

STUDIUM VLASTNOSTÍ PŘECHODOVÉ VRSTVY MIKROLEGOVANÝCH OCELÍ PŘI RŮZNÝCH TEPLOTÁCH SVAŘOVÁNÍ

Diplomová práce

Studijní program:	N2301 – Strojní inženýrství
Studijní obor:	2303T002 – Strojírenská technologie
Autor práce:	Bc. Radek Kreisinger
Vedoucí práce:	doc. Ing. Karel Daďourek, CSs.

STUDY OF TRANSITION LAYER PROPERTIES OF MICROALLOYED STEELS AT DIFFERENT WELDING TEMPERATURES

Diploma thesis

Study programme:	N2301 – Mechanical Engineering
Study branch:	2303T002 – Engineering Technology
Author:	Bc. Radek Kreisinger
Supervisor:	doc. Ing. Karel Daďourek, CSs.

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Bc. Radek Kreisinger
Osobní číslo:	S13000652
Studijní program:	N2301 Strojní inženýrství
Studijní obor:	Strojirenská technologie
Název tématu:	Studium vlastností přechodové vrstvy mikrolegovaných ocelí při různých teplotách svařování
Zadávající katedra:	Katedra materiálu

Zásady pro vypracování:

- Seznamte se s vlastnostmi řízené válcovaných mikrolegovaných ocelí, především S500MC a jejich použitím a svařováním ve firmě Bombardier CZ a. s. Česká Lípa.
- 2. Navrhněte a provedte zkoušky vlivu počáteční teploty oceli S500MC na její vlastnosti.
- 3. Vyhodnotte základní mechanické vlastnosti a přechodovou vrstvu výsledných svařenců.
- 4. Získané výsledky vyhodnoťte a formulujte vhodné závěry pro optimální svařování této oceli.

Rozsah grafických prací: dle potřeby Rozsah pracovní zprávy: 40 - 50 stran Forma zpracování diplomové práce: tištěná/elektronická

Seznam odborné literatury:

[1] TOTTEN, G. E. Steel Heat Treatment. Portland, USA : Taylor and Francis. 2007

[2] DORAZIL, E. Kovové materiály. Brno: VUT, 1990

[3] POLLARD B. Spot Welding Characteristics of HSLA Steels for Automotive Applications. Welding Research Suppl. 1974. 350.

[4] WELLNER, P. a B. WALSER. Preparation and Analysis of HSLA Steel Metalographic Samples. Metal Progres. 1981. No 5.

Vedoucí diplomové práce:

Konzultant diplomové práce:

doc. Ing. Karel Dadourek, CSc. Katedra materiálu Ing. Vítězslav Plch Bombardier CZ Česká Lípa

Datum zadání diplomové práce: Termín odevzdání diplomové práce: 15. května 2015

14. listopadu 2014

prof. Ing. Petr Louda, CSc vedoucí katedry

V Liberci dne 14. listopadu 2014

Prohlášení

Byl jsem seznámen s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé diplomové práce pro vnitřní potřebu TUL.

Užiji-li diplomovou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Diplomovou práci jsem vypracoval samostatně s použitím uvedené literatury a na základě konzultací s vedoucím mé diplomové práce a konzultantem.

Současně čestně prohlašuji, že tištěná verze práce se shoduje s elektronickou verzí, vloženou do IS STAG.

Datum:

Podpis:

ANOTACE

Diplomová práce se zabývá zkoumáním vlivu teploty při svařování mikrolegované oceli S500MC na mechanické vlastnosti (Rm, Re, A a tvrdost) a vznik trhlin. Byl navrhnut experiment svařování do materiálu s teplotami od 0 do 20°C. Po provedení zkoušek mechanických vlastností a metalografickém rozboru bylo provedeno vyhodnocení vhodnosti svařování za těchto teplot.

KLÍČOVÁ SLOVA: mikrolegovaná ocel, svařování, mechanické vlastnosti, S500MC, přechodová oblast, termomechanické válcování

ANNOTATION

The diploma thesis examines the influence of temperature on mechanical properties (Rm, Re, A and hardness) and the crack formation during welding of the microalloyed steel S500MC. There was proposed an experiment to weld material at temperature range from 0 to 20 ° C. After the testing of mechanical properties and metallographic analysis was performed the evaluation of the welding suitability during these temperatures.

KEY WORDS: microalloyed steel, welding, mechanical properties, S500MC, transition area, thermomechanical rolling

Poděkování

Tímto bych rád poděkoval doc. Ing. Karlovi Daďourkovi, Csc. za odborné rady a připomínky při vypracování práce, Ing. Vítězslavu Plchovi za kontrolu práce, rady a pomoc při realizaci experimentální části, firmě Bombardier Transportation Czech Republic, a.s. za příležitost řešit daný problém a za materiální a technickou podporu při zpracování práce a především mé přítelkyni lvě Martínkové za podporu při vypracování práce a během studia.

Obsah

1.	Úvo	/od10					
2.	Nejv	více	používané materiály v BT CZ	.11			
	2.1	Úvo	d	.11			
	2.2	Ocel	S355J2	.11			
	2.3	Ocel	S500MC	.12			
	2.4	Ocel	S700MC	.13			
	2.5	Ocel	HC380LA	.14			
	2.6	Nere	ezové oceli X2CrNi18-9 a X2CrNi19-11	.15			
3.	Тео	retic	ká část	.16			
	3.1	Úvo	d	.16			
	3.2	Svař	ování ocelí v BT CZ	.16			
	3.2.2	1	Metoda MAG	.17			
	3.2.2	2	Metoda TIG (WIG)	.18			
	3.2.3	3	Metoda LBW	.18			
	3.3	Vzni	k přechodové vrstvy	.19			
	3.4	Mož	nosti zvýšení mechanických vlastností v konstrukčních ocelích	.22			
	3.4.2	1	Zjemnění feritového zrna	.22			
	3.4.2	2	Zpevnění tuhého roztoku	.24			
	3.4.3	3	Precipitační vytvrzování	.25			
	3.4.4	4	Transformační zpevnění	.25			
	3.4.5	5	Dislokační zpevnění	.26			
	3.5	Vysc	oce pevné mikrolegované oceli (HSLA)	.26			
	3.5.2	1	Definice	.26			
	3.5.2	2	Druhy HSLA ocelí	.27			
	3.5.3	3	Vliv legujících prvků (V, Nb)	.28			
	3.5.4	4	Svařování mikrolegovaných ocelí	.29			
	3.6	Tern	nomechanické válcování	.31			
	3.6.2	1	Proces řízeného válcování	.31			
	3.6.2	2	Vývoj mikrostruktury při řízeném válcování	.32			
	3.6.3	3	Vliv řízeného válcování na svařování mikrolegovaných ocelí	.33			
4.	Exp	erim	entální část	.34			
	4.1	Úvo	d	.34			
	4.2	Ověi	ření materiálu	.34			
	4.2.2	1	Chemické složení	.35			
	4.2.2	2	Mechanické vlastnosti	.39			
	4.2.3	3	Zkouška tvrdosti	.43			
	4.3	Průb	oěh experimentu	.44			

	4.3.1	Makroskopická kontrola vnitřních vad	.46		
	4.3.2	Zkouška tvrdosti	.49		
	4.3.3	Zkouška tahem a ohybem	.50		
4.4	4 Výsl	edky	.51		
	4.4.1	Makroskopická kontrola	.51		
	4.4.2	Zkoušky mechanických vlastností	.52		
5.	Závěr		.58		
6. Seznam použité literatury					
7.	7. Seznam příloh60				

Seznam použitých zkratek a symbolů:

Zkratka /	Definice
symbol	
BT CZ	Bombardier Transportation Czech Republic, a.s., Česká Lípa
C _{ekv} (CE)	Uhlíkový ekvivalent [%]
STA	Spécification Technique Approvisionnement – Technická
	specifikace pro dodávky
HSLA	High Strength Low Alloy Steels - Vysoce pevné mikrolegované
	oceli
ASM	The American Society for Microbiology – Americká společnost pro
	mikrobiologii (mezinárodní)
TRIP oceli	Transformation Induced Plasticity – Plasticita indukovaná
	transformací – oceli
DP oceli	Dual Phase – Dvoufázové oceli
IF oceli	Intersticial Free – oceli bez interstic
BH oceli	Bake Hardenable – oceli zpevněné "vypékáním"
R _m	Mez pevnosti v tahu
R _e	Mez kluzu
А	Tažnost
R _{p0,2}	Smluvní mez kluzu
A _{c1}	Teoretická teplota rovnováhy austenit-perlit
ТОО	Tepelně ovlivněná oblast
SK	Svarový kov
ZM	Základní materiál
MAG	Metal Active Gas – Metoda svařování kovovou elektrodou
	v aktivním plynu
TIG	Tungsten Inert Gas – Metoda svařování wolframovou elektrodou
	v inertním plynu
LBW	Laser Beam Welding – Laserové svařování
TFBB	Zkušební tyč pro příčnou lícní zkoušku ohybem tupého svaru
TRBB	Zkušební tyč pro příčnou lícní zkoušku ohybem ze strany kořene
050	tupeho svaru
OES	Opticka emisni spektroskopie
σ	vyberova smerodatna odchylka

1. Úvod

Bombardier je světovým výrobcem dopravních prostředků. Dělí se na dvě skupiny. Aerospace, zabývající se výrobou letadel a Transportation, zabývající se výrobou kolejových vozidel. [1,2]

Společnost Bombardier Transportation Czech Republic a.s., v České Lípě (BT CZ) patří do skupiny Transportation a do divize Carbody & Subassemblies, která se zaměřuje na výrobu kolejových vozidel pro osobní přepravu (tramvaje, metro, osobní vagóny, lokomotivy). Závod v České Lípě dodává ocelové svařované konstrukce jako bočnice, spodky, kabiny řidiče, případně celé vozové skříně. V řetězci celého výrobního procesu patří tato část na úplný začátek. /1,2/

Hlavními zákazníky odebírající výrobky od BT CZ jsou Régie autonome des Transports Parisients (RATP), Deutsche Bahn (DB) a Sociéte Nationale des Chemins de Fer Francais (SNCF). Jedná se o projekty, které jsou dlouhodobě ve výrobním procesu.

Důvodem zadání této diplomové práce od BT CZ je neustále zvyšovat kvalitu a bezpečnost dodávaných svařovaných skupin a podskupin. Dalším důvodem je ověření vhodnosti svařování do materiálu při nižších teplotách a tím možnosti zkrácení výrobního času o čas potřebný k vyrovnání teplot mezi skladovací a pracovní teplotou.

Cílem práce je vyhodnotit mechanické vlastnosti (R_m , R_e , A a tvrdost) a vznik trhlin nebo jiných vnitřních vad při svařování do materiálu S500MC při teplotách (0÷20)°C.

Teoretická část se věnuje mechanismům zpevnění ocelí, rozboru mikrolegovaných ocelí a procesu termomechanického válcování.

Dále jsou pak navrhnuty experimentální postupy za účelem splnění podstaty této práce a jsou uvedeny výsledky zkoušek. Na základě těchto výsledků budou zjištěny minimální teploty základního materiálu (ZM) bez výrazného negativního vlivu na proces svařování.

10

2. Nejvíce používané materiály v BT CZ

2.1 Úvod

Na výrobu ocelových konstrukcí kolejových vozidel se v BT CZ používají především oceli: S355J2, HC380LA, S500MC, S700MC a nerezové oceli X2CrNi18-9 a X2CrNi19-11.

Tyto materiály jsou od příslušného výrobce dodávány ve formě válcovaných plechů o různých tloušťkách. Plechy jsou opatřeny povrchovou úpravou (nátěrem). Ke každému materiálu náleží jeho specifický nátěr. Do barvy lze svařovat, nemusí se mechanicky odstraňovat, avšak je zde zvýšené riziko vzniku pórů ve svarovém kovu.

Schéma značení ocelí používaných v BT CZ je dle normy ČSN EN ISO 10027-1. Značka je vytvořená na základě použití a mechanických nebo fyzikálních vlastností. Schéma značky je tvořeno dle obr. 1.

Základní	symboly	Přídavné symboly pro oceli		Přídavné symboly pro výrobky
Písmeno	Vlastnost	Skupina 1	Skupina 2	

Obr. 1: Schéma značky ocelí dle ČSN EN ISO 10027-1 /3/

2.2 Ocel S355J2

Ocel S355J2 patří podle označení normy ČSN EN 10020 mezi oceli jakostní nelegované. Označení oceli dle normy ČSN EN 10027-1 říká, že se jedná o materiál na ocelové konstrukce s minimální mezí kluzu R_e = 355 MPa a nárazovou prací 27J při teplotě -20°C. /3,7/

Svařitelnost této oceli je zaručená. Je vhodná pro svařování všemi obvykle používanými způsoby. Dle normy ČSN EN 1011-2 je možné určit uhlíkový ekvivalent C_{ekv} základního materiálu a to podle vzorce:

 $CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$ (%) /5/

Struktura S355J2 je feriticko-perlitická. Viz. obr.2.

Mechanické vlastnosti a chemické složení této oceli udává norma ČSN 10025-2 a jsou uvedeny v příloze č.1. /4/

Obr. 2: Struktura oceli S355J2, leptáno Nital 1%

2.3 Ocel S500MC

Ocel S500MC patří podle označení normy ČSN EN 10020 mezi oceli jakostní legované a do skupiny svařitelné jemnozrnné konstrukční oceli. Označení oceli dle normy ČSN EN 10027-1 říká, že se jedná o materiál na ocelové konstrukce s minimální mezí kluzu Re = 500 MPa, termomechanicky válcovaný a se zvláštní tvářitelností za studena. V BT CZ se mezi operace tváření za studena řadí především ohýbání dílů před svařováním. /3,7/

Tento materiál se v BT CZ posuzuje dle francouzského dokumentu STA 000-30-7-10, rev.H, jehož obsah vychází z normy ČSN EN 10149-2. Dokument udává mechanické vlastnosti a chemické složení, viz příloha č.1. /6, 8/

Ocel S500MC bude vybrána do experimentální části práce. V teoretické části bude detailněji popsáno termomechanické zpracování tohoto materiálu a vliv jednotlivých prvků na mechanické vlastnosti.

S500MC je mikrolegovaná niobem, titanem a vanadem, které dle normy ČSN EN 10149-2 mohou v součtu mít maximální množství do 0,22 hm%. Zvýšené meze kluzu je dosahováno spojením zpevňujících mechanismů termomechanického zpracování a precipitačního vytvrzování, které při něm probíhá. Vliv legujících prvků vanadu a titanu je popsán v kapitole 3.5.3.

Svařování mikrolegovaných ocelí bude popsáno v kapitole 3.5.4.

Struktura S500MC je jemnozrnná feriticko-karbidická. Viz obr. 3. Ve struktuře lze pozorovat karbonitridy titanu (TiC) viditelné jako žluté útvary.

Obr. 3: Struktura oceli S500MC, leptáno Nital 1%

2.4 Ocel S700MC

Ocel S700MC patří podle označení normy ČSN EN 10020 mezi oceli jakostní legované a do skupiny svařitelné jemnozrnné konstrukční oceli. Označení oceli dle normy ČSN EN 10027-1 říká, že se jedná o materiál na ocelové konstrukce s minimální mezí kluzu R_e = 700 MPa, termomechanicky válcovaný a se zvláštní tvářitelností za studena. /3,7/

Tento materiál se stejně jako S500MC v BT CZ posuzuje dle francouzského dokumentu STA 000-30-7-10, rev.H, /6, 8/

Struktura S700MC je jemnozrnná převážně feritická. Viz obr.4.

