
 51

ACC JOURNAL 2017, Volume 23, Issue 1 DOI: 10.15240/tul/004/2017-1-005

DEVELOPING AND IMPLEMENTING TWO-STEP ADAMS-BASHFORTH-MOULTON

METHOD WITH VARIABLE STEPSIZE FOR THE SIMULATION TOOL DYNSTAR

An Pletinckx
1
; Daniel Fiß

2
; Alexander Kratzsch

3

Hochschule Zittau/Görlitz, IPM Department

Theodor-Körner-Allee 16, 02763 Zittau, Germany

e-mail:
1
an.pletinckx@vub.ac.be;

2
d.fiss@hszg.de;

3
a.kratzsch@hszg.de

Abstract

The simulation tool DynStar, created by Hochschule Zittau/Görlitz IPM department, was

previously using only single-step methods to solve differential equations. This paper describes

the development of a multiple step method to complement the others. The Introduction gives

the reader a better idea why a multiple step method can be useful. The theory part is focused

on the two-step Adams-Bashforth-Moulton method and how it is possible to make the

formulas suitable for variable stepsize. Further, an algorithm is developed to solve the

differential equations, using the ABM formulas and adjusting the stepsize according to the

error between the prediction and the correction. This is described in the Implementation

section. Finally, the performance of the ABM method is compared with RK4 and the Hanna

method in the Results section.

Keywords

Adams-Bashforth-Moulton; Multistep method; Variable stepsize; Numerical solution;

Ordinary differential equation; Initial-value problem; Hanna method.

Introduction

In engineering, it is often necessary to simulate the behaviour of real-life systems. For this, a

mathematical model that describes the system is needed. When taking into account the speed

of some variations, the description may contain derivatives. This means that you will end up

with one or more differential equations in the model. Then you are left with the problem of

solving these equations, which can be done analytically or numerically. In the era of

computers, numerical solving techniques have become increasingly important.

Considering an initial-value problem 𝑦′ = 𝑓(𝑥, 𝑦) and 𝑦(𝑥0) = 𝑦0, many methods have been

studied to solve this differential equation numerically [1]. The simplest one is undoubtedly the

(forward) Euler method, where the following value 𝑦𝑛+1 is calculated as:

 𝑦𝑛+1 = 𝑦𝑛 + ℎ ∙ 𝑓(𝑥𝑛, 𝑦𝑛) (1)

Of course, such a formula cannot be used in practice because it generally will not give an

accurate result. An attempt to construct a more reliable method has led to the improved Euler

method, which uses the average of the slopes in (𝑥𝑛, 𝑦𝑛) and (𝑥𝑛+1, 𝑦𝑛+1). Hence 𝑦𝑛+1 is

calculated implicitly:

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑓(𝑥𝑛, 𝑦𝑛) + 𝑓(𝑥𝑛+1, 𝑦𝑛+1)) (2)

Solving an implicit equation on its own can be difficult because it leads to a non-linear

problem. However, this difficulty can be avoided by combining the implicit formula with an

mailto:an.pletinckx@vub.ac.be
mailto:d.fiss@hszg.de
mailto:a.kratzsch@hszg.de

 52

explicit one in a predictor-corrector scheme; in this case the forward Euler method would be

the ideal choice. Unfortunately, the accuracy of the improved Euler method is still

disappointing.

Finally, generalization of the Euler formulas was created, which is now known as the Runge-

Kutta method. It uses a weighted average of slopes in the interval 𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+1.

 𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑤1𝑘1 + 𝑤2𝑘2 + ⋯ + 𝑤𝑚𝑘𝑚) (3)

It can be concluded that the Euler method and the improved Euler method are in fact Runge-

Kutta methods of the first and second order respectively. The formulas that are most

commonly used, because they are very accurate and still easy to implement, are of the fourth

order.

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (4)

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛)

𝑘2 = 𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ ∙ 𝑘1)

𝑘3 = 𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ ∙ 𝑘2)

𝑘4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ ∙ 𝑘3)

Even though RK4 is popular for its accuracy, it has the major disadvantage that in each step

the function must be calculated four times. When function evaluations are expensive, this can

seriously prolong the runtime. A solution is found in the category of multistep methods.

Notice that the methods mentioned above are all single-step methods because in order to

compute the successive value 𝑦𝑛+1, information about only one prior value 𝑦𝑛 is needed.

