

Liberec 2015

Automating Telephony Testing for

Integrated Access Devices (IADs)

Diploma Thesis

Study programme: N2612 – Electrical Engineering and Informatics

Study brunch: 3906T001 – Mechatronics

Author:

Filip Burda

Supervising Professor: Prof. Dr.-Ing. Dietmar Scharf

Supervisor: Dipl.-Ing. (FH) Thomas Haak

3

4

Abstract

 This Master Thesis is focused on telephony testing. At first, it describes fundamentals

of telephony itself and especially ISDN and VoIP. The goal here is to develop an automated

telephony testing system for devices produced by Sphairon GmbH (a ZyXEL Company).

The thesis shows importance of testing in a development process. Also a procedure of choosing

the right hardware for the task is presented. Then all the requirements for the chosen test setup

(Asterisk, Linux Call Router, mISDN, ISDN card) are described as well as their configuration

so they work together and are able to simulate incoming and outgoing calls for device under

test. The next part of this document is about a development of the program for control of the

test setup. The program automates the telephony testing process and gets information from

Asterisk that is used for evaluating of the initiated calls. Last chapter shows output of the system

which displays results that can be further inspected and evaluated because all the necessary files

for that are archived. The automated telephony testing system is used to determine quality

of tested devices.

Keywords: ISDN, VoIP, Telephony, Testing, Automated testing

5

Abstrakt

 Tato Diplomová práce je zaměřena na testování telefonie. Nejdříve jsou zde popsány základy

právě telefonie a to především ISDN a VoIP. Cílem této práce je vyvinout systém

pro automatizované testování telefonie v zařízeních vyrobených společností Sphairon GmbH

(a ZyXEL Company). Práce poukazuje na důležitost testování v procesu vývoje. Je zde také

prezentován postup výběru správného hardwaru pro tento úkol. Dále jsou zde popsány všechny

požadavky pro zvolenou testovací sestavu (Asterisk, Linux Call Router, mISDN, ISDN karta)

stejně jako jejich konfigurace tak, aby pracovaly společně a bylo možné simulovat příchozí

a odchozí volání pro testované zařízení. Další část tohoto dokumentu se zabývá vývojem

programu pro ovládání této testovací sestavy. Tento program automatizuje proces testování

telefonie a získává informace z Asterisku, které jsou použity pro vyhodnocování zahájených

volání. Poslední kapitola ukazuje výstupy ze systému, kde jsou zobrazeny výsledky, které

mohou být dále prozkoumány a vyhodnoceny, protože všechny nezbytné soubory z testu jsou

archivovány. Automatický systém testování telefonie slouží pro stanovení kvality testovaných

zařízení.

Klíčová slova: ISDN, VoIP, Telefonie, Testování, Automatizované testování

6

Contents

Introduction .. 12

1. Fundamentals of Telephony .. 13

 Analog Telephony ... 14

 ISDN .. 15

1.2.1 ISDN Service Levels .. 15

1.2.2 ISDN Devices ... 16

1.2.3 ISDN Interfaces .. 16

 VoIP ... 17

 Softswitches ... 19

2. Why Testing? .. 21

 Testing in Sphairon .. 22

3. Choosing Hardware .. 24

 Important Properties of ISDN Cards ... 24

3.1.1 Service Levels .. 24

3.1.2 Number of Ports ... 24

3.1.3 Port Configuration Protocol ... 24

3.1.4 Modes of Operation .. 24

3.1.5 Active/Passive Cards .. 25

3.1.6 Other Properties .. 25

 Market Research .. 26

 Decision ... 28

4. Implementation ... 29

 Card Installation and Call Configuration... 29

4.1.1 ISDN Card Hardware Settings ... 30

4.1.2 mISDN ... 31

4.1.3 Linux Call Router ... 32

4.1.4 Asterisk ... 36

4.1.5 Softphone (ZoiPer) ... 38

 Test Setup Configuration ... 39

4.2.1 Asterisk Server Configuration .. 41

4.2.2 Test PC Configuration .. 42

4.2.3 DUT Configuration .. 45

7

 Automated Testing .. 48

4.3.1 Configuration File .. 49

4.3.2 Main Script ... 50

4.3.3 Call Daemon ... 53

 Results ... 57

Conclusion .. 60

Resources ... 61

Glossary .. 63

A Main Script .. 64

B Call Daemon ... 73

8

List of Figures

Fig. 1: Structure of telephone network with local loop ... 14

Fig. 2: SIP session example .. 18

Fig. 3: Development process ... 22

Fig. 4: OpenVox B400E ISDN card [21] .. 28

Fig. 5: Block diagram for used setup .. 29

Fig. 6: ISDN card scheme [22] .. 30

Fig. 7: Architecture of mISDN [24] .. 31

Fig. 8: Block diagram of outgoing calls simulation for automated testing 40

Fig. 9: Block diagram of incoming calls simulation for automated testing 41

Fig. 10: Configuration of VoIP provider ... 45

Fig. 11: Configuration of VoIP account .. 46

Fig. 12: Configuration of ISDN interface ... 46

Fig. 13: Software design diagram .. 48

Fig. 14: Flowchart describing function of the main script .. 51

Fig. 15: Flowchart describing function of the call daemon ... 54

Fig. 16: Example of a result html file .. 59

9

List of Codes

Code 1: Installation of mISDNuser 31

Code 2: Installation of Linux Call Router 32

Code 3: Generating script for control of mISDN 33

Code 4: Control of mISDN 33

Code 5: Checking loading of the drivers 34

Code 6: LCR file interface.conf 35

Code 7: LCR file routing.conf 35

Code 8: Generating an extension 1234 for interface Int 35

Code 9: Commands for using LCR 36

Code 10: Installation of Asterisk 36

Code 11: Asterisk file sip.conf 37

Code 12: Asterisk file extensions.conf 37

Code 13: Starting Asterisk and loading chan_lcr module 37

Code 14: Installation and start of ZoiPer 38

Code 15: Example of extensions.conf in Asterisk Server 42

Code 16: Example of sip.conf in Asterisk Server 42

Code 17: Structure of used call file 42

Code 18: Syslog configuration file 44

Code 19: Restart of the syslog service 44

Code 20: File kermrc.ttyS0 44

Code 21: Starting ckermit 45

Code 22: Commands used in remote access to the DUT 47

Code 23: Configuration file teltest.conf 50

Code 24: Checking necessary processes 52

Code 25: “Graceful” stopping 52

Code 26: Exporting messages into log file 55

Code 27: Checking DUT for panic messages 55

Code 28: Waiting for reboot of DUT 56

Code 29: Example of a log file 58

Code 30: Example of a result text file 58

10

List of Abbreviations

ADPCM Adaptive Differential Pulse-Code Modulation

AMR Adaptive Multi-Rate compression

AOC Advice of Charge

BRI Basic Rate Interface

BSD Berkeley Software Distribution

CDPN Called Party Number

CELT Constrained Energy Lapped Transform

CFx Call Forwarding

CGPN Calling Party Number

CLIP Calling Line Identification Presentation

CLIR Calling Line Identification Restriction

CW Call Waiting

DSL Digital Subscriber Line

DUT Device Under Test

ET Exchange Termination

GSM Global System for Mobile communication

HFC Hyper Fiber Chip

HTTP Hypertext Transfer Protocol

IAD Integrated Access Device

IAX Inter-Asterisk eXchange

iLBC Internet Low Bitrate Codec

IP Internet Protocol

ISDN Integrated Services Digital Network

LCR Linux Call Router

LPC Linear Predictive Coder

11

MGCP Media Gateway Control Protocol

mISDN Modular ISDN

NAT Network Address Translation

NT Network Termination

PBX Private Branch Exchange

PMP Point to Multipoint Protocol

POTS Plain Old Telephone Service

PPP Point to Point Protocol

PRI Primary Rate Interface

PSTN Public Switched Telephone Network

RTP Real-time Transport Protocol

SCCP Skinny Call Control Protocol

SDP Session Description Protocol

SIP Session Initiation Protocol

SMTP Simple Mail Transport Protocol

SRTP Secure Real-time Transport Protocol

SSH Secure Shell

STUN Session Traversal Utilities for NAT

TA Terminal Adapter

TE Terminal Equipment

TLS Transport Layer Security

UNIStim United Networks IP Stimulus

URI Uniform Resource Identifier

VoIP Voice over Internet Protocol

XMPP Extensible Messaging and Presence Protocol

ZRTP Zimmermann’s Real Time Transport Protocol

12

Introduction

 This thesis is about developing an automated test for devices which are produced

by Sphairon GmbH (a ZyXEL Company) and work as SIP gateways and IADs. Testing

is an important part of every development process and in telephony it is not any different.

All the new software releases have to pass a set of complex tests before they can go to a market.

The outcome of this work is to be included in these tests to replace and extend a manual way

of testing which was used before.

 For testing of a software a regression test is used, that investigates if the version

of the software introduced new faults and if the old errors reappeared. If there is a problem,

the new software version needs to go back into development. If all the tests succeed,

the software can be delivered to a customer.

 Stress testing is a necessary part of regression tests. As the name implies, in this case, a device

is stressed in every possible way to ensure that even in unusual circumstances everything works

as it should. Stability of the device is determined by scale of intense tests.

 The telephony testing is based on automatically created phone calls with different parameters

that are sent from PC. The PC should act as any ISDN telephone. The goal here is to find a way

to simulate that. At first a necessary software and hardware needs to be chosen. In this case

it means an ISDN card with required properties and a software which can control it. Then

the right configuration has to be made, so all the software and hardware works together. And

finally a program has to be developed, which can control the whole setup, create automated

calls based on given parameters, evaluate the success or fail of these calls and export results.

Also all available information from the test and a device under the test have to be extracted

so the results can be inspected and any fault can be fixed.

13

1. Fundamentals of Telephony

 Telephony is a technology for electronic transmission of voice, fax and possibly other

information at long distance. There are different types of telephony. First type is classic analog

transmission. Another way is use of digitalized telephone network - ISDN (Integrated Services

Digital Network). There is also a special part of digital telephony called VoIP (Voice over

Internet Protocol) which uses transmission over Internet lines.

 Besides the main data carried through the network during telephone contact, there are also

data used for signalling. Signalling is exchange of information for maintaining the telephone

call (setting up, controlling, terminating). In in-band signalling is for the signalling data used

the same channel as for the telephone call. In contrast with out-of-band signalling which has its

own separated channel. [1]

14

 Analog Telephony

 The analogue telephony works in analogue PSTN (Public Switched Telephone Network)

which is also called POTS (Plain Old Telephone Service). These days most part of the network

(if not whole) is digital and the only analog part which remains is subscriber connection.

The reason is obvious. Analog telephony has to deal with all disadvantages of analog

transmission like sensitivity to distortions.

 Analog telephony does not necessarily need provider of PSTN. It can also work in private

systems – local loops. In these kinds of systems the switching is managed by PBX (Private

Branch Exchange) systems. It allows to make private telephone networks for instance

in the range of some company. [2]

Fig. 1: Structure of telephone network with local loop

15

 ISDN

 Integrated Services Digital Network – ISDN is a digital telephony system. It can transmit

voice, video and data through the network. Its advantages besides the typical benefits of digital

transmission are higher speed and out-of-band signaling. [3] ISDN has various options

and properties. It can work in two types of service levels which use various number of different

channels.

