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Abstract

This dissertation thesis (Thesis) deals with the study of possibilities to ac-
tively control the static and dynamic mechanical response of planar struc-
tures by means of attached piezoelectric actuators. The considered planar
structures have a form of flat or curved piezoelectric composite shells. It
will be shown that such piezoelectric composite shells can provide efficient
and rather simple mechatronic systems that can be profitably used in ap-
plications to acoustics and adaptive optics.

In acoustics, the piezoelectric composite shells represent an interface
between two acoustic media. Existence of such an interface affects tremen-
dously the sound wave propagation through it. It is known that, when the
incident sound wave hits the shell, it makes the shell vibrate. The shell
vibration causes that a part of the incident sound wave is reflected and a
part is transmitted. It will be shown that by controlling the amplitude of
the shell vibration, it is possible to control the amplitudes of the reflected
and transmitted waves. Such a principle offers a simple approach for a
construction of noise control systems.

A physical parameter, which expresses the sound shielding efficiency of
noise control systems, is called the acoustic transmission loss. Therefore, a
considerable part of the Thesis is devoted to the analytical calculation or
numerical computation of the acoustic transmission loss of several systems
with piezoelectric composite shells. It will be demonstrated that by con-
necting the piezoelectric composite shell to an active electric (shunt) circuit,
it is possible to control the acoustic transmission loss of the shell. Such an
effect can be easily explained by considering the effective elastic properties
of the piezoelectric composite shell shunted by an active electric circuit.
It will be shown that acoustic transmission loss of the shell is increased,
when the effective Young’s modulus or the bending stiffness coefficient of
the shell are increased. Such an increase in the elastic parameters of the
piezoelectric composite shell can be achieved by the proper construction
and adjustment of the shunt circuit connected to the piezoelectric actuators
in the piezoelectric composite shell.

The numerical computation of the acoustic transmission loss can be di-
vided into two steps. In the first step, it is necessary to investigate the effect
of the shunt circuit on the elastic properties of the piezoelectric actuator,
which is attached to the glass shell. In the second step, the effect of the
elastic parameters of the piezoelectric actuator on the acoustic transmission
loss of the piezoelectric composite shell is analyzed. In the presented work,
the utilization of so called the Macro-Fiber-Composite (MFC) actuator is
considered, since it is suitable for easy attachment to flat or curved glass
shells. In accord with the aforementioned approach and due to geometrical
complexity of the MFC actuator, the numerical model of the MFC actu-
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ator based on the finite element method (FEM) is developed. The FEM
model of the MFC actuator has been used for the numerical computation
of effective elastic parameters, macroscopic piezoelectric constants, and the
capacitance per unit area of the MFC actuator. The effect of the shunt elec-
tric circuit on the macroscopic properties of the MFC actuator is analyzed
and the method for the determination of optimal shunt circuit parame-
ters that yield maximum values of effective Young’s moduli is presented.
Then, a detailed analysis of the particular geometry of the glass plate and
the arrangement of MFC actuators on the glass plate is performed using a
FEM model. Finally, the functionality of the approach and the developed
numerical models are verified using acoustic experiments.

In the last part of the Thesis, an application of electronic control of the
shape of planar structures in adaptive optics is introduced. An optimiza-
tion of several geometric parameters of a deformable mirror that consists of
a nickel reflective layer deposited on top of a thin piezoelectric PZT disk to
get the maximum actuator stroke is presented using the FEM simulations
of the layered composite structure.

Keywords:
Acoustics, Adaptive Optics, Planar Structure, Glass window, Macro

Fiber Composite piezoelectric actuator, Noise Transmission Control, Elas-
tic properties control, Active circuit, Negative capacitor, FEM simulations.
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Abstrakt

Dizertačńı práce se zabývá tématem studia možnost́ı aktivńıho ovládáńı
statické a dynamické mechanické odezvy systémů plošných struktur za
pomoci piezoelektrických aktuátor̊u připevněných ke struktuře. Plošné
struktury, uvažované v práci, jsou tvaru rovinných či zakřivených piezoelek-
trických kompozitńıch skořepin. Bude ukázáno, že takováto piezoelektrická
kompozitńı struktura může být efektivńım a poměrně jednoduchým mecha-
tronickým systémem využitelným v akustice nebo v adaptivńı optice.

V akustice většinou plošné struktury představuj́ı rozhrańı mezi dvěma
akustickými prostřed́ımi. Vlastnosti takového rozhrańı vždy ovlivňuj́ı
zvukovou vlnu, která se skrze něj š́ı̌ŕı. Je všeobecně známo, že pokud
zvuková vlna naraźı na překážku, kterou je plošná struktura, zp̊usob́ı
vibrace této struktury. Tyto vibrace pak zp̊usob́ı to, že část zvukové
vlny se od vibruj́ıćı struktury odraźı a část j́ı projde na druhou stranu.
Bude ukázáno, že kontrolou amplitudy vibraćı plošné struktury je možné
kontrolovat i amplitudy odražených a přenesených zvukových vln. Tato
myšlenka je základem př́ıstupu k tlumeńı hluku prezentovaného v dizertačńı
práci.

Fyzikálńı veličina, která měř́ı přenos zvuku skrz strukturu, se nazývá
akustická přenosová ztráta. Značná část práce je proto věnována analyt-
ickému výpočtu nebo numerickým simulaćım akustické přenosové ztráty
několika systémů piezoelektrických kompozitńıch skořepin. Bude ukázáno,
že paralelńım připojeńım piezoelektrické kompozitńı skořepiny k aktivńımu
elektronickému obvodu je možné ovládat jej́ı akustickou přenosovou ztrátu.
Ve své podstatě aktivńı elektronický obvod ovládá elastické vlastnosti
piezoelektrického prvku připojeného ke struktuře a bude dokázáno, že
t́ımto zp̊usobem lze ovládat elastické vlastnosti celé kompozitńı skořepiny.
Pokud se efektivńı Young̊uv modul nebo koeficient ohybové tuhosti piezo-
elektrické kompozitńı struktury podař́ı zvýšit, akustická přenosová ztráta
se zvýš́ı. Zvýšeńı hodnot elastických parametr̊u piezoelektrické kompozitńı
skořepiny lze dosáhnout správným nastaveńım napěťového obvodu par-
alelně připojeného k piezoelektrickým aktuátor̊um v kompozitńı struktuře.

Numerické výpočty akustické přenosové ztráty pomoćı metody koneč-
ných prvk̊u (FEM) mohou být rozděleny do dvou krok̊u. V prvńım kroku
je nutné zjistit, jaký efekt má paralelně připojený elektronický obvod na
elastické parametry piezoelektrického aktuátoru, který je připevněný ke
skleněné skořepině. V druhém kroku je třeba analyzovat vliv elastických
parametr̊u piezoelektrického aktuátoru na akustickou přenosovou ztrátu
celé struktury. V této práci je jako piezoelektrický aktuátor uvažován tzv.
macro fiber composite (MFC) actuator, protože je vhodný k připevněńı
k plochým i zakřiveným strukturám, jako jsou skleněné skořepiny. Dı́ky
tomu, že MFC aktuátor má neobyčejně složitou geometrii skládaj́ıćı se
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z mnoha mikroskopických PZT vláken, je nutné nejprve vyvinout nu-
merický model pouze MFC aktuátoru. Tento model slouž́ı k výpočtu
efektivńıch elastických parametr̊u, makroskopických piezoelektrických ko-
eficient̊u a kapacity na jednotkovou plochu MFC aktuátoru. Poté je
možné zařadit do výpočtu vliv paralelně připojeného elektronického ob-
vodu na makroskopické vlastnosti MFC aktuátoru. Je také ukázána
metoda, jak optimálně určit parametry aktivńıho elektronického obvodu,
které zp̊usob́ı maximálńı hodnotu makroskopických Youngových modul̊u
MFC aktuátoru. A nakonec je pomoćı FEM modelu provedena detailńı
analýza konkrétńı geometrie skleněné desky, na niž jsou určitým zp̊usobem
rozmı́stěny MFC aktuátory. Funkčnost vyvinutých FEM model̊u je dále
ověřena pomoćı experiment̊u měřeńı akustické přenosové ztráty a plošného
rozložeńı výchylky pomoćı digitálńı holografie.

V posledńı části práce je uveden př́ıklad aplikace elektronického ř́ızeńı
tvaru plošných struktur v adaptivńı optice. Tato část je věnována takové
optimalizaci několika geometrických parametr̊u deformovatelného zrcadla,
které se skládá z odrazné niklové plochy nanesené na povrchu tenkého PZT
disku, aby bylo dosaženo maximálńıch výchylek PZT aktuátoru. Analýza
je opět provedena pomoćı FEM simulaćı vrstvené kompozitńı struktury,
tentokrát niklu a PZT.

Keywords:
Akustika, Adaptivńı optika, Plošná struktura, Skleněné okno, Macro

Fiber Composite piezoelektrický aktuátor, Kontrola š́ı̌reńı hluku, Kontrola
elastických vlastnost́ı, Aktivńı obvod, Negativńı kapacita, FEM simualce.
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CS,ω (F) static capacitance of the MFC actuator driven by

a harmonic voltage
cijkl, cλµ (Pa) elastic stiffness tensor components
dikl, diλ (C·N−1) piezoelectric coefficient tensor components
D (C·m−2) electric displacement field vector
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dx (m) differential of x
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E (V·m−1) electric field vector
Ei (V·m−1) electric field vector components
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f (Hz) frequency
f (N·m−2) local surface external force vector
fx (N·m−2) local surface external force component in the x di-

rection
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F1 (N) external force component in the x direction
gikl, giλ (m2·C−1) piezoelectric coefficient tensor components
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hMFC (m) thickness of the MFC actuator
hNi (m) thickness of the nickel reflective layer of the de-
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hPZT (m) thickness of the PZT layer of the deformable mir-

ror
hikl, hiλ (V·m·N−1) piezoelectric coefficient tensor components
k (m−1) wave number
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kfr (N·m−1) effective spring constant of the frame of the glass
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kijk, kiλ (1) electromechanical coupling factor
l (m) RVE (of the MFC actuator) length
L (m) wavelength
MxMy,Mxy (kg·m·s−1) moments of bending forces
n (1) outer normal vector
ni (1) outer normal vector i-th component
N number of layers of the layered composite structure
Nx, Ny (Pa) normal stresses along the coordinates x, y
p (Pa) acoustic pressure
P (Pa) amplitude of acoustic pressure
pi (Pa) incident acoustic pressure
Pi (Pa) amplitude of incident acoustic pressure
pr (Pa) reflected acoustic pressure
Pr (Pa) amplitude of reflected acoustic pressure
pt (Pa) transmitted acoustic pressure
Pt (Pa) amplitude of transmitted acoustic pressure
PR (C·m−2) remnant polarization
Q (C) electric charge
R (m) radius of a double-layer sandwich composite struc-

ture of the deformable mirror
R0 (Ω) tunable resistance in a NC circuit
R1 (Ω) tunable resistance in a NC circuit
Rx (m) radius of curvature along the x
Ry (m) radius of curvature along the y
S (m2) surface area
S (1) mechanical strain tensor
Sij, Sλ (1) mechanical strain tensor components
sijkl, sλµ (Pa−1) elastic compliance coefficient tensor components
t (s) time
T (Pa) mechanical stress tensor
Tij, Tλ (Pa) mechanical stress tensor components
Tx, Ty, Txy (Pa) mechanical strain tensor components along the co-

ordinates x, y, xy
TL (dB) acoustic transmission loss
u (m) displacement vector
ui (m) displacement vector i-th component
ux (m) tangential component of the displace-

ment/displacement component in the x direction
uy (m) tangential component of the displace-

ment/displacement component in the y direction
uz (m) displacement component in the y direction
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Ue (J) electrical energy per unit volume
Um (J) mechanical energy per unit volume
v (m·s−1) particle velocity & vibration velocity
V (m·s−1) amplitude of vibration velocity
V (m3) volume
V (V) electric voltage/potential
V0 (V) testing voltage
Vx (V·m−1) partial derivative of the electrostatic potential V

with respect to x
Vy (V·m−1) partial derivative of the electrostatic potential V

with respect to y
w (m) normal component of the displacement
we (m) width of epoxy gap between two PZT fibers in the

MFC actuator
wf (m) width of the PZT fiber in the MFC actuator
W (m) amplitude of the normal component of the dis-

placement
x (m) orthogonal coordinate
y (m) orthogonal coordinate
Y (Pa) Young’s modulus
Yii (Pa) Young’s modulus component of an orthotropic ma-

terial
z (Pa·s·m−3) acoustic impedance
Z0 (Pa·s·m−1) characteristic acoustic impedance
Z (Pa·s·m−1) specific acoustic impedance
Za (Pa·s·m−1) specific acoustic impedance of air
Zw (Pa·s·m−1) specific acoustic impedance of the window
α (1) ratio of the shunt circuit capacitance over the

piezoelectric element static capacitance
βij (m·F−1) impermittivity tensor components
γ (Pa) elastic stiffness of the “surface” region of the RVE

element
γ23, γ13, γ12 (1) engineering shear strains
ε0 (F·m−1) vacuum permittivity
εij (F·m−1) electrical permittivity tensor components
εr (1) relative electrical permittivity
ζ (1) ratio of the optimal value R0,opt of the tunable re-

sistor over its current value R0

ζx, ζy, ζxy (1) curvature changes
Θ (K) thermodynamic temperature
η (1) dielectric loss factor
ηS (1) dielectric loss factor of the piezoelectric sample
ν (1) Poisson’s ratio
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νij (1) Poisson’s ratio component of an orthotropic mate-
rial

ξ (m−1) curvature of the shell
ξx (m−1) curvature along the x
ξy (m−1) curvature along the y
ξ (m) coordinate direction in which the PML absorbs

acoustic waves
ξ (1) ratio of the optimal value R1,opt of the tunable re-

sistor over its current value R1

% (kg·m−3) mass density of a material
%0 (kg·m−3) air density
σ (J·K−1) entropy
ω (rad·s−1) angular frequency
ω0 (rad·s−1) tuning angular frequency at which the condition

for the infinite Young’s modulus is satisfied

Commonly used mathematical symbols

I second-order identity matrix
i index from 1 to 3 OR imaginary unit
j index from 1 to 3
k index from 1 to 3
l index from 1 to 3
m Fourier’s series index
n Fourier’s series index
λ index from 1 to 6 (in Voigt notation)
µ index from 1 to 6 (in Voigt notation)
∇ Del operator (gradient operator), represented by

the nabla symbol
∆2 biharmonic operator



Chapter 1

Introduction

1.1 Motivation

The past few decades have been dedicated to an integration of active mate-
rials into a variety of host structures by means of measuring and controlling
their shape and behavior. Materials science and structural engineering have
focused on a development of advanced (smart) materials and their appli-
cations to structures with enhanced functionality. While there exist many
types of smart materials, such as shape memory alloys, electrostrictive
or magnetostrictive materials, piezoelectrics remain the most widely used
ones for a number of reasons. They have a unique ability to convert the
electrical energy into mechanical strain energy, and vice versa. Piezoelec-
tric ceramics have a high structural stiffness, which allows them a strong,
voltage-dependent actuation capability. In addition, piezoelectrics can in-
teract with dynamic systems in a wide range of frequencies from zero up
to a megahertz range. Nowadays, piezoelectric materials have been used
in numerous applications to enhance the performance of aerospace struc-
tures, automobiles and sporting equipment by performing shape control
and vibration and acoustic noise reduction.

It is known that the vibration of large planar structures (e.g. airplane
wings, large windows, glass facades or various flexible panels) results in a
serious material fatigue, weakening joints, increase in skin friction, or an
unpleasant noise produced directly by vibrating structures. All these both-
ering effects represent a stimulation for a research of sophisticated methods
for the suppression of vibration and noise transmission through large planar
structures. Realization of such methods has become a big contemporary
challenge for scientists and researchers in the fields of mechanical engi-
neering and acoustics. Therefore, the objective of the dissertation thesis
(Thesis) is to develop methods for the noise suppression through planar
structures.

Nowadays, the noise suppression became an environmental problem be-
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2 CHAPTER 1. INTRODUCTION

cause people in cities are exposed to many harmful influences on their
health caused by the unpleasant noise. In the quest of prevention the hear-
ing illnesses, it seems to be reasonable to suppress the noise at places where
people live and work. It is a quite hard task, because the intensity of the
noise in cities is becoming permanently bigger and passive noise suppres-
sion methods are not sufficient, especially in the low frequency range (up to
1 kHz). On the other hand, active noise suppression methods work well in
a low frequency range (up to 1 kHz) but they require complicated control
algorithms and very fast electronics. There is a big challenge for researchers
in a broad variety of scientific fields to invent advanced noise suppression
methods with a strong accent on the interdisciplinary interaction. The
new approach of modern noise suppression methods should be based on
the sound transmission control. Besides other things, the most important
requirements for these methods is the noise suppression system effective-
ness in wide frequency range, especially between 2 and 5 kHz, where the
human hearing is inclined to be easily harmed [1, 2]. These aforementioned
issues have become a motivation for the Thesis.

1.2 Problem Statement

The key objective of the Thesis is the study of possibilities of a precise
active control of static and dynamic mechanical response of planar struc-
tures. There exist two possible groups of applications, where the controlled
planar structures can be used. The first group of applications is in struc-
tural acoustics, where the planar structures (windows or glazed facades)
represent major paths of noise transmission into a building interior. They
can be actively controlled by means of their acoustic impedance. The sec-
ond group of application, where the tuned planar structures can be used,
is adaptive optics, where the most commonly used planar structures as
wavefront correctors are large diameter deformable mirrors, which require
a fast response time and a strong actuation stroke. In order to achieve
large deflections over the surface of the planar structures, devices based on
piezoelectric layer composite structures actively controlled by the electric
field are designed. An analysis of fundamental properties of such systems
is the main objective of the Chapters presented below. The basic principles
of the vibrational control of planar structures are explained and demon-
strated on a simple example of a sound transmission through a glass plate
window.

Today, there exist several passive noise control techniques, which are
based on the application of elements, such as massive walls, rubber layers,
porous materials, etc. Such methods are relatively cheap and efficient
in high frequency range. However, it is clear that they can be hardly
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applicable to large glass windows or facades. At the same time, there exist
conventional active noise control techniques. These methods are efficient
in the low frequency range, but it is difficult to find their implementation
that would be both efficient in a broad frequency range and financially
acceptable. The third category of noise suppression methods is based on
the semi-active control approach, which profitably balances the advantages
of both passive and active approaches: a high efficiency, a simple technical
implementation, a minimal weight and size, a low cost, and small external
power supply. This technique is in literature commonly referred to as
a piezoelectric shunt damping (PSD). It uses the piezoelectric actuator
mechanically attached to the structure and electrically shunted by passive
or active electrical networks. This promising approach is characterized
by utilization of piezoelectric materials in an alternative way based on a
simultaneous sensing and actuation performed by a single either monolithic
or composite piezoelectric actuator, which is connected to a one-port shunt
circuit.

1.3 Contributions of the Thesis

A relevance of the problem solved in the Thesis can be measured in terms
of approach originality, global social benefits, and potential commercial
profits. The approach presented in the Thesis offers a promising method for
the control of the static and dynamic deformations of planar structures. In
Thesis, there is analyzed and verified the functionality of the method on a
system for the suppression of noise transmission through the glass windows
using the active control of the acoustic impedance of the glass plate with
attached piezoelectric actuators shunted by an active electric circuit. The
advantages of this method stem from its generality and simplicity, offering
an efficient tool for the control of the noise transmission through glass
windows, especially in the low-frequency range, in which passive methods
are inefficient.

The social benefits can be found in the contribution to reduction of
the urban and traffic noisiness in buildings and consequently to living and
working comfort increase.

From the commercial point of view, the noise control method based on
the piezoelectric shunt damping can bring an affordable higher comfort of
services such as transport or accommodation thanks to an inexpensive and
effective noise reduction. Potential success of the applied technology would
lead to a higher competitiveness of the final services and products on the
world markets thanks to its low costs and the efficiency in a wide range of
frequencies.
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1.4 Structure of the Thesis

The Thesis is organized into 6 chapters as follows:

• Chapter 1. Introduction describes the motivation behind the work
efforts together with the goals. There is also a list of contributions
of this Thesis and briefly indicated the outline.

• Chapter 2. Background and State-of-the-Art introduces the reader to
the necessary theoretical background and surveys the current state-
of-the-art. The theoretical background presents basics about smart
materials and puts emphasis on piezoelectric materials. Also, there
is defined the acoustic transmission loss (TL) as the main physical
quantity evaluating the sound shielding efficiency of the interface be-
tween two acoustic media. The literature review of the state of the
art in the field of noise control through the plates is presented. The
survey is focused on the noise transmission control using smart, es-
pecially piezoelectric materials.

• Chapter 3. Theoretical modelling of the acoustic impedance of a
curved glass shell and the principles of active elasticity control method
determines the most important features of the noise transmission
through planar structures using the approximative analytical model
of the specific acoustic impedance of the curved shell. It is demon-
strated that by an active piezoelectric layer attached to the planar
structure it is possible to control the effective elastic properties of the
whole structure. Also, the basic theoretical aspects of active control
of effective elastic properties of piezoelectric materials are explained.

• Chapter 4. Active elasticity control of macro fiber composite actuator
introduces a macro fiber composite (MFC) actuator such as active
piezoelectric layer which could be attached to a vibrating structure
without cracking. The static and dynamic response of the MFC ac-
tuator is analyzed in detail using finite element method (FEM) simu-
lations. Computation of its effective material properties and demon-
stration of tuning its effective elastic constants by means of a shunt
electric circuit is presented in this Chapter. Particularly, it is solved
the effect of the shunt circuit with a negative capacitance (NC) on
the effective elastic properties of the MFC actuator.

• Chapter 5. Glass plate noise transmission suppression by means of
distributed MFC actuators shunted by the negative capacitance cir-
cuit : The objective of the study presented in this Chapter is to an-
alyze the most efficient ways for suppression of noise transmission
through the glass plates using active elasticity control of attached
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piezoelectric MFC actuators. A detailed analysis of the FEM model
implementation of the particular arrangement of MFC actuators on
the glass plate is performed. A simple experimental setup for the
approximative measurements of the acoustic transmission loss is de-
scribed. Results of the FEM model simulations and their comparison
with experimental data are presented.

• Chapter 6. Application of the active shape control of the planar struc-
ture to adaptive optics introduces the deformable mirrors as the most
commonly used wavefront correctors in adaptive optics systems. An
optimization of several geometric parameters of a deformable mirror
that consists of a nickel reflective layer deposited on top of a thin
piezoelectric PZT disk to get the maximum actuator stroke is pre-
sented using the FEM simulations of the layered composite structure.

• Conclusions : Summarizes the results of the research presented in the
Thesis.
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Chapter 2

Background and
State-of-the-Art

This Chapter introduces the reader to the necessary theoretical background
about piezoelectric materials and acoustic transmission loss and surveys
the current state-of-the-art of the noise transmission control through the
planar structures.

2.1 Theoretical Background

In this Section, there will be given fundamental information about piezo-
electric materials. The Chapter introduces the mathematical description of
the piezoelectric effect to an extent, which is necessary for understanding
its applications to the noise control through planar structures presented
in the Thesis. For more extensive information, the reader should consult
literature dedicated to the field of piezoelectrics such as in [3] or [4]. Useful
information can be found in the IEEE Standard on Piezoelectricity [5] and
more popular reading with recent aspects of the field of piezoelectricity is
published in [6].

In addition, the acoustic transmission loss (TL) as the main physical
quantity that measures/expresses the sound shielding efficiency of the de-
vice will be introduced.

2.1.1 Piezoelectric materials

Piezoelectric materials or piezoelectrics constitute a special group of mate-
rials, which belongs to so called smart materials. Generally, smart materi-
als are divided into groups according to the kind of energy transformation,
such as light–mechanical, chemo – mechanical, thermo – mechanical, mag-
neto – mechanical and electro – mechanical. The majority of systems with

7



8 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

smart materials have two basic functions, which are sensing and actuation.
The sensor or detection capabilities are used to measure physical quanti-
ties by converting them into signals, which can be read by an observer.
According to the nature of a smart material, different physical quantity
can be measured, e.g. changes in mechanical stress, strain, displacement,
velocity, acceleration, electrical or thermal change of the structure. Actu-
ators are used to change the physical quantities by the source of energy,
usually the electrical signal, and convert that energy into some kind of mo-
tion. By actuation one can change e.g. structural stiffness or geometrical
configuration.

Once smart materials are bonded to or embedded in traditional struc-
tures (as host structures), those structures now can have sensing or ac-
tuating and even controlling capabilities. They are known as intelligent
structures or smart structures. Nowadays, the smart structures are used
widely in structural engineering. For more detail information the reader
can see e.g. [7] or [8].

In the wide range of smart materials the most commonly used electro -
mechanical transducers are piezoelectric materials. They provide excellent
actuation and sensing capabilities, which are very valuable, e.g., in struc-
tural vibration control applications.

Now, some important highlights from the history of piezoelectricity
and its applications are presented. The ability of piezoelectric materials
to transform mechanical energy into electrical energy, i.e. direct piezoelec-
tric effect, was discovered more than a century ago by Pierre and Jacque
Curie, when electric charges were generated by mechanical stress on the
surface of tourmaline crystals [9]. It was clearly understood that symmetry
of the crystal plays a decisive role in the piezoelectric effect. However, the
deformation or stress caused by applied electric field, i.e. converse piezo-
electric effect, Curie brothers could not predict. This important physical
phenomena was mathematically deduced from the fundamental thermody-
namic principles by Lippmann [10]. The existence of the converse effect
was immediately confirmed by Curie brothers in the following publication
[11].

The first serious application for piezoelectric materials appeared during
the World War I. This work is credited to Paul Langevin and his co-workers
in France, who built an ultrasonic submarine detector. Their transducer
was a mosaic of thin quartz crystals glued between two steel plates (the
composite having a resonant frequency of about 50 kHz, mounted in a
housing suitable for immersion) [12]. Then, after the World War II the
piezoelectric effect started to be used in the industry with applications
ranging from mentioned underwater sonars to medical imaging systems or
car accelerometers. This evolution was possible mainly due to the invention
of piezoelectric ceramics, which contain microscopic piezoelectric grains, in
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which the averaging of piezoelectric responses results in the high symmetry
(∞mm) macroscopic state with only a few independent effective piezoelec-
tric coefficients (see e.g. [13]). This research has resulted in the astonishing
performance of piezoelectric materials with industrial applications in many
areas.

Nowadays, piezoelectric transducers are of many types and available in
many forms and shapes. As mentioned, piezoelectric effect can be observed
in various types of materials, such as single crystals (e.g. quartz, barium
titanate, lithium niobate), ceramics (e.g. lead zirconate titanate (PZT)),
thin epitaxial films (e.g. the layer of PZT of the thickness of the order of
µm and mm), polymers (e.g. polyvinylidene fluoride (PVDF)), or various
composite structures. For more detailed overview of these types of materi-
als, the reader should take a look at the recent publication edited by Safari
and Akdogan ([14]).

In next Subsections, a more detailed description of piezoelectric ce-
ramics is given, since it is the most commonly used piezoelectric material.
According to the application and the function, which the piezoceramic
transducer should provide, there is possible to find many shapes of piezo-
ceramic components such as simple discs, tubes, plates, stacks, unimorphs
or bimorphs. In addition, the piezoelectric ceramic can be a part of numer-
ous composites (see e.g. the websites of leading piezoceramic producing
companies [15], [16] or [17]). Currently, the search for new technologies
has resulted in advanced composites from PZT that are light in weight,
shape flexible and high in strength and stiffness compared to more conven-
tional material systems. The possibility to use these piezoelectric compos-
ite structures contributed to being of the motivation of the Thesis. Next
paragraph briefly introduces the basic material properties of piezoelectric
ceramics.

2.1.1.1 Piezoelectric PZT ceramics

The piezoelectric PZT ceramics is a polycrystalline ferroelectric material
with the perovskite crystal structure. Each crystal lattice unite cell is
composed of a small, tetravalent metal ion (Zr or Ti) placed inside a lattice
of larger divalent metal ions (Pb) and O2, as shown in Fig. 2.1.1.1.

To prepare a piezoelectric ceramic, fine powders of the component metal
oxides PbTiO3 and PbZiO3 are mixed in specific proportions. This mix-
ture is then heated to form a uniform powder. The powder is then mixed
with an organic binder and is formed into specific shapes, e.g. discs, rods,
plates, fingers, etc. These elements are then heated for a specific time,
and under a predetermined temperature. As a result of this process the
powder particles sinter and the material forms a dense crystalline struc-
ture. Finally, electrodes of the desired size and shape are applied to the
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Figure 2.1: Crystalline structure of a piezoelectric PZT ceramic, (a) above
the Curie temperature, the material exhibits a simple cubic symmetry with
no spontaneous polarization, (b) below the Curie temperature, the mate-
rial has now tetragonal symmetry which is associated with a spontaneous
polarization, [18, 19].

appropriate surfaces of the structure [20].

Above a critical temperature, known as the Curie temperature, each
perovskite crystal exhibits a simple cubic symmetry with no spontaneous
polarization, as demonstrated in Fig. 2.1(a). On the other hand, at tem-
peratures below the Curie temperature, the lattice structure becomes de-
formed and asymmetric in the way that the tetravalent metal ion (Zr or
Ti) in the middle of the lattice is moved from the center position and each
crystal lattice unite cell has now tetragonal symmetry which is associated
with a spontaneous polarization of the ferroelectric ceramics (Fig. 2.1(b)).

Regions within a material which has uniform spontaneous polarization
are called domains. Because of chaotic ordering of the individual piezoelec-
tric grains in the whole volume of the material, the direction of polarization
among neighboring domains is random, as demonstrated in Fig. 2.2(a).
Subsequently, the piezoceramic element has zero average polarization. By
applying the strong DC electric field, the domains in the piezoceramic el-
ement are aligned along the direction of the field (Fig. 2.2(b)) and even
after the electric field is removed most of the domains are locked into a po-
sition near the alignment, i.e. the piezoelectric ceramic has nonzero average
polarization.

