TECHNICKÁ UNIVERZITA V LIBERCI

Fakulta mechatroniky, informatiky a mezioborových studií

BAKALÁŘSKÁ PRÁCE

Liberec 2012

Michal Kohl

TECHNICKÁ UNIVERZITA V LIBERCI

Fakulta mechatroniky, informatiky a mezioborových studií

Studijní program:B2612 Elektrotechnika a informatikaStudijní obor:2612R011 Elektronické informační a řídicí systémy

Studium elektrických, mechanických a chemických vlastností materiálu PET

Study of electrical, mechanical and chemical properties of PET material

Bakalářská práce

Autor bakalářské práce:	Michal Kohl
Vedoucí bakalářské práce:	Ing. Leoš Beran, Ph.D.
Konzultant bakalářské práce:	Ing. Miroslava Maršálková, Ph.D.
	Ing. David Lindr, Ph.D.

V Liberci 18. 5. 2012

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Akademický rok: 2011/2012

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Michal Kohl
Osobní číslo:	M09000065
Studijní program:	B2612 Elektrotechnika a informatika
Studijní obor:	Elektronické informační a řídicí systémy
Název tématu:	Studium elektrických, mechanických a chemických vlastností materiálu PET
Zadávající katedra:	Ústav mechatroniky a technické informatiky

Zásady pro vypracování:

- 1. Prostudujte předložené práce, které se touto problematikou zabývají.
- 2. Připravte dostatečný počet vzorků pro studium vlastností materiálu PET.
- 3. Proveďte měření vnitřní rezistivity, krystalinity, mechanické odolnosti.
- 4. V případě potřeby proveď te IČ spektrální analýzu.
- 5. Výsledky zdokumentujte a připojte odborný komentář, ze kterého vyplynou jasné závěry.

Rozsah grafických prací:	dle potřeby dokumentace
Rozsah pracovní zprávy:	cca 35 stran
Forma zpracování bakalářské práce:	tištěná/elektronická
Seznam odborné literatury:	

- [1] HAMPL, J aj. *Materiály pro elektrotechniku*. Praha: Vydavatelství ČVUT. Fakulta elektrotechnická. 1996. ISBN 80-01-01544-0.
- [2] ARTBAUER, J.- ŠEDOVIČ, J.- ADAMEC A. *Izolanty a izolácie*. 1. vyd. ALFA 1969.
- [3] Ageing of polymeric insulating materials and insulation system design
 [online]. cit[2009-09-10], URL: http://wwwjfhuuyr3.interscience.wiley.com/cgibin/fulltext/101019717/PDFSTART
- [4] VOKŘÍNEK, Jan. *Hodnocení izolačního materiálu PET*. Liberec, 2009. 69 s. Diplomová práce. Technická univerzita v Liberci.

Vedoucí bakalářské práce:	Ing. Leoš Beran, Ph.D.
	Ústav mechatroniky a technické informatiky
Konzultant bakalářské práce:	Ing. David Lindr, Ph.D.
	Ústav mechatroniky a technické informatiky
Datum zadání bakalářské práce:	14. Října 2011
Termín odevzdání bakalářské práce:	18. Května 2012

prof. Ing. Václav Kopecký, CSc. děkan doc. Ing. Petr Tůma, CSc. vedoucí ústavu

V Liberci dne 14. Října 2011

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Studentská 2/1402, 461 17 Liberec 1

Anotace

Tato bakalářská práce se zabývá měřením vlastností vzorků materiálu PET a analýzou získaných výsledků. Materiál se používá jako izolant ve statorovém vinutí. Tématem této práce je měření vnitřní rezistivity, krystaličnosti a mechanické odolnosti na vzorcích materiálu PET. Dalším důležitým bodem je porovnání výsledků s naměřenými hodnotami z roku 2010, které naměřil Ing. Jan Vokřínek ve své diplomové práci. Dále bylo ověřeno na nově vyrobených vzorcích, zda výsledky naměřené v roce 2010 odpovídají reálným změnám v materiálu vlivem dlouhodobého tepelného zatěžování. Měření vnitřní rezistivity bylo zvoleno jako prioritní měření. Souvislost mezi krystaličností a reálnou složkou modulu pružnosti vzhledem k vnitřní rezistivitě v závislosti na době tepelného zatěžování byla vyhodnocena pomocí korelace.

Klíčová slova: entalpie, krystaličnost, mechanická odolnost, rezistivita, tepelné zatěžování, PET

Annotation

This thesis deals with the measurement of properties PET material samples and the analysis of obtained results. The material is used as an insulator in the stator winding. The theme of this work is the measurement of internal resistivity, crystallinity and mechanical ruggedness of the sample material PET. Another important point is the comparison of results with measured values from 2010 measured by Ing. Jan Vokřínek in his thesis. In the next step it was verified on the virgin samples whether the results obtained in 2010 correspond to real changes in the material due to the prolonged heat loads. Measurement of internal resistivity was chosen as a priority measure. The relationship between crystallinity and the real component of the modulus of elasticity due to internal resistivity depending on the time of thermal loading was evaluated using correlation.

Key words: crystallinity, enthalpy, mechanical ruggedness, resistivity, thermal load, PET

Prohlášení

Byl jsem seznámen s tím, že na mou projektovou práci se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, zejména §60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé projektové práce pro vnitřní potřebu TUL.

Užiji-li projektovou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Projektovou práci jsem vypracoval samostatně s použitím uvedené literatury a na základě konzultací s vedoucím projektové práce a konzultantem.

Datum: 18. 5. 2012

Podpis:

Poděkování

Rád bych poděkoval všem, kteří mi pomáhali při realizaci této bakalářské práce. Děkuji Ing. Leoši Beranovi, Ph.D. za cenné rady a trpělivost při vypracovávání této práce. Dále také děkuji Ing. Miroslavě Maršálkové, Ph.D. za ochotu a pomoc při měření DSC, DMA a vyhodnocování dosažených výsledků. Oběma také děkuji za jejich cenný čas.

Obsah

Sezn	nam použitých symbolů	10
Sezn	nam použitých zkratek	11
1	Úvod	12
2	Charakteristika PET	13
3	Zkoumané materiály	14
3.1	1 Materiál NEN-F 220/125	14
3.2	2 Materiál Voltaflex 2598	14
3.3	3 PET fólie	15
3.4	4 Symbolické názvy materiálů	15
4 ′	Tepelné zatěžování	16
5	Měření vnitřní rezistivity	17
5.1	1 Rezistivita	17
5.2	2 Vnitřní rezistivita	17
5.3	3 Postup měření – vnitřní rezistivita	
5.4	4 Naměřené hodnoty a grafy – vnitřní rezistivita	19
5.5	5 Vyhodnocení vnitřní rezistivity	21
6 '	Termická analýza – DSC	22
6.1	1 Popis metody DSC	22
6.2	2 Krystaličnost polymerů	23
6.3	3 Postup měření – DSC	23
6.4	4 Popis termogramu DSC	
6.5	5 Naměřené hodnoty a grafy – DSC	
6.6	6 Vyhodnocení – DSC	
7	Dynamicko – mechanická analýza – DMA	
7.1	1 Teorie pružnosti	
7.2	2 Princip metody DMA	
7.3	3 Postup měření – DMA	
7.4	4 Naměřené hodnoty a grafy – DMA	
7.5	5 FFT vzorku A a vzorku B	
7.6	6 Vyhodnocení – DMA	35
8	Souvislost mezi vnitřní rezistivitou, DSC a DMA	
8.1	1 Korelace vnitřní rezistivity, krystaličnosti a mechanické odolnosti	

8.2	Korelace – vzorek A	.37	
8.3	Korelace – vzorek B	.38	
8.4	Vyhodnocení korelace	.38	
9 Záv	ěr	.40	
Literatura41			
Příloha A42			
Příloha B			