Mechanické vlastnosti a chemické složení udává dokument STA 000-30-7-10, rev.H, a jsou uvedeny v příloze č.1. /6/

Obr. 4: Struktura oceli S700MC, leptáno Nital 1%

2.5 Ocel HC380LA

Označení dle normy ČSN EN 10027-1 říká, že HC380LA patří mezi oceli s vyšší mezí kluzu k tváření za studena. Je válcovaná za studena s minimální mezí kluzu 380 MPa, a je nízkolegovaná. HC380LA patři mezi hlubokotažné oceli se zvýšenými hodnotami tažnosti. /3/

Tento materiál se stejně jako S500MC a S700MC v BTCZ posuzuje dle francouzského dokumentu STA 000-30-7-10, rev.H, /6/

Mechanické vlastnosti a chemické složení udává dokument STA 000-30-7-10, rev.H, a jsou uvedeny v příloze č.1. /6/

Struktura HC380LA je jemnozrnná převážně feritická. Viz obr.5.

Obr. 5: Struktura oceli HC380LA, leptáno Nital 1%

2.6 Nerezové oceli X2CrNi18-9 a X2CrNi19-11

Oceli X2CrNi18-9 a X2CrNi19-11 patří podle označení normy ČSN EN 10020 mezi oceli korozivzdorné. Označení oceli dle normy ČSN EN 10027-1 říká, že se jedná o oceli korozivzdorné a legované se středním obsahem nejméně jednoho legujícího prvku \geq 5%, s obsahem uhlíku 0,02 %C a obsahy legujících prvků chromu a niklu dle značky. /3,7/

Chemické složení udává norma ČSN EN 10088-1. /9/

Struktura těchto nerezových ocelí s příkladem na obr. 6 je austenitická s dvojčaty.

Obr. 6: Struktura oceli X2CrNi18-9, leptáno (C₃H₈O₃+HF+HNO₃)

3. Teoretická část

3.1 Úvod

S rostoucím nárokem na konstrukční materiály se začaly hledat způsoby zvyšování mechanických vlastností. Nejdůležitější vlastnosti, kterých je využíváno při pevnostních výpočtech jsou R_e a R_m. Současně by za zvýšení R_m a R_e měla být zachována tažnost.

Tyto materiály se dnes označují jako High Strength Low Alloy Steels (HSLA) neboli vysoce pevné mikrolegované oceli. Do této skupiny dle ASM International patří mimo HSLA ocelí například i materiály typu vícefázových ocelí jako TRIP a DP oceli nebo IF a BH oceli. Vzhled mikrostruktury TRIP oceli je znázorněn na obr. 7. Skládá se z feritu, jehož podíl je největší, bainitu a zbytkového austenitu. /11/

Dále se bude diplomová práce věnovat převážně rozboru mikrolegovaných ocelí.

Obr. 7: Schematický (a) a reálný (b) vzhled mikrostruktury TRIP oceli /11/

3.2 Svařování ocelí v BT CZ

Svařování je definováno jako vytváření nerozebíratelného spoje za působení tepla, tlaku nebo jejich společným účinkem. Pevného spojení je dosahováno pomocí meziatomových vazeb mezi spojovanými materiály nebo mezi spojovaným a přídavným materiálem. Základní vlastnosti spojovaných materiálů zůstávají zachovány. Svařování se dle normy ČSN ISO 857 rozděluje na tavné, tlakové, odporové, plamenové, tlakové a svařování jinými způsoby. /18/

V BT CZ převažuje ruční svařování metodami MAG a TIG (WIG), avšak nyní se tu svařuje i pomocí nového svařovacího robotu od firmy ABB a to laserovým svařováním ve spojení s MAG.

Ruční svařování metodou MAG bude použito v experimentální části práce.

3.2.1 Metoda MAG

U MAG (Metal Active Gas) se jedná o svařování kovovou tavící se elektrodou v aktivním plynu. Elektroda ve formě drátu se podává pomocným mechanizmem do místa svaru, jak lze vidět na obr. 8. Jako ochranná atmosféra se využívá aktivní plyn nejčastěji CO₂ nebo směs CO₂ s argonem. Dochází k reakci mezi ochrannou atmosférou a tavnou lázní. /19/

Obr. 8: Schéma MAG /2/

U svařování s atmosférou CO₂ dochází k rozkladu plynu dle vztahu na obr. 9. Atmosféra se vyznačuje oxidačním charakterem, a proto je nutné zmírnit oxidační účinky přidáním dezoxidačních prvků do přídavného materiálu. Mezi tyto prvky se řadí například křemík a mangan. Tímto se i zabraňuje tvorbě pórů a dutin ve svaru.

$$2 CO_2 \neq 2 CO + O_2$$

 $O_2 \neq 2 O$

Obr. 9.: Rozklad CO₂ při svařování vlivem vysoké teploty

MAG lze použít při svařování všech nelegovaných, nízkolegovaných i vysokolegovaných ocelí. Mezi výhody se řadí minimální tvorba strusky, nízká pórovitost, vysoká proudová hustota, svařování ve všech polohách, hluboký závar a mnoho dalších.

3.2.2 Metoda TIG (WIG)

U metody TIG (Tungsten Inert Gas) hoří oblouk mezi základním materiálem a netavící se elektrodou z wolframu. K hoření dochází v ochranné atmosféře inertního plynu s vysokou čistotou 4.5. Lze použít Argon, Helium nebo jejich směs. Plyn chrání svarovou lázeň před účinky okolní atmosféry a zabraňuje vzniku strusky. Přídavný materiál je do místa svaru podáván samostatně. Metoda je znázorněna na obr.10.

Metodou TIG se nejčastěji svařují slitiny hliníku, mědi a titanu. V BTCZ se TIG používá převážně na svařování nerezových materiálů.

Obr. 10.: Schéma TIG /2/

3.2.3 Metoda LBW

LBW (Laser Beam Welding) tedy laserové svařování patří mezi nekonvenční metody svařování. K roztavení základního materiálu je využit svazek soustředných fotonů. Svazek je fokusován optikou do místa svaru, kde vytváří svarovou lázeň. Pracoviště laserového svařování v BT CZ je na obr. 11.

Obr.11: Pracoviště laserového svařování

Oproti metodám MAG a TIG má laser mnohem větší hloubku průvaru, větší svařovací rychlost a menší tepelně ovlivněnou oblast. Metodou LBW lze vytvářet prakticky všechny typy svarů.

3.3 Vznik přechodové vrstvy

Tepelně ovlivněná oblast (TOO), neboli přechodová vrstva, vzniká vedením tepla, které je přiváděné do procesu svařování. Tímto vneseným teplem dochází u ocelí k přeměně feritu na austenit. Materiál je přiváděným teplem ohříván velmi rychle (stovky °C/s) což způsobí, že přeměna ferit-austenit začne při teplotě o 50÷300 °C vyšší. Při takto vysoké rychlosti ohřevu nestihne proběhnout celá přeměna a při teplotě 1000°C existuje ještě netransformovaný ferit. Postupně před dosažením maximální teploty i perlit a zbytek feritu transformují na austenit a dochází k homogenizaci austenitu. Před ochlazováním roste zrno a struktura hrubne. Čím delší je výdrž na vysoké teplotě tím větší je nárust zrna. V poslední ochlazovací fázi je důležitá rychlost ochlazování, která ovlivňuje vzniklou strukturu. Při vyšší rychlosti ochlazování dochází k tvorbě nerovnovážných struktur bainitu a martenzitu. /19/

Vliv tepelného účinku na strukturu svarového spoje je vidět na obr.12. Struktura celého svarového spoje se skládá ze tří základních částí: /19/

 Svarový kov – úsek svarového spoje, ve kterém byla dosažena maximální teplota a byl zahřán nad teplotu likvidu

 Pásmo částečného natavení – úzká oblast těsně vedle svarového kovu zahřátá na teplotu mezi teplotou likvidu a solidu Přechodová vrstva neboli Tepelně ovlivněná oblast – pásmo mezi svarem a základním materiálem, které je rozděleno do tří podoblastí s typickou velikostí zrna a mechanickými vlastnostmi:

- o Oblast přehřátí
- Oblast normalizace
- Oblast překrystalizace

Po tepelně ovlivněné oblasti zůstává už pouze neovlivněný základní materiál s původními mechanickými vlastnostmi. /19/

Obr.12: Vliv tepelného účinku na strukturu svarového spoje /19/

Jednotlivá pásma TOO lze vidět na obr.13. Jedná se o tupý svar v T-spoji oceli S700MC svařované metodou MAG. Šířka TOO je závislá na metodě svařování. Nejširších TOO se dosahuje při ručním svařování obalovanou elektrodu (metoda 111) a naopak nejužší např. při laserovém svařování (metoda 521). Orientační šíře TOO jsou uvedeny v tab. 1. /19/

Obr. 13: Pásma TOO u tupého svaru v T-spoji u oceli S700MC

Tab. 1: Orientační šířka TOO při různých metodách svařování (111 – Ruční obloukové svařování, 135 – Svařování kovovou elektrodou v aktivním plynu, 131 – Svařování kovovou elektrodou v inertním plynu, 121 – Obloukové svařování pod tavidlem, 72 – Elektrostruskové svařování, 51 – Elektronové svařování) /19/

Metoda	Šířka TOO [mm]				
svařování	nad Ac ₁	nad Ac ₃	– přehřátá oblast		
111	3 až 8	0,3 až 1	0,1 až 0,3		
135, 131	3 až 8	0,3 až 1	0,1 až 0,3		
121	3 až 15	0,3 až 2	0,1 až 0,5		
72	5 až 50	1 až 10	0,5 až 5		
51	0,3 až 1	0,1 až 0,3	0 až 0,1		
15	0,3 až 1	0,1 až 0,3	0 až 0,1		

Z důvodu poklesu mechanických vlastností v TOO je šířka pásma velmi důležitá. Typický průběh tvrdosti od základního materiálu přes TOO a svar je znázorněn v grafu č. 1. Tvrdost byla měřena přibližně v polovině svaru zatížením HV1. V každém pásmu bylo naměřeno 5 vpichů. Hodnoty tvrdosti v TOO jsou vlivem tepelného působení výrazněji nižší než v základním materiálu a proto je důležité sledování mechanických vlastností TOO při svařování mikrolegovaných ocelí.

Graf č.1: Průběh tvrdosti tupého svaru oceli S700MC

TOO a průběhy tvrdosti u oceli S500MC budou podrobněji analyzována a dokumentována v experimentální části práce.

3.4 Možnosti zvýšení mechanických vlastností v konstrukčních ocelích

Konstrukční oceli se dají zpevňovat různými mechanismy nebo jejich kombinací. Mezi nejvýznamnější patří.: /10/

- Zjemnění velikosti feritového zrna
- Zpevnění tuhého roztoku
- Precipitační vytvrzování
- Transformační zpevnění
- Dislokační zpevnění

3.4.1 Zjemnění feritového zrna

Jemnozrnné oceli jsou charakterizovány velikostí zrna, které musí být dle ČSN EN 10025-2 větší nebo rovno 6. Názorný obrázek velikosti zrna je na obr. 14. Velikost zrna se stanovuje podle normy ČSN EN ISO 643. /4,12/

Obr. 14: Velikost zrna č.6(a) a č.4(b) 100 násobné zvětšení /12/

Experimentálními pokusy byla zjištěna závislost velikosti zrna na deformačním napětí. Podle pánů, kteří kolem roku 1950 zjistili tuto závislost je pojmenovaná rovnice na obr. 15 a to Hallova-Petchova rovnice. Říká nám, že čím menší bude velikost feritického zrna tím vyšší bude hodnota meze kluzu daného materiálu. /13, 10, 12/

 σ_y – mez kluzu (deformační napětí)

 $\sigma_o - napětí závisející na pohybu$

dislokací

(třecí odpor mřížky)

d – střední průměr velikosti zrna

Obr. 15: Hallova-Petchova rovnice /13/

Vliv velikosti feritického zrna na mechanické vlastnosti je vidět na obr. 16 a je patrné, že s klesající velikostí zrna mez kluzu roste, ale snižuje se houževnatost.

$$\sigma_y = \sigma_i + k_y \cdot d^{-\frac{1}{2}}$$

Obr. 16: Vliv velikosti feritického zrna (osa x) na mez kluzu (YS) a nárazovou práci (ITT – osa y) /10/

Zjemnění feritického zrna lze dosáhnout různými způsoby, kterými jsou například přidání mikrolegujících prvků jako titan, vanad, niob a hliník, termomechanickým válcováním nebo jejich kombinací. /10/

3.4.2 Zpevnění tuhého roztoku

Ke zpevnění tuhého roztoku dojde přidáním legujících prvků. Mechanismus zpevnění může být intersticiální, kdy se atomy legujícího prvku ukládají do intersticiálních poloh mřížky základního kovu a musí být výrazně menší než jeho atomy nebo substituční, kdy atomy legujícího prvku nahrazují atomy základního kovu.

Mezi prvky zpevňující tuhý roztok intersticiálně řadíme např. uhlík a dusík. Názorným příkladem je běžná ocel, kdy uhlík intersticiálně zpevňuje železo, které má jinak velmi malé mechanické vlastnosti.

Substitučně zpevňuje tuhý roztok např. fosfor. Zpevnění tuhého roztoku legujícími prvky pro feriticko-perlitické oceli, které obsahují 0,25%C a 1,5%Mn je znázorněno na obr. 17. /10, 13/

Obr. 17: Zpevnění legujícími prvky ve feritiko – perlitických HSLA ocelích (přírustek meze kluzu-osa y, hmotnostní podíl legujícího prvku-osa x)/10/

3.4.3 Precipitační vytvrzování

Tento druh zpevnění tuhého roztoku je u konstrukčních feriticko-perlitických ocelí vyvolán přidáním určitého množství niobu, vanadu a titanu. Využívá se afinity těchto prvků k uhlíku a dusíku a tím omezené rozpustnosti v oceli. Přidáním těchto prvků do oceli dochází ke vzniku přesyceného tuhého roztoku. Při rychlém ochlazení dojde k rozpadu neboli precipitaci. Vzniklé precipitáty pak napomáhají k zjemnění zrna a nárustu mechanických vlastností /10, 13/

3.4.4 Transformační zpevnění

Legující prvky a rychlejší rychlosti ochlazování vedou k nižší teplotě přeměny austenit-ferit a výraznému efektu těchto postupů to povede k transformaci na bainit nebo martenzit s vyššími mechanickými vlastnostmi ale nižší houževnatostí a tažností.

K dosažení pevnějších a tvrdších struktur je používáno různých tepelných a chemicko-tepelných zpracování. Příkladem mohou být kalené konstrukční oceli legované molybdenem a borem pro zvýšení prokalitelnosti. Na obr. 18 je vidět vztah mezi teplotou transformace a pevností v tahu, kdy největší pevnosti dosahují martenzitické oceli. /10/

Obr. 18: Vztah mezi teplotou transformace (osa x) a pevností v tahu (osa y) /10/

3.4.5 Dislokační zpevnění

Dislokační, nebo jinak nazývané deformační zpevnění závisí na množství dislokací a jejich rozmístění. Vyskytuje se převážně při tváření za studena, kdy se počet dislokací zvyšuje. Tento mechanismus zpevňuje materiál velmi výrazně, avšak je také doprovázen značným snížením houževnatosti a tažnosti. Z tohoto důvodu se dislokační zpevnění nepoužívá, nebo je z důvodu potřeby dalšího tváření odstraňováno tepelným zpracováním.