1.2.1 ISDN Service Levels

 The ISDN service levels differ by types and number of used ISDN channels. These properties

also specify the rate of the service level.

 The Bearer channel (B-channel) with 64 kbps carries the main information which are data,

voice and video. For higher bandwidth the channels can be aggregated together.

 The Delta channel (D-channel) can operate at 16 or 64 kbps. The bandwidth depends on used

service level of ISDN. This channel handles signaling information needed to connect

and disconnect calls and other services.

 There is also a special high-speed H-channel for video transfer. There are four kinds

of H-channels with rate 384 kbps, 1472 kbps, 1536 kbps and 1920 kbps. [3]

 The Basic Rate Interface (BRI) has two independent B-channels for main data and one

16 kbps D-channel for signaling. This means the overall rate is 144 kbps (plus 48 kbps

for maintenance and synchronization).

 The Primary Rate Interface (PRI) service level differs in several parts of the world. In North

America and Japan, it has 23 B-channels and one 64 kbps D-channel. In Europe and Australia

PRI uses 30 B-channels and one 64 kbps D-channel. So PRI can operate at 1536 or 1984 kbps. [3]

16

1.2.2 ISDN Devices

 Terminal Equipment (TE) is a communicating device that complies with the ISDN standards.

It can be for instance digital telephone, ISDN data terminals or ISDN-equipped computer.

 Terminal Adapter (TA) allows communicating devices that do not conform to ISDN standards

to communicate over the ISDN.

 Network Termination (NT1 and NT2) forms the physical and logical boundary between

the customer premises and the carrier’s network. NT1 performs logical and NT2 physical

interface. Usually both functions are performed by one device – NT.

 Exchange Termination (ET) makes the physical and logical boundary between the digital

local loop and the carrier’s switching office. [3]

1.2.3 ISDN Interfaces

 R interface – between a non-ISDN terminal device and a terminal adapter.

 S interface – between a terminal equipment and a network termination device

 T interface – between a network termination device 1 and 2

 U interface – between a network termination device and the carrier’s local

transmission loop. [3]

17

 VoIP

 VoIP stands for Voice over Internet Protocol and it is also addressed as IP telephony. It uses

internet network for transmitting a digitalized voice so there is no “fixed” connection like

in classical telephony. Instead, the voice is transmitted in packets over the internet protocol.

This means that VoIP uses packet switching in contrast to circuit switching used in classical

telephony. The advantages of VoIP are lower cost of calls and higher speed of data which allows

to include more services. The disadvantage can be quality of a call. The quality is monitored

using parameter of the call like latency, jitter and packet loss. The data are digitalized using

codecs and function of VoIP is controlled by signalling protocols. The most common protocols

are H.323, MGCP and especially SIP. [4]

 SIP - Session Initiation Protocol is application-layer control protocol that is used for

controlling real-time multimedia sessions like IP telephony. SIP for providing VoIP uses some

other protocols (SDP, RTP). It is simpler alternative to H.323 and it is based on protocols like

HTTP and SMTP. SIP uses HTTP request – response model and URI (Uniform Resource

Identifier) similar to email address from SMTP.

 A communication in SIP implements a three-way handshake. At first a caller sends

an INVITE message and a callee returns OK to accept the call. Then the caller confirms the call

by ACK message. In (Fig. 2) is shown example of SIP session with names of used methods

and numbers of response codes. The session is between two users - Jane uses hardware SIP

phone with SIP URI sip:jane@callfree.com and Mike has softphone in his PC with SIP URI

sip:mike@myphone.cz. Where callfree.com and myphone.cz are their SIP service providers.

The transaction starts with Invite message from Jane to Mike which at first sent to Jane’s

provider. The next step is sending the message from callfree.com to myphone.cz. This server

knows location of Mike’s softphone and sends the Invite there. Along the way both SIP servers

send back Trying message with code starting with number one (100) which means that request

was received and is being processed. The phone on Mike’s side is ringing sends back Ringing

message with code 180 again through both proxy servers. When the call is answered Mike’s

softphone sends an OK message with code 200. Messages which start with number two mean

the action was successfully received, understood, and accepted. Jane’s SIP phone answers with

acknowledgement message but this time straight to Mike’s softphone because the locations

are already known. The media session itself starts after receiving acknowledgment. After

hang-up the Bye message is sent and it is confirmed by 200 OK message. Besides message

18

codes starting with 1 and two there are other types of messages. Message code starting with 3

means that further action needs to be taken to complete the request. 4xx code signifies that

request contains bad syntax or cannot be fulfilled at the server, 5xx indicates that server failed

to fulfill an apparently valid request and codes starting with number 6 implies that request

cannot be fulfilled at any server. [5]

Fig. 2: SIP session example

19

 Softswitches

 Softswitch is a device which connects telephone calls in a telecommunications network. It is

a central device in the network. A softswitch is typically used in IP telephony and it can provide

a lot of functions and possibilities. Its advantage is in programmability which can of course

differ from one product to another. Further on will be described basic properties of four tested

softswitches – Asterisk [6], FreeSwitch [7], Yate [8] and Amooma Gemeinschaft [9]. There are

also a commercial products – Adore Softswitch [10], Dialogic Softswitch [11], Technicolor

Cirpack Softswitch [12] and many more.

 First and maybe even most important thing when installing and using a new softswitch is its

documentation. The documentation is usually on a wiki website and it contains notes

for installation and basic and advanced configuration. Installation can be an easy task but it is

not always so. The next step is setting up the system for basic calls. This can be done

by configuration files which have a defined structure. The softswitch is in most cases controlled

from a command line/terminal but it can be also expanded to some graphical user interface

for more user friendly configuration and control. Very important property of every softswitch

is its list of supported VoIP protocols. Most of them supports SIP, H.323 or IAX which is

sufficient in most cases. There is also list of supported codecs which is obviously the longer

the better. The next property can be type of signalling. In-band signalling uses the same channel

as the call itself. Out-of-band signalling has its own channel. Besides these two types there

are special ones like IAX2 or SIP-INFO. All of the tested systems support voice announcements

and interactive voice response. These options are pretty much self-explanatory. Important

feature these days is support of IPv6 since the whole internet world is moving that way. Some

of the softswitches support protocol STUN (Session Traversal Utilities for NAT). It enables

a device to find its public IP address. [13] The softswitches support various types of encryption

like TLS or SRTP. None of the tested systems offers SIP-Trunking which is method where

provider assigns range of numbers to a user and the user can divide them at will.

 In (Tab. 1) is a comparison matrix for the tested softswitches where all of them were tested.

They were evaluated by marks according experience of installation and use for basic calls from

the point of view of a new user.

20

Comparison of softswitches: 1 – good (easy), 2 – medium, 3 – bad (difficult)

 Asterisk FreeSwitch Yate Amooma

Documentation 1 1 1 3

Installation 1 1 1 3

Set-up 1 2 1 3

Graphical user
interface

Yes Yes Yes Yes

Supported VoIP
protocols

SIP, H.323,
IAX,XMPP,

Jingle MGCP,
SCCP, UNIStim

SIP, H.323, IAX,
XMPP, Jingle,
SCCP, Skype

SIP, IAX, H.323,
XMPP, Jingle,

MGCP
SIP, ?1)

Voice
announcements

Yes Yes Yes Yes

Interactive
voice response

Yes Yes Yes Yes

Supported
codecs

ADPCM, CELT,
G.711, G.719,
G.722, G.723,
G.726, G.729a,

GSM, iLBC,
Linear, LPC-10,

Speex, SILK

AMR, CELT,
G.711, G.722,
G.723, G.726,

G.729AB, GSM,
iLBC, LPC-10,
Speex, SILK,
DVI4, OPUS

AMR, GSM,
iLBC, Speex

?1)

DTMF
Inband,

Out -of-band,
SIP-INFO, IAX2

Inband,
Out-of-band,

SIP-INFO, IAX2

Inband,
Out-of-band,

SIP-INFO
?1)

IPv6 support Yes Yes Yes No

STUN support Yes Yes Yes ?1)

Operating
systems

Linux, Mac OS,
*BSD, Windows,

Solaris

Linux, Mac OS,
*BSD, Windows,

Solaris

Linux, Mac OS,
*BSD, Windows

Standalone
system

Encryption TLS, SRTP
TLS, SRTP,

ZRTP
TLS ?1)

SIP trunk No No No No

1) Missing information due a poor documentation.

Tab. 1: Softswitch comparison matrix

21

2. Why Testing?

 Testing is very important part of every development process. Testing helps to find bugs

in software as well as any issues caused by hardware. It can reveal problems introduced by new

features in the developed product (regression testing) and also it gives a developer “user

experience feeling”. It means that the developer sees the product from a point of view of a user

which helps him improve the product. Besides the regression testing, when new feature is added

into a software it also has to be tested to find out if it has the expected outcome. When

a customer has any requirements, all these have to be tested. In a development process,

the essential thing is to perform the tests continuously so every new version is tested. This

applies for special parts of the product as well as for the whole system with all its features. All

these procedures lead to one key goal – to ensure the quality of the product is as good

as possible. That’s why every product have to be tested before it goes on the market. There are

various types of testing:

 Black-box x Gray-box x White-box testing which differs according to the level

of internal structures testing.

 Functional x Non-functional tests where the function of the system is tested

or on the other hand the non-functional requirements of the system.

 Regression x Non-regression testing is testing whether the update or patch did not

introduce new bugs vs. testing if the update or patch had desired effect

 Unit x Integration testing is testing of isolated parts of the system vs. testing the parts

combined together

 Special tests e.g. Security, Stress, Endurance, Compatibility, Performance, Load,

Recovery, Boundary, …

22

 Testing in Sphairon

 This thesis is focused on stress and endurance testing of the telephony system. A development

process which includes among other things the regression testing is shown in (Fig. 3). Every

update goes to regression testing system where it is tested whether it did not introduce new

bugs. In Sphairon GmbH (a ZyXEL Company) a Jenkins system is used for the testing.

Fig. 3: Development process

 Automated telephony testing can be integrated in this process. It will replace non-effective

manual testing where some of the tests are not realizable. Automated telephony testing can be

used for simulating for instance high frequency of calls, long duration calls, parallel

combination of different calls and so on. It would be impossible to create for instance

on thousand calls with length of one second and with pause between them also only one second.

That’s why automation of this testing is so important. It can create conditions which would be

difficult or impossible to create manually.

23

In telephony, there is a lot of possibilities of testing. Some of them are listed below.

 Functional tests

o Incoming/outgoing calls between analog/ISDN phones and VoIP

o Calls with/without caller ID

o Emergency calls - high priority

o Frequency calls

o Parallel calls

o Calls with different duration

o Combination of different call settings

o Control of tones

 Control of information elements - for some supplementary services

o Control of CGPN (Calling Party Number)

o Control of CDPN (Called Party Number)

 Supplementary services

o Calling Line Identification Presentation (CLIP)

o Calling Line Identification Restriction (CLIR)

o Advice of Charge (AOC)

o Call Waiting (CW)

o Call Forwarding (CFx)

o Call Hold (HOLD)

24

3. Choosing Hardware

 Important Properties of ISDN Cards

3.1.1 Service Levels

 As already said there are two types of service levels – Basic rate interface and Primary rate

interface. Basic rate interface has two B-channels and Primary rate interface has in Europe 30

B-channels. This makes PRI more interesting for e. g. large companies. More channels however

means of course higher price on the market.