It must be said that PZT and other perovskite structure materials are
so called tri-axial ferroelectrics. That means that the tetravalent metal
ion could be moved from the center position in three perpendicular direc-
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(a) (b)

Figure 2.2: Poling process of PZT: (a) Before the polarization the domains
are oriented randomly, (b) DC electric field is used for polarization and
after the DC field is removed, the remnant polarization PR remains.

tions according to the applied electric field. It is essential that orientation
of spontaneous polarization controls the form and the components values
of tensors of piezoelectric, dielectric and elastic coefficients. This phe-
nomenon, i.e. a direction of piezoelectric ceramic polarization, is crucial in
many applications of the design of sensors/actuators.

As shown in Fig. 2.3, the poled piezoelectric ceramic element, exposed
to the mechanical compressive and tensile stresses generates electric fields
and hence voltages. Compression along the direction of polarization, or
tension perpendicular to the direction of polarization, generates voltage of
the same polarity as the poling voltage. Tension along the direction of
polarization, or compression perpendicular to that direction, generates a
voltage with polarity opposite to that of the poling voltage. When oper-
ating in this mode, the device is being used as a sensor using the direct
piezoelectric effect. If a voltage of the same polarity as the poling voltage
is applied to a ceramic element, in the direction of the poling voltage, the
element will lengthen and become thiner in its diameter. If a voltage of
polarity opposite to that of the poling voltage is applied, the element will
become shorter and broader. If an alternating voltage is applied to the
device, the element will expand and contract cyclically, at the frequency of
the applied voltage. When operated in this mode, the piezoelectric ceramic
is used as an actuator using a converse piezoelectric effect.

The relationship between mechanic and electric energy conversion could
be described by basic electromechanical equations, which are presented
below.
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Figure 2.3: Direct and converse piezoelectric effects. When the poled piezo-
electric ceramic element is exposed to the mechanical compressive and ten-
sile stresses, it generates electric fields and hence voltages of the polarity
according to a direction of applied mechanical stress; If an electrical voltage
is applied to a ceramic element, the element will change its shape according
to a direction of the applied voltage. [21].

2.1.1.2 Piezoelectric state equations

In this Section, the equations, which describe an electromechanical inter-
action in a piezoelectric material, are introduced. The interpretation is
based on the IEEE standard for piezoelectricity [5]. The mathematical de-
scription of the electromechanical interaction in piezoelectrics combines the
piezoelectric effect, the electrical behavior of the material and the Hooke’s
law. These physical phenomena are coupled in the set of two summation
equations, where the first one describes the direct piezoelectric effect and
the second one describes the inverse piezoelectric effect. In the constitutive
equations, it is assumed that the total strain in the transducer is the sum of
mechanical strain induced by the mechanical stress and the induced strain
caused by the applied electric voltage.

The IEEE standard assumes that piezoelectric materials are linear.
That means, that the following relationships comply only with small elec-
trical and mechanical amplitudes. Only in this range of small values it
possible for polarized piezoelectric ceramics to be described by linear rela-
tionships between the mechanical strain Sij or mechanical stress Tij ten-
sor components and the vector components of the electric field Ei or the
dielectric displacement Di. The mechanical and electrical physical quan-
tities are linked up together through dielectric, piezoelectric and elasticity
“constants”. They are defined in terms of tensors because of anisotropic
material character of piezoelectrics. Every component of the tensor then
reflects the directionality of the electric field, the mechanical stress, etc.

The four state variables (S, T, E, and D) can be arranged to give 4
combination sets of piezoelectric constitutive equations. They differ in the
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coupling matrices of the piezoelectric coefficients. It is possible to transform
piezoelectric constitutive data in one form to another form. Assuming the
simplified situation, i.e. the thermodynamic state when the temperature
Θ or the entropy σ are constant values, the basic relationships between the
electrical and elastic properties in piezoelectric materials are expressed in
Einstein notation (introduced by Albert Einstein in 1916 [22]) as follows:

Tij = cEijklSkl − eijkEk
Di = eiklSkl + εSijEj (2.1a)

Tij = cDijklSkl − hijkDk

Ei = −hiklSkl + βSijDj (2.1b)

Sij = sEijklTkl + dijkEk

Di = diklTkl + εTijEj (2.1c)

Sij = sDijklTkl + gijkDk

Ei = −giklTkl + βTijDj, (2.1d)

where i, j, k, l are indexes of the material properties and state variables
tensors from 1 to 3. As mentioned, Tij, Sij, Ei and Di refer to the state
variables, i.e. the components of the mechanical stress tensor, mechani-
cal strain tensor, electric field vector and dielectric displacement vector,
respectively.

Symbols εij and βij stand for the electrical permittivity and impermit-
tivity tensor components. The permittivity determines the charge per unit
area in the i-axis due to an electric field applied in the j-axis. In this
notation, it is assumed that the permittivity is a product of the relative
permittivity εr and the vacuum permittivity (permittivity of free space)
ε0 ≈ 8.854187817 F·m−1. Furthermore, the superscript T or S refers to
the permittivity εT or εS, when the material is under constant mechanical
stress or strain influence.

Elastic material parameters are expressed by the tensors of elastic com-
pliance coefficients sijkl and elastic stiffness coefficients cijkl. Elastic com-
pliance is the ratio of the strain the in ij-direction to the stress in the
kl-direction, given that there is no change of stress along the other two
directions. Elastic stiffness tensor is the inverse matrix to the elastic com-
pliance tensor. A superscript E is used to state that the elastic compliance
sEijkl is measured with the electrodes short-circuited. Similarly, the su-
perscript D in sDijkl denotes that the measurements were taken when the
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electrodes were left open-circuited.
And last, dikl, eikl, gijk and hijk are the symbols indicating the piezoelec-

tric coefficients which differ in terms which state variables are involved in
the energy transformation. There are 4 possible combinations of the state
variables during the mechanical into the electrical energy and vice versa
transformation, so the four piezoelectric coefficients exist. E.g. the piezo-
electric coefficient dijk is the ratio of the induced strain Sij in jk-direction
to the electric field Ei applied along the i-axis, when all external stresses
are held constant.

Speaking about the variables and parameters expressed by the tensors,
it is convenient to implement Voigt notation or Voigt form which in multi-
linear algebra is a way to represent a symmetric tensor by reducing its order
[23]. An example could be demonstrated using the stress tensor which is
assumed to expressed by symmetrical matrix:

T =

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 (2.2)

The stress tensor, represented in Voigt notation is given as 6-dimensional
vector:

T = (T11, T22, T33, T23, T13, T12) ≡ (T1, T2, T3, T4, T5, T6) , (2.3)

where the T1, T2, T3 represent the normal components of stress and T4, T5, T6

represent the shear components of stress. It should be noted that for con-
venience some scaling factors are often introduced when converting tensors
into Voigt notation. For example, the off-diagonal (shear) components of
the strain tensor are converted such that in Voigt notation they are equal
to the engineering shear strain, so they are twice the tensorial shear strain,
i.e.:

S =

 S11 S12 S13

S21 S22 S23

S31 S32 S33

 = (S11, S22, S33, γ23, γ13, γ12) ≡ (2.4)

≡ (S1, S2, S3, S4, S5, S6) , (2.5)

where γ23 = 2S23, γ13 = 2S13 and γ12 = 2S12 are engineering shear strains.
Likewise, a three-dimensional symmetric fourth-order tensor of elastic com-
pliances or stiffness can be using the Voigt notation reduced to 6×6 matrix.

If the piezoelectric element is placed into the system of coordinates and
assuming the usual situation, i.e. the device is poled along the axis 3,
and viewing the piezoelectric material as a transversely isotropic material,
which is true for piezoelectric ceramics, many of the material parameters
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in the matrices will be either zero, or can be expressed in terms of other
parameters. In particular, for the non-zero elastic compliance coefficients
stands (written in Voigt notation):

s11 = s22 (2.6a)

s13 = s31 = s23 = s32 (2.6b)

s12 = s21 (2.6c)

s44 = s55 (2.6d)

s66 = 2(s11 − s12). (2.6e)

The non-zero components of piezoelectric coefficients written in Voigt no-
tation can be reduced in a way

d31 = d32 (2.7a)

d15 = d24 (2.7b)

and, finally, the non-zero components of the dielectric constant are only
the diagonal ones (ε11, ε22, ε33) assuming

ε11 = ε22. (2.8)

Subsequently, e.g. the set of Eq. (2.1c) could be simplified and written in
a form:

S1

S2

S3

S4

S5

S6

 =


sE11 sE12 sE13 0 0 0
sE12 sE22 sE13 0 0 0
sE13 sE13 sE33 0 0 0
0 0 0 sE44 0 0
0 0 0 0 sE44 0
0 0 0 0 0 2(sE11 − sE12)




T1

T2

T3

T4

T5

T6

+

+


0 0 d31

0 0 d31

0 0 d33

0 d15 0
d15 0 0
0 0 0


 E1

E2

E3

 (2.9a)

 D1

D2

D3

 =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0




T1

T2

T3

T4

T5

T6

+

+

 εT11 0 0
0 εT11 0
0 0 εT33

 E1

E2

E3

 (2.9b)
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One of the most important factors, which denote the efficiency of the
conversion of the electrical energy into the mechanical energy, or vice versa,
is the electromechanical coupling factor kijk. In Voigt notation it can be
simplified to the kiλ, where λ index ranges from 1 to 6. The indexes indicate
that the stress, or strain are applied or developed in the direction λ, and the
electrodes of the piezoelectric element are perpendicular to the i-axis. The
electromechanical coupling factor measures the square root of converted
over input energy fraction [24].

Lets assume that electric field Ej is applied to a piezoelectric material.
Taking into account the relation of the electrical energy per unit volume,

Ue =
1

2
DiEj =

1

2
εijE

2
j , (2.10)

and the stored mechanical mechanical energy per unit volume under zero
external stress,

Um =
1

2
SλTµ =

1

2

S2
λ

sλµ
, (2.11)

the relationship for the electromechanical factor can be expressed in terms
of material constants. In particular,

k2
iλ =

Um
Ue

=
d2
iλ

sλµεTij
, (2.12)

where for the induced strain in piezoelectric materials holds the relationship
Sλ = djλEj. As it could be seen from the Eq. (2.12), the electromechanical
coupling factor is a unitless number from 0 to 1.

The electromechanical coupling factor is a very important parame-
ter, because it characterizes the performance efficiency of the piezoelectric
transducer. It has also a direct impact on the device bandwidth. For many
applications, such as noise or vibration control, the electromechanical cou-
pling factor is a crucial parameter for the design of the shunt electronics.

2.1.2 Acoustic transmission loss

Many environmental noise sources cause vibrations of various structures by
the incident acoustic pressure waves. Due to their physical nature, struc-
ture vibrations are accompanied with the flow of mechanical or acoustic
energy. In Fig. 2.4, it is pictured how the noise can transmit into buildings.
The vibrations spread to adjacent structures, whose vibrations can cause
the structure-born noise. So, the vibrating structures can be considered as
secondary noise sources. If it is succeeded the suppression of this secondary
structure-born noise, one does not have to pay attention to the sound fields
generated by primary noise sources from outside.
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Receiver room

Source

Source

Source

Figure 2.4: Noise transmission paths between an environment and adjacent
building/room. Many noise sources cause vibrations of various structures
by the incident acoustic pressure wave. The vibrations spread to adjacent
structures, whose vibrations can cause the structure-born noise. Here, the
major noise transmission path to buildings is the window.

As mentioned in the Introduction, large planar structures (flexible
plates or panels), which vibrate, represent a substantial secondary noise
source. Typical examples of the panels, through which the noise can be
transmitted, include drywall, plywood, glass panels, sheet metal panels or
metal roof decks. However, the weakest segments in the noise transmission
path from the noisy environment to the building interior are windows or
glazed facades. The reason for this is that they usually do not represent
an effective noise barrier due to their low flexural rigidity. They are, in
principle, thin plates with their edges fixed in a frame. Therefore, it is
very easy to make them vibrate by the action of incident acoustic waves.
Then, non-negligible part of the wave is transmitted through the window
to the building interior.

Any flexible panel, which vibrates in response to the incident sound,
will transmit some sound energy to the other side and, therefore, decrease
the reflected sound. The effect is most pronounced at low frequencies.
Therefore, low frequency absorption is usually highly desirable, but it is
very difficult to find some effective and financially acceptable method to
achieve it. In addition, the human hearing is inclined to be easily harmed
at frequencies between 2 and 5 kHz[2], so it is very important to find some
stable and effective way for the suppression of noise through the large
planar structures.

In order to quantify the acoustic waves propagation in an acoustic
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Figure 2.5: (a) Scheme of the considered sound transmission system, which
consists of the glass plate fixed in a rigid frame at its edges. The sound
source located underneath the glass plate generates an incident sound wave
of the acoustic pressure pi that strikes the glass plate. It makes the glass
plate vibrate and a part of the sound wave is reflected and a part is trans-
mitted with the values of the acoustic pressures pr and pt, respectively.
The dashed line indicates the vibration amplitude W of the glass plate (for
simplicity, there is pictured first mode of vibration where the maximal am-
plitude is formed in the middle of the glass plate and the there are just two
nodes at the edges of the plate). The greater the amplitude of vibration
is, the greater part of the incident sound wave energy is transmitted to
the other side; (b) Scheme of the noise suppression principle: When the
vibration amplitude normal to the surface of the glass plate is reduced (e.g.
due to being thicker), the greater part of the incident sound wave energy
is reflected than transmitted.

medium and the reflection of the sound at the interface of two different
media, we define a physical property called the acoustic impedance z (in
Pa·s·m−3). It is a frequency-dependent parameter defined as an acous-
tic sound pressure p divided by particle velocity v and a surface area S,
through which an acoustic wave propagates:

z =
p

vS
. (2.13)

When dealing with planar structures, it is often convenient to express the
acoustic impedance per unit area of the structure, which is made using a
physical property called specific acoustic impedance Z (in Pa·s·m−1),

Z =
p

v
. (2.14)

If a sound wave propagates through a medium, its wave motion is charac-
terized by a physical property called characteristic acoustic impedance (in
Pa·s·m−1):

Z0 =
√
ρB, (2.15)

where symbols ρ and B stand for the mass density and the bulk modulus
of the medium, respectively.
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The role of the acoustic impedance in noise and vibration suppression
devices can be easily demonstrated on the case of simple glass plate shown
in Fig 2.5(a). Let us consider a sound transmission system, which consists
of the glass plate fixed in a rigid frame at its edges. The plate creates an
interface between two acoustic media of air. The interface is characterized
by a specific acoustic impedance of the window Zw. The sound source
located underneath the glass plate generates an incident sound wave of the
acoustic pressure pi that strikes the glass plate. It makes the glass plate
vibrate and a part of the sound wave is reflected and a part is transmitted
with the values of the acoustic pressures pr and pt, respectively. Then, the
specific acoustic impedance of the glass plate is defined as

Zw =
pi + pr − pt

v
, (2.16)

which satisfies the equation of motion. Considering that the acoustic
impedance is a frequency dependent property, one can work only with
the amplitudes of the acoustic pressures, i.e. Pi, Pr, Pt and the ampli-
tude of the vibrations, i.e. W . The frequency dependent specific acoustic
impedance is expressed as follows, considering the simple assumption of a
harmonic vibration response of the plate:

Zw(ω) =
Pi(ω) + Pr(ω)− Pt(ω)

iωW (ω)
, (2.17)

where ω is the angular frequency, where ω = 2πf , where f is the ordinary
frequency in Hz. Assuming that by tuning the acoustic impedance of the
planar structure at the interface of acoustic media can be changed the
absorbing or reflecting capabilities of the interface, one can achieve devices
such as perfectly absorbing surfaces or perfect sound shields.

In practice, the absorbing or reflecting capabilities of the structure are
usually evaluated using the physical property called acoustic transmission
loss (TL). In noise suppression applications, the acoustic TL denotes the
sound shielding efficiency of the interface structure. The value of acoustic
TL is defined as a ratio, usually expressed in units of decibels, of the acous-
tic powers of the incident and transmitted acoustic waves, respectively:

TL = 20 log10

∣∣∣∣pipt
∣∣∣∣ , (2.18)

Knowing the value of the specific acoustic impedance of the glass window
Zw, which is defined by Eq. (2.17), it is possible to derive the acoustic TL
as follows: Let us use the simplified picture in Fig. 2.5(a) where the sound
wave propagates through the glass shell from the acoustic medium below
the shell to the acoustic medium above the glass shell along the z direction.
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It is true that membrane velocity equals to (i) the particle velocity in the
acoustic medium on the bottom side of the shell equals to the membrane
velocity and (ii) the particle velocity in the acoustic medium in the upper
side of the shell. This fact can be expressed by the following equation of
motion:

− 1

iωρ

∂p

∂z
= V eiωt, (2.19)

where the acoustic pressure p and the medium density ρ (i) at the bottom
side of the shell are expressed as

p = Pie
i(ωt− 1

c0
z)

+ Pre
i(ωt+ 1

c0
z)
, (2.20a)

ρ = ρ0, (2.20b)

where the symbol c0 is the velocity of the sound in the acoustic medium
below the shell, and (ii) at the upper side of the shell, the pressure is
expressed as

p = Pte
i(ωt− 1

c1
z)
, (2.21a)

ρ = ρ1, (2.21b)

where the symbol c1 is the velocity of the sound in the acoustic medium
above the shell. Using Eqs. (2.17), (2.19), (2.20a) and (2.21a), it is possible
to obtain the following relations for the amplitudes of reflected acoustic
pressure Pr, transmitted acoustic pressure Pt and the membrane velocity
V :

Pr = −−Pi(Zw + c0ρ0 − c1ρ1)

Zw + c0ρ0 + c1ρ1

, (2.22)

Pt =
2c1Piρ1

Zw + c0ρ0 + c1ρ1

, (2.23)

V =
2Pi

Zw + c0ρ0 + c1ρ1

. (2.24)

Then from Eqs. (2.14) and (2.19), it is possible to express the characteristic
acoustic impedances Z0 and Z1, of the medium below and above the glass
shell, respectively:

Z0 = c0ρ0 (2.25a)

Z1 = c1ρ1. (2.25b)

One can notice that it is possible to express the transmitted acoustic
pressure amplitude, i.e. Eq. (2.23), in terms of characteristic acoustic
impedance of the media and specific acoustic impedance of the shell:

Pt =
2P0Z1

Z0 + Z1 + Zw
, (2.26)
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And finally, when we substitute Eq. (2.26) into the definition formula
for the acoustic TL, Eq. (2.18), assuming that the characteristic acous-
tic impedances of the media below and above the shell are equal, i.e.
Z0 = Z1 = Za, where Za is the characteristic acoustic impedance of air,
and c0 = c1 = c, where c is the sound velocity in air, and ρ0 = ρ1 = ρ0,
where ρ0 is the density of air, we derive in the formula which was presented
in [1]:

TL = 20 log10

∣∣∣∣1 +
Zw
2Za

∣∣∣∣ , (2.27)

where the acoustic TL is expressed only in terms of specific acoustic
impedance of the glass shell/window Zw.

Since the acoustic TL describes the sound shielding efficiency of the
interface structure, it is clear that its value has to be increased in order to
decrease the sound transmission through the interface. It can be seen from
Eq. (2.27) that the acoustic TL will increase, when the specific acoustic
impedance of the window increases. Fig. 2.5(b) presents a scheme of the
noise suppression principle that follows from Eqs. (2.16) and (2.27), i.e., the
values of specific acoustic impedance Zw and acoustic TL increase with a
decrease in the amplitude of the window vibration velocity v. The window
is indicated to be thicker, so the amplitude of the vibrations W is smaller.
As a result, the greater part of the incident sound wave energy is reflected
than transmitted. In the most of applications, it is not possible or even
desirable to make the planar structures, especially windows, thicker. One
of the objective of the Thesis is to increase the acoustic TL without rising
of the amount of material.

In order to optimize the system and to achieve maximum values of the
acoustic TL, it is necessary to understand the dynamics and vibrational
response of the glass plate. It is made using mathematical numerical simu-
lations using the finite element method (FEM), which is presented further
in next Chapters.

2.2 Review of the noise control methods

through the plates

This section introduces a basic overview of methods to control the noise
propagation through the plates and includes a literature review. First,
there are mentioned conventional methods of the noise attenuation, then
the text is focused on new modern methods with pointing out the use of
the piezoelectric shunt acoustic control which is further examined in the
Thesis.
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2.2.1 Passive noise control

The most conventional noise control approach used in practice is an im-
plementation of passive noise control methods. The two important noise-
related quantities of a material are the ability to absorb acoustic energy
and the ability to reflect or block sound energy. Good absorbing materi-
als allow sound pressure fluctuations to enter their surface and dissipate
energy by air friction. They are generally porous and lightweight, such as
fiberglass, open cell foam, or acoustical ceiling tiles [25, 26]. Good barrier
materials reflect sound, are dense and nonporous, they are e.g. concrete,
lead, steel, brick or glass. In general, a single homogeneous material will
not be both a good absorber and a barrier. To get the best results, it is
common to use an absorbing layer laminated to a barrier material.

So, focused on the plates and particularly windows, the most common
methods of passive noise control are based on the laminated glass technol-
ogy and double glazing [25]. Laminated glass with the different thicknesses
of interlayer and glass can improve the acoustical performance by reducing
the noise transmission in the fenestration system.

Among the recent works dedicated to the passive noise control through
the plates using the layers belongs the work by Araújo et al. [27] who
formulated a finite element model by using a mixed layerwise approach for
anisotropic laminated plates with viscoelastic core. It is about the opti-
mization of passive damping: maximization of modal loss factor using a
gradient based approach. Most recently, Li and Narita [28] present the pa-
per concerning the optimal design for the damping loss factor of laminated
plates under general edge conditions. The analysis is based on the classical
lamination theory, the loss factor is deduced from the energy formulation
for symmetrically laminated thin plates comprised of fiber reinforced layers
and viscoelastic layers. The effects of location and thickness of viscoelastic
layers on the loss factor of the plates are studied and the fibers orientation
angles are also clarified. Their numerical results are successfully compared
with the experimental data from the work by Berthelot and Sefrani [29] so
their present approach is quite useful in analyzing and designing the loss
factor of the plates.

Double glazed windows use two separate panels of glass with an air
space between them. Such a double structure has a resonance frequency,
which depends on the mass and distance of the plates, and on the stiffness
of the cavity medium. At the resonance frequency, the sound insulation
is minimal. Above the resonance frequency, the sound proofing capability
rises three times faster than below the resonance. Fig. 2.6 shows the sound
transmission loss through the commonly used window panels with differ-
ent approaches of passive damping applied [30]. Solid thin line represents
the acoustic transmission loss for the glass plate of thickness 4 mm, solid
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Figure 2.6: Sound transmission loss through the commonly used window
panels with different approaches of passive damping applied [30]. Solid thin
line represents the acoustic transmission loss for the glass plate of thickness
4 mm, solid medium-thick line represents the acoustic transmission loss for
the double glass panel with air gap of thicknesses 4− 12− 4 mm and the
solid thick line represents the laminated double glass panel with air layer of
thicknesses 4− 12− 2/2 mm. It is obvious that the both passive methods
are efficient in reducing the noise transmission at frequencies higher than
1 kHz. On the other hand, below the double structures resonance acoustic
shielding can be even worse than that of a single glass plate.

medium-thick line represents the acoustic transmission loss for the double
glass panel with air gap of thicknesses 4−12−4 mm and the solid thick line
represents the laminated double glass panel with air layer of thicknesses
4−12−2/2 mm. It is obvious that the both passive aforementioned meth-
ods are efficient in reducing the noise transmission at frequencies higher
than 1 kHz. On the other hand, acoustic performance of the double glazed
window deteriorates rapidly below the double structures resonance, where
its acoustic shielding can be even worse than that of a single glass plate.
Recent work by Legault and Atalla [31] demonstrates an analytical model
of the sound transmission of an aircraft sidewall represented by a double
panel structure with a fiberglass filling the cavity between the panels. The
studied configuration is composed of a trim panel (receiver side panel) at-
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tached to a ribbed skin panel (source side panel) with periodically spaced
resilient mounts. The investigation of mount stiffness, damping and spac-
ing show that properly designed mounts can increase the sound transmis-
sion loss significantly (up to 20 dB of difference between rigid and resilient
mounts). They compare the analytical model with FEM simulations which
show that the average level of structure-borne transmitted energy is well
reproduced with the periodic approach.

Anyway, in order to achieve a reasonable low-frequency noise trans-
mission suppression, heavy structures are required, which leads to signif-
icant weight penalties. As a result, the search for alternative ways of the
low-frequency noise transmission suppression has become a very important
research area.

2.2.2 Active noise control

The active noise control/cancellation (ANC), in which secondary waves
with the opposite phase interfere destructively with the disturbing noise,
has drawn increasing interest as a potential method to overcome the lim-
itations of passive sound insulation. ANC method is based on the use of
either feedforward control or feedback control. In feedforward control, a
coherent reference signal is picked up before it propagates to the secondary
source (the control speaker or actuator). In feedback control, however, the
controller attempts to attenuate the noise without the benefit of the pre-
viously described reference signal. The problem with feedforward control
then is that a coherent reference signal is needed. If such a reference signal
is not available, feedback control is then the alternative option. However,
the control bandwidth achieved in feedback control is typically very nar-
row due to the nature of the speaker dynamics in the low 100—500 Hz
range. The performance achieved is highly limited by the available gain
and phase margins. Feedforward ANC is generally more effective than feed-
back ANC, especially when the feedforward system has a reference signal
isolated from the secondary anti-noise source. Most ANC systems in use
and under development use feedforward control.

For better awareness about the ANC, lets look at the brief history about
the method. At 1930s, Leug [32] first suggested the idea of ANC. The
mechanism is based on the destructive interference of the incident sound
wave with the sound wave generated from a speaker. His patent proposes a
feedforward system in which a microphone senses an acoustic pressure su-
perposed i.e. of a sound wave incident to a loudspeaker. The sensed signal
is processed and then introduced to the speaker, which should desirably
generate a sound wave inverse to the incident one. Because of the fact that
it was impossible to implement the method with the technology available
at that time, the first experiments with the noise control were performed
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nearly twenty years later. Olson and May [33] and Olson [34] experimented
with an “electronic sound absorber”. His arrangement consisted of a mi-
crophone placed in a duct in close proximity to the loudspeaker face. The
speaker and the microphone operated in a feedback loop, which means a
driving of the speaker by the processed signal from the microphone in or-
der to minimize the sound pressure at the microphone’s location. Other
important researchers in this stage include Widrow et al. [35], Jessel and
Mangiante [36] and patent of Swinbanks [37]. With the development of
digital signal processing techniques, ANC reached a new stage. Chaplin
[38] introduced digital techniques in his ANC patent and then, he real-
ized the first simple digital control systems in ducts [39]. Later in 1989,
both the feedforward and the feedback approaches to the noise control
were combined in the work of Eriksson [40], where the feedforward noise
attenuation system was adapted on the base of the feedback signal from
the additional error sensor. Since then, much work on ANC using digital
processing techniques has been published.

A literature survey reveals very few academic publications directly re-
lated to window active sound transmission control. However, several patent
applications can be found on this topic. The patent by Petiet [41] proposes
generating sound waves or anti-sound waves using window glass or other
types of transparent material. Vibration of window panes is realized by
use of either an electrically conductive layer on the panes or by the use of
piezo elements or by the use of a gas confined between the window panes.
Tagg’s invention [42] allows the window itself to be used as a conventional
speaker. A speaker coil is attached directly to the window and causes it
to vibrate. Mark [43] proposes a noise attenuation system located on a
movable side glass of a motor vehicle for reducing the noise within the pas-
senger compartment. ANC was also used to improve the sound insulation
of double-glazed windows. Jakob and Möser obtained their results with a
feedforward [44] and adaptive feedback controller [45]. They presented a
comprehensive overview of the system with various numbers and positions
of loudspeakers and microphones inside the cavity and they gave some in-
sight into the physics of the active double-glazed window. The total sound
pressure level can be reduced by nearly 8 dB and somewhat more than
5 dB with feedforward and feedback control, respectively, in the frequency
range up to 400 Hz. A recent work by Zhu [46] shows the development of
thin glass panels, whose vibrations can be controlled electronically by small
rare earth voice coil actuators. The development of the control system is
based on the use of a wave separation algorithm that separates the incident
sound from the reflected sound. Using this method, the sound transmission
reduction by 10− 15 dB in a broadband frequency range up to 600 Hz was
achieved.

Although results on many successful ANC systems have been published,
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the major limitations of ANC systems must be noted. First, since the noise
source and environment tend to be non-stationary, robustness and so pow-
erful electronics requirements limit the performance of ANC systems. Al-
though the continuously increasing speed of progress in digital electronics
allows to satisfy high requirements for computational capacity, the large
instrumentation raises the costs of extra power-supplies, amplifiers, filters,
converters, and microprocessors. Generally, the improvement in the con-
ventional ANC systems – higher efficiency, stability and operating flexibil-
ity – goes along with an increase in their complexity and high costs. Second,
it is very difficult for an ANC system to achieve global noise cancellation
in a 3-D environment such as in an enclosure. This is especially due to the
limitations on the number of speakers and microphones that can be used.
With the inputs from the primary source and the secondary sources, the
acoustic field in an enclosure becomes very complicated. Optimal arrange-
ment of the available control speakers and microphones becomes critical.
Moreover, when applied to building windows, the ANC method requires ex-
ternal microphones for disturbance monitoring, and internal error sensors
and loudspeakers for control purposes.

