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The main models for description of fibers ultimate strength based on the probabilistic approach
are discussed. For identification of fiber strength type and estimation of corresponding'fiaram-
eters the modiÍied quanti|e regression is proposed. The bund|e strength predictions basěd on the
simp|est approach oÍ uniform share oÍ |oading and know|edge oÍ iiber strength distribution is
described. The simu|ation approach starting Írom re|iabi|ity of para||e| systeď is used as wel|.
These predictions are used for estimation oÍ basa|t roving strength. Preóicted va|ues are com-
pared with experimental data.
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1. INTRODUCTION

Strength at break is one of basic properties of fibers.
This parameter is important both for textile technolo-
gists and textiles designers. Generally it is assumed
that fiber strength is in nature stochastic variable and
corresponding distribution confirm to mechanisms of
failure. Classical theories lead to unimodal distributions
skewed obviously to the right [1].

For polymeric materials, where more types of cracks
appear, the polymodal strength distribution results.
Number of modalvalues is indicator of specific defects
(obviously surface defects and volume ones) [2]. In
contribution [3] the discrete spectrum of defects has
been identified. By the proper statistical technique the
polymodality has not been proved for modified PES,
carbon, aromatic polyamides and ceramic fibers [4-5].
These fibers exhibit typically unimodal and very broad
tensile strength distribution by the risk functions R(o).

This contribution is devoted to the se|ection oÍ risk
function of failure H(o) for description of the tensile
breaking strength o distribution. For parameters esti-
mation and right modelselection the method based on
the order statistics and nonlinear regression is pro-
posed. The simple models for prediction of bundle
strength are discussed. These predictions are used for
estimation oÍ basa|t roving strength. Predicted Va|ues
are compared with experimental data.

2. STATISTICAL ANALYSIS OF FIBRES
STRENGTH

The fracture of fibers can be generally described by
the micro mechanical models or on the base of pure
probabilistic ideas [21. The probabilistic approach is
based on these assumptions:
(i) fiber breaks at specific place with criticat defect

(catastrophic flaw),
(ii) defects are distributed randomly along the length

of fiber (model of Poisson marked process),

vlákna a textil 8 (2) 1 05-1 08 (2001 )

(iii) fracture probabilities at individual places are mu-
tually independent.

The cumu|ative probabi|ity of non.Íracture C(V,o)
depends on the tensi|e stress |eve| o and Íiber vo|ume
V. For very small body (V-+ 0) no defects are present
and therefore C(0,o) : 1 is valid. For the very large
body (V-+ cc) is C(oc,o) = Q.

The simple derivation of the stress at break distribu-
tion described below is a modification of deductions of
Kitt| and Diaz [6]. By using oÍ independence assump.
tion the probabi|iý of non-fracture of body composed
from volume V and volume AV without common points
has the form

C(V * ÁV,o) = C(V,o) C(ÁV,o) (1)

Eqn. (1) is based on the assumption of independence
of non-fracture probability in volume V and in volume
ÁV. By using of Tay|or linearization the C(ÁV,o) may be
written as

C(AV'o) = C(0 + ÁV,o): C(O,o.) + [dC(0,o)/dc]^V (2)

and the C(V + lV,o) as

C(V * ÁV,o) = C(V,o) + [dC(V,o)/do]ÁV (3)

Using eqns. (2) and (3) and the boundary condition
C(O,o) = 1, the following expression results

C(V + aV,o) = C(V'o){1 + [dO(0,o)/do]ÁV} =

= C(V'o) + [dC(V'o-)/do]ÁV (4)

After rearrangements of eqn. (4) the finalform is ob-
tained

dC(V,o)/do
C(V,o) =€P=-B(o)

The R(o) is known as the specific risk function. This
Íunction is positive and monotonously increasing as
C = (0,o) must be negative. Therefore in eqn. (5) must
be negative sígn at the term R(o). lntegration oÍ eqn.
(7) with boundary condition C(O,o) = 1 gives

C(V,o) = exp[-B(o)] (6)
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The cumulative probability of break F(o) is comple-
ment to the C(V,o'). Then the distribution of stress at
break is expressed as

F(o)=1-exp[-R(o)] (7)

For famous Weibull distribution [1] (model WEl3) has
R(o) form

R(o)l = [(o'- A)/B]c (8)

Here A is lower strength limit, B is scale parameter
and C is shape parameter. For brittle materials is often
assumed A = 0 (model WEl2).

