtain the state space representation and then the SDC form of the considered

robot manipulator system.

2. Get the initial and final configurations (q0, qT );

3. Guess an arbitrary state x[0] (t) , t ∈ [0, T ], and store it in memory of the system.

Let the iteration index i be one.

4. Using x[i−1] (t) and utilizing spline-based optimal control technique explained in

the previous subsection, compute the optimal force/torque vector u∗[i] (t) and

optimal state vector x∗[i] (t) of the LTV system in step i represented in (5.48)

given a cost functional, physical constraints of the robot and boundary conditions.

Also store x∗[i] (t) and u∗[i] (t) in memory of the system together with δ[i].

5. Apply u[i] (t) to the ith trial.

6. If ∥∥e[i] (t)
∥∥ ≤ ε1 and δ[i] ≤ ε2, (5.52)
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Figure 5.2: Flowchart of the proposed method
120



5. Second Proposed Method

Table 5.1: Denavit-Hartenberg parameters of SCARA robot
Link i θi di ai αi

1 θ1 0 L1 0
2 θ2 0 L2 0
3 0 d3 0 0

then terminate the computations and u[i] (t) can be used for the next trials. If

stopping criteria given in (5.52) is not satisfied, then i = i+ 1 and return to step

4.

In the next section, the proposed algorithm shall be applied into all standard kinds of

manipulator structures and the different features of the proposed method like conver-

gence property are discussed in detail.

5.4 Case studies

In this section, the proposed method is applied into various kinds of case studies.

In order to compare the proposed method with some other methods, we make some

comparisons between the proposed method with the spline-based optimal control and

multiple shooting methods represented in sections 3.6 and 3.7, respectively, which are

practical and usual methods in the case of robot manipulators.

5.4.1 SCARA Robot

Let us consider the SCARA robot manipulator depicted in Figure 5.3 which has three

degrees of freedom. In subsection 2.2.1, the Euler-Lagrange formulation was given in

detail to derive the dynamic equations of a robot manipulator. We now apply this

formulation to derive the dynamics of this SCARA robot. We first require to obtain

a kinematic model of this robot. Thus, according to the Denavit-Hartenberg notation

we can assign an appropriate coordinate system for each link of the robot, as shown in

Figure 5.3. According to these coordinate systems, the Denavit-Hartenberg parameters

are obtained as given in Table 5.1; hence, the transformation matrices are obtained as

follows
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Figure 5.3: SCARA robot

0A1 =


C1 −S1 0 L1C1

S1 C1 0 L1S1

0 0 1 0

0 0 0 1

 , 1A2 =


C2 −S2 0 L2C2

S2 C1 0 L1S1

0 0 1 0

0 0 0 1

 , 2A3 =


1 0 0 0

0 1 0 0

0 0 1 d3

0 0 0 1

 ,
(5.53)

where Si, Ci (for i = 1, 2) stand for functions sin θi and cos θi, respectively. Let

us now consider the general coordinates
[
q1 q2 q3

]T
=
[
θ1 θ2 d3

]T
and vector of

corresponding generalized forces be τ =
[
τ1 τ2 τ3

]T
. We can now obtain the dynamic

equations of this robot by using equations (2.13) to (2.19) in subsection 2.2.1 according

to the above transformation matrices:M11 M12 M13

M21 M22 M23

M31 M32 M33


q̈1

q̈2

q̈3

+

N1

N2

N3

 =

τ1

τ2

τ3

 , (5.54)
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Table 5.2: Dynamic parameters of SCARA robot
Link i m (kg) Ixx, Iyy, Izz (kg m2) Ixy, Ixz, Iyz (kg m2)

0.00048 0
1 1.98 0.0179 0

0.017 0
0.00047 0

2 0.9177 0.00348 0
0.00314 0
0.0021 0

3 0.703 0.0021 0
0.00011 0

where

M11 = (Izz1 + Izz2 + Izz3) +
(m1

4
+ 2m3

)
L2

1 +
(m2

2
+ 3m3

)
L1L2C2 +

(m2

4
+m3

)
L2

2,

M12 = M21 = Izz2 + Izz3 +
(m2

4
+m3

)
L2

2 + 2m3L1L2C2,

M22 = Izz2 + Izz3 +
(m2

4
+m3

)
L2

2, M33 = m3,

M13 = M23 = M31 = M32 = 0,

N1 =
(m2

2
−m3

)
L1L2q̇

2
1 − 4m3L1L2q̇1q̇2,

N2 =
(m2

2
+m3

)
L1L2 S2 q̇2

1,

N3 = m3 g.

(5.55)

Note that in this case study we use the dynamic parameters given in [1] listed in Table

5.2. In addition, we consider L1 = 0.25m, L2 = 0.15m and d3 = 0.075m. Also notice

that the equations (5.54) and (5.55) result in a highly and coupled nonlinear dynamic

system for this robot with relatively simple structure. These equations will be complex

to ever for robots with 6 degrees of freedom angular structures so that anyone who

derived these equations can release this complexity.

Let us now obtain the state space representation of this robot by considering the
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following states:

x =



x1

x2

x3

x4

x5

x6


=



q1

q2

q3

q̇1

q̇2

q̇3


, ẋ = f (x) + g (x) τ, (5.56)

where

f (x) =


x4

x5

x6

−M−1 (x1, x2, x3)N (x)

 , g (x) =

[
Z3×3

M−1 (x1, x2, x3)

]
, (5.57)

where Z3×3 is a 3× 3 zero matrix.

Moreover, the considered constraints and cost functional for this robot are as fol-

lows:

� constraints:

|τ1| ≤ 1 (Nm), |τ2| ≤ 1 (Nm), |τ3| ≤ 10 (N),

|x4| ≤ 2 (rad/sec), |x5| ≤ 4 (rad/sec), |x6| ≤ 1 (m/sec),
(5.58)

� boundary conditions:

x1 (0) = 0, x2 (0) = 0, x3 (0) = 0,

x4 (0) = 0, x5 (0) = 0, x6 (0) = 0,

x1 (T ) =
π

2
rad, x2 (T ) =

π

4
rad, x3 (T ) = 0.1 m,

x4 (T ) = 0, x5 (T ) = 0, x6 (T ) = 0,

(5.59)
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� cost function:

J =

∫ T

0

τTRτdt, (5.60)

where

R =

λ1 0 0

0 λ2 0

0 0 λ3

 , (5.61)

with λ1 = 1, λ2 = 1, λ3 = 0.001.

As stated earlier, this OCP problem is solved by multiple shooting, spline-based

optimal control and proposed methods:

� Multiple shooting method

In order to solve the above OCP for this SCARA robot by multiple shooting

method, one has to solve a nonlinear programming with many virtual constrains

created by this method as explained in section 3.7. On the other hand, in order to

realize a control signal in practice it must be continuous and it is a considerable

drawback of the multiple shooting method which can not generate completely

continuous controls. However, to obtain a semi-continuous optimal control we

need to consider a large number for N which causes a too high computation time

to solve its nonlinear programming. The Figure 5.4 shows the optimal profiles of

the joint positions, velocities and torques of this robot obtained by this method.

Moreover, the optimal data of this solution have been collected in Table 5.3.

The first row of this table shows the number of SQP iterations needed to find

an optimal solution in the used nonlinear programming algorithm (developed

in optimization toolbox of MATLAB). The second row presents the number of

math operations including performed summations, subtractions, multiplications

and divisions to find the optimal solution. The third row presents the minimum

of cost function and in the fourth row we have the minimum time during which

the robot performs desired movement. The fifth row of this table (i.e. first

order optimality) is a measure which shows how close the obtained solution is to

optimal one. If it is less than a predefined small number for instance ε = 0.0001,
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Figure 5.4: Optimal profiles of SCARA robot by multiple shooting method

the optimal finder algorithm is terminated. Eventually, the last row presents

the time to compute the optimal solution by the computer. Note that all of the

computations are carried out on a computer system of 2.2GHz CPU.