Seznam použitých symbolů

d	т	tloušťka vzorku
Ε	Ра	komplexní modul pružnosti v tahu (Youngův modul pružnosti)
E'	Ра	reálná složka E, elastická složka
$E^{\prime\prime}$	Ра	imaginární složka E, útlumová (viskózní) složka
F	Ν	síla působící na vzorek
Н	J	entalpie
ΔH	J/g	změna měrné entalpie
ΔH_m	J/g	měrná entalpie tání
ΔH_{m0}	J/g	měrná entalpie tání zcela krystalického materiálu
Δl	т	změna délky materiálu, deformace
l_0	т	původní délka materiálu
M_{XY}		výběrová kovariace vektorů X a Y
Ν		počet měření
r		korelační koeficient
R_V	Ω	elektrický odpor
ŝ		střední kvadratická chyba aritmetického průměru
S	m^2	plocha elektrod, plocha materiálu
S_X		výběrový rozptyl hodnot vektoru X
S_Y		výběrový rozptyl hodnot vektoru Y
t _a	h	doba tepelného zatěžování
T_g	°C	teplota zeskelnění vzorku
T_a	°C	teplota dokrystalizace
T_m	°C	teplota tání
T_c	°C	teplota krystalizace
$tg(\delta)$		činitel ztrát
t_E	min	čas změny <i>E</i> v FFT
$t_{E'}$	min	čas změny E' v FFT

$t_{E''}$	min	čas změny E'' v FFT
\overline{X}		aritmetický průměr hodnot vektoru X
X_{i}		soubor naměřených hodnot X
X_C	%	krystaličnost – podíl krystalické části v materiálu
X1	$^{\circ}C$	teplota počátku hlavního peaku tání T_{m3}
X2	°C	teplota konce hlavního peaku tání T_{m3}
\overline{Y}		aritmetický průměr hodnot vektoru Y
Y_i		soubor naměřených hodnot Y
δ	rad	ztrátový úhel
3		relativní prodloužení vzorku
$ ho_v$	Ωm	vnitřní rezistivita
σ	Pa	napětí v materiálu

Seznam použitých zkratek

DMA	dynamicko-mechanická analýza
DSC	diferenciální skenovací kalorimetrie
FFT	rychlá Fourierova transformace
PES	polyesterová rohož
PET	polyethylen-tereftalát
PETP	jiné označení pro polyethylen-tereftalát

1 Úvod

Bakalářská práce se zabývá změnami vybraných vlastností materiálu PET (Polyethylen-tereftalát) v závislosti na dlouhodobém tepelném zatěžování. Materiál se používá např. jako izolant statorového vinutí elektrických strojů.

Polyethylen-tereftalát je materiál používaný jako izolace kvůli svým dobrým chemickým, fyzikálním a mechanickým vlastnostem. Tyto vlastnosti se mohou časem zhoršovat vlivem tepelného stárnutí, neboli snižování mechanické pevnosti, a větším dielektrickým ztrátám. Životnost materiálu je tedy ovlivněna tepelným zatěžováním.

Ke studiu PET materiálu byly vybrány dva materiály s různou ochrannou vrstvou (od různých výrobců). Základem těchto materiálů je PET fólie. Vzorky byly tepelně zatěžovány v horkovzdušném sterilizátoru na konkrétní teplotě, která byla zvolena vyšší než maximální teplota dovolená výrobcem z důvodu rychlejšího tepelného stárnutí materiálu a tedy urychlení experimentu.

Tato práce navazuje na diplomovou práci Ing. Jana Vokřínka, který v roce 2010 vyrobil vzorky, které dlouhodobě tepelně zatěžoval a následně změřil jejich vnitřní rezistivitu a krystaličnost. V roce 2011 jsem tyto vzorky přeměřil ve svém bakalářském projektu. Námi naměřené hodnoty vnitřní rezistivity byly velice rozdílné. Hodnoty krystaličnosti byly téměř stejné.

Pro objasnění, z jakého důvodu jsou náměry vnitřní rezistivity odlišné, byly v roce 2012 vyrobeny zcela nové vzorky těchto materiálů, které byly také dlouhodobě tepelně zatěžovány na stejné teplotě a přeměřeny z pohledu vnitřní rezistivity a krystaličnosti.

Tato práce je rozšířena oproti práci [7]. Analýza je rozšířena na mechanickou odolnost materiálu PET v závislosti na dlouhodobém tepelném zatěžování. K tomuto výzkumu byly použity vzorky, které byly vyrobeny a tepelně zatěžovány v roce 2010. Pro toto měření byla použita dynamicko-mechanická analýza (DMA), což je metoda schopná popsat mechanické chování materiálu. Měření DMA jednotlivých vzorků bylo časově náročné.

Poslední část této práce je věnována porovnání naměřených hodnot z jednotlivých metod. Vlastnosti těchto materiálů jsou porovnány pomocí korelace, která číselně vyjadřuje mírů souvislosti krystaličnosti a reálné složky modulu pružnosti vzhledem k vnitřní rezistivitě v závislosti na době tepelného zatěžování, jelikož měření vnitřní rezistivity bylo zvoleno jako prioritní, k němuž se vztahují všechna ostatní.

2 Charakteristika PET

Polyetylentereftalát patří chemicky do skupiny polyesterů. Jejich společným znakem je přítomnost esterových vazeb v hlavním makromolekulovém řetězci. PET je známý především jako obalový materiál. Přibližně 60 % vyrobeného PETu se používá na výrobu nevratných obalů na jídlo a nápoje. PET je však materiál s mimořádnými vlastnostmi a jeho potenciál je mnohem širší.

PET je vysoce pevný, tuhý a tvrdý termoplast, který dobře odolává deformacím. Další vlastností je slabá navlhavost, absorbuje jen velmi málo vody. Vyniká velmi dobrou chemickou a tepelnou odolností a malou teplotní roztažností. Může být průhledný a bezbarvý, ale silnější části jsou obvykle matné a neprůhledné. Vyznačuje se velmi dobrými elektroizolačními vlastnostmi, dále vynikajícími kluznými vlastnostmi a oděruvzdorností.

Materiál PET je vyráběný v různých stupních krystalové struktury, od amorfní až po vysoce krystalickou. Standardně se poměr krystalické části vůči amorfní části pohybuje mezi 30 - 35%. Čím je tento poměr větší, tím jsou lepší elektrické vlastnosti izolačního materiálu.

PET splňuje základní požadavky, které by měl izolační materiál pro použití v elektrických strojích mít. Nejen dobré elektrické, ale i mechanické vlastnosti jsou důležitým hlediskem při jeho výběru. Svými vlastnostmi splňuje požadované normy a je zároveň cenově přijatelný.

Pro své výborné vlastnosti je proto využíván PET jako dielektrikum kondenzátorů, k izolaci vodičů elektrického proudu či elektroizolační lak. Používá se pro magnetické pásky či fotografické filmy. Dále je využíván na řadu finálních výrobků, jako jsou obalové materiály, tkaniny, fólie, vlákna. Tato vlákna se mohou vyskytovat prakticky ve všech spotřebních textilních výrobcích. Spřádají se i spolu s vlnou, bavlnou apod. Využívají se také na technické tkaniny a lana, k výrobě kordů pro pneumatiky [7].

Obr. 1: Strukturní vzorec PET

3 Zkoumané materiály

K analýze PET materiálu byly vybrány materiály NEN-F 220/125 a Voltaflex 2598, což jsou materiály s různým typem ochranné vrstvy. PET fólie je zde uvedena pouze pro srovnání, protože je základní vrstvou těchto dvou zkoumaných materiálů.

3.1 Materiál NEN-F 220/125

Prvním materiálem byl materiál NEN-F 220/125, který dodává výrobce EKOBAL Rožnov spol. s.r.o. Jde o plošný materiál, který je složený ze tří vrstev. Uspořádání vrstev vyplývá z označení materiálu. N-polyesterová rohož (PES), E-PETP a poslední vrstva N. Schematické uspořádání vrstev je znázorněno na obr. 2 [7].

Obr. 2: Uspořádání vrstev izolačního materiálu NEN-F 220/125 [2]

Celková tloušťka vzorku je 0,22 mm s tím, že tloušťka nosné fólie je 0,125 mm. Polyesterové rohože zabraňují poškození fólie při výrobním procesu elektrického stroje (vkládání do drážek, vtahování vinutí aj.)

Tento materiál je zařazen do teplotní třídy 180 (H). Jeho maximální pracovní teplota je tedy 180 °C [7].

3.2 Materiál Voltaflex 2598

Druhým materiálem byl Voltaflex 2598, který dodává výrobce ISOVOLTA AG, Rakousko.

Voltaflex 2598 je třívrstvý, pružný a ohebný izolační materiál. Skládá se z vrstvy PET filmu, která je chráněna z každé strany zvlákněným PET. Princip ochrany PET filmu je tedy jiný než u materiálu NEN-F. Ochranné vrstvy PET jsou pórovité a propustné. Tloušťka vzorku je 0,23 mm, samotná prostřední vrstva PET fólie je tenká 0,125 mm.