Multistep methods use several points in the calculation, but they gain efficiency by storing the

previous information such that only one new function evaluation has to be computed at each

step. To improve the accuracy and stability of the algorithm, one can choose to add a

corrector step which also requires an additional function evaluation. This doubles the cost, but

it is still an improvement over the Runge-Kutta method. The best-known multistep method is

the Adams-Bashforth-Moulton one, which will be discussed in the next section.

1 Theory

Adams-Bashforth and Adams-Moulton are linear multistep methods. This means that the next

value 𝑦𝑛+1 is calculated as a linear combination of various 𝑦𝑖 and 𝑓(𝑥𝑖, 𝑦𝑖) from the previous

𝑠 steps:

𝑦𝑛+1 + 𝑎1𝑦𝑛 + 𝑎2𝑦𝑛−1 + ⋯ + 𝑎𝑠𝑦𝑛−𝑠+1

= ℎ(𝑏0𝑓(𝑥𝑛+1, 𝑦𝑛+1) + 𝑏1𝑓(𝑥𝑛, 𝑦𝑛) + ⋯ + 𝑏𝑠𝑓(𝑥𝑛−𝑠+1, 𝑦𝑛−𝑠+1))

For Adams-Bashforth, coefficient 𝑎1 = −1 and all others 𝑎2 = ⋯ = 𝑎𝑠 = 0. The coefficients

𝑏𝑖 are derived by considering the following form:

 𝑦(𝑥𝑛+1) = 𝑦(𝑥𝑛) + ∫ 𝑓(𝑡, 𝑦(𝑡)) ∙ 𝑑𝑡 ≈
𝑥𝑛+1

𝑥𝑛
𝑦(𝑥𝑛) + ∫ 𝑝(𝑡) ∙ 𝑑𝑡

𝑥𝑛+1

𝑥𝑛
 (5)

 53

It’s possible to replace the function 𝑓(𝑡, 𝑦(𝑡)) by the interpolation polynomial 𝑝(𝑡) through

the s previous points [2]. After the polynomial is calculated, an expression for the coefficients

bi can be found. For example, the two step Adams-Bashforth formula becomes:

 𝑦𝑛+1 = 𝑦𝑛 + ℎ ∙ (
3

2
𝑓𝑛 –

1

2
𝑓𝑛−1) (6)

However, the integration polynomial was integrated from 𝑥𝑛 to 𝑥𝑛+1, while its interpolation

interval is limited to [𝑥𝑛−𝑠+1, 𝑥𝑛]. In general, integration polynomials cannot be used as a

reliable approximation outside their interpolation interval. So it is logical to include the point

(𝑥𝑛+1, 𝑦𝑛+1) in the polynomial and do the calculations again. This results in the implicit

Adams-Moulton formulas. Again the two-step formula is shown:

 𝑦𝑛+1 = 𝑦𝑛 + ℎ ∙ (
5

12
𝑓𝑛+1 +

8

12
𝑓𝑛–

1

12
𝑓𝑛−1) (7)

Adams-Moulton has some great advantages over the explicit Adams-Bashforth [3]. As

already mentioned, Adams-Moulton methods give more accurate approximations due to the

wider interpolation interval. They also obtain a higher order with the same amount of previous

steps and generally, implicit methods are more stable than their explicit counterparts. Of

course, the drawback lies in its implicit nature, which makes it difficult to solve as it translates

to a non-linear equation.

The way to profit from both methods is to combine them in a predictor-corrector scheme. The

explicit Adams-Bashforth method computes a prediction 𝑦∗
𝑛+1

. At this point, the function

evaluation 𝑓∗
𝑛+1

 is calculated. Then the corrected value 𝑦𝑛+1 is obtained with the Adams-

Moulton method and again, the function is evaluated to use in later steps. This is known as the

PECE procedure, but it is also possible to repeat the correction step, for example PECECE or

even more. Each additional correction step C makes the result more accurate, but also

introduces a new function evaluation E, which partly or completely reverses the advantage

that ABM has over RK4. A compromise is made by performing the correction step only once

while still ensuring a sufficient accuracy. This is established by starting the calculation over

with a smaller stepsize when the correction differs too much from the prediction.

This includes that we are now facing a variable stepsize problem and that formulas (6) and (7)

must be adapted, because they assume a constant stepsize. The coefficients bi depend on the

ratio of the stepsizes. That’s why they are constant for a fixed stepsize, but at each step they

need to be calculated in a variable stepsize problem. There are different ways to make the

Adams methods suitable for variable stepsizes, but we will follow a procedure developed by

Krogh and described by Lopez and Romay in their paper [4].

