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n Introduction
The article is aims to graphically describe  
the planar anisotropy of fibre or other 
planar systems based on image analysis. 
The method uses spectral techniques with 
the aid of two-dimensional Fourier trans-
form. The objects are an important part 
of an image and represent real-world ob-
jects. These objects are either randomly 
placed or they prefer certain directional 
placement. The objects should be in 
contrast with the background (gradient of 
image function on the edges of the object 
and background). In textile experience, 
the objects are considered to be fibres, 
threads, cross – sections of fibres etc., 
systems containing objects can be webs, 
fibre layers, woven fabrics, knitted fab-
rics, nonwoven textiles etc.

The characteristics of planar anisotropy 
is the angular density of length of thread 
or fibres f(α), which defines the length of 
thread or fibres orientated to an angular 
segment α ± α/2. Function f(α) or rather 
the polar plot of density f(α) is called 
the rose of directions. An experimental 
graphical method for the estimation of 
f(α) is described in [3]. This method 
uses the net of angles α1...αn situated 
at the top of fibre system being moni-
tored for the construction of the rose of 
intersections. The rose of directions as an 
estimate of function f(α) is then obtained 
from the rose of intersections through 
the graphical construction of the Steiner 
compact. The  number limit of angles is 
n ≤ 18.

The graphical method proposed is based 
on the spectral method of image analysis. 
The goal of this method is a fast graphical 
representation of the directional arrange-
ment of objects (estimation of anisotropy 
f(α)) in the form of rose of directions and 
histogram.

n 2D Fourier Transform (2DFT)
The spectral approach is based on two-
dimensional (2D) Fourier transform 
(FT) and is suitable for describing the 
textured images. The dominating direc-
tions (gradient of image function) in 
the directional textures (spatial domain) 
correspond to the large magnitude of 
frequency components distributed along 
the straight lines in the Fourier spec-
trum (frequency domain). In contrast, 
the purely random texture causes, that 
the frequency components in the power 
spectrum are approximately isotropic and 
possess a near circular shape. The Fourier 
transform is rotation dependent, i.e. rotat-
ing the original image by an angle will 
rotate its corresponding frequency plane 
by the same angle. The transform of hori-
zontal lines in the spatial domain image 
appears as vertical lines in the Fourier 
domain image, i.e. the lines in the spatial 
domain image and its transformation are 
orthogonal to each other [5]. Let f(x,y) be 
the grey level at pixel coordinates (x,y). 
Let the size of spatial domain image be 
M × N. For such an image the direct and 
inverse Fourier transforms are given

(1)

  (2)

where u = 0, 1, 2, ..., N - 1 and, v = 0, 1, 
2, ..., M - 1 are frequency variables [4]. If 
f(x,y) is real, its transform is, in general,  
complex. R(u,v) and I(u,v) represent the 
real and imaginary components of F(u,v), 
the Fourier spectrum is defined as

      (3)

The power spectrum P(u,v) and the rep-
resentation of P(u,v) scaled to 8 - bit grey 
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levels is converted

            (4)   

       (5)
 
If f(x,y) is real, its Fourier transform is 
conjugated symmetrically around the 
origin, that is

          (6)

which implies that the Fourier spectrum 
is also symmetric around the origin

            (7)

Figures 1 (a1) - (c1) represent binary 
images of simulated structural lines in 
the 0° direction, 45° direction, in the in-
terval 30° - 60°, respectively. The length, 
position and orientation of the lines were 
randomly generated from uniform distri-
bution. Figures 1 (a2) - (c2) show power 
spectrums scaled into 256 grey levels. 

Figure 1. (a1) - (c1) Binary images of simulated structural lines, (a2) - (c2) power spectrum as an intensity image, (a3) - (c3) polar plot 
of Sα, (a4) - (c4) histogram of  Sα. 

(a1) (b1) (c1)

(a2) (b2) (c2)

a3 (b3) (c3)

(a4) (b4) (c4)

.
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As  can be seen from these figures, in-
formation about the direction of major 
structural lines in the spatial domain is 
concentrated in the Fourier domain im-
age as the direction of corresponding 
large magnitude frequency components 
(represented by white colour).

n Assumptions
Let the image matrix be a square matrix 
of size M × M. Let M be an odd number 
- it is convenient for the specification 
of the origin of the Fourier spectrum, 
and image matrix be scaled to 8 – bit 
grey levels (monochromatic image). All 
frequency components from the Fou-
rier frequency spectrum are summarised 
together in the directional vector of 
certain angle α. Since the transform of 
real image function f(x,y) is complex, 
the absolute magnitudes of frequency 
components |F(u,v)| are obtained accord-
ing to relation (3). The sum of frequency 
components Sα in the directional vector 
is given by

                (8)

where α forms an angle between the 
directional vector and u axis, |F(u,v)| is 
a frequency component of the directional 
vector at the coordinates (u,v) and M is 
the size of the image.