Weibull models are physically incorrect due to unsat-
isfactory upper |imit oÍ strength C("c,o.) = 0. To over-
come this limitation Kies [7] proposed more general risk
function (model KIES) in the form

R(o)l = [(o - A)/(A1 - o)]c (e)

Here A1 is upper strength limit. For brittle materials is
again assumed A = 0 (model KIES2). Occasionallythe
single Weibull distribution is inconsistent with experi-
mentaldata. A multi-risk model is then used for analy-
sis of strength distribution. For a bimodal distribution
(fracture is result of two distinct kinds of defects) with
zero lower limiting strength the risk function is

R(o)l = [(o/B) + (o/8,)]" (10)

Generalization of Kies risk function has been pro-
posed by Phani [8] (model PHAS)

Fr(o)= t(o-A)/Brl1
[(A1-o)/81]'

(1 1)

In this equation are C and D two shape parameters.
It can be proved that the B and B., cannot be independ-
ent|y estimated' Therďore, the constraint B.' = 1 is used
in sequel. Simplified version of eqn. (a) has A = 0
(model PHA4). For well-known Gumbell distribution
(GUMB) is R(o) expressed as

B(") = exp[(o - A/BI (2)

The selection of right R(o) depends critically on the
estimated number of modes and on the presence or
absence of non zero lower limiting strength.

3. ESTIMATION OF R(o) TYPE AND
PARAMETERS

Main aim of the statistical analysis of strength data og

i = 1,...N is specification of R(s) and estimate of its
parameters. Owing to their special structure the param-
eters of Weibu||ýpe distributions can be estimated by
using of the maximum likelihood, quantile based and
moment based methods. Sometimes is attractive to
combine these and other methods for simplification of
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estimation process. We propose quantile based meth-
ods for their simp|iciý Methods of this type use the so-
called order statistics oo. Denote that o11y # o1i*r1 i =

1,...N-1. lt is well known that o61 values are rough es-
timates of sample quantile function for probabilities [9]

P=F(o1iy):#*

By using of eqn. (8) and order statistics o111the param-
eter estimation problem can be converted to the
nonlinear regression task [10].

So-called Weibull transformation method uses the re-
arrangement of eqn. (8) for order statistics

In[R(o11)l = In[-ln(1 - P)] (14)

The parameter estimates of R(o) modelcan be then
obtained by nonlinear least squares, i.e., by minimiz-
ing of criterion

N

s(a) = f lv'-ln(R(o;))2
i=1

where yi : In [ -ln (1 - P)]. Denote that graph of y; on
the In(o6) is so-called Weibull plot. This plot is for two
parameter Weibull distribution straight line but for three
parameter the concave curve results.

Strictly speaking, this method is based on the incor-
rect assumption that the y; are uncorrelated random
variables with constant variance. More logical is to use
the estimated sample quantiles o6 as explained quan-
tities. Corresponding least squares criterion for the
quantile regression has the form

(13)

(15)

(18)

s(a) = (16)

where Zi = exp(y) and Q(Z) is theoretical quantile func-
tion. For three parameter Weibull distribution is Q(Z)
expressed as [9]

o(zJ= A+BZtltc (17)

For three parameter Kies model is valid

N

Ito,i) - a(zi)12
i=1

Q(z)=:#
and for Gumbell one is

O(2,)=R+Bln(Z) (1s)

According to the roughness of o61 and their no con-
stant variances the special weights can be defined [9].