Materiál je zařazen do teplotní třídy F/H. Pracovní teploty jsou tedy 130 - 155 °C, maximální teplota 180 °C [7].

3.3 PET fólie

K dispozici byla navíc i samotná nosná PET fólie, která byla dodána výrobcem EKOBAL Rožnov. Tepelné zatěžování a měření vlastností samotné PET fólie sloužilo k určení role a vlivu na sledované parametry ochranné vrstvy, a zda chyby měření nemohou vznikat právě kvůli ochranným vrstvám [7].

3.4 Symbolické názvy materiálů

Dále v textu této práce budou materiály pro přehlednost a zjednodušení označovány symbolickými názvy.

Tab. 1: Značení symbolickými názvy:

Název materiálu	Symbolický název materiálu
NEN-F 220/125	vzorek A
VOLTAFLEX 2598	vzorek B
samotná PET fólie	vzorek C

4 Tepelné zatěžování

V práci [7] byla zvolena teplota dlouhodobého zatěžování 190 °C. Tato teplota byla zvolena proto, aby bylo možné získat nejvyšší možnou rychlost stárnutí bez vážného poškození struktury materiálu. Při vyšších teplotách by se urychlilo stárnutí materiálu, ale nebylo by možné tyto vzorky použít pro měření rezistivity kvůli deformaci povrchu a kroucení vzorku. Pro tepelné zatěžování vzorků byl použit horkovzdušný sterilizátor STERICELL22 (obr. 3), který umožňuje dosáhnout teploty až 250 °C. Důležitou vlastností tohoto zařízení je cirkulace vzduchu uvnitř sterilizátoru, což zaručuje stejnoměrný ohřev všech vzorků.

Rozměr vzorků byl zvolen 7,5×7,5 cm, což byl rozměr potřebný při měření rezistivity, u kterého bylo potřeba pokrýt celou plochu elektrod. Vzorků bylo vyrobeno cca 200 tak, aby bylo možné odebírat vzorky ze sterilizátoru během celé doby tepelného zatěžování.

Vzorky byly umístěny rovnoměrně do všech čtyř úrovní (pater) komory sterilizátoru a po dobu 24 h byly vysušovány při teplotě 60 °C. Poté byla nastavena zvolená hodnota tepelného zatěžování 190 °C.

Obr. 3: Horkovzdušný sterilizátor Stericell22 a pohled dovnitř

5 Měření vnitřní rezistivity

Při měření elektrického odporu izolantů je nutné rozlišovat různé druhy odporů [7].

5.1 Rezistivita

Rezistivita ρ je měrný elektrický odpor vztažený k ploše elektrod, pokud se jedná o povrchovou rezistivitu [Ω], nebo vztažený k ploše elektrod a k tloušťce měřeného materiálu, pokud se jedná o vnitřní rezistivitu [Ω m].

Veličiny charakterizující materiál jsou měrný vnitřní a měrný povrchový odpor, které nezávisí na geometrii vzorku. Dále lze říci, že materiál charakterizuje pouze měrný vnitřní odpor, protože měrný povrchový odpor závisí na znečištění a vlhkosti [7].

5.2 Vnitřní rezistivita

Vnitřní rezistivita je odpor materiálu umístěného mezi dvěma elektrodami (jedna elektroda je umístěna pod vzorkem a druhá leží na jeho povrchu) a je definována poměrem stejnosměrného napětí a proudu tekoucího vnitřkem vzorku.

Rovnice 1 ukazuje, jak se přepočítává vnitřní rezistivita na elektrický odpor:

$$R_V = \rho_V \frac{S}{d},\tag{1}$$

kde: R_V elektrický odpor [Ω]

 ρ_V vnitřní rezistivita [Ω m]

Splocha elektrod [m²]

dtloušťka vzorku [m]

Nejpravděpodobnější hodnotu výsledku měření lze vypočítat pomocí aritmetického průměru:

$$\overline{X} = \frac{\sum_{i=1}^{N} X_i}{N},$$
(2)

kde N je počet měření, \overline{X} je aritmetický průměr, X_i je soubor naměřených hodnot.

Nejistotu s jakou byl aritmetický průměr měřené veličiny určen, lze odhadnout pomocí střední kvadratické chyby aritmetického průměru [7]:

$$\hat{s} = \sqrt{\frac{\sum_{i=1}^{N} (\overline{X} - X_i)^2}{N(N-1)}}$$
(3)

5.3 Postup měření – vnitřní rezistivita

K měření vnitřní rezistivity byl použit měřicí přístroj Keithley 6517A (obr. 4), k němuž byl připojen přípravek Keithley Model 8009. Pikoampérmetr Keithley 6517A byl vybaven vestavěným alternujícím zdrojem napětí 0 až 1000 V. Hodnota napětí byla zvolena 800 V. Čím je hodnota napětí vyšší, tím protéká vzorkem větší proud a zlepšuje se opakovatelnost měření. Více popsáno v práci [7].

Přípravek Keithley Model 8009 byl vybaven dvěma elektrodami, mezi něž byl vzorek vkládán. U tohoto přípravku byl zajištěn konstantní přítlak elektrod na vzorek, čímž se eliminovala chyba způsobená nestejnoměrným přítlakem.

Propojení počítače a pikoampérmetru Keithley 6517A bylo zajištěno pomocí softwaru Keithley 6517 Hi-R Test. Tento software umožňoval automaticky měřit rezistivitu vzorku, kde byla vnitřní rezistivita úměrná poměru stejnosměrného napětí a proudu tekoucího vnitřkem vzorku.

Pro měření vnitřní rezistivity byly použity tři vzorky pro každou dobu tepelného zatěžování 190 °C a každý vzorek byl změřen třikrát, aby se zvětšila věrohodnost měření a vyloučily se náhodné chyby.

Obr. 4: Sestava pro měření vnitřní rezistivity: 1 – PC se software Keithley 6517 Hi-R Test, 2 – pikoampérmetr Keithley 6517A, 3 – přípravek Keithley Model 8009

5.4 Naměřené hodnoty a grafy – vnitřní rezistivita

Tab. 2: Velikost vnitřní rezistivity ρ_v a odchylky tepelně zatěžovaných vzorků – vzorek A

<i>t_a</i> [h]	ρ_v [P Ω cm] z 2012
0	$0,6 \pm 0,3$
48	$0,7 \pm 0,1$
96	$0,7 \pm 0,2$
168	$0,3 \pm 0,1$
216	$0,2 \pm 0,1$
264	$0,7 \pm 0,2$
336	$0,9 \pm 0,2$
384	$0,7 \pm 0,1$
432	$1,3 \pm 0,1$
504	$1,2 \pm 0,2$
552	$1,2 \pm 0,3$
600	$1,1 \pm 0,1$
672	$0,7 \pm 0,3$
720	$1,1 \pm 0,2$
768	$6,2 \pm 1,6$
841	$3,9 \pm 2,2$
888	$2,4 \pm 0,8$
936	$3,6 \pm 0,6$
1008	2,1 ± 0,2
1056	$2,9 \pm 1,0$

<i>ta</i> [h]	ρ_v [P Ω cm] z 2012
1104	$4,4 \pm 1,2$
1176	$3,6 \pm 1,6$
1224	$4,1 \pm 1,4$
1272	$5,3 \pm 4,0$
1344	$4,9 \pm 2,0$
1392	$1,2 \pm 0,3$
1968	$9,8 \pm 3,7$
2016	$12,3 \pm 3,0$
2064	$9,5 \pm 4,6$
2136	$4,1 \pm 2,1$
2208	$9,6 \pm 2,9$
2308	$4,7 \pm 2,6$
2380	$3,9 \pm 2,1$
2524	$3,1 \pm 1,1$
2668	$13,5 \pm 6,6$
2880	$5,5 \pm 1,3$
3364	$9,8 \pm 4,0$
3580	$7,4 \pm 0,8$
3892	$5,9 \pm 2,1$

Obr. 5: Závislost vnitřní rezistivity ρ_v vzorku A na době tepelného zatěžování t_a

<i>ta</i> [h]	ρ_v [P Ω cm] z 2012
0	$3,1 \pm 0,3$
20	$8,4 \pm 2,6$
44	$7,5 \pm 1,9$
116	$6,4 \pm 2,2$
140	$8,3 \pm 1,0$
188	$8,4 \pm 0,9$
288	$7,3 \pm 3,7$
360	$8,8 \pm 3,4$
504	$7,1 \pm 5,9$
648	$16,2 \pm 4,7$
860	$8,4 \pm 3,3$
1344	$13,0 \pm 3,8$
1560	8,3 ± 2,2
1872	$11,2 \pm 1,9$

Tab. 3: Velikost vnitřní rezistivity ρ_v a odchylky tepelně zatěžovaných vzorků – vzorek B

V práci [7] byla opakovatelnost a přesnost měření ověřena, a proto bylo možné vyhodnocení na menším počtu měření. K výpočtu střední hodnoty vnitřní rezistivity ρ_v byly tedy použity náměry tří vzorků pro jednu dobu tepelného zatěžování t_a , z nichž byl každý změřen třikrát.