3.5 Vysoce pevné mikrolegované oceli (HSLA)

3.5.1 Definice

Vysoce pevné mikrolegované oceli jsou charakteristické svým specifickým chemickým složením. Jsou mikrolegované. Obsah uhlíku se pohybuje od 0,05 do 0,5 %, déle obsahují mangan až do 2,0 % a mohou obsahovat nízký obsah prvků Cr, Ni, Mo, Cu, N, V, Nb, Ti, Zr v množství 0,01 až 0,1 %. Díky malému množství přidaných prvků nepatří mezi slitinové oceli. Jejich typickým znakem je zvýšená mez kluzu. Dalším významným rysem je velikost zrna, který má vliv na mechanické vlastnosti. Rozdíl velikosti zrna HSLA a běžných feriticko-perlitických ocelí je zřejmý z obr. 19. /14/

Obr. 19: Mikrostruktura uhlíkové oceli (a) a mikrolegované oceli (b) při stejném zvětšení /15/

3.5.2 Druhy HSLA ocelí

HSLA oceli lze rozdělit do několika skupin: /11,14/

 Oceli s odolností proti atmosférické korozi – přidávají se malé množství prvků jako síra, fosfor nebo měď, které zvyšují korozivzdornost a zpevňují tuhý roztok viz 3.4.2

Mikrolegované feriticko-perlitické oceli – přidávají se prvky niob, titan a vanad, které vytváří karbidy a nitridy. Zpevňují mechanismem precipitačního vytvrzování viz. 3.4.3 a dochází ke zjemnění zrna. Těmito prvky lze řídit teploty přeměny austenit-ferit, což bude blíže popsáno v kapitole termomechanického válcování

 Válcované perlitické oceli – většinou se jedná o klasické C-Mn oceli s legujícími prvky podporujícími růst mechanických vlastností

 Dvoufázové oceli – jejich mikrostrukturu tvoří ferit a ostrůvky martenzitu. Ferit je měkký, tvárný a zajištuje dobrou plasticitu. Martenzit zajišťuje dobrou pevnost. Mikrostruktura DP ocelí je znázorněná na obr. 20

Obr. 20: Mikrostruktura dvoufázové oceli /11/

 Oceli s kontrolovaným tvarem vměstků – obsahují malé množství vápníku, zirkonu a titanu. Kombinací těchto prvků dojde ke změně tvaru sulfidů na globule. Oceli se vyznačují lepší tažností a odolností proti křehkému lomu

Mohou být i oceli, které se svými vlastnostmi zapadají do více skupin.

3.5.3 Vliv legujících prvků (V, Nb)

Vanad a niob patří mezi nejčastěji přidávané prvky do uhlíko-manganových ocelí. C-Mn oceli zpevňuje mangan, jehož část se rozpouští ve feritu a část vytváří karbidy, čímž se zvyšuje mez kluzu a pevnost při zachování tažnosti a kontrakce. Mechanismus zpevnění Mn se řadí mezi zpevnění tuhého roztoku viz. 3.4.2. Díky přidání V a Nb může být snížen obsah uhlíku což má vliv na uhlíkový ekvivalent a tím se zlepšuje svařitelnost a zlepšuje se odolnost proti křehkému lomu. Během termomechanického zpracování se precipitačním vytvrzováním vytváří jemné precipitáty karbidů přidaných prvků V a Nb, což je hlavním zpevňujícím mechanismem. Na vznik precipitátů a tím zvýšení meze kluzu má výrazný vliv rychlost při řízeném ochlazování viz. obr. 21., z čehož vyplývá nutnost použití řízeného ochlazování. /13, 14/

Niob má výrazný vliv na zjemnění zrna, zatímco vanad podporuje zvýšení pevnostních vlastností.

Obr. 21: Vliv rychlosti ochlazování na zvýšení meze kluzu precipitačním zpevněním u oceli s 0,15 %V /14/

3.5.4 Svařování mikrolegovaných ocelí

Při svařování mikrolegovaných ocelí je důležité sledovat několik hlavních faktorů určujících kvalitu svarového spoje a to zejména chemické složení oceli, tloušťky svařovaného plechu, chemické složení svarového kovu a přídavného materiálu, vložené teplo při procesu a napětí v konstrukci po svaření. Dále je důležité dodržování teploty předehřevu. /11/

 Vliv chemického složení se sleduje pomocí uhlíkového ekvivalentu (CE) dle vzorce viz obr.2 v kap 2.2.

Vzorec CE byl upraven tak, aby lépe vystihoval vznik trhlin za studena:

$$CET = C + \frac{Mn+Mo}{10} + \frac{Cr+Cu}{20} + \frac{Ni}{40} \quad (\%) /11/$$

- Výpočet teploty předehřevu:
 - Vliv chemického složení

 $Tp = 750 \cdot CET - 150 (^{\circ}C) / 11/,$

kde je:

CET ... upravený uhlíkový ekvivalent [%]

Vliv tloušťky základního materiálu:

$$Tp = 160 \tanh\left(\frac{d}{35}\right) \cdot 110 \ (^{\circ}C) \ /11/$$

kde je:

d ... tloušťka základního materiálu [mm]

Grafická závislost tloušťky základního materiálu na teplotě předehřevu je vidět na obr. 22. Tloušťka má výrazný vliv na teplotu předehřevu do 60 mm, pak vliv klesá.

Obr. 22: Závislost teploty předehřevu (T_p) na tloušťce plechu (d) pro uhlíkový ekvivalent 0,3 % /14/

Vliv obsahu difuzního vodíku

$$Tp = 62 \cdot H_D^{0,35} - 100 \,(^{\circ}C) \,/11/$$

kde je:

H_D... obsah difuzního vodíku ve svarovém kovu [ml.(100g)⁻¹]

Vliv tepelného příkonu

$$Tp = (53 \cdot CET - 32) \cdot Q - 53CET + 32 (^{\circ}C) / 11/$$

kde je:

Q ... tepelný příkon [kJ.mm¹]

Výsledná teplota předehřevu se poté určí jako součet dílčích teplot:
Tp = Ti = 700 CET + 160 tanh (^d/₃₅) + 62 · H^{0,35}_D(53 CET - 32) · Q - 330 (°C)
/11/

3.6 Termomechanické válcování

Termomechanické válcování je tepelně-mechanické zpracování, jehož cílem je zjemnit výslednou strukturu zrna a zlepšit mechanické vlastnosti. Hlavními přínosy jsou zpevnění zrn doprovázející zvýšení pevnostních vlastností a lepší odolnost proti křehkému lomu. Tohoto je dosahováno společným působením teploty a mechanické deformace. Celý proces se skládá z dvou velmi důležitých fází. První je řízené válcování a druhou je řízené (zrychlené) ochlazování.

Rozdíl mezi termomechanickým (řízeným) válcováním a konvenčním válcováním je v teplotách jednotlivých etap procesu. U konvenčního válcování je teplota ohřevu, válcování a dokončovacího válcování na vyšších hodnotách než u příslušných etap řízeného válcování. Přídavek niobu do ocelí určených k řízenému válcování umožňuje zpomalení rekrystalizace a tím válcování při nižších teplotách. U konvenčního válcování není cílem zjemnění struktury. /10, 11, 16, 17/

3.6.1 Proces řízeného válcování

Proces řízeného válcování se skládá z několika etap viz. obr 23.

Obr. 23: Schéma řízeného válcování /14/

V první fázi je materiál ohříván na teplotu kolem 1200°C (oblast stabilního austenitu). Dochází z rozpuštění precipitátů do tuhého roztoku a růstu austenitického zrna. Rozpustnost ovlivňuje hlavně Mn a Si. Růst austenitického zrna v závislosti na rozpouštění precipitátů je vyobrazen na obr. 24. Velikost austenitického zrna u mikrolegovaných ocelí ovlivňují precipitáty karbidů prvků V, Nb a Ti. Díky nim zůstává austenitické zrno malé, pokud se nepřekročí kritická teplota hrubnutí zrna. Vznikla by pak směs malých a velkých austenitických zrn.

Obr. 24: Křivky růstu austenitického zrna mikrolegovaných ocelí v závistosti na rozpouštění precipitátů (velikost austenitu [µm]-osa y, teplota [°C]-osa x) /17/

Po ohřevu nastává dvoustupňový proces válcování, při kterém se postupně snižuje tloušťka válcovaného materiálu. Nejdříve hrubé válcování probíhající nad teplotou rekrystalizace. Následuje časová prodleva, která prochází přes teplotu rekrystalizace. Nedochází k nárustu velikosti zrna. Pokračující válcování na čisto pod teplotou rekrystalizace umožní vznik jemných precipitátů. Ukončení válcování nad teplotou A_{r3}, vyznačena v obr. 23, vede k dosažení nízké tranzitní teploty a tím zlepšení houževnatosti.

3.6.2 Vývoj mikrostruktury při řízeném válcování

Průběh zjemnění zma výsledné struktury během válcování je patrný z obr. 25. V první fázi je původní velikost zrna ještě před začátkem válcování. Během procesu dochází k deformaci zrn ve směru válcování. V konečném stadiu při transformaci austenitu na ferit již zrna nemohou rekrystalizovat a dochází k precipitaci mikrolegujících prvků. Výsledná mikrostruktura je jemnozrnná feriticko-karbidická. Oproti tepelnému zpracování je struktura rovnoměrnější a nedochází ke vzniku pásů perlitu.

Obr. 25: Vývoj mikrostruktury při řízeném válcování /17/

3.6.3 Vliv řízeného válcování na svařování mikrolegovaných ocelí

Termomechanicky zpracované mikrolegované oceli se vyznačují nižším uhlíkovým ekvivalentem, což má pozitivní vliv při svařování.

Problém může nastat při použití vysokého tepelného příkonu. V tepelně ovlivněné oblasti, kdy je materiál ohříván pod teplotu A_{c1} dochází ke snížení tvrdosti. Toto bude vidět v experimentální části při kontrole tvrdosti svarových spojů.

4. Experimentální část

4.1 Úvod

Cílem práce je vyhodnotit mechanické vlastnosti (R_m, R_e, A a tvrdost) a vznik trhlin nebo jiných vnitřních vad při svařování do materiálu S500MC při teplotách (0÷20)°C. Za tímto účelem byly navrženy zkoušky:

- o makroskopická kontrola vnitřních vad svarového spoje
- zkouška tvrdosti především v TOO
- o zkoušky tahem
- o Zkouška ohybem

Průběh experimentální části bude sestávat z kroků:

- 1) ověření použitého materiálu
- 2) svaření vzorků při teplotách (0÷20)°C
- 3) vykonání zkoušek
- 4) zpracování výsledků

Z materiálu S500MC o tloušťkách 3, 6 a 10 mm budou vypáleny dílce navrhnuté velikosti. Příprava pro svar u plechů tloušťky 6 a 10 mm bude provedena frézováním dle požadavků normy ČSN EN 15085-3. Ke chlazení dílců budou využity nízké teploty v zimním období. Za správné teploty budou dílce svařeny. Z důvodu nárustu teploty při transportu vzorků z venkovního prostředí do místa svařování byla provedena korekce nejnižší teploty z 0°C na 2,5°C, což odpovídá reálné situaci při výrobě. Ze svařených dílců budou vypáleny vzorky, na kterých budou provedeny potřebné zkoušky ke zjištění mechanických a metalografických vlastností. Všechny mechanické zkoušky budou prováděny v Laboratoři BT CZ dle akreditovaných postupů.

4.2 Ověření materiálu

Ověření materiálu S500MC bylo provedeno pomocí měření chemického složení a zjištěním mechanických vlastností. Vlastnosti byly porovnány s atesty příslušných tlouštěk materiálů viz příloha 2. Seznam použitých materiálů viz. tab.2.

Materiál	Tlouštka [mm]	č. šarže	tavba č.
S500MC	3	5708442	730520438
S500MC	6	5742163	730521579
S500MC	10	5573331	730418574

Tab. 2: Materiály použité v experimentální části diplomové práce

4.2.1 Chemické složení

K ověření chemického složení byla použita metoda optické emisní spektroskopie. Zkouška byla provedena na mobilním spektrometru PMI Master Pro viz obr. 26. Přístroj byl připraven standardním postupem, který se skládá z proplachu soustavy argonem 5.0 a rekalibrací přístroje pomocí rekalibračních standardů.

4.2.1.1 Popis metody

Optický emisní spektrometr viz. obr. 26 je analytické zařízení, které zpracovává elektromagnetické záření v oblasti vlnových délek viditelného světla a jeho okolí (cca 150÷800 nm). Měření bylo provedeno na kalibrovaném přístroji. Kalibrační list viz příloha č.3. /21/

Obr. 26: Mobilní spektrometr PMI Master Pro

Ke vzniku spektra dochází pomocí budícího zdroje (zde použita jiskra), který dodá energii k přechodu elektronů na vyšší energetické hladiny viz. obr. 27. Při návratu elektronů zpět na nižší hladinu dojde k vyrovnání energie pomocí vyzáření fotonu, který má vlnovou délku příslušející danému atomu prvku. Takto vzniklé záření je poté rozloženo ve spektrometru na optické mřížce, kde dojde k měření intenzity jednotlivých čar. Podle vlnové délky se určí prvek a podle intenzity množství v jakém se nachází ve vzorku.

Obr. 27: Vznik spektra /21/

Jiskřiště spektrometru se skládá ze vzorku přiloženého na měřící pistoli. Vzorek je vzdálen 2 mm od wolframové elektrody, kolem které protéká proud ochranného plynu viz. obr. 28.

Obr. 28: Uspořádání jiskřiště spektrometru /21/

Analýza je prováděna z povrchu vzorku. Povrch je upraven broušením na brusném papíře SiC o zrnitosti 60 tak, aby nedošlo k ovlivnění povrchu např. uvízlými částicemi prachu z brusného papíru, tepelným ovlivněním při broušení nebo ovlivněním povrchu přímým dotykem ruky.
U každé tloušťky plechu bylo naměřeno 10 hodnot, z nichž jsou v příslušných tabulkách uvedeny průměrné hodnoty včetně nejistot měření. Nejistoty jsou určeny z hodnot přesnosti a správnosti měření udávaných výrobcem a jsou vztaženy k příslušné koncentraci naměřených hodnot.

4.2.1.2 Výsledky měření

Výsledky měření jsou uvedeny v tabulkách č.3÷5, byly porovnávány se specifikacemi danými předpisem STA. Všechny tloušťky splňují kritéria vyhodnocení. U plechu tloušťky t = 3 mm nevyhovuje pouze prvek P, jehož pásmo nejistot leží mimo tolerance dané předpisem STA. Průměrná hodnota z měření je však v toleranci. Velký rozptyl měření u fosforu může být způsoben nízkou vlnovou délkou a nízkou koncentrací prvku ve vzorku.