2.2.3 Active structural acoustic control

Later, the active structural acoustic control (ASAC) method has been de-
veloped for the reduction of the structure-borne noise. In this method,
vibrating structures are used as secondary noise sources to suppress sound
fields generated by primary noise sources from outside. ASAC in conjunc-
tion with the adaptive feedforward control has been proved to be an efficient
practical approach to reduce structure-borne sound. ASAC works on the
principles of reducing the vibration amplitude of the structure (modal re-
duction), as well as changing the vibration distributions of the structure so
that the vibration distributions of each structural modes destructively in-
terfere with one another in their associated radiating acoustic field (modal
restructuring). Essentially, ASAC is a specific embodiment of ANC that
could be used to reduce the sound radiated from a vibrating structure into
an enclosure.

Usually, piezoelectric or other force actuators are used to change vibra-
tion modes of structures. Fuller et al. [47] were the first who demonstrated
the possibility of active vibration control of the structures and the potential
effectiveness of piezoelectric actuators. Fuller analyzed the use of one or
two control point to minimize a cost function proportional to the radiated
acoustic power through the aluminum elastic plate [48]. Fig. 2.7(a) shows
the model setup and the computed sound transmission loss for the cases
of one or two point force actuators located on the structure is shown in
Fig 2.7(b). The results show that for low to mid-range frequencies, large
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ACTIVE CONTROL OF SOUND RADIATION 
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Figure 1. System arrangement and co-ordinate system 

small and the plate normal mode response and eigenvalues assumed here are for the in 
vacua case. 

For a thin circular plate with a clamped boundary condition at its edge, r = a, the 
out-of-plane displacement of the plate can be taken as [22] (a list of symbols is given in 
the Appendix) 

w(r, 0) = t i w, 
i I ‘OS Cne) ff ejm, 

nz, j=, sin (n6) ” ’ (1) 

where the radial distribution function is given by 

H~j(klr)=J,(krr)-{J,(k:a)/Z,(k~a)}Z,(k,’r). (2) 
Application of the clamped boundary condition at r = a allows derivation of a charac- 

teristic equation 

Jl(kja)l.(kja)-J,(kra)I~(k:a)=O, (3) 
from which eigenvalues kJ’a, for n = 0, 1,2, . . . and j = 1,2,3, . . . can be determined. Thus 
the indices (n, j) correspond to a particular plate mode of vibration, as discussed in 
reference [22]. 

For classical plate theory, the resonant frequencies of vibration for a mode (n, j) are 
then given as [22] 

w,, = (h/2a”)c,,(kja)‘, (4) 
or in non-dimensional wavenumber form as 

k,ja =(h/2a)c,,,(kJ~~)~/c,,. (5) 
2.2. RADIATION FOR AN INCIDENT PLANE WAVE (NOISE FIELD) 

An acoustic plane wave of amplitude p0 incident to the normal axis of the plate at yi 
can be transformed to cylindrical co-ordinates as [23] 

oc 
pi,,< = p0 C E,, (-i)” cos (no) J,( k,r) eiw’, 

“=O 
where k, = kO sin ( -yi). (67) 
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Figure 7. Plate modal radiation efficiency (from reference [25]). 
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Figure 8. Plate transmission loss. -, Noise; - -, one control force; - - -, two control forces. 

Use of two control forces, on the other hand, is demonstrated to provide a large increase 
in plate transmission loss over virtually the complete frequency range of O< kOa < 1.5, 
irrespective of whether the plate system is on or off resonance. At higher frequencies the 
modal density of plate response increases, and the radiated field has contributions from 
an increasing number of modes, and thus more control actuators would be needed for 
good attenuation. The important result demonstrated here, however, is that large attenu- 
ations in radiated levels are achieved in the frequency range of Figure 8 with two control 
actuators, independent of source order or distribution, parameters which have previously 
led to difficulties in using acoustic control sources. 

4. CONCLUSIONS 

By using an idealized analysis, the active control of sound radiation from plates by 
vibrating force inputs has been studied. The results show that for low to mid-range 

(b)

Figure 2.7: (a) Scheme of analyzed sound transmission system by Fuller.
Aluminum elastic plate is clamped in a rigid frame. Fuller derives the pres-
sure radiated from the plate due to the incident plane acoustic wave (noise)
and the point force excitation (control); (b) The plate transmission loss cal-
culated by Fuller versus non-dimensional frequency. The results show that
for low to mid-range frequencies, large global reductions in radiated sound
levels can be achieved with just one (dash-and-dot line) or two judiciously
located point force actuators (dashed line). The solid line stands for the
sound transmission loss of the simple aluminum plate without control sen-
sors; [48]

global reductions in radiated sound levels can be achieved with just one or
two judiciously located point force actuators. Later, Metcalf and Fuller ap-
plied actively controlled harmonic force inputs to reduce experimentally the
sound transmitted through an elastic circular plate [49]. The performance
of the active system in reducing the transmitted sound was tested for sev-
eral input frequencies up to 200 Hz and the reduction of about 15 − 25 dB
in a sound transmission was achieved. The experimental results are com-
pared to previously derived analytical results in [48]. In their next work
[50], piezoelectric or point force actuators have been further analytically
investigated for the use as active control inputs attached to the rectangular
plate. These results show that a reduction of sound transmission through
the plate can be successfully achieved, if the proper size, number and po-
sition of the piezoelectric actuators are chosen. A very interesting result,
which was observed, was that point force actuators were seen to perform
slightly better than piezoelectric actuators (see Fig. 2.8).

Methods investigated by Fuller et al. are further used by Thomas [51].
This paper gives a fairly detailed study of the active control of harmonic
sound transmission through rectangular plates by means of secondary force
inputs. Berry et al. [52] presents a general formulation for sound radiation
from panels with arbitrary boundary conditions. The boundary conditions
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is equally coupled to all uncontrolled modes in the wave- 
number domain, while the piezoelectric element has reduced 
coupling and results in a reduced range of achievable modal 
modification (i.e., the degree of modal restructuring is limit- 
ed). However, this topic is out of the context of this paper 
and will be the subject of another publication, 'S which pre- 
sents the near-field response as well as wave-number domain 
analysis. It is also interesting to note that the original con- 
cepts concerning the improved performance with distribut- 
ed control were made from studies which considered an infi- 

nite number of point forces distributed over a beam. •6 
Although piezoceramics are in a sense distributed, they exert 
a constant control input over finite regions of the structure, 
which is significantly different from the configuration of 
Meirovitch and Norris,'6 and this characteristic is believed 
to lead to the different conclusion observed in this work. 

4. Transmission loss 

Figure 12 shows the transmission loss over the frequen- 
cy range of 10-1000 Hz for the incident plane wave as the 
primary input and involving four separated cases of com- 
parative control. For the controlled cases, the heavy lines 
correspond to piezoelectric actuators, while the light lines 
correspond to point force control. 

For the incident plane wave, the transmission loss can 
be seen to dip at the resonance frequencies of the plate. It can 
be seen that the use of two forms of actuators leads to in- 

creased transmission loss over the frequency range except at 
a number of frequencies corresponding to asymmetric 
modes in modal number n. These modes have nodal lines at 

the actuator locations and are thus uncontrollable. 

Figure 12 also exhibits an interesting behavior. As the 
number of actuators is increased, the transmission loss is 
seen to increase. The dips which indicate the resonant fre- 
quencies of the controlled plate system have been shifted to 
higher frequencies. These shifted dips can be possibly visua- 
lized as the new eigenproperties of the controlled plate sys- 
tem as studied by Burdisso and Fuller'4 for feedforward con- 
trol of a one-dimensional beam. One would expect that the 
transmission loss would dip at the new eigenvalues or reso- 
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FIG. 12. Plate transmission loss versus frequency. 

nance frequencies of the closed-loop system. It is thought 
that the phenomenon investigated by Burdisso and Fuller '4 
is occurring here. 

For the single actuator, the piezoelectric and point force 
actuators give about the same performance especially at low- 
er frequencies. However, some differences are observed 
about the (3,1 ) resonance for the reasons discussed above. 

Figure 12 demonstrates that with two actuators used, 
the plate transmission loss is maintained at approximately 
50 dB (greater than the limit of practical realization) from 0 
to 650 Hz (i.e., O<trL,,L <4.52). In this frequency range, 
nine different modes participate. Although it is difficult to 
generalize, the authors believe that two actuators will pro- 
vide sufficient control in the low-frequency region defined 
by •cL.,<rr. From Fig. 12, when one or two actuators are 
applied, plate transmission loss is adequately increased over 
a range of 0-650 Hz, which includes nine modes. In other 
words, adequate control can be achieved by one or two actu- 
ators over a range including the first nine modes of the un- 
controlled plate system. 

III. CONCLUSIONS 

The active control of a harmonic plane sound wave 
transmitting through a rectangular panel at an angle has 
been analytically studied. Both piezoelectric and point force 
actuators are considered, while the control cost function is 

derived from the far-field radiated acoustic power. The per- 
formance of the control system for an increasing number of 
control inputs is studied, and the attenuations obtained for 
point force and piezoelectric actuators are compared. The 
results show that both piezoelectric and point force actu- 
ators provide high reductions of sound transmitted through 
the plate if the proper size, number, and location of actuators 
are chosen. In general. as the number of actuators is in- 
creased, higher reductions are observed. 

A very interesting result observed was that point force 
actuators were seen to perform slightly better than piezoe- 
lectric actuators. This result is contrary to present beliefs 
about distributed actuators and is presently under detailed 
investigations. However, piezoelectric actuators possess a 
number of advantages, such as lightweight, low cost, and 
compactness, which point force transducers cannot compete 
with. The study thus indicates that piezoelectric patch-type 
actuators show much potential for active control of sound 
and vibration. 
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Figure 2.8: Sound transmission loss through the plate with attached piezo-
electric or point force actuators computed by Fuller [48]. It can be seen
that a reduction of sound transmission through the plate can be success-
fully achieved and, that point force actuators performed slightly better
than piezoelectric actuators.

are represented by a translational and a rotational stiffness at the edge of
the plate. In extreme cases, both of them are set to zero or infinity which
means a freely mounted plate or a clamped edge condition, respectively.
Pan et al. in [53] analytically and Pan and Hansen in [54] experimentally
analyzed a technique for controlling noise transmitted into the interior of
a cavity through a rectangular plate. Their method involves the use of
point force actuators on the boundary structures. Results obtained here
demonstrate that there are two different control mechanisms. If the sys-
tem response is dominated by panel-controlled modes, sound energy in the
cavity is minimized by suppressing the panel modes that radiate into the
cavity. If the system response is dominated by cavity-controlled modes,
the control force, caused by the actuators, is used to change the panel ve-
locity distribution and thus adjust the radiation of each panel mode. Their
experimental results qualitatively verify their previous analytical results.
Balachandran et al. [55] analytically and experimentally studied the noise
control in the interior of a three-dimensional enclosure with rigid acrylic
walls and one flexible aluminum wall, clamped along all four edges. Noise
generated by an external speaker is transmitted into the enclosure through
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the flexible boundary and active control is realized by PZT piezoelectric
actuators bonded to the flexible boundary. Voltage inputs to the piezo-
electric actuators are optimized. Later, Al-Bassyiouni and Balachandran
[56] developed a structural–acoustics model for studying the transmission
of sound through a flexible panel into an enclosure. The model is used to
describe the pressure fields inside and outside the three-dimensional rectan-
gular enclosure, as well as the flexible panel vibrations. A spherical wave,
which is generated by a noise source located in the near field, is transmit-
ted into a rectangular enclosure through a flexible panel with piezoelectric
actuators, which are bonded symmetrically to the top and bottom surfaces
of the panel.

Various studies of ASAC use the properties of passive double panel sys-
tem to enhance the noise control performance. As an example it could
be mentioned the work by Carneal and Fuller [57]. They analytically and
experimentally investigated the radiating plate stiffness influence on the
acoustic transmission loss and the placing of PZT actuators. Fig. 2.9(a)
shows the model/experimental setup. A double panel system with a stiffer
radiating plate exhibits a decreased coupling of the incident and radiat-
ing plates and a lower modal density, which results in increased controlled
transmission loss (compare Fig. 2.9(b) of the acoustic transmission loss
of the sandwich board radiating plate with the Fig. 2.9(c) of the acous-
tic transmission loss of the aluminum radiating plate). As for the PZT
actuators placing, it is better to mount them on the radiating plate of a
double panel system then on the incident plate (see both Fig. 2.9(b) and
Fig. 2.9(c)). Another example of the active structural control of the noise
transmission control through a mechanically linked double-wall structure
into an acoustic enclosure is presented by Li and Cheng [58]. Two control
strategies (for structural control it is used the thunder actuator, for cav-
ity control it is used the loudspeaker) and two control mechanisms (modal
suppression and modal rearrangement) are examined and numerical simula-
tions are carried out. Modal suppression occurs mainly in the low-frequency
range while modal rearrangement in the high-frequency one.

Concerning ASAC used for the purposes of the noise suppression
through the glass windows, a recent work by Naticchia and Carbonari
[59] was presented. They study the implementation of an active structural
control system for glazed facades. They obtained a sound reduction of
the highest value up to 15 dB in the low frequency range (up to 200 Hz).
They have also proposed a procedure to combine this approach with the
laminated glass plates, which are more effective at higher frequencies.

Most recent works in the field are focused mainly on the simulations.
The paper by Pinte et al. [60] discusses the effectiveness of an ASAC system
for the reduction of repetitive impact noise, radiated by structures with a
high modal density. It was for the first time when non-periodic damping
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panel arrangement, which consists of an incident plate and a radiating plate coupled by an air
cavity. The incident acoustic field in the application is the noise field generated by the propeller of
an advanced turboprop engine which can be approximated by an acoustical oblique plane wave.
The radiated acoustic field of the double panel system is the interior of an aircraft, which we
assume is highly damped and can be approximated by an acoustical free field. These assumptions
are necessary to provide a deterministic model of the transmitted power, which can be found by
integrating the acoustic pressure over a hemisphere in the free field. Control is provided by
piezoelectric actuators mounted on either the incident plate or the radiating plate of the double
panel system. The system schematic is presented in Fig. 1.

Dimensions and parameters of this investigation were chosen to be identical to the previous
experiments. The incident plate is made of aluminum of dimensions 380� 300� 1.6mm thick.
The radiating plate material is either aluminum of the same dimensions as the incident plate
(which is relatively flexible) or sandwich board of dimensions 380� 300� 10.2mm thick (which is
relatively stiff). Both plates are assumed to be located in a rigid wall whose surfaces are flush with
the incident and radiating plates as shown in Fig. 1. The incident and radiating plates are coupled
by an air cavity of dimensions 380� 300 and 48mm thick. The double panel system is assumed to
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Fig. 1. Schematic of active structural acoustic control of double panel systems.
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(a)

The uncontrolled and controlled transmission loss for a double panel system with a sandwich
board radiating plate and excited by an oblique plane wave is shown in Fig. 8. Control of the
system with PZTs mounted on the radiating plate is more effective by approximately 20 dB at
frequencies above 300Hz. This behavior can be explained by how well the control actuators can
influence the structural-acoustic coupling of the radiating plate and the radiating acoustic field. As
stated in the previous section, the motion of the incident plate is not significantly coupled into the
motion of the sandwich board radiating plate and therefore is not coupled significantly into the
radiated acoustic field. The PZT actuators on the incident plate will not be able to significantly
modify structural-acoustic coupling of the radiated plate. However, actuators mounted on the
radiating plate can directly modify the structural-acoustic coupling and therefore better control is
achieved.

The results for an aluminum radiating plate double panel system are not as definite. Fig. 9
shows the uncontrolled and controlled transmission loss for an aluminum radiating plate double
panel system excited by a normal incident plane wave. As can be seen, the effect of the PZT
location on control performance varies with frequency. From an investigation of the double panel
system equations, it is seen that a double panel system consisting of two plates of similar
properties will exhibit behavior where one plate will dominate the double panel system response
over some frequency ranges, while the other plate will dominate the others. Therefore,
piezoelectric actuators mounted to the incident plate will exert more effective control when the
incident plate dominates the double panel system response; likewise piezoelectric actuators
mounted to the radiating plate will exert more effective control when the radiating plate
dominates the double panel system response. As was discussed previously, the sandwich board
radiating plate double panel system does not exhibit such behavior.

It should be noted that the above analysis did not take the PZT control effort into account. This
quantity is defined as the sum of the squares of the control voltages calculated in Eq. (34). As can
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Fig. 8. Uncontrolled and controlled transmission loss for double panel system with PZTs located on incident and

radiating plates (other parameters: oblique incident wave; sandwich board radiating plate):     , uncontrolled; ——,

incident PZT; - - -, radiating PZT.
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(b)

be seen in Fig. 10, the control effort for the incident PZT case is significantly higher than the
radiating PZT case. This again demonstrates that a direct coupling of the control actuators into
the radiated acoustic field (i.e. PZTs located on the radiating plate) is beneficial. Taking the very
large amount of increased control effort for the incident PZT case and the relatively small increase
in frequency averaged transmission loss into account, placement of the PZT actuators on the
incident plate would be a poor choice.
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Fig. 9. Uncontrolled and controlled transmission loss for double panel system with PZTs located on incident and

radiating plates (other parameters: normal incident wave; aluminum radiating plate):     , uncontrolled; ——,

incident PZT; - - -, radiating PZT.

Fig. 10. Maximum control effort for PZTs located on incident and radiating plates of a double panel system (other

parameters: normal incident wave; aluminum radiating plate):     , incident PZT; ——, radiating PZT.
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(c)

Figure 2.9: (a) Scheme of a model/experimental setup of a double panel
system; (b) Sandwich board radiating plate: Uncontrolled (solid line) and
controlled acoustic transmission loss for double panel system with PZT
actuators located on incident (dashed line) and radiating plates (dotted
line); (c) Aluminum radiating plate: Uncontrolled (solid line) and con-
trolled acoustic transmission loss for double panel system with PZT actu-
ators located on incident (dashed line) and radiating plates (dotted line);
[57]

using ASAC was used. The developed ASAC strategy has been verified
on a thick steel plate, which is excited by successive impacts. Kozupa’s
and Wiciak’s [61] paper presents simulations of the aluminum plate with
active vibration control realized using four piezoceramic PZT actuators
and one PZT sensor bonded to the plate. The aim of this paper is to
analyze and compare two ways of excitation of the test plate – mechani-
cal and acoustic. The test results indicate that the use of PZT actuators
can decrease vibrations by approximately 15 dB for a pure sound input
with acoustic excitation method and by 18 dB for mechanical excitation
method (a sinus vibration signal). Kapuria and Yasin [62] provided the
extensive study of influence of placing piezoelectric fiber reinforced com-
posite sensors and actuators, multiple segmentation of their electrodes and
the piezoelectric fiber orientation on the active vibration suppression of
multi-layered plates. Isabelle Bruant et al. [63] study the optimization
of piezoelectric actuators and sensors locations for active vibration control
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of an elastic plate. Two optimization variables are considered for each
piezoelectric device: the location of its center and its orientation. Genetic
algorithms are used to find the optimal configurations. Yiqi and Yiming
[64] applied the finite difference method to carry out the nonlinear active
vibration control of the structure with adoption of the negative velocity
feedback control algorithm. Tavakolpour et al. [65] used the finite differ-
ence method and self-learning feedback control for a flexible plate structure
active vibrations control using a piezoelectric actuator. Hu and Galland
[66] performs the active control of the double wall structure with sym-
metrically located piezoelectric patches and with porous material, using
finite element simulations and experimental validation. The porous mate-
rial represents the passive noise suppression. It is both theoretically and
experimentally demonstrated that the acoustic transmission loss of more
than 10 dB at the resonance frequencies can be increased with the active
control in addition to a passive porous material influence. Yuan et al. [67]
proposed active control laws for sound transmission through a stiffened
panel in the low-frequency range using hybrid control strategy combining
both feedback and feedforward control.

However, when applied to building windows, in order to develop model-
based ASAC schemes, a good understanding of structural–acoustic inter-
actions in the considered system is required. Both of the methods – ANC
and ASAC – require a fast control algorithm and powerful electronics, so,
in general, such requirements yield rather expensive and energy consuming
systems which will be introduced in the next section.

2.2.4 Semi-active noise control

The third category of noise suppression methods is based on the semi-active
control approach. An example to be mentioned here is the possibility of
the arrangement of optimally tuned Helmholtz resonators (HRs) that re-
sult in an increase in the acoustical damping level inside the cavity between
the double plates. The HR is one of the most common devices for passive
control of noise at low frequencies. Mao and Pietrzko [68] developed a fully
coupled system of structural-acoustic-HRs for the double wall structures
by the modal coupling method. The simulations were confirmed by their
experimental work [69]. With optimally tuned HRs it is possible to achieve
the sound reduction up to 18 dB at certain low frequencies (to 100 Hz).
Recent results concerning the active and passive control of sound transmis-
sion through double wall structures have been summarized in the review
by Pietrzko and Mao [70].

Another example of the semi-active noise cancellation method with a
rather high application potential is the piezoelectric shunt damping (PSD).
This method uses piezoelectric elements connected to a shunt circuit. In
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fact, this system controls a strain of the element according to the applied
force or vice versa, i.e. a one port circuit is connected to the piezoelectric
element and the direct and inverse piezoelectric effects work simultaneously.
The shunt circuit could be consisted of either passive or active elements.
This categorization was introduced by Niederberger [71].

Passive shunts are characterized by the fact that they do not add any
energy to a system. They are usually comprised of linear one port circuits
which can be divided into the resistive, resonant or capacitive groups. Of
course, there exist the group of nonlinear shunts which are characterized
by the fact that they produce discontinuous or in other way nonlinear
characteristics due to some circuits parts, e.g. diodes. This attitude is
typically used in power harvesting applications (see e.g. [72] or [73]). The
approach with passive shunt circuits has been widely studied by Flem-
ing et. al (see e.g. [74, 75, 76]). It is mainly focused on narrow frequency
band devices (based on passive resonant shunts) and relatively complicated
control algorithms based on classical linear quadratic gaussian methods
(LQG) implemented through digital signal processors. They use this atti-
tude in the nanopositioning system applications. In their recent works they
study piezoelectric shunt damping method with a force sensor added to the
nanopositioning stage as a feedback variable to achieve both tracking and
damping [77]. Also, using the LRC passive shunts, they control the image
resolution of the atomic force microscope [78].

Vibration damping of planar structures or the suppression of the noise
transmission through them is not very trivial problem, so, in past few years
there are various tries to adopt some semi-active hybrid strategies. Usu-
ally, it is the combination of the conventional passive damping with some
passive shunt circuit. A numerical model of one such device, exhibiting
mass-spring-damper dynamics, attached to a vibrating host structure is
described and validated in 3D FEM analysis by Harne and Fuller [80]. In
their following study, smart foam samples (lightweight clamped panel with
the poroelastic foam) containing a single half-circular segment of embed-
ded piezoelectric film attached to the clamped plate are considered. As the
load resistance on the electrodes is increased, the resonance frequency of
the sample is shifted. The model was employed to evaluate the simulta-
neous vibration control and power-harvesting potential of similar devices
on a clamped panel. Ducarne et al. [81] present a strategy to optimize
(in terms of damping efficiency) the geometry of piezoelectric patches as
well as their placement on the host elastic structure. This procedure is
based on the maximization of the modal electro-mechanical coupling fac-
tor which is assumed to be the main free parameter that governs the shunt
optimization. An interesting result of this paper is the importance of the
thickness of the piezoelectric patches and the ratio of Young’s moduli of
the piezoelectric material and the elastic material of the host structure.
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Concerning the finite element discretization, we have used, for
the structural part, 100 plate elements. The portion of the plate
covered by the piezoelectric patch and the patch itself has been
modeled according to the presented laminated theory. Moreover,
only one electrical degree-of-freedom is used to represent the elec-
trical charge Q in the patch. The acoustic cavity is discretized using
10 � 10 � 10 hexahedric elements. The structural and acoustic
meshes are compatible at the interface.

Table 3 presents the eigenfrequencies in three cases: (i) the 3D
rigid acoustic cavity, (ii) the clamped plate with the patch in short-
and open-circuited cases and (iii) the plate/acoustic-cavity coupled
system in the short circuited case. Some results are compared with
those given by the finite element code Nastran using the same
mesh. The results presented in Table 3 show the excellent perfor-
mance of our finite element model compared to Nastran and en-
ables us to check the validity of the fluid–structure proposed
formulation. The first nine coupled frequencies are associated with
the first vibration modes of the structure lower than 345 Hz, and
the last coupled frequency corresponds to the first acoustic mode
in the rigid cavity. This can be confirmed by comparing the mode
shapes in case (iii) with those obtained in case (i) or case (ii), which
are not shown here for the sake of brevity. Moreover, as expected,
the natural frequencies of the coupled modes (structure domi-
nated) are lower than those for the structure in vacuum (except
for the first mode) due to the added-mass effect of the fluid.

The plate is now excited by a normal mechanical force of inten-
sity 1 N (see Fig. 8). In order to obtain maximum vibration attenu-
ation of the second coupled mode, the patch is tuned to an RL shunt
circuit. The optimal values of the electrical circuit are R = 750 X
and L = 10.85 H. The vibratory response is calculated with a modal
reduction approach using the first 10 in vacuo structural modes
and the first 10 acoustic modes of the fluid in rigid cavity [6].

The mean quadratic normal velocity of the plate hV2i and the
radiated sound power in the closure P are used as the indicators
for this example:

hV2i ¼ x2

2AB
w�Muw ð39Þ

and

P ¼ 1
2

real½w�CupPw� ð40Þ

where x is the angular frequency, w is the vector of nodal normal
displacements of the plate, Pw is the vector of nodal pressures on
the fluid–structure coupling surface. Note that Mu and Cup are the
plate mass matrix and fluid–structure coupling matrix reduced to
the dofs of interest.

The Figs. 9 and 10 present the mean quadratic normal velocity
of the plate and the radiated sound power in the cavity with and
without shunt. These figures show that resonant magnitude for
the second mode has been significantly reduced due to the shunt
damping effect.

5. Conclusion

This paper describes the variational formulation and the finite
element implementation of vibroacoustic problems with piezo-
electric shunt damping. The system under study consists of a mul-
tilayer piezoelectric structure (described by its displacement field
and the electric potential differences of each piezoelectric layers)
coupled with an acoustic fluid (described by its pressure field)
and connected to resonant shunt circuits. The variational formula-
tion of the fully coupled problem and the corresponding FE matrix
equations are first presented. Then, an efficient finite element pie-
zoelectric laminated plate and an appropriate fluid–structure
interface element are developed. Finally, numerical examples areFig. 8. Electromechanical-acoustic coupled system: geometrical data.

Table 3
Computed frequencies (Hz) of the structural–acoustic coupled system.

Fluid Structure Fluid–structure

Nastan Present Nastran
SC

Present
SC

Present
OC

Nastran Present

341.40 341.40 70.04 70.40 70.43 78.46 76.23
426.75 426.75 99.94 100.45 100.80 98.76 99.30
546.51 546.51 156.18 156.71 156.93 155.94 156.04
569.00 569.00 180.32 180.56 180.56 178.97 179.07
663.56 663.56 204.17 204.55 204.69 203.15 203.21
691.23 691.23 234.56 232.96 233.24 233.36 231.40
711.25 711.25 249.01 251.93 252.10 248.17 250.62
788.94 788.94 317.31 318.66 319.02 316.76 317.44
812.35 812.35 343.82 334.91 336.69 341.25 333.55
864.04 864.04 347.19 346.86 346.99 342.71 341.49
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Fig. 9. The mean quadratic normal velocity of the plate with and without shunt
system.
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presented in order to validate the FE implementations and to show
the effectiveness of the proposed approach for the simulation of
structural–acoustic vibration reduction problems by passive piezo-
electric shunt damping techniques. In particular, the efficiency of
the developed laminated piezoelectric plate element (relatively
to the small number of degrees of freedom per node) has been
highlighted and the passive inductive shunt damping techniques
has been shown very effective for vibration attenuation of low fre-
quency modes in structural–acoustics. To broaden the effective-
ness of these inductive shunt systems on a wider frequency band
and to avoid a very precise tuning of the electrical parameters, fur-
ther investigations concern the extension of this work to switching
shunt damping [12].

Appendix A

Table A.4.
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Fig. 10. The radiated sound power in the cavity with and without shunt system.

Table A.4
Properties of graphite-epoxy, PZT-4 and PIC151 materials (electric permittivity of air
�0 = 8.85 � 10�12 F m�1).

Properties Graphite-epoxy [26] PZT-4 [1] PIC 151 [20]

E11 (GPa) 132.38 81.3 66.71
E22 (GPa) 10.76 81.3 66.71
E33 (GPa) 10.76 64.5 48.81
G23 (GPa) 3.61 25.6 19.63
G13 (GPa) 5.65 25.6 19.63
G12 (GPa) 5.65 30.6 24.89
m12 (GPa) 0.24 0.33 0.34
m13 (GPa) 0.24 0.43 0.4223
m23 (GPa) 0.24 0.43 0.4223
e15 (C m�2) 0 12.72 11.778
e24 (C m�2) 0 12.72 11.778
e31 (C m�2) 0 �5.2 �9.270
e32 (C m�2) 0 �5.2 �9.270
e33 (C m�2) 0 15.08 18.678
�11/�0 3.5 1475 1182
�22/�0 3 1475 1182
�33/�0 3 1300 905
q (kg m�3) 1578 7600 7800
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(b)

Figure 2.10: (a) Scheme of an electromechanical-acoustic coupled system
considered by Larbi – acoustic cavity with a plate with layered piezoelectric
element shunted by the resonant circuit; (b) Radiated sound power in the
cavity with (solid line) and without resonant shunt system (dash-and-dot
line). It can be seen that the shunt circuit has an enormous influence on
the radiated sound power at some tuned single frequency mode; [79]

Variational formulation and the FEM implementation of vibroacoustic re-
sponse of the structures with piezoelectric shunt damping is developed by
Larbi et al. [79]. Their system consists of a composite multilayer piezo-
electric structure coupled with an acoustic fluid and connected to resonant
shunt circuits. Fig. 2.10(a) shows one of the examples with an acoustic
cavity with a plate with elastic properties similar to glass. The layered
piezoelectric element is attached to the plate and shunted by the resonant
circuit. It becomes apparent, see Fig. 2.10(b), that passive inductive shunt
damping techniques has been shown very effective for vibration attenuation
of low frequency modes in structural-acoustics. They note if one desires
to broaden the effectiveness of these inductive shunt systems on a wider
frequency band and to avoid a very precise tuning of the electrical parame-
ters, further extension has to be turned to switching shunt damping. E.g.,
6-PZT network multi-tone switching shunt control (SSC) system embed-
ded into a balanced fiberglass laminate plate was used for the noise and
vibration control of non-isotropic structures by Ciminello et al. [82]. They
performed both FEM analysis and experiment with a good agreement and
amplitude reductions up to 16 dB were attained.

