
Session Management

Sessions and Listeners

Technique: Error Handling in Servlets

Review
• Web Applications

– File and Directory Structures (war file)

• The Web Container Model

– The Servlet Container

– The Servlet Context

– The Servlet Config

– Attributes

• Request, Session, and Context Scope

– Request Dispatcher (forward, include)

– Filter (Filter Chain, Wrapper class)

• Web Application → Servlet, HTML, … → Filter → Process → …

Objectives
• Sessions and Listeners

– Session Life Cycle

– Session Management

– Request and Context Listeners

– Session Listeners

• Techniques: Error Handling in Servlets

– Reporting Errors

– Logging Errors

Sessions & Listeners
Session

• Is the period of connection between client and server

• Is a group of activities that are performed by a user while
accessing a particular web site

• HttpSession are virtual connection between client and
server

• Web container reserves an individual memory block for
storing information about each session → Session
objects.

• The session tracking (mechanism)
– Serves the purpose tracking the client identity and other state

information required throughout the session

– Allows the server to keep a track of successive requests made
by same client

– Allows the customer to maintain the information with the
server as long as the customer does not log out from the website

Sessions & Listeners

Session Tracking Techniques
• URL Rewriting

• Hidden form field

• Cookies

• HttpSession interface

Sessions & Listeners
URL Rewriting

• Maintains the state of end user by modifying the URL.

• Adds some extra data at the end of the URL

• Is used when the information to be transferred is not critical.

• Syntax: url?query_string

• Ex
– Java Books

– <form action=“http://localhost:8080/UpdateProfile?uid=123” method=“get”>
---------- </form>

• A “pseudo-parameter” called jsessionid is placed in the URL
between the servlet name (with path information, if present) and the
query string (encodeURL() or encodeRedirectURL() or response)

• Disadvantages:
– Server side processing is tedious.

– Every URL that is returned to the user should have additional information
appended to it.

– If the user leaves the session and opens the Web page using a link or
bookmark then the session information is lost.

– The query string is limited

http://localhost:8080/Books?category=java
http://localhost:8080/UpdateProfile?uid=123

Sessions & Listeners
URL Rewriting – Example

• Building the web application can do some following
functions as

– The user must be authenticated before they want to use this
web site using the DB

– If the user is invalid, the message “Invalid username and
password” is presented, then the link “Click here to try again”
is shown that redirect the user to the login page

– Otherwise, the search page is redirected. This page allows user
search appropriate the last name of users

– The result of searching is shown in the data grid. In each row,
the information about ordinary number, username, and last
name is shown

– Besides, the data grid allows the user delete the selected row.
After delete action is complete, the data grid is updated

• The GUI of web application is present as following

Sessions & Listeners

URL Rewriting – Example

Sessions & Listeners

URL Rewriting – Example

Sessions & Listeners

URL Rewriting – Example

Sessions & Listeners

URL Rewriting – Example – First way

Sessions & Listeners

URL Rewriting – Example – Second

Sessions & Listeners

URL Rewriting – Example – Second

Sessions & Listeners

URL Rewriting – Example – Others

Sessions & Listeners

URL Rewriting – Example

Sessions & Listeners

URL Rewriting – Example

Sessions & Listeners

URL Rewriting – Example – First

Sessions & Listeners

URL Rewriting – Example

Sessions & Listeners

URL Rewriting – Example

Sessions & Listeners

URL Rewriting – Example

Sessions & Listeners

URL Rewriting – Example – Others

Sessions & Listeners

Hidden Form Fields
• Simplest technique to maintain the state of an end user.

• Insert the session identifier into the hidden form field in the HTML of each page

• Embedded the hidden form field in an HTML form and not visible when you
view an HTML file in a browser window.

• The session information can be extracted by the application by searching for these
fields. The servlets or JSP pages read the field using request.getParameter().

• Syntax

<input type=“hidden” name=“…” value=“…”>

• Ex

<input type=“hidden” name=“productId” value=“P01”>

• Advantages
– Simplest way to implement session tracking

– Displays nothing on the HTML page but can be used to hold any kind of data

– Helps to maintain a connection between two pages

• Disadvantages:
– Work on the dynamic pages.

