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ABSTRACT

In this research work, strength of thirty-one cotton yarns with different fineness and
twist characteristics produced by four different spinning technologies was studied
under the model of yarn strength as a summation of two independent stationary,
ergodic, Markovian, and Gaussian (SEMG) stochastic processes. A special
methodology was applied to measure the strength of every alternate short section —
each of 50 mm length — along a yarn and the strength autocorrelation characteristics
were determined. Those characteristics were found different in different yarns. Using
those characteristics, computer simulations were performed to obtain the frequency
distribution as well as basic statistical parameters (mean value and standard deviation)
of strength of yarn specimens with different lengths (50 mm — 5000 mm). It was
found that depending on the degree of strength autocorrelation, the empirical strength
versus gauge length relations were different in different yarns and those relations were
in a better correspondence with the actual ones as compared to those derived
traditionally on the basis of strength independency. It was revealed that probably two
highly different and mutually independent phenomena are acting together so as to
cause yarn strength variability and those phenomena are partially related to yarn mass

irregularity.



ABSTRAKT

Disertacni prace zkouma pevnost jedenatiiceti bavlnénych piizi o riiznych jemnostech
a zakrutech, vyrobenych ¢tyfmi riznymi technologiemi. Modelova pevnost byla
uvazovana jako soucet dvou nezavislych stacionarnich, ergodickych, Markovskych a
Gausovskych (SEMG) stochastickych procesi. Specialni experimentalni piistup
umozioval méfit pevnost 50mm usekd piize, jdoucich za sebou vzdy ob jeden.
Experimentalni data byla vyhodnocena a nalezeny autokorelacni charakteristiky
pevnosti piize, odlisné pro rizné pfize. Vysledky byly vyuZity k vypoctu hustoty
pravdépodobnosti pevnosti pifize na riznych upinacich délkach pfize (S0mm —
5000mm) a k vypoctu standardnich pravdépodobnostnich charakteristik (stfedni
hodnoty, smérodatné odchylky) na téchto délkach. Bylo zjisténo, Ze metoda predikce
pevnosti pfize pro rizné upinaci délky, uzitd v této praci, je v lepsi shodé
s experimentalnimi vysledky, nez tradicni vypocet, zalozeny na piedpokladu
statistické nezavislosti pevnosti. Bylo odhaleno, Ze variabilitu pevnosti pfize
pravdépodobné zpisobuji dva velmi odlisné a vzajemné nezavislé jevy, pulisobi
soucasné. Ukazuje se, Ze tyto dva jevy Castecné souvisi s hmotnou nestejnomérnosti

prize.
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PREFACE

This dissertation is submitted to the Faculty of Textiles in partial fulfillment of
the requirements for the degree of Doctor of Philosophy at the Technical University
of Liberec, Czech Republic. It is divided into seven chapters.

Chapter 1 introduces the topic of the dissertation. It discusses the importance
and background of the topic. The objectives of this study are also briefly given.

Chapter 2 is based on a thorough review of literature relevant to this research
work. It summarizes our existing knowledge on this particular topic. It discusses the
approaches of other researchers to solve the problem issued in this research work. The
critical assessments of their works are also reported.

The theory of yarn strength as a stochastic process is presented in Chapter 3.
The concept of a general stochastic process of yarn strength is introduced. Some
special types of stochastic processes together with their characteristics are discussed.
How to realize the stochastic process is also demonstrated.

Chapter 4 tells about the materials used in this research work. It discusses
some non-standard methods of measurements followed in this research work for
special evaluations of some yarn properties. Also the standard methods of those
measurements are highlighted.

Chapter 5 demonstrates the theory with one practical example. Proper
attention has been paid to see whether the experimental results are consistent with the
theoretical knowledge. Also it covers the results obtained on different yarns used in
this research work with relevant discussions on them.

The final chapter, Chapter 6, is devoted to present the overall conclusion of
this research work. It summarizes the results, highlights the implications of the work,
and proposes a new research direction for the future.

The Appendixes mainly contain the essential experimental results that, for the
brevity, were not mentioned in the main text. These are equally important as those
presented in the main text.

The Bibliography of this dissertation follows the Harvard style of citations.
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1.1 Prediction of Yarn Strength Behavior at Different

Gauge Lengths

Usually, yarn strength measurement is carried out at 500 mm gauge length.
However, in practice, yarns are stressed at different lengths. For example, in the
weaving preparatory processes, say warping, yarns of much longer than 500 mm are
stressed. On the other hand, it is known that the strength of yarns evaluated at shorter
gauge length is a better predictor of fabric strength in opposite to the yarn strength
measured at long gauge length, say 500 mm (Realff ez al. 1991). Moreover, the
importance of understanding the yarn strength response at different gauge lengths can
be further appreciated with an eye to the ever-increasing non-traditional end-uses of
our yarns.

In order to know yarn strength behavior at different gauge lengths, we have a

few alternatives:

1) To carry out strength measurements using a tensile tester at different gauge
lengths,
2) To use the existing empirical equations relating yarn strength and gauge length

for prediction of actual yarn strength behavior corresponding to different
gauge lengths,
3) To develop a new scientific way for predicting actual yarn strength behavior at
different gauge lengths.
Among the three alternatives, it can be easily understood that the first one is not at all
a realistic idea. As far as the second alternative is concerned, Peirce’s equations
(1926) of strength and strength variability between long and short specimens can be
used. However, those are not enough precise, as reported by Meredith (1946), Morton
& Hearle (1992), to name a few. Therefore, a new scientific way should be developed
for predicting actual yarn strength behavior at different gauge lengths. In order to
have sufficient information on this behavior, it is necessary to know not only the basic
statistical parameters of yarn strength, say the mean value and the coefficient of

variation, but also the frequency distribution of yarn strength.

1.2 Understanding Yarn Strength Variability

[t is well known that yarn strength variability is one of those very critical

factors that determine the performances of the subsequent technological processes as
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well as of the textile products during their various end-uses. Many attempts were
made in the past to investigate the causes of yarn strength variability, but most of
them were confined only to establish empirical equations relating yarn strength
variability to yarn mass irregularity and to the variations in fiber properties. However,
it was observed that the variation in fiber properties influences a little on the total yarn
strength variation, whereas the variations induced at different stages of spun yarn
manufacturing process play the most significant role on the total yarn strength
variation (Suh er al. 2001). Nevertheless, no attempt has been made till date to
investigate the nature of those variations. Moreover, the physical bases of yarn
strength variability are still not enough clear. It is therefore of extreme importance to

gain new knowledge leading to improved understanding of yarn strength variability.
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2.1 Theory of Weakest-Link

The mostly quoted theory while studying yarn strength behavior at different
gauge lengths is the weakest link theory, which was first used by Peirce (1926). This
theory can be understood with a view to Figure 2.1. It is shown that a tensile force §

is applied on a yarn (“chain”) of length / which is divided

S

into n short sections (“links”) of equal length /, such that

l=nly; or,n=1/I,, where n is a positive integer. The

[ 0 weakest-link theory tells that the strength of the whole

[ 0 specimen of length [ is that of its weakest section. In other

¥ words, a single breakage among these short sections causes
: [ to break the whole specimen. The effect of this theory, as
] discussed by Booth (1968) and Morton & Hearle (1992), is

0 illustrated in Figure 2.2. The graph shown in Figure 2.2

IO . indicates the strength of a yarn at infinitely small increments

of length along the complete length /. If the yarn is tested for

S its strength at a gauge length /, then its strength will be equal
Pl | to the strength of its weakest point and this value is S, . If the

yarn is equally divided into two halves and these two halves

each of length //2 are individually tested, then two breaking loads S, and S, are

obtained and the mean of which is

higher than S,. Hence, by testing a W

yarn at a shorter gauge length the S ’\Q

apparent  yarn  strength  has S,

increased. Therefore, the order of Sl

ranking of yarns on the basis of 3/2 =< 1/2

their strength values may alter if the

gauge length is altered. Moreover, it / T,
Figure 2.2

1s believed that this effect 1s more

rapid in case of more irregular yarn.
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2.2 Distributions of Strengths along Yarns
There exits a debate among the textile researchers whether the strength of
successive short sections of equal length along the yarns is independent or dependent.

These two concepts are presented here.

2.2.1 Independent Strengths

This means the breakage of one small section does not influence the breakage
of other sections. This was first imagined by Peirce (1926). Under this hypothesis, no
correlation exists among the strength of successive short sections along a yarn.

This concept along with its consequences is very lucidly introduced in
Neckai’s book (1998). The probability of failure that a yarn specimen of length / is

broken by the application of the force S can be described by the distribution function
F(S,1), where F(S,/)e(0,1). Then the probability of survival (complementary
probability) that the yarn specimen of length / is not broken by the force S is given
by 1- F(S,I) . If 1t 1s assumed that every small section of the whole yarn of length /

experiences the force S equally, then the probability of failure that every small

section of length /, is broken by the force § is given by the distribution function
F (S,ZO). The probability of survival (complementary probability) that the section of

length [, is not broken by the force S is given by 1- F(S,/;). If it is further assumed

that the distribution function does not significantly vary from one part of the section

to another, then according to the weakest-link theory, the joint probability of survival

of the whole specimen is equal to the product of the individual probabilities of

survival for each section. Then the following relations are evident from Figure 2.1
1-F (S,l)

=[1-F(8,5)[1-F(8,5)] - [1-F(S.1,)]

n times

_[1-F(8,1,)] 1)
~[1-F(S.1)]r. 22)

Rearranging the above expressions, the following equations are obtained
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F(8,1)
=1-[1-F(8,1,) ] (2.3)
=1-[1- F(S,!U)in? . (2.4)

The last equation tells the relation between the two distribution functions of strength
corresponding to the shorter and longer gauge lengths. Equation (2.2) can also be

written in another form as shown below

1 1
[1-F(S.0) ] =[1-F(S.1,)]x. (2.5)
The probability distribution of strength S corresponding to the gauge length / is

defined by the probability density function f(S,/). This is related to the distribution

function F°(S,7) by the following expression

f(SJ)Za—Fg-’[—)- (2.6)

Substituting Equation (2.4) into the last equation, the following expression is obtained

f(5.1)
=é[1-—F(S,IO)ﬁ'l——~——ng§’l°)

! -
:Z—f(S,ZU)[I—F(S,Zﬂ)]fo . (2.7)

0
The above equation tells the relation between the probability density functions of

strength corresponding to the shorter and longer gauge lengths.

2.2.2 Dependent Strengths

This means the breakage of one small section influences the breakage of other
neighboring sections. Spencer-Smith (1947) introduced this concept with an
imagination that the strength of the neighboring fracture zones in yarns is related to
each other partly because the same long fibers will occur in a number of fracture
zones and partly because of the non-random irregularities introduced into the
thickness of the yarn by the preparing and spinning machineries. The fracture zone is
that small region where actual fracture takes place while testing the strength of a long

length of yarn, as reported by Turner (1928).
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2.3 Frequency Distributions of Strengths

Another great controversy exists among the textile researchers on the
assumption whether yarn strength follows Gaussian (normal) distribution or
Weibullian distribution or different types of Pearsonian distribution. (The “zero” type

Pearsonian distribution is called the normal distribution.)

2.3.1 Gaussian Distribution
Peirce (1926) hypothesized that the strength S of short specimens each of

length /, follows Gaussian probability distribution with mean value S, and standard

deviation o, as shown below

f(SJo)—:\/%G exp[—(5"§o)2/203}- (2.8)

But he did not make any attempt to verify it. Later on, applying the so-called
skewness and kurtosis test on the experimental yarn strength data corresponding to a
short gauge length (50 mm), Neckai (1998) concluded that the assumption of
Gaussian distribution was true at 95% significance level. Furthermore, he derived that
if one assumes Gaussian distribution of yarn strength corresponding to a particular
gauge length; then the distribution of the strength at other gauge lengths is not
Gaussian. Truevtsev et al. (1997) conducted 500 strength measurements on ring and

rotor yarns with different counts each at 500 mm gauge length, and based on the 7’

criterion, they found that the experimental dataset did not differ significantly from
Gaussian distribution at 95% significance level. A similar observation was earlier

reported by Pozdniakov (1978) and Perepelkin (1991).

2.3.2 Weibullian Distribution

Realff et al. (1991) attempted to fit the experimental strength datasets of
polyester-cotton (65/35) blended ring and air-jet spun yarns corresponding to different

gauge lengths with Weibullian distribution. A three-parameter Weibullian distribution

of the strength S of short specimens each of length /, has the following distribution

function

F(S,1,)=1-exp| ~(S~8,,) /0" . (2.9)
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where § € (Sm,.n,oo>, S is the location parameter, O is the scale parameter, and ¢

min

is the shape parameter. These three parameters S _, =0, 020, and c#0

min
characterize the above distribution. A two-parameter Weibullian distribution is

~

obtained by putting S . =0 in the above equation. Applying the Kolmogorov-

min

Smirnov goodness-of-fit test, Realff er al. (1991) found that both of the two and three-
parameter Weibullian distributions were in a good agreement with the experimental
datasets and the three-parameter Weibullian distribution did not bring any significant
increase in the goodness of fit as compared to the two-parameter Weibullian

distribution.

2.3.3 Pearsonian Distribution

Kapadia (1934) conducted 80000 strength tests at a gauge length of 12 inches
on a tensile tester working on the principle of constant rate of loading and used
Pearsonian statistics to verify the experimental results with different types of
Pearsonian distribution. According to his observation, the experimental distributions
of the strength of cotton carded ring yarns with different counts were not adequately
fitted by the Pearsonian curves. He found a high correlation between yarn strength
and yarn count; and when these two variables were considered together as one
variable, namely count-strength product, the distributions were adequately represented
by the Pearsonian types of curves, namely types I, III, and IV. He thus concluded that

the heterogeneity of yarn strength was due to the heterogeneity of yarn count.

2.4 Equations Relating Strength and Gauge Length

Several attempts were made by the textile researchers to establish equations
describing the relations between strength and gauge length in spun yarns. Those

equations and their validity are discussed in the following sections.

2.4.1 Peirce’s Equations

Peirce (1926) assumed that 1) the weakest-link theory holds on yarns, 2)
strengths of successive short sections of length /;, forming a long specimen of length
[, are independent, 3) strengths of those short sections follow Gaussian distribution.

Under these assumptions, he obtained the following approximated relations of

strength and strength variability between the short and long specimens
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§* =5 +420,[ (1L} - 1], (2.10)

s = 2.11)

3

where S° and § are the mean strength of yarn specimens with lengths / and /,,

respectively; O . and o, are the standard deviations of strength corresponding to

5
lengths / and /[ , respectively.