For selection of right risk function the statistical cri-
teria for selection of the optimal regression model form
can be used [10]. To distinguish between models with
various number of parameters M the Akaike informa-
tion criterion AIC is suitable
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where S(a.) is minimal value of S(a). The best model
is considered to be that for which this criterion reaches
a minimum. The predictive ability of regression type
models may be examined by the mean quadratic error
of prediction

where f(x,, a) is model function. Parameters a(.D are
least squares estimates when all points except the i-th
one were used. Criterion MEP is equalto the mean of
the squared predictive residuals [10]. The best model
with maximum predictive abi|iý reaches a minimum of
MEP

4. BUNDLE STRENGTH

Let us consider a fibrous system where n fibers (or
filaments) form a parallel bundle with no interaction be-
tween individual fibers. Daniels [11] developed theory
to estimate the maximum strength of bundles using
order statistics o61. The maximum strength of bundle
made from N fibers would be defined by relation

(N -i+ .|)o1;1 ž (N - i)o1i*r1 e2))
Peirce [12] examined five models in relation to the

strength of bundles. His second model requires uniform
tension among the fibers and is based on the distribu-
tion of breaking load. Maximum load p occurs when
number M fibers of the n ones breaks. Let the fibers
have ultimate strength distribution characterized by
probabi|iý density function (pdD p(s) and cumulative
probabi|iý function (cdf) F(o). For |arge n is then va|id

n-M =t-F(z) l=rf-F(z)ln n (23)
, =11_ F(o)l / p(o)

For the Weibull distribution (see eqn. (5)) is vatid

z = BC-(1/c) e4)
Daniels [11] extended Pierce's work (fibers have the

same elongation characteristics, and share the load
equally). The strength distribution of bundle is ap-
proaching to the normal distribution for large n inde-
pendent|y on the distribution of fibers probabi|iý den.
siý function. The expected bundle strength is

E(oe) = nz[1 - F(o)] (2s)

and the standard deviation is
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D(og) =zJf@n11-717y (26)

Here z is the value maximizing o[1 - F(o)]. For
Weibulldistribution is z defined by eqn. (24). Form lim-
iting normal distribution of bundle strength and Weibull
cdf of fibers is then mean bundle strength

E(oa) = g6-{trc)"*p1-119; (26)

tÓ.\ Harter [13] provided an exact formu|a for expectation
\1t t of Weibull order statistics in the form of series

MEP = *itr - r(x.,a1-n)12

E(o11,B,c,n) = *(7_;)r(1+ 1/ c)x

,.Sft-1) (-1)1.,r,1^

fu'\ / )(n-11'tu"

(27)

These mean values can be substituted into relation
(22) instead of values o6y and the maximum bundle
strength is value fulfilling this inequality.

Simulation based computation of bundle strength
based on the reliability defines bundle as system com-
posed from parallel-organized units. The reliability is
understood as a resistance of the system against a
load app|ied to it. |t is assumed that re|iabi|iý is tested
in such a way that the load increases from 0 to the level
causing the failure of all units or up to maximal load.
Further it is assumed that the experiment is relatively
fast, so that the time of duration of the load does not
inÍluence the surviva|. The standard surviva| ana|ysis
approach and counting processes models are used,
however, instead of time-to-failure, the breaking load of
Íibers is variab|e of interest' The concept and relevant
theory of counting processes is described in the book
[14]. Let the survival of fibers is described by i.i.d. ran-
dom variab|es U;l = 1 ..m with distribution given by Í(u),
F(u)' h(u)' H(u) denoting the densiý, distribution func-
tion, hazard function and cumulative hazard function,
respectively. lt is assumed that at each moment the
force applied to the fiber is divided equally among the
(unbroken) ones. The global force stretching the fiber
is observed. However, as the break of fiber leads to an
immediate re-distribution of the force to the other fibers
(so that to the abrupt increase of the force affecting
each individual fibers), the consequence can be the
break of several of remaining fibers. For such a set of
fibers broken practically at the same moment the pre-
cise level of the strength causing the break of some of
them is actually not know. Thus, a part of data is inter-
val-censored. lf the sufficient number of fibers is ob-
served the sufficiently large set of uncensored data are
registered. Let the bundle of n identical and independ-
ent fibers are tested. Denote by U, random variables -
survivals, by N;(u), l,(u) related individual counting and
indicator processes for the i-th filament (i = 1...n).
Further denote
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The common estimator of the cumulative hazard
function is the Nelson-Aalen one

H*(u)= i+g (2e)
d l(u)

where is set 0/0 = 0' The abi|iý of the estimator to ap.
proximate well the true H(u) depends on the indicator
processes for allvalues of strength u in the interval of
interest. Proof of asymptotic uniform consistency and
asymptotic normaliý of this estimator is derived in [15].