– This method of session tracking displays sensitive information to the user.

Sessions & Listeners

Hidden Form Fields – Examples
• Upgrade the Web Application in URLRewriting topic with update

function on the selected row that allows the user update the last
name on the data grid as following

Sessions & Listeners
Hidden Form Fields – Examples

Sessions & Listeners
Hidden Form Fields – Examples

Sessions & Listeners
Hidden Form Fields – Examples

Sessions & Listeners
Hidden Form Fields – Examples

Sessions & Listeners
Hidden Form Fields – Examples – Others

Sessions & Listeners
Hidden Form Fields – Examples – Others

Sessions & Listeners
Hidden Form Fields – Examples – Others

Sessions & Listeners
Hidden Form Fields – Examples – Others

Sessions & Listeners
Hidden Form Fields – Examples – Others

Sessions & Listeners
Hidden Form Fields – Examples – Others

Sessions & Listeners
Cookies

• Is a small piece of information sent by the web server to the client
to keep track of users.

• Size of each cookie can be a maximum of 4 KB.

• Cookie has values in the form of key-value pairs

• When the server sends a cookie, the client receives the cookie,
saves and sends it back to the server each time the client accesses
a page on that server

• Can uniquely identify a client (In the case of J2EE web applications,
the cookie returned has a standard name JSESSIONID and store in
memory)

• A web browser is expected to support 20 Cookies per host

Sessions & Listeners
Cookies• Advantages

– Remember user IDs and password.(low security)

– To track visitors on a Web site for better service and new features.

– Cookies enable efficient ad processing.

– Support e-advertisement on Internet.

– Security (can not affect virus).

• Disadvantages
– Personal information is exposed to the other users.

(spam/ junk mail, pop up …)

– Cookies fails to work if the security level is set too high in the Internet browser.

– Most browsers enable the user at the client machine to deactivate (not to
accept) cookies.

– The size and number of cookies stored are limited.

• Note
– Browser is accepted cookies

– Cookies are stored at
• C:\Documents and

Settings\LoggedUserName\Cookies\LoggedUserName@ContextPath[n].txt

• C:\Users\LoggedUserName\AppData\Local\Microsoft\Windows\Temporary Internet Files
\LoggedUserName@host[n].txt

– Cookies are existed following the setMaxAge and deleted automatically by OS

Sessions & Listeners
Cookies

• The servlet API provides javax.servlet.http.Cookie class for creating and working with
cookies

• The constructor for the cookies class is: Cookie(java.lang.String name, java.lang.String
value)

• Sending Cookie
Methods Descriptions

addCookie

- public void addCookie(cookie1);

- Adds field to the HTTP response headers to send cookies to the browser, one at

a time

- Adds specified cookie to the response

- Can be called multiple times to set more than one cookies

setValue
- public void setValue(String newValue);

- Assigns a new value to a cookie after the cookie is created. In case if binary

value is used, base 64 can be used for encoding

setPath

- public void setPath(String path);

- Sets the path for the cookie. The cookie is available to all the pages specified

in the directory and its subdirectories. A cookie’s path must have the servlet

which sets the cookie

setMaxAge
- public void setMaxAge(int expiry);

- The maximum age of the cookie in seconds. If the value is positive, then the

cookie will expire after that many seconds which is specified by the expiry

Sessions & Listeners
Cookies

• Reading Cookie
Methods Descriptions

getCookies

- Cookie [] cookies = request.getCookies();

- Returns an array containing all of the Cookie objects the client

sends with the request

getMaxAge

- public int getMaxAge();

- Returns the maximum age of the cookie.

