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Abstract. This paper summarizes current scientific knowledge and the results of a study focused on the 
determination of a powertrain’s inertia ellipsoid.  The work deals with the application of methods for the 
experimental determination of the inertia matrix and summarizes their basic potential. The work describes 
a proposed computational algorithm by means of which the inertia ellipsoid can be determined. The 
experimental section of the work presents the results of measurements for internal combustion engines 
(powertrains).  

1 Introduction  

A number of methods have been used to determine the 
moments of inertia. All of the methods are based on 
a principle of relationship between the body’s moment 
of inertia and the frequency of the oscillation. The 
measurement process assumes the oscillation to be 
undamped and the time of the oscillation is measured. 
The fundamental methods for determining the body’s 
moment of inertia are based on the principle of the 
compound pendulum, torsional suspension unit or bifilar 
suspension apparatus (and/or trifilar or quadrifilar 
suspension apparatus, as the case may be).  

The work was aimed at propose a methodology for 
measuring on the basis of which the main mass 
parameters of the internal combustion engine and 
transmission system (powertrain) could be identified. The 
measured powertrain’s moment of inertia matrices may 
be further used in practice as one of the input parameters 
for the simulation and computation. These data can be 
primarily used for optimizing the powertrain’s flexible 
mount assembly and simulating the vehicle’s crash tests.  

An effective solution to the above mentioned problem 
can be the application of accurate input parameters to the 
simulation and computation both from the view point of 
safety (crashtests) and comfort (quality powertrain mount 
assembly in the car body).  

Therefore an experimental stand for determining the 
mass, center-of-gravity position and moments of 
a powertrain’s inertia was created where necessary 
measurements (with the greatest degree of possible 
accuracy) were later carried out. 

 

2 The Determination of the Moments of 
Inertia  

The moments of inertia and the deviation moments 
of inertia can be expressed in a matrix form using one 
quantity – the inertia matrix, 
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which is the matrix of the second-order symmetrical 
tensor. 
 

2.1 The Inertia Ellipsoid and Principal Axes 
of Inertia [2][5] 

 
As the axis passing through the selected origin changes 
its direction, the body’s moment of inertia will change. 

Figure 1. The powertrain´s mount assembly and 
vehicle´s crashtest simulation results crash [7]. 
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Let us plot the reverse square roots of the relevant 
moments of inertia on these axes from the origin 
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1=  and search for the geometrical locus of 

end points M. By means of the coordinates (x, y, z) 
of a point denoted as M, the relationship for the moment 
of inertia with respect to any axis passing through the 
origin of the Carthesian coordinate system can be 
modified to 
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The locus sought after is the ellipsoid (generally the 
triaxial ellipsoid). It is called the inertia ellipsoid

(hereinafter referred to as ES). 

The axes of the ellipsoid are called the principal axes 
of inertia and then, a condition applies that all three 
deviation moments with respect to these axes are equal to 
zero. The moments with respect to these axes are called 
the principal moments of inertia.  

2.2 Experimental Determination of the Moments 
of Inertia 

The moments of inertia can be determined by means of 
any CAD software if a 3-D model of the component 
exists. The relevant software requires the bodies’material 
density values and the appropriate command will 
compute the centre-of-gravity position and inertia 
matrices. However, we may face a situation when this 
approach cannot be used and consequently, the moments 
of inertia will have to be determined experimentally. 

3 Description of Method  

Measurement accuracy represented a key aspect for 
selecting a method for determining the powertrain’s 
inertia ellipsoid. The correctly determined powertrain’s 
inertia matrix is critical for further use in computer 
simulations, e.g. crashtests. 

The determination of the mass and the center of gravity 
of the powertrain and/or the engine was carried out on the 
basis of the measurement on a trifilar suspension 

apparatus by measuring tensile forces in individual wires. 
To determine the moments of inertia, the indirect method 
which measures the period of oscillation of the body 
suspended from a unifilar (torsional) suspension 
apparatus was used.  

To determine the moments of inertia for the bodies 
having more complex shapes we will definitely need 
fixtures that will enable suspension of the body in various 
positions from the torsional suspension apparatus. 
Therefore, an auxilliary frame for clamping the 
powertrain (engine) was made. The powertrain was 
clamped into the auxilliary frame in a defined way so that 
the axes of the selected powertrain’s coordinate system 
were parallel to the axes of the frame’s coordinate 
system.  

Since the frame’s moments of inertia are not 
insignificant, two measurements were needed. The first 
measurement was made for the frame-powertrain system. 
The other measurement was carried out separately for the 
frame so that the frame could be „subtracted“ from the 
measured system. To determine the moments of inertia, 
the indirect method measuring the period of oscillation 
of the body suspended from a unifilar (torsional) 
suspension apparatus was used. The formulae for the 
computation of the moment of inertia using a torsional 
suspension apparatus is as follows: 
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Where I  - the moment of inertia, G  - spring wire’s 
modulus of elasticity in shear, d  - spring wire diameter, 
L  - suspension length, T  - time period of one 
oscillation. 