	Průměrná	Kombinovaná	±	U	ST	ГА	Deneumání
Prvek	hodnota x	nejistota U	(min) x-U	(max) x+U	MIN	MAX	s STA
С	0,0609	0,01506	0,04584	0,07596	-	0,1	OK
Si	0,0132	0,02081	0	0,03401	-	0,4	OK
Mn	0,712	0,03409	0,67791	0,74609	-	1,7	OK
Р	0,012	0,01462	0	0,02662	-	0,025	NOK
S	<0,005	0	-	-	-	0,01	OK
Cr	0,0195	0,01250	0,00700	0,03200	-	-	-
Мо	0,004	0,01224	0	0,01624	-	-	-
Ni	0,0101	0,01803	0	0,02813	-	-	-
AI	0,0409	0,00769	0,03321	0,04859	0,015	-	OK
Со	0,005	0,00313	0,00187	0,00813	-	-	-
Cu	0,0063	0,00534	0,00096	0,01164	-	-	-
Nb	0,047	0,00704	0,03996	0,05404	-	0,07	OK
Ti	0,0452	0,00683	0,03837	0,05203	-	-	-
V	0,0024	0,00395	0	0,00635	-	0,2	OK
W	0,0258	0,02297	0,00283	0,04877	-	-	-

Tab. 3: Výsledky ověření materiálu S500MC, t = 3 mm metodou OES

	Průměrná	Kombinovaná	±	U	ST	Ά	D
Prvek	hodnota x	nejistota U	(min) x-U	(max) x+U	MIN	MAX	s STA
С	0,0591	0,01349	0,04561	0,07259	-	0,1	OK
Si	0,0165	0,02071	0	0,03721	-	0,4	OK
Mn	1,36	0,04065	1,31936	1,40064	-	1,7	OK
Р	0,016	0,00875	0,00725	0,02475	-	0,025	OK
S	<0,005	-	-	-	-	0,01	OK
Cr	0,0185	0,01243	0,00607	0,03093	-	-	-
Мо	0,0063	0,01237	0	0,01867	-	-	-
Ni	0,0136	0,01772	0	0,03132	-	-	-
AI	0,0337	0,00740	0,02630	0,04110	0,015	-	OK
Со	0,005	0,00312	0,00188	0,00812	-	-	-
Cu	0,0073	0,00539	0,00191	0,01269	-	-	-
Nb	0,056	0,00740	0,04860	0,06340	-	0,07	OK
Ti	0,0218	0,00658	0,01522	0,02838	-	-	-
V	0,0571	0,00527	0,05184	0,06236	-	0,2	OK
W	<0,025	-	-	-	-	-	-

Tab. 4: Výsledky ověření materiálu S500MC, t = 6 mm metodou OES

Tab. 5: Výsledky ověření materiálu S500MC, t = 10 mm metodou OES

	Průměrná	Kombinovaná	±	U	S	ГА	Dorovnání
Prvek	hodnota x	nejistota U	(min) x-U	(max) x+U	MIN	MAX	s STA
С	0,0601	0,01344	0,04666	0,07354	-	0,1	OK
Si	0,0189	0,02075	0	0,03965	I	0,4	OK
Mn	1,36	0,04064	1,31936	1,40064	-	1,7	OK
Р	0,0154	0,00844	0,00696	0,02384	-	0,025	OK
S	<0,005	-	-	-	-	0,01	OK
Cr	0,0199	0,01253	0,00737	0,03243	-	-	-
Мо	<0,003	-	-	-	-	-	-
Ni	0,0108	0,01760	0	0,02840	-	-	-
AI	0,0352	0,00778	0,02742	0,04298	0,015	-	OK
Со	<0,005	-	-	-	I	-	-
Cu	0,0061	0,00530	0,00080	0,01140	I	-	-
Nb	0,0556	0,00721	0,04839	0,06281	-	0,07	OK
Ti	0,0183	0,00661	0,01169	0,02491	-	-	-
V	0,0584	0,00556	0,05284	0,06396	-	0,2	OK
W	0,0252	0,02247	0,00273	0,04767	-	-	_

4.2.2 Mechanické vlastnosti

K určení mechanických vlastností byl použit Univerzální zkušební stroj Instron DX300 viz obr. 29. Schéma univerzálního stroje je znázorněno na témže obrázku. Zkouška tahem patří mezi zkoušky základních mechanických vlastností. Jedná se o statickou zkoušku při jednoosé napjatosti a pokojové teplotě. Zjišťovanými vlastnostmi jsou mez pevnosti, mez kluzu a tažnost. Zkušební stroj včetně průtahoměru je kalibrovaný viz titulní strana kalibračního listu v příloze č.3. Rozměry zadávané do softwaru zkušebního stroje Bluehill byly měřeny pomocí digitálního posuvného měřítka Mitutoyo. Kalibrační list posuvného měřítka viz příloha č.3.

Obr. 29: Univerzální zkušební stroj Instron DX300 / Schéma univerzálního zkušebního stroje (1-dynamometr, 2-průtahoměr, A-vzorek, B-pohyblivý příčník, M-motor, V-vřeteno, P-převodová skříň) /13/

4.2.2.1 Řízení testu

Řízení testu bylo nastaveno dle požadavků normy ČSN EN ISO 6892-1 pro řízení deformační rychlosti podle metody A. V pásmu do meze kluzu byla použita deformační rychlost vycházející ze zpětné vazby průtahoměru, který byl uchycený na zkušebním tělese. Tím se eliminoval vliv pružných deformací zkušebního stroje. V průběhu nespojitostí na mezi kluzu byla použita deformační rychlost odhadnutá ze zkoušené délky, která je dosažena řízením posuvu příčníku. Ukončení nespojitosti bylo nastaveno na 4% hodnoty deformace testovaného vzorku. V následujícím pásmu až do začátku tvorby krčku se opět použilo řízení pomocí průtahoměru a v posledním pásmu od krčku do přetržení byl test řízen posuvem příčníku. Rychlost řízení byla dle normy nastavena na 0,00025 s⁻¹ do 4% hodnoty deformace a pak byla zvýšena až do konce testu na 0,002 s⁻¹. Převod rychlosti nastal plynule během dvou sekund. Síla byla měřena s nejistotou ±1% z měřené hodnoty pomocí integrovaného snímače síly kapacity 300kN v přesnosti 0,5 v rozsahu 600N - 300 kN. Tažnost byla určována pomocí automatického kontaktního průtahoměru AutoX750 s nejistotou ±1% z měřené hodnoty. Jako základna k určení prodloužení byla použita vzdálenost Le, což je počáteční měřená délka průtahoměru.

4.2.2.2 Výsledky měření

Výsledky měření jsou uvedeny v tabulce č. 6 a graficky znázorněny v grafu č.2. Porovnáním mechanických vlastností s požadavky v předpisu STA lze konstatovat, že všechny zkušební tyče splňují požadavky pro materiál S500MC. Příklady průběhu napětí na prodloužení jsou uvedeny v grafech č. 3÷5.

Vzorek	Mez pevnosti R _m [MPa]	průměr	σ	Horní mez kluzu R _{EH} [MPa]	průměr	σ	Dolní mez kluzu R _{EL} [MPa]	průměr	σ	Tažnost A ₈₀ [%]	průměr	σ	Zatížení F _m [kN]	Tloušťka t [mm]	Šířka b₀ [mm]	Délka Lc [mm]
t3_1	611			551			540			20,1			52,4	3,07	27,92	100
t3_2	603	610,0	6,6	544	550,0	5,6	535	540,7	6,0	19,8	20,0	0,2	52,0	3,09	27,95	100
t3_3	616			555			547	547		20,2			53,1	3,08	27,98	100
t6_1	638			571			562			22,4			120,0	6,11	30,8	100
t6_2	635	636,3	1,5	571	570,3	1,2	561	561,0	1,0	21,5	22,1	0,5	119,6	6,1	30,88	100
t6_3	636			569			560			22,3			119,7	6,11	30,8	100
t10_1	626			540			537			24,6			192,7	10	30,8	100
t10_2	622	620,0	7,2	533	534,0	5,6	531	531,0	6,0	25,3	25,1 0,4	0,4	192,7	10,07	30,79	100
t10_3	612			529			525	525		25,3			189,7	10,01	30,95	100

Tab č. 6: Výsledky ověření mechanických vlastností materiálu S500MC

Graf č.2: Grafické znázornění výsledků ověření mechanických vlastností materiálu S500MC

Příklady průběhu napětí na prodloužení z každé tloušťky jsou vidět na grafech č.3÷5.

Graf č.4: Závislost tahového napětí na prodloužení u vzorku č. t6_1

Graf č.5: Závislost tahového napětí na prodloužení u vzorku č. t10_1

4.2.3 Zkouška tvrdosti

Tvrdost je charakterizována jako odolnost materiálu proti vniknutí cizího tělesa. Z důvodu porovnání hodnot s dalším měřením byla použita metoda podle Vickerse. Vickersovo vnikací těleso má tvar čtyřbokého diamantového jehlanu s vrcholovým úhlem 136 °. Zatížení bylo zvoleno HV10. Na každém vzorku bylo provedeno 10 vtisků, které byly od sebe vzdáleny 1 mm. Vtisky byly umístěny tak aby bylo do 2 mm od okraje vzorků. U t = 3 mm byly vtisky uprostřed. Zkouška byla prováděna na automatickém kalibrovaném tvrdoměru DuraScan 80 od firmy Struers se softwarem ecos Workflow viz obr. 30. Výsledky jsou naměřeny s nejistotou $\pm 5\%$ z měřené hodnoty. Titulní list kalibračního listu viz příloha 3. Výsledky měření neovlivněného základního materiálů jsou v tab.7.

Obr. 30: Automatický tvrdoměr DuraScan 80

Tloušťka [mm]	1	2	3	4	5	6	7	8	9	10	průměr	σ
3	203	203	204	199	205	205	208	200	203	202	203,2	2,6
6	211	209	208	208	205	210	210	214	209	211	209,5	2,4
10	210	206	210	209	209	204	203	203	210	205	206,9	3,0

Tab. 7: Výsledky měření tvrdosti na neovlivněném základním materiálu

4.3 Průběh experimentu

Experiment byl navržen tak, aby co nejlépe odpovídal možnému průběhu svařování do materiálu, který byl před převozem na pracoviště uskladněn ve venkovním skladu. Jednotlivým seskupením bylo přiřazeno označení skládající se z tloušťky materiálu a teploty při svařování kořenové vrstvy viz tab.8. Číslo za podtržítkem označuje pořadové číslo vzorku v dané zkoušce.

Tloušťka	Тер	Teplota materiálu při svaření první housenky [°C]									
materiálu	2,5	2,5 5 10 15									
[mm]											
3	t3T2,5_x	t3T5_x	t3T10_x	t3T15_x	t3T20_x						
6	t6T2,5_x	t6T5_x	t6T10_x	t6T15_x	t6T20_x						
10	t10T2,5_x	t10T5_x	t10T10_x	t10T15_x	t10T20_x						

Tab.8: Systém značení vzorků

V první fázi byl zkreslen plán výroby dílců, které budou svařeny a následně použity k výrobě zkušebních tyčí. Plány včetně rozměrů jsou zobrazeny v příloze 4. Rozměry zkušebních vzorků pro tah a ohyb byly stanoveny s ohledem na požadavky příslušných norem ČSN EN ISO 6892 a ČSN EN ISO 5173.

Vypálené a obrobené dílce byly svařeny metodou MAG viz 3.2.1 s přídavným drátem OK ARISTOROD 69 o průměru 1 mm. Dílce byly svařeny ve svařovací škole instruktorem svařování. Teplota dílců před svařením byla měřena kalibrovaným termometrem od firmy GREISINGER GMH 3200 s termočlánkem typu K (NiCr-Ni) s rozsahem teplot měření od (-65÷900)°C. Místo měření teploty bylo voleno v blízkosti

svaru viz obr. 31. Kalibrační list termometru viz příloha 3. Teplota dílce byla dodržováva s přesností ±0,5°C. Dosažené teploty a parametry svařování jsou uvedeny v tabulce 9.

Obr. 31: Ukázka měření teploty materiálu před svařením

	Skut	ečná	teplota	a mate	eriálu	Parametry při svařování					
Tloušťka plechu	před	před svařením první vrstvy [°C]					1. vrstva 2. vrs		rstva	3. vrstva	
[mm]	2.5	5	10	15	20	napětí	proud	napětí	proud	napětí	proud
	_,-					[V]	[A]	[V]	[A]	[V]	[A]
t=3	2,7	5,3	10,2	14,7	20,1	16	115	-	-	-	-
t=6	2,2	4,6	10,4	14,6	20,1	18	155	23,5	160	-	-
t=10	2,6	4,8	10,3	14,5	20,0	18	160	24,5	185	26	180

Tab. 9: Teploty měřené před svařováním a parametry při svařování

Ze svařených dílců byly laserem vypáleny tvary zkušebních tyčí s přídavkem na obrábění, který byl následně odstraněn frézováním tyčí na konečný rozměr. Převýšení svaru a kořene bylo odstraněno frézováním na tloušťku příslušného plechu. Na připravených vzorcích byly prováděny zkoušky ke zjištění vlastností - makroskopická kontrola vnitřních vad, zkouška tvrdosti, tahem a ohybem. Všechny mechanické zkoušky byly prováděny v laboratorních podmínkách za teploty (23±5)°C.

4.3.1 Makroskopická kontrola vnitřních vad

4.3.1.1 Příprava vzorků

K dělení a krácení došlo na automatické dělící pile Discotom 100 od firmy Struers viz obr. 32. Řez zahrnoval svar, tepelně ovlivněnou oblast a základní materiál. Dle velikosti svaru byl vzorek zkrácen tak, aby se vešel do průměru 40 mm nebo 50 mm. K řezání byl použit kotouč 30A30 o rozměru 300x2 mm, který je složen z brusiva Al₂O₃ a pojen bakelitem. K chlazení byla použita kapalina přiváděná do místa řezu složená z vody a přidaných aditiv (Corrozip a Ferosept), která zajišťují vyšší chladící účinek, ochranu před korozí a vyšší kvalitu řezu. Otáčky kotouče byly nastaveny na 2775 ot/min a posuv na 0,7 mm/s. Při řezání nedošlo k tepelnému zahřívání ani jiné deformaci vzorku.

Obr. 32: Automatická dělící pila Discotom 100

V dalším kroku byly vzorky zbaveny otřepů, očištěny a odmaštěny. Následně došlo k zalévání vzorků v lisu pro zalévání za horka CitoPress 20 od firmy Struers viz obr. 33. Spodní vrstva zalitého vzorku je tvořena pryskyřicí DuroFast. Je to černá epoxidová pryskyřice s minerálním plnivem. Výplňovou hmotou byl MultiFast, což je červená bakelitová pryskyřice s dřevitou výplní. Jako poslední byl použit ClaroFast, což je průhledná akrylátová pryskyřice, která usnadní označení vzorku. Označení bylo provedeno vložením papírku s číslem vzorku do poslední vrstvy. Proces byl proveden dle parametrů v tabulce č.10.

Obr. 33: Lis pro zalévání za horka CitoPress 20

Tab.	10:	Paran	netry	lisu	pro	zalé	vání	vzork	ŵ za	hork	а

Průměr válce [mm]	40	50
Ohřev [°C]	180	180
Čas ohřevu [min]	4,5	5,5
Intenzita chlazení	vysoká	vysoká
Čas chlazení [min]	3 min	3 min

Zalité vzorky byly broušeny a leštěny v preparačním systému Tegramin 30 viz obr. 34. Jednotlivé kroky včetně parametrů jsou uvedeny v tabulce 11. Výbrusy byly zhotoveny tak aby nedošlo ke změně struktury např. nadměrným ohřevem nebo deformací.

Obr. 34: Tegramin 30

Krok	Typ kotouče:	Parametry	Průměr v	zorku [mm]
č.:	Typ Kolouce.	broušení/leštění	40	50
1	MD-Piano	přítlak [N]	50	60
	220	otáčky kotouč [ot/min]	300	300
		otáčky hlava [ot/min]	150	150
		směr otáček	protiběžné	protiběžné
		čas broušení [min]	4	4
		chladící médium	voda	voda
2	MD-Largo	přítlak [N]	40	50
		otáčky kotouč [ot/min]	150	150
		otáčky hlava [ot/min]	150	150
		směr otáček	souběžné	souběžné
		čas broušení [min]	3	3
		diamantová suspenze	9	9
		[µm]		
3	MD-Dac	přítlak [N]	30	40
		otáčky kotouč [ot/min]	150	150
		otáčky hlava [ot/min]	150	150
		směr otáček	souběžné	souběžné
		čas broušení [min]	3	4
		diamantová suspenze	3	3
		[µm]		
4	MD-Chem	přítlak [N]	20	25
		otáčky kotouč [ot/min]	150	150
		otáčky hlava [ot/min]	150	150
		směr otáček	protiběžné	protiběžné
		čas broušení [min]	1	1
		suspenze [μ m]	koloidní	koloidní křemík
			křemík	

Tab. 11: Postup a parametry při broušení a leštění vzorků

Poslední fází ke zhotovení výbrusu je jeho leptání. Dochází ke zviditelnění struktury svaru, tepelně ovlivněné oblasti a základního materiálu. K leptání bylo použito

leptadlo Nital 1%, které bylo namícháno z kyseliny dusičné HNO₃ a lihu. Vzorky byly leptány potěrem.

4.3.1.2 Pozorování vzorků

Vzorky byly pozorovány na mikroskopech Axio Observer.Z1m od firmy Zeiss se softwarem Axio Vision a SZ61 od firmy Olympus se softwarem Quick Photo Industrial viz obr. 35. Z každého seskupení byla vytvořena dvě makra označena pořadovým číslem. Číslování vzorků bylo dle tabulky 7. Na každém vzorku byla okótována šířka TOO v polovině tloušťky vzorku. Kontrola vnitřních vad byla provedena při zvětšení 10x v okuláru mikroskopu. Fotografie byly pořízeny v optimálním zvětšení tak, aby byl zobrazen svar, TOO a základní materiál. Z každého seskupení byla blízkosti svaru pořízena fotografická dokumentace TOO při optickém zvětšení 200x.