3.1.2 Number of Ports

 Typical number of ports of ISDN cards differs from one port up to eight ports. Most

of the cards of the market is equipped with two or four ISDN ports. There is also possibility

to interconnect cards (from the same manufacturer) to get a higher number of the ports.

3.1.3 Port Configuration Protocol

 ISDN cards can be configured to use one of port configuration protocols. First one is

Point-to-Point Protocol (PPP) which means the communication is between two directly

connected points in a network. The other one is Point-to-Multipoint Protocol (PMP) where

communication offers several paths from single location to various locations – one-to-many.

3.1.4 Modes of Operation

 The modes of operation basically copy some of ISDN devices mentioned above. The two

possibilities are Terminal equipment mode and Network terminal mode. TE is equipment which

complies with ISDN standards and NT creates physical and logical boundary between the

customer’s premises and the carrier’s network. In practical use it means that NT mode is

25

for connecting ISDN telephones to the card and TE mode is for connecting for instance

to a gateway.

3.1.5 Active/Passive Cards

 Another important property of every ISDN card is whether it is active or passive card. Active

cards have their own CPU and memory to handle the communication. Passive ones use CPU

and memory of a computer to which they are connected. It is of course better to use active card

because it does not stress a used PC. On the other hand the difference in the prices of active

and passive cards is quite large.

3.1.6 Other Properties

 There are also other properties of ISDN cards like support of Euro-ISDN stack, type of used

bus (usually some version of PCI or USB) or integration of Echo cancellation module. Some

of the cards also specifically support some software like mISDN drivers or some softswitches.

26

 Market Research

 For purposes of this thesis was necessary to buy an ISDN card. That is why a market research

was needed. In (Tab. 2) there are various ISDN PCI cards which were chosen to be considered

for telephony testing in Sphairon.

27

Tab. 2: Comparison of ISDN cards

S

erv
ice

lev
el

N
u

m
b

er

o
f p

o
rts

C
o

n
fig

u
rab

le

P
P

P
/P

M
P

C
o
n
fig

u
rab

le

T
E

/ N
T

 m
o
d
e

A
ctiv

e/P
assiv

e
E

u
ro

-

IS
D

N

B
u

s

E
ch

o

can
cellatio

n

m
o

d
u
le

S
u
p

p
o
rt

P
rice

E
ico

n
 D

ialo
g
ic

D
iv

a 4
B

R
I-8

 [1
4

]
B

R
I

4

Y
es

Y
es

A
ctiv

e
Y

es
P

C
I 2

.2

Y
es

A
sterisk

9

4
7
 €

O
p

en
V

o
x

B
4

0
0

P
 [1

5
]

B
R

I
4

Y

es
Y

es
P

assiv
e

Y
es

P
C

I 2
.2

N

o

m
IS

D
N

,

A
sterisk

,

F
reeS

w
itch

,

Y
ate

2
9

0
 €

O
p

en
V

o
x

B
E

4
0

0
E

 [1
5
]

B
R

I
4

Y

es
Y

es
P

assiv
e

Y
es

P
C

I

E
x
p

ress

1
.0

Y
es

m
IS

D
N

,

A
sterisk

,

F
reeS

w
itch

,

Y
ate

3
9

3
 €

O
p

en
V

o
x

B
E

4
0

0
P

 [1
5
]

B
R

I
4

Y

es
Y

es
P

assiv
e

Y
es

P
C

I 2
.2

Y

es

m
IS

D
N

,

A
sterisk

,

F
reeS

w
itch

,

Y
ate

3
9

1
 €

O
p

en
V

o
x

B
4

0
0

E
 [1

5
]

B
R

I
4

Y

es
Y

es
P

assiv
e

Y
es

P
C

I

E
x
p

ress

1
.0

N
o

m
IS

D
N

,

A
sterisk

,

F
reeS

w
itch

,

Y
ate

2
9

1
 €

Ju
n

g
h

an
n

s

q
u
ad

B
R

I®
 2

.0
 P

C
I

IS
D

N
 [1

6
]

B
R

I
4

Y
es

Y
es

P
assiv

e
Y

es
P

C
I 2

.2

N
o

m
IS

D
N

,

A
sterisk

4
6
9
 €

D
ig

iu
m

 B
4

1
0

P
 [1

7
]

B
R

I
4

Y

es
Y

es
P

assiv
e

Y
es

P
C

I 2
.2

Y

es
A

sterisk

5
6

0
 €

S
an

g
o

m
a A

5
0

0
 [1

8
]

B
R

I
3

Y

es
Y

es
P

assiv
e

Y
es

P
C

I

2
.2

/P
C

I

E
x
p

ress

N
o

A
sterisk

,

F
reesw

itch
,

Y
ate

2
3

8
 €

S
an

g
o
m

a B
5
0
0
 [1

9
]

B
R

I
4

Y
es

Y
es

P
assiv

e
Y

es
P

C
I

E
x
p

ress
N

o

A
sterisk

,

F
reesw

itch
,

Y
ate

4
7
9
 €

B
ero

n
et B

N
4

S
0
 [2

0
]

B
R

I
4

Y

es
Y

es
P

assiv
e

Y
es

P
C

I

2
.2

/P
C

I

E
x
p

ress

Y
es

A
sterisk

,

m
IS

D
N

4

9
2
 €

28

 Decision

 The market research was done with respect to requirements of Sphairon GmbH (a ZyXEL

Company). That is why only cards with BRI ports are listed here. Current Sphairon products

does not support Primary rate interface. Also 4 ports were needed which meant either one 4-port

card or two 2-port cards. However, the second choice was not very expedient from the financial

point of view. The next desired property was that for every port would be possible to configure

its port configuration protocol PPP/PMP and its mode TE/NT. There was also important

that the card would support Euro-ISDN protocol with its features (call waiting, call forwarding,

advice of charge...).

 According the desired features OpenVox B400E ISDN card was chosen. It fulfils all

requirements and offers the best ration of price and power.

Fig. 4: OpenVox B400E ISDN card [21]

29

4. Implementation

 Card Installation and Call Configuration

 First part of an implementation of the ISDN card was to install all the necessary software

requirements and use them to make simple calls between any softphone and an ISDN telephone

connected to the ISDN card. The setup below is only to get a feeling about how the ISDN card

works and which software configuration is needed to get the card working. The card itself does

not come with any software which means that the user has to find out everything on his own.

On the other hand it also means that the card should work with standard universal Linux drivers

and software.

 For creating the calls, the following is software was chosen:

 ISDN Card

 mISDN V2

 mISDNuser V2

 Linux Call Router

 Asterisk

 Softphone (ZoiPer)

Fig. 5: Block diagram for used setup

 When the call is initiated in the ISDN phone it goes through ISDN line to the ISDN PCI card.

Then it continues to Linux Call Router which controls the card by mISDN drivers. Linux Call

Router is connected to Asterisk by LCR channel and Asterisk connects the call to a softphone

using Session Initiation Protocol. If the call is initiated in the softphone, it goes the other way

around. All parts of the setup are described below.

ISDN
Phone

ISDN Card
Linux
Call

Router
Asterisk

Softphone
(Zoiper)

ISDN
Line

mISDN chan_lcr SIP

30

4.1.1 ISDN Card Hardware Settings

 The first step in the setup is hardware configuration of the ISDN card. Power feeding

connector on the card has to be set to Enable/Disable (depending on used phone), the NT/TE

settings on the card should be set to NT (for connection of an ISDN phone) and the termination

on the card must be adjusted to ON. All these features are in the scheme of the card below.

Fig. 6: ISDN card scheme [22]

31

4.1.2 mISDN

 The mISDN [23] is a modular ISDN driver for Linux which supports various ISDN cards.

Mostly it supports Cologne Chips Design HFC-PCI based cards. The mISDN consist of mISDN

in the kernel space and mISDNuser in the user space.

Fig. 7: Architecture of mISDN [24]

The task was done in Ubuntu 12.04 operating system with kernel 3.2.0-61-generic-pae which

has mISDN v2 driver already included. The next step was to download and install mISDNuser.

It was downloaded from mISDN git repository to ensure it is the latest version and then it was

configured and installed by following commands in Linux shell terminal.

git clone git://git.misdn.eu/mISDNuser.git/

make

./configure

make

make install

Code 1: Installation of mISDNuser

32

4.1.3 Linux Call Router

 Linux call router [25] is an ISDN call router. It is able to work with ISDN cards through mISDN

driver which makes it very important part of this software configuration. The latest version

of LCR (1.7) can be downloaded from mISDN git repository. Then the LCR is installed

by the following commands. It has also very important feature to work with Asterisk by using

module chan_lcr.so which is generated during the installation and copied to Asterisk-modules

directory.

git clone git://git.misdn.eu/lcr.git/

./configure --with-asterisk

make

make install

cp chan_lcr.so /usr/lib/asterisk/modules/

Code 2: Installation of Linux Call Router

 Installation of Linux call router also includes a tool which creates a shell script for start, stop

and restart of mISDN. Start the tool by entering the following command and continue through

all options.

33

genrc

This program generates a script, which is used to

start/stop/restart mISDN

driver. Please select card only once. Mode and options are

given by LCR.

Select driver for cards:

 (1) HFC PCI (Cologne Chip)

 (2) HFC-4S / HFC-8S / HFC-E1 (Cologne Chip)

 (3) HFC-S USB (Cologne Chip)

Select driver number[1-n] (or enter 'done'): 2

Select driver number[1-n] (or enter 'done'): done

Enter options of mISDN_dsp module. For a-LAW, just enter 0.

For u-LAW enter 1.24

[0..n | 0xn]: 0

Enter debugging flags mISDN core. For no debug, just enter 0.

[0..n | 0xn]: 0

Enter debugging flags of cards. For no debug, just enter 0.

[0..n | 0xn]: 0

Enter dsp debugging flags of driver. For no debug, just enter

0.

[0..n | 0xn]: 0

Enter location of the mISDN modules. Enter '0' for kernel's

default

location. Enter '1' for binary distribution's location

'/usr/local/pbx/modules' or enter full path to the modules

dir.

[0 | 1 | <path>]: 0

Finally tell me where to write the mISDN rc file.

Enter the name 'mISDN' for current directory.