� Spline based optimal control method:

As explained in the chapter 3 in section 3.6, this method solves the OCP of

robots directly by parameterizing the joint dispositions of the robot by spline

functions. Figure 5.5 shows the optimal profiles (joint dispositions, velocities and

torques) obtained by this method for the above SCARA robot. Also the optimal

data derived from this method are given in Table 5.4. These data have been

computed for N = 5.

� Proposed method
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Table 5.3: Optimal data of SCARA robot obtained from multiple shooting method
Number of SQP iterations 39

Number of math operations 5113
Jmin 56.77
Tmin 1.892

First order Optimality (δ) 1.84
Computation time (sec) 573

Figure 5.5: Optimal profiles of SCARA robot by spline based optimal control
method
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Table 5.4: Optimal data of SCARA robot obtained from spline based optimal control
method

Number of SQP iterations 48
Number of math operations 382

Jmin 55.37
Tmin 1.892

First order optimality 2.64× 10−5

Computation time (sec) 3.86

Figure 5.6: Optimal profiles of SCARA robot by proposed method
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Here, the proposed method is applied into solve the OCP of SCARA robot.

Figure 5.6 shows the optimal profiles obtained by this method including joint

dispositions, velocities and torques of three joints of the robot. Also Table 5.5

presents some information about the optimal data obtained by this method. The

first column of this table shows the number of trials during which the optimal

solutions are obtained. We explained about the parameters in the other columns

except the last three columns. These three columns present the norm of error

signals in each trial defined as
∥∥∥e[i]

j

∥∥∥ = supt∈[0,T ]

∣∣∣τ [i]
j − τ

[i−1]
j

∣∣∣ (for j = 1, 2, 3). For

this robot the error signals are depicted in Figure 5.7 by which the data given in

three last columns of the Table 5.5 are obtained. If we wish to have a convergence

analysis on the sequences of these errors we can use the following theorem and

remark derived from calculus of sequences

Theorem. Let the sequence
{
ζ µk

}∞
k=0

where ζ is a constant. This sequence

converges linearly to zero with rate µ if |µ| < 1.

Remark. If {ak}∞k=0 be a sequence and ak ≤ ζ µk, then {ak} converges to zero

with at most rate µ.

Thus, according to above theorem and remark, the sequence of
∥∥∥e[i]

1

∥∥∥ converges

linearly to zero with the rate µ1 = 1
2

because the values in this row satisfy∥∥∥e[i]
1

∥∥∥ ≤ ζ1 (1/2)i. Also the sequence of
∥∥∥e[i]

2

∥∥∥ converges linearly to zero with rate

µ2 = 1
6
; since the elements of this sequence satisfies

∥∥∥e[i]
2

∥∥∥ ≤ ζ2

(
1
6

)i
. In the case

of
∥∥∥e[i]

3

∥∥∥, it converges to zero with rate µ3 = 1
9
.

Let us now make some comparisons between the proposed method and other two

methods to solve the time-energy OCP of the above SCARA robot:

� Proposed method and multiple shooting method:

As explained in section 3.7, multiple shooting algorithm results in an optimiza-

tion programming problem with a large number of degrees of freedom (i.e. num-

ber of variables to be computed optimally) and also a large number of virtual

constraints together with physical constraints of the robot which cause a high

computation time needed to solve this optimization programming problem. On

the other hand, we have to increase the number of divisions in the piecewise
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Figure 5.7: Sequence of errors in the successive trials in proposed method
for SCARA robot

control to yield a semi-continuous control which, in order, causes increasing the

number of parameters in optimization programming and also the number of con-

straints. For example, for N = 20 (number of discretization of control signal)

we will have 175 parameters to find their optimality and 136 constraints so that

according to Table 5.3 the computation time will be 573 sec required to perform

5113 math operations. While, in the proposed method in each trial, for N = 5

(number of sub-polynomials of used spline function) we have 13 parameters to

find their optimal values and just physical constraints on the robot to satisfy.

Thus, according to Table 5.5, in the proposed method we averagely have 83 math

operations to perform which needs averagely 1.6 sec to compute the optimal solu-

tion. In addition, as explained earlier, in the proposed method the control signal
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Table 5.5: Optimal data of SCARA robot obtained by applying proposed method

Trial Jmin Tmin First
order
opti-
mality
(δ)

Number
of
math
opera-
tions

time of
com-
puta-
tion

∥∥∥e[i]
1

∥∥∥ ∥∥∥e[i]
2

∥∥∥ ∥∥∥e[i]
3

∥∥∥

1 95.61 3.954 41.5 118 2.63 - - -
2 75.225 1.892 0.55 102 2.14 0.5 0.1 0.1
3 56.605 1.892 0.08 84 1.53 0.1 0.02 0.01
4 56.07 1.892 0.00301 82 1.46 0.04 0.003 5.17 ×

10−3

5 55.87 1.892 0.0014 78 1.33 0.01 3.7×10−4 1.6×10−4

6 55.65 1.892 3.2 ×
10−4

75 1.3 1.5×10−3 3.2×10−4 4.64 ×
10−5

7 55.39 1.892 5.14 ×
10−5

73 1.28 2.14 ×
10−4

4.15 ×
10−6

3.44 ×
10−7

8 55.3 1.892 1.63 ×
10−7

69 1.14 5.73 ×
10−6

2.64 ×
10−9

2.77 ×
10−8

is a function of spline functions and since spline functions are continuous then

the control signals are continuous too. Of course, as explained before, in the pro-

posed method since the optimization procedure is divided during successive trials

then these good characterizations are achieved with respect to multiple shooting

method.

� Proposed method and spline based optimal control method:

First of all, note that we considered N = 5 in these two methods and our compu-

tations showed that for N > 8 there no exists any optimal solution to the OCP

of this robot.

Also in the proposed method, the control is a linear function in S (t;P ), hence the

resulted optimization programming will be a quadratic from (since we attempt

to minimize (5.32)) and quadratic optimization is one of the well known forms of

optimization problem which can be solved by existing algorithms. On the other

hand, in the spline based optimal control method, the control u is a nonlinear

function of spline functions (since u = g−1 (S (t;P ))
(
Ṡ (t;P )− f (S (t;P ))

)
) and
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also the cost function obtained from this control u is a nonlinear function of

parameter vector P . Therefore, we can claim that in the proposed method in

each trial we have to solve a simpler optimization problem (quadratic) in contrast

to the spline based optimal control method which we require to obtain the optimal

solution of a highly nonlinear function. This is one of the benefits of the proposed

method which linearize the highly nonlinear robot dynamics. Thus, as Table (5.5)

shows the number of math operations averagely is 83 in 8 trials, while the number

of math operations for spline based optimal control method is 382, as shown in

the Table 5.4 . Accordingly, the average computation time for proposed method

in each trial is 1.6 sec, while it is 3.86 sec for the spline based optimal control

method. As Figure 5.7 also shows , the optimal solution obtained by proposed

method converges to the original one (shown in Figure 5.5) too quickly after 6

trials, since the norm of errors after forth trial is less that 1× 10−3.

Thus, as expected the proposed method solves the OCP of the considered robot

after a finite number of trials and the load of computations are partitioned on

the successive trials. But in the proposed method all computations must be

accomplished in one step. Other advantages of the proposed method can be

concluded from the above comparisons easily.

5.4.2 Spherical Robot (Stanford Arm)

Now let us consider a spherical robot shown in Figure 5.8 which has three degrees of

freedom each of which is responsible for a motion so that location of the robot end-

effector can be described by a spherical coordinate system with coordinates (θ1, θ2, d3).