 Computation of directional 
vector coordinates

As  can be seen from equation (7), the 
Fourier frequency spectrum is symmetric 
around the origin; it is sufficient to add up 
the frequency components of directional 
vectors depending on α in the interval 
(0, π), i.e. to specify that coordinates for 
the I. and II. quadrant.  are symmetric 

around the ordinate (v axis, π/2), that is 
(u,v) = (-u,v), therefore the determination 
of coordinates for I. quadrant suffices

       (9)

Here u is the abscissa axis or column 
number, v is the ordinate or row number 
and coordinates (u,v) are rounded to the 
closest integer, because the coordinates 
acquire an integer discrete value. The 
DC (Direct Current) component is the 
origin of frequency domain F(0,0), and 
represents the origin of the system of co-
ordinates. Figure 2 displays an example 
of coordinates for directional vector in I. 
quadrant, α = 30°.

For an estimation of the rose of directions 
the magnitude of Sα is plotted onto the 
polar diagram and consequently into the 
histogram. The algorithm realising the  
method proposed was created in MAT-
LAB programming language (Image 
Processing Toolbox). Input parameters 
are an image matrix and the output is the 
visualisation of the direction arrangement 
of objects in the form of a polar plot of Sα 

and histogram of Sα, which can be seen 
as the estimate of the rose of direction.

Figure 3 (a) displays the binary image of 
simulated structural lines from Figure 1 
(c1) and corresponding estimate of the 
rose of direction achieved by means of 
the Steiner compact in six directions 
αk = kπ/6 for k = 1, …, 5. The red line in 
Figure 3 (c) displays the estimate of the 
rose of direction, also in six directions, 
and Figure 3 (d) in directions with one-
degree step  using image analysis with 
the aid of Fourier transform. Figures 1 
(a3) - (c3) display the polar plot of Sα 
and represent the estimation of function 
f(α) (rose of directions), and Figure 1 
(a4) - (c4) display the histogram of Sα  
for the binary images from the Figure 1 
(a1) - (c1).

Figures 4 (a1) - (c1) show  grey level 
images of nanofibres with a randomly 
distributed structure, captured by a 
screnning electron microscope. Figure 4 
(a2) - (c.2) represent a corresponding 
power spectrum, Figure 4 (a3) - (c3) is a 
polar plot of Sα  and Figure 4 (a4) - (c4) 
is the estimate of the rose of directions by 
means of  the Steiner compact. As  can be 
seen from the polar plot, the  image struc-

Figure 2.  Coordinates for directional vector 
dependent on α = 30°.

Figure 3.  (a) Simulated fibre system, (b) estimation of the rose of directions by means of 
Steiner compact, (c) estimation of the rose of directions by using the Fourier transform, plot 
with 30 degree step, (d) estimation of the rose of directions by using the Fourier transform, 
plotted with 1 degree step.

(a) (b)

(c) (d)
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ture of the nanofibres in Figure 4 (a), and  
(b) is almost isotropic, but the structure 
in Figure 4 (c) shows a preference for 
the directional placement of fibres in a 
90°- 120° direction.

Figure 5 (a1) is a grey level image of 
random Gaussian noise as an example 
of the isotropic system. The magnitudes 
of Sα are uniformly distributed along the 
whole spectrum of angles, which can be 

seen from the polar plot of Sα in Figure 5 
(a2). Figure 5 (b1) displays a system of 
viscose fibres with preferred directions 
of orientation between the 0° - 30° and 
Figure 5 (c.1) is an image of a real fabric 

Figure 4.   (a1) - (c1) Textured images, (a2) - (c2) power spectrum as an intensity image, (a3) - (c3) polar plot of Sα, (a4) - (c4) estimation 
of the rose of directions by means of the Steiner compact. 

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)
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in  plain weave with a tilted warp set of 
yarns.   

n Conclusion
This paper presents a simple graphical 
method of planar anisotropy analysis 
for fibre systems. The advantage of this 
method is its fastness; results are directly 
available after the acquisition of image 
and application of algorithm. The visu-
alization of anisotropy is obtained in the 
form of a polar diagram and histogram. 

The polar diagram can be seen as an 
estimate of the rose of directions or func-
tion f(α). It is possible to monitor direc-
tional vectors with an angular step of 1°. 
Method can be used for the analysis of 
anisotropy of other systems, too. 
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