You may want to say '/usr/local/lcr/mISDN' or

'/etc/rc.d/mISDN'

: mISDN

Code 3: Generating script for control of mISDN

After this, script with name “mISDN” is created. It can be used with parameters

start/stop/restart/help.

sh mISDN start

sh mISDN stop

sh mISDN restart

sh mISDN help

Code 4: Control of mISDN

34

After starting the mISDN script, the proper loading of drivers can be checked by using lsmod

command and LCR query command and the result should look like this:

lsmod

Module Size Used by

hfcpci 28300 0

mISDN_dsp 203600 0

mISDN_core 80396 17 mISDN_dsp,hfcpci

lcr query

LCR Version 1.14

Using 'misdn_info'

Found 4 ports

Port 0 'hfc-4s.1-1': TE/NT-mode BRI S/T (for phone lines &

phones)

 2 B-channels: 1-2

 B-protocols: RAW HDLC X75slp L2:DSP L2:DSPHDLC

Port 1 'hfc-4s.1-2': TE/NT-mode BRI S/T (for phone lines &

phones)

 2 B-channels: 1-2

 B-protocols: RAW HDLC X75slp L2:DSP L2:DSPHDLC

Port 2 'hfc-4s.1-3': TE/NT-mode BRI S/T (for phone lines &

phones)

 2 B-channels: 1-2

 B-protocols: RAW HDLC X75slp L2:DSP L2:DSPHDLC

Port 3 'hfc-4s.1-4': TE/NT-mode BRI S/T (for phone lines &

phones)

 2 B-channels: 1-2

 B-protocols: RAW HDLC X75slp L2:DSP L2:DSPHDLC

Code 5: Checking loading of the drivers

 Configuration files of LCR are created in /usr/local/etc/lcr/ directory. The important ones

for this application are interface.conf and routing.conf. In both these configuration files is

possible to create various different settings which can all be found in [26]. Here is the used

configuration of file interface.conf:

35

[ast]

remote asterisk

context from-lcr

earlyb yes

tones yes

[Int]

extension

msn 1234

portnum 1

bridge ast

nt

earlyb yes

tones yes

Code 6: LCR file interface.conf

The interface ast is for communication with Asterisk. The keyword remote sets Asterisk

as the remote application and on the next line there is stated that context from-lcr in Asterisk

configuration file should be used. The next two lines configure that this interface has to send

and receive tones and announcements to and from all ports of the interface. The next interface

int communicates with the ISDN card. This interface is internal, which is stated by the keyword

extension. Only the number configured in the ISDN phone is allowed (in this case 1234).

The interface uses port number 1, all calls are routed Asterisk and it runs in NT mode

so the ISDN phone can be connected to the port. Setting of routing.conf is the following.

interface=ast : intern

interface=Int : extern interfaces=ast

Code 7: LCR file routing.conf

The used settings mean that calls from interface ast are forwarded to an internal extension and

calls from interface Int are forwarded to an external interface ast.

 The next step of LCR configuration is generating an extension. LCR has a command for that.

It states the internal and external number of the used ISDN phone and interface which is used

for it.

genextension 1234 Int 1234

Code 8: Generating an extension 1234 for interface Int

36

 The Linux Call Router can be started in normal mode or as a daemon. There is also useful

command to display information of the running instance of LCR and its log.

lcr start

lcr fork

lcradmin state

Code 9: Commands for using LCR

4.1.4 Asterisk

 Asterisk [6] is one of the tested softswitches and due to its advantages (Tab. 1) and the

possibility to be connected to Linux Call Router it was chosen for this task. It is used

as a softswitch for this basic setting. Asterisk can be downloaded from

http://www.asterisk.org/downloads/ and installed by the following commands.

./configure

make

make install

make samples

make config

make install-logrotate

Code 10: Installation of Asterisk

The Asterisk configuration files are located in /etc/asterisk/. There are two files which has to be

modified. The first one is sip.conf. Here the numbers of SIP softphones are registered and their

handling configured. In this case, there are two parts. The general part is used when there is

no other match. Context defines part of a dialplan which is used. The 6001 is number of used

softphone, type sets whether the context is used for inbound or outbound calls or both.

The address of the phone in network is dynamically found and the password is set

as “password”. The last two lines are for resetting previous codec settings and configuring new

ones.

37

[general]

context=default

[6001]

type=friend

context=default

host=dynamic

secret=password

disallow=all

allow=ulaw

Code 11: Asterisk file sip.conf

The second important file is so called dialplan in extensions.conf. There are two contexts used

in the extensions file. The first one is default and it is used for the calls from softphone

to the ISDN phone. When the 1234 extension is dialed, the call is connected through LCR using

interface ast with identifier 1234 and timeout 20 s. The context from-lcr is used for calls issued

from ISDN phone via LCR. There are two possibilities here configured. When the number 100

is used, the call is answered, then the message hello-world is played and the call is hanged.

When the extension 6001 is dialed, the call is connected to the softphone through SIP channel.

[default]

exten = 1234,1,Dial(LCR/ast/1234,20)

[from-lcr]

exten = 100,1,Answer()

same = n,Wait(1)

same = n,Playback(hello-world)

same = n,Hangup()

exten = 6001,1,Dial(SIP/6001,20)

Code 12: Asterisk file extensions.conf

The last step of Asterisk configuration is starting the Asterisk and loading the channel

for communicating with Linux Call Router. The Asterisk here is started with level 5 of verbosity

and debug for getting log messages that help to get information about calls and later on are used

to evaluate the calls.

asterisk –cvvvvvddddd

module load chan_lcr.so

Code 13: Starting Asterisk and loading chan_lcr module

38

4.1.5 Softphone (ZoiPer)

 ZoiPer [27] is free VoIP softphone which uses Session Initiation Protocol. Of course, any other

similar softphone can be used for this purpose. It can be downloaded, untared and started by:

wget http://www.zoiper.com/downloads/free/linux/zoiper219-

linux.tar.gz

tar -xvz zoiper219-linux.tar

./zoiper

Code 14: Installation and start of ZoiPer

The configuration can be done in seven steps:

 Click on options

 Add new SIP account

 Enter chosen number of your softphone (6001) for the account name => OK

 Enter the IP address of your Asterisk system in the Domain field

 Enter chosen number of your softphone (6001) in the Username field

 Enter your SIP peer's password (password) in the Password field

 Enter whatever you like in Caller ID Name or leave it blank

39

 Test Setup Configuration

The requirements on the automated telephony testing are the following:

 Testing of outgoing calls

 Testing of incoming calls

 Testing of more parallel calls at the time

 Testing of calls with high frequency

 Testing of long-duration calls

In (Fig. 8) there is a block diagram of a setup used for automated testing. The calls are initiated

from the Asterisk in test PC which works here as a dialer. If the call is set as outgoing, it goes

through LCR channel to Linux Call Router, then to the ISDN PCI card using mISDN drivers.

The ISDN card is connected to the ISDN ports of the Device Under Test (DUT) by ISDN cables.

The number of ISDN ports depends on the DUT. The call is then handled by the DUT and routed

according a configuration (below) to a softswitch (Asterisk-server) where it is answered.

Thus the setup acts like when the call is initiated from an inner telephony network to the outside

world.

40

Fig. 8: Block diagram of outgoing calls simulation for automated testing

If the call is set as incoming, it uses SIP channel and goes to the Asterisk Server by LAN

connection. In the server the call is routed to the DUT and then through ISDN card and LCR

to Asterisk where it is answered. The Asterisk Server represents again the telephony provider

so the setup simulates an incoming call. The connections by LAN and serial port between test

PC and DUT are used for control of the DUT.

41

Fig. 9: Block diagram of incoming calls simulation for automated testing

4.2.1 Asterisk Server Configuration

 The first step in automating telephony testing was configuring an Asterisk Server.

For the purposes of the testing a virtual machine based on Debian 7 and accessible

in the Sphairon network was set. The server can be accessed and controlled by SSH connection.

An Asterisk instance was installed on this virtual machine with configuration for answering

calls with numbers used for outgoing calls, routing calls with numbers used for incoming calls

and registering extensions which are set in DUT. Examples of the setting are shown

in the following codes. The time for the Wait application is here set to practically infinite

so the calls can be of arbitrary length and they will be always hanged up by the initiating side.

42

[default]

exten = 990000,1,Dial(SIP/990000,20)

exten = 880000,1,Answer()

same = n,Wait(99999999)

same = n,Hangup()

Code 15: Example of extensions.conf in Asterisk Server

[general]

context=default

[990000]

type=friend

context=default

host=dynamic

secret=990000

disallow=all

allow=ulaw

Code 16: Example of sip.conf in Asterisk Server

4.2.2 Test PC Configuration

 The configuration of the test PC is similar to the previous configuration for basic calls.

The ports of the ISDN card need to be set to TE mode and the power feeding should be disabled.

The same software is needed. In Asterisk, there is a possibility to create automated calls

by creating a call file in defined structure and the call is initiated by moving it to Asterisk

outgoing directory /var/spool/asterisk/outgoing/. The call file is located in the same directory

as the test script.

Channel: LCR/ast/<called number>

CallerID: <caller number>

Application: Wait

Data: 1

Code 17: Structure of used call file

In the first line, there is set that channel LCR is used and in Linux Call Router context ast.

Then of course the called number is necessary. CallerID sets the number of the caller. Next

lines set what happens after the call is answered. In this case application Wait is started which

43

just sticks on the line for the defined number of seconds (in this example 1 second) and then it

hangs up.

 The first issue here is that calls which are initiated in Asterisk and go through chan_lcr

to Linux Call Router do not have any caller ID. It is probably due a bug in the LCR channel

so a way around this had to be found. In LCR there is a possibility to map call numbers going

through. So to each port was assigned a number to be set which corresponds to the setting of the

DUT.

[ast]

remote asterisk

context from-lcr

earlyb yes

tones yes

[te-mode0]

portnum 0

screen-out % unknown present 990000%

[te-mode1]

portnum 1

screen-out % unknown present 991111%

[te-mode2]

portnum 2

screen-out % unknown present 992222%

[te-mode3]

portnum 3

screen-out % unknown present 993333%

File interfaces.conf in test PC

[main]

interface=ast : intern

interface="te-mode0" : extern interfaces=ast

interface="te-mode1" : extern interfaces=ast

interface="te-mode2" : extern interfaces=ast

interface="te-mode3" : extern interfaces=ast

File routing.conf in test PC

All the necessary Asterisk configuration files are handled in the script so the last thing

to configure is reading log messages from the DUT. It is done using syslog-ng Ubuntu package.

After installation of this package a configuration file has to be created in /etc/syslog-ng/conf.d/.

44

source s_udp {

 udp(port(514));

};

destination df_sphairon {

 file("/var/log/sphairon.log");

};

destination df_dut_log {

 file("/var/log/dut_log.log");

};

filter f_sphairon {

 host("192.168.100.*");

};

log {

 source(s_udp);

 filter(f_sphairon);

 destination(df_sphairon);

 destination(df_dut_log);

};

Code 18: Syslog configuration file

After creating the file, the syslog service must be restarted to get the log messages

from the DUT. The log messages are saved into two files sphairon.log and dut_log.log.

The second one is only for usage of the script and gets cleaned at start of every test.

/etc/init.d/syslog-ng restart

Code 19: Restart of the syslog service

For controlling the DUT via serial port there is a software called ckermit. It has to be installed

on the test PC and file ~/kermrc.ttyS0 with the following structure must be created.

set line /dev/ttyS0

set speed 115200

set carrier-watch off

set handshake none

set flow-control none

set prompt {kermit-ttyS0> }

log session ~/kermlog.ttyS0

connect

Code 20: File kermrc.ttyS0

45

The remote access is started by:

kermit ~/kermrc.ttyS0

Code 21: Starting ckermit

4.2.3 DUT Configuration

 There are currently two devices to be tested – Speedlink 5501 and Gateway 400 dp NC.