In order to obtain the dynamic model of this robot, we again use the Euler-Lagrange

formulation presented in subsection 2.2.1. According to Denavit-Hartenberg notation,

we assign the desired coordinate systems to the robot links as shown in Figure 5.8

and accordingly the desired parameters are obtained as given in Table 5.6. Thus, the

transformation matrices of this robot are
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Figure 5.8: Spherical (Stanford) robot

Table 5.6: Denavit-Hartenberg parameters of spherical (Stanford) robot
Link i θi di ai αi

1 θ1 d1 0 −π
2

2 θ2 d2 0 π
2

3 −π
2

d3 0 0

0A1 =


C1 0 −S1 0

S1 0 C1 0

0 −1 0 d1

0 0 0 1

 , 1A2 =


C2 0 S2 0

S2 0 −C2 0

0 1 0 d2

0 0 0 1

 , 2A3 =


1 0 0 0

0 1 0 0

0 0 1 d3

0 0 0 1

 ,
(5.62)

where Si, Ci (for i = 1, 2) stand for functions sin θi and cos θi, respectively. Let

the general coordinates be
[
q1 q2 q3

]T
=
[
θ1 θ2 d3

]T
and vector of corresponding

generalized forces be τ =
[
τ1 τ2 τ3

]T
.

We can now obtain the dynamic equations of this robot by using equations (2.13)
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Table 5.7: Dynamic parameters of spherical (Stanford) robot
Link i m (kg) Ixx, Iyy, Izz (kg m2) Ixy, Ixz, Iyz (kg m2)

0.1724 0
1 9.29 0.1675 0

0.0874 0
0.1468 0

2 5.01 0.06 0
0.1413 0
0.7685 0

3 4.25 0.7685 0
0.0376 0

to (2.19) in subsection 2.2.1 as follows (and according to dynamic parameters (Table

5.7 ) given in [70]): M11 M12 M13

M21 M22 M23

M31 M32 M33


q̈1

q̈2

q̈3

+

N1

N2

N3

 =

τ1

τ2

τ3

 , (5.63)

where

M11 = −5.25S22 q3 + 11.5 d2
2 + 1.32 + 2.5S22 + 6.5S22 q2

3 − 1.05 d2,

M12 = M21 = −6.47C2 d2 q3, M13 = M31 = −6.47S2 d2,

M22 = −5.25 q3 + 6.5 q2
3 + 5.6, M23 = M32 = 0, M33 = 7.65,

N1 = 0,

N2 = −6.5S2 d3 − 3.2S2,

N3 = 6.5 g C2 ,

(5.64)

Let us now obtain the state space representation of this robot by considering the
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following states:

x =



x1

x2

x3

x4

x5

x6


=



q1

q2

q3

q̇1

q̇2

q̇3


, ẋ = f (x) + g (x) τ, (5.65)

where

f (x) =


x4

x5

x6

−M−1 (x1, x2, x3)N (x)

 , g (x) =

[
Z3×3

M−1 (x1, x2, x3)

]
, (5.66)

Moreover, the considered constraints and cost function for this robot are as follows:

� constraints:

|τ1| ≤ 10 (Nm), |τ2| ≤ 20 (Nm), |τ3| ≤ 50 (N),

|x4| ≤ 5 (rad/sec), |x5| ≤ 2 (rad/sec), |x6| ≤ 1 (m/sec),
(5.67)

� boundary conditions:

x1 (0) = 0, x2 (0) = 0, x3 (0) = 0,

x4 (0) = 0, x5 (0) = 0, x6 (0) = 0,

x1 (T ) =
π

2
rad, x2 (T ) =

π

4
rad, x3 (T ) = 0.05 m,

x4 (T ) = 0, x5 (T ) = 0, x6 (T ) = 0;

(5.68)

� cost function:

J =

∫ T

0

(
τT Rτ +XT

d QXd

)
dt, (5.69)
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Table 5.8: Optimal data of spherical (Stanford) robot obtained from multiple shooting
method

Number of SQP iterations 34
Number of math operations 3013

Jmin 53.4
Tmin 1.267

First order Optimality (δ) 2.17
Computation time (sec) 413

where Xd = [x4 x5 x6]T and

R =

α1 0 0

0 α2 0

0 0 α3

 , Q =

β1 0 0

0 β2 0

0 0 β3

 , (5.70)

with α1 = 1, α2 = 1, α3 = 0.001, β1 = 10, β2 = 10, β3 = 1.

As with SCARA robot, we solve the OCP of this spherical robot by three methods

multiple shooting, spline based optimal control and proposed methods:

� Multiple shooting method:

In this part we present the optimal results obtained by multiple shooting method

for this spherical robot. The optimal joint disposition, velocity and force/torque

of each spherical robot joint are demonstrated in Figure 5.9. Some information

regarding this OCP are collected in Table 5.8. These date will be used in order

to compare this method with other two methods.

� Spline based optimal control method:

In this item we present the optimal results derived from spline based optimal

control method applied into the above spherical robot. Figure 5.10 shows the op-

timal profiles (joint dispositions, velocities and torques) obtained by this method

for this spherical robot with the specifications mentioned above. Also the opti-

mal data derived from this method are given in Table 5.9. These data have been

computed for N = 5.

� Proposed method:
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Figure 5.9: Optimal profiles of spherical (Stanford) robot by multiple shoot-
ing method

Table 5.9: Optimal data of spherical (Stanford) robot obtained from spline based
optimal control method

Number of SQP iterations 41
Number of math operations 364

Jmin 48.1
Tmin 1.267

First order optimality 9.33× 10−6

Computation time (sec) 4.74
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Figure 5.10: Optimal profiles of spherical (Stanford) robot by spline based
optimal control method
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Figure 5.11: Optimal profiles of spherical (Stanford) robot by proposed
method
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Figure 5.12: Sequence of errors in the successive trials in proposed method
for spherical (Stanford) robot

For this spherical robot, Figure 5.11 shows the optimal profiles obtained by this

method including joint dispositions, velocities and forces/torques of three joints

of the robot. Also the values listed in Table 5.10 gives some information about

the optimal data obtained by this method. Let us now use the same convergence

analysis applied for SCARA robot in the case of this spherical robot. Figure

5.12 shows the successive errors, as defined in the previous case study, for joint

force/torques of this spherical robot. According to the last three columns of the

Table 5.10 we can conclude that all three sequences of error norms converge to

zero with rate µ1 = µ2 = µ3 = 1
2
.

Let us now make some comparisons between the above three methods to solve the

OCP of the considered spherical (Stanford) robot:

� Proposed method and multiple shooting method:

In the case of multiple shooting method for this spherical robot, we set N = 10.
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Table 5.10: Optimal data of spherical (Stanford) robot obtained by applying proposed
method

Trial Jmin Tmin First
order
opti-
mality
(δ)

Number
of
math
opera-
tions

time of
com-
puta-
tion

∥∥∥e[i]
1

∥∥∥ ∥∥∥e[i]
2

∥∥∥ ∥∥∥e[i]
3

∥∥∥

1 162.29 0.806 45.1 147 3.14 - - -
2 60.55 1.196 0.694 114 2.59 9.6 5.02 15.7
3 48.94 1.267 0.0726 50 1.29 2.17 1.44 3.32
4 48.16 1.267 0.0014 48 1.069 0.25 0.31 0.15
5 48.1 1.267 3.5 ×

10−4

36 0.87 0.07 0.03 0.047

6 48.1 1.267 4.64 ×
10−6

32 0.83 0.01 4.17 ×
10−3

1.44 ×
10−4

7 48.1 1.267 7.1 ×
10−8

28 0.81 3.27 ×
10−3

1.8×10−4 2.71 ×
10−5

Hence, the obtained optimization problem has 84 degrees of freedom and 73

constraints which should be satisfied. The total computation time is 413 sec for

performing 3013 math operations. The final first order optimality is 2.17 to find

the minimum value of the cost function which is 53.4 in this method.