The measurements necessitated development of 
a suspension apparatus which consisted of universal 
joints (Cardan joints) and a spring wire. The ends of the 
suspension apparatus were equipped with carrying yokes 
into which the spring wire was fixed by clamping. The 
structure enables the measured body to hang freely (the 
line passing through the wire axis intersects the body’s 
centre of gravity) for the whole period of the oscillation 
and for all cases of the suspension (See Fig.3).  

The measured quantities were used for the determination 
of elements of inertia matrix of the powertrain and 
auxilliary frame. At least six measurements are needed to 
determine the inertia matrix. However, at least ten 
measurements were taken to increase the result accuracy 
based on the relationship determining the moment of 
inertia with respect to any axis passing through the origin. 
Consequently, the position of the inertia ellipsoid was 
determined by means of other mathematical procedures. 

If we plot the values of J

1

 from the origin using 
a specific scale as vectors along the axis of the 
suspension apparatus, the end points will form an 

M(x,y,z)

Figure 2. The Inertia Ellipsoid.

O 

o(α,β,γ)

o
I

1

y

z

  
 

  
DOI: 10.1051/, 01005 (2017)MATEC Web of Conferences matecconf/2017890100589

Laboratory Methods

2



ellipsoid of inertia in a space. The following simplified 
picture shows a process for plotting the inertia ellipsoid 
in the plane passing through the axis of the crankshaft 
and axes of the cylinders. Naturally, to enhance the 
accuracy, more measurements should be taken, ideally a 
few measurements using the suspension apparatuses 
which determine the points of the inertia ellipsoid in the 
proximity of ends of its half-axes (i.e. around the vertices 
of ellipse). 

Let us point out that to determine the inertia matrix (i.e. 
the inertia ellipsoid as well) we have to oscillate the body 
around at least six different axes using different 
suspension points. The directions of the individual axes 
should differ from each other as much as possible. 
Consequently, we would get six values of the moments of 
inertia with respect to different axes passing through the 
centre of gravity and we could determine the inertia 
matrix of the measured body by means of the a system of 
equations. Six equations involving six unknowns (using 
equation (2)) suffice for computing the moments of 
inertia with respect to the X,Y and Z axes and deviation 
moments. 

For measurement accuracy reasons and for the follow-up 
computation of the inertia ellipsoid’s size and position 
(hereinafter ZVES – i.e. fundamental properties of the 
inertia ellipsoid, i.e. the principal moments of inertia and 
the position of inertia ellipsoid’s axes) at least ten 
measurement of the moment of inertia were taken with 
respect to any axis passing through the origin. In general, 
the matrix of n-equations in six unknowns will be 
obtained for n-measurements. In this event, the unknowns 
(

X
I , 

Y
I , 

Z
I , 

XY
D , 

YZ
D  and 

ZX
D ) can be determined by 

the method of  least squares [8], [9]. 

The method of least squares is a mathematical method for 
statistical data processing. It helps find a suitable 
approximation function for given, empirically determined 
values. The function being searched for must be a linear 
combination of the functions which were known in 
advance and the method will enable their coefficients to 

be computed. The method of least squares seeks out such 
values of the coefficients so that the sum of the squares of 
their functional value deviations from the given measured 
values was as low as possible. In a more simplified way: 
„so that the sum of the squares of the deviations was the 
lowest“. We can make up a system of quotations 

bxA =⋅ (A  is a matrix which we know, b  is a vector 
which we know, too, x  is an unknown vector). 
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In the present case the matrix A  has more rows than 
columns, the size of the vector b  is bigger than the one 
of the vector x . It is an over determined system of 
equations which has more equations than unknowns. In 
this event it is theoretically possible to ignore some 
equations but let us suppose that the equations result from 
experimental data where each measurement is considered 
valuable and we are not able to decide which of these 
laboriously obtained equations should be ignored.  

In the cases of the over determined system of linear 
equations such a system has an infinite number of 
solutions (or more precisely, no solution). Let us say that 
such a fact is not satisfactory and define an error in 
solution bxAe −⋅= .  

We want to find such a solution x , so that the error (or 
more precisely the size of the vector e ) was minimal. 
The solution of our system of equations can be derived by 
derivation of matrices and vectors. Since e  is a vector, 
let us adapt the requirement so that the sum of the squares 
of the individual deviations (i.e. the elements of the 
vector e ) is „minimal“. Defining a criterium in such 
a way actually results in the minimization of the scalar 
product which can be written by means of transposition. 

min→⋅ee
T

The product will be minimal if its derivation according 
the variable   will equal zero. 