5.5 Vyhodnocení vnitřní rezistivity

V roce 2010 byly vyrobeny vzorky A a B [7], které byly tepelně zatěžovány a následně změřeny, což odpovídá náměrům z roku 2010. Tyto vzorky byly v roce 2011 přeměřeny [4]. Výsledné hodnoty vnitřní rezistivity z 2010 a 2011 si odporují. Z tohoto důvodu byly v roce 2012 vyrobeny nové vzorky, které byly tepelně zatěžovány na stejné teplotě (190 °C) jako vzorky z roku 2010. Z naměřených hodnot je zřejmé, že náměry z roku 2011 a 2012 se téměř shodují. Vzhledem k této shodě lze prohlásit, že náměry z roku 2011 a 2012 jsou zřejmě správné. Náměry z roku 2010 mohly být ovlivněny nějakou chybou.

Z grafu vzorku A (obr. 5) je zřejmé, že v rozmezí doby tepelného zatěžování t_a od 0 h do 1000 h došlo u vzorků z roku 2010 ke strmému nárůstu vnitřní rezistivity ρ_v na 85 PΩcm. U náměrů z roku 2011 a 2012 dochází k pozvolnému nárůstu rezistivity, ale na mnohem menší hodnotu než u náměrů z roku 2010. Náměry z roku 2012 ukazují, že k ustálení hodnot vnitřní rezistivity dochází až po době tepelného zatěžování 1500 h. Hodnoty rezistivity jednotlivých průběhů se od hodnoty tepelného zatěžování rovné 1500 h mění pouze v malém rozmezí.

U vzorku B je z grafu (obr. 6) patrný obdobný pokles hodnoty vnitřní rezistivity z roku 2010 oproti hodnotám z roku 2011 a 2012 na mnohem menší hodnotu. Hodnoty náměrů z roku 2011 a 2012 jsou téměř stejné.

U hodnot vnitřní rezistivity vzorku A a vzorku B z roku 2012 je vidět, že se průběh pohybuje v okolí 10 P Ω cm. Vzorek B byl zatěžován kratší dobu než vzorek A, proto je v grafu (obr. 6) křivka rezistivity ρ_v z roku 2012 kratší než z roku 2010 a 2011. Důvodem bylo pozdější dodání materiálu.

6 Termická analýza – DSC

Úkolem této části práce bylo pomocí diferenciální skenovací kalorimetrie (DSC) stanovit podíl krystalické části jednotlivých tepelně zatěžovaných vzorků a zjistit změny struktury, ke kterým během dlouhodobého tepelného zatěžování dochází. Cílem bylo také určení vztahu mezi změnami hodnot vnitřní rezistivity vůči změnám ve struktuře materiálu [7]. Dalším úkolem bylo potvrzení či vyvrácení výsledných náměrů krystaličnosti uvedených v práci [7].

6.1 Popis metody DSC

Termická analýza je experimentální metodika, která umožňuje měření fyzikálních vlastností látek (v tomto případě polymerů) v závislosti na teplotě.

Diferenciální skenovací kalorimetrie (DSC) je jednou z nejvýznamnějších termoanalytických metod. DSC je metoda, při které je registrován tepelný příkon do vzorku, potřebný k udržení nulového tepelného rozdílu mezi vzorkem a srovnávací látkou. Principem je tedy udržování konstantní teploty měřeného vzorku a referenčního vzorku, v průběhu ohřevu ve zvoleném teplotním programu.

Vzorek je lineárně ohříván a měří se rychlost tepelného toku ve vzorku, která je úměrná okamžitému měrnému teplu. DSC křivky jsou tedy grafické závislosti rozdílů v příkonech tepelné energie do měřeného a referenčního vzorku na teplotě.

Základním jevem důležitým pro metody termické analýzy je změna entalpie studovaného materiálu (ΔH).

Entalpie je fyzikální veličina, která vyjadřuje tepelnou energii uloženou v jednotkovém množství látky, je označována H a měřená v joulech. Její absolutní hodnotu nelze změřit, stanovuje se jen změna entalpie ΔH .

Metoda DSC se používá především k určení [7]:

- teploty tání a krystalizace
- teploty zeskelnění
- entalpie jednotlivých fyzikálních přechodů
- hodnoty krystaličnosti
- měrné tepelné kapacity

6.2 Krystaličnost polymerů

Polymery, mezi které patří i PET, se liší nejen chemickou strukturou, ale i strukturou nadmolekulární. Podle pravidelnosti uspořádání mohou být krystalické, amorfní nebo částečně krystalické (semikrystalické).

Látku označujeme jako krystalickou, jestliže se její elementární strukturní jednotky opakují v pravidelných vzdálenostech ve třech prostorových směrech, jež neleží v jedné rovině. Krystalická struktura se tedy vyznačuje pravidelnou strukturou řetězců.

Polymery v amorfním stavu mají nejnižší stupeň uspořádanosti, makromolekuly zaujímají zcela nahodilou pozici. Polymery v amorfním stavu jsou tvrdé a křehké.

Žádná ze základních vlastností neovlivňuje fyzikální vlastnosti polymerů tak výrazně jako krystaličnost. Významně se odráží v tuhosti, hustotě, bodu tání apod. Měření krystaličnosti za využití DSC umožňuje předpověď ostatních fyzikálních vlastností polymerů.

Rozdíly v krystalické fázi jsou dány různou velikostí krystalů. Proto se k posouzení krystaličnosti využívá hlavně entalpie (teplo) tání ΔH_m . Při kalorimetrických měřeních se předpokládá, že krystaličnost (X_C) je přímo úměrná ploše pod píkem, který odpovídá teplu tání ($\Delta \rho_m$). Konstantou úměrnosti je teplo tání zcela krystalického materiálu (pro PET ΔH_{m0} =140 J/g), které musí být hodnotou průměrnou vztaženou na celý interval tání [7]:

$$X_{c} = \frac{\Delta H_{m}}{\Delta H_{m0}} \cdot 100 \quad [\%]$$
⁽⁴⁾

6.3 Postup měření – DSC

K měření krystaličnosti byl použit přístroj DSC6 (obr. 7), jehož součástí je komora (obr. 8), do které byl vkládán měřený vzorek. Měřený vzorek byl porovnáván s referenčním vzorkem. Pro chlazení byl použit chladící přístroj Minicholler.

Vzorky byly vykrojeny tak, aby jejich hmotnost byla v rozmezí 10 až 15 mg. Tyto byly uzavřeny do hliníkové kapsle pomocí mechanismu pro uzavírání vzorků. Uzavřené vzorky byly vkládány do měřicí komory vedle referenčního vzorku. Do měřicí komory byl vpuštěn dusík z důvodu zajištění inertní atmosféry.

Komunikace mezi počítačem a DSC6 byla zprostředkována pomocí softwaru PE Pyris Series. V programu PE Pyris Series byl nastaven teplotní program s ohřevem z teploty 25 °C na teplotu 275 °C s krokem 15 °C/min. Po dosažení horní teplotní hranice byl vzorek chlazen na 25 °C s krokem 15 °C/min. Teplotní program byl nastaven stejný jako v práci [7], aby bylo zamezeno chybám, které by mohly vznikat při rychlejším ohřevu vzorku (posunutí peaku na teplotní ose). V tomto programu byly vyhodnocovány naměřené křivky, jelikož naměřená data nebylo možné v jiném softwaru otevřít.