The expression of the variable stepsize k-step Adams-Bashfort predictor and Adams-Moulton

corrector is as follows:

 𝑝𝑛+1 = 𝑦𝑛 + ℎ𝑛 ∑ 𝑔𝑗(𝑛) 𝛽𝑗(𝑛) 𝜙𝑗(𝑛)
𝑘−1

𝑗=0
 (8)

 𝑦𝑛+1 = 𝑝𝑛+1 + ℎ𝑛 𝑔𝑘(𝑛) 𝜙𝑘(𝑛 + 1) (9)

 where ℎ𝑛 = 𝑥𝑛+1 − 𝑥𝑛

The coefficients are defined recursively:

 54

 𝛽𝑗(𝑛) = 𝛽𝑗−1(𝑛)
𝑥𝑛+1− 𝑥𝑛−𝑗+1

𝑥𝑛− 𝑥𝑛−𝑗
 with 𝛽0(𝑛) = 1 (10)

 𝜙𝑗(𝑛) = 𝜙𝑗−1(𝑛) − 𝛽𝑗−1(𝑛 − 1)𝜙𝑗−1(𝑛 − 1) with 𝜙0(𝑛) = 𝑓𝑛 (11)

 𝑔𝑗(𝑛) = 𝑐𝑗,1(𝑥𝑛+1) (12)

 𝑐𝑗,𝑞(𝑥𝑛+1) = 𝑐𝑗−1,𝑞(𝑥𝑛+1) − 𝑐𝑗−1,𝑞+1(𝑥𝑛+1)
ℎ𝑛

𝑥𝑛+1− 𝑥𝑛−𝑗+1
 with 𝑐0,𝑞(𝑥𝑛+1) =

1

𝑞
 (13)

2 Implementation

Here, all this theory should be put into practice and implemented into the DynStar source

code. The most important step is to derive the correct formulas. The two-step ABM method

has been chosen because its formulas are the easiest to derive and implement, but the code can

be extended to allow other ABM methods with more complicated formulas. For 𝑘 = 2, the

formulas are derived as follows:

 𝑝𝑛+1 = 𝑦𝑛 + ℎ+(𝑔0(𝑛) 𝛽0(𝑛) 𝜙0(𝑛) + 𝑔1(𝑛) 𝛽1(𝑛) 𝜙1(𝑛))

 ⟹ 𝑝𝑛+1 = 𝑦𝑛 + ℎ+ (𝑓𝑛 +
1

2

ℎ+

ℎ−
(𝑓𝑛 − 𝑓𝑛−1)) (14)

 and 𝑦𝑛+1 = 𝑝𝑛+1 + ℎ+ 𝑔2(𝑛) 𝜙2(𝑛 + 1)

 ⟹ 𝑦𝑛+1 = 𝑝𝑛+1 + ℎ+ (
1

2
−

1

6

ℎ+

ℎ++ℎ−) (𝑓𝑛+1 − 𝑓𝑛 −
ℎ+

ℎ−
(𝑓𝑛 − 𝑓𝑛−1)) (15)

where ℎ− = 𝑥𝑛 − 𝑥𝑛−1 is the previous stepsize and ℎ+ = 𝑥𝑛+1 − 𝑥𝑛is the following

stepsize. Notice that if the stepsizes are equal, the formulas simplify to (6) and (7).

It's clear that the k-step ABM method needs information about k previous points in order to

calculate the following value. However, in the beginning of the algorithm only one value is

available: the initial condition 𝑦(𝑥0) = 𝑦0. Hence the ABM method is not self-starting and

another method is needed to calculate the k-1 first values. In our case, only one extra value is

required and it is computed using one step of Runge-Kutta fourth order.

The next feature that needs to be implemented is the varying stepsize. The reasoning behind it

is that the stepsize should always be small enough to ensure accurate results, yet large enough

to avoid unnecessary calculations. The local truncation error can be used as a measure for

accuracy. This error is estimated as the relative difference between the predicted and the

corrected value.

 relative error = abs (
𝑝𝑛+1− 𝑦𝑛+1

𝑦𝑛+1
) (16)

When this error gets too large, i.e. when it exceeds a certain tolerance, the stepsize should be

decreased immediately. On the other hand, when the error is below the tolerance, it is safe to

increase the stepsize. With these properties in mind, Hanna [5] proposed a formula to adjust

the stepsize:

 ℎ+ = ℎ−√
𝑡𝑜𝑙

𝑟𝑒𝑙
 (17)

 55

However, sometimes the error is unacceptably high, quantified by exceeding 1.5 times the

tolerance. In this case, choosing a small stepsize for the following step is not enough; it is the

stepsize for the current step that needs to be decreased. Then the program goes into

a ‘stepback mode’, where none of the new values are saved and the current step is completely

restarted with a smaller stepsize. The flowchart in Figure 1 shows how the algorithm is

organized.