From time to time, many attempts were made to verify the validity of Peirce’s
equations. It was reported by Morton & Hearle (1992), Hussain et al. (1990), Knox &
Whitwell (1971), Spencer-Smith (1947), Meredith (1946), Kapadia (1935), to name a
few, that Peirce’s equations did not correspond well to the reality. As a reason for this
discrepancy, Spencer-Smith (1947) imagined that Peirce’s assumption of independent
strengths was not real. According to Spencer-Smith, strengths are dependent (cf.
Section 2.2.2). Peirce’s assumption of independent weakest link was questionable also
to Knox & Whitwell (1971). They reported a sensitive test for validity of any model
based on the assumption of the independent weakest link theory. According to this
test, the independent weakest link theory holds good if the values of hazard functions
corresponding to two different gauge lengths are in the ratio of the two gauge lengths
for a sample of constant diameter. They estimated the hazard functions from the
strength of 10 inch and 30 inch lengths of cotton yarn, reported by Peirce (1926), and
found that although the hazard functions for the two lengths were parallel, as would be
predicted if the independent weakest link theory held, over part of the range of
breaking force, but the expected ratio of 3/1 did not exist, even in those regions. This
forced them to conclude that the cotton yarn could not be represented as systems of
simple links connected in series, although they did not deny the existence of some
weakest link in the yarn. Later on, a similar conclusion was drawn by Realff et al.
(1991). They observed that the Weibullian shape and scale parameters changed in a
manner not coincident with the independent weakest-link principle. Regarding this
behavior they hypothesized that the presence of same sort of flaw at all gauge lengths
might not be true in yarns, and on the basis of scanning electron microscopic
photographs, they proved that there exist different mechanisms of yarn breakage at
different gauge lengths. A very interesting point with respect to Peirce’s theory was
issued by Zurek (1975). According to his experimental experiences, yarn breakages

occur depending on yarn twist and this consideration was neglected in Peirce’s theory.

10
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Figure 2.3 discusses this issue. A yarn is schematically outlined as a chain consisting

of three links of equal length /, in Figure 2.3a. A real yarn is schematically presented

in Figure 2.3c. Imaginatively, when these links had been separated from the chain and
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Figure 2.3

individually tested in a tensile tester, the strength was observed as S,, §,, and S,,

respectively. The individual breaking places of these links are marked by the symbols /
in Figure 2.3a. In this case, the real broken parts were looked like as shown
schematically in Figure 2.3d. Hypothetically, when each of these links had been
equally divided, six shorter links each of length /,/2 were obtained (Figure 2.3b).

Then those shorter links had been individually tested, the strength was found as
81,8,,,5,,,8,,,5,,,and S,, , respectively. As shown here, the breakages of shorter
links (length /,/2) occurred at other places than those with longer links (length /,) and

their arrangement was significant: there were links with identical breaking places (e.g.,
the second link from the left-hand side), or links with new breaking places (e.g., the
first and the third links from the lefi-hand side). The new breaking places are
schematically shown by the symbols o in Figure 2.3b. The real broken parts due to

breakage of a shorter link were looked like as shown schematically in Figure 2.3e.

11
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According to the weakest link theory, out of the three pairs of strength

(S,,and S,,),(S,, and S,,),and (S;, and S,,), only §,, coincides with §,, while the
other ones (S, and S,)>S, as well as (S;, and S;,)>S,. In both the cases, the

distribution function of strength of shorter links is different from that of the longer
links. As a result of this, the mean strength measured at longer gauge length may be

obtained non-proportionally smaller than that can be predicted by Peirce’s equation.

2.4.2 Spencer-Smith’s Equation

Spencer-Smith (1947) imagined yarn as a chain of successive fracture zones of
same length and the strength of these fracture zones is dependent. Following his
imagination let us consider a yarn as a chain of N successive fracture zones of same

length /,. The strength of those fracture zones is 81 21850 ns Bp oS IR IIETE S_!.

denotes the strength of ;" fracture zone. The mean strength of these fracture zones is

Sy . If a section longer than a few fracture zones, say a section comprising ¢ fracture

zones, is stretched, then the strength of the adjacent fracture zones in this section is

S;158,25,8,,, where j refers to the particular section comprising ¢ fracture

zones. The strength of this section is equal to that of the weakest fracture zone in this

section. This is expressed by the symbol §. . A similar section comprising ¢

Jlg)min
fracture zones is considered, this section is referred by m , and strength of this section

is expressed by the symbol § . The mean of those minimum strength values, if

m(g)min

Certainly, S is smaller than S,. This

min * n(g)min

n sections are broken, is :S‘-”(q)
difference, as worked out theoretically by Spencer-Smith, can be expressed as follows

Sy=8,.=wla)o,R(q), (2.12)
where w(q) is a statistical function defined by the mean difference between the mean
and the minimum value of ¢ individuals selected at random from the appropriate
normalized frequency distribution, o, is the variance of the strength of all fracture

zones in the yarn, and R(q) is the serial correlation function. A close resemble of the

above expression with Peirce’s strength equation reveals that both expressions are
comparable: w(q)R(gq) in Spencer-Smith’s equation takes 4.2[l~(1/1{,)"‘;5jl in
Peirce’s equation.

12
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Several researchers discussed some salient points on the parameters,

mentioned in Equation (2.12), influencing the mean strength of the weakest of g

fracture zones. These are reported below.

Length /, of Fracture Zone: There is no doubt that accurate estimation of the

fracture zone length is very difficult. However, as Spencer-Smith (1947) suggested,
the fracture length can be indirectly estimated from the best fit of Equation (2.12) to
the strength of yarns measured at different gauge lengths, whilst independent
confirmation may also be obtained from a purely theoretical approach. Spencer-Smith
observed that the fracture zone length varied with the twist factor approximately
logarithmically and was independent of yarn count at normal twist factor. Besides the
indirect estimation of fracture zone length, it is also possible to make a direct but
rough estimation. One such method was reported by Realff et al. (1991). From the
scanning electron microscopic pictures of partially and completely broken samples,
they observed that the cross-sectional shape of the fracture zones was considerably
different from that of the unbroken yarn, and the length of the fracture zone was equal
to the length of the region of reduced cross-section of one of the failed ends.

Interestingly, this length was different

- : : Table 2.1
in different technological yarns, and it — e
_ , _ Spinning Gauge Fracture
was also changing with the change in
technology length zone length
gauge length. Table 2.1 shows the
[mm)] [mm)]
range of fracture zone lengths
Ri 127
depending on the strength 5 =
measurements carried out at different L i 24
gauge lengths with 23 tex blended Ring <2 0.5-2
(35% cotton and 65% polyester) ring Air-jet 762 3.5-10.5
and air-jet yamns (31.8 mm average Air-jet 1947 3-8
staple length). Another method of Air-jet <2 0.5-2

rough estimation of the fracture zone
length was given by Nanjundayya (1966). He adopted the following procedure to
reconstruct the profile of the unbroken cotton yarn from the two broken pieces of the
same yarn (Figure 2.4). Here a,b,c,... are the fields of view from the broken pieces,

X,,X,,X_,..and Y,,Y,, Y, ... are the corresponding numbers of broken fiber ends in

piece I and piece II, respectively. For example, if X, and Y, were the maximum

13
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Figure 2.4

number of broken fiber ends in the respective pieces, it is highly probable that the

fields dand g should have been coincident in the yarn just prior to break. By

coalescing the two broken pieces in such a way that section d in piece I is joined

with section g in piece II, it is possible to reconstruct the profile of the yarn before

break. In order to determine the number of broken fiber ends, two broken pieces were
colored, as suggested by Bright (1926), and then mounted in 18% caustic soda
solution on a glass microscopic slide under a microscope.

Incidentally, a new concept of effective gauge length was theoretically
introduced by Koo e al. (2001). According to them, a spun yarn is considered to be a
continuous chain of twisted parallel fiber bundles with a known average number of
fibers of which only some are continuous within a given segment of size L, as shown

in Figure 2.5. The test gauge length

L' is related to the effective gauge
length L by the expression: L'=rL,
where » is the number of bundles.

Using computer simulation, Suh et

al. (2001) determined the optimum

effective gauge length (Z,) such that

the theoretical strength properties

under this gauge length corresponded Figure 2.5

to the actual strength properties at 95% significance level. The value of L, was found

smaller for finer yarns and it was decreasing with the increase in the number of turns

per meter of yarn. It was mentioned that L, was probably related to the short fiber

content in the cotton bale, but the exact relation was not reported.

14



Yarn Strength as a Stochastic Process Chapter 2: Review of Literature

Parameter w(q) : Its value can be obtained from the statistical table given by Tippet

(1925). According to Spencer-Smith’s observation (1947), w(g) was insensitive to

the shape of the distribution and it was increased linearly with the increase in twist

factor.

Serial Correlation Function R(g): Spencer-Smith (1947) found that R(q) was

dependent primarily upon the fiber length distribution and the characteristics of the
system on which the yarn was spun, and it was practically independent of the yarn
count and twist factor for normal flax yarns produced on a standard system with
constant drafts.

Strength of Fracture Zones: Spencer-Smith (1947) observed that the strength of the
fracture zone was increased to a maximum and then decreased again as the twist
factor was increased. He found that the optimum twist factor of a particular material
was dependent on the fiber properties. It was also observed that the strength of the
fracture zone was independent of the yarn count at normal twist factors.

Standard Deviation o, of Strength of Fracture Zones: According to Spencer-

7
Smith’s observation (1947), the standard deviation of strength of fracture zones was
decided mainly by the mass irregularity along the yarn, but it was also affected by the
local fluctuations in the mean size of the fibers and their elastic properties.

A good agreement between the calculated and actual yarn strength at different
gauge lengths for several types of wet-spun and dry-spun flax and rayon staple yarns

was found by Spencer-Smith (1947),

however, according to Morton & Hearle 12 ] ]
(1992), this agreement is still not perfect 11 }
(Figure 2.6) Though Spencer-Smith’s ——

{ ] .
imagination of dependent strength results = 10 | Spencer-Smith

=11]
in a better correspondence with the é "
experimental results as compared to o
Peirce’s equation, however, Spencer- 8

_ - o Peirce
Smith’s relation is open to criticism on |
7

the ground that the actual measurement 0 10 20“““—_‘50
of the fracture zone length is ill defined. Gauge length [in]
Apart from this, it is very likely that the Figure 2.6
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mechanism of yarn breakages at all gauge lengths are not the same and turns in the
yarns are redistributed during the measurement of yarn strength (Morton & Hearle

1992).

2.4.3 Zurek & His Coworkers’ Equation
Zurek and his coworkers (1976, 1987) also worked on the problem of yarn

strength-gauge length relation and proposed the following empirical relation

§' =8, [1—3.64»’{1—(1/!},)_1"”}}, (2.13)

where S” is the yarn strength measured at gauge length /, S, is the strength of the
fracture zone of length /,, v is the coefficient of variation of yarn linear density.

Using some approximated relations for the theoretical evaluations of S, v, and /,,

they determined the theoretical strength values corresponding to 500 mm gauge
length from the above equation, which were moderately correlated (correlation
coefficient — 0.79) with the actual strength values of cotton carded and combed ring-
spun yarns measured at 500 mm gauge length. Later on, Frydrych (1992), one of the
coworkers, replaced v in the above equation by the coefficient of variation of
strength of fracture zones and approximated this coefficient by considering the length
of the fracture zone as 5 mm, and then found a high correlation coefficient (0.94)
between the theoretical and the actual strength of cotton yarns corresponding to 500
mm gauge length. However, in most of the cases, the theoretically obtained strength

values were higher than those obtained experimentally.

2.4.4 Hussain and His Coworkers’ Equations
Hussain er al. (1990) measured the tensile properties of both ring-spun and
rotor-spun cotton yarns at different gauge lengths, and tried to fit the tenacity data to

the following logarithmic, exponential, and power law relations by the least square

method
£ = A+ Blog [
7 ks (2.14)
S‘ Bl
—=Ae"™,
T (213
S.
= AP
7 (2.16)
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where S° is strength at gauge length /, T is yarn count, 4 and B are two constants.
They found very high and almost same values of the correlation coefficient for the
logarithmic and power law expressions, but relatively lower value of the correlation
coefficient for the exponential expression. They further analyzed the power law
expression and found that the above power law expression gives rise to singularities at
extreme values of /, i.e., the tenacity value becomes infinite when /=0 and the
tenacity value becomes zero when / =0, neither of which is feasible. To avoid these,

they modified the above power law expression as follows

"

S @ = or,Ioge[%——C]=1OBEA—BIOEE(E+D)’ (2.17)

where C' and D are two additional constants. The constant C is evidently the
limiting value of tenacity, and the value of 4 is the difference between the value of
tenacity at gauge length (1-D)cm and the limiting value of tenacity. The values of
C and D were evaluated using a suitable program on a computer. It was observed
that the tenacity of both ring and rotor yarns decreased with the increase in gauge
length, but the rate of decrease was more in case of ring yarn than rotor yarn.

According to Hussain ef al., this was due to fact that the rotor yarns are more uniform

along their length than their ring counterparts.

2.4.5 Kapadia’s Equation
Based on experimental results, Kapadia (1935) suggested the following power

law expression
Sy =EM”, (2.18)
where M denotes the order of multiple lengths (multiples of 1 foot long) forming

various test specimens, S, is the corresponding strength, £ and F are two
constants.
2.4.6 Mark’s Equation

Mark (1932) proposed the following logarithmic equation

) [
= = ?—Gloge ('!_J: (2.19)

0
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where §” and S are strengths measured at gauge lengths / and /,, respectively, 7' is

yarn count, and G is the degree of imperfection indicating the rate of decrease in

strength with increasing gauge length.

2.4.7 Sippel’s Equation
On the basis of experimental observations, Sippel (1958) proposed the

following empirical relation

1 1
- + HI,
5 5. 5.5 (2.20)

[-+]

where §; 1s the strength at zero gauge length, S” is the strength of a sample of length
[, S, 1s the strength of an infinity long sample, and / is a factor characteristic to the

material.

2.5 Types of Yarn Breakages at Different Gauge Lengths
Hearle & Thakur (1961) classified the yarn breakages into two types:
catastrophic and non-catastrophic. The catastrophic yarn breakage occurs when all
fibers break or slip completely at the same load. The load-extension curve of a yarn
that undergoes catastrophic breakage is shown in Figure 2.7a. A yamn is said to have
broken non-catastrophically when all fibers do not completely break or slip at the

A A

same load. When a few

fibers break, the remaining
fibers continue to take up =
=) Q
the load, with different - —
sets of fiber breaking at
different loads. The load- ; :
Extension Extension
extension curve for a yarn a I
that breaks non- Figure 2.7

catastrophically is shown in Figure 2.7b.

Radhakrisnaiah & Huang (1997) studied the influence of gauge length on the
load-extension behavior of single (cotton) and blended (polyester 50%-cotton 50%)
spun yarns produced by different spinning technologies. They found all yarns showed
the catastrophic breakage at 500 mm gauge length testing, and at 45 mm gauge length

testing only the ring spun yarns showed mostly catastrophic breakage, while the rotor,
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air-jet, and friction spun yarns showed mostly non-catastrophic breakage. Thus they
concluded that the manner of yarn breakage at short gauge length (45 mm) is different

than that at long gauge length (500 mm).

2.6 Physical Mechanisms of Yarn Breakages at Different
Gauge Lengths

There are two primary mechanisms of yarn breakages: fiber breakage and fiber
slippage (Hearle 1989). In general, if two similar yarns break by different
mechanisms, the one breaking due to fiber slippage, as opposed to fiber breakage,
should result in lower strength. Yarn twist plays an important role in deciding the
mechanism of yarn breakages. It is known that increasing yarn twist causes the
breaking mechanism to change from one dominated by fiber slippage at low twist
multiplier to one dominated by fiber breakage at higher twist multiplier.