  ( ) ( ) ( )[ ] 0=
′

−⋅⋅−⋅=′⋅ bxAbxAee
TT . The relationship 

can be further modified using the rules for transposition 
of products and derivation of the products of matrices and 
vectors. 

[ ] 022 =⋅⋅−⋅⋅⋅=′⋅+⋅⋅−⋅⋅−⋅⋅⋅ bAxAAbbxAbbAxxAAx
TTTTTTTT

Figure 3. Principle of plotting an inertia ellipsoid in 
a plane of the crankshaft. 
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The relationship above may be used to express the 
resultant formulae for x . 

   ( ) bAAAx ⋅⋅⋅= −
TT

1
    (4) 

Determination of the centre-of-gravity position was made 
by means of measurement on a trifilar suspension 
apparatus (measuring the tensile forces in individual 
wires). Firstly, the centre-of-gravity position was 
determined in one plane XY, then the frame (or the 
powertrain-frame assembly) turned and the centre-of-
gravity position was determined in the plane 
perpendicular to the original plane (YZ).  

The measurement described above i.e. the determination 
of the centre-of-gravity position from the origin along all 
three axes will be carried out separately for the frame as 
well as for the assembly (the frame and the powertrain). 
Consequently, the measured and computed values can be 
used to compute the mass and the position of the 
powertrain’s centre-of-gravity. 

The last computational operation which has to be 
performed to determine the inertia matrix of the 
powertrain (engine) is subtraction of the auxilliary 
frame’s inertia matrix from the frame-powertrain 
assembly’s inertia matrix. Steiner’s theorem will be used 
for this computation. 

4 Measurement Accuracy  

4.1 Measurement verification using a simple 
body clamped in the frame 

To verify the measurement method the following 
procedure was selected. Firstly, a geometrically simple 
body was chosen and the body passed through the 
complete measurement process as a separate powertrain – 
i.e. firstly, the frame-body assembly and then the frame 
itself were measured. A simple form of the body was 
selected due to a simple calculation of the body’s 
moment of inertia matrix which was further compared 
with the measured matrix. Considering the semi-finished 
products being available in our laboratory, an assembly 
consisting of two semi-finished products (Ø100 and 
Ø130 mm) was chosen. The position of the semi-finished 
products was chosen in such a way so that one of the 
deviation moments was not zero. See the Figure below. 

The following evaluation of the results 

[ ]%   100⋅−=Δ
V

VN

H

HH      (5)

(HN – measured value; HV – computed value using 3D 
CAD), will result in the following relative errors in 
measurements 

%  
4523,05298,2

1068,1
5298,23321,0

−−

−
=

ZZYZX

YZYYX

XZXYX

III

III

III .

The principal moments of inertia showed very good 
conformity, the most significant deviation occurred along 
the x-axis and it was less than 1.5 %.  

The position of the semi-finished products can be 
considered asymmetrical. However, the asymmetry is 
chosen in such a way that two deviation moments are 
zero. For these two deviation moments the relative error 
cannot be determined, we are able to determine only the 
absolute one (i.e. 2 0895,0 mkg ⋅−  and 2 0198,0 mkg ⋅− ). 
The last deviation moment was measured approximately 
with the relevant error of 2.5 %. This result is very good 
taking into account the comparison of the deviation 
moments’sizes (comparing with the principal moments of 
inertia, lower orders of values are in question). 

Figure 5. Semi-finished products for the measurement 
verification. 

Figure 4. Illustration of the measured inertia ellipsoid. 
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4.2 Experimental determination of the position of 
the principal axis of inertia for a semi-finished 
product situated „across“ the frame 

By further measurement to verify the method, a semi-
finished product having the dimensions of Ø60-1500 mm 
was located into the position of the auxilliary frame 
diagonal. The measurement method matched the 
verification described in the previous section (i.e. the 
method which included the powertrain as well). Firstly, 
the moments of inertia matrix of the chosen semi-finished 
product was computed using the CAD software and then 
it was determined by means of measurements. These 
moments of inertia matrices served for further 
determination and comparison of the solid angles of the 
principal axis of inertia from the coordinate system. See 
the following illustration. 

Using the same evaluation of the results as for previous 
cases (see formula 5), we can write: the following relative 
errors of measurement: 

%  
1100,14292,16673,0
4292,15425,26231,0
6673,06231,02455,0

−
−

−−
=

ZZYZX

YZYYX

XZXYX

III

III

III ,

% 
1467,1
2953,1

2923,0

1

1

1

−=
γ
β
α .