- Returns an integer which specify the maximum age of the

cookies in seconds

getValue
- public String getValue();

- Returns the value of the cookie

getName

- public String getName()

- Returns the name of cookie. Once the cookie has been created

its name cannot be changed

getPath

- public void getPath()

- Returns the path on the server to which the client return the

cookie. The cookie is available to all sub paths on the server

Sessions & Listeners

Cookies – Example

Sessions & Listeners

Cookies – Example

Sessions & Listeners

Cookies – Example

Sessions & Listeners

Shopping Cart using Cookies – Example

Sessions & Listeners

Shopping Cart using Cookies – Example

Sessions & Listeners

Shopping Cart using Cookies – Example

Sessions & Listeners

Shopping Cart using Cookies – Example

Sessions & Listeners
Shopping Cart using Cookies – Example

Sessions & Listeners
Shopping Cart using Cookies – Example

Sessions & Listeners
HttpSession interface

• Identifying user in a multi-page request scenario and
information about that user

• Is used to created a session between the client and server
by servlet container
– When users make a request, the server signs it a session object

and a unique session ID

– The session ID matches the user with the session object in
subsequent requests

– The session ID and the session object are passed along with the
request to the server

• Session Timeout
– Is necessary as session utilizes the memory locations

– Prevent the number of session increasing infinitely.

– Set either in the web.xml file or can be set by the method
setMaxInactiveInterval()

Sessions & Listeners
HttpSession interface Methods

Methods Descriptions

getSession

- request.getSession(boolean create);

- Obtain a current session objects

- The getSession() method with true parameter is used to create a new session (no

current session)

getId

- public String getId()

- Returns a string containing the unique identifier assigned to this session. The

servlet container assigns the identifier and it is implementation independent

getAttribute

- public Object getAttribute(String name)

- Returns the object which is bound with the specified name in the session.

- Returns null in case there is no object bound under the name

setAttribute

- public void setAttribute(String name, Object value)

- Binds the object to the current session by using the specified name.

- In case of repetition of name of the object bound to the session, the object is

replaced

removeAttribute

- public void removeAttribute(String name)

- Removes the object bound with the specified name from the session.

- In case of absence of object bound to specified name, this method does nothing.

getCreationTime
- public long getCreationTime()

- Returns the creation time of session.

Sessions & Listeners
HttpSession interface Methods

Methods Descriptions

getLastAccessedTime
- public long getLastAccessedTime()

- Returns the last accessed Time of session

getMaxInactiveInterval

- public int getMaxInactiveInterval()

- Returns the maximum time interval, in seconds, for which the servlet

container will keep the session alive between the client accesses

setMaxInactiveInterval

- public void setMaxInactiveInterval(int interval)

- Specifies the time, in seconds, between the client requests before the

servlet container invalidates the current session

isNew

- public boolean isNew()

- Returns true if the client is unaware about the session or choose not to be

part of the session

invalidate

- public void invalidate()

- Invalidates the session and the objects bound to the session are bounded.

This method throws IllegalStateException if called on already invalidated

session

- To avoid the hacker from causing any harm

- Destroys the data in a session that another servlet or JSP might require in

future. Therefore, invalidating a session should be done cautiously as

sessions are associated with client, not with individual servlets or JSP pages

Sessions & Listeners

HttpSession interface – Example

Sessions & Listeners
HttpSession interface – Example

Sessions & Listeners
HttpSession interface – Example

Sessions & Listeners
HttpSession interface – Example

Sessions & Listeners

HttpSession interface
• Distributed Session

– A session is available to be shared between web resources in a single web
application (e.g. a session cannot cross web application boundaries)

• Session Death is controlled in one of 3 ways
– Application Server Global Default

– Web Application Default (minutes)
• A negative value or zero value causes the session to never expire

– Individual Session Setting using setMaxInactivateInterval() method
• A negative value supplied as an argument causes the session to never expire

• Other Session APIs
– HttpSession.getServletContext() returns the SessionContext that the session

is attached

Sessions & Listeners
HttpSession interface – Example

Building the Web Application can allow user log in and log out on the system

Sessions & Listeners

HttpSession interface – Example

Sessions & Listeners

HttpSession interface – Example

Sessions & Listeners

HttpSession interface – Example

Sessions & Listeners
HttpSession interface – Example

Sessions & Listeners
HttpSession interface – Example

Sessions & Listeners
HttpSession interface – Example

Sessions & Listeners
HttpSession interface – Example

Sessions & Listeners
HttpSession interface – Example

Sessions & Listeners
HttpSession interface – Example

Sessions & Listeners

Session Management: General Principles

• Each of these requests needs to carry a unique ID, which
identifies the session to which it belongs.

• The web application will allocate this unique ID on the
first request from the client.