5. EXAMPLE

Basalt rocks from VESTANY hill were used as a raw
material. The roving contained 280 single filaments
were prepared. Mean fineness of roving was 45 tex.
Diameter of Íi|ament was 8.63 [pm]. The individual ba-
salt filaments removed from roving were tested. The
loads at break were measured under standard condi-
tions at sample length 10 mm. Load data were trans-
formed to the stresses at break o1 [GPa]. The sample
of 50 stresses at break values was used for evaluation
of the R(o) functions and estimate of their parameters.
Model proposed by Phani (eqn. (11)) leads to the pa-
rameter A without physical sense. Model PHA4 is more
realistic but the shape estimates are very high. Kies
type models (eqn. (9)) are here not better that three
parameter Weibul I one. The diff erences between M E P
for WEl3 and WEI 2 are very small and therefore the
simpler WEl2 has been selected. Parameters of this
model are B = 3.01[GPa] and C = 1.83. The mean
strength value for WEl2 is 2.67 GPa.

For roving strength measurements the TIHATEST
2300 machine was used. The 50 samples of strengths
Pl were collected. These values were recalculated to
stress at break values o' [GPa]. The strength distribu-
tion of tempered multifilament roving was nearly normal
with parameters: mean oo = 1.02 GPa and variance
s2 = 0.0075 [GPal2.These parameters were estimated
as sample arithmetic mean and sample variance.

Bundle strength predicted from eqn. (26) is E(oe) = 1.

This value is very close to experimental one. From
practical point of view is probably experimental value
too small because the part of fibers was crushed in
jaws of testing machine. Number oÍ broken fibers at
break computed from eqn (24) is M = 118.

The proposed simulation based modelwas used for
prediction of the survival of bundle when the survival
distribution of fibers is Weibull with known parameters.
Though the overall survivalcan be derived from the or-
der statistics distribution, its computation is generally
complicated. The Monte Carlo simulation has been
therefore used. Based on the 3000 simulations for
model WEl2 the mean value ES(o) = 2.21GPa and
standard deviation SS(s) = 0.22have been computed.
These values seem to be more realistic in comparison
with asymptotic results.

Acknowledgements
This work was supported by the Czech Gratnt Agency; grant GACR
No. 106/1184 and research projectJll/98:244100003 ot Czech Min-
istry oÍ Education,

7. REFERENCES

[1] WeibullW.: J.Appl. Mech. 18, 293 (1951)

[2] Goda K., Fukunaga H.: J.Mater.Sci. 21,4475 (1986)

[3] Baranova S.A. et. all..: Acta Polymerica 36, 385 (1985)

[4] Mi|itký J., Kovacic V.: Proc. Conf. |MTEX'9S' Lodz' May 1995

[5] MiIitký J et, a||: ModiÍied Polyester Fibers, Elsevier 1992

[6] Kitt| P,,Díaz G.: Res. Mechanica 24' 99 (1988)

[7] Kies J. A.: NFIL Rept 5093,Naval Research Lab., Washing-
ton DC (1958)

[8] Phani K. K.: J. Mater. Sci. 23,2424 (1988)

[9] Me|oun M., Mi|ithý J., Forina M.: Chemometrics Íor Anďytb
Chemistry vol l, Statistical Data Analysis, Ellis Honwood"
Chichester 1992

[.|0] Me|oun M., Mi|itký J., Forina M.: Chemometrics Íor ÁJ.€fuTtr

Chemistry vol ll, Regression and related Medr'c,Ds 
=lls

Horwood, Hempstead 1994

[1 1] Daniels H.E.: Proc. Roy. Soc. London 4183,405. il9-5
['12] Peirce F.T.:J. Text. Inst. 17, 355 (1928)

113l Harter H.L. : Order Statistics and their use, US govemerneir:
Printing Office 1970

[14] Anderson P.K., Borgan O., Gill R.D. and Keiding N.: Statisti-
cal mode|s based on Counťng Processes, Springer New York
1 993

[15] Vo|Ť P., Linka A.: Two app|icaťons of Counting Processes.
Bept. UTIA Praha No, |935, 1998

nn
N(u) = Il,lul t(u) =l4@) (28)

t-

108 vlákna a textil 8 (2) 105-108 (2001)