The optimal data for this robot by proposed method, given in Table 5.10, shows

that in each trial averagely 65 math operations are necessary to perform which

take 1.51 sec averagely for N = 4. In addition, in the proposed method the

total number of parameters whose optimal values must be obtained is 10 and

total number of constraints which must be satisfied is 12. Also, the first order

optimality in the last trial of the proposed method is 7.1 × 10−8, as opposed

the value 2.17 in multiple shooting method, which shows the obtained optimal

solutions in proposed method are too closer to real optimal one with respect

to those obtained in multiple shooting method. Thus, these comparisons show

a better performance for proposed method with respect to multiple shooting

method.

� Proposed method and spline based optimal control method:
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Figure 5.13: Three DOF cylindrical robot

In this case study we assumed N = 4 for both proposed and spline based optimal

control methods. For making a comparison between these two methods we can

use the data given in tables 5.9 and 5.10. The average number of math oper-

ations in each trial in the proposed method is 65, while it is 364 in the spline

based optimal control method which accordingly the necessary computation time

in each trial of proposed method is 1.51 sec averagely opposed to 4.74 sec in the

spline based optimal control method. Also, as explained in the previous case

study, the proposed method in each trial solves a quadratic optimization pro-

gramming problem, while the optimization algorithm in the spline based optimal

control method should solve a nonlinear optimization programming problem. Of

course, both methods have the same number of constraints and parameters whose

optimal values must be obtained.

5.4.3 Cylindrical Robot

The third class of standard robot arms are cylindrical robot manipulators. In this

subsection we would like to solve the OCP of this kind of robots. Consider a three

degrees of freedom cylindrical robot shown in Figure 5.13. This robot has three joints

which the first translational joint (with generalized coordinate z) is for vertical motion

and the rotary joint (with generalized coordinate ϕ) is responsible for angular motion

and another translational joint (with generalized coordinate r) is for radial motion.

Hence, the location of the end-effector of this robot can be described in a cylindrical

coordinate system with coordinates (r, ϕ, z). The dynamic equations of this robot can
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be obtained as follows [54]:

[
IR +

mr2
`

3
+ (m+m`) r

2 (t)−mr` r (t)

]
ϕ̈ (t) + 2

[
(m+m`) r (t)− mr`

2

]
ṙ (t) ϕ̇ (t) = Mϕ (t) ,

(m+m`) r̈ (t)−
[
(m+m`) r (t)− mr`

2

]
ϕ̇2 (t) = Fr (t) ,

(m+m`) [z̈ (t) + g] = Fz (t) ,

(5.71)

where

{
IR = 0.8 kg m2, m = 20 kg, m` = 15 kg, r` = 2m, g = 9.81m/sec2,

minimum radial length of robot : A = 1m.
(5.72)

Also the physical constraints of this robot are as follows:
0 ≤ r ≤ 0.5, (m)

− 3π

2
≤ ϕ ≤ 3π

2
,

z0 ≤ z ≤ z0 + 0.8, z0 = 0.5 (m) ,

,


|ṙ| ≤ 0.1 (m/sec) ,

|ϕ̇| ≤ 0.5 (rad/sec) ,

|ż| ≤ 0.1 (m/sec) ,

,


|Mϕ| ≤ 5 (Nm) ,

|Fr| ≤ 2 (N) ,

|Fz| ≤ 2 (N) .

(5.73)

The third equation in (5.71) is an independent linear dynamics which is relative to

vertical motion of the robot. Hence it can be rewritten as z̈ = F̄z = Fz

m+m`
− g.

Let q1 = ϕ, q2 = r, q3 = z, thus the the motion equations (5.71) can be given in

matrix form

M (q) q̈ + N (q, q̇) = τ , (5.74)

where

q =

q1

q2

q3

 , M =

IR +
mr2`

3
+ (m+m`) r

2 (t)−mr` r (t) 0 0

0 m+m` 0

0 0 1

 , (5.75)
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and

N =

2
[
(m+m`) r (t)− mr`

2

]
ṙ (t) ϕ̇ (t)

−
[
(m+m`) r (t)− mr`

2

]
ϕ̇2 (t)

0

 , τ =

τ1

τ2

τ3

 =

Mϕ

Fr

F̄z

 (5.76)

and also let the initial and final configurations

q (0) =

0.2

0

0.5

 , q (T) =

 1

0.02

0.7

 . (5.77)

Let us now obtain the state space representation of this robot considering the

following state vector:

x =



x1

x2

x3

x4

x5

x6


=



q1

q2

q3

q̇1

q̇2

q̇3


. (5.78)

As explained earlier, the state space representation of robot manipulators can be

written as

ẋ = f (x) + g (x) τ, (5.79)

where in the case of this cylindrical robot we will have

f (x) =



x4

x5

x6

− 15x4x5(70x2+30)

525x22+450x2+337

1
7
x2

4 (7x2 + 3)

0


, g (x) =



0 0 0

0 0 0

0 0 0
15

525q22+450q2+337
0

0 1
35

0

0 0 1


. (5.80)
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Figure 5.14: Optimal profiles of cylindrical robot obtained by multiple shoot-
ing method

In addition, the cost functional considered in this case study is as follows

min Ji =

∫ T

0

(
τTRτ +XT

d W Xd

)
dt, (5.81)

where

R =

α1 0 0

0 α2 0

0 0 α3

 , W =

β1 0 0

0 β2 0

0 0 β3

 , Xd =

x4

x5

x6

 , (5.82)

with α1 = 1, α2 = 0.1, α3 = 0.001, β1 = 10, β2 = 1, β3 = 1.

As with previous case studies, we solve the OCP of this robot using three methods:

multiple shooting, spline based optimal control and proposed method:

� Multiple shooting method: In this case, we consider discretization number N =

10. Figure 5.14 shows the optimal profiles including joint dispositions, velocities
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Table 5.11: Optimal data of cylindrical robot obtained from multiple shooting method
Number of SQP iterations 25

Number of math operations 2236
Jmin 0.609
Tmin 15

First order optimality 4.32
Computation time (sec) 537

Table 5.12: Optimal data of cylindrical robot obtained from spline based optimal
control method

Number of SQP iterations 32
Number of math operations 311

Jmin 0.5448
Tmin 13.52

First order optimality 0.00015
Computation time (sec) 4.17

and torques trajectories of this cylindrical robot. As well as, the optimal data

for this robot resulted from this method are collected in the Table 5.11. As

stated earlier, in this method we have to consider a large number of parameters

and virtual constraints. The optimal controls of this robot are obtained after

performing 2236 math operations and taking 537 sec computation time.

� Spline based optimal control method:

For this case study, we considered N = 4, then the optimal profiles of this robot

containing joint disposition, velocity and force/torque trajectories are shown in

Figure 5.15. Also the optimal data obtained from this method are given in Table

5.12.

� Proposed method

Here, we attempt to obtain the optimal solution of the cylindrical robot by pro-

posed method. Figure 5.16 represents the optimal trajectories of this robot ob-

tained by this method. As this figure shows, the sequence of optimal profiles

converge after 6 trials. More optimal information can be achieved from Table

5.13. Also, Figure 5.17 shows the sequence of successive errors defined as with in

the previous case studies. According to the last three columns of Table 5.13, the
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Figure 5.15: Optimal profiles of cylindrical robot obtained by spline based
optimal control method

rate of convergence of the three joints of the robot are µ1 = 1
11
, µ2 = 1

6
, µ3 = 1

3
,

respectively.