On the other hand, active shunt circuits are the ones that add energy
to the shunted system. There are employed other circuit elements such as
operational amplifiers. Active shunts can fundamentally offer a higher effi-
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ciency of damping, however, stability is not automatically guaranteed and
additional power to drive the shunt circuit is required [83]. Lissek et al.
deals with the design of electric networks (active but also passive) when
connected to the loudspeaker are employed as an absorber of the sound
(“electroacoustic absorber”) ([84], [85]). Also, active feedback control and
shunt control are discussed and compared. The goal is to reach desired
acoustic impedance over a certain frequency bandwidth. The array of 10
shunt loudspeakers is capable of damping the chosen mode with an acoustic
attenuation of 14 dB. An extensive study about electroacoustic absorbers
and the unifying theory of their active acoustic impedance control is then
presented by Lissek et al. [86] and a method for acoustic performance op-
timization of the electroacoustic absorber is presented by Boulandet and
Lissek [87]. A simple case study is provided to illustrate that the electroa-
coustic absorber performance depends on several constitutive parameters
(moving mass of the loudspeaker, the enclosure volume or the electrical
load value to which the loudspeaker is connected). Rather new work by
Boulandet et al. mainly concerning the controlling mechanism using a
digital real-time controller is discussed in [88].

Among the active shunts belong negative capacitors (NC). The method
is based on the change of the vibrational response of the structure using
piezoelectric actuators shunted by active electronic circuits that have a
negative effective capacitance. This method is now known as active piezo-
electric shunt damping (APSD). It was demonstrated by Date et al. [90]
that by connecting the piezoelectric element to a NC circuit, it is possi-
ble to control the effective elastic stiffness of the piezoelectric element to
a large extent (in theory to zero or infinity), in a broad frequency range.
This method allows to realize noise shielding and vibration isolation sys-
tems. Early applications of this system have been reported by Okubo et
al. [91] and Kodama et al. [92]. The theoretical analysis of these sys-
tems was performed later by Mokrý [93, 94] and various applications of
an active elasticity control technique in the noise and vibration control de-
vices were demonstrated by Fukada et al. [95, 96]. Imoto et al. [97] and
Tahara [98] demonstrated the great potential of this method on a system
for suppressing vibrations by 20 dB in the broad frequency range from 1
to 100 kHz. The low energy consumption was proved by Vaclavik and
Mokry [99]. The noise shielding principle using the NC circuit was further
theoretically analyzed by Sluka et al. [89]. His model considers the sound
propagation through the curved piezoelectric membrane shunted by the NC
circuit (see Fig. 2.11(a)). The acoustic transmission loss is controlled by
the ratio of specific acoustic impedances of air and the membrane. Since
the specific acoustic impedance of the curved membrane fixed in a rigid
frame is proportional to its elastic stiffness, an extremely stiff membrane
(compared to air) works as an interface with high sound transmission loss.
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sn ¼ cEnn en ÿ drnErð Þ; ð6Þ

where sn is the mechanical stress along the n-coordinate, cEnn is the

component of the elastic stiffness tensor, which couples the stress

and strain along the n-coordinate, and drn is the piezoelectric coef-

ficient coupling the stress sn with the electric field Er perpendicular

to the membrane surface. The moment of bending forces (per unit

membrane thickness and width) is equal to

Mn ¼ mnvn=h; ð7Þ

where the flexural compliance mn ¼ cEnnh
3
=12 is calculated for the

rectangular cross section of the membrane of a unit width and

the thickness h.

At this moment, it is possible to obtain a system of partial dif-

ferential equations governing the membrane motion. From the

equilibrium of forces and moments shown in Fig. 2, it directly fol-

lows that

@sn
@n

¼ q
@2un

@t2
; dpþ sn

R
ÿ @Nn

@n
¼ q

@2ur

@t2
;

@Mn

@n
ÿ Nn ¼ 0; ð8Þ

where Nn is the normal stress in the membrane and the moment of

inertia of the membrane is neglected. The straightforward substitu-

tion of Eqs. (5)–(7) into Eq. (8), and the elimination of Nn by express-

ing it from the third and substituting it into the second of Eq. (8)

yield the system of equations

@2un

@n2
ÿ 1

R

@ur

@n
¼ q

cEnn

@2un

@t2
; ð9aÞ

ÿ h
2

12

@4ur

@n4
þ 1

R

@un

@n
ÿ ur

R2
þ dp

cEnn
ÿ drn

R
Er ¼

q

cEnn

@2ur

@t2
: ð9bÞ

In addition, it is necessary to append Eqs. (9) with boundary

conditions

urð0Þ ¼ 0; unð0Þ ¼ 0;
@ur

@n

�

�

�

�

n¼0

¼ 0; ð10aÞ

urðHÞ ¼ 0; unðHÞ ¼ 0;
@ur

@n

�

�

�

�

n¼H

¼ 0; ð10bÞ

which correspond to zero membrane displacement and flexion at

both clamped edges of the membrane.

Since we assume the linear system in a steady state forced by

harmonic acoustic pressure fluctuations with the angular fre-

quency x, we can consider the harmonic time dependence of state

quantities of the system:

Er ¼ Eejx t ; dp ¼ dPejx t; un ¼ UnðnÞejx t ; ur ¼ UrðnÞejx t : ð11Þ

Then, it is possible to reduce Eqs. (9) to the form

DðUnÞ ¼ 0; ð12aÞ

DðUrÞ ¼
1

cEnn
dP ÿ drn

R
E; ð12bÞ

where Un = Un(n), Ur = Ur(n) are the amplitudes of the tangential and

radial membrane displacement, respectively, and D is the differen-

tial operator

D ¼ h
2

12X2

@6

@n6
þ h

2

12

@4

@n4
ÿ @2

@n2
þ 1

R2
ÿX2

� �

; ð13Þ

where X2 ¼ qx2=cEnn.

We solve the boundary value problem given by Eqs. (10) and

(12). As usual, the solution of the non-homogenous Eq. (12b) is

found as a sum of the solution of the homogenous equation and

the particular integral, i.e.

UrðnÞ ¼ UhðnÞ þ Up: ð14Þ

Eq. (12a) is homogeneous and, hence, Un(n) is directly its homo-

geneous solution.

Fig. 1. Geometry of the curved piezoelectric membrane model for the calculation of the acoustic transmission loss of sound. A cylindrically curved membrane of a thickness h

and of the radius of curvature R is clamped at its straight edges between two parts of the acoustic tube of an inner height H. An incident sound wave strikes the membrane

from the left side of the tube. The incident sound wave is partially reflected and partially transmitted making the membrane vibrate. Displacement of the membrane in the

radial and tangential directions are denoted by symbols ur and un, respectively. The membrane electrodes are shunted by the external circuit of the impedance ZNC, which has

a strong impact on the transmission of sound due to the piezoelectric effects.

Fig. 2. Forces and bending moments per unit length acting on the infinitesimal

element of the cylindrically curved membrane.
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Herbert et al., 1998), and the elastic stiffness cEnn ¼
ReðcEnnÞð1þ j tan dÞ. Symbols ees and ee1 represent the empirically

determined limits of the relative permittivities for zero and infinity

frequencies, respectively. Symbols b1 and b2 are the dimensionless

constants and tand is the mechanical loss factor of the membrane

material. The shunt circuit adopted in our analysis is a negative

capacitor realized with use of the ideal operational amplifier

shown in the inset of Fig. 3(b). Date et al. (2000) and Mokrý

et al. (2003a) showed that the complex input capacitance of such

a circuit is equal to CNC ¼ ÿR2C0=½R1 ð1þ jxC0R0Þ�. The values of

circuit parameters R2,R1,C0,R0 of the negative capacitor are chosen

in a way to achieve the desired matching of the membrane and

circuit capacitances at a given frequency x0, i.e. DCe(x0) = 0.

Therefore, the values are chosen as follows: C0 ¼ Re½Ce
sðx0Þ�; R0 ¼

Im½jx0 C
e
sðx0Þ�ÿ1 and ratio a = R2/R1 = 1 if not introduced otherwise

in Fig. 3(b).

Fig. 3 shows the essential features of the derived formula for the

transmission loss of sound given by Eq. (34). The graphs are gener-

ated with a material and geometric parameters introduced primar-

ily inside the particular graphs. Other parameters are listed in

Table 1. Graphs in Fig. 3(b) and (d) basically simulate measure-

ments published by Fukada et al. (2004) while no fitting of the

model parameters was needed to achieve relatively good agree-

ment with the Fukada’s measurements.

Effects of following variables on the transmission loss of sound

are shown: (a) membrane radius R, (b) ratio of the resistances

a = R2/R1, (c) mechanical loss factor tand of the membrane, and

(d) the frequency x0 where D Ce(x0) = 0.

In Figs. 3(a) and (c) we show TL in a questionable range up to

20 kHz while the plane wave assumption is generally limited to

frequencies f < c/H. On the other hand, we can assume incident

plane waves even at higher frequencies where only the reflected

and transmitted waves carry contribution from the sound interac-

tion with flexural modes of the membrane motion. However, we

assume and we have also confirmed by a more complex numerical

model (unpublished), that the non-planar waves do not signifi-

cantly contribute to the total acoustic pressure and the membrane

motion. Therefore, TL is mainly governed by the plane waves and

we present results up to f = 20 kHz.

In Figs. 3(a), (c) and (d) the minimum value of TL (the apex of

the generally ‘‘V”-shape curve) corresponds to the resonant fre-

quency xr of the uniform vibration mode of the membrane, which

is often referred to as a ‘‘breath mode”. In Fig. 3(b), this resonance

is out of the plot range. Fig. 3(a) shows that the breath mode res-

onance can be largely controlled by the membrane curvature.

In all Fig. 3, the effect of the membrane interaction with the

negative capacitor is exhibited as a huge increase of TL atx0 which

represents the main point of interest in the noise control system

design.

Fig. 3(b) shows the biggest drawback of the method, which is

the high sensitivity of membrane TL on the fluctuation of the sys-

tem properties, (see also Sluka et al., 2008). One can see that even a

slight mistuning of the circuit, i.e. when a– 1, leads to significant

drop of TL around x0. Moreover, when 0 < a < 1 the system be-

comes instable, (see Date et al., 2000).

The effect of the membrane clamps on TL is seen mostly in

Fig. 3(c). The repetitive small sharp peaks on the solid curve orig-

inate from the coupling between the flexural and uniform modes

of the membrane motion. Both modes cause elongation and con-

traction of the membrane which mediates their interaction, i.e.

the membrane elongation by the flexural mode limits the average

membrane displacement in the radial direction and vice versa. One

Fig. 3. The frequency dependence of the acoustic transmission loss TL of sound through the cylindrically curved piezoelectric membrane connected to the shunt electric

circuit shown in the inset of Fig. (b). The curves are obtained using Eq. (34). Effects of following parameters are shown: (a) membrane radius R, (b) ratio of the resistances R2/

R1, (c) mechanical loss factor tand of the membrane, and (d) the frequency x0 where the transmission loss reaches maximum. The peak value of TL at the frequency x0 is

achieved by the action of shunt electric circuit, which is utilized in the noise control systems.
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circuit capacitances at a given frequency x0, i.e. DCe(x0) = 0.
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tion with flexural modes of the membrane motion. However, we
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is out of the plot range. Fig. 3(a) shows that the breath mode res-
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In all Fig. 3, the effect of the membrane interaction with the

negative capacitor is exhibited as a huge increase of TL atx0 which

represents the main point of interest in the noise control system

design.

Fig. 3(b) shows the biggest drawback of the method, which is
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drop of TL around x0. Moreover, when 0 < a < 1 the system be-
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Figure 2.11: (a) Geometry of the curved piezoelectric membrane model for
the calculation of the acoustic transmission loss of sound; The frequency
dependence of the acoustic transmission loss (TL) of sound through the
cylindrically curved piezoelectric membrane connected to the shunt elec-
tric circuit with negative capacitance. Effects of following parameters are
shown: (b) membrane radius R, (c) the frequency ω0 where the transmis-
sion loss reaches maximum; [89]

In this arrangement, the majority of acoustic energy is reflected from the
membrane and only a negligible amount of energy is transmitted. The
improved acoustic transmission loss can be seen in Fig. 2.11(b), where the
effect of a membrane radius is shown, and in Fig. 2.11(c), where the acous-
tic transmission loss reaches maximum at the specific frequency according
the tunning of the NC circuit.

The change of the stiffness and even the geometry of the whole structure
to reach the improvement in noise transmission through the structures be-
came more investigated recently. Typically, the structure could be stiffened
by some mechanical forces which can be a result of an electrical voltage
induced on a stiffening element. Cao et al. theoretically study the interac-
tion of two sets of parallel stiffeners with the laminated plate through the
normal forces [100] and the interaction of the point forces with a shear de-
formable laminated cylindrical shells [101]. Stiffeners have significant influ-
ence on the sound field transmitted through the plate or the shell. Xin and
Lu [102] developed an analytic model to investigate the wave propagation
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and sound transmission characteristics of an infinite sandwich structure
reinforced by two sets of orthogonal rib-stiffeners. There is considered an
influence of the spacing size between the rib-stiffeners on the sound trans-
mission loss. Chronopoulos et al. [103] developed a robust-unified model
for the prediction of the vibroacoustic performance of composite shells of
various geometries (namely curved panels and cylindrical shells) within a
statistical energy analysis approach. The method was adopted for calcu-
lation of the sound transmission loss where the finite dimensions of the
panel were taken into account. For non-closed shells, a generally very good
agreement between the experimental measurements and the prediction us-
ing the presented method was observed. Sarangi and Ray [104] provide an
analysis of active damping of viscoelastic doubly curved shell. This layer
is constrained between the host structure and a constraining layer made
either 1-3 PZT composite or of PZT fibers reinforced composite material
(particularly active fiber composites (AFC)). When the constraining layer
is activated by an appropriate control voltage, the shear deformations of
the viscoelastic layer improve damping characteristics of the overall struc-
ture. It is also found that the performance of constraining layer being made
of the AFC is significantly higher than the one with 1-3 PZT constraining
layer.

The Thesis is focused on the APSD method that can offer an attractive
approach for reduction of the noise level transmitted through windows in
buildings. The objective of the all work is to analyze the most efficient
ways for suppression of noise transmission through the glass plates using
active elasticity control (AEC) introduced by Date et al. [90] of attached
piezoelectric elements and the change of the geometry of the glass plate.
The AEC method will be explained in detail in Chap. 3. But first, the
most important features of the noise transmission through the glass plates
must be analyzed using the approximative analytical model and the key
aspects which have an influence on the acoustic TL have to be determined.
To verify the applicability of the APSD method to the noise transmission
suppression through the glass plates, FEM simulations of sound transmis-
sion through a glass plate with attached piezoelectric elements shunted
with negative capacitance circuits are performed (Chap. 5). Also, simple
experimental setup for the approximative measurements of the acoustic TL
is described in this chapter. The chapter before, Chap. 4, presents details
of the FEM simulations of the anisotropic effective Young’s modulus of the
piezoelectric macro fiber composite (MFC) actuator and the influence of
NC circuit on the elastic properties of the actuator.



Chapter 3

Theoretical modelling of the
acoustic impedance of a
curved glass shell and the
principles of active elasticity
control method

In this Chapter, the possibilities in the active control of acoustic transmis-
sion loss (TL) of planar structures using the active elasticity control (AEC)
method are analyzed. In the first step of the analysis, the most important
parameters of the noise transmission system, which have an influence on
the acoustic TL, are determined. In our particular case, an approximative
analytical model of the vibration of curved glass shell is developed (see
Sec. 3.1). Then, the specific acoustic impedance of the curved glass shell is
calculated within the developed model. In the second step of the analysis,
it is demonstrated that it is possible to control the elastic properties of the
planar structure using an active piezoelectric layer attached to the planar
structure (see Sec. 3.2). Finally, the basic theoretical aspects of the AEC
method are explained (see Sec. 3.3).

3.1 Analytical estimation of the acoustic

impedance of a curved glass shell

In order to determine the parameters of the glass plate that control its
acoustic impedance, it is necessary to analyze its vibrational response. So,
the analytical model of the vibration of generally curved glass shells is
developed in this Section.

37
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For simplicity, consider a rectangular-like glass shell of a constant thick-
ness h and with the dimensions denoted by symbols a and b, which is shown
in Fig. 3.1. Consider a curvilinear orthogonal coordinates x and y, that
define the position on the curved surface of the shell. Consider that the
shell has constant radii of curvature along the x and y coordinates denoted
by symbols Rx and Ry, respectively. It is convenient to introduce the sym-
bols ξx = 1/Rx and ξy = 1/Ry for local curvatures of the shell along the
x and y directions, respectively. Symbols ux and uy stand for tangential
components of the displacement of the infinitesimal shell element with the
volume h dx dy. The symbol w stands for the normal component of the
displacement of the shell element. Using the fundamental equations pre-
sented in basic textbooks [105, 106, 107], equations of motion are derived,
as usual, from the equilibrium of forces acting on an infinitesimal element
of the curved glass shell:

∂Tx
∂x

+
∂Txy
∂y

= %h
∂2ux
∂t2

, (3.1)

∂Txy
∂x

+
∂Ty
∂y

= %h
∂2uy
∂t2

, (3.2)

∂Nx

∂x
+
∂Ny

∂y
+
Tx
Rx

+
Ty
Ry

+ q = %h
∂2uz
∂t2

, (3.3)

where the symbol % is the mass density of the material of the shell, Tx, Ty
and Txy are the forces per unit area of the shell cross section, which acts
in the tangential plane to the curved glass shell. Forces Tx, Ty acts along
the directions of x and y axes, respectively. Force Txy is the shearing force
in the xy-plane. Symbols Nx and Ny stand for the bending forces normal
to the tangent plane of the curved shell and bending the shell along the
x and y directions, respectively. The above equations of motion must be
appended by the equations for the equilibrium of bending moments Mx and
My, the twisting moment Mxy, and the bending forces Nx and Ny acting
on an infinitesimal element of the curved glass shell:

Nx =
∂Mx

∂x
+
∂Mxy

∂y
, (3.4)

Ny =
∂My

∂y
+
∂Mxy

∂y
. (3.5)

In the next step, the equations for the local elasticity are considered in
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the following form:

Tx =
Y h

1− ν2
(ex + νey) , (3.6)

Ty =
Y h

1− ν2
(ey + νex) , (3.7)

Txy =
Y h

1 + ν
exy, (3.8)

Tyx =
Y h

1 + ν
exy, (3.9)

Mx = −12G (ζx + νζy) , (3.10)

My = −12G (ζy + νζx) , (3.11)

Mxy = 12G (1− ν) ζxy, (3.12)

Myx = −12G (1− ν) ζxy, (3.13)

where the symbols Y , ν and G stand for the Young’s modulus, Poisson’s
ratio and the bending stiffness coefficient of the shell, respectively. Symbols
ex, ey and exy are the mechanical strain tensor components along the coor-
dinates x, y, xy, respectively and ζx, ζy and ζxy are the curvature changes,
respectively.

Finally, equations for strain and curvature changes are considered in
the following form:

ex =
∂ux
∂x
− uz
Rx

, (3.14)

ey =
∂uy
∂y
− uz
Ry

, (3.15)

exy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
, (3.16)

ζx =
∂2uz
∂x2

, (3.17)

ζy =
∂2uz
∂y2

, (3.18)

ζxy =
∂2uz
∂x∂y

. (3.19)

By combining Eqs. (3.1)-(3.19) one arrives at the equations of motion
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Y h

[
1

2(1− ν2)

∂2ux
∂x2

+
1

2(1 + ν)

∂2ux
∂y2
−

− 1

2(1− ν)

∂2uy
∂x∂y

− ξx + νξy
2 (1− ν2)

∂w

∂x

]
= %h

∂2ux
∂t2

, (3.20a)

Y h

[
1

2(1 + ν)

∂2uy
∂x2

+
1

2(1− ν2)

∂2uy
∂y2
−

− 1

2(1− ν)

∂2ux
∂x∂y

− νξx + ξy
2 (1− ν2)

∂w

∂y

]
= %h

∂2uy
∂t2

, (3.20b)

−G∆2w +
Yh

1− ν2

[
(ξx + νξy)

∂ux
∂x

+ (νξx + ξy)
∂uy
∂y
−

−(ξ2
x + ξ2

y + 2νξxξy)w
]

+ ∆p = %h
∂2w

∂t2
, (3.20c)

where

∆2w =
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
(3.21)

is the biharmonic operator. The symbol ∆p stands for the difference of the
acoustic pressures at the opposite sides of the curved shell and represents
the “driving force” of the system. It is seen that the first and second
equations in Eqs. (3.20) represent the equations of motion for the tangential
components ux and uy of the shell displacement. These are coupled with
the normal component of the shell displacement w and the driving force
∆p via the nonzero values of curvatures ξx and ξy. It can be shown that
for relatively small numerical values of curvatures considered in this work,
the values of all terms, which contain the tangential components ux and uy
in Eq. (3.20c), are much smaller than the remaining terms with the normal
component w of the displacement. Under this consideration, the system
of Eqs. (3.20) can be further reduced down to a single partial differential
equation in a form:

−G∆2w +
Yh

1− ν2

(
ξ2
x + ξ2

y + 2νξxξy
)
w + ∆p = %h

∂2w

∂t2
. (3.22)

When one considers a simple situation: (i) the shell is formed by a
rectangular part of a spherical shell, i.e. ξx = ξy = ξ, (ii) the steady
state, when the shell is driven by the pure tone of angular frequency ω, i.e.
∆p(t) = Peiωt and w(x, y, t) = w(x, y)eiωt, and (iii) the boundary con-
ditions of the simple supported shell, i.e. w(0, y) = w(a, y) = wxx(0, y) =
wxx(a, y) = 0 and w(x, 0) = w(x, b) = wyy(x, 0) = wyy(x, b) = 0, the
solution of the partial differential equation Eq. (3.22) can be easily found
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0

x a=

y=b

Figure 3.1: Geometry of the rectangular-like curved glass shell of constant
thickness h. Symbols x and y stand for curvilinear orthogonal coordinates.
The shell dimensions are denoted by symbols a and b. The shell has con-
stant radii of curvatures along the x and y coordinates denoted by symbols
Rx = 1/ξx and Ry = 1/ξy. Symbols ux and uy stand for tangential compo-
nents of the displacement of the infinitesimal shell element. The symbol w
stands for the normal component of the displacement of the shell element.

in the form of Fourier series:

w(x, y, t) =
∞∑

n,m=1

16P (1− ν) sin [(2n− 1)πx/a]

(2n− 1)(2m− 1)π2{2Y hξ2 + (1− ν)
×

× sin [(2m− 1)πy/b] eiωt

[G((2m− 1)2/b2 + (2n− 1)2/a2)− ρhω2]}
. (3.23)

Now, according to the Eq. (2.16), the effective value of the specific
acoustic impedance zw of the glass shell can be expressed in the following
form:

Zw(ω) ≈ ∆p(0)

iω√ 1

ab

∫ 0

a

dx

∫ 0

b

w(x, y, 0)2dy

−1

. (3.24)

When we substitute the expression for the normal displacement of the
spherical shell w from Eq. (3.23), one can arrive at the following formula
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for the effective specific acoustic impedance:

Zw(ω) ≈

≈

{
∞∑

n,m=1

[
8iωa2b2(1− ν)

(2m− 1)(2n− 1)π2 (Gζmn + 2Y hξ2 − (1− ν)ρhω2)

]2
}−1/2

,

(3.25)

where

ζmn = π4 (1− ν)2 (1 + ν)
[
(2m− 1)2/b2 + (2n− 1)2/a2

]2
.

It is clear that Eq. (3.23) describes the displacement of the rectangu-
lar part of a spherical shell in a special situation without much practical
interest. On the other hand, the presented analytical solution serves a pos-
sibility to trace the key features of the system that can be used for the
suppression of the noise transmission.

First, it is seen that with an increase of the glass shell curvature ξ,
the term 2Y hξ2 in the denominator of Eq. (3.23) increases. This yields
the decrease of the amplitude of the shell displacement and, therefore, the
decrease of the normal velocity of vibrations. As a result, the value of the
specific acoustic impedance of the glass shell Zw increases with an increase
in its curvature ξ as it can be seen in Eq. 3.25. The reason for this curvature
effect is that the normal displacement of the curved shell is controlled by
the in-plane stiffness, in addition to the bending flexural rigidity. Second,
the specific acoustic impedance Zw of the curved shell, i.e. ξ > 0, increases
with an increase in the Young’s modulus Y . Third, the value of Zw of the
plane plate, i.e. ξ = 0, increases with an increase in the bending stiffness
coefficient G.

Now, it is clear, that the active control of the Young’s modulus Y and
the bending stiffness coefficient G would influence the vibrational response
of the glass shell. Next section of the Thesis explains the basic principle
how to do that by means of the attached piezoelectric layer to the planar
structure.

3.2 Composite structure of the glass plate

and piezoelectric element

Generally, bending piezoelectric devices consists of several piezoelectric and
non-piezoelectric layers laminated together. Each layer has different mate-
rial and geometric parameters. The motion of multilayer composite struc-
tures is described by equations of motion, see e.g. the Eqs. 3.20, where the
material and geometric parameters are replaced by their average values.
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h1

b

hi

h0

z

y

h

Figure 3.2: General multilayer structure with a rectangular cross-section
placed in the system of coordinates. The structure has N layers of width
b with different height hi. The total thickness of the structure is denoted
by the symbol h.

These average values can be calculated by the integration of the partial
parameters of the sublayers over the total cross-section [108].

Imagine a general multilayer structure with a rectangular cross-section
area S = bh according to Fig. 3.2. The structure has N layers of width b
with different height hi, cross-section area Si = bhi, density ρi and Young’s
modulus Yi. The total thickness of the structure is denoted by the symbol
h. The position of the neutral axis, which passes through the centroid of
the cross-section, is denoted by h0. Then, the average density ρEff , average
Young’s modulus YEff and the position of the neutral axis h0 can be solved
using following relations:

ρEff =
1

S

∫
S

ρdS =

∑N
i=1 ρihi
h

(3.26)

YEff =
1

S

∫
S

Y dS =

∑N
i=1 Yihi
h

(3.27)

h0 =
1

YEffS

∫
S

Y zdS =
1

2

Y1h
2
1 +

∑N
j=2 Yj

[(∑j
k=1 hk

)2

−
(∑j−1

k=1 hk

)2
]

∑N
i=1 Yihi

.

(3.28)
The average bending stiffness GEff is calculated with respect to the position
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piezoelectric layer (Ypiezo)

glass plate (Yglass)

hpiezo

hglass

Figure 3.3: Cross-section of the layered composite structure, which con-
sists of a glass plate of thickness h and Young’s modulus Yglass and an
attached piezoelectric layer of thickness hpiezo and Young’s modulus Ypiezo.

of the neutral axis as

GEff =

∫
S

Y z2dS = b

∫ h−h0

−h0
Y z2dS =

1

3
b

{
Y1

[
(h1 − h0)3 − (−h0)3]+

+
N∑
j=2

Yj

( j∑
k=1

hk − h0

)3

−

(
j−1∑
k=1

hk − h0

)3
 .

(3.29)

Following the [108], let us consider a one of the typical layered con-
figurations, simple bender with just two layers of different material and
thicknesses, i.e. composite structure of the glass plate and the attached
piezoelectric layer, with a cross-section shown in Fig. 3.3. The average (ef-
fective) Young’s modulus of the whole structure YEff is given by weighted
average of the Young’s moduli of the glass and the piezoelectric layer, ac-
cording to the formula originated from Eq. (3.27):

YEff =
Yglasshglass + Ypiezohpiezo

hglass + hpiezo

, (3.30)

where the symbols Yglass and Ypiezo stand for the Young’s moduli of the
glass and the piezoelectric material of the piezoelectric layer, respectively.
The symbols hglass and hpiezo stand for the thickness of the glass plate and
the piezoelectric layer, respectively. Let us substitute the symbols Y and h
for the symbols Yglass and hglass, for simplicity. Now, the average (effective)
value of the bending stiffness coefficient GEff of the composite sandwich
structure is given by the formula which originates from Eqs. (3.28) and
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(3.29):

GEff =
Y 2h4 + Y 2

piezoh
4
piezo + 2Y Ypiezohhpiezo

(
2h2 + 3hhpiezo + 2h2

piezo

)
12 (1− ν2) (Y h+ Ypiezohpiezo)

,

(3.31)
where ν is Poisson’s ratio of the material.

It is clearly seen that if Young’s modulus of the piezoelectric layer is in-
creased, both effective values of the Young’s modulus YEff and the bending
stiffness coefficient GEff of the composite sandwich structure are increased
as well. And, it is seen from Eqs. (3.23) and (3.25) that with an increase of
the effective Young’s modulus of the piezoelectric layer, the specific acous-
tic impedance of the curved glass shell increases. It should be pointed out
that Eqs. (3.23) and (3.25) were calculated in a simplified model, where
the values of curvature ξ. This simplification is not the case of many ap-
plications of practical interest but, on the other hand, this model serves
only for the determination of the key aspects which control the specific
acoustic impedance of the curved or plain planar structure. Now, it was
demonstrated that by the piezoelectric layer attached to the planar struc-
ture it is possible to control the elastic properties of the whole system, so,
the next section presents a principle and an implementation of a method
for the active control of the Young’s modulus of the piezoelectric material
which can me attached as a control layer to the planar structure.