Obr. 35: Vlevo: Stereomikroskop Olympus SZ61, Vpravo: Metalografický mikroskop Zeiss Axio Observer.Z1m

4.3.2 Zkouška tvrdosti

Norma ČSN EN 9015-1 pro zkoušení tvrdosti svarových spojů určuje metodu zkoušení podle Vickerse. Vzhledem k šířkám TOO bylo zvoleno zatížení HV10. V každé oblasti svarového spoje byly provedeny tři vtisky tak, aby vzdálenost mezi nimi a od okraje byla nejméně 2,5 násobek velikosti úhlopříčky a zároveň vzdálenost od okraje vzorku nepřesahovala 2 mm. Zkouška byla prováděna na tvrdoměru DuraScan

80 viz 4.2.3. Zkouška byla prováděna na vzorcích připravených pro makroskopickou kontrolu. Schéma zkoušení tvrdosti je vidět na obr. 36.

Obr. 36: Schéma měření tvrdosti

4.3.3 Zkouška tahem a ohybem

Zkouška tahem byla prováděna za podmínek v 4.2.2.1. Z každého sestavení byly přetrhnuty tři zkušební tyče. Výsledky jsou uvedeny v kapitole 4.4. Rozměry zkušebních tyči jsou uvedeny v příloze č.4.

Ke zkoušce ohybem byl použit univerzální zkušební stroj Instron DX300 stejný jako u zkoušky tahem. Zkouška byla prováděna dle normy ČSN EN ISO 5173. Z každého sestavení byly testovány dva vzorky na svar a dva na kořen. Průměr trnu a vzdálenost mezi rozpěrnými válečky a rozměry vzorků jsou uvedeny příloze č.7. Rychlost zatěžování byla nastavena na 30 mm/min. Vzorky byly prohlíženy přímou vizuální kontrolou bez pomůcek. Výsledky jsou uvedeny v závěru práce a příloze č.7.

4.4 Výsledky

U výsledků tvrdosti byly do průměrných hodnot uvažovány pouze minimální hodnoty z tepelně ovlivněné oblasti z obou stran od svarového kovu u kořenové housenky. (označeno TOO_L – levá strana, TOO_P-pravá strana viz obr.36)

4.4.1 Makroskopická kontrola

Vzorek	Тер	lota materiálu	při svaření p	rvní housenky	[°C]
č.	2,5	5	10	15	20
t3_1	11,46	10,64	10,64	10,7	11,59
t3_2	11,5	10,24	9,98	10,94	11,27
průměr	11,48	10,44	10,31	10,82	11,43
t6_1	12,21	12,06	11,7	11,94	11,31
t6_2	12,84	12,25	11,23	11,45	11,15
průměr	12,53	12,16	11,47	11,70	11,23
t10_1	10,8	10,03	11,83	11,51	10,85
t10_2	10,9	10,54	11,37	11,28	11,31
průměr	10,85	10,29	11,60	11,40	11,08

Tab. 12: Vliv teploty materiálu při svařování na šířku TOO [mm]

Graf č.6: Vliv teploty materiálu při svařování na šíři TOO

4.4.2 Zkoušky mechanických vlastností

Hodnoty všech výsledků pro každý vzorek jsou uvedeny v přílohách č. 7, 8 a 9.

	Průměrn	é hodno	ty mecha	nických v	lastností, f	t = 3 mm
Vzorek č.	Pevnost v tahu R _m [MPa]	σ	Mez kluzu R _{p0,2} [MPa]	σ	Tažnost A ₈₀ [%]	σ
t3T2,5	594,3	9,3	529,3	8,6	8,2	0,9
t3T5	613,7	9,2	542,4	9,9	11,2	2
t3T10	581,3	12,5	519	12,3	7,5	0,4
t3T15	608,3	14	546,1	9,3	9,4	0,7
t3T20	596	5,6	533,8	3,8	8,7	0,7

Tab. 13: Průměrné hodnoty mechanických vlastností pro t = 3 mm

Graf č.7: Závislost mechanických vlastností na teplotě při svařování pro t = 3 mm

	Průměrné h	nodnoty	tvrdosti, t = 3	mm						
Vzorek č.	Tvrdost HV 10									
	TOO_L_min	σ	TOO_P_min	σ						
t3T2,5	162,5	0,7	165,5	2,1						
t3T5	167	2,8	173,5	0,7						
t3T10	163,5	3,5	174,5	2,1						
t3T15	164	1,4	166,5	0,7						
t3T20	163	2,8	164,5	0,7						

Tab. 14: Průměrné hodnoty tvrdosti pro t = 3 mm

Graf č.8: Závislost tvrdosti na teplotě při svařování pro t = 3 mm

	Průměri	né hodno	ty mecha	nických v	lastností	, t = 6 mm
Vzorek č.	Pevnost		Mez kluzu		Tažnost	
	v tahu R _m [MPa]	σ	R _{p0,2}	σ	A 80	σ
			[MPa]		[%]	
t6T2,5	629,7	12,1	542,6	2,2	16,5	1,1
t6T5	631,3	3,2	531,2	2,4	12,9	0,4
t6T10	631,7	4,2	532	4,7	13,2	0,8
t6T15	629,7	4,5	528,6	3,5	13	0,7
t6T20	640,3	1,2	544	1,2	17,7	1,4

Tab. 15: Průměrné hodnoty mechanických vlastností pro t = 6 mm

Graf č.9: Závislost mechanických vlastností na teplotě při svařování pro t = 6 mm

	Průměrné h	odnoty	tvrdosti, t = 6	6 mm						
Vzorok č	Tvrdost HV 10									
VZUIER C.	TOO_L_min	σ	TOO_P_min	σ						
t6T2,5	179,5	0,7	176	9,9						
t6T5	167,5	0,7	167,5	3,5						
t6T10	168	0	167	0						
t6T15	166	1,4	169	1,4						
t6T20	172,5	3,5	169,5	2,1						

Tab. 16: Průměrné hodnoty tvrdosti pro t = 6 mm

Graf č.10: Závislost tvrdosti na teplotě při svařování pro t = 6mm

	Průměr	né hodno	oty mecha	nických	vlastností	, t = 10 mm
Vzorek č.	Pevnost		Mez		Tažnost	
	v tahu R _m	σ	kluzu R _{p0,2}	σ	A ₈₀	σ
	[MPa]		[MPa]		[%]	
t10T2,5	620,3	4	519,5	7,3	21,3	0,5
t10T5	631,7	14,2	513,2	9	21,8	1
t10T10	618,7	3,8	503,8	0,2	22,8	1,4
t10T15	618,7	6,7	508,3	2,7	19,4	2
t10T20	612,7	11,2	504,9	3,4	21,4	1,2

Tab. 17: Průměrné hodnoty mechanických vlastností pro t = 10 mm

Graf č.11: Závislost mechanických vlastností na teplotě při svařování pro t = 10 mm

	Průměrné h	odnoty	y tvrdosti, t = [·]	10 mm						
Vzorek č	Tvrdost HV 10									
VZOTER C.	TOO_L_min σ TO		TOO_P_min	σ						
t10T2,5	188	9,9	175,5	0,7						
t10T5	195,5	0,7	192,5	2,1						
t10T10	186	1,4	193,5	3,5						
t10T15	190	1,4	175	4,2						
t10T20	193	4,2	173	1,4						

Tab. 18: Průměrné hodnoty tvrdosti pro t = 10 mm

Graf č.12: Závislost tvrdosti na teplotě při svařování pro t = 10mm

5. Závěr

Cílem práce bylo vyhodnotit mechanické vlastnosti a případný vznik trhlin nebo jiných vnitřních vad při svařování do materiálu S500MC o teplotách (0÷20)°C. Výsledky práce včetně grafického znázornění jsou v kap. 4.

Teoretická část práce se věnovala mechanismům zpevnění ocelí, rozboru mikrolegovaných ocelí a procesu termomechanického válcování.

Vlivem svařování dochází ke změně mikrostruktury. Fotografická dokumentace mikrostruktury základního (neovlivněného) materiálů a tepelně ovlivněných oblastí z místa těsně vedle svaru jsou v příloze č. 6. Struktura ZM je jemnozrnná feriticko-karbidická. V TOO se nachází struktura převážně feriticko-karbidická. Tvrdost TOO oproti ZM je vlivem svařování nižší o cca 30÷40 HV.

Z výsledků je zřejmé, že svařování při zvolených teplotách nemá výrazný vliv na mechanické vlastnosti (R_m, R_e, A, tvrdost). Všechny vzorky dosahují minimálních požadovaných mechanických vlastností. U svařených vzorků je požadavek na mez pevnosti, která nesmí být nižší než pevnost základního materiálu, která je uvedena v příloze č.1.

U všech zkušebních tyčí na zkoušku tahem došlo k lomu mimo oblast svaru. Po zkoušce ohybem nebyla vizuální kontrolou nalezena žádná trhlina. Fotografická dokumentace vzorků je v příloze č.7 a č.8.

Při pozorování mikrostruktury v TOO nebyla nalezena výrazná změna struktury, fotodokumentace viz příloha č.6.

Minimální povolená teplota u svařování do materiálu S500MC je dle interního technologického postupu pro svařování metodou MAG stanovena na 10°C. Na základě prezentovaných výsledků je možné tuto teplotu snížit. To by mělo pozitivní dopad na zkrácení výrobních časů a to bez vlivu na jakost. Bylo by však vhodné tento závěr ověřit a provést ještě doplňující zkoušky, zejména zkoušku rázem v ohybu pro kontrolu houževnatosti materiálu při rázovém namáhání.

6. Seznam použité literatury

- [1] http://www.bombardier-transportation.cz/ (cit. 2015-06-19)
- [2] Víteček, V.: Technologie, Bombardier Transportation Czech Republic a.s. (Praxe a zkušenosti), 2014
- [3] ČSN EN 10027-1, Praha, ČNI, 2006
- [4] ČSN EN 10025-2, Praha, ČNI, 2005
- [5] ČSN EN 1011-2, Praha, ČNI, 2002
- [6] STA 000-30-7-10, revize H, Bombardier, 2009
- [7] ČSN EN 10020, Praha, ČNI, 2001
- [8] ČSN EN 10149-2, Praha, ČNI, 2013
- [9] ČSN EN 10088, Praha, ČNI, 2015
- [10] D.T. Llewellyn a R.C. Hudd: Steels: Metalurgy and aplications, BH, 1998
- [11] Pilous, V.: Vysokopevné mikrolegované jemnozrnné oceli a jejich svařitelnost, Plzeň, 1999
- [11] Mazancová, E.: Technické materiály I-Kovové materiály, Ostrava, 2012
- [12] ČSN EN ISO 643, Praha, ČNI, 2013
- [13] Ptáček, L. a kolektiv: Nauka o materiálu I, Brno: Akademické nakladatelství CERM, s.r.o., 2003
- [14] http://www.ateam.zcu.cz/hsla.pdf (cit. 2015-06-28)
- [15] Metalography and Microstruktures, Vol 9, ASM Handbook, ASM International, 2004
- [16] Heat Treating, Vol 4, ASM Handbook, ASM International, 1991
- [17] Kocich, R.: Termomechanické procesy tváření, Ostrava, 2013
- [18] ČSN ISO 857, Praha, ČNI, 1997
- [19] Koukal J., Schwarz D., Hajdík J.: Materiály a jejich svařitelnost, Ostrava, 2009
- [20] ČSN EN ISO 5173, Praha, ČNI, 2010
- [21] Oxford Instruments/ WAS A.G.: Stručný uživatelský návod k obsluze spektrometru PMI-MASTER PRO, 2009

7. Seznam příloh

- Příloha č.1 Chemické složení a mechanické vlastnosti nejčastěji používaných ocelí v BT CZ
- Příloha č.2 Atesty materiálu S500MC pro tloušťky 3, 6 a 10 mm příslušných taveb
- Příloha č.3 Titulní strany kalibračních listů použitých měřidel a přístrojů
- Příloha č.4 Plány přípravy vzorků v experimentu
- Příloha č.5 Fotografická dokumentace makroskopické kontrolu vzorků
- Příloha č.6 Fotografická dokumentace mikrostruktury ZM a TOO v okolí svaru
- Příloha č.7 Výsledky a fotografická dokumentace vzorků po zkoušce ohybem
- Příloha č.8 Výsledky a fotografická dokumentace vzorků po zkoušce tahem
- Příloha č.9 Výsledky zkoušky tvrdosti

Tab. 1: Chemické složení oceli S355J2

Ozna	čení	Zpusob deso- xidace ^{b)}	C v % max. pro výrobek jmenovité tlouštky v mm		Si % max.	Mn % max.	P ^d % max.	S ^{d,•)} % max.	N ⁰ % max.	Cu ^ø % max.	Další prvky ^{h)} % max.	
Podle EN 10027-1 a CR 10260	Podle EN 10027-2		≤ 16	> 16 ≤ 40	> 40 ^{e)}							
S355J2	1.0577	FF	0,200	0,20 [%]	0,22	0,55	1,60	0,025	0,025	_	0,55	_
S355K2	1.0596	FF	0,200	0,20 ^{k)}	0,22	0,55	1,60	0,025	0,025	—	0,55	—
S450J0 ⁰	1.0590	FF	0,20	0,20 ^{%)}	0,22	0,55	1,70	0,030	0,030	0,025	0,55	m)

Viz 7.2.

^{b)} FN = neuklidněná ocel není dovolena; FF = plně uklidněná ocel (viz 6.2.2).

^{e)} U profilů jmenovité tloušťky > 100 mm se obsah C dohodne.

Viz volitelný požadavek 26.

^d Obsah P a S u dlouhých výrobků může být o 0,005 % vyšší.

* Maximální obsah S může být po dohodě zvýšen pro zlepšení obrobitelnosti o 0,015 %, pokud je ocel zpracována tak, aby modifikovala sulfidickou morfologii; v tomto připadě ocel obsahuje minimálně 0,0020 % Ca.

Viz volitelný požadavek 27.

- ⁹ Maximální hodnota pro dusík neplatí, jestliže obsah celkového Al je minimálně 0,020 %, nebo alternativně obsah rozpustného Al v kyselinách je min. 0,015 %, nebo jsou přítomny jiné vhodné prvky, které vážou N. Tyto prvky musí být uvedeny v dokumentu kontroly.
- ⁴⁾ Obsah Cu nad 0,40 % může způsobit zkřehnutí za červeného žáru při tváření za tepla.
- ^{h)} Pokud jsou dodávány další prvky, musí být uvedeny v dokumentu kontroly.
- ⁹ Pro jmenovitou tlouštku > 150 mm je obsah C maximálně 0,20 %.
- Pro jakostní stupně vhodné pro válcování za studena (viz 7.4.2.2.3) je obsah C maximálně 0,22 %.
- ^{k0} Pro jmenovité tloušťky > 30 mm je obsah C maximálně 0,22 %.
- Používá se pouze pro dlouhé výrobky.
- ^m Ocel může obsahovat max. 0,05 % Nb, max. 0,13 % V a max. 0,05 % Ti.

Ozna	ačení		Minimální mez kluzu R _{ett} ^{e)} MPa ^{b)} Jmenovitá tloušťka mm							Pevnost v tahu R _m , *) MPa ⁵¹ Jmenovitá tloušťka mm					
Podle EN 10027-1 a CR 10260	Podle EN 10027-2	≤ 16	>16 ≤40	>40 ≤63	>63 ≤80	>80 ≤100	> 100 ≤150	> 150 ≤ 200	> 200 ≤250	> 250 ≤400 ⁹	<3	≥3 ≤100	> 100 ≤ 150	> 150 ≤250	>250 ≤400 ⁴
S355J2	1.0577	355	345	335	325	315	295	285	275	265	510 - 680	470 - 630	450 - 600	450 - 600	450 - 600
S355K2	1.0596	355	345	335	325	315	295	285	275	265	510 - 680	470 - 630	450 - 600	450 - 600	450 - 600
S450J0 ⁴⁾	1.0590	450	430	410	390	380	380	-	_	_	-	550 - 720	530 - 700	_	_

Hodnoty v tabulce se vztahují na příčná zkušební tělesa (t) pro plechy a širokou ocel šířky ≥ 600 mm. Pro všechny další výrobky se vztahují na podélná zkušební tělesa (l).