Source: Own

Fig. 1: Flowchart of the algorithm

3 Results

3.1 ABM Compared to RK4

First, a comparison between ABM and RK4 is made. The methods are tested on a very simple

third-order ordinary differential equation given by (18). The solution is shown in Figure 2.

 56

 𝑦′1 =
1

𝑇1
(𝑢 − 𝑦1) with 𝑦1(0) = 0

 𝑦′2 =
1

𝑇2
(𝑦1 − 𝑦2) with 𝑦2(0) = 0 (18)

 𝑦′3 =
1

𝑇3
(𝑦2 − 𝑦3) with 𝑦3(0) = 0

 𝑡0 = 0 and 𝑡𝑒𝑛𝑑 = 200

Source: Own

Fig. 2: Graph of PT3

As ABM calculates only two function evaluations per integration step and RK4 calculates

four, one would expect ABM to be twice as fast. However, in table 1 it can be seen that the

results do not support this hypothesis. In fact, the amount of time needed by the two methods

is approximately the same. The explanation is that the function evaluation is very simple or

cheap and does not account for a large portion of the runtime. Therefore, it can almost be

neglected whether the evaluation is done two or four times. But when the differential equation

is computationally expensive, the amount of function evaluations will certainly be reflected in

the runtime. To demonstrate this, we still use the same problem given by (18) but we make it

expensive by adding a delay of 1ms. Now it is clear that Runge-Kutta takes twice as much

time as ABM. In all tables, the time is expressed in seconds.

Tab. 1: ABM compared to RK4

 Steps Time (cheap evaluation) Time (expensive evaluation)

TOL ABM RK4 ABM RK4 ABM RK4

10−4 116 121 0.02 0.02 0.46 0.95

10−7 1014 1037 0.14 0.15 3.99 8.12

Source: Own

 57

3.2 ABM Compared to Hanna, Stiff Problem

The method that has already been implemented in DynStar is the one Hanna proposed in his

paper [5]. It is important to understand which method is more effective for different cases, so

that a DynStar user can choose the right option. Hanna method takes a weighted average of

the values obtained by the Euler method and the RK2 (or improved Euler) method. The great

advantage of the Hanna method is that it has a large stability domain. For stiff problems the

stepsize is limited rather for stability reasons than accuracy reasons. This means that a stable

method such as Hanna will be able to take bigger steps, hence saving time. Unfortunately,

ABM doesn't handle stiff problems very well and is more suitable for non-stiff problems. We

will test this hypothesis on a mildly stiff problem, also discussed by Hanna in his paper, called

Robertson chemical reaction system, given by (19). In Figures 3 and 4, the solution is shown

for different end times. Both graphs are in linear scale.

 𝑦′
1

= −0.04 ∙ 𝑦1 + 104 ∙ 𝑦2𝑦3 with 𝑦1(0) = 1

 𝑦′2 = 0.04 ∙ 𝑦1 − 104 ∙ 𝑦2𝑦3 − 3 ∙ 107𝑦2
2 with 𝑦2(0) = 0 (19)

 𝑦′3 = 3 ∙ 107𝑦2
2 with 𝑦3(0) = 0

 𝑡0 = 0 and 𝑡𝑒𝑛𝑑 = 10

Source: Own

Fig. 3: Graph of Robertson chemical reaction system, t: 0 → 500 seconds

 58

Source: Own

Fig. 4: Graph of Robertson chemical reaction system, t: 0 → 10 seconds

The results in Table 2 show that ABM is forced to take small steps in order to maintain

stability, while achieving high accuracy in the process. On the other hand, Hanna is much

faster and in many cases this is preferred. Only when tolerances are very strict, Hanna gets in

trouble because it cannot be used to obtain highly accurate results. In the following table, RE

is the relative error between the computed solution for 𝑦3 at 𝑡 = 10 and the exact solution

𝑦3(10) = 0.1586138397.