3.3 Active elasticity control of piezoelectric

materials

Since the beginnings of the study of piezoelectric materials, it is known that
the electrical boundary conditions of piezoelectric actuators greatly affect
their effective elastic properties. The role of electromechanical interaction
on the effective elastic properties can be amplified if an active shunt circuit
is connected to the piezoelectric actuator. Such an approach was intro-
duced by Date et al. [90] and is called the active elasticity control (AEC)
method. When the method is adopted in vibration or noise transmission
control applications, then thanks to the fact that the shunt circuit is by
nature active, it belongs to the group of active piezoelectric shunt damping
(APSD) methods.

The basic idea of the method is based on the superposition of direct
and converse piezoelectric effects with Hooke’s law. Let us explain the
basic principle on the case when the piezoelectric element is exposed to the
influence of incoming acoustic pressure as it could be seen in Fig. 3.5(a).
That means, the external mechanical force is applied to the piezoelectric
element. According to the Hooke’s law the mechanical strain S is produced
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in the piezoelectric actuator and, the external force generates a charge Q
on the electrodes due to the direct piezoelectric effect (see Fig. 3.5(b)).
The generated charge is introduced to the electronic shunt circuit, which
controls the electric voltage V on the electrodes of the piezoelectric element
which is then deformed according to the inverse piezoelectric effect (see
Fig. 3.5(c)). The total strain S of the piezoelectric actuator is then equal
to the sum of both: the stress-induced strain (due to Hooke’s law) and the
voltage-induced strain (due to the converse piezoelectric effect). When the
voltage-induced strain cancels the stress-induced strain, the total strain
of the piezoelectric actuator equals zero even if nonzero external stress is
applied. This actually means that the effective Young’s modulus of the
piezoelectric actuator reaches infinity. This fact could be successfully used
in the noise transmission control applications because when the acoustic
wave strikes the element with infinite Young’s modulus, the all acoustic
energy is reflected from the surface and nothing is transmitted to the other
side (Fig. 3.5(d)).

The shunt circuit, which implements the control of effective elastic prop-
erties of the piezoelectric actuator is the active negative capacitance (NC)
shunt circuit. The key parameter, which controls the value of the effective
Young’s modulus of the MFC actuator, is the capacitance of the circuit C.
This fact can be derived, when the equations of state for the mechanical
strain Sij and the electric displacement Di in the piezoelectric actuator,
i.e. Eqs. (2.1d) are appended by the formula for the voltage V = Eih ap-
plied back to the electrodes of the piezoelectric element from the external
capacitor of capacitance C:

V = −Q/C, (3.32)

where Q = DiA is the charge generated on the electrodes of the piezoelec-
tric actuator of electrodes area A.

Combining Eqs. (2.1d) and (3.32), it is possible to obtain the formula
for the effective Young’s modulus of the piezoelectric actuator shunted by
the external capacitor [90]:

Yijkl,shunted =
Tkl
Sij

=
1

sEijkl

(
1 +

k2
ijk

1− k2
ijk + α

)
, (3.33)

where kijk is the electromechanical coupling factor of the piezoelectric actu-
ator (0 < kijk < 1), as introduced in Chap. 2, Sec. 2.1.1, paragraph 2.1.1.2,
and α = C/CS is the ratio of the shunt circuit capacitance C over the
piezoelectric element static capacitance CS at a constant mechanical stress
Tij, where CS = εTijA/hpiezo.

It can be seen from Eq. (3.33) that large values of the effective Young’s
modulus of the piezoelectric element can be achieved only when the capac-
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Figure 3.4: Scheme of the noise transmission suppression principle (cf.
Fig. 2.5). The acoustic impedance of the plate is controlled using a piezo-
electric actuator shunted by an active circuit. Vibration amplitude W nor-
mal to the glass surface is reduced by the action of the shunted piezoelectric
actuator. In this way of damping, the greater part of the amplitude of the
incident acoustic pressure wave is reflected from the plate than transmitted
through the plate to the other side.

itance of the external circuit C is negative. It follows from the Eq. (3.33)
that, when

C = −(1− k2
ijk)CS, (3.34)

the effective Young’s modulus reaches infinity. Already mentioned in
Chap. 2, Sec. 2.2, paragraph 2.2.4 that such a situation has been profitably
used in several noise suppression devices [91, 92, 93, 109, 89]. On the other
hand, when C = −CS, the effective Young’s modulus reaches zero. This
could be used in various devices for the suppression of transmissibility of
vibration (see e.g. [110, 111, 112, 113]). Based on the theory introduced
here and the already performed experiments by Okubo et al. and Kodama
et al. and calculations by Mokry et al. and Sluka et al, the principle
of AEC method could be profitably used when one needs to suppress the
noise through the planar structure, e.g. the glass plate. Fig. 3.4 shows the
scheme of the noise transmission suppression principle using a piezoelectric
actuator shunted by an active circuit with negative capacitance. Following
the Eqs. (3.23), (3.25), (3.30), (3.31) and (3.33), vibration amplitude W
normal to the glass surface is reduced and subsequently the specific acoustic
impedance is increased by the action of the shunted piezoelectric actuator.
So, the greater part of the amplitude of the incident acoustic pressure wave
is reflected from the plate than transmitted through the plate to the other
side without the glass being thicker (cf. Fig. 2.5).

3.4 Summary

This Chapter determines the parameters of the glass plate that control
its acoustic impedance and introduces some ideas how to increase this
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physical property. The key messages of this Chapter could be summarized
into several points:

• With an increase of the glass shell curvature ξ, the term 2Y hξ2 in
the denominator of Eqs. (3.23) and (3.25) increases. This yields the
decrease of the amplitude of the shell displacement and, therefore, the
decrease of the normal velocity of vibrations. As a result, the value
of the specific acoustic impedance of the glass shell Zw increases.

• The specific acoustic impedance Zw of the curved shell, i.e. ξ > 0,
increases with an increase in the Young’s modulus Y and the bending
stiffness coefficient G of the shell.

• The value of Zw of the plane plate, i.e. ξ = 0, increases with an
increase in the bending stiffness coefficient G of the plate.

• It is possible to control the average elastic properties of the curved
glass shell using the piezoelectric layer attached to the shell. In ad-
dition, the control of the average Young’s modulus and the bending
stiffness coefficient of the layered composite structure of the glass shell
and piezoelectric actuator can be achieved only using the control of
the Young’s modulus of the piezoelectric layer (see the Eqs. (3.30)
and (3.31)).

• The AEC method offers a technique for the suppression of noise trans-
mission through the piezoelectric composite structures or a technique
for active suppression of vibrations of mechanical structures by at-
taching the piezoelectric elements to them. The effective Young’s
modulus of the piezoelectric element shunted by the NC circuit fol-
lows the theoretical Eq. (3.33). One can notice that, when the ca-
pacitance C is negative, the value of the effective Young’s modulus of
the piezoelectric actuator can be changed to a large extent. Fig. 3.4
shows the piezoelectric actuator attached to the surface of a glass
plate. Then, the average value of the Young’s modulus Y and the
bending stiffness coefficient G of the glass composite plate is con-
trolled to a large extent by the action of shunted NC circuit. Finally,
the vibration amplitude W of the plate is reduced due to an increase
in the bending stiffness coefficient G of the plate (in the case of the
plane plate) and due to an increase in the bending stiffness coefficient
G and the Young’s modulus Y of the plate (in the case of the curved
plate). In such a way of active “stiffening”, a greater part of the
amplitude of acoustic pressure wave is reflected than transmitted to
the other side.
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In the next Chapter, there will be introduced a piezoelectric actuator
suitable for applications, which involves the potential problems of fragile
vibrating structures such as glass plates. Using the finite element method
simulations, it will be shown the effect of NC circuit on the average elastic
properties of this piezoelectric actuator.



50 CHAPTER 3. THEORETICAL MODELLING AND AEC

i

(a)

i

circ.

(b)

i

circ.

(c)

i

circ.

(d)

Figure 3.5: (a) The piezoelectric element is exposed to the influence of
incoming acoustic pressure pi. That means, the external mechanical force
is applied to the piezoelectric element. It is deformed according to the
Hooke’s law (red); (b) The external force generates a charge Q on the piezo-
electric element’s electrodes due to the direct piezoelectric effect, the charge
Q is introduced to the shunt electronic circuit (blue); (c) The electronic
circuit controls the electric voltage V on the electrodes of the piezoelec-
tric element which is deformed according to the inverse piezoelectric effect
(green); (d) The total strain (the stress-induced strain (due to Hooke’s law)
and the voltage-induced strain (due to the converse piezoelectric effect))
of the piezoelectric actuator equals zero. This means that the effective
Young’s modulus of the piezoelectric actuator reaches infinity. Then, the
all incoming acoustic energy is reflected from the surface and nothing is
transmitted to the other side.



Chapter 4

Active elasticity control of
macro fiber composite
actuator

The flexible piezoelectric actuator, macro fiber composite (MFC) actuator,
is introduced in this Chapter. Computation of its effective material proper-
ties and demonstration of tuning its effective elastic constants by means of
a shunt electric circuit are presented here. The effective material constants
are computed using the finite element method (FEM) and compared with
MFC manufacturer’s data. The effect of the shunt circuit capacitance on
the effective non-isotropic Young’s moduli is analyzed in detail. A method
for finding the proper shunt circuit adjustment that yields maximum values
of the MFC actuator effective non-isotropic Young’s modulus is shown.

4.1 Introduction

The use of piezoelectric ceramics, such as PZT, materials for structural
actuation and sensing is a well-developed field of applied material science.
The PZT material itself, however, has some severe application limits. PZT
transducers are extremely brittle and they require extra attention during
the handling and bonding procedures. They can easily crack, when they
are exposed to large mechanical stresses or deformations. In addition, their
conformability to curved surfaces is extremely poor [114]. Therefore, the
concept of active piezoceramic composite transducers (PCT), which would
contain PZT and some flexible adhesive to eliminate the aforementioned
drawbacks has been explored.

A typical PCT is made of an active layer sandwiched between two soft
thin encapsulating layers. The first generation of PCT actuators were
manufactured using a layer of cylindrical piezoceramic fibers embedded

51
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Figure 4.1: Layered structure of the macro fiber composite (MFC) actuator
[117, 119]. It consits of rectangular cross-section, unidirectional piezoce-
ramic fibers from PZT-5A lead zirconate-titanate material embedded in an
epoxy matrix. It is sandwiched between copper-clad polyimid film layers
that have an etched IDE pattern.

in a protective polymer matrix material. They were called Active Fiber
Composite (AFC) and were introduced by Hagood and Bent [115] as an
alternative to monolithic piezoceramic wafers for structural actuation ap-
plications. Strain energy density was improved by utilizing interdigital elec-
trodes (IDEs) to produce electrical fields in the plane of the actuator [116].
However, its performance was rather limited by design and manufacturing
issues. Moreover, the round cross-section fibers have minimal contact area
with the copper electrodes. The new type of PCT actuator, called macro
fiber composite (MFC) actuator was developed at NASA Langley Research
Center to eliminate many of the manufacturing and performance disadvan-
tages [117]. Nowadays, both of these types of actuators are produced by
Smart Materials Corp. [118] and an overview and their detailed comparison
are freely available at [119].

Fig. 4.1 shows a part of structure of the MFC actuator. It is a layered
planar actuation device that employs rectangular cross-section, unidirec-
tional piezoceramic fibers from PZT-5A lead zirconate-titanate material
embedded in an epoxy matrix which, first, inhibits crack propagation in
a ceramic and, second, bonds the actuator together. This active fiber-
reinforced layer is sandwiched between copper-clad polyimid film layers
that have an etched IDE pattern. Nowadays, the MFC actuator retains
the most advantageous features of the early PCT actuators, namely, high
strain energy density, directional actuation, conformability to all kind of
surfaces and long durability. The fabrication process is uniform and repeat-
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able so the actuator is financially accessible. Full comprehensive manual
of manufacture of MFC actuator is patented by Wilkie et al. [120].

The MFC has been used primarily for structural actuation [117]. The
sensing capabilities were found as excellent by Sodano [114], when com-
pared to conventional piezoelectric polymer films (PVDF) or piezoceramic-
based sensors. Due to the electromechanical coupling characteristics of
piezoelectric materials, they are often used as a sensor and actuator simul-
taneously. The self-sensing function of the MFC actuator was tested in the
work by Sodano [114] as well. The self-sensing MFC circuit was designed
to suppress the vibration of the aluminum beam. Flexible piezoelectric
materials have been also advantageously applied to power harvesting ap-
plications because of their ability to withstand large amounts of strain.
Larger strains provide more mechanical energy available for conversion into
electrical energy. The power harvesting ability of MFC was tested in the
work by Sodano [121]. Several examples of various MFC applications are
presented by Schönecker [122].

With the onset of design tools based on numerical computing using
finite element method (FEM), a fast development of advanced devices re-
quired numerical modeling and analysis of systems with MFC actuators. It
is clear that considering the detailed structure of the MFC composite would
lead to enormous complexity of the numerical model and the knowledge of
the mean effective material parameters of the composite transducer has be-
come a necessity. For that reason, an increasing number of investigations,
which were focused on the homogenization of composite materials, have
been accomplished, in order to predict mechanical and electro-mechanical
properties of piezoceramic composites.

Different techniques have been developed, such as analytical mix-
ing rules (see e.g. [123, 124]). These methods provide an overall be-
havior of piezoelectric fiber composites from known properties and vol-
ume fraction of their constituents (fiber and polymer matrix). Ana-
lytical mixing rules method particularly for MFC actuator was intro-
duced by Deraemaeker [125]. While the analytical methods are designed
just for special cases of a composite geometry, FEM techniques, which
are applicable to general geometries, have been used for the compu-
tation of effective electro-mechanical properties of piezo-composites (see
e.g. [126, 127, 128, 129, 130]). In such models, the representative unit cell
and the appropriate boundary conditions are chosen to compute particu-
lar material property component. Electromechanical equivalent properties
of MFC actuator were numerically evaluated using finite element periodic
homogenization in recent works by Deraemaeker [131] and Biscani [132].
Numerical methods seem to be a well-suited approach to describe the be-
havior of the piezo-composite materials, because there are no restrictions
to the geometry, the material properties or the number of phases in the
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piezoelectric composite.

Recently, MFC actuators have been considered as efficient tools for the
noise and vibration transmission suppression [111, A.8]. The aforemen-
tioned devices were based on the principle of the AEC method of piezo-
electric materials (introduced in the work by Date et al. [90] and analyzed
in detail in Chap. 3). In the paper by Date et al. [90], an analytical model
for the calculation of the effective Young modulus of the piezoelectric ac-
tuator shunted by NC circuit is developed (see Eq. (3.33)). The analytical
model can be applied to piezoelectric samples of a simple geometry, e.g.
plates of piezoelectric ceramics, where uniform distribution electric and
elastic field can be considered. Unfortunately, this is not the case of the
MFC actuator, where IDEs and inhomogeneous distribution of dielectric
constant produce nonuniform electric fields.

The objective of this Chapter is to present the computation of a com-
plete set of electromechanical material parameters of the MFC actuator
and to analyze the effect of NC shunt circuit on the elastic constants of
the MFC actuator. A numerical model of the MFC actuator based on the
FEM is developed in Sec. 4.2. In particular, the definition of the repre-
sentative volume element (RVE) geometry of the MFC actuator is shown
in Subsec. 4.2.1, Subsec. 4.2.2 presents a formulation of the equations of
motion and specification of numerical values of material parameters, elec-
trical and mechanical boundary conditions are specified in Subsec. 4.2.3,
state quantities averaging and the method of calculation of effective elastic
and piezoelectric properties are defined in Subsec. 4.2.4, and the introduc-
tion of the electromechanical interaction of the MFC actuator with the
external electric circuit and the implementation of the method of active
elasticity control is presented in Subsec. 4.2.5. Section 4.3 presents results
of numerical computation, which includes macroscopic elastic constants
of short-circuited MFC actuator (Subsec. 4.3.1), macroscopic piezoelectric
constants (Subsec. 4.3.2), capacitance per unit area of the MFC actuator
(Subsec. 4.3.3), macroscopic Young’s moduli of a MFC actuator connected
to the negative capacitance (NC) shunt circuit and the electromechanical
coupling factor (Subsec. 4.3.4), precise tunning of the NC circuit (Sub-
sec. 4.3.5), and frequency dependence of macroscopic Young’s moduli of
MFC actuator shunted by NC circuit (Subsec. 4.3.6).

4.2 FEM model of the MFC actuator and

the computation method

In this Section, a detailed description of the MFC actuator FEM model is
presented. The aim of this study presented in this Chapter is to analyze the
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effective elastic properties of MFC actuator, which are controlled by the
negative capacitance circuit, using numerical simulations. For this purpose
it is necessary to develop a realistic numerical model of the piezoelectric
composite and to compute the effective elastic properties.

Composite materials, such as MFC, belong to the group of orthotropic
materials. Therefore, the effective elastic properties of the MFC actuator
can be represented by a matrix of elastic stiffness, introduced in Chap. 2,
cMFC in a general form:

cMFC =


c11 c12 c13 0 0 0
c12 c22 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 . (4.1)

As mentioned in Subsec. 2.1.1.2, the inverse of the elastic stiffness matrix
is the symmetric matrix of elastic compliances sMFC which could be defined
in a form of Young’s and shear moduli of the orthotropic MFC actuator:

sMFC = c−1
MFC =



1
Y11

−ν21
Y22

−ν31
Y33

0 0 0
−ν12
Y11

1
Y22

−ν32
Y33

0 0 0
−ν13
Y11

−ν23
Y22

1
Y33

0 0 0

0 0 0 1
2G12

0 0

0 0 0 0 1
2G23

0

0 0 0 0 0 1
2G13


, (4.2)

where Y11, Y22, Y33 are the Young’s moduli, G12, G23, G13 are the shear
moduli and ν12, ν21, ν13, ν31, ν23, ν32 are the Poisson’s ratios of the MFC
actuator, whereas νij/Yii = νji/Yjj.

The aforementioned elastic properties are considered as effective pa-
rameters of a large-scale/macroscopic structure. A common approach for
numerical calculation of macroscopic properties of 3D piezoelectric fiber
composites is to define a representative volume element (RVE) or a unit
cell that captures the major features of the underlying microstructure.
Then, the mechanical and physical properties of the constituent materials
are always regarded as a small-scale/microstructure. Basically, the unit
cell is the smallest part that contains sufficient information on the geomet-
rical and material parameters at the microscopic level sufficient to derive
the effective macroscopic properties of the composite.

4.2.1 Geometry of the FEM model

Fig. 4.2 shows the geometry of the RVE of the MFC actuator. It is placed
in the coordinate system in such a way that the RVE center of mass is in the
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Figure 4.2: Geometry of the representative volume element model of the
MFC actuator. The element length is equal to l = 1000 µm. Width and
thickness of the PZT fiber are equal wf = 350 µm and hf = 180 µm,
respectively. Width of epoxy gap between two PZT fibers equals we =
73 µm. The total thickness of the MFC actuator element equals hMFC =
300 µm. In MFC of P2-type, PZT fibers are polarized in the z direction.
IDE copper electrodes are embedded in a thin polyimide layer. Width and
pitch of each electrode finger equal 80 µm and 500 µm, respectively.

origin of the coordinate system and the PZT fibers are oriented along the
x axis. The length of the cell, l = 1000 µm, contains two pitches of IDEs.
Width and thickness of the piezo-ceramic fiber are equal wf = 350 µm and
hf = 180 µm, respectively. Fiber fill factor equals 83%, which, according
to total dimensions of MFC actuators [118], gives the width of the epoxy
gap between two PZT fibers, we = 73 µm. The total thickness of the MFC
actuator is equal to hMFC = 300 µm. IDE copper electrodes are embedded
in a kapton layer. The electrode finger and their width pitch are equal to
80 µm and 500 µm, respectively. In this Thesis, d31 effect MFC actuator
is analyzed (it is called MFC of P2-type at Smart Material Corp. [118]).
It means that piezoelectric fibers are polarized in the z axis direction and
the actuator has an additional thin metal layer on each of the PZT fiber
surface.
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4.2.2 Equations of motion and material properties

Fundamental equations that govern the electromechanical response of the
MFC actuator are, first, the equation expressing the equilibrium of forces
in the composite body, which is excited by external stimulus (i.e. mechan-
ical force or electric field) of a harmonic time dependence with angular
frequency ω:

− ρω2u−∇ ·T = 0, (4.3)

where ρ is the density of a material, u is the displacement vector distribu-
tion, and T is the mechanical stress tensor, and, second, Maxwell equation
for the zero flow of electric displacement in the composite body:

∇ ·D = 0, (4.4)

where D is electric displacement vector. In the case of static analyses, the
angular frequency is equal to zero, i.e. ω = 0.

In order to calculate the spatial distribution of electrostatic potential
V and a deformation given by the displacement vector u, it is necessary to
introduce the complementary state quantities: the elastic strain tensor S:

S =
1

2
[(∇u)T +∇u] (4.5)

and the electric field E:

E = −∇V. (4.6)

In the isotropic non-piezoelectric material (i.e. epoxy, polyimide and
copper), the relation between the above state quantities are given by con-
stitutive equations that express the Hooke’s law and the linear relationship
between electric displacement and electric field,

S =
1

Y
T− ν

Y
(tr(T) I−T), (4.7)

D = ε0εr (1− jη) E, (4.8)

where Y and ν are Young’s modulus and Poisson’s ratio of an isotropic
material, respectively. The symbol I stands for the second-order identity
matrix. Symbols ε0 and εr are the permittivity of a vacuum and dielectric
constant of the material, respectively. Symbol η is the dielectric loss factor.

Material parameters of all isotropic composite constituents used in the
numerical model are listed in Table 4.1. Particularly, epoxy material prop-
erties are just estimated values according to various existing general epoxy
adhesives (i.e. Aremco Products, Inc. [133]) because the real data are un-
der the producer’s trade secret according to their NASA license agreement.
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Material parameter epoxy polyimid copper unit

Young’s modulus 3.3 · 109 3.1 · 109 110 · 109 Pa
Poisson’s ratio 0.3 0.34 0.35 1
Density 1300 1420 8700 kg· m−3

Relative permittivity 3 3.4 - 1
Dielectric loss factor 0.01 0.02 - 1

Table 4.1: Material parameters of epoxy, polyimid and copper used in
simulations of MFC actuator.

Material parameter value unit

Elastic compliance s11 = s22 16.4 10−12 m2/N
s33 18.8
s13 = s23 -7.22
s12 -5.74
s44 = s55 47.5
s66 44.3

Piezoelectric coefficient d15 = d24 584 10−12 C/N
d31 = d32 -171
d33 374

Relative permittivity ε11 = ε22 1730 8.854 · 10−12 F/m
ε33 1700

Dielectric loss factor η 0.02 1

Table 4.2: Material parameters of PZT-5A (polarized along z-axis) that
represents the functional part of the MFC actuator.

In the piezoelectric material, the constitutive equations are given by set
of Eqs. 2.1, rewritten in the following matrix form:

D = [εT ] (I− jηI) E + [d]T,

S = [d]E + [sE]T, (4.9)

where [sE] are the elastic coefficients matrix for constant electric field, [d]
is the piezoelectric coefficients matrix, [εT ] is the dielectric permittivity
matrix at constant mechanical stress, and η is the dielectric loss factor.

The piezoelectric material of the composite fibers in our numerical
model is the commonly used piezoelectric ceramic PZT-5A (e.g. in [134]).
The numerical values of material parameters adopted in our model are
presented in Table 4.2.
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4.2.3 Boundary conditions

In order to extent the validity of material parameters that were computed
for the RVE of the MFC actuator to the full-size MFC actuator, several
boundary conditions must be carefully specified.

4.2.3.1 Electrical boundary conditions

In all our simulations, we consider a defined voltage on IDE electrodes of the
MFC actuator. The bottom IDE electrode is grounded in all simulations.
The top IDE electrode is considered grounded in the simulations of elastic
parameters Yii, Gij, and νij. The applied testing voltage V0 = 100 V to the
top IDE electrode is considered in the simulations of static capacitance per
unit area of the MFC actuator and the piezoelectric coefficients d3i.

The charge generated on the top IDE electrode is computed using a
standard formula of electrostatics:

Q0 = −
∮
SE

DinidS, (4.10)

where SE is the surface of the electrode, Di is the electric displacement in
a dielectric at the point of contact with the electrode, and ni is the outer
normal vector of the electrode.

The top and bottom surfaces are considered to be electrically isolated,
i.e. they are on a floating potential and with the absence of free charge.

4.2.3.2 Periodic boundary conditions

If it is not specified otherwise, we consider following periodic boundary
conditions:

uy(−x0, y, z) = uy(x0, y, z), uy,x(−x0, y, z) = uy,x(x0, y, z), (4.11a)

uz(−x0, y, z) = uz(x0, y, z), uz,x(−x0, y, z) = uz,x(x0, y, z), (4.11b)

V (−x0, y, z) = V (x0, y, z), Vx(−x0, y, z) = Vx(x0, y, z), (4.11c)

ux(x,−y0, z) = ux(x, y0, z), ux,y(x,−y0, z) = ux,y(x, y0, z), (4.11d)

uz(x,−y0, z) = uz(x, y0, z), uz,y(x,−y0, z) = uz,y(x, y0, z), (4.11e)

V (x,−y0, z) = V (x, y0, z), Vy(x,−y0, z) = Vy(x, y0, z), (4.11f)

where Vx and Vy are partial derivatives of the electrostatic potential V with
respect to x and y, respectively. The above Eqs. (4.11) express the conti-
nuity of electrostatic voltage and tangential components of a displacement
at the surfaces parallel to the z-axis.

The boundary conditions for the normal component of the displacement
at the surfaces parallel to the z-axis are more complicated and it is discussed
in the next Subsection.
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4.2.3.3 Boundary conditions for the flatness of RVE surfaces

Inhomogeneity and strong anisotropy of the MFC actuator rather com-
plicate the mechanical boundary conditions for normal components of the
displacement. The reason is following: when the electric voltage is applied
to IDE electrodes, PZT fibers expand, while the epoxy matrix does not.
This yields the presence of inhomogeneous shear stress distributed along
the RVE surfaces at x = ±x0 and y = ±y0. If such an inhomogeneous stress
is not compensated by a proper boundary condition in the numeric model
of the MFC actuator, it yields bulging the RVE surfaces. Such a bulging of
the RVE surfaces violates the requirements for periodicity imposed on the
RVE model. Unfortunately, introduction of the proper boundary condition
is not a straightforward task, since it must allow the uniform expansion of
the whole volume of the RVE element.

To avoid bulging the RVE surfaces, the average normal displacements
of the RVE surfaces could be introduced by following formulae:

ux(±x0) =
1

4y0z0

∫ y0

−y0
dy

∫ z0

−z0
ux(±x0, y, z)dz, (4.12)

uy(±y0) =
1

4x0z0

∫ x0

−x0
dy

∫ z0

−z0
ux(x,±y0, z)dz. (4.13)

In the next step, we introduce local surface external forces f (in N·m−2):

fx(±x0, y, z) = ±γ
[
ux(±x0, y, z)− ux(±x0)

]
, (4.14)

fy(x,±y0, z) = ±γ
[
uy(x,±y0, z)− uy(±y0)

]
, (4.15)

where γ is the elastic stiffness of the “surface” region of the RVE element.
Its numeric value is set in the model to be several orders of magnitude
higher than the average Young’s modulus of PZT. Finally, we introduce
the boundary condition in the form

T · n = f , (4.16)

where n is the normal vector to the particular surface of the RVE element.
The physical meaning of the above type of a boundary condition can

be explained as follows: Such type of a boundary condition allows the
nonzero values of the uniform/average normal strains Sxx and Syy, which
is controlled by bulk values of material parameters. On the other hand, the
inhomogeneity and anisotropy of the MFC actuator may produce bulging
the particular RVE surface, i.e. local deviations of the displacement from
its average value calculated over the particular surface. In order to keep the
particular surface of the RVE element approximately flat, we introduce into
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the model a local external force, which acts on the particular RVE surface
and which is proportional to the difference between local and average values
of displacement and acts in the opposite direction. Using this procedure,
it is possible to approximate the requirement for the flatness of the RVE
surfaces with arbitrarily high accuracy.

4.2.4 Averaging of state quantities and effective elas-
tic and piezoelectric properties

As it was introduced earlier in this Section, composite materials such as
MFC actuators can be represented as a periodical array of RVEs. There-
fore, periodic boundary conditions must be introduced to the numerical
model [135]. This implies that each RVE in the composite has the same
deformation mode and there is no separation or overlap between the neigh-
boring RVEs.

It is assumed that the average mechanical and electrical properties of
a RVE are equal to the average properties of the particular composite.
The average stresses Tij and strains Sij in the RVE are calculated using
formulas:

Tij =
1

V

∫
V

TijdV, (4.17a)

Sij =
1

V

∫
V

SijdV, (4.17b)

where V is the RVE volume. Then, the effective Young’s moduli Yii, shear
moduli Gij, and Poisson ratios νij can be expressed as:

Yii =
Tii

Sii
, (4.18a)

Gij =
Tij

2Sij
, (4.18b)

νij = − Sii
Sjj

. (4.18c)

When one needs to compute all effective elastic properties of the com-
posite (i.e. Young’s and shear moduli), it is necessary to apply macroscopic
boundary conditions, which are specified in Table 4.3 for each analysis of
the appropriate component of the Young’s or shear modulus. As mentioned
above, both IDEs are considered being grounded (i.e. VIDE+ = 0 V and
VIDE− = 0 V).