Based on the scanning electron microscopic photographs of unbroken,
partially broken, and completely broken samples, Realff et al. (1991) concluded that
the mechanism of breakage might also change due to a decrease in the gauge length.
According to them, at a gauge length well above the staple length of fiber, only a few
percent of the fiber population of the specimen are held in either test jaw. Conversely,
at a gauge length well below the staple length, nearly all fibers are held at both ends
by the test jaws, preventing significant fiber slippage from occurring until the fibers
first break in tension. At gauge lengths between these two extremes, an increasing
percentage of fibers in the test specimen are held at one end as the gauge length is
decreased. Hence, there is a marked increase in yarn strength for gauge lengths well
below the staple length where fiber slippage is precluded, as compared to long gauge
lengths (for example, standard gauge length) where fiber slippage may prevail
depending on yarn structure and fiber properties.

Influence of Yarn Structure: The structural influence on yarn breakages at different
gauge lengths is a little known from the study of Realff ef al. (1991). They conducted
strength measurements of polyester-cotton (65/35) blended ring and air-jet spun yarns
of same count (23 tex) at different gauge lengths (12.7 mm, 25.4 mm, 54 mm, 76.2
mm, 127 mm, and 254 mm). It was observed that at 95% significance level, the ring
yarn was statistically stronger than the corresponding air-jet spun yarn at all gauge

lengths more than 12.7 mm, but this difference was not statistically significant at a
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gauge length of 12.7 mm. They explained this behavior on the basis of their structural
differences. The air-jet spun yarn consists of a core of almost parallel fibers encased
in wrapper fibers whereas the ring spun yarn is characterized by its concentric
migrating helical structures. The core fibers in the air-jet spun yarn is less constrained
by their neighbors than their ring spun counterparts, which enables more slippage to
occur in case of air-jet spun yarn during tensile testing at long gauge lengths and a
dominant breakage mechanism is expected once the constraint of the wrapper fibers is
lost.

Influence of Fiber properties: Besides the yarn structural influence, fiber properties
are also playing significant roles in determining the strength of yarns at different
gauge lengths (Perepelkin ef al. 1987). It was observed that at short gauge length, say
50 mm, the role of fiber strength in determining yarn tensile characteristics was very
dominant; while, at higher gauge length (for example 500 mm) the role of inter-fiber

friction was more significant than the role of fiber strength.

2.7 Causes of Yarn Strength Variability

Suh et al. (2001) developed a procedure for quantifying variability in strength

of spun yarns by introducing a new variance tolerancing and decomposition method.

According to them, the total variance of yarn strength (G;) decomposes into two
components: the between-package variance (Gﬁp) and the within-package variance

(wa ) , as shown below

G 2 2
GT Las Gbp 2 Gwp . (221)

The between-package variance (crﬁp) is entirely due to variations in processing

3

machines accrued at different stages of spinning. The within-package variance (Gip)

on the other hand, further decomposes into two subcomponents: random variance

(Gf) and nonrandom variance (cir ) , as follows
2 ot o
Gwp 5 Gr Gm' t (222)

The random component (Gf) is due to variances in raw material properties and those

resulting from random errors associated with fiber arrangement within the yarn. The

variance from the nonrandom component (Gir) reflects the variations caused by
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systematic fluctuations of the fiber mass due to process-induced drafting waves,

operator effects, environmental effects, etc. The total amount of process-induced

variance (Gi) can be obtained by adding the two nonrandom components

(G"” and o, ), as shown below

nr

o) 2
G =0 06 (2.23)
Then the total variance of yarn strength can be expressed as a summation of two

variances: the total process-induced variance (ci) and the variance due to the

random components (Uf ) , as follows

= O'i +o. (2.24)

It was found that the process-induced variations accounted for 69-82% of the total

observed variation in yarn strength and the rest (18-31%) was due to the variations in

fiber properties and the random arrangement of fibers within the yarn. Clearly, the

relatively large proportion of process-induced variation is most significant and needs
to be controlled and reduced.

The following sections are dealt with the effect of variation of fiber properties

and the influence of yarn mass irregularity on yarn strength variability.

2.7.1 Variation in Fiber Properties
Suh et al. (2001) observed that the coefficient of variation of fiber strength
was translated into a higher coefficient of variation of yarn strength, but the effect of

fiber length coefficient of variation was small and less consistent.

2.7.2 Yarn Mass Irregularity
Solovev (1938) found from the experimental analysis of several cotton yarns
including both carded and combed cotton yarns that the variability in yarn strength

can be expressed by the following formula

[1000
¢ Lt o (2.25)

where P is the yarn strength variability, T is the average yarn count expressed in tex,

and P

> is a constant responsible for the component of variance resulting from the

spinning system depending on the correctness of the process. The boundary values for

P, as reported by him, are: 3.5< F, <4.0 for combed material and 4.5< P, <6.0 for
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carded material. Based on the experimental results, Vinter & Drokhanova (1977)
found yarn strength variability was directly proportional to yarn mass irregularity. In
another research, based on the consideration that the variability in strength of fracture
zones of 5 mm length is directly proportional to the mass variation of the same length,
Frydrych (1992) obtained a very high correlation coefficient (0.94) between the
theoretical and experimental yarn strength measured at 500 mm gauge length. Yang &
Lamb (1998) found a linear dependence of the strength on the unevenness in case of
worsted yarn and observed that the amount of reduction of yarn strength at higher
gauge length from the strength of the fracture zone could be accounted for yarn
unevenness. Hamby er al. (1960) observed the following empirical power law relation
between mass irregularity and strength variations of American combed cotton yarns

with different counts
v(s)="", (2.26)
where v(7) and v(S) are coefficients of variation of mass and strength,

respectively, J and K are two constants. Based on their experimental data, the
correlation coefficient between these two was found as 0.83. A similar relation was
found by El-Behery & Mansoor (1970) in case of the Egyptian carded and combed
cotton yarns with different counts. According to their observation, the correlation
coefficients between mass and strength variations of carded and combed cotton yarn
were 0.93 and 0.71, respectively, and the appearance of greater number of thick and
thin places in carded yarn than combed yarn of same count resulted the former to be
more sensitive for mass and strength variations than the latter. Mandl (1981) observed

the following relations between yarn mass irregularity and strength

o S‘ = CVW (1)
CV, (1) = 1
5 = 3
1-0.80 ETS—O(-{-)--CVB (1) (2.28)

where §° is the strength at gauge length /, §” is the mean strength at gauge length /,

I' is the yarn count (tex), T is the mean yarn count (tex), CV (I ) is the coefficient
of variation of mass within the yarn section, CVj (/) is the coefficient of variation of

mass between yarn sections, and CVj (/) is the coefficient of variation of strength. It
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is clear from the above expressions that, for a fixed length, improvement in yarn

evenness has the same effect on strength. It is also evident that, when the gauge length

is increased, both S* and CV;(/) are reduced.
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3.1 Concept of Stochastic Process

Let us take a long length of yarn and successively divide into several short
sections of equal length /[, as shown in Figure 3.1. These successive sections are
designated by the serial numbers i =1,2,3,...,k,.... Each i" section possesses some
value of strength §;. These strength values are found depending on the serial number

of the section 7. The whole procedure can be independently repeated many times
from the other places of the same yam. In this way, strength of the same-numbered

sections can be found many times. Therefore, S;, where i=1,2,..., are stochastic
variables. Now S, can be understood as a function assigning strength values to each
serial number 7/ denoting sections of equal length /. Because each S, is a stochastic

quantity, this function can be called as stochastic function having a discrete argument
i or stochastic process with discrete argument 7. In this case, those repetitions are
called as realizations of the stochastic process. It is also possible to describe a general

section of length /, in terms of its distance x from the first section (Section No. | in
Figure 3.1) by the following expression
x=L@i-1). G.1)

Then the discrete parameter x is another argument of the stochastic process.

SectionNo.| 1 | 2 | 3 I k
Strength | §4 (8, |53 ke miltas T
Length | [ lo Lo ZO Lo

<>l i —

Distance x |1/

20
(i-l)lo -
(k-1)lg >

Figure 3.1

3.2 Stationary Stochastic Process

A stationary stochastic process has a behavior that does not depend on where

the time origin is placed. It means that the distribution of the stochastic variables
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s s

i+a ? Titay *° :+a

(parameters a,(a,(---(a, are same for all values of /) depends on
the value of a,,a,,...,a,, but does not depend on the value of 7. Hence the probability

density function f(S,),S; €(S,.sSme ) is same for all values of i. The statistical

min ? = max
characteristics of this process are given below.

Mean:

E(S)= [ $./(5,)ds,=5. (32)

This 1s constant for all values of i =1,2,....

Variance:

Sﬂ'l!l{

var(S,) = E[(Sf —E)Z] = SI (S, —E)2 £(5,)dS, =c2. (3.3)

This 1s also constant for all values of i =1,2,....

Standard deviation:

Gy =403 . (3.4)

This is also constant for all values of i =1,2,....

Autocovaraince:
COV(SE’SHk) [(Sf '—E)(SH.& _E):i =
T T (S S)(Sie =) f (Sis 8, ) 45,05, (3.5)

This is also constant for all ; and any k. Putting £ =0 into Equation (3.5) and then

comparing with (3.3), the following expression is obtained

cov(S,,S,,, )= E[(S -S)(s, -E)] = E[(Sf, ‘g)z]: 2. (3.6)
Autocorrelation coefficient:
B(S5. =covle 5 o (3.7)

This is also constant for all i and any k. Putting k =0 into Equation (3.7) and then

using (3.6), the following expression for the autocorrelation coefficient is obtained

p(S,S,,,)=cov(S,S,,)/ o5 =05 /05 =1. (3.8)
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3.3 Ergodic Stochastic Process

In this stochastic process, the probability and the statistical characteristics
related to one single realization do not change from those corresponding to other

realizations. The statistical characteristics of this stochastic process are given below.

Mean:
= 1 k
B—lm— S
k== fr ; ; (3'9)
Variance
9 - ]. & =52
cs_m;;(s,.—s) . (3.10)

Standard deviation:

o, = lim f}(—i(S;E)z . (3.11)
f=]
Autocovaraince:
cov(S,.,SH,c)zm%é[(&ﬁ)(%—E)]. (3.12)
Autocorrelation coefficient:
P(S:Sui)= }%%i[(sx _E)(SM ‘"Eﬂ ll_l;l;lo%’z:;(s; _§)2 . (3:13)

=]

3.4 Markovian Stochastic Process

Usually, by the event “strength is S,” or “strength has a value §,”, it is
imagined that the strength value of the i"section lies somewhere in the interval
(S.,S,+dS,). Analogously, by the event “strength is S,,S,,,,...,S,,, ” or “strength has
different values S,,S,,,,...5,, , we imagine that the strength values of the
T N Y sections lie somewhere in the intervals
(8,,8,+dS,),(S,,,,S,, +dS,,) s (S5 Sii + S, ) . The probability that the strength

i+12 > i+l ¥

of any section lying between S and (S+dS) is /(5)dS . The probability of strength
S, of i+1" section can be obtained from the already known strength §,S,,..., S, of

first i sections. If the strength of i+1" section is independent of the strength of the

preceding i sections, then the probability that the strength of i+1" section lying
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between S, and (S, +dS,,) is f(S,,)dS,, . Generally, the probability of strength

i+l *

S., depends on the strength S,,S,,...S, of all previous sections. (It is usually
considered that if the strength values of all previous sections are higher, then the
strength value of the following section is also higher and vice-versa.) Under the
Markovian stochastic process, it is assumed that the knowledge of only the “present”

strength value S, is necessary to determine the “future” strength value S, , where

i+1 2

information on the “past” strength values S,,S,,...,S

., 1s already considered in the

“present” strength value. This is known as Markovian property of the Markovian

stochastic process.

3.5 SEM-Stochastic Process

Sometimes the above three stochastic processes are combined together and
then the stochastic process is called as stationary, ergodic, and Markovian stochastic

process, or in short SEM-stochastic process.

3.5.1 Probability Characteristics
The SEM-stochastic process is usually described by the probability density

function f(S,) and the conditional probability density function (S

SI.). The

i+k
former function tells about the distribution of §; and the latter describes the

distribution of §.

i+1?

when the strength S, of the previous section is known.

According to the theory of probability, the probability that i" section has the

strength S, and simultaneously i+1" section has the strength S is

£(5,.8,,,)ds,ds,

i+l 2

where f(S,,S,

i+1

) is the joint probability density function of the
strength of two consecutive sections. This probability can be written as follows
£(8,,S,,)dsds,,, = £(8,)dS;-9(S,,,|S,)dS.,, - (3.14)
The above expression can be written in another form
£(8,:8,1)= 7 (8;) (S
Now the following expression is evident from the above equation

£{(S5)
f (Sr' )

S.). (i)

(P(Sm

8)= (3.16)
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Under the assumption of the stationary process, both of the functions at the right-hand

side of Equation (3.16) are same for all values of i: hence, (p( 1|S,) is also same for

all values of 7.
Similarly, using the multiplication rule of probability, the joint probability of
the strength of three consecutive sections can be written as follows

[ (8815 8,42)dS,dS,,,dS,,,

=[£(5,)dS, - ¢(S,.,|S,)ds,., ] [ 9(8,.,1S..1)dS.., |=

= £(5.)0(S...|S)(S..2|S...)45,dS,,.dS,,.,. (3.17)
Then the following expression is evident from the above equation

F(S58i15812) = £ (8) (S |S:) 0 (S

The last expression tells the joint probability density function f(S,,S,,,,S,,) of the

S5i1) (3.18)

i+
strength of three consecutive sections.

Analogously, it is possible to obtain the joint probability of the strength of
k=3 consecutive sections, then k=4, and so on till the last repeat. Thus the
following expression is found

f(S B e Hk)deSH,dS --dS,,,

=[£(5,)4S,-9(S..15,)dS... -(S.., |S,-+.) MO e
[0S ]Sie)dS,i ]

= £(S)0(S5]8) (S0 |Sm1) - @(Si IS

From the above equation, the following relation is evident

i1 ) 45,0848, --dS ... (3.19)

i+l

k
(8553 Sisrees S = £ (ST (St Sisica)e (3.20)
J=1

where k =1,2,.... The last expression tells the joint probability density function

f(5,S,,,5.,.,...5,,) of the strength of k consecutive sections. Under the

i+
assumption of the stationary process, both of the functions at the right-hand side of
Equation (3.20) are same for all values of #; accordingly, 1 (S;,S,,,S,,,...,8,.;) 18
also same for all 7.

Now the joint probability of the strength of any two sections i and i+ k™

can be written as follows

f(SJ"SJ-rk )dSidSi-rk = f(S:)dS: '(P(S,'+;(

S:’)dSHk : (3.21)
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From the above equation, the following expression is evident
f(S:" S¢'+k ) = f(Sr) ’ (p(Sh-k

where k=1,2,... . The last expression tells the joint probability density function

S,), (322)

f(S,,S,,,) of the strength any two sections. In accordance with the theory of

probability and using Equation (3.20), we obtain another form of the above

distribution function as shown below

f (Se 3 Sx+k )

- S,

= I _[ I f S s SivtSiazs e Si+k—lSi+k )dSHIdS dSi
= i So=Sin Sl ,_s

Smax Sna k

- T 7+ T s6)|ITels.

Sis1=Smin $i42=Smin  Sisk—t=Smin LoE! -

8 S I e ]

:f(Si) _[ _[ j lj(P(S,-”- S£+j—]) dS,,,dS;,,---dS,, s (3.23)

S41=Smin S:2=Smin Siek-1=Smin .

max I] 1ax

Sa‘+j—1) ds; dS:’+2"'dS:‘+k—l

i+1

where £ =2,3,.... Comparing Equation (3.23) with (3.22), the following expression

for the conditional probability density function (p(S o Sl.) is obtained

S, S,

o T T [l_[w(

81 =5in 9143 =iy 5, =5,

i+k=1""min

14 (S"'”f :+; I)JdSH}dS dS;+k 12 (324)

where k =2,3,.... The above integral function is same for all values of 7 in the case of

stationary process; accordingly, (p(S. ,.) 1s also same for all values of .