Obr. 7: Sestava pro měření vzorků metodou DSC: 1 – dusíková láhev, 2 – měřicí přístroj DSC6, 3 – PC se software PE Pyris Series, 4 – váha Techniproton, 5 – mechanismus pro hermetické uzavírání vzorků

Obr. 8: Měřicí komora DSC6, 1 – měřený vzorek, 2 – referenční vzorek

6.4 Popis termogramu DSC

Řízeným ohřevem vzorku se spotřebovává energie, tento jev se nazývá endotermní děj. Nejprve při teplotě T_g dochází k zeskelnění vzorku. Tento peak popisuje podíl amorfní složky materiálu. Poté, až se vzorek ohřeje na teplotu T_a , dochází k jeho dokrystalizaci, tento jev však nemusí nastat vždy. V rozmezí 185 °C až 265 °C dochází k tání krystalů vzorku. V tomto rozmezí se nachází teplota tání T_m . Plocha peaku tání je závislá na změně entalpie, která je úměrná krystalickému podílu v materiálu. Tento peak se může při vyšších teplotách ohřevu rozdělovat na více peaků T_{m1} , T_{m2} , T_{m3} atd., které specifikují jednotlivé kopolymery.

Při řízeném chlazení z teploty 275 °C na 25 °C dochází při teplotě přibližně při 200 °C k tvorbě peaku krystalizace. Na vrcholu peaku se nachází teplota krystalizace T_c . U tohoto jevu dochází ke krystalizaci materiálu a tedy i uvolnění tepla, což bývá označováno jako exotermní děj.

Tab. 4: Popis významných teplot DSC křivky

Znak	Jednotka	Popis
T_g	°C	teplota peaku zeskelnění
T_a	°C	teplota peaku dokrystalizace
\overline{T}_m	°C	teplota peaku tání
T_c	°C	teplota peaku krystalizace

6.5 Naměřené hodnoty a grafy – DSC

Obr. 11: Závislost krystalického podílu X_C vzorku B na době tepelného zatěžování t_a

Grafy (obr. 12, 13, 14) jsou v této práci vykresleny a vyhodnoceny navíc oproti práci [7].

Obr. 12: Závislost jednotlivých přechodových teplot vzorku A na době tepelného zatěžování ta

Obr. 13: Závislost jednotlivých přechodových teplot vzorku B na době tepelného zatěžování ta

Obr. 14: Závislost teplot počátku hlavního peaku (T_{m3}) XI a jeho konce X2 vzorků A a B na době tepelného zatěžování t_a

6.6 Vyhodnocení – DSC

Měření krystaličnosti bylo v práci [7] zvoleno kvůli ověření změn vnitřní rezistivity vlivem dlouhodobého tepelného zatěžování.

Z grafu (obr. 10) závislosti krystaličnosti X_C vzorku A na době tepelného zatěžování t_a lze odečíst poměrně prudký nárůst krystalického podílu v materiálu do 1500 h. Po této době tepelného zatěžování narůstá krystaličnost materiálu lineárně s velice malým sklonem a dá se říci, že materiál si nadále udržuje krystalický podíl v materiálu na stejné hodnotě. Průběhy krystaličnosti materiálů změřených a vyrobených v roce 2010, které byly přeměřeny v roce 2011, a materiálů nově vyrobených a změřených v roce 2012 jsou téměř shodné. Závislost krystaličnosti vzorku B (obr. 11) na době tepelného zatěžování je podobná jako u vzorku A, ale prudký narůst krystalického podílu je pouze do doby tepelného zatěžování 1000 h, z čehož vyplývá, že vzorek B krystalizuje rychleji než vzorek A v závislosti na době tepelného zatěžování.

Z grafu (obr. 12) plyne, že závislost jednotlivých přechodových teplot vzorku A na době tepelného zatěžování se mění pouze do doby 500 h. Všechny přechodové teploty zůstávají po této době konstantní. K zeskelnění vzorku T_g dochází pouze na krátkých dobách tepelného zatěžování. K tomuto jevu dochází i na vyšších hodnotách t_a , ale tyto údaje nebylo možné pomocí softwaru PE Pyris Series odečíst, protože tento peak nebyl výrazný. Hlavní

peak tání je značen T_{m3} . U tohoto materiálu také dochází k rozdvojení peaku krystalizace, což je značeno T_{c1} a T_{c2} .

U vzorku B (obr. 13) k zeskelnění vzorku na teplotě T_g nedocházelo. Změny přechodových teplot tohoto materiálu i na nižších hodnotách t_a se nejeví nikterak výrazně. Tyto závislosti jsou tedy téměř konstantní s výjimkou T_{m1} , což je vedlejší peak tání. Rozdvojení peaku krystalizace zde nenastává jako u vzorku A.

Na obr. 14 je vidět, že se mění teplota počátku hlavního peaku tání (T_{m3}) X1 hlavně u vzorku A. Teplota konce hlavního peaku tání X2 zůstává konstantní.

Velikost hodnoty entalpie ΔH , která odpovídá velikosti plochy pod peaky tání, a ze které se následně vypočítává krystaličnost X_c , je určena individuálním vyhodnocením termogramů DSC. Z naměřených hodnot krystaličnosti a vnitřní rezistivity obou materiálů lze konstatovat, že je mezi nimi určitá souvislost, protože při kratších dobách tepelného zatěžování dochází u obou parametrů k jejich nárůstu.

7 Dynamicko – mechanická analýza – DMA

Tato část práce je novým pohledem na změnu vlastností materiálu vlivem dlouhodobého tepelného zatěžování. V práci [7] nejsou vzorky pomocí DMA zkoumány. Dřívější náměry tedy neexistují.

7.1 Teorie pružnosti

Jsou-li tuhá tělesa vystavena náhlému, konstantnímu nebo periodicky proměnnému zatížení, vytváří se v materiálu napětí, která vedou jednak k dokonale pružné deformaci, jednak k plastickým změnám tvaru, nebo také ke křehkému nebo plastickému lomu.

Je-li vnější namáhání malé, může zobecněný Hookův zákon sloužit k výpočtu změn délky a příčného zkrácení v dostatečně lineárním přiblížení [6],

$$\sigma = \varepsilon \cdot E \tag{5}$$

kde ε je relativní prodloužení, σ je napětí v materiálu vyvolané silou *F* a *E* je Youngův modul pružnosti (modul pružnosti v tahu).

Po dosazení
$$\varepsilon = \frac{\Delta l}{l_0}$$
 a $\sigma = \frac{F}{S}$ a po úpravě dostaneme vzorec: (6, 7)

$$\frac{\Delta l}{l_0} = \frac{1}{E} \cdot \frac{F}{S} \tag{8}$$

kde Δl je změna délky materiálu, l_0 je původní délka materiálu, F je síla, která působí na materiál v určitém směru, a S je plocha materiálu.

U polymerních materiálů je klasická teorie pružnosti použitelná jen pro malá, velmi krátkodobě působící napětí.

Záznam mezi napětím a protažením nazýváme tahovou křivkou. Obvykle se tato křivka získává na trhacím stroji, který umožňuje vyvození konstantní rychlosti deformace. Podobně můžeme zaznamenat i křivku při klesající deformaci. Liší-li se zatěžovací křivka od křivky odtěžovací, hovoříme o hysterezi. Hysterezní smyčka je na obr.15.

Obr. 15: Hysterezní křivka

Je-li těleso při zkoušce v tahu deformováno působením napětí a protažením, bude se vynaložená práce při zatěžování rovnat integrálu pod křivkou. Vynaložená práce se při odtížení získá částečně zpět. Obě energie se liší o plošný obsah hysterezní smyčky. Deformační práce se skládá z pružného podílu a ze ztrát proměněných v teplo. Vedle dokonale pružné deformace dochází k vratnému toku.

Mimo konstantní rychlosti deformace můžeme volit konstantní zatížení nebo konstantní deformaci. Při konstantním zatížení dochází vedle okamžité elastické deformace k postupnému protahování vzorku, avšak rychlost protahování se postupně zpomaluje. Po uvolnění zase naopak dochází k postupné kontrakci vzorku. Při konstantní deformaci dochází naopak s časem k poklesu napětí.

Při zkoušce v tahu se pozoruje u polymerů téměř ve všech případech tok, který je sice někdy velmi malý, ale vždy znatelný. Konstantní rychlost toku můžeme sledovat zvláště u velkých zatížení. Protože po odtížení tato část deformace zůstává zachována, jde o nevratný tok.