In a similar way, our FEM model of the MFC actuator allows a simple
method for the computation of the effective piezoelectric constants of the
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Material RVE Testing force
parameter surface direction

Y11 x = ±x0 (±1, 0, 0)
Y22 y = ±y0 (0, ±1, 0)
Y33 z = ±z0 (0, 0, ±1)
G12 x = ±x0 (0, ±1, 0)

y = ±y0 (±1, 0, 0)
G23 y = ±y0 (0, 0, ±1)

z = ±z0 (0, ±1, 0)
G13 z = ±z0 (±1, 0, 0)

x = ±x0 ( 0, 0, ±1)

Table 4.3: Specification of the mechanical boundary conditions considered
in the computation of particular effective elastic constants. RVE surfaces
are specified using following constants: x0 = (1/2)l, y0 = (1/2)(we + wf ),
and z0 = (1/2)hMFC.

MFC actuator. In this case, a specific testing voltage V0 is applied to the
MFC actuator electrodes and the average strain in the RVE is computed.
Then the average piezoelectric moduli are calculated according to following
formula:

d3ii =
Sii hMFC

V0

. (4.19)

Using this approach, computed values of piezoelectric moduli correspond to
a situation where the MFC actuator is replaced by a uniform piezoelectric
medium with top and bottom parallel plate electrodes.

4.2.5 Electromechanical interaction and the princi-
ple of AEC method adapted to MFC actuator
elasticity control

As introduced before (see Chap. 3, Sec. 3.3), the electrical boundary con-
ditions of piezoelectric actuators greatly affect their effective elastic prop-
erties. The role of electromechanical interaction on the effective elastic
properties can be amplified if an active shunt circuit is connected to the
piezoelectric actuator by means of AEC method. The essential point of
the control of effective elastic properties of the MFC actuator can be ex-
plained using the an over-simplified model of the MFC actuator, where the
movement in x axis direction is considered only.

Fig. 4.3 shows the scheme of d31-effect type MFC actuator placed in
the system of coordinates. PZT fibers enclosed by an epoxy material are
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Figure 4.3: Scheme of the macro fiber composite (MFC) actuator of d31-
effect type placed in the system of coordinates. PZT fibers enclosed by an
epoxy material are arranged along the x axis and polarized in the z axis
direction. Top and bottom layers of IDEs are indicated. The mechanical
force F1 is applied to the piezoelectric element and causes the displacement
∆l1. NC shunt circuit is connected to the MFC actuator. Charge Q gener-
ated on IDE electrodes of the MFC actuator due to the direct piezoelectric
effect is introduced to the shunt circuit and the electric voltage is fed back
to the IDE electrodes. The total strain of the MFC actuator is given by
the sum of the stress-induced strain (according to the Hookes’s law) and
the voltage-induced strain (due to converse piezoelectric effect).

arranged along the x axis and polarized in the z axis direction. The bottom
IDEs are grounded and the top IDEs are connected to the NC shunt circuit.
When the external force F1 is applied to the MFC actuator, the in-plane
strain S11 is produced according to the Hooke’s law. In the piezoelectric
MFC actuator, the external force F1 generates a charge Q on the IDEs
due to the direct piezoelectric effect. The generated charge is introduced
to the shunt circuit, which controls the electric voltage V on the IDE
electrodes. The total strain S11 of the MFC actuator is then equal to
the sum of both: the stress-induced strain (due to Hooke’s law) and the
voltage-induced strain (due to the converse piezoelectric effect). When the
voltage-induced strain cancels the stress-induced strain, the total strain
of the MFC actuator equals zero which actually means that the effective
Young’s modulus of the MFC actuator could reach infinity.

In this particular arrangement, it is possible to analytically derive the
effective value of the Young’s modulus component Y11 of the MFC actuator.
Again, the equations of state for the average electric displacement D3 and
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strain S11 in the MFC actuator has to be employed:

D3 = εT33E3 + d311T11,

S11 = d311E3 + sE1111T11. (4.20)

These equations are appended by the Eq. 3.32 for the voltage V = E3h ap-
plied back to the MFC electrodes from the external capacitor of capacitance
C. The electric charge Q generated on the electrodes of the MFC actuator
of an area A could be expressed by the formula Q = D3A. Symbols εT33, d311

and sE1111 stand for the permittivity, piezoelectric coefficient, and elastic co-
efficient of the MFC actuator with short-circuited electrodes, respectively,
i.e. the tensor components which play the role when the movement in x
axis direction is considered only.

Combining Eqs. 4.20 and 3.32, it is possible to obtain the formula for the
effective Young’s modulus, particularly Y11, of the MFC actuator shunted
by the external capacitor with capacitance value C which is the key pa-
rameter, which controls the value of the effective elastic constant:

Y11,sh =
T11

S11

=
1

sE1111

(
1 +

k2
311

1− k2
311 + α

)
, (4.21)

where k311 is the electromechanical coupling factor of the MFC actuator
when the electric filed is in the z direction and the deformation of the
element is considered in x direction, α = C/CS is the ratio of the shunt
circuit capacitance C over the piezoelectric element static capacitance CS,
where CS = εT33A/hf .

Again, the condition when the effective Young’s modulus theoretically
reaches infinity, could be derived from Eq. 4.21:

C = −(1− k2
311)CS, (4.22)

This simplified analytical model serves as explanation of the theoretical
ideas of active “stiffening” of MFC actuator. Using the FEM simulations
electromechanical interaction of the MFC actuator with a NC shunt cir-
cuit could be analyzed in more complex way. In the next Section, there
will be presented results of our FEM model of the MFC actuator and the
calculation of its macroscopic effective material parameters.

4.3 Results of FEM model simulations and

discussion

At first, results of FEM model simulations of the effective elastic prop-
erties of a short-circuited MFC actuator will be presented. Second, fre-
quency dependence of the capacitance is computed time-dependent FEM
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Material FEM model Deraemaeker Williams Producer’s
parameter (this work) et al. [125] et al. [136] datasheet [118]

Y11 (109 Pa) 32.58 27.27 29.4 30.34
Y22 (109 Pa) 15.33 14.76 15.2 15.86
Y33 (109 Pa) 9.37 - - -
G12 (109 Pa) 5.26 4.13 6.06 5.52
G23 (109 Pa) 2.47 - - -
G13 (109 Pa) 2.76 - - -
ν12 (1) 0.313 0.303 0.312 0.310
ν21 (1) 0.147 - 0.161 0.160
ν13 (1) 0.405 - - -
ν31 (1) 0.116 - - -
ν23 (1) 0.334 - - -
ν32 (1) 0.188 - - -

Table 4.4: Comparison of elastic parameters of the MFC (P2-type) ac-
tuator computed using FEM model (this work), analytical mixing rules
by Deraemaeker et al. [125], experimental measurements by Williams at
al. [136], and MFC producer’s datasheet values [118].

model. Third, the static FEM model will be used to analyze the elec-
tromechanical interaction of the MFC actuator with a NC shunt circuit.
And finally, frequency dependence of elastic properties is computed using
a time-dependent FEM model.

4.3.1 Macroscopic elastic properties of a short-circuited
MFC actuator

Using the developed FEM model and adopting the sets of Eqs. (4.17) and
(4.18) and specifying the boundary conditions stated in Table 4.3, effective
elastic constants were computed and compared with data obtained using
analytical mixing rules and classical laminate theory by Deraemaeker [125],
with results of experimental measurements by Williams at al. [136], and
with values from the producer’s datasheet [118]. The comparison is pre-
sented in Table 4.4. We can see an acceptable agreement of the results
computed in this work with the producer’s values and with values obtained
using another computational method.

The next Subsection presents results of the computation of macroscopic
piezoelectric properties of the MFC actuator.
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Material parameter FEM model Producer’s
(this work) datasheet [118]

S11/V0 (ppm/V) -0.89 -1.1
S22/V0 (ppm/V) -0.65 -
S33/V0 (ppm/V) 1.45 -
d31 (pm/V) -267 -330
d32 (pm/V) -196 -
d33 (pm/V) 425 -

Table 4.5: Comparison of free strain values Sii produced by the testing
voltage V0 in the MFC (P2-type) actuator computed using FEM model
(this work) and MFC producer’s datasheet values [118]. The free strain
per voltage values were recalculated to the effective piezoelectric moduli
d3i that correspond to a situation where the MFC actuator is replaced by
a uniform piezoelectric with identical geometrical dimensions and top and
bottom parallel plate electrodes.

4.3.2 Macroscopic piezoelectric properties of a MFC
actuator

In this Subsection, the mechanical response of the MFC (P2-type) actuator
to the testing voltage V0 applied to the electrodes is analyzed. First, the
testing voltage V0 was applied to the upper IDEs of the MFC actuator and
the average strain Sii of the mechanically free RVE of the MFC actuator
was computed. Free strain values per volt were computed and compared
with MFC producer’s datasheet values [118]. The comparison is presented
in Table 4.5.

According to Eq. (4.19), the computed free strain values per volt were
used for the calculation of the effective piezoelectric moduli d3ii that cor-
respond to a situation where the MFC actuator is replaced by a uniform
piezoelectric with identical geometrical dimensions and top and bottom
parallel plate electrodes.

The next Subsection presents results of computation of the static ca-
pacitance per unit area of the MFC actuator.

4.3.3 Capacitance per unit area of the MFC actuator

The static capacitance of the MFC actuator CS,0 and the capacitance of
the MFC actuator, which is driven by a harmonic voltage on electrodes,
CS,ω were computed using our FEM model.

The static capacitance is given by the fundamental formula of electro-
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Figure 4.4: Frequency dependence of real part of capacitance C ′S,ω(f) of
the MFC actuator. The resonant frequency is fr = 1.34 MHz.

statics:
CS,0 = Q0/V0, (4.23)

where V0 is a testing voltage applied to the top IDE electrode and Q0 is
the total free charge generated on the surface of that electrode. Bottom
IDE electrode is grounded. Elastic boundary conditions corresponds to
mechanically free sample.

When the MFC actuator is driven by a harmonic voltage of angular
frequency ω, the dielectric relaxation and piezoelectric resonance of the
MFC actuator takes place. Then, below the resonance frequency, the ca-
pacitance of the MFC actuator is considered complex and it is written in
the form:

C∗S = C ′S + jC ′′S = C ′S(1− jηS), (4.24)

where C ′S and C ′′S are the real and imaginary parts of capacitance, re-
spectively. Symbol ηS = −C ′′S/C ′S is the dielectric loss factor of the MFC
actuator. Value of static capacitance per unit area of the MFC actuator
was computed using the static analysis of the model. In the next step, a
harmonic voltage of angular frequency ω to the top IDE was applied and
the frequency analysis in the range from 10 Hz to 2 MHz was performed.
The result is shown in Fig. 4.4. The resonant frequency of the RVE of the
MFC actuator is fr = 1.34 MHz. Numerical results of the both static and
frequency analyses indicate, that the real part of capacitance C ′S is prac-
tically identical to the static capacitance CS,0 in a wide frequency range
below the resonant frequency.

Results of static capacitance and dielectric loss factor obtained from
the developed FEM model and are presented in Table 4.6. The computed
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Material FEM model Analytical formula Producer’s
parameter (this work) Eq. (4.25) datasheet [118]

CS,0 = C ′S 6.78 6.92 6.63
(10−5 F·m−2)
ηS (1) 0.010 - -

Table 4.6: Results of the computed capacitance per unit area of the MFC
(P2-type) actuator and the dielectric loss factor of the MFC (P2-type)
actuator. Computed values are compared with rough estimate values using
the formula for the capacitance of a capacitor with different dielectrics
placed next to each other, and with the value obtained from the producer’s
datasheet [118]. It is seen that the values are in a reasonable agreement.

value of static capacitance is compared, first, with the value calculated
from producer’s datasheet [118], and, second, with a rough estimate of
the static capacitance per unit area of a capacitor, which is formed by
in-parallel connection of two capacitors of the same thickness but with
different dielectric constants. The rough analytical estimate is then given
by a basic formula:

CMFC

S1 + S2

=
ε0(S1ε1,r + S2ε2,r)

h (S1 + S2)
, (4.25)

where S1, S2 and ε1,r, ε2,r are the surfaces and relative permittivities of
each single component of the dielectric, respectively. The two dielectrics
are in this case PZT-5A and the epoxy material. The ε2,r is equal to εT33 of
PZT-5A and h is equal to the fiber/epoxy thickness hf . Results shown in
Table 4.6 indicate that the computed value of static capacitance per unit
area of MFC actuator is in a good agreement with the producer’s value.

The next Subsection presents results of computation of the macroscopic
elastic properties of a MFC actuator, which is shunted by NC circuit. Cal-
culated parameters, shown in Table 4.4, are considered as reference values
in the analysis below.

4.3.4 Negative capacitance shunt and electromechan-
ical coupling coefficient

When the MFC actuator is shunted by the NC circuit, the effective Young’s
modulus Y11 of the dominant vibrational mode is changed according to the
formula given by the Eq. 4.21. It is possible to implement the effect of the
NC circuit into the FEM model as an electric circuit boundary condition
on the top electrode while the bottom IDE electrode remains grounded.
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Figure 4.5: Normalized effective value of Young’s moduli Y11, Y22 and Y33 of
MFC actuator dependent on the various adjustment of NC circuit. The pa-
rameter α = C/CS is ranged from −2 to 2. Strong dependence of Young’s
moduli on the parameter α could be seen. From the distinguishable max-
imal value of the Young’s modulus Y11 it is possible to estimate the ef-
fective electromechanical coupling coefficient k311 and then compute the
theoretical dependence of Y11 on the parameter α (redb dotted line) which
corresponds to the simulated data.

The circuit connected in-parallel to the top electrode of the MFC actuator
is a capacitor with a capacitance denoted by a symbol C.

Since the MFC actuator is a composite structure with orthotropic elas-
tic properties, it is appropriate to perform the analysis for effective Young’s
moduli Y11, Y22, and Y33 and effective shear moduli G12, G13, and G23 com-
putation independently. For each case, the specific testing force is applied
in a certain direction to a particular surface of the RVE of the MFC ac-
tuator as it is introduced in Table 4.3. Then, the charge generated on the
top electrode due to the action of the testing force via direct piezoelectric
effect is introduced to the shunt circuit of capacitance C and the voltage is
applied back to the top electrode of the MFC actuator. Then the macro-
scopic stresses and strains in the RVE are computed using Eqs. 4.17 taking
into account the converse piezoelectric effect in PZT fibers. The value of
the applied voltage is controlled by the capacitance of the shunt capacitor
C, whose value is parametrized using the formula C = αCS, where α is a
real number running through the interval from −2 to 2.

Values of effective Young moduli of the MFC actuator were computed
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Electromechanical coupling FEM model Williams Producer’s
factor (1) (This work) et al. [136] datasheet [118]

k31 0.339 0.357 0.362
k32 0.177 0.213 0.218
k33 0.286 - -

Table 4.7: Comparison of computed values of the electromechanical cou-
pling factors of the MFC (P2-type) actuator with a rough estimate calcu-
lated from the datasheet values. There is seen a reasonable agreement.

using Eqs. 4.18 and normalized using the reference values presented in
Table 4.4. The normalized values of Young moduli plotted as functions
of the parameter α are presented in Fig 4.5. It is seen that the values of
the Young’s moduli of MFC actuator are strongly influenced by the shunt
circuit capacitance. On the other hand, all shear moduli have constant
values with no influence of the shunt capacitance (for the clear arrangement
of the picture, the constant curves are not shown in Fig. 4.5).

The curve of the normalized Young’s moduli can be compared with
theoretical formula Eq. 3.33. In accordance with the theory, results of
our computations show that, when α approaches -1, the values of Young’s
moduli Y11, Y22, and Y33 are decreased by the factor of approximately 1/100.
In the same way, when α approaches −1−k2

3ii, the values of Young’s moduli
Yii are increased by a factor of approximately 100. Using curves presented
in Fig. 4.5, the values of effective electromechanical coupling factors can
be obtained. Table 4.7 presents the values of electromechanical coupling
factors k3ii, which were calculated using the least squares method.

4.3.5 Electrical properties of the NC circuit

The electrical scheme of a system, where the piezoelectric MFC actuator is
shunted by a circuit that realizes negative values of capacitance, is shown
in Fig. 4.6. The NC shunt circuit is realized as a negative impedance
converter circuit (i.e. a one port circuit with an operational amplifier),
where the reference impedance is realized as a capacitor C0 connected in-
series to the resistor R0. The effective value of the shunt circuit capacitance
is given by the formula:

C(ω) = −
(

C0

1 + jωR0C0

)
R2

R1

. (4.26)

By proper adjustment of tunable resistors R0 and R1, the real and imagi-
nary part of the shunt circuit effective capacitance can be adjusted in such
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-

+

Figure 4.6: Electrical scheme of the piezoelectric MFC actuator shunted by
the circuit that realizes negative values of effective capacitance. Symbol CS
stands for the piezoelectric element static capacitance, C0 is the reference
capacitance and R0 and R1 are tunable resistors.

a way that the condition given by Eq. (4.22) is satisfied and the effective
Young’s modulus of the MFC actuator is increased by several orders of
magnitude.

The proper adjustment of tunable resistors R0 andR1 can be found from
Eq. (4.22). For the sake of clarity, it is convenient to express Eq. (4.26) in
the form

C(ω) = C ′(ω) [1− j η(ω)] , (4.27)

where

C ′(ω) = − C0R2

R1 [1 + η2(ω)]
, (4.28a)

η(ω) = ωC0R0. (4.28b)

Since the capacitance of the RVE of the MFC actuator is practically fre-
quency independent below the resonance frequency (see Fig. 4.4) and the
NC circuit shown in Fig. 4.6 has a pronounced frequency dependence, it is
evident that the condition given by Eq. (4.22) can be satisfied at a single
frequency ω0 = 2πf0. Thus, Eqs. (4.24) and (4.27) and the condition given



72 CHAPTER 4. ACTIVE ELASTICITY CONTROL OF MFC

-20

-15

-10

-5

0

5

10

15

20

0.999 1.001 1.003 1.005 1.007 1.009

R
ea

l p
ar

t o
f E

ffe
ct

iv
e 

Yo
un

g'
s 

m
od

ul
us

(1
01

2
P

a)

ξ (1)

0.99
1
1.1
1.15
1.2
1.25
1.3

Max. Y11 for tuning parameters:
ξ = 1.0081, ζ = 1.2ζ
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It is seen that the Young’s modulus reaches the greatest values for ζ = 1.2
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by Eq. (4.22) yield the following optimal values of resistances:

R0,opt =
ηS
ω0C0

, (4.29a)

R1,opt =
R2C0

(1− k2
31) C ′S (1 + η2

S)
. (4.29b)

In order to demonstrate the sensitivity of the NC circuit adjustment,
it is convenient to rewrite the frequency dependence of the NC circuit into
following parametrized form:

C(ω) = −ξ (1− k2
311) C ′S (1 + η2

S)

1 + jζ(ω/ω0)ηS
, (4.30)

where ξ = R1,opt/R1 and ζ = R0/R0,opt.
Although the above theoretical procedure seems to be simple, the sys-

tem is very sensitive to slight deviations from its optimal adjustment. To
demonstrate that phenomenon, the sensitivity of the Young’s modulus
Y11 effective value to parameters ξ and ζ at the fixed critical frequency
f0 = 850 Hz was performed. The tuning analysis is focused on the Young’s
modulus Y11 because this component represents the dominant operational
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mode of the MFC actuator of the d31-effect studied in this Thesis. A
parametric analysis at the critical frequency was performed for the the
parameters, ζ in an interval from 0.99 to 1.3 and ξ in an interval from
0.999 to 1.01. The macroscopic values of Y11 were computed using a for-
mula Eq. 4.18. The effective real part of Young’s modulus Y11 is shown in
Fig. 4.7. The presented curves differ in the parameter ζ. For each value
of the parameter ζ, the effective value of the Young’s modulus is plotted
versus the value of the parameter ξ. It is seen that the Young’s modulus
reaches the greatest values for ζ = 1.2 and ξ = 1.0081.

4.3.6 Frequency dependence of effective Young mod-
uli of the MFC actuator

Due to the mismatch in frequency dependencies of the MFC actuator and
the NC circuit capacitances, the essentially enhanced values of the Young’s
modulus can be achieved only in a narrow frequency range, as it was in-
troduced before. Using the computed parameters ξ and ζ of the tuned NC
circuit the frequency dependence of the effective orthotropic Young’s mod-
ulus of the MFC actuator could be performed. The computed frequency
dependence of the Young’s modulus in the frequency range from 10 Hz to
2 kHz is shown in Fig. 4.8, where real parts and the loss factors of the
normalized effective Young’s moduli are plotted for each Y11, Y22 and Y33.
The red dotted line stands for the theoretical frequency dependence of Y11

calculated using Eqs. (4.21) and (4.30). It can be seen that the theoretical
dependence acceptably corresponds to computed data.

Performed simulations show that it is possible to increase the effec-
tive Young’s modulus Y11 by the factor of 1000 at the critical frequency
(850 Hz), by the factor of 100 in a narrow frequency range around the crit-
ical frequency (800− 900 Hz) and by the factor of 20 in a wider frequency
range (700 − 1000 Hz). The Y22 component of the orthotropic Young’s
modulus was calculated to be increased by about 400 times at the criti-
cal frequency and about 20 times in a certain frequency range around the
critical frequency (780 − 910 Hz). Since the value of Y33 is controlled by
the different component of electromechanical coupling factor, the compu-
tations indicate a slight decrease in the whole range of frequencies for the
particular adjustment of the NC circuit.

Finally, the graphical representation of the spatial distribution of the
MFC actuator elastic displacement along the x axis is shown in Fig. 4.3.6.
The effect of the connected and tuned NC circuit, where the piezoelectric
deformation caused by the NC circuit acts against to the deformation ac-
cording the Hooke’s law, can be seen there. As a result, the MFC actuator
is effectively stiffened.
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Figure 4.8: The real parts and loss factors of the normalized effective
Young’s moduli Y11 (thick solid), Y22 (thin solid), Y33 (dashed) and the-
oretical Y11 frequency dependence (dotted). It can be seen that the theo-
retical values acceptably correspond to our simulated data. It is possible
to increase the effective Young’s modulus Y11 by the factor 1000 at the one
given frequency (850 Hz), by the factor 100 in a narrow frequency band
around the given frequency (800− 900 Hz) and by the factor 20 in a wider
frequency range (700 − 1000 Hz). The second most dominant Young’s
modulus Y22 could be increased about 400times at the given frequency and
about 20times in a certain frequency range around the given frequency
(780 − 910 Hz). Since the value of Y33 is controlled by the different com-
ponent of electromechanical coupling, for this kind of tuned NC circuit, it
is slightly decreased in the whole range of frequencies.
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4.4 Summary

Here, let us summarize the knowledge gained in this Chapter and point out
the message, which is important to understand the topic discussed in next
Chapter, i.e. the numerical model of the noise transmission suppression
system, i.e. the glass plate with MFC actuators attached on its surface.

• A numerical model of the macro fiber composite (MFC) actuator
based on the finite element method (FEM) has been developed here.
The numerical model includes: (i) definition of the representative
volume element (RVE) geometry of the MFC actuator (see Sub-
sec. 4.2.1), (ii) formulation of the equations of motion and specifica-
tion of numerical values of material parameters (see Subsec. 4.2.2),
(iii) specification of the electrical and mechanical boundary condi-
tions (see Subsec. 4.2.3), (iv) definition of state quantities averaging
and the method of calculation of effective elastic and piezoelectric
properties (see Subsec. 4.2.4), and (v) introduction of the electrome-
chanical interaction of the MFC actuator with the external electric
negative capacitance (NC) circuit and the implementation of the
method of active elasticity control (AEC) on a simplified model of
the MFC actuator where the movement only in the x direction is
allowed (see Subsec. 4.2.5).

• The numerical model has been used for numerical computation of
Young’s moduli, shear moduli and Poisson’s ratios of short-circuited
MFC actuator (see Subsec. 4.3.1). There can be seen an acceptable
agreement between the results of the numerical computations, the
producer’s values and with the values obtained by other computa-
tional methods. In a similar manner, macroscopic piezoelectric con-
stants were computed from average strains in mechanically free MFC
actuator with a given testing voltage on its electrodes (see Sec. 4.3.2).
Again, an agreement between computed values and producer’s data
sheet values is appreciable. Finally, the capacitance per unit area
of the MFC actuator was computed from the charge generated on
the electrodes under the applied testing voltage (see Sec. 4.3.3). The
computed value was compared to a roughly estimated value using
the analytical formula for the in-parallel connection of two capaci-
tors with different values of dielectric constant and to the producer’s
data sheet value.

• The effect of the electromechanical interaction of the MFC actuator
and an external shunt circuit with a given capacitance was analyzed
in Subsec. 4.3.4. It was roughly verified that the capacitance value of
the shunt circuit controls only the values of the Young’s moduli (Y11,
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Y22, Y33). Values of shear moduli (G12, G13, G23) are not influenced
by the shunt circuit. The electromechanical coupling factors were
calculated from the computed data using the method of least squares.

• In the next step of the analysis, the implementation of the negative
impedance inverter (negative capacitor) was introduced in Subsec.
4.3.5. At first, several simulations were computed in order to deter-
mine the optimal adjustment of the NC circuit parameters that yield
the maximum value of effective Young’s modulus component Y11. An
increase in the effective Young’s modulus Y11 by the factor of 1000 at
the frequency 850 Hz was demonstrated. After that, the frequency
dependence of macroscopic Young’s moduli of MFC actuator shunted
by the implemented NC circuit was measured. It was demonstrated
that the value of effective Young’s modulus Y11 can be increased by
the factor of 100 in a narrow frequency range 800 − 900 Hz and by
the factor of 20 in a frequency range 700 − 1000 Hz. The value of
the Young’s modulus component Y22 can be increased by about 400
times at the given frequency and by about 20 times in a frequency
range 780− 910 Hz.

All in all, the macroscopic dielectric, elastic, and electromechanical
properties of the MFC actuator under various electrical and mechanical
boundary conditions were analyzed. It was demonstrated that it is possi-
ble to control the effective values of the Young’s moduli to a large extent
by connecting the MFC actuator to the NC circuit. Such an approach can
be profitably used in systems for noise and vibration transmission suppres-
sion. The results of the frequency dependences of the Young’s moduli can
be used further in the FEM analysis, i.e. the glass plate with the MFC
actuators attached, each with the computed effective elastic properties.
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(a)

(b)

Figure 4.9: Spatial distribution of the elastic displacement of the MFC
actuator along the x axis, the gray-scale legend indicates the displacement
values in µm, (a) displacement in the MFC actuator disconnected from the
NC circuit, (b) The effect of the connected and tuned NC circuit, where
the piezoelectric deformation caused by the NC circuit compensates the
deformation according the Hooke’s law. As a result, the MFC actuator is
effectively stiffened.
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Chapter 5

Glass plate noise transmission
suppression by means of
distributed MFC actuators
shunted by the negative
capacitance circuit

Using the theoretical formula for the acoustic transmission loss calculated
in Chap. 2, using the principles of the active elasticity control (AEC)
method introduced in Chap. 3, and using the numerical results of the ac-
tively controlled Young’s modulus of the macro fiber composite (MFC)
actuator obtained in previous Chap. 4, the possibility of increasing the
acoustic transmission loss of sound transmitted through planar or curved
glass plates using attached piezoelectric MFC actuators shunted by the NC
circuits is analyzed here.

The objective of the study presented in this Chapter is to analyze the
most efficient ways for suppression of noise transmission through the glass
plates using active elasticity control of attached piezoelectric elements. The
key features that control the sound transmission through the curved glass
shells using an analytical approximative model have been previously ana-
lyzed in Chap. 3 and also presented the key aspects of the application of
the AEC method to the noise transmission suppression through composite
structures with piezoelectric layers. Here, in order to verify the applica-
bility of the APSD method to the noise transmission suppression through
the glass plates, the finite element method (FEM) simulations of the sound
transmission through the glass plate with that attached piezoelectric ele-
ments shunted with negative capacitance circuits are used. The detailed
analysis of the FEM model implementation of the particular arrangement
of MFC actuators on the glass plate is performed in Sec. 5.1. Besides other

79
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MFC
(hMFC = 0.3 mm)
- orthotropic material

Glass plate
(h = 4 mm)
- isotropic material

Boundary
condition
(fixed or flexible)

epoxy
- isotropic
material

b

a

Figure 5.1: Geometry of the finite element method (FEM) model of a plane
or curved glass plate of thickness h and dimensions a and b with 5 attached
macro fiber composite (MFC) actuators. The presented configuration is se-
lected in order to allow the suppression of majority of low-frequency vibra-
tional modes. The considered coordinate system and boundary conditions
are indicated.

things, the FEM model takes into account the effect of a flexible frame that
clamps the glass plate at its edges. Sec. 5.2 describes a simple experimen-
tal setup for the approximative measurements of the acoustic transmission
loss. Results of the FEM model simulations and their comparison with
experimental data are presented in Sec. 5.3. Finally, numerical simulations
and experimental results are discussed and summarized in Sec. 5.4.

5.1 FEM model of the glass plate with

attached MFC actuators

In order to analyze the noise transmission through the glass plate with
attached MFC actuators it is convenient to develop a realistic FEM model
which would be robust enough to see all the aspects of the vibrational
response of the plate to the incoming pressure wave. So, in this Section,
a detailed description of the particular arrangement of MFC actuators on
the glass plate is and presented.
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5.1.1 Geometry of the FEM model

Figure 5.1 shows the geometry of the FEM model of a planar or curved
glass plate of thickness h and dimensions a and b with 5 attached MFC
actuators, placed in the system of coordinates. It the case of the curved
geometry it is considered a glass plate, which could be fabricated by thermal
bulging of the originally planar glass plate. The presented configuration
of MFC actuators is selected in order to allow the suppression of majority
of low-frequency vibrational modes. The shapes of the vibrational modes
follow.