In the first one, there is only one ISDN port. In the second device, there are four ISDN ports.

Beside that the configuration is pretty much the same. It is done in a Web Interface. At first

a WAN setup has to be performed. This is done in tested devices automatically. After that

a VoIP provider needs to be configured.

Fig. 10: Configuration of VoIP provider

Then all used VoIP accounts must be set. These accounts are the same which are registered in

the Asterisk Server.

46

Fig. 11: Configuration of VoIP account

The next part (only for SIP Gateway) is setting of ISDN interfaces in the ISDN section.

Fig. 12: Configuration of ISDN interface

47

In the remote control was extended level of debug messages for better analysing of results and

a remote syslog was enabled.

voip /tmp/voip_socket tr change CallCtrl 1023

voip /tmp/voip_socket tr change ExosipCtrl 1023

voip /tmp/voip_socket tr change DspApi 1023

voip /tmp/voip_socket tr save

cfgclient "updatekey Syslog Id 1 EnableRemoteLogging \

integer:1 RemoteLoghost text:192.168.100.100;"

Code 22: Commands used in remote access to the DUT

48

 Automated Testing

 The automation of the testing was achieved by creating a program in shell script. The shell

script is designed to work with a Linux system. It is quite easy to control programs, processes

and files in Linux by using shell script language. The program creates automated calls in given

length with defined properties. These properties are set before the test in a configuration file

teltest.conf. The program is divided into two scripts. There is a main script start_teltest.sh

and it controls another script call_daemon.sh which as the name implies runs in the background

as a daemon. The second one originates the calls and checks the results which are returned using

a save file back to the main script. It runs as a daemon because there can be up to eight parallel

instances running and creating eight parallel calls.

Fig. 13: Software design diagram

49

4.3.1 Configuration File

 Inside the configuration file, user can set an arbitrary test. The first parameter is a caller

number. This number must correspond with the setting of Linux Call Router and the DUT

in order that the caller number works properly. The same thing applies for the second parameter

which is a called number. There must also be set a number of calls with given configuration,

length of the calls and pause between the calls. These two specify frequency with which these

calls are originated. Then the user can choose if incoming or outgoing calls should be simulated.

The last parameter is number of the group. The idea here is that quite complicated test can be

configured and executed in groups. In each group can be different number of parallel calls with

different parameters.

 In the configuration file below is an example of a configuration of a test. In the first group,

there are four parallel outgoing calls with high frequency. Every call has a length of one second

and pause of one second. These calls are executed one thousand times. In the group number 2,

there are two parallel incoming calls of length 10 seconds and pause 5 seconds. They are created

50 times. In the last group, there are two long-term calls. Both are executed only ones but they

last for ten hours. One of them is set as incoming, the other one as outgoing.

50

#Configuration file for script start_teltest.sh

#This file needs to be in the same directory as

start_teltest.sh.

#Set up your telephony test here.

#Syntax is:

#<caller number> <called number> <number of calls>

#<length of calls> <pause between calls> <in/out>

#<group of prallel calls>

#Use white space between parameters.

#Time parameters are in seconds

#in/out stands for incoming/outgoing calls

#Example:

#470000 471111 500 2 0.5 out 1

990000 880000 1000 1 1 out 1

991111 881111 1000 1 1 out 1

992222 882222 1000 1 1 out 1

993333 883333 1000 1 1 out 1

880000 990000 50 10 5 in 2

881111 991111 50 10 5 in 2

990000 880000 1 36000 1 out 3

881111 991111 1 36000 1 in 3

Code 23: Configuration file teltest.conf

4.3.2 Main Script

 The job of the main script start_teltest.sh is to read the configuration file and to create a test

according it. Also to start given number of instances of the call daemon, wait for them to finish

and at the end export results from the test in html file. In the following figure is a flowchart

which shows the function of the main script.

51

Fig. 14: Flowchart describing function of the main script

52

 At start the program calls the CheckProcess function so the necessary processes Asterisk and

Linux Call Router are running.

CheckProcess()

{

 processNum=`ps aux | grep $1`

 if ["$processNum" = "0"]

 then

 echo "$1 is not running!"

 exit 1

 fi

}

CheckProcess "asterisk"

CheckProcess "lcr

Code 24: Checking necessary processes

 If the test in manually stopped by Ctrl+C the action is detected and function Stop is called

which stops all the running subprocesses and the main script finishes all the necessary things

before stopping.

Stop()

{

 toKill=$(ps aux |grep "call_daemon.sh" |grep -v grep

|awk '{print $2}')

 kill $toKill

}

trap "Stop" 2

Code 25: “Graceful” stopping

 In the next step the program asks the user to enter a name and firmware version of the tested

device. This is saved into a save file so if the DUT has not changed it is possible to leave

the field blank and the previous information is used. According the information a directory

with DUT name, firmware version and timestamp is created (if does not already exist). Then

Asterisk log file is rotated. The log file is used to get information about the calls so if it would

be large it would make the test much slower.

53

 The results are exported into html file which uses JavaScript application Google Charts

to visualize the results in pie charts. The html file is created during the test. Besides the charts

it contains tables with information about the test.

 After this first part, there is the main cycle which is executed for each group. Asterisk

configuration file extensions.conf is modified according information read from the teltest.conf.

The comments and empty lines are detected using command egrep and then skipped.

For the incoming calls, there is set that the call to the given number should be answered,

then Asterisk waits for the defined length of the call and after that the call is hanged up. Asterisk

have to reload the extensions file in order to take effect of the changes.

 In the next phase all of the parameters from the configuration file for the test are loaded and

the subscript call_daemon.sh is started for every parallel call. The subscript is started

with necessary parameters which have to be hand over to it.

 When the subscripts are started, the main script is waiting for them to finish. If the subscript

finishes properly as planned, it returns an error status which equals to zero. If it is stopped

prematurely the error status is non-zero and the script does not start a new cycle.

 After the subscripts are finished, the results are passed to the main script through temporary

save files. The main script extracts them from the files. Successful and failed calls are counted

as well as crashes of the DUT that can also lead to crash of the test PC.

 Once the whole test is finished file with messages from the DUT is copied to a directory with

timestamp of the test along with all the other files important for analyzing of the test.

Then results are calculated and shown in html file.

4.3.3 Call Daemon

 File call_daemon.sh serves for initiating and evaluating of the calls. It is started by the main

script and it runs in a background. During the tests, there can be up to eight instances running

simultaneously creating eight parallel calls at the same time.

54

Fig. 15: Flowchart describing function of the call daemon

55

 One of the functions of the call daemon is to create a log from the test. There is a function

ExportToLog which takes care of that. The function uses a timestamp along with all

the parameters and identification number of the call. The identification number has a format

number of call/number of parallel call/number of group. After all these information the function

adds a current status, which is passed as parameter of the function.

ExportToLog()

{

 currentTime=`date +"%F_%H:%M:%S"`

 echo "Call: $i/$parallelNum/$group [$currentTime] $inOut

from: $fromNumber to: $toNumber length: $lengthOfCalls s\

 pause: $pauseBetweenCalls s Status: $1" | tee -a $outputFile

 return

}

Code 26: Exporting messages into log file

 The script at first checks ID of last call. It finds the last call to given number and its

identification numbers so they can be compared with found messages in the Asterisk log file

during a call. Thus is secured that script evaluates the right call.

 The next important feature of the script is checking for crash of the DUT. The crash can be

caused by the stress testing and when not handled it can bring about a crash of test PC. That’s

why a log file from the DUT is checked for panic messages.

CheckDUT()

{

 #Check state of DUT

 dutLog=$(tail -500 $dutLogFile)

 if echo "$dutLog" |grep -q "Fatal exception: panic"

 then

 currentTime=`date +"%F_%H:%M:%S"`

 echo "Error [$currentTime] DUT crash" \

 |tee -a $outputFile

 echo "DUT reboots, waiting..."

 errors=$((errors + 1))

 sleep 120

 WaitForReboot

 fi

}

Code 27: Checking DUT for panic messages

56

 If the panic occurs, it is detected and a function WaitForReboot is called. It waits for the DUT

to reboot and checks the DUT log file for messages of registering SIP accounts after reboot.

WaitForReboot()

{

 while true

 do

 dutLog=$(tail -200 $dutLogFile)

 echo "$dutLog" |grep -q \

 "User is successfully registred" && break

 sleep 1

 done

 sleep 1

}

Code 28: Waiting for reboot of DUT

 The call is initiated by copying a template file call_file.call.source to a local call file, which

is moved to Asterisk outgoing directory /var/spool/asterisk/outgoing/. Before the call file is

moved there, it is modified according settings of the call. One reason, why the file is copied

at first is that only one template file is needed. Second reason is that the call file needs to be

moved and not copied to the Asterisk outgoing directory. When a file is copied in Ubuntu,

the copy appears in the target folder sequentially but if it is moved, only a pointer on that file is

changed and the path of the file is changed at once.

 After the call is initiated, measuring of an establish time is started and one of the functions

for checking result of the call is originated. Functions CheckIncomingResult

and CheckOutgoingResult continuously read log messages from asterisk and thus evaluate

current status of an initiated call. As the names imply one of them is for incoming and the other

one for outgoing calls. When the call is successfully established, the establish time is measured

as well as length of the call. The length of the call must be the same as defined

in the configuration file otherwise the call is evaluated as unsuccessful.

 The last job of the call daemon is to export results into a file. Thus all the necessary

information are passed back to the main script.

57

 Results

 Results of the tests are analysed and if there is any error a source of this error has to be found.

There can be several causes. The test system is developed to discover bugs in tested software

which is the first possible cause. But there can also be a bug in any part of the test setup (the used

software, the test script). So each of the results have to be carefully examined.

For the examination are used log files from the DUT, Asterisk and the test script. If a bug of the

test setup is found it is fixed and the test is started again. If a bug of the DUT is discovered,

it has to be further inspected and the tested software version gets back to a development process

(Fig. 3). When the bug is fixed the software is tested again. Thus the quality of developed

product is ensured.

 The results of each test are exported into an html file. The html file uses JavaScript application

Google Charts to create charts for each tested group and for the whole test. Besides the charts,

there are also tables with configuration of the test. The results are furthermore saved into a text

file in a simple form.

 In addition to result files, there is also a file with log messages which contains results of the

whole test as well. Examples of the log file, result html file and result test file are shown below.