Now we wish to make a comparison between proposed method and other two methods

from the obtained results presented in the above tables and figures for the cylindrical

robot:

� Proposed method and multiple shooting method:

As mentioned above, for this case study in the multiple shooting method we con-

sider N = 10. Thus, the number of parameters in the optimization programming

is 84, while this number in the proposed method for N = 4 is only 12 for three

joints of the robot. Also the number of constraints which should be met in the

multiple shooting and proposed method are 73 and 10, respectively and hence,

as shown in Table 5.11 , it causes a considerable number of math operations
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Figure 5.16: Optimal profiles of cylindrical robot obtained by proposed
method

Table 5.13: Optimal data of cylindrical robot obtained by applying the proposed
method

Trial Jmin Tmin First
order
opti-
mality
(δ)

Number
of op-
era-
tions

Time
of
com-
puta-
tion

∥∥∥e[i]
1

∥∥∥ ∥∥∥e[i]
2

∥∥∥ ∥∥∥e[i]
3

∥∥∥

1 3.42 10.34 1426 109 2.42 × × ×
2 0.839 13.52 49.6 117 2.59 0.9 0.2 0.05
3 0.61 13.52 10.6 73 1.42 0.05 0.014 0.02
4 0.608 13.52 5.46 65 1.25 2.3 ×

10−3

2.1 ×
10−4

0.008

5 0.605 13.52 0.129 52 0.96 5.14 ×
10−4

3.46 ×
10−6

2.17 ×
10−4

6 0.601 13.52 0.00093 33 0.64 1.5 ×
10−6

7× 10−8 4.32 ×
10−5
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Figure 5.17: Error profiles obtained for cylindrical robot in various trials

and high computation time for multiple shooting method. The average compu-

tation time in the proposed method is 1.55 sec while it is 537 sec in the multiple

shooting method. In addition, if we increase the number of discretization (N) in

the multiple shooting to obtain a more continuous control, it causes the higher

computation time and even there no exists any optimal solution for N > 60. For

example, in this case study for N = 10 in multiple shooting method we found a

near optimal solution with first order optimality equals 4.32. Thus, according to

these data one can judge between these two methods easily.

� Proposed method and spline based optimal control method

As first order optimality in the Table 5.13 shows, the OCP for this robot is solved

during 6 trials so that the average computation time in each trial is 1.55 sec, while

this value in the spline based optimal control method is 4.17 sec. In addition, the

average number of math operations in the proposed method in each trial is 75

and this number in the spline based optimal control method is 311. Hence, these

numbers show that the proposed method solves the OCP gradually. Note also
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Figure 5.18: Puma 560 robot manipulator

that as last two columns in Table 5.13 show, the sequence of optimal solutions

converge quickly and after 5 trials.

5.4.4 Puma 560 Robot Manipulator

In the previous case studies, we solved the OCP of the SCARA, spherical and cylindrical

robots by three methods and using the optimal data obtained by each method we made

some comparisons for the performance of these methods. The rest case studies are some

well known angular robot manipulators in which we shall only apply the proposed

method; since the necessary comparisons were made in the previous subsections.

In this subsection, we are going to apply the proposed method to the well known

Puma 560 robot manipulator shown in Figure 5.18. As seen in this figure, it is a 6

degrees of freedom robot manipulator which we only consider the first three joints of

this robot while the last three joints are fixed in their home positions. According to the

MDH frames in this figure the MDH parameters are obtained as given in Table 5.14.

The dynamic model of this robot can be obtained using Euler-Lagrange Formulation

presented in subsection 2.2.1. The inertia matrix, centripetal and Coriolis as well as

the gravity terms of the Puma 560 robot are obtained by the dynamic parameters of

this robot given in Table 5.15 [6]. By this information, the dynamic equations of the

first three joints of Puma 560 can be derived (given in Appendix B).
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Table 5.14: DH parameters of Puma 560 robot manipulator
i αi di qi ri
1 −π/2 0 q1 0
2 0 0.432 q2 0.15
3 π/2 0.02 q3 0
4 −π/2 0 q4 = 0 0.433
5 π/2 0 q5 = 0 0
6 0 0 q6 = 0 0.056

Table 5.15: DH parameters of puma 560 robot manipulator
Link i 1 2 3
Ixxi 0 0.13 0,066
Iyyi 0.35 0.524 0.086
Izzi 0 0.539 0.0125
Ixyi 0 0 0
Ixzi 0 0 0
Iyzi 0 0 0
x̄i 0 -0.3638 -0.0203
ȳi 0 0.006 -0.014
z̄i 0 0.2275 0.07
mi 0 17.4 6.05

For Computing the optimal profiles of this robot by proposed method, we use the

following cost functional and constraints given in Table 5.16, as well as the boundary

conditions presented in Table 5.17,

J = 0.5

∫ T

0

(
τ 2

1 + τ 2
2 + τ 2

3

)
dt, (5.83)

where τ1, τ2 and τ3 are the torques of the first three joints of the robot.

Applying the proposed method into this robot, the optimal profiles are obtained as

shown in Figure 5.19. In addition, the Table 5.18 presents the optimal data obtained

from optimization algorithm in the case of this robot. According to these data, the

minimum value of the traversal time and cost functional are obtained after 5 trials.

As seen from the fifth and sixth columns of Table 5.18 the direction of variation of

the Tmin and Jmin are opposite each other. Thus, the minimum value of these two

parameters are obtained after some trade-off between these two values and satisfying
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Table 5.16: Joint position and velocity constraints of Puma 560 robot
positions q1 (◦) q2 (◦) q3 (◦)

min -160 -225 -45
max 160 45 225

velocities q̇1 (◦/sec) q̇2 (◦/sec) q̇3 (◦/sec)
min -200 -200 -260
max 200 200 260

torques τ1 (N.m) τ2 (N.m) τ3 (N.m)
min -150 -150 -100
max 150 150 100

Table 5.17: Initial and final conditions of Puma 560 robot
positions q1 (rad) q2 (rad) q3 (rad)

Initial 0 0 0
Final 50× (π/180) 25× (π/180) 30× (π/180)

velocities q̇1 (rad/s) q̇2 (rad/s) q̇3 (rad/s)
Initial 0 0 0
Final 0 0 0

the constraints so that in trial 5 these parameters take 664.14 and 5.297, respectively.

For having some information regarding the rate of convergence in this case study, we

use the sequence of errors (as defined in the previous case studies) which are shown in

Figure 5.20. For this robot the sequence of error norms of robot joints converges to

zero with rates µ1 = 1
3
, µ2 = 1

3
, µ3 = 1

5
, respectively.

Table 5.18: Optimal data of optimal control of Puma 560 robot
Trial Number of

SQP itera-
tions

Number of
math oper-
ations

Time of
computa-
tion

Jmin Tmin First order
Optimality
(δ)

1 22 252 3.74 629 6.479 9.09
2 20 235 3.21 733 5.351 4.52
3 18 214 2.87 666.83 5.297 0.014
4 16 178 1.96 664.15 5.297 0.00037
5 13 132 1.53 664.14 5.297 0.000013
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Figure 5.19: Optimal profiles of Puma 560 robot manipulator

Figure 5.20: Sequence of errors in successive trials obtained for Puma 560
robot
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Figure 5.21: ABB IRB140 robot manipulator

5.4.5 ABB IRB140 Robot Manipulator

Let us now apply the proposed method into an ABB IRB140 robot arm, as shown

in Figure 5.21, which is a six degrees of freedom (DOF) industrial manipulator. The

first three joints of this robot are used to position the end-effector, while the last

three ones are employed to set the orientation of the end-effector. In the optimal

control of robot manipulators usually the positioning part of the robot, i.e. three

first joints, are considered. Accordingly, we can consider the ABB IRB140 robot as a

three degrees of freedom arm so that the orientation joints of the robot are fixed in

their home positions. So as to obtain the dynamic model of this robot, we require the

transformation matrices of this robot according to Denavit-Hartenberg notation. The

Denavit-Hartenberg parameters of this robot can be obtained, as given in Table 5.19,

by considering the desired frame of each robot link illustrated in Figure 5.21.