^{b)} 1 MPa = 1 N/mm².

^{e)} Hodnoty platí pro ploché výrobky.

^{d)} Platí pouze pro dlouhé výrobky.

			Minimální tažnost *) %										
Ozna	ičení	Orientace zkušebniho telesa	L ₀ = 80 mm Jmenovitá tloušťka mm			.o = 80 mm Lo = 5,85 √So novitá tloušťka Jmenovitá tloušťka mm mm							
Podle EN 10027-1 a CR 10260	Podle EN 10027-2		≤1	>1 ≤1,5	>1,5 ≤2	>2 ≤2,5	> 2,5 < 3	≥3 ≤40	>40 ≤63	>63 ≤100	> 100 ≤ 150	> 150 ≤ 250	> 250 ⁴ \$ 400 pouze pro J2 a K2
S355J2	1.0577												17 (lat)
S355K2	1.0596	t	12	13	14	15	16	20	19	18	18	17	17 (l a t)
S450J0 ^{d)}	1.0590	I	-	-	-	-	-	17	17	17	17	-	-

*) Hodnoty v tabulce se vztahují na příčná zkušební tělesa (t) pro plechy a širokou ocel šířky ≥ 600. Pro všechny další výrobky se vztahují na podélná zkušební tělesa (l).

e) Hodnoty platí pro ploché výrobky.

d) Platí pouze pro dlouhé výrobky.

Označe	ní		Minimální nárazová práce KV (J) Jmenovitá tloušťka v mm					
Podle	Podle	Teplota						
EN 10027-1 a CR 10260	EN 10027-1 a CR 10260	C	≤ 150 ^{a), b)}	> 150 ≤ 250 ^{b)}	> 250 ≤ 400 ^{e)}			
\$355J2	1.0577	-20	27	27	27			
S355K2	S355K2 1.0596		40 ^{d)}	33	33			
S450J0*)	1.0590	0	27	_	_			

Pro jmenovité tloušťky ≤ 12 mm, viz 7.3.2.1 v EN 10025-1:2004.

^{b)} Pro profily s jmenovitou tloušťkou > 100 mm je nutno hodnoty dohodnout.

Viz volitelný požadavek 28.

^{e)} Hodnoty platí pro ploché výrobky.

^{d)} Tato hodnota je v souladu s 27 J při –30 °C (viz Eurokód 3).

Platí pouze pro dlouhé výrobky.

Tab. 3: Chemické složení oceli S500MC

C% max	Mn % Max	P% max	S% max	Si% max	Al% mini	Nb % max	V% max
0,100	1,700	0,025	0,010	0,400	0,015	0,070	0,200

Tab. 4: Mechanické vlastnosti oceli S500MC(pro podélné zkušební vzorky)

ReH N/mm ²	Rm N/mm ²	A % mini Lo = 80 min tloušťka< 3mm	A % mini Lo 5,65 √ S ₀ Min tloušťka ≥ 3mm	průměr ohybu min. při 180° (*)	rázová houževnatost KV v J při - 20° C (tloušťka ≥ 6mm)	tloušťka při tahu (tloušťka ≥15mm)
500 mini	550-700	12	14	1 tloušťka	40	Z15

Tab. 5: Chemické složení oceli S700MC

C% max	Mn % Max	P% max	S% max	Si% max	Al% mini	Nb % max	V% max
0,120	2,10	0,025	0,010	0,400	0,015	0,090	0,200

Tab. 6: Mechanické vlastnosti oceli S700MC (pro podélné zkušební vzorky)

ReH N/mm ²	Rm N/mm ²	A % mini Lo = 80 min tloušťka< 3mm	A % mini Lo 5,65 V S₀ tloušťka ≥ 3mm	průměr ohybu min. při 180° (*)	rázová houževnatost KV v J při - 20° C (tloušťka ≥ 6mm)	tloušťka při tahu (tloušťka ≥15mm)
700 mini	750-950	10	12	2 tloušťky	40	Z15

Tab. 7: Chemické složení oceli HC380LA

C % max	Mn % max	P % max	S % max	Si % max	Al% mini	V % max
0,100	1,00	0,025	0,010	0,40	0,015	0,030

Tab. 8: Mechanické vlastnosti oceli HC380LA (pro podélné zkušební vzorky)

ReH	Rm	A % mini	průměr ohybu min.
N/mm ²	N/mm²	Lo = 80	při 180° (*)
360-460	430-550	20	0,5 e

	N* 750/0110152 Page 1 / FIN A02 A02	 (5) ECO Conformer and enablings. A cooling to specifications (5) EL. Dark de antingpo / see paid. A cooling to specifications (7) Lamonge and maileant / Morralacida on rolling (8) To compare a c	Etat de livraison (1) Delivery condition	EDI Tratement de référence (1) BDI Treatment de référence (1) BDI Treatment de servoires	Em- Résilence / Impact testing	Loc Ref Type S Temp. Pos. Valeurs individuelles Moverme (2) Ref (3) [2] Temp. Z(4) Individuella values Average	Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd			a cos co con con con con con con con con con		g to the technical specifications Date 2804/15 ose specifications as well as all Agent / Receiving Agent	ctory, cs0 D01 F. SIXDENIERS 0 190
46-47-48-5744349 tavba 730520438	NF EN 10204-3.1/DIN 50049-3.1.B/ISO 10474	700 NAMAZ A%E, 56)+1 A MINI	N° Commande Usine Mil's Order Nor Mil's Order Nor	CF490D/S500MC STA000-307-10/H BO/MBARDIER FH52HRP45 000001 BOBINE BRUTE 77-7040-000001 BRUTE	Aud Traction / Tensile requirements	Pos. Type Ref Temp. ReEM Rm A%	Coop on Pression BL Cost Crit Crit </td <td></td> <td></td> <td>0.002 C81 C82 C83 C84 C83 C84 C83 C84 C84 C84 C84 C84 C84 C84 C84 C84 C84</td> <td></td> <td>(7) Masse et nh pieces We hereby cartify that the above cled shipment was produced accorr a thre indicalit. The indication of the contract and that, with inspection and tests completed, it meets norms and standards referred to in the contract.</td> <td>Contrôle de marquage, d'aspect et de dimensions : satisfaisants Inspecton on marknyst Les essais de priage sout satisfaisants / Denid test results are satis</td>			0.002 C81 C82 C83 C84 C83 C84 C83 C84		(7) Masse et nh pieces We hereby cartify that the above cled shipment was produced accorr a thre indicalit. The indication of the contract and that, with inspection and tests completed, it meets norms and standards referred to in the contract.	Contrôle de marquage, d'aspect et de dimensions : satisfaisants Inspecton on marknyst Les essais de priage sout satisfaisants / Denid test results are satis
že 5708440-42-43-44-45-4	ERTIFICAT DE RECEPTION	ile du producteur PLAGE T-1.06 Ils identification Lee-500 MINI NAMIZ Rm-550. FOS	taire N° Commande signee Courtier/Client Customer's Order Nbr	199460/001 -BOMB ARDIER	Dimensions / Sizes Masse Em-	ur Largeur Longueur (Kg) Lod S width Length (7) (2) (3)	1500 B11 B13 B13 B14 B13 B13 B14 L1	.400 MAXI AL=0,015 MINI NB=0,070 MAXI V =0,200 MA	sur produit / Check analysis	F% 5% 9% 7% 1% C73 C74 C75 C75 071 0,010 0,003 0,012 0,0144 0,046	_	Core sample (6)Mcde élab.Meth.Coulée Core sample T: Thomas M: Mathin Collectrice E: Electrique / Electric	Is. / Thickness O/Y: Oxy.pur / Basic oxyg. is. / Thickness CC: Coulée Continue / is. / Thickness CC: Coulée Continue / Co2 Co2 Co2 Co2 Co2 Co2 Co2 Co2 Co2 Co2
SAP 11150078S-563 šar	<u> </u>	ArcelorMitton Min ArcelorMitton ELORMITAL MEDITERANEE Site de FOS 16)04207-33741 F + 53301442773231 1 seut agareatormital com	Organisme et/ou destina service de contrôle Customer and/or contr 'nspection organism	ARCELORMITTAL SSC FRANCE 1, RUE EMILE DRUART 51100 REIMS 51100 REIMS	Identification du produit Product identification	tepère pièce Coulée Item Number Epaisser late number Heat Heat Thickne	005 102000 001 11 3,000 1007 730220439 001 11 3,000 11 3,000	0.100 MAXI MH-1.700 MAXI P =0.025 MAXI S =0.010 MAXI SI=0. 12=C+MN6+(CU+NI)/15+(CR+MO+V)/5 =0,40 MAXI	(6) Repère Pièce N° Coulée * Analyse s sel Disco motoco Heatinimher	ing reactioned interview 0.05 Minutes 1 (27) (27) (27) (27) (27) (27) (27) (27)	-	biscement/Location(2) (3) Offentiation/Direction (4/Position 2its /Head L.L.Ong / Lengitudinal C.Coeur / Ved / Bottom T.Travers / Transverse P.Pent / F.	/2 longueur / Length Z.TTavers court / U.1.0 EPA X.Divers Through thick Q.1.4 Epa C01 Mix C02 F.1.15 Epai

Obr. 1: Atest materiálu S500MC, t =3mm, tavba č. 730520438

2

Obr. 2: Atest materiálu S500MC, t =6mm, tavba č. 730521579

š. 5	55	73331-32-3	33-3	34-	35	<u> </u>	AV.	3A '	/30	418	357	74	SAP	1115	00085	5-563							
Nin 1/FIN	Page 101 A09/A03	ectifications g hanical forming (1)	tat de livraison (1) livery condition	LIC B04	atment of test samples BL BL B05																	1. 100	(0) 862
Nº 730/0088647	A02	me cahier charges / According to sp is mitrage / ac folied ge romalisant / solued ge romalisant / homatilication rollin ge ream, // and romatilication rolling age term, active romatilication age termmachangue / Thermo-mec- ine / Nomaliang per formmachangue / Thermo-mec- mer / solution / solution / solution / solution and rowali / solution / solution / solution		1	B01 Tree	Impact testing	/aleurs individuelles Moyenne Individual values Average	<	190 200 143 180											C96 C97	_	Date 24/10/14 Agent / Receiving Agent	F. SIXDENIERS
		(5) CDC: Confor Lamine A Reventue A Reventue TE Tremps LTC: Lamine TE Tremps D Normali B03 D D Elefinsi				Résilience /	Temp. Pos. V Z(4)	2 C08 C62	1											C91 C93		fications rell as all	D01
			8			- E e	od.Réf Type S) Ref (3)	04 C40 C0											5EQ02	C89 0,31	_	ne technical speci- pecifications as w	
		(v)	ical specifications			Шă	<u>9</u> P	C60-C69-> CC												- 038	-	ed according to the it meets those s	sants
			Grade and techn	OMBARDIER		ents														880	-	ment was product it tests completed tract.	nsions : satisfais sfactory.
SO 10474			ons techniques /	A000-307-10/H B	G	Tensile requireme	%	C13 <-C14-C2	1.12											0.034	_	above cited ship ith inspection and red to in the cont	aspect et de dime inface. sizes : sati
50049-3 1 B/	10-1-0-0+000		ices el spécificati	90D/S500MC ST	ILLE BRUTE 312969G5US3ME	Traction / 7	Rm	C12	202											C632	_	by certify that the ntract and that, w nd standards refe	de marquage, d'a
204-3 1/DIN		55)=14 MINI	ande Usine Nuar rder Nbr	CF4	A08 471		éf Temp. ReEF	C03 C11	70 79											80	_	eces We here of the co norms ar	Contrôle
NE EN 10		-700 NIMM2 A% (5.6	N° Comme Mill's O	CHAAHDE010 D			Pos. Type R. (5) Z(4)	02 C002 C1D									AXI		% >	C78 C79 0,057	_	(7) Masse et nb ple a titre indicatif.	
DTION		1,06 IINI NMM2 Rm=550 IG J 40 J MINIMOY	Commande urtier/Client		RDIER A07	Masse Em- Weight pla.	(kg) (7) (2) (3	B13 C01 C	4684	4684	4684	2534					N 02'0= A 1XYM 02		AL% NB%	c76 c77 0,035 0,056	_	Meth.Coulée : Martin Electric	Basic oxyg. ontinue /
AT DE RECE		tion LAGE T= tion LR=500 N KVL - 2049	C N S	10,5001	AF	/ Sizes	r Longueur Length	B11	0 3000,00	300,00	00'000	0 300,00					-0,015 MINI NB=0,0	Check analysis	S% Si%	0,003 0,018	_	(6)Mcde élab./ T: Thomas M: E: Electrique /	O/Y: Oxy.pur / CC: Coulée Co
ICERTIFIC/		Sigle du produc Mill's identifica FOS	estinataire r consignee	щ	AC	Dimensions (mm)	aisseur Largeu licknes Width	09 B10	000 1500,0	000 1500,0	,000 1500,0	000 1500,0					I SI=0,400 MAXI AL=	lyse sur produit /	Mn% P%	c72 c73 1,378 0,015	_	ation coeur / Core sample eau / Rolled surface	/3 Epais. / Thickness /4 Epais. / Thickness /6 Epais. / Thickness
		Site de FOS 4CE 231	Client et/ou de Customer and/o	ILTTAL SSC FRANC	SMI	oste Nombre	em Number Ep	07 B08 B	01 13 10,	01 13 10,	01 13 10,	01 7 10,					40XI S =0.010 MAX :0,40 MAXI	* Anal	۲ С%	0,059 1	_	traction (4)Pos tudinal C:C ansverse P:P	ugh thick 0:1
		Mittal EDITERRANEE (CEDEX - FRAN F + 33(0)4424735 ttal.com	le Sle	ARCELORN	51100 RE	tu produit Pc	Coulée Ite Heat	B07 A	M418574 0	418574 0	418574 0	418574 0					700 MAXI P =0,025 M 015+(CR+MO+V)/5 =	N° Coulée	er Heat number	730418574	_	(3) Orientation/D L:Long / Longit T:Travers / Tra	Z:Travers cour Divers Throu
		Arcelor RecelorMITTAL N 3776 FOS SUR ME -+33(0)4247-3314	Organisme et/ service de contri Inspection proani	FOEPTION LISINE		Identification	Repère pièce Plate number	B07	004067XX02 730	004067XX03 73(004067XX04 730	004067XX05 73					2:C =0,100 MAXI MN=1 EQ02=C+MN/6+(CU+NI	eth. (6) Ranàra Dià	naking Plate numt	1003 B07	-	Emplacement/Location2 1 Tête / Head 2 Pied / Bottom	3 1/2 longueur / Lengt

Obr. 3: Atest materiálu S500MC, t =10mm, tavba č. 730418574

028.2014

BT CZ 038/2015

OSVĚDČENÍ O SPRÁVNÉ FUNKCI ZAŘÍZENÍ

PCS, s.r.o. Středisko analytické služby nám. Republiky 63 591 01 Žďár nad Sázavou

Jiří Mika

jako zástupce a servisní organizace firmy **OXFORD INSTRUMENTS ANALYTICAL Ltd** v České republice potvrzuje, že spektrometr **PMI-MASTER PRO** v.č. 13M0096 byl zrevidován a byla ověřena použitelnost přístroje pro analýzy ocelí a Al slitin.