5.1.2 Modal analysis of the glass plate with attached
MFC actuators

Knowledge of the panel natural frequencies and mode shapes is extremely
helpful. It allows to predict at which frequency the plate’s vibration will be
more significant and, therefore, when the plate will transmit more acoustic
power to the other side. Knowledge of the mode shape is useful, because
it provides a guidance for stiffening the composite structure in order to
change its natural frequencies or to decrease the vibrational amplitude at
the specific critical place of the structure.

A plate is an example of a continuous system, which has an infinite
number of mode shapes and natural frequencies. The free harmonic vibra-
tion of a thin plate with constant thickness h is governed by the commonly
known differential equation:

G∆2w(x, y)− ω2ρhw(x, y) = 0, (5.1)

where w(x, y) is a typical vibrational mode.
For complicated geometries, such as the flexible plate with attached

piezoelectric actuators, discretized numerical solutions, such as FEM mod-
els, are commonly used. Before the FEM modal analysis could be per-
formed, boundary conditions have to be treated. Lets take the simplest
case of the plate with clamped edge:

w(x, y) = 0 (5.2a)

∂w(x, y)

∂n
= 0, (5.2b)

where n is the normal directional component from the clamped boundary
edge. The clamped edge boundary condition is satisfied at the surfaces
with coordinates: x = −a/2, x = a/2, y = −b/2 and y = b/2.

The first 12 vibrational mode shapes of (i) the clamped glass plate with
attached MFC actuators are illustrated in Fig. 5.2 and (ii) the glass plate
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with attached MFC actuators with added mass of the clamped steel frame
are illustrated in Fig. 5.3. The frequency range is limited to 2000 Hz. The
modes could be numbered according to how many half sine waves are found
in each direction. Hence, the (3, 1) mode would have three half sine waves
in the x-direction and one half sine wave in the y-direction. This particular
mode of frequency 850 Hz was chosen to illustrate the function of the MFC
actuators shunted by the NC circuit attached to the glass plate which is
exposed to the acoustic pressure. In the case of the steel frame, added as
a additional solid domain, this particular mode is shifted to the value of
746 Hz.
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5.1.3 Coupled system of the flexible plate and
piezoelectric MFC actuator

It is convenient to perform the coupled analysis of the piezoelectric domain
of the MFC actuator with the linear solid domain of the glass plate to verify
the actuation function of the MFC actuators on the glass plate. Basically,
it is the same type of analysis as it was introduced in the previous Chap-
ter when the piezoelectric domain of the PZT fibers was coupled with an
epoxy and polyimide material representing the linear elastic solid domain.
Therefore, to check the governing equations, the reader is referred to the
Sec. 4.2.2 to see the Eqs. (4.3)-(4.9). Here, the piezoelectric domains are
the macroscopic plates of the thickness hMFC representing the active part
of MFC actuators and, the linear elastic domains are the glass plate with
an epoxy embedding the active part of MFC actuators.

In the case of static analysis, a direct testing voltage is applied to the
top electrode of the MFC actuator and the angular frequency is equal to
zero, i.e. ω = 0 and, in the case of dynamic analysis, a harmonic voltage
of angular frequency ω = 2πf is applied to the top electrode of the MFC
actuator, where the frequency f ranges from 10 Hz to 2 MHz. In both
analyses, the bottom electrode is supposed to be grounded, i.e. the electric
potential V = 0 V.

Just like in the modal analysis, in the same manner the external bound-
ary conditions are introduced, i.e. the clamped glass plate or the clamped
steel frame for the static or dynamic analysis, respectively.

5.1.4 Coupled system of the flexible plate with
attached MFC actuators and acoustic media

In the case of a coupled system of the flexible planar structure and the
acoustic media, the effect of the flexible glass plate on the sound field below
and above the plate as well as the effect of sound field on the flexible glass
plate must be considered together. First, the governing equation for each
type of physics and second, the coupling variables should be introduced,
respectively.

5.1.4.1 Governing equations

The vibrational response of the curved glass plate expressed by the dis-
placement vector ui is governed by the equations of motion on the form:

2%
∂2ui
∂t2
−∇j [cijkl (∇kul +∇luk)] = 0, (5.3)

where % is the mass density of glass, cijkl are the components of elastic
stiffness tensor, and ∇i = ∂/∂xi is the i-th component of the gradient



86 CHAPTER 5. GLASS PLATE NOISE TRANSMISSION CONTROL

operator. Since we are interested in the steady-state vibrational response
of the plane/curved glass plate, we consider the harmonic time dependence
of the displacement vector, i.e. ui(x, y, z, t) = ui(x, y, z) e

iωt, and the
equations of motion Eq. (5.3) can be written in the form:

2ω2% ui +∇j [cijkl (∇kul +∇luk)] = 0, (5.4)

In this study, the same governing equations can be also applied to de-
scribe the vibrational response of the MFC actuators. Justification for such
a simplification is as follows. Since the MFC actuator consists of many thin
piezoelectric fibers embedded in an epoxy matrix, connected to interdigital
electrodes, and laminated in thin polyimide layers, one can expect that
detailed vibration of such a complicated composite structure is difficult to
model in full detail together with the macroscopic structure of the glass
plate. On the other hand, the MFC actuator of P2-type operates as d31-
type piezoelectric actuator with some macroscopic values of piezoelectric
coefficients (see Chap. 4, Sec. 4.2.4).

In the same manner, one can introduce the effect of the shunt circuit,
however, with the frequency dependent values of the components of elastic
stiffness tensor of the MFC actuator. As it follows from the Eq. (3.33)
and as it has been written previously in Chap. 3, the effective value of
Young’s modulus of the shunted piezoelectric actuator is a function of the
ratio of the shunt capacitance C over the static capacitance CS of the
piezoelectric actuator. Since the capacitance of the negative capacitor is
frequency-dependent, as it is seen in Eq. (4.26), written in Chap. 4, the
matching of capacitances C and CS according to the condition expressed by
Eq. (3.34) required for obtaining large effective values of Young’s modulus
can be obtained only in a relatively narrow frequency range due to virtually
constant value of the capacitance CS.

The frequency dependence of the effective Young’s modulus of the MFC
actuator shunted by the negative capacitor was briefly analyzed in the
recent work by Nováková and Mokrý [A.3] and analyzed in full detail in
recently submitted article by Nováková and Mokrý [A.10]. Fig. 4.8 shows
the computed frequency dependence of the real parts and the loss factors
of the normalized effective Young’s moduli of the MFC actuator in a broad
frequency range (see Chap. 4, Sec. 4.3.6). The frequency 850 Hz of the peak
values of the real part of Young’s moduli Y11 and Y22 is adjusted to the
frequency of a particular resonant mode of the glass plate via the particular
values of the circuit parameters of the negative capacitor (see Chap. 4,
Sec. 4.3.5). Performed simulations show that the Young’s modulus of the
MFC actuator shunted by the NC circuit is strongly frequency dependent.
In addition, each component of the orthotropic Young’s modulus has a
different frequency dependence for the particular adjustment of the NC
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Figure 5.4: Geometry and mesh of the considered linear elastic and air
domains in the FEM model; (a) The incoming wave, which strikes the
plate, goes from infinity; (b) The acoustic wave has a source in the bottom
of the acoustic box.

circuit. Of course, it is possible to adjust the NC circuit at a different
frequency, so, the peak of the macroscopic Young’s modulus frequency
dependence of the MFC actuator would be shifted.

Further, we consider that the glass plate with MFC actuators interacts
with the acoustic field in the air above and below the plate. Fig. 5.4
sketches the acoustic air domains surrounding the linear elastic domain of
the glass plate. Two different cases are considered. First, the incoming
wave, which strikes the plate, goes from infinity (Fig. 5.4(a)), second, the
acoustic wave has a source in the bottom of the acoustic box which is
supposed to simulate the real situation of the experiment performed to
verify the simulations Fig. 5.4(b). In both analyses we consider a sound
source that produces a plane incident wave below the glass plate:

pi(z, t) = Pi e
i(ωt−kz), (5.5)

where k is the wave number of the incident sound wave, which is oriented
along the z-axis. The acoustic pressure p distribution in the air above and
below the glass plate is governed by the following equation:

1

ρ0c2

∂2p

∂t2
+∇i

(
− 1

ρ0

∇ip

)
= 0, (5.6)

where %0 and c stand for the mass density and the sound speed in the air.
Again, we are interested in the steady-state distribution of the acoustic
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pressure, i.e. p(x, y, z, t) = p(x, y, z) eiωt, and the equation above reduces
down to the form:

− ω2 p

ρ0c2
+∇i

(
− 1

ρ0

∇ip

)
= 0. (5.7)

It should be noted that below the glass plate the acoustic pressure is
given by the sum of the acoustic pressures of the incident and reflected
sound waves, i.e. p = pi + pr. Above the glass plate, the acoustic pres-
sure is equal to the acoustic pressure of the transmitted sound wave, i.e.
p = pt. That means that the waves propagate into an unbounded domain.
In simulations, such a situation can be easily numerically simulated using
the method of perfectly matched layers (PMLs) [137]. Usually, in many
scattering and waveguide-modeling problems, it is not possible to describe
the wave radiation as a plane wave with a well-known direction of propaga-
tion. In such situations, one should consider the implementation of PMLs
into a numerical FEM model. A PML is strictly speaking not a boundary
condition but an additional air domain that absorbs the wave radiation
without producing reflections. It provides good performance for a wide
range of incidence angles and it is not particularly sensitive to the shape of
the wave fronts. It is implemented as a coordinate stretching following the
coordinate transformation inside the PML domain as introduced in [138]:

ξ′ = sign(ξ − ξ0) |ξ − ξ0|n
L

δξn
(1− i), (5.8)

where ξ is the coordinate direction in which the PML absorbs the acous-
tic waves, ξ0 is the coordinate of the inner PML boundary and L/δξn is
the scaling factor, where L is one wavelength. Basically, the PML region
should be designed to model uniform regions extended towards infinity. See
Fig. 5.4 to check where the PMLs are located. They are sketched by the
red domains surrounding the area of the transmitted acoustic waves.

5.1.4.2 Internal and external boundary conditions

The calculation of acoustic transmission loss is based on analysis of the
interaction between the vibrating glass plate and the surrounding air. In
order to proceed the calculation, the system of partial differential equations
Eqs. (5.4) and (5.7) should be appended by the system of boundary and
internal boundary conditions: First, the acoustic pressure exerts the force
on the glass plate at its interface with the air, which can be expressed by
the following internal boundary condition:

nj [cijkl (∇kul +∇luk)] = 2nip, (5.9)
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where ni is the i-th component of the outward-pointing (seen from the
inside of the glass plate) unit vector normal to the surface of the glass
plate with the MFC actuators. Second, the normal accelerations of the
glass surface and the air particles are equal at the interfaces of the glass
plate and the air:

ω2 (niui) = ni (1/%0) ∇ip. (5.10)

Finally, a special attention must be paid to the external boundary condi-
tions for the displacement ui at the edges, where the glass plate is clamped
at the frame. In the most of the FEM simulations results presented in
Thesis below, just like in the modal analysis, the ideally fixed frame is con-
sidered (Eq. (5.2)). However, in many real situations, the glass plate is not
ideally fixed and the frame that clamps the glass plate is somehow flexible.
In order to take this effect into account, the boundary condition was ap-
proximated by considering a reaction force ffr from the spring system of the
frame as being proportional to the frontal displacement of the glass plate
with respect to the frame, i.e. ffr = −kfru, where the symbol kfr stands
for the effective spring constant of the frame, which can be estimated from
geometrical parameters and Young’s moduli of the frame. This yields the
following boundary conditions:

f1 = c11kl (∇kul +∇luk) = −kfr u1, (5.11a)

u2 = 0, (5.11b)

u3 = 0 (5.11c)

on the glass edges where x = −a/2 and x = a/2 and

u1 = 0, (5.12a)

f2 = c22kl (∇kul +∇luk) = −kfr u2, (5.12b)

u3 = 0 (5.12c)

for y = −b/2 and y = b/2. It should be noted that the boundary conditions
given by Eqs. (5.11) and (5.12) express the limited ability of the frame
to keep the glass plate edge at the same position during the vibration
movements. As a result, the glass plate movements acquire some properties
typical for membranes, which yield the shift of the resonant frequencies to
lower values.

5.1.4.3 Acoustic transmission loss calculation

The boundary problem for partial differential equations given by Eqs. (5.4),
(5.7)-(5.12) was solved using COMSOL Multiphysics software. The solu-
tion yields spatial distributions of the acoustic pressure p and the glass
plate displacements ui. Then, the specific acoustic impedance of the glass
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plate Zw was estimated for every frequency ω of the incident sound wave
using the following approximative formula:

Zw(ω) ≈ ∆P (ω)

iωW (ω)
, (5.13)

where ∆P is the amplitude of the acoustic pressure difference above and
below the middle point of the glass plate, W is the amplitude of the normal
displacement at the middle point of the glass plate. The acoustic TL was
obtained using Eq. (2.27).

5.1.4.4 Material properties

The governing equations should be appended by the numerical values of
the material parameter and input variables. Isotropic material constants
for the glass and air domains, which are required for the coupled analysis
are listed in Table 5.1 together with geometrical parameters. The value of
acoustic pressure of the sound source is also included as a sound pressure
level (SPL), which is defined by the formula:

SPL = 20 log10

(
p

pref

)
, (5.14)

where pref = 20 µPa is the reference sound pressure. Material parameters
of the orthotropic MFC actuator are computed using the developed FEM
model presented in previous Chapter. The effective values are listed in Ta-
ble 4.4. These parameters are suitable for the acoustic-structural analysis
without the influence of the NC circuit. When the NC circuit is connected
to the MFC actuators, the effect of the negative capacitance is introduced
as a frequency dependent orthotropic Young’s modulus according to the
Fig. 4.8.

Numerical predictions of the FEM models should be compared with
experimental data. The next Section presents a simple setup for obtaining
experimental data.

5.2 Experimental setup for the FEM model

verification

In this Section, a brief description of two different experimental setups
that were used for the verification of FEM model predictions will be given.
First, the measurement of the surface displacement of the glass plate us-
ing the digital holographic interferometry (DHI) method and, second, the
approximative acoustic measurements of the acoustic transmission loss.
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Material/Geometrical glass steel air unit
parameter

Young’s modulus 70 · 109 205 · 109 - Pa
Poisson’s ratio 0.20 0.28 - 1
Density 2400 7850 1.2 kg· m−3

Speed of sound - - 343.2 m· s−1

SPL of the sound source - - 80 dB
Dimension a of the plate 0.42 - - m
Dimension b of the plate 0.30 - - m
Thickness h of the glass 0.004 - - m
Dimension of the frame along x - 0.60 - m
Dimension of the frame along y - 0.42 - m
Thickness of the frame - 0.02 - m
Spring constant kfr of the steel 1 · 1010 - - N·m−1

frame implemented as a BC
Spring constant kfr of the wooden 1 · 107 - - N·m−1

frame implemented as a BC

Table 5.1: Material and geometrical parameters used in coupled analysis of
interaction of the glass plate with an acoustic fluid. Material parameters
of the glass are commonly used values for the flat glass in practice (see
e.g. [139, 140]).

5.2.1 Digital holographic interferometry method for
the surface displacement measurement

The predictions of the numerical FEM simulations were verified by the
digital holographic interferometry (DHI) measurements performed by the
research group under the supervision of Dr. Vı́t Lédl, a specialist in optics
and optical measurements.

DHI method is a possible way how to detect the distribution of surface
vibration displacement of the planar structure. Fig. 5.5(a) shows a scheme
of the setup for the measurement of the surface displacement distribution
of the glass plate placed on the acoustic box.

The laser beam of the wavelength of 532 nm and the power of 100 mW
is split into two beams by the polarizing beam splitter 1, which is equipped
with half wavelength retardation plates. Half wavelength retardation plates
help set the intensities in both beams as well as the polarization of each
beam. Both beams are then spatially filtered and collimated. The second
beam acting as a reference wave can be further attenuated if necessary by a
set of gray filters placed in filter wheels. The object beam, the first beam,
illuminates the sample – the glass plate – and the light scattered from its
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Figure 5.5: Digital holographic interferometry (DHI) measurement setup
and realization; (a) Scheme of the glass plate surface displacement mea-
surement using the DHI method. The laser beam is split into two beams
by the polarizing beam splitter 1 which is equipped with half wavelength
retardation plates. Both beams are then spatially filtered and collimated.
The object beam, the first beam, illuminates the glass plate and the light
scattered from its surface impinges on the beam splitter 2, where the ref-
erence and the object waves are recombined. The both waves interfere
and a digital hologram is captured. The CCD camera is connected to the
computer via a fire wire B interface; (b) The photograph of a realization of
the experimental setup of the glass plate surface displacement distribution
measurement using the DHI method.
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surface impinges on the beam splitter 2, where the reference and the object
waves are recombined. The both waves interfere and a digital hologram
is captured. The angle between the beams is set to be approximately 3
degrees. The CCD camera has a resolution of 2049 × 2056 pixels, each
pixel having the size of 3.45 × 3.45 µm. The camera is connected to the
computer via a fire wire B interface enabling a frame rate of 6.5 FPS.

The realization of the experimental setup of the glass plate surface
displacement distribution measurement using the DHI method could be
seen in Fig. 5.5(b). The glass plate is fixed in a wooden frame and placed
on the acoustic box. Inside the acoustic box, the loudspeaker is used as
a sound source. The acoustic waves generated by the loudspeaker strike
the window plate making it vibrate. Using the DHI method, first, mode
shapes of the glass plate are measured, and second, the static displacement
of the glass plate with two attached MFC actuators connected to the direct
voltage source is measured.

5.2.2 Approximative acoustic measurements of the
acoustic transmission loss

Figure 5.6 shows the experimental setup for the approximative measure-
ments of the specific acoustic impedance. The glass plate is clamped in a
wooden or steel frame of the inner dimensions a× b. This structure forms
a lid of the soundproof box with a loudspeaker that produces the source
of the incident sound wave. According to the scheme in Fig. 5.6(a), the
microphone IN inside the box and the microphone OUT out of the wooden
box measures the difference of acoustic pressures amplitudes ∆P at the op-
posite sides of the glass plate. They are placed approximately 1 cm above
and below the middle point of the glass plate. Laser Doppler vibrometer
measures the amplitude of the vibration velocity V of the glass plate mid-
dle point. The specific acoustic impedance Zw is then approximated by the
ratio ∆P/V and the value of the acoustic TL is estimated using Eq. (2.27).

The realization of the experimental setup of the TL measurement could
be seen in Fig. 5.6(b). The NC circuit is connected to the MFC actuators.
Both cases, when the NC circuit is turned on and off, are measured.

Using such a measurement setup, only an approximative value of the
TL can be obtained because of limited dimensions of the box. However,
it is acceptable for the demonstration of the noise suppression efficiency.
The acoustic transmission loss was measured for two cases, (i) when the
MFC actuators are not connected to the NC circuit and (ii) when MFC
actuators are shunted by the NC circuit. The next section presents the
numerical results of our FEM model simulations and their comparison with
the approximative experimental data.
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Figure 5.6: Experimental setup for the approximative measurements of
the specific acoustic impedance; (a) Scheme of the measurement, when the
glass plate is placed on the top of the soundproof box with a loudspeaker
that produces the source of the incident sound wave. The microphone IN
inside the box and the microphone OUT out of the wooden box measures
the difference of acoustic pressures amplitudes ∆P at the opposite sides
of the glass plate. They are placed approximately 1 cm above and below
the middle point of the glass plate. Laser Doppler vibrometer measures
the amplitude of the vibration velocity V of the glass plate middle point.
The specific acoustic impedance Zw is then approximated by the ratio
∆P/V ; (b) The photograph of a realization of the experimental setup of
the approximative measurements of the specific acoustic impedance. The
NC circuit is connected to the MFC actuators. Both cases, when the NC
circuit is turned on and off, are measured.
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5.3 Results of the FEM model simulations

and the experimental verification

At first, results of FEM model simulations and DHI measurements of the
surface displacement distribution will be presented. Second, the results
of FEM model simulations and approximative measurements of the acous-
tic transmission loss frequency dependences will be shown appended by
the graphical representations of the acoustic pressure distribution at the
treated glass plate resonant mode.

5.3.1 Coupled system of the glass plate and piezo-
electric MFC actuator – static and dynamic re-
sponse on electric voltage

Fig. 5.7 shows the static bending of the glass plate when the direct voltage
of 300 V was applied on the electrodes of the MFC actuators. For this
particular measurement a configuration setup with two MFC actuators
was used. A photograph of the measured glass window with the MFC
actuators clamped in a wooden frame could be seen in Fig. 5.7(a), the
picture of the surface displacement of the glass plate captured by the DHI
method is in Fig. 5.7(b) and last, for the result of FEM simulation of the
glass plate displacement distribution stands Fig. 5.7(c). The white arrows
locate the places where the MFC actuators were attached. It is evident
that an acceptable agreement between the experimental values and the
FEM simulations could be observed.

The dynamic response of the coupled system with attached MFC ac-
tuators on the harmonic voltage of the amplitude of 1 V could be seen in
Fig. 5.8. The vibrations amplitude was measured in the middle point of
the glass plate. The frequency range is limited from 10 Hz to 2 kHz. The
experiment data (blue solid) are compared with the FEM model ones (red
dashed). In the FEM model, the geometry with the steel frame which is
put into the model as a additional mass is used. At the low frequency
modes the acceptable agreement between the experiment and the FEM
model is observed. On the other hand, at modes ensuing after 1 kHz value,
the frequency dependence is shifted. One of the reason for this discrepancy
could be the fact that in real situation of the experiment the steel frame is
not ideally fixed. At higher frequencies the mass density and the Young’s
modulus of the glass are not the only dominant parameters which affect
the resonant frequencies. It would be desirable to perform some additional
FEM simulations to see how the boundary conditions of the frame affect
the frequency dependence of the vibration amplitude of the glass plate,
especially at the higher frequencies.
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(a) (b)

m

m
(c)

Figure 5.7: Static bending of the glass plate due to the action of electrical
voltage. DHI experiment with FEM model analysis comparison; (a) A pho-
tograph of the measured glass window with the MFC actuators clamped
in a wooden frame; (b) Surface displacement distribution of the glass plate
measured by the DHI method. The white arrows locate the places where
the MFC actuators were attached and point out the value of the maximal
displacement; (c) The result of FEM simulation of the glass plate displace-
ment distribution. It is evident that an acceptable agreement between the
experimental values and the FEM simulations could be observed.
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Figure 5.8: Dynamic response of the coupled system with attached MFC
actuators on the harmonic voltage of the amplitude of 1 V. The vibrations
amplitude was measured in the middle point of the glass plate. The ex-
periment data (blue solid) are compared with the FEM model ones (red
dashed). At the low frequency modes the acceptable agreement between
the experiment and the FEM model is observed.

5.3.2 Coupled system of the glass plate with attached
MFC actuators and acoustic media

Here, the results of the computed and measured acoustic transmission loss
will be presented. First, the influence of the flexible boundary conditions of
the simple glass plate on the acoustic TL in comparison with experimental
data will be shown. Then, the results of the FEM models of the coupled
system of the glass plate with MFC actuators and the acoustic field, both
cases of the incoming wave from the infinity and the model with the acoustic
box, will be presented.

Figure 5.9 shows the frequency dependencies of the acoustic TL ob-
tained from the FEM model simulations in comparison with the experi-
mental data from the approximative acoustic measurements. In FEM sim-
ulations, the geometry of the simple glass plate was used, however, with
different external boundary conditions as it was described in Sec. 5.1.4,
Subsec. 5.1.4.2. The numerical parameters considered in the simulations
are listed in Table 5.1. Three situations with different boundary condi-
tions of the glass plate were considered: Ideally fixed glass (solid thick),
steel frame with kfr = 1 · 1010 N·m−1 (dashed thin), wooden frame with
kfr = 1 ·107 N·m−1 (solid thin). It is seen that steel frame represents a very
good approximation of the ideally fixed glass plate. On the other hand, the
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Figure 5.9: Comparison of the approximative measurement of the fre-
quency dependency of the acoustic transmission loss through the planar
glass plate (dotted) with the FEM model predictions for three different
boundary conditions: Ideally fixed glass (solid thick), steel frame with
kfr = 1 · 1010 N·m−1 (dashed thin), wooden frame with kfr = 1 · 107 N·m−1

(solid thin). An acceptable agreement of the experimental data with the
wooden flexible frame is noticeable.

smaller value (by 3 orders of magnitude) of the effective spring constant of
the frame causes a reasonable decrease in the resonant frequencies of the
resonant modes of the glass plate. The FEM model results are compared
with the approximative measurement of the acoustic TL of the glass plate
in a wooden frame. An acceptable agreement of the experimental data
with the wooden flexible frame is noticeable. The acquired agreement of
the FEM model prediction with the approximative experimental data in-
dicates that the developed FEM model of the coupled analysis of the solid
with the acoustic field is credible and that it may serve to valuable pre-
dictions of the effect of piezoelectric MFC actuators shunted by negative
capacitance circuits on the frequency dependence of the acoustic TL.

Figure 5.10 shows frequency dependence of the acoustic TL obtained
from FEM model simulations considering the case of the acoustic wave,
which strikes the glass plate incoming from infinity (Fig. 5.10(a)) and the
case of the acoustic box with the sound source at the bottom (Fig. 5.10(b)).
Four situations with different curvatures of the glass plate and the elec-
trical conditions of the piezoelectric MFC actuators were considered: (i)
Planar glass plate with opened MFC actuator (solid thick), (ii) bulged
glass plate with opened MFC actuator (solid thin), (iii) planar glass plate
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with the MFC actuator shunted by NC circuit (dashed thick), and (iv)
bulged glass plate with the MFC actuator shunted by NC circuit (dashed
thin). The fixed boundary conditions at the edges of the glass plate are
considered, i.e. ui = 0. The bulged shape of the glass plate was approxi-
mated using the displacement function in the z-axis direction in the form
zmax sin(πx/a) sin(πy/b), where zmax = 5 mm.

It is presented in Fig. 4.8 that it is possible to significantly increase
the effective value of the Young’s modulus using the effect of shunt circuit
with a negative capacitance. Figure 5.10 shows that such an increase in
the effective value of the Young’s modulus of the MFC actuators has an
appreciable effect on the frequency dependence of the acoustic TL through
the glass plate. The numerical predictions of the FEM model indicate that
it is possible to achieve the appreciable increase in the acoustic TL by about
10− 25 dB in the frequency range below 400 Hz due to the small increase
in the curvature of the glass plate. In addition, it is noticeable that due
to the effect of the NC circuit the the acoustic TL could be increased by
about 25 dB at the second vibrational mode of the glass plate (850 Hz),
what the NC circuit was tuned for. And finally, using the both effects, the
curved shape of the glass plate and the NC circuit, the maximal increase of
the acoustic TL can be achieved, particularly by about 10− 30 dB in the
frequency range below 500 Hz and by about 25 dB at the second vibrational
mode (850 Hz). The same effects of the increased curvature of the glass
plate and the shunted NC circuit could be seen in Fig. 5.11. The frequency
dependencies are depicted for the displacement amplitude measured in the
glass plate middle point. It is clearly visible the decrease of the vibration
amplitude both due to the effect of the curved shape of the glass plate and
due to the shunted NC circuit.

The graphical representation of the distribution of the total acoustic
pressure amplitude is shown in Fig. 5.12 for the geometry of the incoming
acoustic wave from infinity and in Fig. 5.13 for the geometry of the acoustic
box with the sound source at the bottom. Both results are shown for
the frequency value of 850 Hz, the second vibrational mode of the glass
plate. Figs. 5.12(a) and 5.13(a) stand for the cases of the planar glass
plate with MFC actuator, however, with no NC circuits and Figs. 5.12(b)
and 5.13(b) stand for the case of the planar glass plate with MFC actuators
shunted by the NC circuits. According to the color legend it is seen that
the transmitted value of the acoustic pressure is decreased due to the effect
of the NC circuit.

Finally, Fig. 5.14 shows the results of the approximative measurements
of the acoustic TL of the glass plate with attached MFC actuators which
are (i) opened, i.e. not connected to the NC circuit (blue solid), and (ii)
shunted by the NC circuit which is tuned at the frequency of the first
vibrational mode of the glass plate, i.e. the value of 276 Hz (red solid). It
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Figure 5.10: Frequency dependencies of the acoustic TL obtained from the
FEM model simulations: Planar glass plate with opened MFC actuator
(solid thick), bulged glass plate with opened MFC actuator (solid thin),
planar glass plate with the MFC actuator shunted by NC circuit (dashed
thick), and bulged glass plate with the MFC actuator shunted by NC circuit
(dashed thin). The appreciable increase in the acoustic transmission loss
by 10 − 25 dB in the frequency range below 400 Hz due to the small
increase in the curvature of the glass plate is noticeable. In addition, it is
noticeable that due to the effect of the NC circuit the the acoustic TL could
be increased by about 25 dB at the second vibrational mode (850 Hz), what
the NC circuit was tuned for; (a) The acoustic wave which strikes the glass
plate is incoming from infinity; (b) Acoustic box with the sound source at
the bottom.