Now, the dynamic model of this robot can be obtained according to Euler-Lagrange

Formulation presented in subsection 2.2.1. Notice that we used the dynamic parameters

of ABB IRB140 robot given in [49]. Using these data, the dynamic equations of this
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Table 5.19: Denavit-Hartenberg parameters of ABB IRB140 robot
Link (i) qi (rad) di (m) ai (m) αi (rad)

1 π/2 0.352 0.07 π/2
2 π/2 0 0.36 0
3 −π/2 0 0.445 0

robot can be derived as follows:

M (q) q̈ +N (q, q̇) = τ, (5.84)

where

� Inertial Matrix :

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (5.85)

where

M11 = −2.05SC − 1.705CD + 0.8CC − 1.94S2 + 2.05S3 + 2.1097,

M12 = M21 = 0.34S2− 0.058SA+ 0.924CC,

M13 = M31 = 0.34S2− 0.058SA+ 0.924CC, M22 = 4.11S3 + 4.35,

M23 = M32 = 0.58 + 0.674S3− 0.042CC, M3,3 = −0.0694

(5.86)

� Centripetal, Coriolis and gravity term (N (q, q̇)):

In robot dynamics (3.12), N (q, q̇) is the summation of centripetal, Coriolis (h (q, q̇))

and gravity (G (q)) terms each of which are represented by the following 3-vectors:

h =
[
h1 h2 h3

]T
, (5.87)
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where

h1 = (0.0667SA− 4.1CB + 3.142SC − 0.8CC − 1.94C2) q̇1q̇2+

(0.069SA− 2.055CB + 2.055C3) q̇1q̇3,

h2 = (2.05CB − 1.707SD + 0.4C3 + 0.97C2) q̇2
1+

(0.0054CA+ 0.0085C3) q̇2
2 + 2.0558C3 q̇2q̇3,

h3 = (−0.033SA+ 1.028CB + 0.4SC − 1.027C3) q̇2
1−

2.054C3 q̇2
2 − 2.054C3 q̇2

3 − 2.055C3 q̇2q̇3

(5.88)

and gravity vector

G =

g1

g2

g3

 , g1 = 0,

g2 = 55.98CC − 136S2,

g3 = 55.98CC.

(5.89)

where

SA = sin (2q2 + 2q3) , CB = cos (2q2 + q3) , SC = sin (q2 + q3) ,

SB = sin (2q2 + q3) , CC = cos (q2 + q3) , SD = sin (2q2) ,

CD = cos (2q2) , S2 = sin (q2) , C2 = cos (q2) ,

S3 = sin (q3) , C3 = cos (q3) .

(5.90)

Let us now solve the OCP of this robot by proposed method according to the

following cost functional and boundary conditions given in Table 5.21:

J =

∫ T

0

(
τ 2

1 + τ 2
2 + τ 2

3 + .001 (q1 − 0.4)2 + .001 (q2 − 0.5)2 + .001 (q3 − 0.2)2) dt,
(5.91)

where τ1, τ2 and τ3 are the torques of the first three joints (major joints) of the robot.

Also the position and velocity constraints of this robot have been listed in Table 5.20

[32]. By these data, the optimal joint position, velocity and torque trajectories are

obtained using the proposed method as shown in Figure 5.22.

As seen in this figure, the proposed optimal control algorithm has been performed
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Table 5.20: Joint position and velocity constraints of ABB IRB140 robot
positions q1 (◦) q2 (◦) q3 (◦)

min -180 -90 -230
max 180 110 50

velocities q̇1 (◦/sec) q̇2 (◦/sec) q̇3 (◦/sec)
min -200 -200 -260
max 200 200 260

torques τ1 (N.m) τ2 (N.m) τ3 (N.m)
min 0 0 0
max 150 150 100

Table 5.21: Initial and final conditions of ABB IRB140 robot
positions q1 (rad) q2 (rad) q3 (rad)

Initial 0 0 0
Final 0.4 0.5 0.2

velocities q̇1 (rad/s) q̇2 (rad/s) q̇3 (rad/s)
Initial 0 0 0
Final 0 0 0

Figure 5.22: Optimal joint position, velocity and torques of ABB IRB140
robot
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Figure 5.23: Successive errors obtained for ABB IRB140 robot joints

for 10 trials. In addition, the optimal data derived from optimization algorithm are

collected in Table 5.22. These data shows the system performs the desired task in 2.106

sec with Jmin = 61.37 in the first trial. These parameters will find their real minimum

values so that in the tenth trial the first order optimality shows that the minimum value

of these parameters are achieved. Also for having some information about the rate of

convergence in the case of this robot, we can use Figure 5.23. The rate of convergence

for the sequence of error norm of robot joints are µ1 = 1
3
, µ2 = 1

6
, µ3 = 1

4
, respectively.

5.4.6 KUKA Robot

In chapter 2, we obtained the dynamic model of the KUKA robot through an exper-

imental identification. In this subsection we are going to obtain the optimal trajec-
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Table 5.22: Optimal data of optimal control of ABB IRB140 robot
Trial Number of

SQP itera-
tions

Number of
math oper-
ations

Time of
computa-
tion

Jmin Tmin First order
Optimality
(δ)

1 9 57 0.96 61.37 2.106 32.4
2 6 52 0.84 41.57 2.061 1.19
3 7 57 0.93 41.54 2.049 0.116
4 6 53 0.82 42.3 2.036 0.032
5 6 53 0.82 41.898 2.026 0.0126
6 6 57 0.88 41.983 2.026 0.00708
7 6 57 0.86 41.924 2.026 0.0009
8 5 61 0.93 41.91 2.026 0.00037
9 6 61 0.9 41.91 2.026 1.5× 10−5

10 6 61 0.92 41.91 2.026 2.97× 10−6

Table 5.23: Joint position, velocity and acceleration constraints of KUKA robot
Joint qi [deg] |q̇i| [deg/s] |q̈i| [deg/s2] τi[N.m]

1 ±155 151 450 550
2 100 to -55 151 450 550
3 70 to -220 151 450 550

tories of this robot according to the joint position, velocity, acceleration and torque

constraints of this robot listed in Table 5.23 [47]. For this problem, we consider the

following cost function:

Jc =
1

2

∫ T

0

(
τ TRτ + q̇TQq̇

)
dt, (5.92)

where R and Q are symmetric positive definite weighting matrices. In this case study

we use the following diagonal matrices R,Q:

R =

100 0 0

0 10 0

0 0 1

 , Q =

1 0 0

0 1 0

0 0 1

 , (5.93)

The Optimal results are shown in Figure 5.24, considering the following boundary
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Table 5.24: Optimal data obtained for KUKA robot
Trial Number of

SQP itera-
tions

Number of
math oper-
ations

Time of
computa-
tion

Jmin Tmin First order
Optimality
(δ)

1 22 302 2.85 148.78 4.643 151
2 17 271 2.68 122.63 5.38 38.7
3 15 258 2.61 124.87 5.42 23.9
4 15 259 2.6 126.83 5.647 2.88
5 15 262 2.62 126.8 5.647 0.43
6 14 257 2.5 125.792 5.647 0.0636
7 12 245 2.38 125.78 5.647 0.0022
8 11 235 2.34 125.627 5.647 00.000127

conditions:

q1 (0) = q2 (0) = q3 (0) = 0,

q̇1 (0) = q̇2 (0) = q̇3 (0) = 0,

q1 (T ) = 50 (deg) , q2 (T ) = 25 (deg) , q3 (T ) = 30 (deg) ,

q̇1 (T ) = q̇2 (T ) = q̇3 (T ) = 0.

(5.94)

This figure shows, the optimal controls of KUKA robot converge after 8 trials. The

Table 5.24 represents some information regarding different trails of the optimization

procedure for the KUKA robot. As this table shows, in the first trial the minimum

traversal time is 4.63 sec which results in a minimum cost function equals 148.78.