Platnost kalibrace byla ověřena pomocí certifikovaných referenčních materiálů a referenčních materiálů následujících výrobců: BAS, Ltd., England Brammer Standard Company, Inc. USA MBH analytical, Ltd., England ČKD Technické laboratoře, ČR

Doba platnosti osvědčení je jeden rok.

Osvědčení se vydává na žádost Bombardier Transportation Czech Republic a.s, Česká Lípa jako doklad pro interní systém jakosti.

VYHOVUJE

Ve Žďáře nad Sázavou, 28.8. 2015	Ing. Jaromír Smolík PCS s.r.o., analytické služby nám. Republiky 63
	591 01 Žďár nad Sázavou
	tel.: 566 622 905
	fax: 566 626 022
PCS spol. s r. o. středisko analytických služeb, divíze Analytika náměstí Republiky 63, 591 01, Žďár nad Sázavou www.pcs.cz	Analytické služpy Tel.: +420 566 622 905 Fax: +420 566 626 022 E-mail: j.malec@pcs.cz
IČ: 00571024 DIČ: CZ00571024 Společnost je zapsán	a v obchodním rejstříku Městského soudu v Praze, oddíl C, vložka 527

Obr. 1: Kalibrační list Optického emisního spektrometru PMI-MASTER PRO

Příloha č.3

Obr. 2: Kalibrační list Zkušebního stroje DX300

Příloha č.3

	Český metrologický ins Okružní 31, 638 00 Brno 1. +420 545 555 111, fax +420 545 222 728, www.cmi.	cz
I Pracoviště: () ()	Calibrační laboratoř č. 2202 akreditovaná Český Oblastní inspektorát Praha, Radiová 3, 102 00 Praha 10 Oddělení mechanických zkoušek materiálu, tel. +420 26	ým institutem pro akreditaci, o.p.s. 6020111, fax. +420 266020169
	KALIBRAČNÍ L	IST Bc. Radek Kreisinger
	1051-KL-10044-15	
Datum vystaven	: 22.1. 2015	List 1 ze 3 listů
Zákazník: Uživatel:	Igitur , spol. s r.o. Chraberce 14 , 440 01 louny Bombardier Transportation Czech Republik , a Svatopluka Čecha 1205 , 470 01 Česká Lípa	.S.
	Největší rozsah : (0 až 750) mm Zkoušené rozsahy stroje: (0 až 25) mm Rok výroby : 20!4 Počáteční měřená délka průtahoměru : nastavite Rozlišitelnos : ± 0,5 μm	elná
Výrobce:	Instron	
Тур:	inkrementální snimač prodloužení	
Výrobní číslo:	70166	VAHOANJE
Výsledky kalibra a vztahují se pouz	e byly získány za podmínek a s použitím postupů k době a místu provedení kalibrace.	uvedenýeli v tomto k <mark>a</mark> libračním listě
Datum kalibrace	22.1.2015	
Kalibraci proved		Ředitel oblastního inspektorátu:
	La stologication and the stole	
Jaroslav Městka	-10/2-	ery)
• •		lng. Vladimír Peršl 🗸 🗸 🖉

		0	Dedalation
/ Stru	ers	Bo	. Hadek Kreising
Struers GmbH Abteilung Kalibrierung Carl-Friedrich-Benz-Str. 5 47877 Willich			V YHOVU
akkreditiert durch die	/ accredited by the		
Deutsche Akkred	litierungsstelle GmbH	(DA	kkS
als Kalibrierlaboratori	um im / ac calibration laborate	rv in the	Akkreditierungsstell D-K-15050-01-00
Deutschen Kalibr	ierdienst DK	D	CZ-M-0038
Kalibrierschein		Kalibrierzeichen	D-K- 15050-01-0
Calibration Certificate		Calibration mark	2014-12
Gegenstand Object	hardness tester for Vickers	Dieser Kalibrierschein do Rückführung auf national	kumentiert die e Normale zur
H ersteller Manufacturer	Emco-Test Brennhoflehen-Kelau 174 5431 Kuchl / Österreich	Übereinstimmung mit der Übereinstimmung mit der Internationalen Einheiten Die DAkkS ist Unterzeic multilateralen Übereinkor	n system (SI). nner der nmen der
Typ Type	DuraScan-80	European co-operation fo (EA) und der Internationa Accreditation Cooperatio gegenseitigen Anerkennu	or Accreditation Il Laboratory n (ILAC) zur ung der
Fabrikat / Serien-Nr. Seriel number	841	Kalibrierscheine. Für die einer angemessenen Fris Wiederholung der Kalibri	Einhaltung st zur erung ist der
Auftraggeber Customer	Bombardier Česká Lípa Czech Republic	This calibration certificate the traceability to nationa which realize the units of according to the Internati	e documents I standards, measurement onal System of
Auftragsnummer Order No.	4560578360	Units (SI). The DAkkS is signatory to multilateral agreements of European co-operation fo	o the f the or Accreditation
Anzahl der Seiten des Ka Number of pages of the cer	librierscheins 13 tificate	(EA) and of the Internatio Accreditation Cooperatio the mutual recognition of	nal Laboratory n (ILAC) for calibration
Datum der Kalibrierung Date of calibration	08.12.2014	certificates. The user is obliged to ha	ve the object
Dieser Kalibrierschein darf nu der Genehmigung sowohl de Kalibrierscheine ohne Unters This calibration certificate ma Accreditation Body and the is	ur vollständig und unverändert weiterve r Deutschen Akkreditierungsstelle als a chrift haben keine Gültigkeit. ry not be reproduced other than in full e suing laboratory. Calibration certificate.	breitet werden. Auszüge oder Änd uch des ausstellenden Kalibrierlat ccept with the permisson of both th s without signature are not valid.	erungen bedürfen poratoriums. e German
Datum	Leiter des Kalibrierlaboratoriums	Bearbeiter	
08.04.2015		r erson responsible	
Struers GmbH Kalibrierservice Carl-Friedrich-Benz-Str. 5 47877 Williela	BiptIng. J. Wehr	Martin Josifek Jupif	l

Obr. 4:Titulní strana kalibračního listu automatického tvrdoměru DuraScan 80

Akreditovaná k 1. máje 823 756 61 Rožnov pod Radh	ol. s r. o. kalibrační la loštěm	t boratoř MEROS č. tel. 774 74 fax. 571 84 e-mail: meros@me	2249 47 701 43 328 ros.cz		2249
	KALI	BRAČNÍ	LIST	Bc. Radek Kre	singer
	č. 8	8662F/1	14		
			S	rana č. 1, počet st	ran 2
Žadatel:	AHLBOI Dvorecká 2 147 00 Pra	RN spol. s r.o. 359/4 aha 4			
Měřidlo:					
Druh:	Digitální te	eploměr (-220 ÷ 175	50)°C		
Výrobce: Typ:	GREISING	jER 0. sonda dotvková G	DE 130 (65 · 0	200 V°C	
Přesnost:	0,03% MF	$1 \pm 0.05\%$ FS (-199.9	0 ÷ 999,9)°C	100) C	
	Sondy dle	ČSN EN 60584-1 ed	.2: ± 2,5°C		
Výrobní číslo: Inventární číslo:	Neuveden 8662F/14	° c.1			
Použité etalony:					
Název etalonu:		Identifikační číslo:	Číslo kalibrační	ho listu: Pla	tnost do:
Multifunkční kalibrátor MC Odporový teploměr PT 100	(teplota)	v.c. 25516495 i.č. 405	0254E-13 0895F/14	30 07	.07.2015
Odporový teploměr PT 100 Všechny použité etalony maj	jí metrologicko	i.č. 148 u n <mark>ávaz</mark> nost na (mezi)nár	7905F/14 odní etalony.	03	.10.2015
Kalibrační metoda:	Dle interni	ího kalibračního post	upu MKTT ET.2	2	
Podmínky prostředí:	Teplota 23	°C ± 5°C, relativní vl	hkost max. 80%		
Datum přijetí:	27.10.201	4			
Datum kalibrace:	10.11.201	4			VYHOVU
Výsledek kalibrace:	Všechny na	měřené hodnoty v dobe	é kalibrace VYHO)VUJÍ výše	
	uvedeným měření leží	přesnostem (naměřené v pásmu uvedených pi	hodnoty rozšířen esností).	ϵ o \pm nejistotu	
V UL	L	- 1 4× - 4 1	li i	- Libor Če	rvenka
Kalloroval:	ing. Punco	ocnarova Ivana	of w	En rouverna	
			Podpis	edoucího laborato	ře

Obr. 5: Kalibrační list termometru Greisinger GMH 3200

Příloha č.3

Akreditovaná kal	&B Calibr IVANČICE	M & B Calibr, spol. 66491 Ivančice, Němč mbcalibr@mbcalibr.c: Kalibrační laboratoř institutem pro akred	.s r.o. Sice z č č. 2301 akreditovaná litaci, o.p.s.	Ke Karlovu 62/10 tel.fax: 546 451 998 www.mbcalibr.cz Českým	
	K	ALIBRAČNÍ	LIST č. 4818	89/14	
		Datum vystaveni	15.12.2014		
Zákazník:	Bombardier Trai Svatopluka Čeci	nsportation Czech ha 1205, 470 01 Če	Republic a.s. ská Lípa	Bc. Radek K	reisinger
Měřidlo:			posuvné měřitko		
Гур:			digitální		
ýrobce:	-X-/X-		Mitutoyo		
yrobni // identifik Rozsah // dělení stu	pnice:		0-150mm // 0.01mm		
second of action stu					
tereno podle kalibr oužitý etalon : Sada ada koncových mět fěření má návažnos 'eplota vzduchu v la kelativní vlhkost; 50	acniho postupu: KP a koncových měrek rek 125-500mm ET st na (mezi)národní i aboratoři: (20,0 ± 0,) % RH ± 10 % RH	0,5-100 mm ET D4 K D6 KL č.26505/12 etalony. ,5) °C	alibrační list č. 24918	/14	
Výsledky měření v	mm:	0.005	Describitionst und	lisish plash	0.005
Rovnoběžnost	méricich ploch	0,005	Rovnobeznost vod	neien pioen	0,005
+/-0,03		-0,01	+/-0,03		0,00
Jmenovità	Naměřená	Odchylka	Tolerance	Tolerance	1
nodnota v mm	nochota v mm	0.00	-0.02	0.02	ОК
23.80	23.80	0.00	-0.02	0.02	OK
76.20	76.20	0.00	-0.02	0,02	OK
124,50	124,50	0,00	-0,03	0,03	OK
150,00	150,00	0,00	-0,03	0,03	OK
Odchylka v mr	0,00	e 23,80 Jmenovitá	76,20 1 hodnota v mm	e 124,50	Tolerance Tolerance
Rozšířená nejisto	ta měření: U+ ± 13	3μm		0.00	VYHOVUJE
Uvedena rozšířená i	nejistota měření je s ení odpovídá pravd /02.	oučinem standardní ne čpodobnosti pokrytí 9	ejistoty měření a koefi 5%. Standardní nejisto	cientu rozšiření k=2, ota byla určena v sou	což hadu
oro normaini rozdei s dokumentem EA4 Datum kalibrace: Měření provedl : F	15.12.2014 Karel Hobik			WWW.C	EST BALCZ
pro normaini rozder s dokumentem EA4 Datum kalibrace: Měření provedl : k	15.12.2014 Karel Hobik		Z	kontroloval a schual vedopei	Laboratoře

Obr. 6: Kalibrační list posuvného měřítka Mitutoyo

Krok č,2: Vypálení zkušebních vzorků s přídavkem na obrábění

Krok č.3: Obrobení zkušebních tyčí

Obr. 2: Plán přípravy vzorků pro t = 6 mm

Obr. 3: Plán přípravy vzorků pro t = 10 mm

Fotografická dokumentace makroskopické kontroly:

Příloha č.5

Fotografická dokumentace mikrostruktury základního materiálu:

Fotografická dokumentace mikroskopické struktury v okolí svaru:

Vzorek č.	Druh Rozměry zkoušky [mm]		Průměr ohýbacího trnu [mm]	Vzdálenost os podpěrných válečků [mm]	Úhel ohybu [°]	Vyhodnocení
t3T2,5_1	TFBB	90x15	12	58	170±2	bez vady
t3T2,5_2	TFBB	90x15	12	58	170±2	bez vady
t3T2,5_3	TRBB	90x15	12	58	170±2	bez vady
t3T2,5_4	TRBB	90x15	12	58	170±2	bez vady
t3T5_1	TFBB	90x15	12	58	170±2	bez vady
t3T5_2	TFBB	90x15	12	58	170±2	bez vady
t3T5_3	TRBB	90x15	12	58	170±2	bez vady
t3T5_4	TRBB	90x15	12	58	170±2	bez vady
t3T10_1	TFBB	90x15	12	58	170±2	bez vady
t3T10_2	TFBB	90x15	12	58	170±2	bez vady
t3T10_3	TRBB	90x15	12	58	170±2	bez vady
t3T10_4	TRBB	90x15	12	58	170±2	bez vady
t3T15_1	TFBB	90x15	12	58	170±2	bez vady
t3T15_2	TFBB	90x15	12	58	170±2	bez vady
t3T15_3	TRBB	90x15	12	58	170±2	bez vady
t3T15_4	TRBB	90x15	12	58	170±2	bez vady
t3T20_1	TFBB	90x15	12	58	170±2	bez vady
t3T20_2	TFBB	90x15	12	58	170±2	bez vady
t3T20_3	TRBB	90x15	12	58	170±2	bez vady
t3T20_4	TRBB	90x15	12	58	170±2	bez vady

Tab. 1: Výsledky zkoušky ohybem pro t = 3 mm

						-
Vzorek č.	Druh zkoušky	Rozměry [mm]	Průměr ohýbacího trnu [mm]	Vzdálenost os podpěrných válečků [mm]	Úhel ohybu [°]	Vyhodnocení
t6T2,5_1	TFBB	100x28	24	76	170±2	bez vady
t6T2,5_2	TFBB	100x28	24	76	170±2	bez vady
t6T2,5_3	TRBB	100x28	24	76	170±2	bez vady
t6T2,5_4	TRBB	100x28	24	76	170±2	bez vady
t6T5_1	TFBB	100x28	24	76	170±2	bez vady
t6T5_2	TFBB	100x28	24	76	170±2	bez vady
t6T5_3	TRBB	100x28	24	76	170±2	bez vady
t6T5_4	TRBB	100x28	24	76	170±2	bez vady
t6T10_1	TFBB	100x28	24	76	170±2	bez vady
t6T10_2	TFBB	100x28	24	76	170±2	bez vady
t6T10_3	TRBB	100x28	24	76	170±2	bez vady
t6T10_4	TRBB	100x28	24	76	170±2	bez vady
t6T15_1	TFBB	100x28	24	76	170±2	bez vady
t6T15_2	TFBB	100x28	24	76	170±2	bez vady
t6T15_3	TRBB	100x28	24	76	170±2	bez vady
t3T15_4	TRBB	100x28	24	76	170±2	bez vady
t6T20_1	TFBB	100x28	24	76	170±2	bez vady
t6T20_2	TFBB	100x28	24	76	170±2	bez vady
t6T20_3	TRBB	100x28	24	76	170±2	bez vady
t6T20_4	TRBB	100x28	24	76	170±2	bez vady