3.5.2 Statistical Characteristics

The statistical characteristics of the SEM-stochastic process are usually
described by the mean, variance or standard deviation, autocovariance, and
autocorrelation coefficient. Certainly, the expressions for the statistical characteristics

of the SEM-stochastic process are identical to those of the stationary stochastic

process.

3.6 Summation of Two Independent SEM-Stochastic

Processes

Sometimes the stochastic process S, is considered as a summation of two

independent SEM-stochastic processes S, and VS, as defined below
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b= Vs s (3.25)

where “)Sf and (E}Si represent the first and second stochastic process of the above
type, respectively.
The statistical characteristics of this process are given below.

Mean:

5="s40g (3.26)
Since the two SEM-stochastic processes are mutually independent, then the following

expression is valid for i =1,2,... and £k =0,1,2,...,

s, s, e 2SS, B8 =5 s (3.27)

Using this expression, the following expressions for the other statistical characteristics
of this process are obtained.

Variance:
ol = o2 + W2, (3.28)

Standard deviation:

= AT (3.29)
Autocovariance:
cov(S;, 5., )= cov( s, 08, ) +cov( D5, Bs,,, ). (3.30)

Autocorrelation coefficient:

Her (g 0) el (e o
p(sS,, +k)_ —5* ( 8 ) = ol 95,508 (3.31)

The expressions at the right-hand side of Equations (3.25) to (3.31) are independent of

i; therefore, the left-hand side of those expressions are also independent of i.

Consequently, the summation of two independent SEM-stochastic processes U)Si. and

mS,. is also a similar type of stochastic process ;.

3.7 Gaussian Stochastic Process

Sometimes the probability density function of the strength S§; is given by

(3.32)

J1



Yarn Strength as a Stochastic Process Chapter 3: Theory

The above function follows Gaussian distribution with mean value S (parameter) and
variance . (parameter). Then the stochastic process is called Gaussian stochastic
process. The conditional probability density function can be written as follows

0(S,.1,S,) = 1 exp »(S”'_FH(SE_EH) (3.33)
v e 2eill ) ’ |

where the parameter » = p(S‘.,Sm) is the autocorrelation coefficient between S, and

S,

i+l"

The conditional probability density function also follows Gaussian distribution

with two parameters: mean value [g +r (S‘. = E)] and variance o’ (1 et ) !

3.8 SEMG-Stochastic Process

When the SEM-stochastic process follows Gaussian distribution, then the
stochastic process is called SEMG-stochastic process. In that case, all equations
mentioned under Sections 3.5 to 3.7 are also valid in the case of SEMG-stochastic

process.

3.9 Standardized SEMG-Stochastic Process

The SEMG-stochastic process S, can be further considered as standardized

SEMGs-stochastic process U, as defined below

1 el B N T (3.34)
Cs

Differentiation of the above expression with respect to U, yields the following

expression

ds,
oo (3.35)

3.9.1 Probability Characteristics
The probability density function f (U,) of the standardized SEMG-stochastic
process U, is obtained using Equations (3.32), (3.34), and (3.35) in the following

manner

32



Yarn Strength as a Stochastic Process Chapter 3: Theory

f(Ur') :dS
= St L
f ’)dU;.
2
= exXpy———}-0, =
Varo, "{ 2 } ;
e (3.36)
Now the following expression is considered
Si'+] __ R
= or, §;,, =S+o,U,,. (81
21

Differentiation of the above expression with respect to results in the following
expression

ds,

v, - (338

i+l

Using Equations (3.33), (3.37), and (3.38), the following expression for the

conditional probability density function ¢ (U L ‘,) is obtained

(P(Um U, ) -

ds

=0(S5.,,|5; =

(S )dUM (3.39)
(U

1 i+l rUi )2
=——————eXpPi—— -
D1 —# 2(1—r )
Using Equations (3.36) and (3.39), the following expression for the probability
density function f(U,,U,,,) is obtained
f(UisUf+l ) =
E f(Uf)(P(Um

U=

i _(UH-I _rUf)z}_

I U; :
e }ﬁ:p{ sl

Ux'z - 2rU¢'Uf+I + UI'2+|
‘ (3.40)

1
2ny1-7° exp{— 2(1—r2)

From the theory of probability and using Equation (3.39), the following

expression for the conditional probability density function (p(UM U;.) 1s obtained
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(p(UHk Ui) =
& i o k
= I j {HQ(U‘H U;+j_1) dv,du,,,---dU,, =
Ugy=—o U =—0 U, =—=| Jj=
U= Upy =0 Uy ==
: 1 SERTES
H\/ﬁ T=p2 b2 —"( ;(lirzj ]) dU;,dU;, AU, (3.41)
o o s

This is valid for k£ =2,3,.... Using some mathematical relations, derived in Neckai’s

book (1998), the above expression can be expressed as

Ui = rkU; 2
( )

I
=S = .
SR T 2(1-r%) (3.42)

Using Equations (3.36) and (3.42), the probability density function

¢ (Ut'-rk Ux' )

f(U,U,,,) can be expressed as follows

f(Ui=U£+k) = f(Ui)(p(UHk

Gil=

Ufz (Un-k "rka)z

1 1
T*’[T}ﬁx—l T

1 { v} -2r'vuU,, +U;
exp| —

o R B o i i+k i+k :
i 201-+*) } (3.43)

3.9.2 Statistical Characteristics

The statistical characteristics of this process U, are given below.

Mean:

U=E(U)= ?U,.f(U,.)dU,, = (3.44)
Variance: )

cg,=E(Uf)-52:T(U,-U)zf(v,.)duizl-o:l. (3.45)

Standard deviation:

= =1, (3.46)

~ Autocovariance:
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cov(U{.,UHk ) = E(U.-UM ) o

= ﬂ]‘ gj[ U:'U;'+kf(U;=U;+k)dU;dUr+k_Ez =

Ur.=—ncl Uiy =—20

2
7 1 (Umc _rka)
iUmme"p B om0
Ua=tl, T
g :_Iii_-rz"_; U|'+k =V\1-r* dU:+k =dV1-r*
==

S aed T 2k 4k 1 4
{ g P -;[(V I=r ir UI.)\/z_ﬁexp{—T]dV du, =

it j.V——I—e}ipli—Ki dV+rkU°_°[ I ex —E/—z— d¥Vdl. =
: \/E 2 ‘I_m\[Q_jg p 2 T

2

U’ 1 exp ——"z_dU.:
2 3

-+
exp[—%—" dU, =
(3.47)

Autocorrelation coefficient:
p(U,,U,,,)=cov(U,, Uy, )/of =cov(U, U, ) =r". (3.48)

Evidently, p(U,,U,,, ) is decreasing exponentially with increasing & .

3.9.3 Simulation

The conditional probability density function (p(UM U,.), expressed in

Equation (3.42), can be possible to express in another form by considering the

following stochastic variable
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v Um _rU:'
i+1 \/1_7 . (3.49)
where \1-7°,rU, are parameters. The following expression is then evident from the

above expression

Ve =117 (3.50)

dv,

i+l

Using Equations (3.42), (3.49), and (3.50), the probability density function f(V,,,) of

the stochastic variable V,,, can be obtained as follows

dU. 1 g
f V£+ :(‘p Ui+ Ui’ el = exp{__-‘_tl_} l_rz o
( 1) ( 1| ) dV;H ;_211:\/1_?2 2
3 v
= Tl PR (3.51)

This 1s, however, the probability density function of the standardized Gaussian

distribution. The value of the stochastic quantity U,, can be determined from

i+1

Equation (3.49) by introducing the generated value of V,, from the standardized

i+1
Gaussian distribution. If the values of E,crs,r are known for Gaussian distribution of
S,, then the values of S, can be obtained from the standardized Gaussian distribution

by the following manner.

1) The value of S, can be obtained from the following expression, which is
obtained by putting i =1 into Equation (3.34)
S =o,U +S, (3.52)
the value of U, can be generated from the probability density function of the

standardized Gaussian distribution as shown in Equation (3.36).

2) Then the value of S, can be obtained from the following expression, which is
obtained by putting i =1,2 into Equation (3.37) and putting i =1 into (3.49)
S, = 04U, +S =og1-r2V, +7(8,-S5)+S. (3.53)
The value of S, is already known and the value of ¥, can be generated from the

1

probability density function of the standardized Gaussian distribution, as shown

in Equation (3.51).
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3) Afterwards, the value of S, can be obtained from the following expression,
which is obtained similarly by putting i =2,3 into Equation (3.37) and putting
i =2 1into (3.49)
S, =0, \1-r*%, +r(8,~5)+5. (3.54)
The value of §, is already known and the value of ¥, can be generated from the

probability density function of the standardized Gaussian distribution, as shown

in Equation (3.51).

k) The value of S, can be obtained from the following expression, which is
obtained similarly by putting i =k -1,k into Equation (3.37) and putting i =k —1
into (3.49)
S, =0 V1-r*V, +7(8, - §)+S. (3.55)
The value of §, , is already known and the value of V, can be generated from

the probability density function of the standardized Gaussian distribution, as

shown in Equation (3.51).

3.10 Relation Between Standardized and Non-Standardized
SEMG-Stochastic Processes

The standardized SEMG-stochastic process U, is characterized by the mean

U=0 and the variance o, =1 or the standard deviation o, =1. Using Equation

(3.47), the autocovariance can be expressed in the following form

cov(U,, U, ) = E(UU,) = -Gl—iff[(S ~5)(8,-5)] :ﬂ% =r*. . (3.56)

Using Equations (3.56) and (3.7), the autocorrelation coefficient can be expressed as

follows

oL, U, ) =covlU,. U, )/o{, = 0oV (855 Yok =7 =p(S) 8 ) - (3.57)
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3.11 Summation of Two Independent SEMG-Stochastic
Processes

Consider the summation of two independent stochastic processes according to

Equation (3.25), where (”S;. has parameters ”S “}GS,( r and ”S has parameters

()= oot e :
S,mcs,mr. The three statistical characteristics — mean, variance, and standard

deviation — of this process can be directly obtained from Equations (3.26), (3.28), and
(3.29), respectively. Using Equation (3.56) into (3.30), the following expression for

the autocovariance function is obtained
cov(S,, S,,, ) = Vo2 pk 4 B2 @)t (3.58)

Using Equation (3.57) into (3.31), the following expression for the autocorrelation

coefficient 1s obtained

I ,
(S5 Sy ) == (V3 Ot + Df Ort). (3.59)

Ay
These relations are valid for all i; therefore, the autocovariance and the

autocorrelation coefficients can be expressed as

cov(k) = cov (8,5, )= Vo2 Ut 4 Big2 Bt (3.60)

1
P(k):p(SnSM):g;T((I}Gs“" +#6 im"k)- (3.61)

8

3.12 Shorter and Longer Specimens

In analogy to Figure 3.1, if a longer length / is equally divided into k+1

sections of shorter length [/, (each section is designated by serial number
i,i+1,i+2, ..., i+k), then the lengths of longer and shorter specimen are related by
I=1I(k+1). (3.62)
The above expression can also be written as follows
k=1/1,-1. (3.63)
It is evident from Figure 3.1 that the distance of i" section from the first section is

given by the value /,(i—1); similarly, the distance of i+k" section from the first
section is given by the value [, (i+k—1); and hence, the distance between these two

sections is given by
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x=10(1’+k—1)—10(i—1)=30k. (3.64)
Substituting Equation (3.64) into (3.62), the following expression is obtained

F=x [ (3.65)

3.13 Distribution of Strength of Longer Specimens
The distribution of the strength S, ,,...,S,,, of shorter specimens each of

length [, is described by the following expression

f(S Sa+l’S;+2’ x+k)

=f(S;) ( ”]|S) ( i+2

Si+1)"'(S;'+k |S:'+k—1) B
- f(SI.)H(p(Sl.”. 5 (3.66)

where k=1,2,.... It 1s considered that the strength of longer specimen of length / is
S". The probability that the strength of each section is considerably higher than some

chosen value S~ is [ G(S k)] , then the following expression is valid

o0

0] ,[ f(Sa!Sm’ .+k)dS,-dS,‘+1---dS!.+k -

f Htp( i

where k£ =1,2,.... This is known as the probability of survival: the longer specimen

1-G(S",

L”')L_..B

S;

o0

4

=

8

Sia j- I)dS dS,,, -~ dS,4, (3.67)

iI 1——-.
t_.‘S

will not be broken by the application of a force S*. Hence, the probability of breakage
(complementary probability) states that the longer section will be broken by the

application of force S°. This is expressed as follows

,[ Ej. f(SHSf.Ha H_;C)CLS'dS dS+k:

5 i+ S. S|+Jr:5’

b (S‘-)ljlcp(S,-+_,-

LS“-_,_j_l)d"S;dSiH .“dS:'+k’ (368)

where & =1,2,.... In the above distribution function G(S',k), S" 1s a stochastic

variable and & is a parameter. Now the probability density function g(S‘,k) of the

strength S° can be found by differentiation of the above distribution function

G(S‘,k) with respect to S”. This is shown below
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Sivjn1 )dS[dSl+|"'dS[+k}5 (3.69)

where k =1,2,.... Now we consider the following expression
=(5°-5)/os. (3.70)

(The above expression has a sense of the transformation of strength, not the
standardization of strength.) Using Equation (3.69) and some mathematical relations

shown in Neckai’s book (1998), it is possible to obtain the following expression for

the probability density function of the variable U"

e

g(U,k)—g(S,k)dU_

()] T ] (el
V2r\J2m1-2 ) ou ULt v :

U. +rU,+j)

Hexp[ (—Hiﬁ}}dedUm'”dka : (211

(8

This function does not depend on S and o, , but depends on » only (apart from the

parameter k).

3.14 Application

Using the simulation technique, discussed earlier, a huge number of strength
J=k : :
values { 8.8, 8t = {S‘.U.}j=G of successive sections of shorter gauge length /,

altogether forming the longer gauge length /, can be generated; then applying the

weakest link theory (Peirce 1926), the strength value S” of the longer gauge length /

can be obtained from the minimum of those strength values, as shown below

S; =min{s,,,}"". (3.72)
I} j=0
Thus, for a particular value of k, it is possible to obtain strength values S;

corresponding to the gauge length /; hence, the probability density function g(S ',k)

as well as statistical parameters corresponding to the gauge length /. The same
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technique can be repeated for different values of k € {0,1,2,...}, and the probability
density functions g(S',k) can be evaluated for different values of , i.e., for different

gauge lengths /=1/,2/,.... (The strength value of any gauge length, which is not a

whole number multiple of /;, can also be found by the interpolation technique.)
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4.1 Materials

In order to illustrate the theory of yarn strength as a stochastic process,
discussed in Chapter 3, 100% cotton carded and combed yarns with different fineness
and twist characteristics produced by ring, rotor, compact, and “new’’' spinning
technologies were examined. The distinguishing features of these yarns are shown in
the tables in Appendix A. All the new yarns were produced from the same variety of
cotton fiber (Egyptian Giza 70 — MII), but the rest of the yarns were produced from

different varieties of cotton fibers.

4.2 Methods

In this research work, different standard and nonstandard methods were used
to measure different characteristics — strength, mass, and twist — of yarns. These are

discussed in the following sections.