However, in the subsequent trials a trade-off is made between these two values so that

from trial forth the value of Tmin is fixed. Moreover, we can obtain the necessary

information about the rate of convergence in this case study by referring to Figure

5.25. As explained in the previous case studies, we can use the sequence of error norms

to obtain the rate of convergence. According to the value of elements of these three

sequences (i.e.
∥∥∥e[i]

j

∥∥∥ for j = 1, 2, 3), their convergence rates are µ1 = 1
3
, µ2 = 1

6
, µ3 = 1

4
,

respectively.

160



5. Second Proposed Method

Figure 5.24: Optimal profiles of KUKA robot

Figure 5.25: Successive errors of KUKA robot joints
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5.5 A Particular Comparison

In this section, it is attempted to make some comparisons between the first and sec-

ond proposed methods presented in chapter 4 and 5, respectively, as well as multiple

shooting method. In doing so, these methods are applied into a vertical two links

robot manipulator used as one of the case studies in chapter 4. However, so as to

make these comparisons it is necessary to consider an unconstrained OCP for second

proposed method and multiple shooting methods. In chapter 4, Figure 4.3 showed the

optimal trajectory for this robot given the boundary conditions (4.62). As such, the

second proposed method yields the optimal profiles for this robot as shown in Figure

5.26. As well as the optimal solution of this unconstrained OCP are obtained by mul-

tiple shooting method as represented in Figure 5.27. The minimum value of the cost

functional (4.14) calculated by first proposed method, i.e. Jmin = ξT (0) C ξ (0), is

1.12 as well as the computation time to find the optimal trajectories by this method

is 0.01 sec. Table 5.25 presents some information regarding the optimal data obtained

from second proposed and multiple shooting methods. As this table and Figure 5.26

show the second proposed method converges after forth trial which the minimum of

cost functional (4.14) is obtained similar to first proposed method and the first order

optimality confirms this similarity since its value is too close to zero. However, the

computation time to find the optimal trajectories in trial 4 is 1.3 sec while, as men-

tioned above, this value in the first proposed method is only 0.01 sec. In addition, the

multiple shooting method presents a near optimal solution after 4375 math operations

which yields the first order optimality equals 0.94.

Thus, these data show the first proposed method demonstrates the best perfor-

mance for solving the unconstrained OCP of robot manipulators with respect to other

mentioned methods.
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Table 5.25: Optimal data of vertical two links robot obtained from second proposed
and multiple shooting methods

Proposed method
(last trial)

Multiple shooting
method

Number of SQP iterations 13 16
Number of math operations 68 4375

Jmin 1.12 1.47
First order optimality 2.64× 10−5 0.94

Computation time (sec) 1.3 613

Figure 5.26: Optimal profiles for unconstrained OCP of vertical two links
robot obtained by second proposed method
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Figure 5.27: Optimal profiles for unconstrained OCP of vertical two links
robot obtained by multiple shooting method
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Chapter 6

Conclusion

Motivation of this study was to propose the new method(s) to solve the optimal control

problem of serial robot manipulators. In the following the fulfillment of the considered

objectives are given:

Objective 1: The first objective is to obtain the kinematic and dynamic models of

our main case study, i.e., KUKA IR 364/10 robot manipulator existed in robotic labo-

ratory of Mechatronic faculty of TUL. The kinematic model of this robot was derived

employing modified Denavit-Hartenberg (MDH) notation. In the context of dynamic

model of this KUKA robot, we first develop an algorithm using recursive Newton-Euler

formulation. This algorithm was used as the main core of a GUI by which user can

derive the dynamic model of either 3 or 6 degrees of freedom robot manipulators by

entering just robot MDH parameters. A writing task was used to verify the validation

of obtained kinematic and dynamic models of the KUKA robot in comparison with

these models produced by Robotic Toolbox of MATLAB (RTM).

Objective 2: The second objective is KUKA robot identification. In doing so, in

the first stage a new (regression) model of the robot dynamics which is linear in terms

of a new set of parameters, so-called base parameter set (BPS), which are compound

of dynamic and friction parameters of the robot is derived. In the second stage an

excitation trajectory is calculated. This trajectory which is calculated from an opti-

mization problem has a considerable affect on the identification result and hence this

stage must be carried out with high attention. Eventually the elements of BPS for
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this KUKA robot which contains 21 parameters are estimated and a validation stage

is accomplished to verify the obtained model.

Objective 3: The third objective considered in this thesis is to present a com-

pletely innovative and new approach to solve the unconstrained optimal control of

robot manipulators in the case of point to point motion and trajectory tracking tasks.

Unlike the existing methods which yield a local optimal solution, the proposed method

solves the considered optimal control problem with obtaining a global optimal solution

so that the computation time to find this solution is less than 0.01 sec. noting that

the robot dynamics is highly nonlinear and coupled. However, this method can not

support any physical constraints on a robot arm. The proposed method which is a

model-based controller was extended into a more general case in which an exact model

of the robot is not available, namely designing an adaptive optimal control scheme for

robot manipulators.

Objective 4: The fourth objective is to propose a new method to solve the con-

strained time-energy optimal control problem of serial robot manipulators. we propose

a combined method which contains Iterative Linearization (IL), Iterative Learning Con-

trol (ILC) and Parametric Optimization (PO). In this method it is assumed that the

robot is performing a repeated task which is usual for robot arms in their applications.

In accordance with this method, in each repetition (trial) a linear time varying (LTV)

version of robot dynamics is derived by IL with the original considered cost functional.

Then PO is used to solve the optimal control problem in this trial and its solution is

stored in memory of the system to use in the next trial (ILC). The above procedure

is repeated in the next trials so that after a finite number of trials the sequence of

optimal solutions converge to the optimal solution of the original nonlinear system

(robot dynamics). Then, the limit of the sequence is used to control of the next trials.

The corresponding developed algorithm was applied into all standard types of robot

arm structures, i.e. SCARA, spherical, cylindrical and angular robots (such as Puma

560, ABB IRB140 and KUKA IR 364/10 manipulators) for the different case of cost

functionals. For having a better insight regarding the proposed method, the optimal

solution of the considered optimal control problem for SCARA, spherical and cylindri-

cal robots are obtained by direct multiple shooting and spline-based optimal control
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methods as well. Then, a series of comparisons are made between the proposed method

and the other two methods. According to these comparisons, the following results were

obtained for the proposed method:

� In each trial a linear version of highly nonlinear robot dynamics is dealt with.

� Optimization problem is solved gradually during the the successive trials. In

other words, as shown by the optimal data given in tables of different case studies

in chapter 5, the number of math operations and computation time to find the

optimal solution are divided on successive trials.

� The convergence rate of the sequence of optimal solutions is too fast, as shown

in various case studies.

� It supports any type of cost functions (quadratic, non-quadratic, linear, nonlinear

and so on ) and any kind of constraints.

� It generates the smooth trajectory for robot motions causing reduction the stresses

to the actuators and to the manipulator structure.

� The possibility to set the initial and final joint accelerations and jerks a priori by

the user.

� Unlike the multiple shooting method which produces a constant piecewise con-

trol, the proposed method provides a continuous optimal control which can be

implemented in practice.

� The structure of the proposed optimal control system is almost simple and it can

be implemented easily.