K úplnému vyšetření polymerního materiálu jsou nutné zkoušky s periodicky proměnným namáháním. Kmitočtová oblast je v rozsahu 10^{-2} Hz až 10^{7} Hz. Pokusy se provádějí s periodicky proměnným tahovým nebo tlakovým napětím, na torzních přístrojích [6].

7.2 Princip metody DMA

Dynamická mechanická analýza (DMA) je jedna z nejcitlivějších technik schopná charakterizovat a interpretovat mechanické chování materiálu. Podstata metody DMA je založena na sledování viskoelastické odezvy materiálu podrobeného malému oscilačnímu napětí. Metoda odděluje viskoelastickou odezvu materiálu na dvě komponenty modulu (*E*): reálná část, která reprezentuje elastický modul (*E'*) a imaginární část, která představuje útlumovou nebo viskozitní složku (*E''*). Celkový tzv. komplexní modul je E = E' + iE''. Tato separace měření do dvou komponent popisuje dva nezávislé procesy uvnitř materiálu: elasticitu (vratná složka) a viskozitu (ztrátová, disipační energie). To je základní princip DMA, který ji charakterizuje na rozdíl do ostatních metod testování mechanických vlastností látek.

K určení průběhu modulu a ztrátového činitele $tg\delta$ je možno aplikovat dvě různé metody. První metoda je přímé určení modulu z amplitudy kladné a záporné půlvlny síly a deformace. Druhá metoda je založena na zcela odlišném principu - data se zpracují pomocí Fourierovi transformace a výsledkem je průběh modulu a ztrátového úhlu v závislosti na teplotě nebo čase pro každou harmonickou složku.

Pomocí DMA můžeme charakterizovat polymerní materiál závislostí modulu a útlumu neboli ztrátového úhlu na teplotě popřípadě na čase. Tím poskytuje základní údaje o mechanických vlastnostech, které mají přímý vztah ke zpracování a především ke zpracovatelnosti a použitelnosti výrobku. Metoda DMA je citlivá na posuzování sekundárních přechodů v polymerech [6].

DMA lze použít k určení:

- teploty skelného přechodu, bodu měknutí a tání
- mechanických ztrát v materiálu (charakterizuje jeho tlumící schopnost)
- dlouhodobou teplotní stabilitu (stárnutí materiálu)

Standardní měřící uspořádání:

- měření v tlaku
- měření v tahu
- smyk v sendvičovém uspořádání
- dvojitý vetknutý nosník
- jednoduše vetknutý nosník
- tříbodový ohyb

7.3 Postup měření – DMA

Pro měření byl použit dynamický termomechanický analyzátor a FFT spektrometr DMA DX04T (obr. 16). Komunikace mezi počítačem a DMA DX04T byla zprostředkována pomocí softwaru DMA Grapher Version 1.5.

Pro měření deformace materiálu byla použita metoda měření v tahu (tension). Nejprve byly nastříhány vzorky o rozměrech 3×1 cm. Tato velikost byla zvolena tak, aby bylo možné vzorek vhodně upnout do čelistí měřicího přístroje. Horní čelist upínacího mechanismu byla nepohyblivá. Dolní čelist byla propojena s lineárním motorkem, který umožnil aplikovat požadovanou sílu (ve zvolené amplitudě) a frekvenci na vzorek. Skutečná velikost síly byla měřena tenzometrem a deformace vzorku byla snímána pomocí HLDS (kapacitní snímač), což je snímač s vysokou přesností a linearitou vyvinutý speciálně pro tento účel.

Na vzorek byla aplikována síla sinusového průběhu o frekvenci 50 Hz s horní amplitudou -0,5 N a dolní amplitudou -5 N (minusová hodnota značí směr namáhání). Materiál byl tedy neustále napnutý s proměnnou silou. Rozměr zkoumaného vzorku byl zvolen čtvercový o délce 10 mm (vzdálenost upínacích čelistí + 2×10 mm – délka upínací plochy), šířce 10 mm a tloušť ce materiálu.

Pro měření vzorku byl zvolen po dohodě s konzultantem teplotní program. Na vzorek byla tedy přiklopena pec. Součástí pece byl také ventilátor, který vytvářel proud vzduchu, což zajišťovalo dobrý přestup tepla na vzorek. Vzorek byl ohříván a měřen z teploty v místnosti 25 °C na teplotu 70 °C s krokem 5 °C/min. Měření jednoho vzorku trvalo cca 20 minut.

Obr. 16: Sestava pro měření vzorků metodou DMA: 1 – PC se software DMA Grapher Version 1.5, 2 – příklopná pec pro ohřev vzorku, 3 – čelisti trhacího mechanismu, 4 – dynamický termomechanický analyzátor a FFT spektrometr DMA DX04T

7.4 Naměřené hodnoty a grafy – DMA

Naměřené hodnoty jsou uvedené v tabulkách v příloze A

Obr. 17: Závislost ztrátového úhlu δ , činitele ztrát $tg(\delta)$ a deformace Δl na době tepelného zatěžování t_a vzorku A a vzorku B

Obr. 18: Závislost modulu pružnosti *E*, jeho reálné složky *E'* a imaginární složky *E''* na době tepelného zatěžování *t_a* vzorku A a vzorku B

7.5 FFT vzorku A a vzorku B

Naměřené hodnoty jsou uvedené v tabulkách v příloze B

Obr. 19: FFT – doba změny komplexního modulu pružnosti E a jeho reálné složky E' v závislosti na době tepelného zatěžování t_a při zvoleném teplotním programu

7.6 Vyhodnocení – DMA

Z obr. 17 je zřejmé, že se velikost ztrátového úhlu δ , činitele ztrát $tg(\delta)$ a deformace Δl vzhledem k době tepelného zatěžování t_a téměř nemění. U obou materiálů byla deformace v rozmezí od -0,267 mm do -0,235 mm. Minus označuje směr pohybu čelisti dolů.

Na obr. 18 je vidět, že hodnota imaginární složky (plastická složka deformace) komplexního modulu pružnosti je konstantní pro oba vzorky A a B. U vzroku A roste komplexní modul pružnosti *E* do doby tepelného zatěžování t_a rovné 2500 h. Dále se velikost komplexního modulu pružnosti *E* snižuje, což ukazuje na limit použitelnosti materiálu z hlediska jeho funkčnosti. Musíme brát v úvahu, že v experimentu byla použita zvýšená teplota (190 °C) tepelného zatěžování z důvodu urychlení stárnutí materiálu. U vzorku B roste komplexní modul pružnosti *E* do doby tepelného zatěžování t_a rovné 3900 h. Od této doby se jeho hodnota začíná snižovat. Průběh reálné složky obou materiálů kopíruje průběhy komplexního modulu *E*.

Při mechanickém namáhání testovaných vzorků lze konstatovat, že v rozsahu desáté až šestnácté minuty tohoto namáhání dochází k výraznější změně průběhu modulu *E*. Další průběh modulu *E* je ustálený. Průběh reálné složky modulu *E'* má podobnou tendenci (viz obr.19). Vyhodnocením imaginární složky modulu pružnosti *E''* bude předmětem další práce.

8 Souvislost mezi vnitřní rezistivitou, DSC a DMA

Míru souvislosti jednotlivých vlastností materiálu mezi sebou lze vyjádřit pomocí korelace. Korelace tedy vyjadřuje vzájemný lineární vztah mezi dvěma veličinami. Pokud se jedna z veličin mění, mění se korelativně i ta druhá a naopak. Míru korelace popisuje korelační koeficient, který nabývá hodnot od -1 do +1.