4.2.1 Yarn Strength

Yarn strength was measured at short gauge length (50 mm) and also at higher

gauge lengths (100, 200, 350, 500, and 700 mm).

4.2.1.1 Measurements at Short Gauge Length

In order to realize the yarn strength measurements, discussed in Section 3.1, a
special attachment was devised for feeding equal length of yarn specimens in-between
the jaws of the tensile tester (INSTRON-4411) one after another semi-automatically.
The gauge length was so selected as 50 mm that no single fiber could be clamped by
both of the jaws at the same time, and the testing speeds were selected for different
yarns in such a manner that almost all yarn specimens were broken within 20+3
seconds. The measurement procedure can be understood from the following
discussion in connection with Figure 4.1. Let us imagine that the successive sections

(1, =50 mm ) along a yarn were marked by the serial numbers 1,2,3,4...,59,60 . Then

' The Cotton Research Institute (VUB) of Czech Republic invented a new spinning technology, which,
at the time of writing of this dissertation, was not commercialized, and no specific name was given to
that technology. Throughout this dissertation, that technology is called *“New Spinning Technology’

and the yarns made from that technology are called “New Yarns.”’
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the strengths of the sections marked — 7
1™ Realization (repetition)
by the numbers 1,3,...,59 were

- 5 53 Sso
measured one after another; the ltle2ali g alat 50 | 60
remaining sections (shown by the X e —_
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Thus strengths §,,S,,...,5, of 30
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‘ _ 2"% Realization (repetition)
alternate sections were obtained.
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This procedure was repeated 30 ' 3 59

| | i e 59 | 60

times at different places of the yarn P e D

randomly chosen from different cops ‘Z = :} _} i 7 3 e e
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or bobbins. As a result, a time series

of 900 strength values was obtained : . : : : . ;

with one yarn. In this way, yamn : g 3 :

strength measurements at 50 mm 30" Realization (repetition)

gauge length were performed with AY S, 8.

all yarns. Sometimes a few (~1% I 202 59 160

out of those 900 consecutive <> <> >l<> <> <>

measurements were found faulty due ZO ZO ZO ZO 10 10

Figure 4.1

to improper gripping of the yarn
specimens by the jaws. Those erroneous values were simply discarded while
obtaining the descriptive statistical parameters and the frequency distribution of yarn
strength at short gauge length. But, while estimating yarn strength autocorrelation
characteristics, those erroneous values were, however, replaced numerically by zero.

Note: It is possible to perform the strength measurements automatically following
the above methodology using some of the commercially available tensile testers. One
such tester is STATIMAT M tensile tester. During the strength measurements using
this instrument available at the Institute for Textile Technology of RWTH Aachen,
Germany, it was observed that the length of the yarn wasted in-between two
Successive measurements was approximately 120 m, whereas this length was about 50
mm using our special attachment. It is understandable that the wastage of more
length of yarn in-between two successive measurements has its significance (loss of

more information) on the stochastic assessment of yarn strength. Therefore, in this

44



Yarn Strength as a Stochastic Process Chapter 4: Materials and Methods

research work, yarn strength measurements at short gauge length (50 mm) were

performed only using the INSTRON tensile tester with our special attachment.

B2.1.2 Measurements at Higher Gauge Lengths

The standard measurement of yarn strength at 500 mm gauge length was
performed on all yarns using the INSTRON tensile tester without the special
attachment following the Czech Standard (CSN 80 0700). Additionally, some yarns
were tested for strength at other gauge lengths: 100 mm, 200 mm, 350 mm, 500 mm,
and 700 mm. Customarily, the strain rate (percent extension per unit time) maintained
during the strength measurements at 50 mm gauge length with a particular yarn was
the same during the strength measurements at higher gauge lengths with the same

yarn.

4.2.2 Yarn Mass

The mass characteristics of yarns were obtained from two different

measurement techniques — capacitive and gravimetric.

4.2.2.1 Capacitive Measurements

In order to obtain the common mass characteristics (U%, CV%, imperfection
counts, mass diagram, mass spectrogram, mass variance-length curve, etc.), all yarns
were tested using the USTER TESTER 4 instrument following the Czech Standard

(CSN 80 0706).

Besides the common mass characteristics, the USTER TESTER 4 instrument
also displays a huge number of mass readings (18458 readings corresponding to 100
meter length of yarn) as a special output. (In order to see those readings, one has to
collect them from the hard disk of the computer attached with the instrument.) A
typical format containing a few among those readings, as appeared on the monitor
attached with the instrument, is shown in Figure B1 of Appendix B. It was understood
that those readings are usually used by the Uster instrument in order to construct the

mass diagram. In this research work, those were used to estimate the mass

correlograms of yarns.

4.2.2.2 Gravimetric Measurements
In this research work, 900 consecutive mass measurements were carried out

manually by using an electronic weighing balance (SARTORIUS R200D with a
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precision of 0.01 mg) with 20 tex and 35.5 tex 15t Repetition

carded rotor yamns. The method of P paael 2 30
measurements can be understood from the e <> T "_:‘;

following discussion in connection with Figure 501 30 50 50
mmjimmfmm mm

4.2. Let us imagine that the successive sections,

each of 50 mm length, along a yarn were ond Repetition

marked by the serial numbers 1,2,3,...,30. T R A 30
Then the mass of those sections was measured P s e ity | sl
individually one after another. Thus mass of 30 505050 50
successive sections along the yarn was e L mm
obtained. This procedure was repeated 30 times 3 g : 2 :

at different places of the yarns randomly chosen j 3.031 I.{epetit.ion ;

from different bobbins. As a result, a time
series of 900 mass values, each corresponding

to 50 mm length, was obtained with one yarn.

The time series data was used in order to

construct the yarn mass correlogram.

Figure 4.2

In order to obtain the descriptive
statistical characteristics of yarn count, each yarn was also tested gravimetrically

following the Czech Standard (CSN 80 0702).

4.2.3 Yarn Twist

The twist measurements of yarns were carried out manually by using the SDL-

SHIRLEY ELECTRIC TWIST TESTER-Y220B, working on the principle of twisting

and untwisting of yarns.

4.2.3.1 Measurements with Longer Specimens
With each yarn, 50 twist measurements were performed each at 250 mm
length following the Czech Standard (CSN 80 0701), and then the common

descriptive statistical parameters (mean value, standard deviation, and coefficient of
variation) were estimated.
4.2.3.2 Measurements with Shorter Specimens

In order to estimate yarn twist correlogram, 900 consecutive twist

measurements were carried out on 35.5 tex cotton carded rotor yarn. The method of
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measurements can be understood from the following discussion. In analogy to Figure
4.1, let us imagine that the successive sections, each of 50 mm length, along a yarn
:;_' were marked by the serial numbers 1,2,3,...,60. Then the twist of the sections
- marked by the numbers 1,3,5,...,59 was measured; the remaining sections were used
:" for clamping. Thus twist of 30 alternate sections along the yarn was obtained. This
~ procedure was repeated 30 times at different places of the yarn randomly chosen from

 different cops or bobbins. As a result, a time series of 900 twist values was obtained.
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5.1 Basic Statistical Parameters of Actual Yarn

Strength

The basic statistical parameters of strength of 7.4 tex and 20 tex combed ring
yarns measured at different gauge lengths are presented in Table 5.1. Similar results !

for the other yarns are reported in Tables C1-C6 in Appendix C.

Table 5.1
Count | Gauge | Mean | Standard | Coefficient Number of '
length deviation | of Variation | measurements
[tex] | [mm] | [cN/tex] | [cN/tex] [%] |
50 | 21.8135 | 2.6730 | 122548 885
100 | 20.2230 [ 23730 | 11.7553 300 f
200 | 204351 | 2.2284 | 10.9012 300
e 350 | 19.6149 | 2.3446 | 11.9563 300
500 | 18.7365 | 1.8554 9.9056 300
700 | 17.1782 | 1.6420 9.5587 300
50 | 13.6290 | 1.3780 | 10.1108 897
100 | 13.2590 | 1.3245 9.9907 300
20 200 | 13.2015 | 1.2345 9.3502 300
350 | 13.1950 | 1.0705 8.1129 300 '
500 | 12.7985 | 1.1045 | 8.6280 300 |

5.1.1 Effect of Gauge Length

It can be easily understood from the table that the mean yarn tenacity
 decreases with increasing gauge length. This phenomenon, as explained by Peirce
- (1926), Kapadia (1935), Kaushik et al. 1989), Hussain ez al. (1990), to name a few, is
due to the result of the weakest-link effect. At the same time, the variability in yarn

E;: tenacity also decreases with the increase in gauge length.

5.1.2 Effect of Twist Multiplier

The effect of twist multiplier on mean tenacity of yarns with different mean r

- counts is shown in Figure 5.1. Here S represents the mean strength of yarn measured

- at 50 mm gauge length, 7 denotes mean count of yarn, and o is twist multiplier
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(Phrix type). Similar trend was
found with the strength results
corresponding to other gauge
lengths. This behavior is to some
extent known to wus. Gegauff
(1907), Platt (1950), and Neckaf
(2004)

combination of two effects: one is

interpreted it as a

the resulting effect of fiber path
and fiber straining in yarn, and the
other is a complex of frictional
mechanisms. The former effect

results in reduction in yamn
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Figure 5.1

tenacity. This was theoretically studied
by Gegauff (1907). On the other hand,
as a consequence of the latter effect,
yarn tenacity increases. However, this
effect is still not clear. These individual
effects along with the combined effect
are schematically shown in Figure 5.2.
Also, it is shown that there exists an
optimum twist multiplier at which

highest tenacity can be obtained.

-5.1.3 Comparison with The Uster Statistics 2001

Yarn tenacity parameters estimated from the actual strength data measured at

500 mm gauge length were compared with the worldwide spinning mill data reported

in the Uster Statistics 2001. The comparison is presented in Table D1 in Appendix D.

It can be observed that the mean tenacity of the yarns used in this research work

corresponded mostly to that achieved by 95% of the spinning mills in the world, while

the coefficient of variation of tenacity of the yarns used in this research work

corresponded mostly to what was achieved by 50% of the worldwide spinning mills.
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5.2 Frequency Distributions of Actual Yarn Strength

It is well known that the basic statistical parameters of yarn strength, taken
separately or together, cannot provide us with sufficient information about yarn
behavior during the post-spinning technolo gical operations; it is much more important
to know the frequency distribution of yarn strength corresponding to different gauge

lengths.
5.2.1 Histograms

Prior to obtain the actual strength histograms corresponding to different gauge

lengths, the strength values S, corresponding to 50 mm gauge length were
standardized according to the expression U, =(S‘. *E) /GS , mentioned in Equation
(3.34), and the strength values S corresponding to the other gauge lengths were
transformed according to U, :(S; _E) /O'S . (Here S and o, are related to gauge
length /, =50mm, but S are related to gauge length /.)

The frequency distributions of these quantities are shown by the histograms in
Figure 5.3 together with the probability density function of the standardized Gaussian
distribution as expressed by Equation (3.32). These histograms correspond to 7.4 tex
combed ring yarn. Similar strength histograms for some other yarns are presented in
Figures E1-E4 in Appendix E. It can be observed that as the gauge length 1s
increasing, the shape of the histogram is changing: it becomes higher and narrower.
This is due to the reduction in strength variability with the increase in gauge length.
The relative shifting of the histogram to the left-hand side direction with the increase
~ in gauge length is also noticeable. This is ascribed to the decrease in mean strength
value with the increase in gauge length. It is also notable that the strength histogram
~ corresponding to 50 mm gauge length is smoother than the strength histograms
corresponding to higher than 50 mm gauge length. This is because of the relatively
'- high number of strength values available for 50 mm yarn section as compared to the

longer yarn sections. This is shown in Table 5.1 and the tables presented in Appendix

.
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- 5.2.2 Checking for Normality
The mathematical model, presented in Chapter 3, assumes Gaussian (normal)

~ distribution of yarn strength S, corresponding to gauge length I,. Here [. =S0mm

To check the normality of the actual strength distributions corresponding to 50 mm it
' gauge length for different yarns, the quantile-quantile plot (Q-Q plot) was used in this !

research work. This plot compares the empirical quantiles O with the theoretical
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quantiles O; . Here the empirical quantiles Q. correspond to the quantiles of orderly
(ascending order) arranged actual strength data (without standardization), and the
theoretical quantiles @, correspond to the quantiles of the standardized normal

distribution (Meloun et al. 1992).
The Q-Q plot for 7.4 tex combed ring

U

ey
2.

yarn is shown in Figure 5.4. The

Normal

straight line is an indicative what the

strength data would look like if it 1 distribution
were perfectly normally distributed. 1

The Q-Q plots for the other yarns are

presented in Figures FI1-F8 in 2 ) 0 2 4

Appendix F. Evidently, the actual

yarn strength data corresponding to Figure 5.4

50 mm gauge length can be reasonably regarded as a sample from a population
following normal distribution. Hence, the assumption of Gaussian distribution in the

presented model in Chapter 3 is justifiable.

5.3 Autocorrelation Characteristics of Actual Yarn

Strength

Our results and discussion has been hitherto centering round the oft-used yarn
strength characteristics, that is, the basic statistical parameters (mean value, standard
deviation, coefficient of variation) and the frequency distribution. Now we will
introduce a new characterization of yarn strength, in terms of its autocorrelation

characteristics. These include autocovariance, autocorrelation coefficient,

correlogram, autocorrelation function, etc.

5.3.1 Double Exponential Strength  Autocorrelation
Functions
At first the autocovariances and then the autocorrelation coefficients
'-:p(Uj,U.z),p(U.,U 4),p(U‘.,U‘.+6),... were calculated from the standardized

strength values corresponding to 50 mm gauge length. (It can be easily understood

from Section 4.2.1.1 that we had values U,,U;,Us,... corresponding to every
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alternate sections, each of 50 mm length, along the yarn.) According to Equation
(3.57), however, the autocorrelation coefficient between two standardized strength
quantities is the same as between the corresponding original strength quantities, so
p(U;.,UM)Zp(S,-,S,-+3),p(U,-,U,-M):p(S;.,SM), and so on. It is also possible to
express these coefficients in terms of the distance x, according to Equation (3.64),
the distance between two sections with serial numbers i, i+2 is
2:1,=2-50=100mm, sections with serial numbers i, i+4 1s

- 4.],=4-50=200mm, and so on. With reference to Section 3.1, these coefficients

can be referred in terms of the distance x by the symbol ps(x):— as,

p(U.U,.,)=p(S:,S,,,) =ps (100mm). These coefficients for 7.4 tex combed ring
- yarn are presented in Figure 5.5. (It can be directly obtained from Equation (3.8) that
Ps (0 mm) =1.)

Using the standard statistical regression method, it was observed that those
coefficients were satisfactorily expressed by the following double exponential function

£l c) = 0.6604¢ °71%* 1 0.3396¢ 297 (5.1)

- where x is expressed in mm. This function is shown in Figure 5.5. It can be also
expressed 1n terms of lag k as follows

ps (k) = 0.6604e 7" +0.3396¢™°"**, (5.2)

where k = X /50. Evidently, the strength autocorrelation function has two highly

different components:

.1.qi

steeper fall off and gradual ps(x) oo Autocorrelation function

0.1l / Steeper fall-off component
components  are
in Figure 5.5. » <1V Gradual fall-off component
Similar results with the
other yarns are presented
Figures G1-G6 in 0.1

Appendix G.