• The ID must be passed back to the client so that the
client can pass it back again with its next request. In
this way, the web application will know to which session
the request belongs. This implies that the client must need
to store the unique ID somewhere—and that’s where
session management mechanisms come in

• The default mechanism for session management is
cookie

Sessions & Listeners

Session Management – Example

Sessions & Listeners

Session Management – Example

Sessions & Listeners

Session Management – Example

Sessions & Listeners

Session Management – Example

Sessions & Listeners

Conclusion

Tracking

Session

Mechanism

Session object

Store

data/object

at server site

Store

data/object at

client site

Located

at client’s

system fie

Located

at query

string

Cookies

URL rewriting

Hidden form fields

Located on web page

and pass via form’s

parameter

Sessions & Listeners

Request and Context Listeners

• There are two things that need to do to set up a listener in a web

application:

– Write a class that implements the appropriate listener interface.

– Register the class name in the web application deployment descriptor,

web.xml.

<listener>

<listener-class>className</listener-class>

</listener>

Sessions & Listeners

Request Listeners

• ServletRequestListener deals with the life cycle of each request
object

• A class implementing the ServletRequestListener interface has 2
methods
– requestInitialized(): is called the moment that any request in the web

container be comes newly available (or it is called at the beginning of any
request’s scope)
• This is at the beginning of a servlet’s service() method or earlier than that if filter

chain is involved

– requestDestroyed(): is called for each request that comes to an end – either
at the end of the servlet’s service() method or at the end of the doFilter()
method for the first filter in a chain

• Each of these ServletRequestListener methods accept a
ServletRequestEvent as a parameter. This event object has 2
methods
– getServletContext()

– getServletRequest()

Sessions & Listeners

Request Listeners

Sessions & Listeners

Request Attribute Listeners
• ServletRequestAttributeListener deals with the life cycle of the

attributes attached to request objects

• A class implementing the ServletRequestAttributeListener
interface has 3 methods

– attributeAdded(): is called whenever a new attribute is added to any request

– attributeRemoved(): is called whenever an attribute is removed from a request

– attributeReplaced(): is called whenever an attribute is replaced

• Each of these ServletRequestAttributeListener methods accept a
ServletRequestAttributeEvent as a parameter. This event object has
2 methods

– getName(): returns name of attribute

– getValue(): returns old value of attribute

• The ServletRequestAttributeEvent inherits from ServetRequestEvent

• The “grandparent” of The ServletRequestEvent is
java.util.EventObject

– The getSource() method returns the object that is the source of the event

Sessions & Listeners

How to Add Listener to Web Project

Sessions & Listeners

How to Add Listener to Web Project

Sessions & Listeners

Example

Sessions & Listeners

Example

Sessions & Listeners

Example

Sessions & Listeners

Example

Sessions & Listeners

Context Listener
• Sessions have 02 listeners:

– ServletContextListener

• Receive notifications about changes to the servlet context of
the Web application

– contextInitialized(): gets called before any servlet’s init() method or
any filter’s doFilter() method

– contextDestroyed(): gets called after the servlet’s or filter’s
destroy() method

– Both of methods get passed a ServletContextEvent object that
provides the getServletContext() method

– ServletContextAttributeListener

• Recieves a notification about any modifications made to the
attribute list on the servlet context of a web application

• Has the same trio of methods as
ServletRequestAttributeListener

Sessions & Listeners

Example

Sessions & Listeners

Example

Sessions & Listeners

Example

Sessions & Listeners

Example

Sessions & Listeners

Session Listeners Declared in DD

• Have 02 listeners:

– HttpSessionListener

• Implements the changes to the list of active sessions in Web application

• sessionCreated() method: is called whenever a new session is provided
(can say that after the getSession() method)

• sessionDestroyed(): is called at the end of the sessions (within the call
invalidate() or session time out but before the session become invalid)

• Both of methods get passed a HttpSessionEvent object that provides the
getSession() method

– HttpSessionAttributeListener

• Is called whenever some changes are made to the attribute list on the
servlet session of a Web application

• Is used to notify when an attribute has been added, removed or
replaced by another attribute

• Has the same trio of methods as ServletRequestAttributeListener that
are passed the HttpSessionBindingEvent (is inherited from
HttpSessionEvent)

Sessions & Listeners

Session Listeners Not Declared in DD
• Have 02 listeners:

– HttpSessionBindingListener

• Notifies the object when it is being bound to or unbound from a session

• This notification can be the result of a forced unbinding of an attribute
from a session by the programmer, invalidation of the session or due to
timing out of session

• This implementation do not require any configuration within the
deployment descriptor of the Web application

• Notes: The object data types not implemented in BindingListener don’t
fire any events!