Tab. 2: ABM compared to Hanna in case of a moderately stiff problem

 RE Steps Time

TOL ABM HAN ABM HAN ABM HAN

10−2 2.8 ∙ 10−6 1.2 ∙ 10−4 13696 3931 1.34 0.28

10−3 3.4 ∙ 10−8 1.8 ∙ 10−4 14022 4083 1.42 0.35

10−4 1.5 ∙ 10−8 1.3 ∙ 10−4 14060 4550 1.37 0.37

10−5 1.6 ∙ 10−8 1.2 ∙ 10−4 14159 5284 1.31 0.39

10−6 1.6 ∙ 10−8 8.9 ∙ 10−5 14475 8597 1.43 0.81

10−7 1.6 ∙ 10−8 5.8 ∙ 10−5 14753 19397 1.54 1.90

10−8 1.6 ∙ 10−8 2.6 ∙ 10−5 15733 54924 1.71 4.92

Source: Own

3.3 ABM Compared to Hanna, Non-stiff Problem

Further, the performances of these two methods are compared for a non-stiff problem. We use

a differential equation system similar to (18). The difference is that now we use a tenth order

ODE given by (20) and all time constants are chosen to be equal, ensuring a non-stiff

problem. The solution is shown in Figure 5.

 59

 𝑦′1 =
1

𝑇
(𝑢 − 𝑦1) with 𝑦1(0) = 0

 𝑦′2 =
1

𝑇
(𝑦1 − 𝑦2) with 𝑦2(0) = 0

 ⋮ (20)

 𝑦′10 =
1

𝑇
(𝑦9 − 𝑦10) with 𝑦10(0) = 0

 𝑡0 = 0 and 𝑡𝑒𝑛𝑑 = 200

Source: Own

Fig. 5: Graph of PT10

Now the results in table 3 are very positive for ABM because this method is both faster and

more accurate than the Hanna method. This can be explained by remembering that for a non-

stiff problem, stability is not much of an issue. This means that an accurate method such as

ABM can allow for taking bigger steps than a stable method such as Hanna, hence needing

fewer steps and less time. In table 3, RE is defined as the relative error between the computed

solution for 𝑦10 at 𝑡 = 200 and the exact solution 𝑦10(200) = 0.9947057955.

 60

Tab. 3: ABM compared to Hanna in case of a non-stiff problem

 RE Steps Time

TOL ABM HAN ABM HAN ABM HAN

10−2 3.5 ∙ 10−3 5.8 ∙ 10−3 1279 1621 0.12 0.17

10−3 3.8 ∙ 10−4 3.0 ∙ 10−3 1623 2942 0.21 0.52

10−4 4.0 ∙ 10−5 1.1 ∙ 10−3 2362 7120 0.39 1.46

10−5 4.0 ∙ 10−6 3.8 ∙ 10−4 3954 20326 0.82 4.41

10−6 4.2 ∙ 10−7 1.2 ∙ 10−4 7383 62087 1.68 14.39

Source: Own

Conclusion

The goal of the assignment was to improve the simulation tool DynStar by adding another

solver algorithm for differential equations. After literature research, we succeeded to develop

formulas for a multistep method with a variable stepsize, namely the two-step Adams-

Bashforth-Moulton predictor-corrector method as described by Krogh. The method has been

tested and the following conclusions can be drawn. ABM is most effective when function

evaluations are expensive and/or when the problem is non-stiff. On the other hand, when

function evaluations are cheap, ABM still presents good, but not significantly better results

than RK4. In the case of a stiff problem, the Hanna method is more efficient in terms of

runtime; however, the ABM method gets more accurate results. Altogether, we can conclude

that the ABM algorithm is a valuable addition to the DynStar software and that it will prove

itself useful by solving many differential equations more accurately and/or more efficiently

than the methods that have already been implemented.

Literature

[1] ZILL, D. G.; WRIGHT, W. S.: Advanced Engineering Mathematics, Fourth edition,

Jones & Bartlett Learning, Massachusetts, 2011, pp. 275–286.

[2] HAIRER, E.; NORSETT, S. P.; WANNER, G.: Solving Ordinary Differential

Equations I: Nonstiff Problems, Second revised edition, Springer, Berlin, 2008,

pp. 357–360.

[3] BUTCHER, J. C.: Numerical Methods for Ordinary Differential Equations in the 20
th

Century, Journal of Computational and Applied Mathematics, 2000, Vol. 125, Issues 1–

2, pp. 1–29.