Note: Number of strength

Figure 5.5

values  available  for

estimating the autocorrelation coefficients al higher lags (higher distances) was
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-

obviously very low, therefore, those coefficients might not be very representable.
Hence, arbitrarily, the autocorrelation coefficients corresponding to higher than 2.5 m
distance were discarded while estimating the autocorrelation function.

Let us now consider Equation (5.2). Because the whole stochastic process is
. Gaussian and 1ts autocorrelation function is in agreement with Equation (3.61)
- expressing the summation of two exponential functions, it is presumed that the

stochastic process S, is a summation of two independent stationary, ergodic, and

Markovian processes (']S;. and (Z)Sf. . Comparing these two equations, we obtain

Va5 x, Yok ) 4
B (k)= = +G—§S " =0.6604e™7%* +0.3396¢ 0058 (5.3)

- Then the following characteristics are evident using 6 =0.1978 N in case of 7.4 tex

 combed ring yarn

(6]
= 0.6604; or,o; =0.66045 = 0.1607 N, (5.4)
S
ol @)
—*=03396; or, "o =1/0.33960, =0.1153 N, (5.5)
S
Bk _ gomosk,  or Oy = g072% _ 0 4953, (5.6)
@k — g-oo1ssk, o (). = 0018 _ 9814, (5.7)

These autocorrelation characteristics together with the autocorrelation

ctions for the other yarns are presented in Table 5.2.
Table'52

Combed Ring Yarns

Autocorrelation Functions:
Py (x)= g~ +(1-a)e ™ ; a,1-a are

coefficients and b, ¢ are exponents

ps (x) = 0.6214¢ 07" +0.3786¢ ™" 10.1698 | 0.1325 ]0.3314]0.9597

P, (x) = 0.6601e ™ +0.3399¢ ™ 10.1735] 0.1245 | 0.6455]0.9695

Py (x)=0.6129¢°"%% +0.3871e™ ™™ 10.1945] 0.1546 | 0.7058 ] 0.9895

Py (x)=0.7032¢ """ +0.2968¢ ™" 10.2311]0.1502 | 0.8242 | 0.9834
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Carded Ring Yarns

Autocorrelation Functions
—bx o ~CHros
ps(x)=ae ™ +(1-a)e ™™ ; g,1-q are

coefficients and b, ¢ are exponents

“]Us

[N]

(ZJrk

ps (x) = 0.66596—0.009063x +0.334le-0.00032?x

0.2363

0.1674

0.6356

0.9837

Py (x) =(.7048¢70005592x 0.2957 0000364

0.2792

0.1807

0.7561

0.9820

Ps (x) =0.7450e70016243x | () 2550 0000244x

0.3956

0.2314

0.4439

0.9879

Carded Rotor Yarns

Autocorrelation Functions

s (%) = ae™ 4 (1-a) e

(I}O.S

[N]

mr"

By (%) = 0.78302 700 (D f70E o

0.1947

0.1025

0.9966

ps (x) = 0.5968¢%4%* 1 (.4032 0000818

0.3754

0.3000

0.9599

ps(x) =0.5507e77%* 1.0.4493¢ %204

0.3148

0.5294

0.9978

Combed Compact Yarns

Autocorrelation Functions

e = ae "™ +(1-a)e ™

(2) 4

e () = 0.7624¢ ™ 1 0 23766

0.1632

0.2920

0.9816

P (x) —().3858¢ 0010122 0.6142¢™0000140x

0.1740

0.2196

0.6029

0.9930

P (x) — 0.67197001728x 0. 3281000358

0.2236

0.1562

0.4219

0.9823

Carded Compact Yarns

Autocorrelation Functions

o (x) =qe ™ 4 (1 —a)e_m’"'“]

(2)

[N]

“’r"

(2) .k

-0.000706.x

ps(x) =0.7162¢ 7" +0.2838e

0.1849

0.3009

0.9653

Ps (X) =053 0 iR 0.4664¢™20"

03335

0.9184

0.9961
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Combed New Yarns (Twist Multiplier —

38 texmcm'l)

Autocorrelation Functions

(2)

Ps (x):ae“’-‘lw=~| +(l-aje ™ g1y arc § 95 r r

% coefficients and b, ¢ are exponents NI (N]

7.4 | ps(x)=0.6160e"1% 1.0.3840¢-00%212x T 1socT ) oe0 0.7220{ 0.9895
10 | ps(x)=0.5160e"""™ +0.4840¢°% [ 1810101753 [0.5730 0.9801
125 | ps(x)=0.6140e™""" +0.3860e°%5* |0 2568 [ 0.2036 [0.4318 | 0.0883
16.5 | ps(x)=0.6363¢" " +0.3637¢°™%> 10367402778 [0.8093 | 0.9859
20 | ps(x)=0.5394e""" 10.4606e°"** 10338703130 | 0.5816 | 0.9714

Combed New Yarns (Twist Multiplier — 56 tex? cm’’

T Autocorrelation Functions ('JGS (E)GS (1), & (2) &
[tex] ps (x) = ae™*1 +(1-a)e IN] | IN]

7.4 | ps(x)=0.5907¢ 5% 10.4093¢ """ 102207 0.1837|0.2973 | 0.9829
10 | ps(x)=0.7584¢""" +0.2416e """ 10.2317]0.1308 | 0.4536 | 0.9821
125 | pg(x)=0.6774¢""™ +0.3226¢"*"" |0.2728 | 0.1883 | 0.4275| 0.9642
16.5 | ps(x)=0.6038¢"""" +0.3962¢ "™ 10.2773 | 0.2246 | 0.3633] 0.9793
20 | pg(x)=0.5178¢"%">* +0.4822¢7 "™ 10.3629] 0.3502 10.5900| 0.9957

Combed New Yarns (Twist Multiplier — 81 tex*”cm’

T Autocorrelation Functions (”05 B 1 (1) .k (2) .k
[tex] ps (x)=ae ™ +(1-a)e ™ [N] [N]

74 | pg(x)=0.8529¢79% +0.1471e™* 10.2269 ] 0.0942 | 8x10°° | 0.9957
10 | ps(x)=0.7925¢ "% +0.2075¢****** 10.3031 | 0.1551 | 1x10°° | 0.8902
12.5 | py(x)=0.5802¢ 7% +0.4198¢" ™ 10.4051 | 0.3446 | 1x10™* | 0.9954
16.5 | py(x)=0.7134¢ 7" +0.2866¢ ™" 10.4102]0.2600 [ 1x10"* | 0.9698
20 | p,(x)=0.6574¢"""" +0.3426¢" " 05012 0.3619 ]0.334110.9998
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Table 5.2 reveals the existence of strength correlation among the neighboring
sections along a yarn. In other words, the strengths of neighboring short sections in a
yarn are dependent. This contradicts Peirce’s assumption of strength independency
(1926). It 1s also noticeable that the degree of strength autocorrelation is different in
different yarns. Moreover, this correlation can be satisfactorily characterized by a
summation of two exponential functions, where each function possesses very different
nature than the other. It issues that two highly different and mutually independent
phenomena are acting together on the yarn so as to impart variability to yarn strength.
(Here we remark that, hypothetically, if the strengths of successive sections of equal

length along a yarn are the same, then the strength autocorrelation function takes the

form: p;(x)=1, where x>0; on the other hand, if those strengths are so variable

that no correlation exists among them, then the strength autocorrelation function is

represented by the following two expressions: pg(x) =1, where x =0 and p;(x)=0,

where x>0.) Needless to say, to know those phenomena, it is necessary to
understand the physical bases of the individual SEMG-stochastic processes. Attempts
made in this research work to understand them will be discussed shortly. But, prior to
that, let us know a little more about the nature of those processes.

Table 5.2 highlights a little about the characters of those two processes. In
general, independent to yarn count and yarn manufacturing technology, the process
indicated by the steeper fall-off component is more dominant than the process
characterized by the gradual fall-off component (Please look at the values of the
coefficients a and 1—a.) In addition, our observations do not figure out any

characteristic relation between these coefficients and yarn manufacturing technology.
Interestingly, the standard deviations (“}O'S and {2}05 ) of both of those processes are

generally increasing when yarn becomes coarser. The autocorrelation coefficient (2),4

of the process corresponding to the gradual fall-off component is significantly higher
than that '”'»* of the other process. It is remarkable to observe the “decaying speed”
of the quick-fall-off component in case of the highly twisted new yarns (twist

multiplier — 81 texmcm"); however, the reason behind it 1s yet to be known.
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5.3.2 Periodicity in Strength Autocorrelation

Sometimes yarn strength autocorrelation may reveal periodicity. In that case,

the double exponential function of the form pg (x)=ae™ +(1-a)e isnot sufficient

to characterize the strength autocorrelation. (The meaning of a,b,c is already stated
in Table 5.2.) It is then more logical to fit the autocorrelation coefficients with a

summation of three functions of the form pg(x)=ae™ +ce ™ +(1-a—c)cos( fx),
where a,c are the coefficients of the individual exponential functions, b, d are the
exponents of the individual exponential functions, (1-a—c) is the amplitude of the

harmonic function, and f is the frequency of the harmonic function. The harmonic

function characterizes the periodicity in the strength data. This periodicity may arise
due to some local periodic disturbances at the different stages of the yarn
manufacturing process. The value of the amplitude of the harmonic function tells the
degree of these disturbances.

To study these disturbances was, however, beyond the scope of this research
work; hence, the harmonic function was not deeply analyzed in this work. We treated
the harmonic function in the following manners depending on the situations.

Case 1: When we found very low value of the amplitude regardless of its sign
(positive or negative), then we simply ignored the summation of three functions and
considered the double exponential function as a representative of the strength
autocorrelation for further study. Except one, all the yamns studied in this research
work followed this case.

L asc2: When we found higher value of the amplitude having positive sign, we
accounted that value and distributed it between the two coefficients of the double

exponential function, as shown below

ps (x)=ae™ +ce™ +(1-a-c)eos(fx) - Ps(x):(—ﬁj)e_” mem- (5.8)

This situation was faced with 16.5 tex combed mnng yarn. The strength

autocorrelation function of this yarn was initially estimated as follows

ps (x)=0.90817 1" 40,0919, (5.9)

where x is expressed in mm. This function together with the individual components
and the actual autocorrelation coefficients is shown in Figure 5.6a. Clearly, it had one

exponentially increasing component that was very illogical. Similar result was
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obtained with another

trial (@ set of 900
measurements) with this
then

the

yarm. It was

understood  that
strength autocorrelation
of

this yarn had a

harmonic component
with a high value of the
amplitude with positive

sign, as shown below

ps (%) = 0.5455¢ 055 4 () 344509212 1 (01100 c0s(0.002650x) ,

where x 1s expressed in
This  function

the

mm.
together with
individual

the

components
and actual
autocorrelation

coefficients is shown in
Figure 5.6b. The above
then

function was

recalculated  according

Double exponential function

Individual exponential
components

Autocorrelation
coefficient

to Equation (5.8) and as a result, the following function was obtained

Ps (x) i 0.61296—0_006963.1( n 0'38719—0.000212_r :

D& Sho 1000 1500 5000 5500 5800
Hrmm]
Figure 5.6a
(5.10)
Sum of two exponential and
| one harmonic functions
: Autocorrelation coefficient
B [ ]
! oo
@
500 1 500 2000 2500 3000
Homm)
Figure 5.6b
(3.11)

here x is expressed in mm. This function was finally considered as the strength

autocorrelation function of this yarn and was used for further study.

Case 3:

If we were found higher value of the amplitude having negative sign, it

would have been necessary to modify the theory. But, no single yarn in this study

followed this case.
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5.4 Physical Bases of Strength Autocorrelation

In order to investigate the physical bases of strength autocorrelation, yarn twist
and yarn mass autocorrelation characteristics of were estimated and compared with
those of yarn strength.
5.4.1 Yarn Twist Autocorrelation

The autocorrelation coefficients of yarn twist p, (x) were estimated in the

same manner as

o 1 # 1
the autocorrelation ps(x) p, (%)
coefficients of 0.8 - 0.8
yarn strength

= 0.6 - 0.6
ps(x) were

0.4 0.4

calculated. The -
twist correlogram 0.2 1 0.2
and the strength et 0
correlogram of 0 500 1000 1500 2000 2500
35.5 tex carded X [mm]
rotor yarn are Figure 5.7

shown together in

Figure 5.7. Clearly, these two correlograms are very different from each other.
5.4.2 Yarn Mass Autocorrelation

Yarn mass autocorrelation was estimated from the data obtained from the

capacitive measurements (Uster Tester 4) as well as gravimetric measurements.

5.4.2.1 Capacitive

The primary data file collected from the hard disk of the Uster Tester 4
instrument was used for estimating yarn mass correlograms. It was always observed
that the data file contained 18458 readings against the testing of 400 m length of yarn.
Assuming no yarn was wasted in-between two successive measurements, it was

considered that each reading, as appeared in the primary data file, corresponded to the

mass of about 21.67 mm (400m+18458m0.02167 m) yarn section. Based on this

consideration, the mass autocorrelation coefficients p,, (x) were estimated directly
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from those readings. The resulting mass correlogram of 7.4 tex combed ring yarn is
presented in Figure 5.8. In addition, the same primary data file was also used in

different ways to estimate the mass correlograms. We added every two successive

readings (first and second,

then third and fourth, and so

o)
X
—_—
e
—
—

on) so that each resulting

=
o0

reading corresponded to the

=
o

mass of 43.34 mm yamn Sum of 3 successive readings

section; and then; the mass Sum of 2 successive readings

§ hrelopram was estimated Direct (without summation)

=
[}

as shown in Figure 5.8. '
¥ 0 s

500 1000 1500 2000
readings (first, second, and ]

=

=
-9
B e )

Also, three  successive

S
{§o]

third, then fourth, fifth, and Figure 5.8

sixth, and so on) were added

so that each resulting reading corresponded to the mass of 65.01 mm yarn section; and
then, the mass correlogram was estimated as shown in Figure 5.8. These three methods

of estimation of mass

correlograms  were  also 4
followed h Al
ollowed on other yarns. 0.8 4
Figure 5.9 shows these mass ’
- 0.6 4
B ot i ease o ey \ Sum of 3 successive readings
o compact yam. 0.4 1 Sum of 2 successive readings
e . Direct (without summation)
observed that the mass 0.2 1 )
A N NAA _
correlogram based on the 0 - il e \ \/ -_./T;\\‘ A
summation of three 0 500 1000 1500 2000
| X
successive readings showed 2 !
significantly higher Figure 5.9

correlation than that

estimated directly from the primary data file. The reason for this difference is not yet
precisely known. At this moment, this difference can be very roughly imagined as a

natural consequence of fiber distribution along a yarn caused by the drafting
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operations at different stages of yarn manufacturing process. This “working”
hypothesis needs to be verified in future.

The autocorrelation coefficients, estimated from the mass data corresponding
to the summation of three successive readings in case of 7.4 tex combed ring yarn,
were found in a satisfactory agreement with the following double exponential

function

Byl e =08175e2 0 L0 (805 T (5.12)

where x is expressed in mm. This function was compared to the following strength

autocorrelation function of the same yarn

ps (x) =0.6604e " +0.3396¢ "7 (5.13)

where x 1s expressed in

mm. (This  strength 1 1

. T Ps (x) Pum (x]
autocorrelation function 1s 0.8 0.8
already mentioned  in Strength autocorrelation function

0.6 0.5

Equation 5.1) The 04 Mass autocorrelation function | 0.4

comparison is shown in 0
Figure 5.10. Clearly, in '
0 I T T I 0

this yarn, the strength
0 500 1000 1500 2000 2500

correlation was  higher X rorn]

than the mass correlation. Fioie o
However, this was not true
with all yarns. One example is given below.