167



168



Appendix A: Regression Model of

KUKA ROBOT

Y1,1 = q̈1,

Y1,2 = q̈1 (0.5CD + 0.5) + q̇1q̇2SD,

Y1,3 = 2q̇1q̇2CD − q̈1SD,

Y1,4 = −q̇2
2S2− q̈2C2,

Y1,5 = q̇2
2C2− q̈2S2,

Y1,6 = 0,

Y1,7 = −d2S2q̇2
2 − 2q̇1q̇2 (r2SD − r1C2)− q̈1 (r2CD − r2 + 2r1S2)− d2q̈2C2,

Y1,8 = 2q̇1q̇2 (r2CD + r1S2)− q̈1 (r2SD − 2r1C2)− d2q̈2S2 − d2q̈3C2

Y1,9 = 2d2q̈1 + r2q̈3S2− r2q̈2C2,

Y1,10 = q̈1

(
r2

1 + 0.5r2
2 (1− CD) + d2

2 − 2r1r2S2
)
− 2q̇1q̇2

(
0.5r2

2 − r1r2C2
)

− r2d2

(
S2q̇2

2 + C2q̈2

)
,

Y1,11 = SAq̈1 − 2CAq̇1 (q̇2 + q̇3) ,

Y1,12 = CB (q̇2 + q̇3)2 − SB (q̈2 + q̈3) ,

Y1,13 = CB (q̈2 + q̈3) + SB (q̇2 + q̇3)2 ,

Y1,14 = (d2 + d3)
(
CB (q̇2 + q̇3)2 − SB (q̈2 + q̈3)

)
+

q̈1 (r3 (1 + CA)− r2 (S3 + SC) + 2r1CB) + 2q̇1q̇3 (0.5r2 (CC − C3) + r3SA+ r1SB)

+ 2q̇1q̇2 (r1SB + r2CC + r3SA) ,

Y1,15 = (d2 + d3)
(
SB (q̇2 + q̇3)2 + CB (q̈2 + q̈3)

)
+

q̈1 (2r1SB + r2 (CC − C3) + r3SA)

− 2q̇1q̇3 (r1CB − 0.5r2 (SC + S3) + r3CA)− 2q̇1q̇2 (r1CB − r2SC + r3CA) ,

(1)
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Y2,1 = 0, Y2,2 = −0.5SDq̇2
1, Y2,3 = −CDq̇2

1,

Y2,4 = C2q̈1, Y2,5 = −S2q̈1, Y2,6 = q̈2,

Y2,7 = q̇2
1 (r2SD − r1C2) + 2r2q̈2 + gS2− d2C2q̈1,

Y2,8 = −q̇2
1 (r2CD + r1S2)− gC2− d2S2q̈1

Y2,9 = −r2C2q̈1,

Y2,10 = q̇2
1

(
0.5r2

2SD − r1r2C2
)

+ r2
2 q̈2 + r2gS2− r2d2C2q̈1

Y2,11 = CAq̇2
1

Y2,12 = −SBq̈1,

Y2,13 = CBq̈1

Y2,14 = 2q̈2 (r3 − r2S3)− q̇2
1 (r1SB + r2CC + r3SA) + q̈3 (2r3 − r2S3)

− gCB − r2C3
(
q̇2

3 + 2q̇2q̇3

)
− (d2 + d3)SBq̈1

Y2,15 = q̇2
1 (r1CB − r2SC + r3CA)− gSB + (d2 + d3)CBq̈1

− 2r2C3q̈2 − r2C3q̈3 + r2S3q̇3 (2q̇2 + q̇3)

Y3,1 = Y3,2 = Y3,3 = Y3,4 = Y3,5 = Y3,6 = Y3,7 = Y3,8 = Y3,9 = 0, Y3,10 = 0

Y3,11 = CAq̇2
1, Y3,12 = −SBq̈1, Y3,13 = CBq̈1

Y3,14 = 2r3q̈3 − q̇2
1 (r1SB + 0.5r2 (CC − C3) + r3SA) +

q̈2 (2r3 − r2S3)− gCB + r2C3q̇2
2 + (d2 + d3)SBq̈1

Y3,15 = q̇2
1 (r1CB − 0.5r2 (SC + S3) + r3CA)− r2S3q̇2

2+

(d2 + d3)CBq̈1 − r2C3q̈2 − gSB

where

SA = sin (2q2 + 2q3) , CB = cos (2q2 + q3) , SC = sin (q2 + q3) ,

SB = sin (2q2 + q3) , CC = cos (q2 + q3) , SD = sin (2q2) ,

CD = cos (2q2) , S2 = sin (q2) , C2 = cos (q2) ,

S3 = sin (q3) , C3 = cos (q3) .

(2)
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θB1 = Izz1 + Ia1 + Iyy2 + Iyy3 +
(
d32 + r42

)
(m2 +m3 +m4 +m5 +m6) ,

θB2 = Ixx2 − Iyy2 − d2
3 (m3 +m4 +m5 +m6) ,

θB3 = Ixy2,

θB4 = Ixz2 − d3m3z3,

θB5 = Iyz2,

θB6 = Izz2 + Ia2 + d2
3 (m3 +m4 +m5 +m6) ,

θB7 = m2x2 + d3 (m3 +m4 +m5 +m6) ,

θB8 = m2y2,

θB9 = Ixx3 + Iyy4 + 2r4m4z4 +
(
r2

4 − d2
4

)
(m4 +m5 +m6)

− Iyy3,

θB10 = Ixy3 − d4m4z4 − d4r4 (m4 +m5 +m6) ,

θB11 = Ixz3,

θB12 = Iyz3,

θB13 = Izz3 + Iyy4 + 2r4m4z4 +
(
d2

4 + r2
4

)
(m4 +m5 +m6) ,

θB14 = m3x3 + d4 (m4 +m5 +m6) ,

θB15 = m3y3 +m4z4 + r4 (m4 +m5 +m6) ,

(3)

where ri and di , for i = 1, 2, . . . , 6, are MDH parameters of the KUKA robot.
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Appendix B: PUMA 560 ROBOT

Dynamics

M (q) q̈ +N (q, q̇) = τ , (4)

where

� Inertial Matrix :

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (5)

where

M11 = −0.2CB + 0.76CB − 0.03C3− 0.11CA− 0.2S3, M12 = 0.138S2,

M13 = −0.006CC, M21 = M12, M22 = 1.91− 0.063C3− 0.41S3,

M23 = 0.25− 0.031C3− 0.2, M31 = M13, M32 = M23, M33 = 0.252

(6)

� Coriolis, centripetal and gravity terms

N =

N1

N2

N3

 , (7)
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where

N1 =0.14q̇2C2− 0.022q̇1q̇2CA− 0.022q̇1q̇3CA+ 0.03q̇1q̇3S3+

0.216q̇1q̇2SA+ 0.216q̇1q̇3SA− 0.411q̇1q̇2CB − 0.205q̇1q̇3CB

+ 0.0624q̇1q̇2SB + 0.0312q̇1q̇3SB − 1.52q̇1q̇2SD + 0.0135q̇2q̇3SC

− 0.205q̇1q̇3C3,

N2 =0.71CC + 4.67SC + 36.5C2 + 1.02S2 + 0.0109q̇2
1CA+

0.0312q̇2
3S3− 0.11q̇2

1SA+ 0.205q̇2
1CB − 0.0312q̇2

1SB

+ 0.759q̇2
1SD − 0.205q̇2

3C3 + 0.0624q̇2q̇3S3− 0.411q̇2q̇3C3,

N3 = + 0.7CC + 4.67SC − 0.016q̇2
1S3− 0.0312q̇2

2S3− 0.11q̇2
1SA+

0.103q̇2
1CB − 0.0156q̇2

1SB + 0.103q̇2
1C3 + 0.205q̇2

2C3,

(8)

with

SA = sin (2q2 + 2q3) , CA = cos (2q2 + 2q3) ,

SB = sin (2q2 + q3) , CB = cos (2q2 + q3) ,

SC = sin (q2 + q3) , CC = cos (q2 + q3) ,

SD = sin (2q2) , CD = cos (2q2) ,

S2 = sin (q2) , C2 = cos (q2) ,

S3 = sin (q3) , C3 = cos (q3) .

(9)
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