58

Call: 1/1/1 [2014-06-25_15:43:22] out from: 990000 to: 880000

length: 1 s pause: 1 s Status: Making attempt

Call: 1/1/1 [2014-06-25_15:43:22] out from: 990000 to: 880000

length: 1 s pause: 1 s Status: Making a call

Call: 1/1/1 [2014-06-25_15:43:25] out from: 990000 to: 880000

length: 1 s pause: 1 s Status: Call failed

Call: 1/1/1 [2014-06-25_15:43:35] out from: 990000 to: 880000

length: 1 s pause: 1 s Status: Call instance freed

Call: 2/1/1 [2014-06-25_15:43:37] out from: 990000 to: 880000

length: 1 s pause: 1 s Status: Making attempt

Call: 2/1/1 [2014-06-25_15:43:37] out from: 990000 to: 880000

length: 1 s pause: 1 s Status: Making a call

Call: 2/1/1 [2014-06-25_15:43:38] out from: 990000 to: 880000

length: 1 s pause: 1 s Status: Call successfully established

Call: 2/1/1 [2014-06-25_15:43:39] out from: 990000 to: 880000

length: 1 s pause: 1 s Status: Correct call length

Call: 2/1/1 [2014-06-25_15:43:39] out from: 990000 to: 880000

length: 1 s pause: 1 s Status: Call instance freed

Test started at: 2014-06-25_13-53-23 on device: Gateway 400

dp NC 4.38.2.1.r79486

 2 calls were made in: 0:0:15

 Successful: 1

 Failed: 1

 Success: 50.00 %

 Crashes: 0

Code 29: Example of a log file

Group=1: Success=99 Failed=1

Group=2: Success=200 Failed=0

Group=3: Success=300 Failed=0

Group=4: Success=400 Failed=0

Group=5: Success=499 Failed=1

Group=6: Success=600 Failed=0

Code 30: Example of a result text file

59

Fig. 16: Example of a result html file

60

Conclusion

 The goal of this thesis was to develop a system which would automate a telephony testing of

devices produced by Sphairon GmbH (a ZyXEL Company). The testing of telephony module

in these devices was done manually which is very ineffective way. Also only some tests can be

made in this way. The aim here was to make test of the devices for determination of their

stability in unusually intense conditions – stress test.

 The automated system for telephony testing developed during this thesis is able to

automatically create automated calls. It uses several combination of software which is

specifically configured so they all work together. It is capable of creating the calls in parallel

so all of the eight channels in used device under test are used at the same time. It can also

simulate incoming calls from DSL connection as well as outgoing calls from devices connected

to ISDN ports of the device under test. Furthermore there is a possibility to configure parameters

of each test like caller and called number, length and number of configured calls, pause between

them and if the call should be incoming or outgoing. Besides that, really complicated tests with

different parameters can be set in groups in one configuration file.

 The produced testing system can stress the devices under test by automatically originated

calls in high frequency (minimal length of a call is one second) and it can create call of

practically unlimited length as well. Of course there is a possibility of any combination of calls

with different settings so during one test there can be several long-term calls and several calls

with high frequency which helps stress the tested devices. This would be never possible if only

manual testing is used.

 Thanks to all of these properties the developed automated test system already helped to

discover some issues and bugs in tested software versions of the devices under test. It confirms

that the product of this thesis is useful and helpful in the process of a regression testing in

Sphairon GmbH (a ZyXEL Company).

 In future the produced automated telephony test is supposed to be included into complex test

process in Sphairon. It will be part of a regression testing system to ensure even better quality

of produced devices. Also it would be useful to “simplify” the current setup to use only mISDN

drivers in the test PC and not Asterisk and Linux Call Router. In every software a bug can

appear so the less software is used the lower is probability of issues on the test PC side.

61

Resources

[1] ROUSE, M.: What is signalling? – Definition from WhatIs.com. [online].

[cit. 2014-04-11]. <http://whatis.techtarget.com/definition/signaling>

[2] Dialogic Corporation: Telephony Fundamentals an Introduction to Basic Telephony

Concepts. Montreal, Quebec, 2007. 11 Pgs.

[3] BECKER, R.: ISDN Tutorial. [online]. [cit. 2014-04-30].

<http://www.ralphb.net/ISDN/>

[4] VALDES, R. and ROOS, D.: How VoIP Works. [online]. [cit. 2014-05-02].

 <http://computer.howstuffworks.com/ip-telephony.htm>

[5] Rosenberg, J.: SIP: Session Initiation Protocol. , RFC 3261, June 2002. 269 Pgs.

[6] Asterisk.org [online]. [cit. 2014-07-16]. <http://www.asterisk.org>

[7] FreeSWITCH | Communication Consolidation [online]. [cit. 2014-07-16].

 <http://www.freeswitch.org>

[8] Yate [online]. [cit. 2014-07-16]. <http://yate.null.ro>

[9] Gemeinschaft 5.1 [online]. [cit. 2014-07-16]. <http://amooma.de/gemeinschaft/gs5>

[10] Adore SoftSwitch [online]. [cit. 2014-07-16].

<http://www.adoreinfotech.com/softswitch.html>

[11] ControlSwitch System [online]. [cit. 2017-07-16].

 <http://www.dialogic.com/en/products/softswitch/controlswitch-system.aspx>

[12] Cirpack [online]. [cit. 2014-07-16]. <http://www.cirpack.com>

[13] Rosenberg, J.: Session Traversal Utilities for NAT (STUN). , RFC 5389, October 2008.

51 Pgs.

[14] Diva 4BRI-8 | Dialogic [online]. [cit. 2014-07-16].

<www.dialogic.com/en/products/media/diva/diva-4bri-8.aspx>

[15] ISDN BRI Cards [online]. [cit. 2014-07-16].

 <www.openvox.cn/en/products/telephony-cards/isdn-bri-cards.html>

[16] quadBRI 2.0 PCI ISDN [online]. [cit. 2014-07-16].

 <www.junghanns.net/de/quadBRI2_produkt.html>

[17] Digital Euro ISDN BRI Cards | Digium [online]. [cit. 2014-07-16].

<www.digium.com/en/products/telephony-cards/digital/euro-isdn-bri>

[18] A500 2-24 port Scalable S/T BRI | Sangoma [online]. [cit. 2014-07-16].

 <www.sangoma.com/products/a500-2-24-port-scalable-st-bri/>

62

[19] Sangoma B500 4xBRI/S0 PCIe Card [online]. [cit. 2014-07-16]. <www.lieske-

elektronik.com/product_sangoma-b502e-b500-4xbri-s0-pcie-card__487824.htm>

[20] The beroNet Baseboard PCI or PCIe –beroNet GmbH [online]. [cit. 2014-07-16].

 <www.beronet.com/product/beronet-cards>

[21] CTI-PRO, s.r.o.: OpenVox B400E - 4 port ISDN BRI PCIe card. [online].

[cit. 2014-06-06]. <http://shop.ctipro.cz/lang-cs/2618-openvox-b400e-4-port-isdn-bri-

pcie-card-.html&curr=6>

[22] OpenVox B200P B400P B400E User Manual. September 2007. 11 Pgs.

[23] mISDN [online]. [cit. 2014-06-06]. < https://www.misdn.eu>

[24] About mISDN - MISDN.org [online]. [cit. 2014-06-06].

<https://www.misdn.eu/wiki/About_mISDN/>

[25] Eversberg, A.: Linux-Call-Router [online]. [cit. 2014-06-06].

<http://www.linux-call-router.de>

[26] Eversberg, A.: Linux-Call-Router, Software based ISDN Private Branch Exchange for

Linux 1.2. 2004. 105 Pgs.

63

Glossary

Signalling Information for maintaining a telephone call.

In-band signalling Signalling in the same channel as a telephone

call is.

Out-of-band signalling Signalling in its own separated channel.

Private Branch Exchange Device for switching telephone calls.

Integrated Services Digital Network Digital telephony system.

ISDN Service Levels Types of ISDN ports (BRI/PRI).

Voice over Internet Protocol Telephony which uses internet network for

transmitting a digitalized voice.

Session Initiation Protocol Application-layer control protocol used for

controlling real-time multimedia sessions.

Softswitch Device which connects telephone calls in a

telecommunications network.

Asterisk One of the most used softswitches.

mISDN Universal Linux driver for ISDN cards.

Linux Call Router Software engine for routing calls to/from

ISDN card.

Terminal equipment mode Mode of ISDN port for connecting

gateways.

Network termination mode Mode of ISDN port for connecting

telephones.

Extension Additional telephone connected to a

telephone line.

Dialer Device which automatically generates calls.

Call file File with defined structure which after

moving into a special Asterisk directory

generates a call.

Daemon Process that runs at the background

64

A Main Script

#!/bin/bash

#Script for making repeted calls using Asterisk, Linux Call

#Router and ISDN card

#Script uses call_file.call.source in the same directory

#which has to be configured

#Pathes to used files

dutLogFile="/var/log/dut_log.log"

lcrLogFile="/usr/local/var/log/lcr/log"

asteriskExtensionsFile="/etc/asterisk/extensions.conf"

configFile="teltest.conf"

saveFile="saveFile"

#Default values

successfulCalls=0

failedCalls=0

errors=0

finished=0

error="false"

CheckProcess()

{

 processNum=`ps aux | grep $1`

 if ["$processNum" = "0"]

 then

 echo "$1 is not running!"

 exit 1

 fi

}

Stop()

{

 toKill=$(ps aux |grep "call_daemon.sh" \

 |grep -v grep |awk '{print $2}')

 error="true"

 kill -13 $toKill

 ReleaseCalls

}

ReleaseCalls()

{

 for k in `seq 1 $((parallelCalls * 40))`

 do

 lcrLines=$(tail -$k $lcrLogFile)

65

 if echo "$lcrLines" \

 |grep -q "EP(.*): SETUP .* CH(.*) interface"

 then

 endPoint=$(echo "$lcrLines" \

 |grep "EP(.*): SETUP .* CH(.*) interface")

 endPoint=$(echo ${endPoint#*EP\(})

 endPoint=$(echo ${endPoint%\)\: SETUP*})

 lcradmin release $endPoint > /dev/null

 fi

 done

}

WaitForDaemons() {

 while true

 do

 for pid in "$@"

 do

 shift

 if kill -0 "$pid" 2>/dev/null

 then

 set -- "$@" "$pid"

 elif ! wait "$pid"

 then

 error="true"

 fi

 done

 (("$#" > 0)) || break

 sleep ${WAITALL_DELAY:-1}

 done

}

#Functions for HTML result file

CreateHtmlHead()

{

cat > "$resultHtml" <<EOF

<html>

 <head>

 <!--Load the AJAX API-->

 <script type="text/javascript"

src="https://www.google.com/jsapi"></script>

 <script type="text/javascript">

 google.load('visualization', '1.0',

{'packages':['corechart']});

 google.setOnLoadCallback(drawChart);

 function drawChart() {

 }

 </script>

 </head>

 <title>Telephony Test Results</title>

 <body>

66

 <h2>Test started at: $fileDate on device: $device

$firmVersion</h2>

 <table>

waiting for next

EOF

}

ConfigChart()

{

sed -i "s_function drawChart.*_\

function drawChart\(\) { \n\

 var data$group = new

google.visualization.DataTable\(\)\n\

 data$group.addColumn\(\'string\', \'Title\'\)\n\

 data$group.addColumn\(\'number\', \'Value\'\)\n\

 data$group.addRows\(\[\n\

 \[\'Successful Calls\', $successfulCallsGroup\],\n\

 \[\'Failed Calls\', $failedCallsGroup\]\n\

 \]\);\n\

 var options$group = {\'title\':'Results\'};\n\

 var chart$group = new

google.visualization.PieChart(document.getElementById\(\'piec

hart$group\'\)\);\n\

 chart$group.draw\(data$group, options$group\);\n\

_g" "$resultHtml"