It was found in case of 20 tex carded compact yarn that the autocorrelation
coefficients, estimated from the three successive mass readings, corresponded with
the following function very well

pM (x) = 0‘?2756—0.046590x 1 0‘2?258—0.001036x : (514)

where x is expressed in mm. The strength autocorrelation function of the same yarn
was found earlier (Table 5.2) as follows

pS (x) = 0.?1628—0.024023): 4 0.28386—0.0007061 - (5.15)

where x is expressed in mm. Looking at the coefficients and exponents of these two

functions, it can be said that the strength autocorrelation in this yarn was highly
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comparable with the

mass autocorrelation. L5 -
Ps () T )
The closeness of these 0.8 - 108
_ Strength autocorrelation function :
two functions can be 0.6 106
visualized from Figure ol Mass autocorrelation function i
Bl i,
5 (.2 1072
In this research
k 0 T T T T I 0
T am t
E- strength 0 500 1000 1500 2000 2500
autocorrelation was Ko
found sometimes higher
Figure 5.11
than yarn mass

autocorrelation and sometimes equal to yarn mass autocorrelation. No yarn was found
where the mass autocorrelation was higher than the strength autocorrelation. Did these

findings correspond to those observed from the gravimetric mass measurements? This

guestion will be answered shortly.

" Note: Sometimes it is said that each reading, as appeared in the primary data file,
indicates to the mass of 10 mm yarn section. (The measuring field length in the

USTER TESTER 4 instrument is 10 mm.) It is then presumed that the distance
between two successive measurements is 11.67 mm (21.67 mm — 10 mm = 11.67 mm).

Under this consideration, yarn mass correlograms were estimated almost similarly as

described above, and similar results were observed.

5.4.2.2 Gravimetric

Here each mass value corresponds to 50 mm yarn specimen and no yarmn was

vasted in-between two successive measurements. Keeping this in mind, the mass
autocorrelation coefficients p,, (x) were estimated almost in the same manner as
those p, (x) of the yarn strength.

The estimated mass autocorrelation coefficients in case of 20 tex carded rotor
are plotted in Figure 5.12. Using the standard regression technique, it was
observed that the following double exponential function satisfactorily represented the

nass autocorrelation of this particular yarn

Dy (x) = 0764167074 +0.2359¢™° %, (5.16)
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where x is expressed in mm. This function is also shown in Figure 5.12. The strength

autocorrelation function of this yarn took the following form (Table 5.2)

ps (x) =0.7830e ! 102170206 (5.17)
where X 1S
expressed in mm. 19 L
g : pS (x) pM (x)
This is also 0.8
presented in Figure
0.6
5.12. The closeness
between the strength T 04
and mass =02
autocorrelations  1is 0 1 | | LS paay
very remarkable in 0 300 600 900 1200 1500
this yarn. However, X [mm]
as before, this was Figure 5.12

not always true.
Figure 5.13 shows the estimated mass autocorrelation coefficients in case of

35.5 tex carded rotor

yarn. Using  the ( )1 - Tl ( )
o Pat" : Pyl
. stansticl 0.8 | Strength autocorrelation function ~ + 0.8
regression technique,
B obscrved ithat 0.6 Il/ Mass autocorrelation function 1 06
those tHiass o Mass autocorrelation coefficient Lo
autocorrelation
0.2 + 0.2
coefficients were in G005 0o 00 BT,
a satisfactory 0a— | T ! r 0
agreement with the 0 300 ~ 600 900 1200 - 1500
xm.l'.l'l
following double (o]
exponential function Figure 5.13
B, (x)=0.8360e "% +.0,1640e ", (5.18)

where x is expressed in mm. This function is plotted in Figure 5.13. The strength

autocorrelation function of the same yarn is already expressed (Table 5.2) as follows

pS (x) = 0'59686—0.0240321 + 0.40323—-0.0003|8X : (5.19)
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where x is expressed in mm. This is also plotted in Figure 5.13. Evidently, in this
yarn, the strength autocorrelation was higher than the mass autocorrelation.

Thus the results obtained from the gravimetric measurements are similar to
those found from the capacitive measurements. The influence of yarn mass
irregularity on yarn strength variability is generally very significant. Sometimes yarn
strength variability was found due solely to yarn mass irregularity and sometimes,
besides the mass irregularity, influence of another variability on yarn strength
variability was noticed. The physical basis of that variability is still unknown. At this
present moment, it is an open question. Very roughly speaking, it may be a structural
irregularity, say the packing density variation along the yams; however, future

research works need to be conducted to scientifically answer this question.

5.5 Computer Simulations of Yarn Strength

Hypothetically, if any of the commercially available tensile tester were able to
measure the strength of a huge number of successive short sections (50 mm length)
along a yarn one after another within a reasonable time; then by applying the weakest
link principle on the dataset, we would have calculated the strength values
corresponding to higher gauge lengths. But, due to technical reason, it is not possible
by any tensile tester to measure the strengths of one section and then exactly the next
section along the yarn. An alternative approach to realize the above idea is to perform

numerical simulations on computer. This will be discussed now.
5.5.1 Generation of Strength of Shorter Specimens

In order to perform the simulations, it was necessary to know the mean
strength values m&?andf%: corresponding to the individual SEMG-stochastic
processes {”S;. and mS,.. Although the other statistical characteristics “}os,mr and

@ 5., () related to those process were known, but the mean values were unknown.

Therefore, we generated the centred va]uesmS? and (Z]S? . These are defined below
g0 _ (Ng _ (g (5.20)

(2)g0 _ ()¢ __(__2)5’ D2l
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Evidently, the mean of the centred quantities is zero ((')S 0= (g0 0). The process

of generating the centred values (I)Sf and (E)SP 1s theoretically explained in Equations
(3.52) to (3.55). One practical example is given below.
Let us again consider 7.4 tex cotton combed ring yarn. Using the estimated

values, mentioned in Equations (5.4) to (5.7), into Equations (3.52) to (3.55), the

centred values for the individual processes were generated as follows

g0 — O 17
50 = O J1-0p2y 4+ 0,050
=0.16071-0.4954*U +

+0.495415° =
=0.1396U +0.49545°

(2)510 = mch
(Q}SZ‘J = [2)0.5 1= (2}F2U+ (2}?. (21810 =
=0.1153v1-0.98142U +
+0.98141)5° =

s, (5.22)
=0.0221U +0.98145°

1S9 =0.1396U +0.4954")5° ®)s0 =0.0221U +0.9814)5° |

L]
I
I
I
i
I
I
I
1
1
I
1
I
i
I
I
I
I
1
|
|
1
I
I
|
I
1
!
1
1
i

J

where U are the independently generated values for the standardized Gaussian

distribution. The generated centred values were then used to calculate the strength
values of the whole stochastic process S, as follows

5 =g 4+ Og =I:(1)S£0_,_F}-S_:l_,_[msf_{_@]:(1)S‘Q+{2)S§J+S:
(5.23)

= Wg° + )50 11.6142N.
In this way, the strengths of a huge number of successive short specimens (each of 50

mm length) were generated on computer within a very short time.

5.5.2 Functionality of Simulation Software

_ The simulations of strengths were performed arbitrarily with 30000 yarn
- sections, each of 5000 mm length; hence, 30000-100 =3x10° strength values, each
corresponding to 50 mm length, were generated. The autocorrelation function
estimated from those simulated strength values is shown in Figure 5.14. The desired
autocorrelation function, expressed by Equation (5.1), is also plotted in Figure 5.14. Tt
was remarkable to see the extent to which the simulated autocorrelation function

corresponded with the desired autocorrelation function. Similar result was observed
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with all yams used in e
this research work. [t
therefore means that
our original simulation o.ef
software was right as DR

far as its functionality

was concerned o Sl
: Desired
Note: In this research ) _
e e g Simulate
work, 3x10° strength o i b2 e R
[mm]
values each :
Figure 5.14

corresponding to 50

mm length were generated on computer on each yarn. Generation of 3x10° strength
values should be considered as an example only, one can generate more and/or less

than this number of strength values.

5.5.3 Generation of Strength of Longer Specimens

The simulation software also calculated the strength S” of longer specimens,
whose length was a multiple of 50 mm. In this example, this length varied from 50
mm to 5000 mm. Prior to the calculation of strength of longer specimens, different
values were given to the parameter & for different lengths in accordance with

Equation (3.63). These values are shown in Table 5.3.

Table 5.3
Specimen Length / S04 ) 100 | 1508 .. |*5000
Parameter & = (I/l,) = (fy /50)-1 | 0 1 g e el lep

Depending on the value of the parameter k, the strengths S’ of yarn specimens of

different lengths / were generated according to Equation (3.72). For example, the

strength of 150 mm length of yarn specimen was calculated from the expression:

e min{ B85, }, that is, the minimum among the strength of

i+12~i+2

S; =min{S,-..;}j=o

three successive yarn specimens, each of 50 mm length, is the strength of yarn

specimen of 150 mm length. To each length, fairly a large number of strength values
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were generated; and obviously, this number was relatively decreasing with the

increase in length of yarn specimen.

The generated strength values S* were then transformed according to Equation

i (3.70). In case of 7.4 tex cotton combed ring yarn, the transformed quantities U" were

obtained from the following expression |
U =(8"~5) /o =(S}y-1.6142) f0.1978. (5.24) i
(It should be carefully noted that S and o, correspond to the length /, = 50 mm, but |

S* corresponds to other lengths /.)

5.5.4 Frequency Distributions of Simulated Strength | .!

The histograms of the probability density function g(U ',k), for different

values of k, were estimated by '
, _ 105 g(U" k) -.

the simulation software. Those

corresponding to 7.4 tex combed

ring yarn for three values of &

are presented here. Figure 5.15a

shows the probability density vEEE DR L

et

function of the standardized

=

strength quantities

corresponding to 50 mm

specimen length (k=0). This

accords to the standardized

Gaussian distribution. Figure
5.15b and Figure 5.15¢ illustrate
the  distribution  of  the

~ transformed strength quantities b

| ¥ Ji
- related to 500 mm specimen 102 |
1 I |
~ length (k=9) and 5000 mm 10.1 .l j;i
"_ specimen  length (k=99], o A R T T 2, 3 l

U '.

respectively. It can be observed 1

that as the specimen length is Figure 5.15
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increasing, the shape of the histogram is changing: it becomes higher and narrower.
This is because of decrease in strength variability with the increase of specimen
length. The relative shifting of the histogram to the left-hand side direction with the
increase in specimen length is ascribed due to the decrease in mean strength value
with the increase in specimen length. A similar trend was found with actual strength
data too (Figure 5.3). It is interesting to notice that the smoothness of the histogram
reduces with the increase in specimen length. This is because of the relative reduction

in the number of simulated strength values available for longer specimens.

5.5.5 Basic Statistical Parameters of Simulated Strength

The mean value and the standard deviation of the simulated strength values
were calculated from the generated distributions for different lengths of yarn
specimens. These, in case of 7.4 tex cotton combed ring yarn, are presented in Table

5.4. (Please see the “simulation” columns.)

Table 5.4
Specimen' Mean Value Standard deviation
Length = S5 g lelgle. 0. P
I[mm] 2 O i 0.1978 7 G 0.1978
Simulation| Approximation| Simulatior Approximation
50 0.00 0.00 1.00 1.00
100 -0.33 -0.38 0.94 0.93
150 -0.53 -0.59 0.91 0.89
200 -0.68 -0.74 0.88 0.86
500 -1.13 -1.17 0.79 0.78
1000 -1.45 -1.47 0.73 0.72
5000 -2.15 -2.08 0.60 0.61

For 50 mm yarn specimens, the mean value was found as 1.6142 N (21.8135
cN/tex), the standard deviation was 0.1978 N (2.6730 cN/tex), and the coefficient of

variation was 12.2537 %. In accordance with Equation (5.22), the strength parameters
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corresponding to 500 mm specimen length were calculated as follows:—

mean value:

S‘=0.1978-(—1.13)+1.6142N=I.3907N(18.79320N/tex), standard ~ deviation:

65 =0.79-0.1978 N=0.1563 N, (2.1122 cN/tex), and coefficient of variation:
11.2389 %. Analogically, the statistical parameters of strength related to 5000 mm

specimen length were determined as follows:— mean value: S* =1 1884 N (16.0595

cN/tex), standard deviation: 6..=0.1186 N (1.6027 cN/tex), and coefficient of

variation: 9.9798 %. In this way, the statistical parameters for the other lengths were
calculated.

The behaviors of the transformed strength quantities with the increase in

specimen length are shown in Figure 5.16. The change in (E:—g) /O'S with the

increase in length / is evident from Figure 5.16a. The nature of drop in (G o /Us)

with the increase in length / is shown in Figure 5.16b.

3
2
1
02y
0 i 0
0 i ) 3 4= - 0 1 2 3 dy 1905
/
l [m]
(a) [m] (b)
Figure 5.16

5.5.6 Empirical Relations Between Simulated Strength and
Specimen Length

Using the standard statistical regression technique, the simulation results were
approximated by suitable empirical relations between yarn strength and specimen

length. These relations in case of 7.4 tex cotton combed ring yarn are shown below
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s 1
.=0 i} T O 1
Ly &) [n ; G;_,r‘ = TTT = _l; 3 (525)
- 18 1
i o I 9.3 = * ___ _E
S =5 +5330, [—] = T S gl 25y e
ZU US ZO

The values of the transformed strength quantities (GU. and U_) obtained from

Equations (5.25) and (5.26), are presented in Table 5.4. (Please see the
“approximation” columns.) It is evident from the table that those approximated
relations characterized the simulation results satisfactorily. The empirical relations

between strength and length for the other yarns are presented in Table 5.5.