Methods Descriptions

valueBound

- public void valueBound(HttpSessionBindingEvent se);

- Notifies the object in being bound to a session and is

responsible for identification of the session

valueUnbound

- public void valueUnbound(HttpSessionBindingEvent se);

- Notifies the object on being unbound from a session and is

responsible for identification of the session

Sessions & Listeners

Session Listeners Not Declared in DD - Example

Sessions & Listeners

Session Listeners Not Declared in DD - Example

Sessions & Listeners

Session Listeners Not Declared in DD

• Have 02 listeners (cont)

– HttpSesssionActivationListener (receives events when

a value object is transported across JVMs).

• Stateful session (activated and passivated)

• Is implemented when a container migrates the session

between VM or persists sessions and is not required any

configuration within the deployment descriptor

Methods Descriptions

sessionDidActivate

- public void sessionDidActivate(HttpSessionEvent se);

- Provides notification that the session has just been

activated.

sessionWillPassivate

- public void sessionWillPassivate(HttpSessionEvent se);

- Provide notification that the session is about to be

passivated.

Error Handling in Servlet
Reporting Error

• There are many situations occur an error

– A requested page may be moved from one location to another.

– The address may be wrongly typed.

– The requested page may be forbidden, may be temporarily deleted or correct
HTTP version might not have found.

– There are other situations where an error may generated.

• Error during the execution of a web application are reported
Methods Descriptions

sendError

- public void sendError (int sc) throws IOException

- Checks for the status code and sends to the user the specified

response message

- After sending the error message the buffer is cleared

- response.sendError(response.SC_NOT_FOUND);

setStatus

- public void HttpServletResponse.setStatus (int sc)

- This code is specified earlier so that on receiving the setStatus()

method, the error message is throw. Or redirected to another

default Web page

- response.setStatus(response.SC_NOT_MODIFIED);

Error Handling in Servlet
Reporting Error

Error Handling in Servlet
Reporting Error

• Addition the following contents to web.xml file
– In web.xml, choose Page tab, choose Error Pages, click Add

Type or Browser the web page

Type error code

Error Handling in Servlet
Reporting Error

Uncheck the option “Show friendly HTTP error messages” from Tools/

“Internet Options” to set up the browser would be presented the user

defined message

Error Handling in Servlet
Reporting Error – Example

Error Handling in Servlet
Reporting Error – Example

Error Handling in Servlet
Logging Error

Error Handling in Servlet
Logging Error

• Servlet can store the actions and errors through the log() method
of the GenericServlet class.

• The log() method also assists in debugging and can viewed record
in a server

• Syntax: public void log (String msg [, Throwable t])

• Ex:

…
log("Servlet is not found ");
response.sendError(response.SC_INTERNAL_SERVER_ERROR, "The requested
page ["+ page + "] not found.");

…

• A log file locate at
– C:\Documents and Settings\usernames\.netbeans\6.9\

apache-tomcat-6.0.26_base\logs\localhost.yyyy-mm-dd.log

– C:\Users\usernames\.netbeans\netbeans\6.9\apache-tomcat-6.0.26_base
\logs\localhost.yyyy-mm-dd.log

Error Handling in Servlet
Logging Error

Summary

• Sessions and Listeners

• Techniques: Error Handling in Servlets

Q&A

Next Lecture
• Security Mechanisms

– Authentication

– Authorization

– Data Integrity

– Confidentiality

• Authentication of Security Mechanisms

– Basic

– Form

– Digest

– CLIENT-CERT Authentication

– HTTP Client Authentication

– JDBC Realms

• Describe the Deployment Descriptor Declarations