}

AddTableHead()

{

sed -i "s_waiting for next_\

 <tr>\n\

 <td>\n\

 <h5>Group $group</h5>\n\

 <table border=\"1\" style=\"width:700px; font-size:

10px;\">\n\

 <tr>\n\

 <th>Caller Number</th>\n\

 <th>Callee Number</th>\n\

 <th>Number of Calls</th>\n\

 <th>Length of Calls</th>\n\

 <th>Pause Between Calls</th>\n\

 <th>Incoming/Outgoing</th>\n\

 <th>Average Establish Time</th>\n\

 </tr>\n\

waiting for next\n\

_g" "$resultHtml"

}

AddTable()

{

sed -i "s_waiting for next_\

67

 <tr>\n\

 <td>$fromNumber</td>\n\

 <td>$toNumber</td>\n\

 <td>Number of calls $parallelNum $group</td>\n\

 <td>$lengthOfCalls</td>\n\

 <td>$pauseBetweenCalls</td>\n\

 <td>$inOut</td>\n\

 <td>Establish time $parallelNum $group</td>\n\

 </tr>\n\

waiting for next\n\

_g" "$resultHtml"

}

AddGroupResutls()

{

sed -i "s_waiting for next_\

 <tr>\n\

 <td align="center" colspan="7">\

 Successful=$successfulCallsGroup \

 Failed=$failedCallsGroup Average Establish \

 Time=$establishTime</td>\n\

 </tr>\n\

waiting for next\n\

_g" "$resultHtml"

}

AddChart()

{

sed -i "s_waiting for next_\

 </table>\n\

 </td>\n\

 <td>\n\

 <div id=\"piechart$group\" style=\"width: 500px; \

 height: 180px;\"></div>\n\

 </td>\n\

 </tr>\n\

waiting for next\n\

_g" "$resultHtml"

}

AddResults()

{

group=0

successfulCallsGroup=$successfulCalls

failedCallsGroup=$failedCalls

ConfigChart

sed -i "s_waiting for next_\

 </table>\n\

 <div id=\"piechart0\" style=\"width: 800px; height:

400px;\"></div>\n\

 </body>\n\

68

</html>\n\

_g" "$resultHtml"

}

#Check if Asterisk and LCR is running

CheckProcess "asterisk"

CheckProcess "lcr"

error="false"

echo "Enter device name (if it has not changed, leave \

the field blank and press ENTER): "

read device

if [-z "$device"]

then

 device=$(sed '1!d' $saveFile)

else

 echo $device > $saveFile

fi

echo "Enter firmware version (if it has not changed, leave \

the field blank and press ENTER): "

read firmVersion

if [-z "$firmVersion"]

then

 firmVersion=$(sed '2!d' $saveFile)

else

 echo $device > $saveFile

 echo $firmVersion >> $saveFile

fi

echo "Set number of test runs: "

read cycles

for cycle in `seq 1 $cycles`

do

#Rotate asterisk log file

asterisk -rx "logger rotate"

fileDate=`date +"%F_%H-%M-%S"`

#Clear DUT log file

> $dutLogFile

#Dir for results

resultDir="$HOME/TelTest_Results/$device

$firmVersion/Test_$fileDate"

outputFile="$resultDir/Teltest_log_$fileDate.txt"

resultHtml="$resultDir/Result_$fileDate.html"

resultTxt="$resultDir/Result_$fileDate.txt"

partResultFile="$resultDir/part_result_$fileDate"

69

#Create outputfile and folder for results

if [! -d "$HOME/TelTest_Results/"]

then

 mkdir "$HOME/TelTest_Results/"

fi

if [! -d "$HOME/TelTest_Results/$device $firmVersion/"]

then

 mkdir "$HOME/TelTest_Results/$device $firmVersion/"

fi

if [! -d "$resultDir"]

then

 mkdir "$resultDir"

fi

echo "Test started at: $fileDate on device: $device

$firmVersion" |tee -a "$outputFile"

> "$resultTxt"

#Start time

start=`date +%s`

CreateHtmlHead

for group in `seq 1 99`

do

 parallelCalls=0

 parallelNum=0

 successfulCallsGroup=0

 failedCallsGroup=0

 establishTime=0

 echo "[from-lcr]" > $asteriskExtensionsFile

 #Read number of parallel calls in current group

 while read line

 do

 echo "$line" |egrep -q "^[[:cntrl:]]*[#;]|^$|^#" \

 && continue #Skip comments and empty lines

 set $line

 if [$7 -eq $group]

 then

 parallelCalls=$((parallelCalls + 1))

 if ["$6" = "in"]

 then

 echo "exten = $2,1,Answer() " \

 >> $asteriskExtensionsFile

 echo "same = n,Wait(99999999)" \

 >> $asteriskExtensionsFile

 echo "same = n,Hangup()" \

 >> $asteriskExtensionsFile

 fi

 fi

70

 done <$configFile

 #Break the process if no more calls found

 if [$parallelCalls -eq 0]

 then

 continue

 fi

 echo "Reloading Asterisk dialplan..."

 asterisk -rx 'dialplan reload'

 #Kill the subprocesses if ctrl+c

 trap "Stop" 2

 AddTableHead

 pids=""

 #Create subprocess for every parallel call

 while read line

 do

 echo "$line" |egrep -q "^[[:cntrl:]]*[#;]|^$|^#" \

 && continue #Skip comments and empty lines

 set $line

 if [$7 -eq $group]

 then

 parallelNum=$((parallelNum + 1))

 fromNumber=$1

 toNumber=$2

 numberOfCalls=$3

 lengthOfCalls=$4

 pauseBetweenCalls=$5

 inOut=$6

 AddTable

 sh call_daemon.sh "$line" $parallelNum \

 $parallelCalls $group $fileDate "$resultDir" &

 pids="$pids $!"

 fi

 done <$configFile

 #Wait untill call daemonds are finished

 WaitForDaemons $pids

 #Get data from subsrcipt

 for i in `seq 1 $parallelCalls`

 do

 if [-f "$partResultFile.$i"]

 then

 while read line

 do

 if echo "$line" |grep -q "successfulCalls="

 then

71

 line=$(echo ${line#*successfulCalls=})

 successfulCallsNew=$line

 fi

 if echo "$line" |grep -q "failedCalls="

 then

 line=$(echo ${line#*failedCalls=})

 failedCallsNew=$line

 fi

 if echo "$line" |grep -q "errors="

 then

 line=$(echo ${line#*errors=})

 errors=$((errors+line))

 fi

 if echo "$line" |grep -q "establishTime="

 then

 line=$(echo ${line#*establishTime=})

 establishTime=$(echo "scale=1; \

 ($establishTime + $line)" |bc -l)

 sed -i "s/Establish time $i \

 $group/$line/g" "$resultHtml"

 fi

 done <"$partResultFile.$i"

 sed -i "s/Number of calls $i $group/\

 $((failedCallsNew + successfulCallsNew))/g" \

 "$resultHtml"

 successfulCallsGroup=$((successfulCallsGroup \

 + successfulCallsNew))

 failedCallsGroup=$((failedCallsGroup + \

 failedCallsNew))

 fi

 done

 establishTime=$(echo "scale=1; \

 ($establishTime / $parallelCalls)" |bc -l)

 successfulCalls=$((successfulCalls + \

 successfulCallsGroup))

 failedCalls=$((failedCalls + failedCallsGroup))

 echo "Group=$group: Success=$successfulCallsGroup \

 Failed=$failedCallsGroup Establish=$establishTime" >> \

 "$resultTxt"

 AddGroupResutls

 ConfigChart

 AddChart

 cp $dutLogFile "$resultDir/dut_log_$fileDate.log.$group"

 > $dutLogFile

 if ["$error" = "true"]

 then

 break

 fi

done

72

#Copy used part of DUT log file to results

cp teltest.conf "$resultDir/teltest_$fileDate.conf"

cp "/var/log/asterisk/messages"

"$resultDir/asterisk_log_$fileDate.log"

#Calculation of percentage of success and of the elapsed time

percent=$(echo "scale=5; (($successfulCalls / \

($failedCalls + $successfulCalls)) * 100)" |bc -l)

stop=`date +%s` #Stop time

duration=$(($stop - $start))

hours=$(($duration / 3600))

minutes=$(((($duration - ($hours * 3600)) / 60)))

seconds=$(($duration - ($hours * 3600) - (minutes * 60)))

echo -e "\nTest started at: $fileDate on device: $device \

$firmVersion\n\

$(($successfulCalls + $failedCalls)) calls were made in: \

$hours:$minutes:$seconds\n\

Successful: $successfulCalls\n\

Failed: $failedCalls\n\

Success: $percent %\n\

Crashes: $errors" |tee -a "$outputFile"

AddResults

#Open results in browser

firefox "$resultHtml" &

if ["$error" = "true"]

then

 echo "Test interrupted"

 break

fi

done

73

B Call Daemon

#!/bin/sh

line=$1

parallelNum=$2

parallelCalls=$3

group=$4

fileDate=$5

resultDir="$6"

sleepAfterFail=0.1

#Pathes to used files

asteriskLogFile="/var/log/asterisk/messages"

dutLogFile="/var/log/dut_log.log"

lcrLogFile="/usr/local/var/log/lcr/log"

callFile="call_file.call.source"

outputFile="$resultDir/Teltest_log_$fileDate.txt"

asteriskExtensionsFile="/etc/asterisk/extensions.conf"

tempCallFile="temp_file$parallelNum.call"

partResultFile=\

"$resultDir/part_result_$fileDate.$parallelNum"

#Default values

prevLine="empty"

successfulCalls=0

failedCalls=0

errors=0

sleepTime=0.05

establishTimeTotSec=0

establishTimeTotNano=0

releaseTimeTotSec=0

releaseTimeTotNano=0

ExportToLog()

{

 currentTime=`date +"%F_%H:%M:%S"`

 echo "Call: $i/$parallelNum/$group [$currentTime] \

 $inOut from: $fromNumber to: $toNumber length: \

 $lengthOfCalls s pause: $pauseBetweenCalls s \

 Status: $1" | tee -a "$outputFile"

}

ReadConfigFile()

{

 set $line

 fromNumber=$1

74

 toNumber=$2

 numberOfCalls=$3

 lengthOfCalls=$4

 pauseBetweenCalls=$5

 inOut=$6

}

MakeCalls()

{

 for i in `seq 1 $numberOfCalls`

 do

 #Get info for the logfile

 ExportToLog "Making attempt"

 CheckDUT

 callResult="false” #False until it detects

 #successful or unsuccessful call

 callIdChecked="false"

 echo "Call: $i/$parallelNum/$group [$currentTime] \

 $inOut from: $fromNumber to: $toNumber" >> \

 /var/log/dut_log.log

 cp $callFile $tempCallFile

 SetParameters

 mv $tempCallFile /var/spool/asterisk/outgoing/

 startMeasureTimeSec=`date +%s`

 startMeasureTimeNano=`date +%1N`

 ExportToLog "Making a call"

 if ["$inOut" = "out"]

 then

 CheckOutgoingResult

 fi

 if ["$inOut" = "in"]

 then

 CheckIncomingResult

 fi

 #Export resutls into temp file

 echo "successfulCalls=$successfulCalls" > \

 "$partResultFile"

 echo "failedCalls=$failedCalls" >> \

 "$partResultFile"

 echo "errors=$errors" >> "$partResultFile"

 echo "establishTime=$establishTimeAvrSec" >> \

 "$partResultFile"

 sleep $pauseBetweenCalls

 done

}

75

CheckOutgoingResult()