Tables 5
Yarns . :
Empirical Relations Between Strength and Length
(Technology and Count)
it S =8+ 5.080; [(1/10 )_"’8 g _1] B = (/1 )_W-lﬁ
145tex | 5 =5+5530,[(1/1,) """ -1] | o5 =05 (/)"
Combed Ring j
o _C [ = -1/12.19
16.5tex | §*=5+6.080| (/5,)""" _1] o =o,(l/L)
. i = —
20 tex ‘=S+5.830'S (l/zo)if‘ll?-‘»_l o, =0_S(!/10)1n75
20 tex S— = 5.690 _(l/fn )—I,."IO.SS 5 o, =a, (1/!0 )—mo_sa
Carded Ring | 25tex | §° =5 +5450,[(1/L,)"" -1] | oy =05 (Y1)

29.5tex | S’ =8+5220,| (/1

20 tex §:§+4.6905[

Carded Rotor | 35.5 tex §=§+5_2805[
42 tex §7='§+6.1?GS[(3/10

7.4 tex -S_ =§+4.8053

Combed — — [
[

10tex || S*=S+7.600
Compact

11.8 tex 3::§+5.2903 [([/go)—b’s.w_]] g =GS(1/[D)'*'
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Yarns
R Empirical Relations Between Strength and Length
20t @ _q -7,
Cerded x| 5" =S+a870,[ (/1) 1] | o =0y (/)"
Compact — —
2951 -1/23,
X | S =817 690’5[(;'/[0) uzs@z_l] —-Ug(f/fo)w”z
T4tex | ¢ = S45 221 V1221
Combed New +3.940; [(W”) 1] =0, (I/L)
(Twist 10 tex '=3+6.04Gs [(1/30 )_Im'gt —1] ~=a (L) e
Multiplier: P = r o, = f
2}; ] 125t | ¢ —F .5 720, ([/10)”046_1 =0, ([/[O)IIO%
38tex” " cm’) . ——— = -
* -1/12.77 77
S lex =§5+6.060 _(3/!0) _1_ (!/lo) 112,
20 Iex * = E + 5‘?705 :(Z/ZO )—]}(1(} 82 _]_ O_S (l/!{}) 1/10.82
7.4 tex G = E +5.60c I 1/] -1/9.89 5 1_" / 1/9.89
Combed New g _( /) i =o (/1)
(Twist 10tex | §"=8+5.0l0,] () """ -1 e
Multiplier: 125tex | §* =545 126, ’(z/lo)—us.w o T )_1;3 =
56 tex”” cm™) = = e = —
16.5 tex | §" =5 +5490,| (/)" -1 = o, (1/1,)"
20tex | 5" =5+6.860,[(11,)"" 1] | o, =0 (/1)
TAtx | 8T =5+3.740| (1) -1 = o, (1/1,)"®
Combed New — .
S ~1/5.55 -1/5.55
Twist | 101 | 5T =5+4270,| ()" -1 =0 (1/A,)
Multiplier: 12.5¢ex 4 §* =543 610, [(!ﬂo )—us 04 o (i )_1/5.90
81 tex*” cm’ — — 5 = Yy
)1 165 tex | 5 =5 +4.860, [y 1] =0, (1,)"""
20 teX _¥:§+3 870'3 [(1/!0) 1/6.35 _1] :O_S ([/{0)_1’{6'35

Evidently different yarns possess different relations between strength and

length (different values of the coefficient and the exponent). This is due to different

degree of strength autocorrelation in different yarns. On the contrary, under the

assumption that no correlation exists among the strength of neighboring sections,

Peirce (1926) suggested two unique values (coefficient —

4.2 and exponent —

1/5) for

all yarns irrespective of the material and technology used for their manufacturing,
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5.5.7 Predictability of Simulation Results

The basic statistical parameters of yarn strength obtained from the simulation
results were compared with those corresponding to the actual results as well as

Peirce’s equations (Equations 2.10

and 2.11). This comparison in case 1.8- =030
of 7.4 tex combed ring yarn is shown E[N] s Actal Oy
| X b 5*[N]
in Figure 5.17. Similar results with a i Sumtiafied 1095
_ Peirce :
few other yarns are presented in
Figures H1-H4 in Appendix H. J 0.20
Evidently, the simulation results are
better in terms of predicting the 105
actual results as compared to Peirce’s
equations. This difference is ascribed ; 1010
: . Peirce T
to the fact that the simulation results (e B
were obtained on the basis of 0 Ll 600{ i
[rmm]

verified assumption of strength

- dependency; on the contrary Peirce’s s
equations respected the imagination of strength independency, which is not correct as

revealed in this research work. It is generally seen that the mean values of actual yarn

strength are more closely predicted by the simulation results than the standard

deviations of actual yarn strength. The reason of this is not yet known. It is therefore

necessary to study the problem of yarn strength variability more deeply in future.

Note: In some yarns, the actual strength at longer gauge length was found nearly the
same or a little higher than the actual strength at short gauge length (50 mm).
Imaginatively, this might happen because the “micro-slippage” of fibers and/or fiber
segments was not fully realized in a region near to the jaw gripping line. (Fibers could

not slip inside the jaw.) Evidently, this phenomenon was relatively more prominent

during tensile testing at short gauge length (50 mm).
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Yarn Strength as a Stochastic Process Chapter 6: Conclusion

The presented theoretical model of yarn strength as a summation of two
mutually independent stationary, ergodic, Markovian, and Gaussian (SEMG)
stochastic processes was verified with thirty-one yamns produced from cotton fibers
using ring, rotor, compact, and the so-called “new’ spinning technologies. It was
observed that the strengths of successive short sections, each of 50 mm length, along
the yarns are dependent and the degree of this dependency is different in different
yarns. As a result, the empirical relation between strength and gauge length is also
different in different yarns. This observation contradicts Peirce’s assumption of
strength independency (1926) and thus answers why Peirce’s strength model is not
enough precise. It is remarkable to see the extent to which, in general, the mean
values of actual yarn strength measured at different gauge lengths were predicted by
the computer simulations; however, that much of closeness was not always obtained
with the standard deviation between the actual yarn strength and the simulated yarn
strength. It, therefore, evokes a new research direction — to model yarn strength
variability.

This research work introduced a new methodology to measure yarn strength at
a short gauge length and a special data evaluation technique in order to satisfactorily
predict the basic statistical parameters and frequency distributions of actual yam
strength corresponding to different gauge lengths. These non-standard measurement
and data evaluation techniques can be easily developed in the textile industries in
order to have a new characterization of yarn strength, in terms of its autocorrelation

characteristics and strength versus gauge length relation.

Besides the practical application, mentioned above, this research work may
also find application for future theoretical work. It was interesting to observe that yarn
strength variability is due probably to the additive influence of two highly different
and mutually independent phenomena that are partially related to yarn mass
irregularity. This knowledge at the empirical level will pave the way for creation of a

new theoretical model in order to better understanding of yarn strength variability.
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Appendix A
Table A1l
Yarns Mean Values of Count | Mean Values of Twist
T [tex] Z [tpm]
7.4 1080
10 1013
Combed Ring 14.5 913
16.5 831
20 740
20 944
Carded Ring 25 761
29.5 871
20 887
Carded Rotor 95 683
42 568
7.4 1262
Combed Compact 10 877
11.8 1059
Carded Compact &) 277
29.5 842
Table A2
Mean Values Mean Values of Twist Z [tpm]
of Count Twist Multiplier Twist Multiplier Twist Multiplier
T [tex] o =38 tex?” cm™ o =56 tex” em™ o =81 tex”” cm™
74 1000 1474 2133
10 319 1206 1745
125 700 1040 1500
16.5 614 864 e
0 316 760 1100

78




APPENDIX B:
A SPECIAL OUTPUT FROM
THE USTER TESTER 4
INSTRUMENT




Yarn Strength as a Stochastic Process

Appendix B

MASSDGR

CrvNo Points
1 18458

unitX xMin
35 0.0

unitY yMin
46 -100.000

x Values y Values

-0.8547

3.907
21.00
-1.221
-8.486
-14.65
-1.893
8.730
14.59
-10.81
-3.602
~k1.72
2.503
-14.71
-22.71
14.47
21.67
-8.059

Average
I

xMax dX
400.0 0.021672

yMax
150.000

Pl
0.000

P2
0.000

Figure Bl
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Yarn Strength as a Stochastic Process Appendix C

Table C1
Count | Gauge | Mean | Standard | Coefficient | Number of
length deviation | of variation | measurements
[tex] | [mm] | [cN/tex] | [cN/tex] [%]
i 50 222220 | 2.1540 9.6950 899
500 | 20.1000 | 1.6500 8.2107 300
s 50 14.8821 | 1.4724 9.8942 900
500 | 13.3890 | 1.2345 9.2218 300
o 50 14.1388 | 1.5061 10.6539 900
500 | 13.0612 | 1.1661 8.9280 300
Table C2
Count | Gauge | Mean | Standard | Coefficient Number of
length deviation | of variation | measurements
[tex] | [mm] | [cN/tex] | [cN/tex] [%]
50 17.3970 1.448 8.3220 898
= 500 | 16.4945 | 0.9635 5.8428 100
50 143712 | 1.3300 9.2551 900
100 | 13.7196 | 1.2108 8.8261 300
25 200 | 13.8236 | 1.2604 9.1188 300
350 | 13.1424 | 1.0528 8.0113 300
500 | 13.2492 | 1.0144 7.6562 300
50 17.0695 | 1.5532 9.0990 900
P2 V550 (157075 | 13119 | 83337 100
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Table C3
Count | Gauge | Mean | Standard | Coefficient | Number of
length deviation | of variation | measurements
[tex] [mm] | [eN/tex] | [cN/tex] [%]
50 111055 1.1005 9.8298 900
100 1030455 1.1360 10.9295 500
20 200 9.9355 1.0590 10.6692 500
350 | 10.0990 | 0.9725 9.6417 500
500 | 9.5980 | 0.9185 9.5790 500
e 50 12.9341 1.3690 10.5839 900
500 12.3611 0.9017 7.2935 300
50 12.0088 1.0100 8.4106 900
i 500 11.3729 1" 0.7267 6.3902 300
Table C4
Count | Gauge | Mean | Standard | Coefficient | Number of
length deviation | of variation | measurements
[tex] [mm] | [cN/tex] | [cN/tex] [%)
50 24.4203 | 2.5257 10.3419 882
100 | 22.9865 | 2.2676 9.8640 100
7.4 200 23.1932 | 1.8878 8.1372 300
350 22.2851 | 1.9041 8.5459 100
500 19.9878 | 2.0419 10.2143 600
50 22.1220 | 2.8020 12.6645 900
= 500 18.3700 | 1.3550 7.3738 100
50 25:1542 | 23119 9.1905 890
"8 5o 218466 | 15856 | 72567 300
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Appendix C
Table C5
Count | Gauge Mean | Standard | Coefficient Number of
[tex] | length | [cN/tex] | deviation | of variation | measurements
[mm] [cN/tex] [%]
50 19.8455 | 1.6040 8.0865 895
100 190575 22 123455 7.0567 300
20 200 18.9160 | 1.3020 6.8820 300
350 18.0470 | 1.2210 6.7660 300
500 17.9365 | 1.3365 7.3688 300
SOk 50 17.1014 | 1.7556 10.2661 900
500 15,6356/ | '1.1383 7.2792 100
Table C6
Count | TM' | Gauge | Mean | Standard | Coefficient Number of
[tex”” | length deviation | of variation | measurements
[tex] | cm™] | [mm] | [cN/tex] | [cN/tex] [%]
50 15.1649 | 2.7473 18.1180 900
100 | 13.1500 | 2.4919 18:89532 100
200 | 13.5176 | 2.0851 15.4480 100
T4 P s T | 2eez | 198780 100
500 | 12.7189 | 2.0608 16.1988 100
700 | 12.0473 | 1.9446 16.1469 100
50 22.4851 | 3.8811 17.2602 900
100" "2 17138 ) “2 3106 15.2491 100
200 | 20.9703 | 3.0770 14.6709 100
Lig 350 1 19.6108 | 3.1500 | 16.0613 100
500 | 18.0365 | 3.2149 17.8228 100
700 | 18.5446 | 3.0000 16.1805 100

' ; s Lais gl
''TM stands for twist multiplier (Phrix type), expressed in tex” cm .
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Appendix C
Count | TM | Gauge | Mean | Standard | Coefficient | Number of
[tex*” length deviation | of variation | measurements
[tex] | cm™] | [mm] | [cN/tex] | [cNAtex] | [%]
50 [ 15.6189 | 3.3203 | 21.2607 900
100 15.1432 2.5635 16.9326 100
200 14.6986 25581 17.4040
74 | 81 100
350 12.7838 1.9622 1552529 100
500 12.9284 1.9081 14.7568 100
700 12.4689 1.6581 13,2925 100
50 14.9690 2.5200 16.8374 895
10 38
500 12.9140 1.8110 14.0203 100
. 50 24.0620 2.6610 11.0600 900
10 5
500 21.2190 2202 10.3795 100
50 18.4390 3.6670 19.8865 899
10 81
500 14.3030 2.2200 15.5206 100
50 15.2096 2.6216 17.2359 898
12.5 38
500 12.6216 1.9256 15.2568 100
50 2852232 2.6520 105137 896
12.5 56
500 22.4952 2.5384 11.2854 100
50 241782 49557 17.6002 898
125 &1
500 20.7248 4.1488 20.0191 100
50 1192345 2.7915 22.8180 891
16.5 38
500 11.4867 23127 20.1348 100
50 23.7285 2.1624 9.1131 900
; 56
g 500 20.9091 1.5012 7.1810 100
50 1258170 | 2.9436 | 11.4011 900
. 81
103 500 23.6582 2.3745 10.0366 100
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Appendix C
Count | TM | Gauge | Mean | Standard | Coefficient Number of
[tex”” | length deviation | of variation | measurements
[tex] | em™] [mm] | [eN/tex] | [cN/tex] [%]
50 13.8640 | 2.3060 16.6333 899
100 10.0190 | 2.0935 20.8954 100
o - 200 | 9.4920 | 1.6690 17.5807 100
350 10.7435 | 1.7740 16.5138 100
300 10.7100:F 1.7770 16.5926 100
700 111990 | 1.8285 16.3269 100
50 24.2635 | 25215 10.3915 900
100 | 21.8970 | 2.1635 9.8743 100
o - 200 1 220525 | 1.7185 7.7931 100
350" | 22,3395 | «1.8955 8.4839 100
500 | 22.1000 | 1.4830 6.7101 100
700 | 20.9200 | 1.8240 8.7200 100
50 259525 | 3.0910 11.9105 899
100 | 26.1465 | 2.5210 9.6415 100
200 | 26.1090 | 2.3750 9.0962 100
g - 350 | 25.1120 | 1.9880 7.9163 100
500 | 24.5135 | 2.2015 8.9805 100
700 || 23.5575 | 20075 8.5220 100
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Appendix D
Table D1
Yamm | Count Mean Tenacity Coefficient of Variation of
[tex] [cN/tex] Tenacity [%]

Actual | Uster Statistics 2001 | Actual | Uster Statistics 2001

5% | 50% | 95% 5% | 50% | 95%
7.4 18,7 1243 ] 209 | 183 29 9.1 | 113 1 136
Combed 10 20,1 12551 20 IS 8.2 7.3 | 295N

Ring 145 | 134 [ 207 | 164|139 92 | 70 | 87 | 111
Yarns | 165 | 13.1 | 211|167 | 146 | 89 | 67 | 82 | 104
20 128 207 1173 M8 %8p | 64 727 123
Carded 20 165,11 213 | 164 | 1431 .58 L 61 1751 906
Ring 25 132 | 214165142 77 | 60| 73 | 89
Yarns | 295 | 157:k 215 166-5143 183 | 60 | 7.2.1 &3
Carded | 20 96 | 1441129 98 | 96 | 80 | 92 | 113
Rotor | 355 | 124 | 147|126 | 98 | 73 | 67 | 80 | 107

Yamns 42 114 | 145124196 | 64 | 63| 7.7 | 104
Combed | 7.4 | 200 | 29.1 (270|222 102 | 84 ] 98 | 115

Compact | 10 184 | 274 1 252|211 74 79 | 9.0 | 104
Yarns 118 | 218 | 265 | 244 |205| 73 | 7.5 | 86 | 98
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Ps (x)n.:

25 tex Carded Ring Yarn
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C
Combed New Yarn: Ps(x) 3 j Combed New Yarn:
Count — 7.4 tex & Twist Count - 10 tex & Twist
Multiplier — 38 tex*3cm’! Multiplier — 38 tex*3cm’!
0.3 |
0.4 |
o] x
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Combed New Yarn:
Count — 7.4 tex, Twist
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Honm]

Combed New Yarmn:
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Combed New Yarn:
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Combed New Yam:
Count — 20 tex, Twist

Multiplier — 56 tex”*cm’!
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