8.1 Korelace vnitřní rezistivity, krystaličnosti a mechanické odolnosti

Těsnost statistické závislosti mezi náhodnými veličinami vyjadřujeme pomocí korelačního koeficientu. Většinou nelze tento koeficient spočítat přímo, protože bychom museli znát sdruženou distribuční funkci náhodného vektoru (X, Y)'. Většinou máme k dispozici náhodný výběr hodnot X a Y, z kterých můžeme spočítat výběrové průměry [1, 3, 5]:

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$
, $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$ (9, 10)

Pokud n \geq 2 pak výběrové rozptyly vypočítáme podle:

$$S_X^2 = \frac{1}{N-1} \sum_{i=1}^N \left(X_i - \overline{X} \right)^2 \quad , \quad S_Y^2 = \frac{1}{N-1} \sum_{i=1}^N \left(Y_i - \overline{Y} \right)^2 \quad (11, 12)$$

Výběrovou kovarianci vypočítáme podle vzorce:

$$M_{XY} = \frac{1}{N} \sum_{i=1}^{N} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right)$$
(13)

Je-li n \ge 2 užívá se místo výběrové kovariance většinou veličiny:

$$S_{XY} = \frac{1}{N-1} \sum_{i=1}^{N} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right)$$
(14)

Výběrový korelační koeficient vypočítáme podle vzorce:

$$r = \frac{S_{XY}}{\sqrt{S_X^2 S_Y^2}} = \frac{\sum X_i Y_i - N\overline{X}\overline{Y}}{\left[\left(\sum X_i^2 - N\overline{X}^2\right)\left(\sum Y_i^2 - N\overline{Y}^2\right)\right]^{\frac{1}{2}}} \quad \text{pro} \quad S_X^2 > 0, \ S_Y^2 > 0$$
(15)

8.2 Korelace – vzorek A

Tab. 5: Korelační koeficienty krystaličnosti X_C a reálné složky modulu pružnosti E' vzhledem k vnitřní rezistivitě ρ_v pro vzorek A v závislosti na době dlouhodobého tepelného zatěžování t_a :

<i>ta</i> [h]	ρ_{v} [P Ω cm] z 2010	<i>X_C</i> [%] z 2010	E' [MPa]
1	2,79	31,3	2024,3
5	3,87	31,4	1413,2
24	7,34	32,4	2487,5
48	12,3	32,7	2548,3
96	45,6	49,3	2699,7
216	57,2	50,2	2162,9
384	59,4	49,7	2593,7
552	61,1	54,6	1505,3
720	63,2	55,4	2642,7
816	74,2	56,1	2169,4
1152	81,2	56,9	2576,7
1488	85,5	57,6	3009,7
1824	88,4	59,5	2919,6
2160	78,2	59,1	2588,0
2496	83,6	58,9	2277,2
3168	81,4	61,7	2787,6
3504	83,8	61,3	2669,8
3840	84,6	61,2	2614,7
4176	85,9	61,4	2578,2
4512	83,5	61,1	2728,4
4848	81,1	62,9	2241,0
5184	80,4	60,9	2702,1
5352	80,1	62,5	2513,6
5928	86,8	60,3	2504,4
6096	76,3	62,1	2424,0
r		0,98	0,49

8.3 Korelace – vzorek B

Tab. 6: Korelační koeficienty krystaličnosti X_C a reálné složky modulu pružnosti E' vzhledem k vnitřní rezistivitě ρ_v pro vzorek B v závislosti na době dlouhodobého tepelného zatěžování t_a :

<i>t_a</i> [h]	ρ_v [P Ω cm] z 2010	<i>X_C</i> [%] z 2010	E' [MPa]
1	4,42	30,1	2473,7
5	5,13	30,9	2445,6
24	7,49	34,6	1754,0
48	8,28	41,3	2325,8
192	10,3	47,8	2553,8
312	35,7	54,2	2770,2
648	70,3	55,9	2036,0
984	82,6	54,1	2968,1
1320	64,9	57,1	2216,4
1656	57,9	56,8	2638,4
1992	52,6	56,3	3222,5
2328	55,5	58,8	2661,7
3000	59,3	58,3	3043,5
3336	65,8	56,2	3056,2
3628	69,3	60,6	2694,7
4008	77,1	58,8	2969,6
4344	82,5	57,1	3001,3
4680	81,1	57,1	3293,4
5016	82,5	60,1	2828,8
5352	81,2	61,3	2629,3
r		0,88	0,53

8.4 Vyhodnocení korelace

Krystaličnost X_C a reálná složka modulu pružnosti E' jsou porovnávány s vnitřní rezistivitou ρ_v , protože měření vnitřní rezistivity bylo zvoleno jako prvotní měření. Měření DSC a DMA mělo pomoci ověřit změny v hodnotách vnitřní rezistivity ρ_v způsobené vlivem dlouhodobého tepelného zatěžování t_a .

Z vypočtených korelačních koeficientů *r* vyplývá, že souvislost krystaličnosti X_C a rezistivity ρ_v vzorku A je významnější než u vzorku B. Míra souvislosti reálné složky modulu pružnosti *E'* a rezistivity ρ_v není tak významná jako souvislost krystaličnosti X_C a rezistivity ρ_v . Z toho plyne, že pokud se bude měnit vnitřní rezistivita ρ_v vlivem dlouhodobého tepelného zatěžování t_a , tak se bude měnit i krystaličnost materiálu X_C . Kdežto reálná složka modulu pružnosti E' zůstane pravděpodobně téměř stejná.

Z náměrů rezistivity a krystaličnosti, které byly pořízeny v roce 2012, vychází korelační koeficient *r* u vzorku A 0,71 a u vzorku B 0,80, což vyjadřuje nižší míru souvislosti vnitřní rezistivity a krystaličnosti z roku 2012 než u náměrů z roku 2010. Náměry a výpočty jsou uvedeny na přiloženém CD-ROM v souboru Korelace.xls.

9 Závěr

Jedním z cílů této práce bylo ověření hodnot vnitřní rezistivity ρ_v a krystaličnosti X_C v závislosti na době dlouhodobého tepelného zatěžování t_a . Tyto hodnoty byly naměřeny v roce 2010 v diplomové práci [7] a následně přeměřeny v roce 2011 v práci [4]. V roce 2012 byly vyrobeny nové vzorky, které byly stejně tepelně zatěžovány. Závislost rezistivity nově vyrobených vzorků na době tepelného zatěžování je velice podobná náměrům z roku 2011, kdy byly vzorky vyrobené v roce 2010 přeměřovány pro ověření, zda došlo k nějakým změnám vlastností materiálů vlivem dlouhodobého tepelného zatěžování t_a .

Pro ověření krystaličnosti byla použita metoda DSC. Z naměřených hodnot vyplývá, že krystalický podíl v materiálu narůstá u vzorku A do doby tepelného zatěžování 2000 h a dále je téměř konstantní. U vzorku B tento nárůst trvá do doby tepelného zatěžování 1000 h. Náměrů této veličiny není mnoho. Důvodem bylo pozdější dodání zkoumaného materiálu a častá nedostupnost měřicích přístrojů DSC a DMA. Vzorek C nebyl předmětem zkoumání v této práci, byl zde uveden pouze pro porovnání se vzorky A a B.

Pro posouzení změny mechanického chování materiálu byla zvolena metoda DMA neboli dynamicko-mechanická analýza. Tato metoda by měla simulovat mechanické a tepelné namáhání izolačního materiálu PET jako izolace statorového vinutí elektrického stroje. Z grafu závislosti komplexního modulu pružnosti *E* na době tepelného zatěžování t_a je patrné, že vzorek A je použitelný pouze po dobu 2500 h a vzorek B po dobu 3900 h. Nad tuto mez vykazuje materiál zhoršené mechanické vlastnosti, kvůli kterým je nemožné materiál použít. Vyhodnocení imaginární složky komplexního modulu *E''*, který popisuje disipační energie v materiálu při jejich namáhání, je obtížné a časově náročné. Posuzování imaginární složky bude z tohoto důvodu námětem další práce.

Posledním tématem této bakalářské práce bylo posouzení, jaká je míra souvislosti mezi jednotlivými vlastnostmi materiálů a vnitřní rezistivitou v závislosti na době tepelného zatěžování. Toto popisuje tzv. korelační koeficient. Z vypočtených hodnot vyplývá, že míra souvislosti mezi krystaličností a vnitřní rezistivitou je větší než mezi reálnou složkou modulu pružnosti E'. Koeficienty pro jednotlivé vzorky se lehce liší, což může souviset s materiálovým složením testovaných vzorků.

Vyhodnocování naměřených dat a i jejich samotné měření bylo časově velice náročné (2 dny týdně od rána do večera). Všechny podrobnější náměry, grafy a M-files, které byly použity v této práci, jsou uloženy na přiloženém CD-ROM.

Literatura

[1] ANDĚL, Jiří. Matematická statistika. Praha: SNTL, 1978.