{

 while true

 do

 lastLines=$(tail -$((parallelCalls * 20)) \

 $asteriskLogFile)

 if ["$callIdChecked" = "false"] \

 && echo "$lastLines" \

 |grep -q "\[call=.* ast=lcr.*\] Sending setup to \

 LCR. (interface=ast dialstring=$toNumber, cid=)"

 then

 SetIdNumbersOut

 fi

 #Check for successful call

 if ["$callResult" = "false" -a \

 "$callIdChecked" = "true"] \

 && echo "$lastLines" \

 |grep -q "\[call=$callId ast=lcr/$lcrId\] \

 Incomming connect (answer) from LCR"

 then

 MeasureTime

 ExportToLog "Call successfully established"

 startCallTime=`date +%s`

 callResult="success"

 fi

 #Check for failed call

 if ["$callResult" = "false" -a \

 "$callIdChecked" = "true"] \

 && echo "$lastLines" \

 |grep -q "\[call=$callId ast=lcr/$lcrId\] \

 Incomming disconnect"

 then

 ExportToLog "Call failed"

 echo "\033[1;31mCall failed\033[0m"

 callResult="fail"

 failedCalls=$((failedCalls + 1))

 ReleaseCall

 sleep $sleepAfterFail

 fi

 #Check for free channel

 if ["$callIdChecked" = "true"] \

 && echo "$lastLines" \|grep -q \

 "\[call=$callId ast=NULL\] Call instance freed\|\

 \[call=0 ast=lcr/$lcrId\] Freeing call instance"

 then

 if ["$callResult" = "success"]

 then

 CheckCallLength

 fi

76

 ExportToLog "Call instance freed"

 if ["$callResult" = "fail"]

 then

 sleep $lengthOfCalls

 fi

 break

 fi

 sleep $sleepTime

 done

}

CheckIncomingResult()

{

 while true

 do

 lastLines=$(tail -$((parallelCalls * 20)) \

 $asteriskLogFile)

 if ["$callIdChecked" = "false"] \

 && echo "$lastLines" \

 |grep -q "\[call=.* ast=lcr.*\] \

 Try to start pbx. (exten=$toNumber"

 then

 SetIdNumbersIn

 fi

 #Check for successful call

 if ["$callResult" = "false" -a \

 "$callIdChecked" = "true"] \

 && echo "$lastLines" |grep -q \

 "\[call=$callId ast=lcr/$lcrId\] Starting call"

 then

 MeasureTime

 ExportToLog "Call successfully established"

 startCallTime=`date +%s`

 callResult="success"

 fi

 #Check for failed call

 if ["$callResult" = "false"] \

 && echo "$lastLines" |grep -q \

 "\[.*\] NOTICE.* Queued call to SIP/$toNumber.* \

 expired without completion"

 then

 CheckNoticeDate

 if [$noticeDate -gt $prevNoticeDate]

 then

 noticeDate=$prevNoticeDate

 ExportToLog "Call failed"

 echo "\033[1;31mCall failed\033[0m"

 callResult="fail"

 failedCalls=$((failedCalls + 1))

 sleep $lengthOfCalls

77

 sleep $sleepAfterFail

 break

 fi

 fi

 #Check for free channel

 if ["$callIdChecked" = "true"] \

 && echo "$lastLines" |grep -q \

 "\[call=0 ast=lcr/$lcrId\] Freeing call instance"

 then

 if ["$callResult" = "success"]

 then

 CheckCallLength

 fi

 ExportToLog "Call instance freed"

 CheckNoticeDate

 prevNoticeDate=$noticeDate

 break

 fi

 sleep $sleepTime

 done

}

CheckLastId()

{

 for j in `seq 1 $((parallelCalls * 20))`

 do

 lastLines=$(tail -$j $asteriskLogFile)

 if ["$inOut" = "out"]

 then

 if echo "$lastLines" |grep -q \

 "\[call=.* ast=lcr.*\] Sending setup to LCR. \

 (interface=ast dialstring=$toNumber, cid=)"

 then

 prevId=$(echo "$lastLines" |grep \

 "\[call=.* ast=lcr.*\] Sending setup to \

 LCR. (interface=ast dialstring=\

 $toNumber, cid=)")

 prevId=$(echo ${prevId##*call=})

 prevId=$(echo ${prevId% ast*})

 break

 fi

 fi

 if ["$inOut" = "in"]

 then

 if echo "$lastLines" \

 |grep -q "\[call=.* ast=lcr.*\] \

 Try to start pbx. (exten=$toNumber"

 then

 prevId=$(echo "$lastLines" \

78

 |grep "\[call=.* ast=lcr.*\] \

 Try to start pbx. (exten=$toNumber")

 prevId=$(echo ${prevId##*call=})

 prevId=$(echo ${prevId% ast*})

 break

 fi

 if echo "$lastLines" \

 |grep -q "\[.*\] NOTICE.* Queued call to \

 SIP/$toNumber.* expired without completion"

 then

 prevNoticeDate=$(echo "$lastLines"|grep \

 "\[.*\] NOTICE.* Queued call to SIP\

 /$toNumber.*expired without completion")

 month=`date +%b`

 prevNoticeDate=$(echo \

 ${prevNoticeDate##*\[$month })

 prevNoticeDate=$(echo \

 ${prevNoticeDate%\] NOTICE*})

 break

 fi

 fi

 done

}

SetIdNumbersOut()

{

 callId=$(echo "$lastLines" \

 |grep ".*\[call=.* ast=lcr.*\] Sending setup to LCR. \

 (interface=ast dialstring=$toNumber, cid=)")

 lcrId=$callId

 callId=$(echo ${callId##*call=})

 callId=$(echo ${callId% ast*})

 if ["$prevId" != "$callId"]

 then

 prevId=$callId

 lcrId=$(echo ${lcrId##*ast=lcr\/})

 lcrId=$(echo ${lcrId%\] Sending*})

 callIdChecked="true"

 fi

}

SetIdNumbersIn()

{

 callId=$(echo "$lastLines" \

 |grep "\[call=.* ast=lcr.*\] Try to start pbx. \

 (exten=$toNumber")

 lcrId=$callId

 callId=$(echo ${callId##*call=})

 callId=$(echo ${callId% ast*})

 if ["$prevId" != "$callId"]

 then

79

 prevId=$callId

 lcrId=$(echo ${lcrId##*ast=lcr\/})

 lcrId=$(echo ${lcrId%\] Try to*})

 callIdChecked="true"

 fi

}

#Setting new parameters for calls

SetParameters()

{

 sed -i "s/Data: .*/Data: $lengthOfCalls/g" \

 $tempCallFile

 sed -i "s/CallerID: .*/CallerID: \"Asterisk\" \

 <$fromNumber>/g" $tempCallFile

 if ["$inOut" = "out"]

 then

 sed -i "s/Channel: LCR\/ast\/.*/Channel: \

 LCR\/ast\/$toNumber/g" $tempCallFile

 fi

 if ["$inOut" = "in"]

 then

 sed -i "s/Channel: LCR\/ast\/.*/Channel: \

 SIP\/$toNumber@192.168.115.24/g" $tempCallFile

 fi

}

CheckCallLength()

{

 callTime=`date +%s`

 callTime=$((callTime - startCallTime))

 lengthOfCallsInt=$(echo "$lengthOfCalls/1" |bc)

 callDifference=$((lengthOfCallsInt - callTime))

 if [$callDifference -lt 0]

 then

 callDifference=$((0 - callDifference))

 fi

 if [$callDifference -gt 10 -a $callDifference -gt \

 $((lengthOfCallsInt / 1000))]

 then

 ExportToLog "Wrong call length"

 failedCalls=$((failedCalls + 1))

 echo "\033[1;31mCall failed\033[0m"

 else

 ExportToLog "Correct call length"

 echo "\033[1;92mCall successful\033[0m"

 successfulCalls=$((successfulCalls + 1))

 fi

}

80

MeasureTime()

{

 measureTimeSec=`date +%s`

 measureTimeNano=`date +%1N`

 measureTimeSec=$((measureTimeSec - startMeasureTimeSec))

 measureTimeNano=$((measureTimeNano - \

 startMeasureTimeNano))

 establishTimeTotSec=$((measureTimeSec + \

 establishTimeTotSec))

 establishTimeTotNano=$((measureTimeNano + \

 establishTimeTotNano))

 establishTimeAvrNano=$(echo "scale=1; \

 ($establishTimeTotNano / ($i * 10))" |bc -l)

 establishTimeAvrSec=$(echo "scale=1; \

 (($establishTimeTotSec / $i) + $establishTimeAvrNano)" \

 |bc -l)

}

ReleaseCall()

{

 for k in `seq 1 $((parallelCalls * 20 * lengthOfCalls))`

 do

 lcrLines=$(tail -$k $lcrLogFile)

 if echo "$lcrLines" \

 |grep -q "EP(.*): SETUP from CH(.*) \

 interface from=ast .* dialing $toNumber"

 then

 endPoint=$(echo "$lcrLines" \

 |grep "EP(.*): SETUP from CH(.*) \

 interface from=ast .* dialing $toNumber")

 endPoint=$(echo ${endPoint#*EP\(})

 endPoint=$(echo ${endPoint%\)\: SETUP*})

 lcradmin release $endPoint > /dev/null

 break

 fi

 done

}

CheckNoticeDate()

{

 if ["$callResult" = "success"]

 then

 noticeDate=$(echo "$lastLines" |grep \

 "\[call=0 ast=lcr/$lcrId\] Freeing call instance")

 else

 noticeDate=$(echo "$lastLines" |grep \

 "\[.*\] NOTICE.* Queued call to \

 SIP/$toNumber.*expired without completion")

 fi

 month=`date +%b`

81

 noticeDate=$(echo ${noticeDate##*\[$month })

 noticeDate=$(echo ${noticeDate%\] NOTICE*})

 noticeDate=$(echo "$noticeDate" |tr -d " ")

 noticeDate=$(echo "$noticeDate" |tr -d ":")

 echo "$noticeDate > $prevNoticeDate"

}

WaitForReboot()

{

 while true

 do

 dutLog=$(tail -200 $dutLogFile)

 echo "$dutLog" |grep -q "User is successfully \

 registred" && break

 sleep 1

 done

 sleep 1

}

CheckDUT()

{

 #Check state of DUT

 dutLog=$(tail -500 $dutLogFile)

 if echo "$dutLog" |grep -q "Fatal exception: panic"

 then

 currentTime=`date +"%F_%H:%M:%S"`

 echo "Error [$currentTime] DUT crash" \

 |tee -a "$outputFile"

 echo "DUT reboots, waiting..."

 errors=$((errors + 1))

 sleep 120

 WaitForReboot

 fi

}

ReadConfigFile

#Check call ID from previous calls

CheckLastId

MakeCalls

exit 0