Tab. 2: Výsledky zkoušky ohybem pro t = 6 mm

Vzorek č.	Druh zkoušky	Rozměry [mm]	Průměr ohýbacího trnu [mm]	Vzdálenost os podpěrných válečků [mm]	Úhel ohybu [°]	Vyhodnocení
t10T2,5_1	TFBB	130x42	40	100	170±2	bez vady
t10T2,5_2	TFBB	130x42	40	100	170±2	bez vady
t10T2,5_3	TRBB	130x42	40	100	170±2	bez vady
t10T2,5_4	TRBB	130x42	40	100	170±2	bez vady
t10T5_1	TFBB	130x42	40	100	170±2	bez vady
t10T5_2	TFBB	130x42	40	100	170±2	bez vady
t10T5_3	TRBB	130x42	40	100	170±2	bez vady
t10T5_4	TRBB	130x42	40	100	170±2	bez vady
t10T10_1	TFBB	130x42	40	100	170±2	bez vady
t10T10_2	TFBB	130x42	40	100	170±2	bez vady
t10T10_3	TRBB	130x42	40	100	170±2	bez vady
t10T10_4	TRBB	130x42	40	100	170±2	bez vady
t10T15_1	TFBB	130x42	40	100	170±2	bez vady
t6T15_2	TFBB	130x42	40	100	170±2	bez vady
t6T15_3	TRBB	130x42	40	100	170±2	bez vady
t3T15_4	TRBB	130x42	40	100	170±2	bez vady
t6T20_1	TFBB	130x42	40	100	170±2	bez vady
t6T20_2	TFBB	130x42	40	100	170±2	bez vady
t6T20_3	TRBB	130x42	40	100	170±2	bez vady
t6T20_4	TRBB	130x42	40	100	170±2	bez vady

Tab. 3: Výsledky zkoušky ohybem pro t = 10 mm

Fotografická dokumentace vzorků po zkoušce ohybem:

Obr.1: Vzorky po zkoušce ohybem seskupení t3T2,5_1÷4

Obr.2: Vzorky po zkoušce ohybem seskupení t3T5_1÷4

Obr.3: Vzorky po zkoušce ohybem seskupení t3T10_1÷4

Příloha č.7

Obr.4: Vzorky po zkoušce ohybem seskupení t3T15_1÷4

Obr.5: Vzorky po zkoušce ohybem seskupení t3T20_1÷4

Obr.6: Vzorky po zkoušce ohybem seskupení t6T2,5_1÷4

Příloha č.7

Obr.7: Vzorky po zkoušce ohybem seskupení t6T5_1÷4

Obr.8: Vzorky po zkoušce ohybem seskupení t6T10_1÷4

Obr.9: Vzorky po zkoušce ohybem seskupení t6T15_1÷4

Příloha č.7

Obr.10: Vzorky po zkoušce ohybem seskupení t6T20_1÷4

Obr.11: Vzorky po zkoušce ohybem seskupení t10T2,5_1÷4

Obr.12: Vzorky po zkoušce ohybem seskupení t10T5_1÷4

Příloha č.7

 $\begin{array}{c} 110775\\ 1 & 2 & 3 & 4 \end{array}$

Obr.13: Vzorky po zkoušce ohybem seskupení t10T10_1÷4

Obr.14: Vzorky po zkoušce ohybem seskupení t10T15_1÷4

Obr.15: Vzorky po zkoušce ohybem seskupení t10T20_1÷4

Zkušební	Rozměry	Maximální zatížení	Pevnost v tahu	Mez kluzu	Mez kluzu	Mez kluzu	Tažnost	Místo
tyč č.	[mm]	F _m [kN]	R _m	R _{p0,2}	R_{eH}	R_{eL}	A 80	lomu
			[MPa]	[MPa]	[MPa]	[MPa]	[%]	
t3T2,5_1	3,06x23,93	43.1	588	523	541	534	9,2	ZM
t3T2,5_2	3,05x23,93	43.0	590	526	549	543	7,9	ZM
t3T2,5_3	3,05x23,93	44.2	605	539	573	569	7,4	ZM
t3T5_1	3,01x23,96	44,7	619	549	561	555	13,4	ZM
t3T5_2	3,04x23,99	45,1	619	548	570	566	9,6	ZM
t3T5_3	3,05x23,94	44	603	531	550	545	10,5	ZM
t3T10_1	3,08x23,99	42,9	581	519	549	543	7,1	ZM
t3T10_2	3,07x23,95	43,7	594	531	556	549	7,6	ZM
t3T10_3	3,04x23,94	41,4	569	507	528	523	7,8	ZM
t3T15_1	3,04x23,93	45,2	622	555	567	559	9,9	ZM
t3T15_2	3,07x23,95	43,7	594	537	542	532	9,7	ZM
t3T15_3	3,05x23,97	44,5	609	546	568	564	8,6	ZM
t3T20_1	3,10x23,93	44,7	602	536	555	552	8,7	ZM
t3T20_2	3,09x23,97	44,1	595	537	548	540	8,5	ZM
t3T20_3	3,07x23,96	43,5	591	529	544	541	8,8	ZM

Tab .1: Výsledky zkoušky tahem pro t = 3 mm

Tab .2: Výsledky zkoušky tahem pro t = 6 mm

Rozměry Zkušební		Maximální zatížení	Pevnost v tahu	Mez kluzu	Mez kluzu	Mez kluzu	Tažnost	Místo
tyč č.	[mm]	F _m [kN]	R _m	R _p 0,2	\mathbf{R}_{eH}	R_{eL}	A ₈₀	lomu
			[MPa]	[MPa]	[MPa]	[MPa]	[%]	
t6T2,5_1	6,08x23,97	89 <i>,</i> 8	616	540	547	542	16,8	ZM
t6T2,5_2	6,06x23,94	92,0	634	545	570	563	17,4	ZM
t6T2,5_3	6,07x23,95	92,8	639	543	575	570	15,2	ZM
t6T5_1	6,03x23,95	91,7	635	534	578	571	12,8	ZM
t6T5_2	6,01x23,98	90,8	630	530	-	-	12,6	ZM
t6T5_3	6,06x23,94	91,3	629	530	-	-	13,3	ZM
t6T10_1	6,03x23,92	91,4	633	535	-	1	12,3	ZM
t6T10_2	6,04x23,94	90,6	627	527	567	563	13,5	ZM
t6T10_3	6,02x23,97	91,6	635	535	-	-	13,9	ZM
t6T15_1	6,03x23,92	90,1	625	526	571	568	13,2	ZM
t6T15_2	6,05x23,94	91,8	634	533	-	-	13,6	ZM
t6T15_3	6,05x23,94	91,2	630	528	571	565	12,3	ZM
t6T20_1	6,05x23,92	92,7	641	545	576	570	18,6	ZM
t6T20_2	6,07x23,94	93,1	641	544	576	570	16,0	ZM
t6T20_3	6,06x23,96	92,7	639	543	578	573	18,4	ZM

Zkušební tyč č.	Rozměry [mm]	Maximální zatížení F _m [kN]	Pevnost v tahu R _m [MPa]	Mez kluzu R _p 0,2 [MPa]	Tažnost A ₈₀ [%]	Místo Iomu
t10T2,5_1	10,07x23,82	147,7	616	525	20,7	ZM
t10T2,5_2	10,08x23,53	147,2	621	511	21,5	ZM
t10T2,5_3	10,04x23,43	146,8	624	522	21,6	ZM
t10T5_1	10,05x22,50	146,6	648	523	22,2	ZM
t10T5_2	10,10x23,50	148,1	624	510	22,6	ZM
t10T5_3	10,03x23,32	145,7	623	506	20,7	ZM
t10T10_1	10,04x23,65	146,6	617	504	22,6	ZM
t10T10_2	10,02x23,64	146	616	504	21,6	ZM
t10T10_3	10,03x23,69	147,9	623	504	24,3	ZM
t10T15_1	10,01x23,48	144	613	506	21,3	ZM
t10T15_2	10,03x23,38	144,8	617	508	17,3	ZM
t10T15_3	10,03x22,60	141,8	626	511	19,5	ZM
t10T20_1	10,03x22,86	142,5	621	503	22,8	ZM
t10T20_2	10,02x23,82	143,2	600	503	20,8	ZM
t10T20_3	10,04x22,96	142,3	617	509	20,7	ZM

Tab .3: Výsledky zkoušky tahem pro t = 10 mm

Fotografická dokumentace vzorků po zkoušce tahem:

Obr.1: Vzorky po zkoušce tahem seskupení t3T2,5÷20_1÷3

Obr.2: Vzorky po zkoušce tahem seskupení t6T2,5÷20_1÷3

Obr.3: Vzorky po zkoušce tahem seskupení t10T2,5÷20_1÷3

- V/			~ ~	•
Dri	nr	5	\mathbf{c}	1
		I A	(`	7
			···	-

Tab. 1: V	ýsledky	měření	tvrdosti	pro t = 3 mm
-----------	---------	--------	----------	------------------------

		ZM_L			TOO_L			SK			TOO_P			ZM_P		TOO_L	TOO_L	TOO_P	TOO_P
	7M I	7M I	7M I				SK	SK	SK	TOO P	TOO P	TOO P	7M P	7M P	7M P	-	-	-	-
	2101_5	2111_2	2111_2	100_1	100_1	100_1	51	51	JK	100_1	100_1	100_1	2101_1	2.01_1	2	průměr	min	průměr	min
t3T2,5_1	198	201	203	163	185	195	219	214	217	191	182	164	208	206	204	181,0	163	179,0	164
t3T2,5_2	201	203	206	162	182	191	218	217	219	197	186	167	206	206	206	178,3	162	183,3	167
t3T5_1	205	201	204	165	185	193	225	221	226	183	180	173	208	208	210	181,0	165	178,7	173
t3T5_2	201	201	200	169	188	188	222	226	229	189	182	174	206	203	205	181,7	169	181,7	174
t3T10_1	201	204	202	161	186	203	230	227	228	194	185	176	203	206	207	183,3	161	185,0	176
t3T10_2	206	203	206	166	182	191	228	231	230	191	185	173	206	203	204	179,7	166	183,0	173
t3T15_1	206	203	206	163	180	196	229	225	230	194	181	167	204	204	202	179,7	163	180,7	167
T3T15_2	208	207	209	165	179	197	227	227	226	188	181	166	203	201	205	180,3	165	178,3	166
t3T20_1	201	201	204	161	183	192	196	198	193	190	183	165	204	206	202	178,7	161	179,3	165
t3T20_2	205	205	206	165	180	195	198	198	203	185	181	164	208	203	198	180,0	165	176,7	164

	ZM_L			TOO_L			SK			тоо_р		ZM_P			TOO_L	T00_L	тоо_р	тоо_р	
	ZM_L	ZM_L	ZM_L	TOO_L	TOO_L	TOO_L	SK	SK	SK	тоо_р	тоо_р	тоо_р	ZM_P	ZM_P	ZM_P	- průměr	– min	- průměr	– min
t6T2,5_1_řada 1	217	223	222	191	186	194	234	239	238	195	191	185	218	221	219	190,3	186	190,3	185
t6T2,5_1_řada 2	212	217	212	179	185	197	236	234	233	195	183	169	216	216	214	187,0	179	182,3	169
t6T2,5_2_řada 1	216	222	223	190	191	200	244	243	239	197	190	186	225	217	222	193,7	190	191,0	186
t6T2,5_2_řada 2	214	213	213	180	188	197	235	231	238	197	190	183	214	217	220	188,3	180	190,0	183
t6T5_1_řada 1	221	224	222	188	193	191	231	229	231	197	184	190	215	214	216	190,7	188	190,3	184
t6T5_1_řada 2	217	214	216	168	188	190	188	190	187	198	173	170	210	211	212	182,0	168	180,3	170
t6T5_2_řada 1	221	217	218	189	191	192	226	225	229	193	192	191	218	214	221	190,7	189	192,0	191
t6T5_2_řada 2	213	214	215	167	197	198	185	187	187	199	186	165	211	212	214	187,3	167	183,3	165
t6T10_1_řada 1	220	218	220	190	186	189	230	225	230	194	186	190	217	219	215	188,3	186	190,0	186
t6T10_1_řada 2	216	214	214	168	188	190	188	190	190	196	190	167	212	209	209	182,0	168	184,3	167
t6T10_2_řada 1	220	215	220	188	191	194	228	234	236	191	184	188	221	224	222	191,0	188	187,7	184
t6T10_2_řada 2	217	216	214	168	191	199	193	189	190	197	188	167	212	214	213	186,0	168	184,0	167
t6T15_1_řada 1	219	219	222	184	187	194	228	227	225	194	186	182	222	213	217	188,3	184	187,3	182
t6T15_1_řada 2	215	218	220	165	178	190	189	186	190	197	191	168	216	220	214	177,7	165	185,3	168
t6T15_2_řada 1	217	218	217	191	183	193	228	233	229	191	186	186	217	218	221	189,0	183	187,7	186
t6T15_2_řada 2	213	216	217	167	190	196	187	188	186	195	190	170	216	214	215	184,3	167	185,0	170
t6T20_1_řada 1	219	219	217	190	186	197	228	232	236	195	193	192	217	220	216	191,0	186	193,3	192
t6T20_1_řada 2	213	213	211	170	191	205	191	190	191	193	188	168	208	213	214	188,7	170	183,0	168
t6T20_2_řada 1	221	220	221	195	189	195	230	236	234	191	190	191	218	218	219	193,0	189	190,7	190
t6T20_2_řada 2	217	215	215	175	183	204	193	190	188	196	191	171	211	211	211	187,3	175	186,0	171

Tab. 2: Výsledky měření tvrdosti pro t = 6 mm

	ZM_L		T00_L			SK			тоо_р		ZM_P			TOO_L	TOO_L	тоо_р	тоо_р		
	ZM_L	ZM_L	ZM_L	T00_L	T00_L	T00_L	SK	SK	SK	тоо_р	тоо_р	тоо_р	ZM_P	ZM_P	ZM_P	- průměr	- min	- průměr	– min
t10T2,5_1_řada 1	217	219	221	192	189	191	236	237	234	192	188	192	221	217	216	190,7	189	190,7	188
t10T2,5_1_řada 2	217	221	217	181	185	196	235	233	232	184	186	175	211	213	214	187,3	181	181,7	175
t10T2,5_2_řada 1	218	221	221	192	187	191	230	233	240	194	186	194	218	220	221	190,0	187	191,3	186
t10T2,5_2_řada 2	219	221	218	197	195	201	248	242	242	196	186	176	214	210	208	197,7	195	186,0	176
t10T5_1_řada 1	218	219	219	191	185	198	242	244	236	191	189	192	220	217	214	191,3	185	190,7	189
t10T5_1_řada 2	216	214	214	196	208	220	206	208	206	223	211	194	217	217	216	208,0	196	209,3	194
t10T5_2_řada 1	219	221	222	194	185	194	243	239	243	193	190	194	217	215	216	191,0	185	192,3	190
t10T5_2_řada 2	215	220	217	195	203	214	206	208	205	236	209	191	214	217	214	204,0	195	212,0	191
t10T10_1_řada 1	222	219	220	183	183	196	236	236	234	188	188	183	219	214	213	187,3	183	186,3	183
t10T10_1_řada 2	217	216	217	185	187	191	183	183	188	191	199	191	213	214	215	187,7	185	193,7	191
t10T10_2_řada 1	217	221	221	193	183	197	236	236	231	191	188	191	217	218	217	191,0	183	190,0	188
t10T10_2_řada 2	212	211	213	187	202	198	191	188	190	221	212	196	209	212	214	195,7	187	209,7	196
t10T15_1_řada 1	217	218	218	193	190	190	233	232	232	195	188	193	217	217	214	191,0	190	192,0	188
t10T15_1_řada 2	211	214	215	193	189	206	196	200	195	203	195	172	214	214	216	196,0	189	190,0	172
t10T15_2_řada 1	221	217	219	191	186	191	227	230	230	192	186	192	222	220	220	189,3	186	190,0	186
t10T15_2_řada 2	215	214	214	191	197	204	199	197	196	200	190	178	218	218	214	197,3	191	189,3	178
t10T20_1_řada 1	215	214	217	186	186	191	232	232	236	194	186	188	215	217	214	187,7	186	189,3	186
t10T20_1_řada 2	217	214	216	194	205	190	188	189	187	190	181	174	214	216	215	196,3	190	181,7	174
t10T20_2_řada 1	216	214	216	193	187	191	234	233	236	192	183	186	210	218	217	190,3	187	187,0	183
t10T20_2_řada 2	211	211	212	196	199	196	193	195	191	196	185	172	210	214	214	197,0	196	184,3	172

Tab. 3: Výsledky měření tvrdosti pro t = 10 mm