[4] LÓPEZ, D. J.; ROMAY, J. G.: Implementing Adams Methods with Preassigned

Stepsize Ratios, Mathematical Problems in Engineering, 2010, DOI:

10.1155/2010/765620

[5] ASHOUR, S. S.; HANNA, O. T.: A New Very Simple Explicit Method for the

Integration of Mildly Stiff Ordinary Differential Equations, Computers and Chemical

Engineering, 1990, Vol. 14, Issue 3, pp. 267–272.

An Pletinckx; Dipl.-Ing. (FH) Daniel Fiß; Prof. Dr.-Ing. Alexander Kratzsch

http://dx.doi.org/10.1155/2010/765620

 61

ROZVOJ A REALIZACE DVOUKROKOVÉ ADAMS-BASHFORTH-MOULTONOVY

METODY S VARIABILNÍ VELIKOSTÍ KROKŮ U SIMULAČNÍHO NÁSTROJE DYNSTAR

Simulační nástroj DynStar, vytvořený na katedře IPM na Hochschule Zittau / Görlitz, dříve

používal pro řešení diferenciálních rovnic pouze jednokrokové metody. Tento článek popisuje

vývoj vícekrokové metody doplňující ostatní metody. Úvodní část dává čtenáři lepší

představu o užitečnosti vícekrokové metody. Teoretická část je zaměřena na dvoukrokovou

Adams-Bashforth-Moultonovu metodu (ABM), a možnost vhodného využití vzorců pro

variabilní velikost kroků (stepsize). Poté je vytvořen algoritmus řešení diferenciálních rovnic

za použití vzorců ABM a úpravou stepsize podle odchylky mezi predikcí a korekcí. To je

popsáno v sekci Realizace. V závěrečné sekci článku (Výsledky) je metoda ABM porovnána

s metodami RK4 a Hanna.

ENTWICKLUNG UND IMPLEMENTIERUNG DES ZWEI-SCHRITT-ADAMS-BASHFORTH-

MOULTON-VERFAHREN MIT VARIABLER SCHRITTWEITE FÜR DAS

SIMULATIONSWERKZEUG DYNSTAR

Das Simulationswerkzeug DynStar, das von der Hochschule Zittau / Görlitz IPM entwickelt

wird, verwendet bisher nur einstufige Methoden zur Lösung von Differentialgleichungen.

Dieser Beitrag beschreibt die Entwicklung eines mehrstufigen Verfahrens. Die Einleitung gibt

legt dar, warum eine mehrstufige Methode nützlich sein kann. Der Theorieteil konzentriert

sich auf das zweistufige Adams-Bashforth-Moulton (ABM)-Verfahren und wie es für variable

Schrittweiten angepasst wurde. Es wurde ein Algorithmus entwickelt, um die

Differentialgleichungen unter Verwendung des ABM-Methode zu lösen und die Schrittweite

entsprechend dem Fehler zwischen der Vorhersage und der Korrektur zu bestimmen. Dies

wird im Implementierungsabschnitt beschrieben. Abschließend wird die ABM-Methode mit

dem Runge-Kutta-Verfahren 4. Ordnung und der Hanna-Methode im Ergebnisabschnitt

verglichen.

OPRACOWANIE I REALIZACJA DWUKROKOWEJ METODY ADAMS-BASHFORTH-

MOULTONA ZE ZMIENNĄ WIELKOŚCIĄ KROKÓW W NARZĘDZIU SYMULACYJNYM

DYNSTAR

Narzędzie symulacyjne DynStar, opracowane w katedrze IPM (procesów automatyzacyjnych

i technik pomiarowych) w Hochschule Zittau/Görlitz, do rozwiązywania równań

różniczkowych wykorzystywało dawniej wyłącznie metody jednokrokowe. W niniejszym

artykule opisano proces opracowania metody kilkukrokowej będącej uzupełnieniem innych

metod. W pierwszej części przedstawiono zalety metody kilkukrokowej. W części

teoretycznej skupiono się na dwukrokowej metodzie Adams-Bashforth-Moultonaa (ABM)

oraz możliwości odpowiedniego wykorzystania wzorów do zmiennej wielkości kroków

(stepsize). Następnie opracowano algorytm służący rozwiązywaniu równań różniczkowych

z zastosowaniem wzorów ABM i dostosowaniem stepsize w zależności od odchylenia

pomiędzy prognozą a korektą. Opisano to w części Realizacja. W końcowej części artykułu

(Výsledky - Wyniki) metodę ABM porównano z metodami RK4 i Hanna.