5.3. RESULTS 101

10 100 1000

V
ib

ra
tio

n 
am

pl
itu

de
 (

m
)

Frequency (Hz)

FLAT GLASS

CURVED GLASS

FLAT GLASS + SHUNTED MFC

CURVED GLASS + SHUNTED MFC

850 Hz

-10
10

10

10

10

10
-9

-8

-7

-6

(a)

10 100 1000
Frequency (Hz)

FLAT GLASS

CURVED GLASS

FLAT GLASS + SHUNTED MFC

CURVED GLASS + SHUNTED MFC

V
ib

ra
tio

n 
am

pl
itu

de
(m

)

-10
10

10

10

10

10
-9

-8

-7

-11

10
-12

850 Hz

(b)

Figure 5.11: Frequency dependencies of the displacement amplitude mea-
sured in the middle point of the glass plate obtained from the FEM model
simulations; (a) The acoustic wave which strikes the glass plate is incom-
ing from infinity; (b) Acoustic box with the sound source at the bottom;
It is clearly visible the decrease of the vibration amplitude both due to the
effect of the curved shape of the glass plate and due to the shunted NC
circuit.
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Figure 5.12: The graphical representation of the distribution of the total
acoustic pressure amplitude for the geometry of the incoming acoustic wave
from infinity of the frequency value of 850 Hz; (a) Planar glass plate with
MFC actuators with no shunted NC circuit; (b) Planar glass plate with
MFC actuators shunted by the NC circuit. According to the color legend
it could be observed that the transmitted value of the acoustic pressure is
decreased due to the effect of the NC circuit.
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Figure 5.13: The graphical representation of the distribution of the total
acoustic pressure amplitude for the geometry of the acoustic box with the
sound source at the bottom of frequency value of 850 Hz; (a) Planar glass
plate with MFC actuators with no shunted NC circuit; (b) Planar glass
plate with MFC actuators shunted by the NC circuit. According to the
color legend it could be observed that the transmitted value of the acoustic
pressure is decreased due to the effect of the NC circuit.
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Figure 5.14: Results of the approximative measurements of the acoustic
TL of the glass plate with attached MFC actuators which are opened (blue
solid) and shunted by the NC circuit which is tuned at the frequency of the
first vibrational mode of the glass plate, i.e. the value of 276 Hz (red solid).
It is possible to distinguish that at the frequency where the NC circuit was
tuned the acoustic TL is increased by about 5 dB. The results without the
NC circuit are compared with the FEM model simulations of the acoustic
TL of the glass plate with the added steel frame (black dashed). The
acceptable agreement of the experiment with the FEM model is observed.

is possible to distinguish that at the frequency where the NC circuit was
tuned the acoustic TL is increased by about 5 dB. The results without the
NC circuit are compared with the FEM model simulations of the acoustic
TL of the glass plate with the added steel frame (black dashed). The
acceptable agreement of the experiment with the FEM model is observed.

5.4 Summary

This Section summarizes the obtained results of the FEM simulations and
the experimental work. The objective of this Chapter was to analyze the
possibility to increase the acoustic transmission loss of sound transmitted
through the planar or curved glass plates using the attached piezoelectric
MFC actuators shunted by the active circuits with a negative capacitance.

The FEM model of planar and curved glass plate with attached piezo-
electric MFC actuators shunted by circuits with a negative capacitance has
been developed (see Sec. 5.1). The experimental setups for the approxi-
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mative measurements of the specific acoustic impedance and the surface
displacement distribution are presented (see Sec. 5.2).

Sec. 5.3 presents the results of the FEM model simulations and their
comparison with experimental data:

• The static bending of the glass plate when the direct voltage of 300 V
was applied on the electrodes of the MFC actuators. The surface
displacement of the glass plate captured by the digital holographic
interferometry method is compared with the result of FEM simulation
of the glass plate displacement distribution. An acceptable agreement
between the experimental values and the FEM simulations can be
observed.

• The dynamic response of the coupled system with attached MFC
actuators on the harmonic voltage of the amplitude of 1 V. The ex-
perimental data are compared with the FEM model ones. At low
frequency modes the acceptable agreement between the experiment
and the FEM model is observed. On the other hand, at modes ensu-
ing after 1 kHz value, the frequency dependence is shifted. One of the
reason for this discrepancy can be the fact that in real situation of the
experiment the steel frame is not ideally fixed. At higher frequencies
the mass density and the Young’s modulus of the glass are not the
only dominant parameters which affect the resonant frequencies. It
would be desirable to perform some additional FEM simulations to
see how the boundary conditions of the frame affect the frequency
dependence of the vibration amplitude of the glass plate, especially
at higher frequencies.

• Frequency dependencies of the acoustic transmission loss obtained
from the FEM model simulations with different external boundary
conditions in comparison with the experimental data from the ap-
proximative measurement of the acoustic transmission loss of the
glass plate in a wooden frame. Three situations with different bound-
ary conditions of the glass plate were considered: Ideally fixed glass,
steel frame and wooden frame represented by the certain appropriate
value of the spring constant. It is seen that steel frame represents
a very good approximation of the ideally fixed glass plate. On the
other hand, the smaller value (by 3 orders of magnitude) of the effec-
tive spring constant of the frame causes a reasonable decrease in the
resonant frequencies of the resonant modes of the glass plate. The
predictions of the acoustic transmission loss frequency dependencies
obtained by the FEM model show a good agreement with the approx-
imative measurements. It was shown that a special attention must
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be paid to the specification of the correct boundary conditions at the
edges of the glass plate.

• Frequency dependencies of the acoustic transmission loss obtained
from the FEM model simulations which compare the four situations
with different curvatures of the glass plate and the electrical condi-
tions of the piezoelectric MFC actuators: (i) Planar glass plate with
opened MFC actuator, (ii) bulged glass plate with opened MFC ac-
tuator, (iii) planar glass plate with the MFC actuator shunted by NC
circuit, and (iv) bulged glass plate with the MFC actuator shunted by
NC circuit. It is shown that an increase in the effective value of the
Young’s modulus of the MFC actuators has an appreciable effect on
the frequency dependence of the acoustic transmission loss through
the glass plate. The numerical predictions of the FEM model indicate
that it is possible to achieve the appreciable increase in the acoustic
transmission loss by about 10− 25 dB in the frequency range below
400 Hz due to the small increase in the curvature of the glass plate.
In addition, it is noticeable that due to the effect of the NC circuit the
the acoustic transmission loss could be increased by about 25 dB at
the certain vibrational mode of the glass plate (850 Hz), what the NC
circuit was tuned for. And finally, using the both effects, the curved
shape of the glass plate and the NC circuit, the maximal increase of
the acoustic TL could be achieved, particularly by about 10− 30 dB
in the frequency range below 500 Hz and by about 25 dB at 850 Hz.

• Frequency dependencies of the approximative measurements of the
acoustic transmission loss of the glass plate with attached MFC ac-
tuators which are (i) opened, i.e. not connected to the NC circuit,
and (ii) shunted by the NC circuit which is tuned at the frequency of
the first vibrational mode of the glass plate, i.e. the value of 276 Hz.
It is possible to distinguish that at the frequency where the NC cir-
cuit was tuned the acoustic transmission loss is increased by about
5 dB.

The Chapter presents a promising approach for the suppression of the
noise transmission through glass plates and shells using piezoelectric MFC
actuators and negative capacitance circuits. The method starts from the
vibrational analysis focusing on the effects of the elastic properties of the
composite structure with piezoelectric layers. Using active shunt circuits
with a negative capacitance, the effective elastic properties of the piezoelec-
tric layers can be controlled to a large extent. As a result, the appreciable
increase in the acoustic transmission loss through the glass plate composite
can be achieved. The advantages of this method stem from its generality
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and simplicity offering an efficient tool for the control of the noise trans-
mission through glass windows especially in the low-frequency range where
the passive methods are ineffective.

A developed FEM model of the layered system of the planar structure
with the piezoelectric layer can be used not only in structural-acoustic
applications but also in structural-optic applications. The piezoelectric
element attached to the planar structure can control its shape due to an
applied electric voltage. In adaptive optics systems such deformable mirrors
are the most commonly used wavefront correctors. A brief description of
a deformable mirror that consists of a nickel reflective layer deposited on
top of a thin PZT piezoelectric disk follows in the next Chapter.
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Chapter 6

Application of the active shape
control of the planar structure
to adaptive optics

Deformable mirrors are the most commonly used wavefront correctors in
adaptive optics systems. Nowadays, many applications of adaptive op-
tics to astronomical telescopes, high power laser systems, and similar fast
response optical devices require large diameter deformable mirrors with
a fast response time and high actuator stroke. In order to satisfy such
requirements, deformable mirrors based on piezoelectric layer composite
structures have become a subject of intense scientific research during last
two decades. In this Chapter, an optimization of several geometric pa-
rameters of a deformable mirror that consists of a nickel reflective layer
deposited on top of a thin piezoelectric PZT disk to get the maximum
actuator stroke is presented using the FEM model of the layered structure.

6.1 Introduction

In the middle of the last century, the resolution of terrestrial astronomical
telescopes reached such limits that further improvement of their resolution
required a development of methods for the correction of atmospheric dis-
tortions. The first concept of so called adaptive optics was envisioned by
Babcock [141] in 1953, who proposed to use a deformable mirror to cor-
rect the atmospheric seeing. It took more than forty years to achieve a
technological level that would allow the construction of adaptive optics.

During the last few decades, several concepts of deformable mirrors
were implemented [142]. Examples to be mentioned here are (i) segmented
mirrors, (ii) continuous thin plate mirrors, (iii) monolithic mirrors, and
(iv) membrane or pellicle mirrors. It is the continuous thin plate type of
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incoming
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deformable
mirror

reflective layer

active layer

Figure 6.1: Principle of a deformable mirror. Incoming wavefront, which is
distorted by atmospheric turbulence, is reflected from a deformable mirror,
which corrects the shape of the wavefront to be planar again. In this study
the deformable mirror is designed as a composite structure, where the
reflective layer is bonded on the active piezoelectric layer.

mirrors, which has become a very popular structure mainly due to their
lower technological difficulty.

With the onset of real-time wavefront corrections [143], a very conve-
nient type of electromechanical transducers that is used as a actuator in
deformable mirrors is the piezoelectric actuator. The greatest advantage of
piezoelectric actuators is their fast response and relatively simple construc-
tion. In order to increase the number of degrees of freedom, deformable
mirrors based on piezoelectric unimorphs or bimorphs have become a very
popular and intensively studied concept [144, 145, 146, 147, 148].

Generally, this type of the deformable mirror consists of a layered sand-
wich composite structure, where the reflective layer is bonded on a piezo-
electric layer. The reflective layer is usually made of a conductive metallic
material and forms an equipotential surface. On the opposite side of the
piezoelectric layer a system of electrodes is deposited using conventional
techniques such as lithographic sputtering. By applying a voltage to a
particular electrode, the piezoelectric layer is deformed due to the inverse
piezoelectric effect in the in-plane directions. This produces bending mo-
ments in the reflective layer of the particular segment of a deformable
mirror and yield its out-of-plane deformation (see Fig. 6.1).

The optimization study of the composite structure of the deformable
mirror that consists of a nickel reflective layer deposited on top of a thin
piezoelectric PZT disk to achieve the maximum out-of-plane deflections at
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Figure 6.2: Geometry of the FEM model of the deformable mirror. It
consists of the nickel reflective layer of the thickness hNi and of the PZT
layer of the thickness hPZT. Honeycomb structure of gold electrodes is
deposited on the bottom of the PZT layer. The distance between the
sputtered electrodes is denoted by a symbol d. Nickel layer itself can be
considered as a grounding electrode. The mirror is fixed in its edges which
indicates the boundary condition of zero displacement on this edge, i.e.
u = 0.

minimum applied voltages to the piezoelectric structure using FEM nu-
merical simulations. In Sec. 6.2, the geometry of the deformable mirror is
introduced and applied to the FEM model. In Sec. 6.3, the results of the
numerical simulation and their discussion will be presented.

6.2 FEM model of the deformable mirror

Geometry of the deformable mirror is presented in Figure 6.2. The de-
formable mirror consists of a double-layer sandwich composite structure
in a shape of a disk of the radius R. In this study, the reflective layer
of thickness hNi is made of nickel. The reflective nickel layer is bonded
on a piezoelectric layer of thickness hPZT. The reflective layer forms an
equipotential at the bottom surface of the piezoelectric layer.

On the top surface of the piezoelectric layer, a system of honeycomb
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golden electrodes is deposited using lithographic sputtering. The distance
between the sputtered electrodes is denoted by a symbol d. It is considered
that arbitrary external voltage can be applied at each particular electrode.

The equations which rule the analysis are the same as for the coupled
analysis of the isotropic solid with the piezoelectrics, i.e. the Eqs. (4.3)-
(4.9). Here, the piezoelectric domain is the thin PZT layer of the thickness
hPZT and, the isotropic linear solid domain is the reflective nickel layer of
the thickness hNi.

Material parameters for the nickel layer could be found e.g. in [149].
The material for the PZT layer is considered the commonly used piezoelec-
tric ceramic PZT-2 whose material parameters could be found e.g. in [150].

It is considered that the deformable mirror is fixed in a rigid frame along
its circumference, i.e. the external boundary condition for the displacement
on this surface is equal to zero, i.e. u = 0.

6.3 Results and discussion

Fig. 6.3 shows the example of the FEM numerical simulation of the de-
formable mirror. In the presented simulation, the off-centered honeycomb
electrode is connected to the electric potential of 200 V, the remaining
electrodes are short circuited. The surface boundary between the PZT
and nickel layer is taken as a grounding electrode. Using the developed
FEM model of the coupled structure of the two layers of isotropic with
piezoelectric material, displacements of the deformable mirror are calcu-
lated and presented. Fig. 6.3(a) presents the 2D surface plot in the plane
(xy) of the displacement of the mirror. Fig. 6.3(b) presents the plot along
the line which goes along the diameter of the mirror through the all three
honeycomb electrodes. Fig. 6.3(c) shows the 3D graphical interpretation
of the displacement of the mirror which is shown using the iso-surfaces and
slices.

Figure 6.4 presents results of a similar FEM simulation, however with
all honeycomb electrodes connected to the electric potential of 200 V. The
maximal value of the mirror deflection which could be achieved is 2.02 µm.

The following geometrical parameters were considered: R = 3 mm,
d = 1 mm, hPZT = 0.5 mm, hNi = 0.18 mm.

In order to find the optimal ratio of the thicknesses of the nickel and
PZT layers, a series of numerical FEM simulations has been performed. At
the first step of each simulation, the geometry of the FEM model was mod-
ified and the thicknesses of the nickel and PZT layers were set to particular
values. In the second step, the displacement of the deformable mirror was
calculated. In the third step, the value of the maximum deflection above
the activated electrode was determined.
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Figure 6.3: Graphical presentation of the deformable mirror displacement.
One off-centered honeycomb electrode is connected to the electric potential
of 200 V, the remaining electrodes are short circuited. The surface bound-
ary between the PZT and nickel layer is taken as a grounding electrode;
(a) The 2D surface plot in the plane (xy) of the displacement of the mirror;
(b) Plot along the line which goes along the diameter of the mirror through
the all three honeycomb electrodes; (c) The 3D graphical interpretation of
the displacement of the mirror, it is shown using the iso-surfaces and slices.
In any case, the color legends mean the mechanical displacement value.

Figure 6.5 shows the result of the series of simulations, where the max-
imal values of the mirror deflection is plotted as a function of the nickel
layer thickness hNi (0.02 − 0.6 mm). The parameter of each curve is the
PZT layer thickness hPZT (0.2 − 0.8 mm). All the combinations of the
different thicknesses of the PZT and nickel layer were used for the FEM
model. It can be seen that the thiner layers of both nickel and PZT are
the larger displacement of the mirror can be achieved.

Figure 6.6 presents the thickness of the nickel layer, which results in
the maximum deflection of the deformable mirror, versus the thickness of
the PZT layer. The dashed line presents the fit of the optimal nickel and
PZT thicknesses to the linear dependence obtained by the method of least
squares (i.e. the linear regression).
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Figure 6.4: Graphical presentation of the deformable mirror displacement.
All honeycomb electrodes are connected to the electric potential of 200 V.
The surface boundary between the PZT and nickel layer is taken as a
grounding electrode; (a) The 2D surface plot in the plane (xy) of the dis-
placement of the mirror; (b) Plot along the line which goes along the diam-
eter of the mirror through the all three honeycomb electrodes; (c) The 3D
graphical interpretation of the displacement of the mirror, it is shown us-
ing the iso-surfaces and slices. The maximal value of the mirror deflection
which could be achieved is 2.02 µm.

6.4 Summary

A developed FEM model of a double-layer composite structure was used for
an application from adaptive optics, a deformable mirror, which consists
of a reflective nickel layer and an active PZT material. A series of FEM
simulations were performed, in order to find optimal thickness ratio of the
reflective and active layers to get the maximum out-of-plane deflections
at minimum applied voltages to the piezoelectric structure. The linear
regression of optimal values of the thicknesses of the nickel and PZT layers
was determined.

Brief description of the the obtained results indicates that the developed
FEM model of the layered structure could be used across the research fields.
In adaptive optics applications, it can provide an efficient and simple tool
for the design of deformable mirrors with piezoelectric materials.
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Figure 6.5: Dependences of the maximal values of the mirror deflection as
a function of the nickel layer thickness hNi (0.02−0.6 mm). The parameter
of each curve is the PZT layer thickness hPZT (0.2 − 0.8 mm). All the
combinations of the different thicknesses of the PZT and nickel layer were
used for the FEM model. It can be seen that the thiner layers of both
nickel and PZT are the larger displacement of the mirror can be achieved.
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Figure 6.6: Linear regression of optimal values of the thicknesses of the
nickel and PZT layers. The decisive values for the optimization were the
maximal values of the mirror displacement which could be seen in Fig-
ure 6.5. It is shown that for the certain value of the PZT layer thickness
could be used certain range of the nickel layer thicknesses, particularly for
thicker PZT layers (from 0.65 mm).
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Chapter 7

Conclusions

The Thesis was focused on the study of possibilities to actively control
the static and dynamic mechanical response of planar structures by means
of attached piezoelectric actuators. It was shown that piezoelectric lay-
ered planar composite structures can offer an attractive approach for the
reduction of amplitude of vibrations or for the electronic shape control.
Therefore, these kind of controlled structures can provide an efficient tool
with the use in applications of acoustics and adaptive optics.

In acoustics, the planar structure represents the interface between two
acoustic media through, which the acoustic wave is propagating. It was
shown that it is possible to control the amplitudes of the reflected and
transmitted waves by controlling the amplitude of the planar structure
vibration. A physical parameter, which expresses the sound shielding ef-
ficiency of the structure, is called the acoustic transmission loss. Its def-
inition formula was presented in Chap. 2. The acoustic transmission loss
was then expressed by means of the specific acoustic impedance Z of the
interface between two acoustic media, i.e. of the planar structure.

In Chap. 3 the key parameters that control the acoustic transmission
loss of the planar structure were determined using the analytical approxi-
mative model of the glass shell, which was considered of a plane or curved
geometry. The basic conclusions from the theoretical model are the follow-
ings. With an increase of the glass shell curvature ξ, the term 2Y hξ2 in the
denominator of Eqs. (3.23) and (3.25) increases. This yields the decrease of
the amplitude of the shell displacement and, therefore, the decrease of the
normal velocity of vibrations. As a result, the values of the specific acous-
tic impedance Zw and subsequently the acoustic transmission loss of the
glass shell increase. That actually means that a greater amplitude of the
incident acoustic pressure can be reflected than transmitted to the other
side. Moreover, the specific acoustic impedance Zw of the curved shell,
i.e. ξ > 0, increases with an increase in the Young’s modulus Y and the
bending stiffness coefficient G of the glass shell and the value of Zw of the
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plane plate, i.e. ξ = 0, increases with an increase in the bending stiffness
coefficient G of the plate.

Using the theoretical model of motion of the composite layered struc-
ture of the glass plate and the piezoelectric layer, it was shown that by
the piezoelectric layer attached to the planar structure it is possible to
control the elastic properties of the whole system (see the Eqs. (3.30) and
(3.31) for the effective Young’s modulus and the bending stiffness coeffi-
cient, respectively, of the layered composite structure of the glass plate and
piezoelectric actuator).

In Chap. 3, it was introduced the active elasticity control method that
offers an alternative technique for the suppression of the noise transmission
through piezoelectric structures or a technique for active suppression of
vibrations of mechanical structures by attaching the piezoelectric elements
to them. The idea is that by connecting a piezoelectric layer to the active
shunt circuit with a negative capacitance the effective elastic properties of
the piezoelectric element can be enhanced. The effective Young’s modulus
of the piezoelectric element shunted by the negative capacitance circuit
follows the theoretical Eq. (3.33), where one can notice that, when the
capacitance C is negative, the value of the effective Young’s modulus of
the piezoelectric actuator can be changed to a large extent. It is shown
that, when the piezoelectric actuator is attached to the surface of a glass
plate (according to the Fig. 3.4) then the value of the Young’s modulus Y
and the bending stiffness coefficient G of the glass plate are influenced due
to the action of shunted negative capacitance circuit. Then, the vibration
amplitude W of the plate is reduced due to an increase in the bending
stiffness coefficient G of the plate (in the case of the plane plate) and
due to an increase in the bending stiffness coefficient G and the Young’s
modulus Y of the plate (in the case of the curved plate). In such a way
of active “stiffening”, the bigger part of the amplitude of acoustic pressure
wave can be reflected than transmitted to the other side.

A suitable piezoelectric actuator, which can be simply attached to the
various kind of surfaces (such as glass plate) and which is resistant to
the cracking is the flexible macro fiber composite actuator. Its geometry,
structure and fundamental properties were introduced in Chap. 4. In ac-
cord with the aforementioned approach and due to geometrical complexity
of the macro fiber composite actuator, the numerical model of the macro
fiber composite actuator based on the finite element method was devel-
oped. The numerical model includes: (i) definition of the representative
volume element (RVE) geometry of the macro fiber composite actuator
(Subsec. 4.2.1), (ii) formulation of the equations of motion and specification
of numerical values of material parameters (Subsec. 4.2.2), (iii) specifica-
tion of the electrical and mechanical boundary conditions (Subsec. 4.2.3),
(iv) definition of state quantities averaging and the method of calculation
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of effective elastic and piezoelectric properties (Subsec. 4.2.4), and (v) in-
troduction of the electromechanical interaction of the MFC actuator with
the external electric negative capacitance circuit and the implementation of
the method of active elasticity control on a simplified model of the macro
fiber composite actuator where the movement only in the x direction is
allowed (Subsec. 4.2.5).

The numerical model was used for the numerical computation of
Young’s moduli, shear moduli and Poisson’s ratios of short-circuited macro
fiber composite actuator (Subsec. 4.3.1). There can be seen an accept-
able agreement between the results of the numerical computations, the
producer’s values and with the values obtained by other computational
methods. In a similar manner, macroscopic piezoelectric constants were
computed from average strains in mechanically free macro fiber composite
actuator with a given testing voltage on its electrodes (Sec. 4.3.2). Again,
an agreement between computed values and producer’s data sheet values is
appreciable. Finally, the capacitance per unit area of the macro fiber com-
posite actuator was computed from the charge generated on the electrodes
under the applied testing voltage (Sec. 4.3.3).

The effect of the electromechanical interaction of the macro fiber com-
posite actuator and an external shunt circuit with a given capacitance was
analyzed in Subsec. 4.3.4. It was roughly verified that the capacitance value
of the shunt circuit controls only the values of the Young’s moduli (Y11, Y22,
Y33). Values of the shear moduli (G12, G13, G23) are not influenced by the
shunt circuit. In the next step of the analysis, the implementation of the
negative capacitor was introduced in Subsec. 4.3.5. At first, several simu-
lations were computed in order to determine the optimal adjustment of the
negative capacitance circuit parameters that yield the maximum value of
effective Young’s modulus component Y11. As a result, an increase in the
effective Young’s modulus Y11 by the factor of 1000 at the frequency 850 Hz
was demonstrated. After that, the frequency dependence of macroscopic
Young’s moduli of macro fiber composite actuator shunted by the imple-
mented negative capacitance circuit was measured. It was demonstrated
that the value of effective Young’s modulus Y11 can be increased by the
factor of 100 in a narrow frequency range 800−900 Hz and by the factor of
20 in a frequency range 700− 1000 Hz. The value of the Young’s modulus
component Y22 can be increased by about 400 times at the given frequency
and by about 20 times in a frequency range 780− 910 Hz.

In Chap. 5, using the theoretical basics about the acoustic transmis-
sion loss stated in Chap. 2 and the findings about the active elasticity
control method introduced in Chap. 3 and the results of the simulations
of the actively controlled orthotropic Young’s modulus of the macro fiber
composite actuator obtained in Chap. 4, the possibility of increasing the
acoustic transmission loss of sound transmitted through planar or curved
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glass plates using attached piezoelectric macro fiber composite actuators
shunted by the negative capacitance circuits was analyzed using the finite
element method numerical simulations and experimental measurements of
the acoustic transmission loss.

First, the applicability and functionality of the macro fiber compos-
ite actuators attached to the glass plate was verified by the measurement
of the static bending of the glass plate when the direct voltage of 300 V
was applied on the electrodes of the macro fiber composite actuators. The
surface displacement of the glass plate captured by the digital holographic
interferometry method is compared with the result of finite element simula-
tion of the glass plate displacement distribution. An acceptable agreement
between the experimental values and the simulations could be observed.
Then, the dynamic response of the coupled system with attached macro
fiber composite actuators on the harmonic voltage of the amplitude of 1 V
was performed. The experimental data are again compared with the fi-
nite element method model ones. At low frequency modes the acceptable
agreement between the experiment and the numerical model is observed.

In the next steps, a couple of simulations and measurements of the
acoustic transmission loss were performed. The frequency dependencies of
the acoustic transmission loss obtained from the numerical model simula-
tions with different external boundary conditions are compared with the
experimental data from the approximative measurement of the acoustic
transmission loss of the glass plate in a wooden frame. Three situations
with different boundary conditions of the glass plate were considered: Ide-
ally fixed glass, steel frame and wooden frame represented by the certain
appropriate value of the spring constant. It is seen that steel frame rep-
resents a very good approximation of the ideally fixed glass plate. On the
other hand, the smaller value (by 3 orders of magnitude) of the effective
spring constant of the frame causes a reasonable decrease in the resonant
frequencies of the resonant modes of the glass plate. The predictions of
the acoustic transmission loss frequency dependencies obtained by the fi-
nite element method model show a good agreement with the approximative
measurements. It was shown that a special attention must be paid to the
specification of the correct boundary conditions at the edges of the glass
plate.

In order to find the most effective way how to increase the acoustic
transmission loss of the glass plate, the frequency dependencies of the
acoustic transmission loss were computed using the finite element model
simulations, which are based on the acoustic-structure interaction. The
simulations compare the four situations with different curvatures of the
glass plate and the electrical conditions of the piezoelectric macro fiber
composite actuators: (i) Planar glass plate with opened macro fiber com-
posite actuator, (ii) bulged glass plate with opened macro fiber composite
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actuator, (iii) planar glass plate with the macro fiber composite actuator
shunted by negative capacitance circuit, and (iv) bulged glass plate with
the macro fiber composite actuator shunted by negative capacitance cir-
cuit. It is shown that an increase in the effective value of the Young’s
modulus of the macro fiber composite actuators has an appreciable effect
on the frequency dependence of the acoustic transmission loss through the
glass plate. The numerical predictions of the numerical model indicate that
it is possible to achieve the appreciable increase in the acoustic transmis-
sion loss by about 10 − 25 dB in the frequency range below 400 Hz due
to the small increase in the curvature of the glass plate. In addition, it
is noticeable that due to the effect of the negative capacitance circuit the
acoustic transmission loss can be increased by about 25 dB at the certain
vibrational mode of the glass plate (850 Hz), what the negative capacitance
circuit was tuned for. And finally, using the both effects, the curved shape
of the glass plate and the active circuit, the maximal increase of the acous-
tic transmission loss could be achieved, particularly by about 10 − 30 dB
in the frequency range below 500 Hz and by about 25 dB at 850 Hz.

According to the approximative acoustic measurement, the frequency
dependencies of the acoustic transmission loss of the glass plate with at-
tached macro fiber composite actuators which are (i) opened, i.e. not
connected to the negative capacitance circuit, and (ii) shunted by the NC
circuit which is tuned at the frequency of the first vibrational mode of the
glass plate, i.e. the value of 276 Hz, show, that it is possible to distinguish
that at the frequency where the negative capacitance circuit was tuned the
acoustic transmission loss is increased by about 5 dB.

A developed finite element method model of the layered system of
the planar structure with the piezoelectric layer can be used not only in
structural-acoustic applications but also in structural-optic applications.
The piezoelectric element attached to the planar structure can control its
shape due to an applied electric voltage. In adaptive optics systems such
deformable mirrors are the most commonly used wavefront correctors. A
brief description of a deformable mirror that consists of a nickel reflective
layer deposited on top of a thin PZT piezoelectric disk is presented in
Chap. 6. A series of finite element method simulations were performed, in
order to find optimal thickness ratio of the reflective and active layers to
get the maximum out-of-plane deflections at minimum applied voltages to
the piezoelectric structure. The linear regression of optimal values of the
thicknesses of the nickel and PZT layers was determined.

The Thesis presents a promising approach for the suppression of the
noise transmission through the plates and for the shape control of the
plates using piezoelectric flexible composite piezoelectric actuators and ac-
tive electronic circuits. The method starts from the vibrational analysis
focusing on the effects of the elastic properties of the composite structures
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with piezoelectric layers. Then, optimization of the parameters of the ac-
tive electronic circuit has to be done to achieve the best performance of
the actuator. The advantages of this method stem from its generality and
simplicity offering an efficient tool for the control of the noise transmission
through glass windows especially in the low-frequency range where the pas-
sive methods are ineffective and a simple and efficient tool for the shape
control of large planar optical elements.
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[A.6] A. Kruchenko, K. Nováková and P. Mokrý, “Optimization of elec-
trode geometry and piezoelectric layer thickness of a deformable
mirror incoming corrected mirror,” in Proc. Optics and Measure-
ment International Conference, Liberec, Česká republika, 2012, pp.
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trode geometry and piezoelectric layer thickness of a deformable
mirror incoming corrected mirror,” in EPJ Web of Conferences,
2013, In Press.

• Journal Article In Press



PUBLICATIONS OF THE AUTHOR 139
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