A comparison of the computed and measured moments of 
inertia values resulted in an average error of 1.10 %, the 
max. deviation occurred along the y-axis (2.54 %). The 
absolute error along the principal axis of inertia (identical 
with the semi-finished product axis) was less than 1° for 
all solid angles. 

4.3 The influence of the air filter on the inertia 
ellipsoid of powertrain for passenger car 

Further measurements were carried out two variants of 
the powertrain, which consisted of 1.4 59 kW MPI engine 
and gearbox MQ 200. First unit was measured without 
the air filter and later was measured second variant with 

intake filter. Weight of the plastic intake filter was 
1.17 kg (which is approximately 0.9 % of the weight of 
the aggregate).  
Even with such a small change in weight (but at a great 
distance from the center of gravity) occurred in all ten 
measuring of the oscillation period of the assembly (i.e. 
frame + powertrain) in a different position to 
a measurement a long time for time period of one 
oscillation of powertrain with intake filter. Differences 
measured times one oscillation were around 0.6 %. 
Measured values are shown in the following table. 

Table 1. Spatial angles and times of one oscillation. 

α (°) β (°) γ (°) 
without 

filter 
TBF (s) 

with 
filter 

TSF (s) 

[(TBF-TSF)/ 
TBF].100 

62,17 53,58 131,17 10,822 10,89 0,63 
122,75 55,75 128,08 10,588 10,626 0,36 
63,42 130,42 127,83 9,373 9,449 0,81 
120,83 128,25 126,67 9,969 9,988 0,19 
122,67 130,33 57,67 10,76 10,835 0,70 
93,5 49,17 138,92 10,529 10,583 0,51 

54,17 142,33 80,08 9,753 9,83 0,79 
92 13,25 104,17 9,374 9,447 0,78 

5,42 94,08 93,83 11,217 11,267 0,45 
94,08 94,42 6,08 10,69 10,725 0,33 

If these changes in inertia matrix are expressed 
as a percentage according to the 
formula ( )[ ] 100/ ⋅−

BFBFSF
III , so we come out  

[ ]% 
65,035,179,49
35,184,352,1

79,4952,133,1

−

−
.

5 Conclusions  

The presented work deals with an experimental 
determination of the body’s moment of inertia. The work 
focuses on evaluating the data obtained from 
measurements carried out on various types of powertrains 
or engines. To meet the objectives, a measurement 
method to determine the moments of inertia, centre-of-
gravity position and the powertrain mass was developed. 
Then specialized aids for measurements were developed 
together with a special program for evaluating the 
measured data.  

The method was verified by measuring several 
powertrains of engines, in some cases for more versions 
of the engine accessory arrangement (twelve powertrains 
and one engine used for passenger cars, one engine used 
for a commercial vehicle). The measurement was always 
performed without media i.e. without oil and coolant.  

The metering of inertia moment is well known, but 
measurement accuracy represented a key requirement in 

Figure 6. Photograph and CAD model with a semi-
finished product located diagonally. 
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the measurement method design. Consequently, more 
values were always measured and for the determination 
of the ellipsoid of inertia an approximation using the 
method of least squares was used.  

The mathematical derivation which considered all 
adverse impacts to a maximum extent resulted in 
approximately 6 % measurement accuracy. A simple-
shaped body was used for the complete measurement 
process calibration. The relative error between the 
measured values and the CAD program computed values 
was up to 2.5 %. 

The mass (in the form of engine’s accessories) being 
added to or removed from the engine affects the resulting 
values of the moments of inertia and positions of the 
centres of gravity. The change in the moment of inertia 
depends on the following factors: the moment of inertia 
of the relevant component, the mass (m ) and the 
distance from the centre of gravity ( e ). The relation of  

2
00 emII
S

⋅+= is known as the Steiner formula [2]. 
The distance from the centre of gravity plays a significant 
role because even a relatively small mass can affect the 
total moment of inertia of the power train. Several 
versions of measurements of engines and powertrains 
with varied arrangement were chosen to assess the impact 
of accessories. E.g. the measurement carried out on the 
truck engine (3.8 l Avalon Engine) resulted in nearly 
20 % change in the axial moment of inertia when 
approximately a 10 % change in mass occurred.  

The proposed measurement methodology was able to 
reveal even a relatively small difference in measurement 
depending on the powertrain’s accessories. Consequently, 
the change resulting from removal of the engine’s intake 
filter (1.4, 59 kW MPI engine with MQ 200 gearbox) 
which formed 0.9 % of the total powertrain’s mass, could 
be observed. 

Further work could focus on more detailed analysis 
of certain issues, impact of engine’s liquid media, 
simplification of the method (its laboriousness) while 
maintaining the measurement accuracy. 
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Figure 7. Comparison of the inertia ellipsoid of the 
engine with and without a compressor for air 
conditioning. 
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