- [2] BERAN, Leoš. VOKŘÍNEK, Jan. Změna vnitřní rezistivity izolace NEN-F 220/125 v závislosti na době teplotního přetížení [online]. Fakulta mechatroniky, informatiky a mezioborových studií, Technická univerzita v Liberci, 2010. 9s. [cit. 2012-15-05].
 URL:< 147.228.94.30/images/PDF/Rocnik2010/Cislo1_2010/r3c3c2.pdf>
- [3] HANOUSEK, J. a CHARAMZA P. Moderní metody zpracování dat matematická statistika pro každého. Praha: Grada, 1992.
- [4] KOHL, Michal. Studium elektrických a mechanických vlastností materiálu PET. Liberec, 2011. 26 s. Bakalářský projekt. Technická univerzita v Liberci. Vedoucí bakalářského projektu Ing. Leoš Beran, Ph.D.
- [5] MELOUN, M. MILITKÝ, J. Statistická analýza experimentálních dat. Vyd. 2. uprav. rozš. Praha: ACADEMIA, 2004, 953 s. ISBN 80-200-1254-0.
- [6] VANÍČEK, Jiří. *Metody termické analýzy* [online]. Fakulta textilní, Technická univerzita v Liberci, 2006. 4s. [cit. 2012-03-05].
 URL:<www.ft.vslib.cz/depart/ktm/files/20060106/prednaska7.pdf>
- [7] VOKŘÍNEK, Jan. *Hodnocení izolačního materiálu PET*. Liberec, 2010. 69 s. Diplomová práce. Technická univerzita v Liberci. Vedoucí diplomové práce Ing. Leoš Beran, Ph.D.

Příloha A

<i>t</i> _{<i>a</i>} [h]	δ [rad]	$ an\delta$ []	E [MPa]	E' [MPa]	E" [MPa]	Δl [mm]
1	0,093	0,093	2034,1	2024,3	186,1	-0,264
5	0,109	0,111	1424,8	1413,2	147,1	-0,267
24	0,093	0,094	2498,5	2487,5	232,0	-0,246
48	0,084	0,085	2558,0	2548,3	215,1	-0,258
96	0,069	0,069	2706,1	2699,7	184,3	-0,245
216	0,089	0,089	2172,4	2162,9	191,1	-0,247
384	0,096	0,096	2605,7	2593,7	250,2	-0,246
552	0,125	0,126	1519,7	1505,3	182,4	-0,256
720	0,106	0,107	2660,5	2642,7	291,1	-0,255
816	0,111	0,112	2188,2	2169,4	230,8	-0,244
1152	0,096	0,096	2590,2	2576,7	243,6	-0,238
1488	0,090	0,091	3022,5	3009,7	271,1	-0,251
1824	0,087	0,087	2931,3	2919,6	252,9	-0,253
2160	0,082	0,082	2597,2	2588,0	211,8	-0,253
2496	0,084	0,084	2289,3	2277,2	181,6	-0,252
3168	0,098	0,099	2803,9	2787,6	267,1	-0,242
3504	0,089	0,089	2684,7	2669,8	228,1	-0,244
3840	0,105	0,106	2632,1	2614,7	270,7	-0,245
4176	0,083	0,083	2588,3	2578,2	212,5	-0,252
4512	0,087	0,087	2739,7	2728,4	236,3	-0,252
4848	0,087	0,087	2250,5	2241,0	192,2	-0,252
5184	0,104	0,105	2717,0	2702,1	282,1	-0,237
5352	0,074	0,075	2520,9	2513,6	186,1	-0,235
5928	0,092	0,092	2515,7	2504,4	228,9	-0,252
6096	0,094	0,094	2435,9	2424,0	225,1	-0,243

Tab. 7: Naměřené hodnoty metodou DMA – vzorek A:

<i>t</i> _{<i>a</i>} [h]	δ [rad]	$\tan \delta$ []	E [MPa]	E' [MPa]	E'' [MPa]	Δl [mm]
1	0,068	0,068	2479,5	2473,7	167,5	-0,257
5	0,072	0,072	2453,0	2445,6	175,3	-0,267
24	0,117	0,118	1768,3	1754,0	201,3	-0,258
48	0,098	0,099	2338,1	2325,8	226,1	-0,254
96	0,093	0,094	2645,7	2634,1	246,8	-0,250
192	0,089	0,089	2564,5	2553,8	226,2	-0,263
312	0,094	0,094	2782,5	2770,2	260,9	-0,244
648	0,128	0,130	2055,6	2036,0	254,8	-0,255
984	0,080	0,080	2980,1	2968,1	232,6	-0,247
1320	0,102	0,102	2229,5	2216,4	220,6	-0,254
1656	0,097	0,098	2652,0	2638,4	256,5	-0,259
1992	0,097	0,097	3237,9	3222,5	312,3	-0,239
2328	0,100	0,100	2677,9	2661,7	257,9	-0,235
3000	0,100	0,100	3060,1	3043,5	300,2	-0,249
3336	0,076	0,076	3065,6	3056,2	228,1	-0,240
3628	0,096	0,097	2707,7	2694,7	257,4	-0,250
4008	0,097	0,097	2983,7	2969,6	288,7	-0,239
4344	0,087	0,087	3012,8	3001,3	260,6	-0,261
4680	0,088	0,089	3311,8	3293,4	283,6	-0,247
5016	0,097	0,097	2844,5	2828,8	272,4	-0,242
5352	0,070	0,070	2635,7	2629,3	184,0	-0,254

Tab. 8: Naměřené hodnoty metodou DMA – vzorek B:

Příloha B

Tab. 9: FFT metody DMA – vzorek A:

<i>t</i> _{<i>a</i>} [h]	t_E [min]	$t_{E'}$ [min]	$t_{E''}$ [min]		
1	13,79	14,11	8,23	14,01	17,19
5	13,37	12,79	6,29	10,91	
24	13,6	13,4	9,27	13,45	18,07
48	14,93	15,36	8,28	18,33	
96	11,94	14,4	5,39	9,26	13,12
216	14,53	14,02	1,58	11,09	
384	12,89	12,91	6,53	12,35	
552	13,88	13,43	4,93	8,18	12,62
720	14,55	14,73	10,31	16,7	
816	11,2	11,12	5,25	12,99	17,95
1152	11,4	12,14	8,37	16,19	
1488	14,17	15,19	5,7	10,83	17,33
1824	16,13	15,74	4,25	11,86	17,86
2160	10,03	9,98	4,5	8,23	15,25
2496	9,16	9,16	4,97	9,86	14,02
3168	12,65	12,88	3,72	9,21	15,41
3504	13,62	14,04	5,91	10,18	14,17
3840	13,35	13,2	7,1	12,37	
4176	11,21	10,98	6,61	15,2	
4512	12,48	12,16	3,18	7,35	14,65
4848	10,87	10,94	6,17	13,86	16,78
5184	12,02	11,6	4,09	10,49	14,02
5352	11,72	11,53	2,64	7,45	12,67
5928	14,81	14,22	4,31	8,91	15,56
6096	11,16	11,34	4,8	8,84	12,38

<i>t</i> _{<i>a</i>} [h]	t_E [min]	$t_{E'}$ [min]	$t_{E''}$ [min]			
1	13,22	13,02	5,17	12,87	18,22	
5	14,91	14,76	9,91	12,8	16,08	
24	12,7	12,7	7,97	14,09		
48	13,22	13,55	3,63	9,47	12,55	16,91
96	15,76	15,89	5,79	11,95	14,49	17,34
192	10,87	10,64	6,19	12,93	16,48	
312	13,69	14,21	8,56	16,43		
648	11,51	11,3	8,1	11,9	15,54	
984	16,16	16,19	5,32	12,44	16,64	
1320	11,04	10,96	8,56	12,63	16,68	
1656	15,42	15,8	6,09	9,84	16,36	
1992	14,57	14,8	5,23	8,9	12,08	16,49
2328	13,31	12,9	5,17	10,77	18,03	
3000	14,63	14,79	4,56	15,66		
3336	14,23	12,55	5,65	12,29	15,72	
3628	15,39	15,8	8,69	15,24		
4008	14,14	13,8	7,43	11,99	16,23	
4344	14,63	14,3	5,78	10,85	14,02	
4680	13,73	13,3	6,34	12,93		
5016	11,07	11,03	6,42	10,65	16,41	
5352	13,74	13,7	5,59	9,36	13,98	16,8

Tab. 10: FFT metody DMA – vzorek B: