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Foreword
Brian H. Mayall

Microscope image processing dates back a half century when it was realized that

some of the techniques of image capture and manipulation, first developed for

television, could also be applied to images captured through the microscope.

Initial approaches were dependent on the application: automatic screening for

cancerous cells in Papanicolaou smears; automatic classification of crystal size

in metal alloys; automation of white cell differential count; measurement of

DNA content in tumor cells; analysis of chromosomes; etc. In each case, the

solution lay in the development of hardware (often analog) and algorithms

highly specific to the needs of the application. General purpose digital comput-

ing was still in its infancy. Available computers were slow, extremely expensive,

and highly limited in capacity (I still remember having to squeeze a full analysis

system into less than 10 kilobytes of programmable memory!). Thus, there

existed an unbridgeable gap between the theory of how microscope images

could be processed and what was practically attainable.

One of the earliest systematic approaches to the processing of microscopic

images was the CYDAC (CYtophotometric DAta Conversion) project [1],

which I worked on under the leadership of Mort Mendelsohn at the University

of Pennsylvania. Images were scanned and digitized directly through the micro-

scope. Much effort went into characterizing the system in terms of geometric

and photometric sources of error. The theoretical and measured system transfer

functions were compared. Filtering techniques were used both to sharpen the

image and to reduce noise, while still maintaining the photometric integrity of

the image. A focusing algorithm was developed and implemented as an analog

assist device. But progress was agonizingly slow. Analysis was done off-line,

programs were transcribed to cards, and initially we had access to a computer

only once a week for a couple of hours in the middle of the night!

The modern programmable digital computer has removed all the old con-

straints—incredible processing power, speed, memory and storage come with

any consumer computer. My ten-year-old grandson, with his digital camera

and access to a lap-top computer with processing programs such as i-Photo and

Adobe Photoshop, can command more image processing resources than were
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available in leading research laboratories less than two decades ago. The chal-

lenge lies not in processing images, but in processing them correctly and effect-

ively. Microscope Image Processing provides the tools to meet this challenge.

In this volume, the editors have drawn on the expertise of leaders in process-

ing microscope images to introduce the reader to underlying theory, relevant

algorithms, guiding principles, and practical applications. It explains not only

what to do, but also which pitfalls to avoid and why. Analytic results can only be

as reliable as the processes used to obtain them. Spurious results can be avoided

when users understand the limitations imposed by diffraction optics, empty

magnification, noise, sampling errors, etc. The book not only covers the funda-

mentals of microscopy and image processing, but also describes the use of the

techniques as applied to fluorescence microscopy, spectral imaging, three-

dimensional microscopy, structured illumination and time-lapse microscopy.

Relatively advanced techniques such as wavelet and morphological image pro-

cessing and automated microscopy are described in intuitive and comprehensive

manner that will appeal to readers, whether technically oriented or not. The

summary list at the end of each chapter is a particularly useful feature enabling

the reader to access the essentials without necessarily mastering all the details of

the underlying theory.

Microscope Image Processing should become a required textbook for any

course on image processing, not just microscopic. It will be an invaluable

resource for all who process microscope images and who use the microscope

as a quantitative tool in their research. My congratulations go to the editors and

authors for the scope and depth of their contributions to this informative and

timely volume.
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Preface

The digital revolution has touched most aspects of modern life, including

entertainment, communication, and scientific research. Nowhere has the change

been more fundamental than in the field of microscopy. Researchers who use the

microscope in their investigations have been among the pioneers who applied

digital processing techniques to images. Many of the important digital image

processing techniques that are now in widespread usage were first implemented

for applications in microscopy. At this point in time, digital image processing is

an integral part of microscopy, and only rarely will one see a microscope used

with only visual observation or photography.

The purpose of this book is to bring together the techniques that have proved

to be widely useful in digital microscopy. This is quite a multidisciplinary field,

and the basis of processing techniques spans several areas of technology. We

attempt to lay the required groundwork for a basic understanding of the

algorithms that are involved, in the hope that this will prepare the reader to

press the development even further.

This is a book about techniques for processing microscope images. As such it

has little content devoted to the theory and practice of microscopy or even to

basic digital image processing, except where needed as background. Neither

does it focus on the latest techniques to be proposed. The focus is on those

techniques that routinely prove useful to research investigations involving

microscope images and upon which more advanced techniques are built.

A very large and talented cast of investigators has made microscope image

processing what it is today. We lack the paper and ink required to do justice to

the fascinating story of this development. Instead we put forward the tech-

niques, principally devoid of their history. The contributors to this volume

have shouldered their share of their creation, but many others who have pressed

forward the development do not appear.

xxiii



This page intentionally left blank



Acknowledgments

Each of the following contributors to this volume has done important work in

pushing forward the advance of technology, quite in addition to the work

manifested herein.

Romaric Audigier

Centre de Morphologie Mathématique
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1
Introduction

Kenneth R. Castleman and Ian T. Young

1.1 The Microscope and Image
Processing

Invented over 400 years ago, the optical microscope has seen steady improve-

ment and increasing use in biomedical research and clinical medicine as well as

in many other fields [1]. Today many variations of the basic microscope instru-

ment are used with great success, allowing us to peer into spaces much too small

to be seen with the unaided eye. More often than not, in this day and age, the

images produced by a microscope are converted into digital form for storage,

analysis, or processing prior to display and interpretation [2–4]. Digital image

processing greatly enhances the process of extracting information about the

specimen from a microscope image. For that reason, digital imaging is steadily

becoming an integral part of microscopy. Digital processing can be used to

extract quantitative information about the specimen from a microscope image,

and it can transform an image so that a displayed version is much more

informative than it would otherwise be [5, 6].

1.2 Scope of This Book

This book discusses the methods, techniques, and algorithms that have proven

useful in the processing and analysis of digital microscope images. We do not

attempt to describe the workings of the microscope, except as necessary to

outline its limitations and the reasons for certain processes. Neither do we spend
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time on the proper use of the instrument. These topics are well beyond our

scope, and they are well covered in other works. We focus instead on processing

microscope images in a computer.

Microscope imaging and image processing are of increasing interest to

the scientific and engineering communities. Recent developments in cellular-,

molecular-, and nanometer-level technologies have led to rapid discoveries and

have greatly advanced the frontiers of human knowledge in biology, medicine,

chemistry, pharmacology, and many related fields. The successful completion

of the human genome sequencing project, for example, has unveiled a new

world of information and laid the groundwork for knowledge discovery at an

unprecedented pace.

Microscopes have long been used to capture, observe, measure, and analyze

the images of various living organisms and structures at scales far below normal

human visual perception. With the advent of affordable, high-performance

computer and image sensor technologies, digital imaging has come into prom-

inence and is replacing traditional film-based photomicrography as the most

widely used method for microscope image acquisition and storage. Digital

image processing is not only a natural extension but is proving to be essential

to the success of subsequent data analysis and interpretation of the new gener-

ation of microscope images. There are microscope imaging modalities where an

image suitable for viewing is only available after digital image processing.

Digital processing of microscope images has opened up new realms of medical

research and brought about the possibility of advanced clinical diagnostic

procedures.

The approach used in this book is to present image processing algorithms

that have proved useful in microscope image processing and to illustrate their

application with specific examples. Useful mathematical results are presented

without derivation or proof, although with references to the earlier work. We

have relied on a collection of chapter contributions from leading experts in the

field to present detailed descriptions of state-of-the-art methods and algorithms

that have been developed to solve specific problems in microscope image

processing. Each chapter provides a summary, an in-depth analysis of the

methods, and specific examples to illustrate application. While the solution to

every problem cannot be included, the insight gained from these examples of

successful application should guide the reader in developing his or her own

applications.

Although a number of monographs and edited volumes exist on the topic

of computer-assisted microscopy, most of these books focus on the basic

concepts and technicalities of microscope illumination, optics, hardware

design, and digital camera setups. They do not discuss in detail the practical

issues that arise in microscope image processing or the development of

specialized algorithms for digital microscopy. This book is intended to

1 Introduction
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complement existing works by focusing on the computational and algorithmic

aspects of microscope image processing. It should serve the users of digital

microscopy as a reference for the basic algorithmic techniques that routinely

prove useful in microscope image processing. The intended audience for this

book includes scientists, engineers, clinicians, and graduate students working

in the fields of biology, medicine, chemistry, pharmacology, and other related

disciplines. It is intended for those who use microscopes and commercial

image processing software in their work and would like to understand the

methodologies and capabilities of the latest digital image processing tech-

niques. It is also for those who desire to develop their own image processing

software and algorithms for specific applications that are not covered by

existing commercial software products.

In summary, the purpose of this book is to present a discussion of algorithms

and processing methods that complements the existing array of books on

microscopy and digital image processing.

1.3 Our Approach

A few basic considerations govern our approach to discussing microscope image

processing algorithms. These are based on years of experience using and teach-

ing digital image processing. They are intended to prevent many of the common

misunderstandings that crop up to impair communication and confuse one

seeking to understand how to use this technology productively. We have

found that a detailed grasp of a few fundamental concepts does much to

facilitate learning this topic, to prevent misunderstandings, and to foster suc-

cessful application. We cannot claim that our approach is ‘‘standard’’ or ‘‘com-

monly used.’’ We only claim that it makes the job easier for the reader and the

authors.

1.3.1 The Four Types of Images

To the question ‘‘Is the image analog or digital?’’ the answer is ‘‘Both.’’ In fact,

at any one time, we may be dealing with four separate images, each of which is

a representation of the specimen that lies beneath the objective lens of the

microscope. This is a central issue because, whether we are looking at the

pages of this book, at a computer display, or through the eyepieces of

a microscope, we can see only images and not the original object. It is only

with a clear appreciation of these four images and the relationships among them

that we can move smoothly through the design of effective microscope image

processing algorithms. We have endeavored to use this formalism consistently

throughout this book to solidify the foundation of the reader’s understanding.

1.3 Our Approach
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1.3 .1 .1 Op t i ca l Image

The optical components of the microscope act to create an optical image of the

specimen on the image sensor, which, these days, is most commonly a charge-

coupled device (CCD) array. The optical image is a continuous distribution of

light intensity across a two-dimensional surface. It contains some information

about the specimen, but it is not a complete representation of the specimen. It is,

in the common case, a two-dimensional projection of a three-dimensional

object, and it is limited in resolution and is subject to distortion and noise

introduced by the imaging process. Though an imperfect representation, it is

what we have to work with if we seek to view, analyze, interpret, and understand

the specimen.

1.3 .1 .2 Con t i nuous Image

We can assume that the optical image corresponds to, and is represented by,

a continuous function of two spatial variables. That is, the coordinate positions

(x, y) are real numbers, and the light intensity at a given spatial position is

a nonnegative real number. This mathematical representation we call the con-

tinuous image. More specifically, it is a real-valued analytic function of two real

variables. This affords us considerable opportunity to use well-developed math-

ematical theory in the analysis of algorithms. We are fortunate that the imaging

process allows us to assume analyticity, since analytic functions are much more

well behaved than those that are merely continuous (see Section 1.3.2.1).

1.3 .1 .3 D ig i t a l Image

The digital image is produced by the process of digitization. The continuous

optical image is sampled, commonly on a rectangular grid, and those sample

values are quantized to produce a rectangular array of integers. That is, the

coordinate positions (n, m) are integers, and the light intensity at a given integer

spatial position is represented by a nonnegative integer. Further, random noise

is introduced into the resulting data. Such treatment of the optical image is

brutal in the extreme. Improperly done, the digitization process can severely

damage an image or even render it useless for analytical or interpretation

purposes. More formally, the digital image may not be a faithful representation

of the optical image and, therefore, of the specimen. Vital information can be

lost in the digitization process, and more than one project has failed for this

reason alone. Properly done, image digitization yields a numerical representa-

tion of the specimen that is faithful to the original spatial distribution of light

that emanated from the specimen.

What we actually process or analyze in the computer, of course, is the digital

image. This array of sample values (pixels) taken from the optical image,
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however, is only a relative of the specimen, and a rather distant one at that. It is

the responsibility of the user to ensure that the relevant information about the

specimen that is conveyed by the optical image is preserved in the digital image

as well. This does not mean that all such information must be preserved. This is

an impractical (actually impossible) task. It means that the information required

to solve the problem at handmust not be lost in either the imaging process or the

digitization process.

We have mentioned that digitization (sampling and quantization) is the

process that generates a corresponding digital image from an existing optical

image. To go the other way, from discrete to continuous, we use the process of

interpolation. By interpolating a digital image, we can generate an approxima-

tion to the continuous image (analytic function) that corresponds to the original

optical image. If all goes well, the continuous function that results from inter-

polation will be a faithful representation of the optical image.

1.3 .1 .4 D i sp layed Image

Finally, before we can visualize our specimen again, we must display the digital

image. Human eyes cannot view or interpret an image that exists in digital form.

A digital image must be converted back into optical form before it can be seen.

The process of displaying an image on a screen is also an interpolation action,

this time implemented in hardware. The display spot, as it is controlled by the

digital image, acts as the interpolation function that creates a continuous visible

image on the screen. The display hardware must be able to interpolate the digital

image in such a way as to preserve the information of interest.

1.3.2 The Resu l t

We see that each image with which we work is actually four images. Each optical

image corresponds to both the continuous image that describes it and the digital

image that would be obtained by digitizing it (assuming some particular set of

digitizing parameters). Further, each digital image corresponds to the continu-

ous function that would be generated by interpolating it (assuming a particular

interpolation method). Moreover, the digital image also corresponds to the

displayed image that would appear on a particular display screen. Finally, we

assume that the continuous image is a faithful representation of the specimen

and that it contains all of the relevant information required to solve the problem

at hand. In this book we refer to these as the optical image, the continuous

image, the digital image, and the displayed image. Their schematic relationship

is shown in Fig. 1.1.

This leaves us with an option as we go through the process of designing or

analyzing an image processing algorithm. We can treat it as a digital image
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(which it is), or we can analyze the corresponding continuous image. Both of

these represent the optical image, which, in turn, represents the specimen. In

some cases we have a choice and can make life easy on ourselves. Since we are

actually working with an array of integers, it is tempting to couch our analysis

strictly in the realm of discrete mathematics. In many cases this can be a useful

approach. But we cannot ignore the underlying analytic function to which that

array of numerical data corresponds. To be safe, an algorithm must be true to

both the digital image and the continuous image. Thus we must pay close

attention to both the continuous and the discrete aspects of the image.

To focus on one and ignore the other can lead a project to disaster.

In the best of all worlds, we could go about our business, merrily flipping

back and forth between corresponding continuous and digital images as needed.

The implementations of digitization and interpolation, however, do introduce

distortion, and caution must be exercised at every turn. Throughout this book

we strive to point out the resulting pitfalls.

1.3 .2 .1 Ana ly t i c Fun c t i on s

The continuous image that corresponds to a particular optical image is more

than merely continuous. It is a real-valued analytic function of two real vari-

ables. An analytic function is a continuous function that is severely restricted in

how ‘‘wiggly’’ it can be. Specifically, it possesses all of its derivatives at every

point. This restriction is so severe, in fact, that if you know the value of an

F IGURE 1.1 The four images of digital microscopy. The microscope forms an optical image of the
specimen. This is digitized to produce the digital image, which can be displayed and interpolated to form the
continuous image.
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analytic function and all of its (infinitely many) derivatives at a single point, then

that function is unique, and you know it everywhere. In other words, only one

analytic function can pass through that point with those particular values for its

derivatives. To be dealing with functions so nicely restricted relieves us from

many of the worries that keep pure mathematicians entertained.

As an example, assume that an analytic function of one variable passes

through the origin where its first derivative is equal to 2, and all other derivatives

are zero. The analytic function y ¼ 2x uniquely satisfies that condition and is

thus that function. Of all the analytic functions that pass through the origin,

only this one meets the stated requirements.

Thus when we work with a monochrome image, we can think of it as an

analytic function of two dimensions. A multispectral image can be viewed as

a collection of such functions, one for each spectral band. The restrictions

implied by the analyticity property make life much easier for us than it might

otherwise be. Working with such a restricted class of functions allows us

considerable latitude in the mathematical analysis that surrounds image pro-

cessing algorithm design. We can make the types of assumptions that are

common to engineering disciplines and actually get away with them.

The continuous and digital images are actually even more restricted than

previously stated. The continuous image is an analytic function that is band-

limited as well. The digital image is a band-limited, sampled function. The

effects created by all of these sometimes conflicting restrictions are discussed

in later chapters. For present purposes it suffices to say only that, by following

a relatively simple set of rules, we can analyze the digital image as if it were the

specimen itself.

1.3.3 The Sampl ing Theorem

The theoretical results that provide us with the most guidance as to what we can

get away with when digitizing and interpolating images are the Nyquist sam-

pling theorem (1928) and the Shannon sampling theorem (1949). They specify

the conditions under which an analytic function can be reconstructed, without

error, from its samples. Although this ideal situation is never quite attainable in

practice, the sampling theorems nevertheless provide us with means to keep the

damage to a minimum and to understand the causes and consequences of

failure, when that occurs. We cannot digitize and interpolate without the intro-

duction of noise and distortion. We can, however, preserve sufficient fidelity to

the specimen so that we can solve the problem at hand. The sampling theorem is

our map through that dangerous territory. This topic is covered in detail in later

chapters. By following a relatively simple set of rules, we can produce usable

results with digital microscopy.
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1.4 The Chal lenge

At this point we are left with the following situation. The object of interest is the

specimen that is placed under the microscope. The instrument forms an optical

image that represents that specimen. We assume that the optical image is well

represented by a continuous image (which is an analytic function), and we strive,

through the choices available in microscopy, to make this be the case. Further,

the optical image is sampled and quantized in such a way that the information

relevant to the problem at hand has been retained in the digital image. We can

interpolate the digital image to produce an approximation to the continuous

image or to make it visible for interpretation. We must now process the digital

image, either to extract quantitative data from it or to prepare it for display and

interpretationbyahumanobserver. In subsequentchapters themodelweuse is that

the continuous image is an analytic function that represents the specimen and that

thedigital image is a quantized arrayof discrete samples taken from the continuous

image. Although we actually process only the digital image, interpolation gives

us access to the continuous image whenever it is needed.

Our approach, then, dictates that we constantly keep in mind that we are

always dealing with a set of images that are representations of the optical image

produced by the microscope, and this, in turn, represents a projection of the

specimen. When analyzing an algorithm we can employ either continuous

or discrete mathematics, as long as the relationship between these images is

understood and preserved. In particular, any processing step performed upon

the digital image must be legitimate in terms of what it does to the underlying

continuous image.

1.5 Nomenclature

Digital microscopy consists of theory and techniques collected from several fields

of endeavor. As a result, the descriptive terms used therein represent a collection

of specialized definitions. Often, ordinary words are pressed into service and given

specific meanings. We have included a glossary to help the reader navigate

a pathway through the jargon, and we encourage its use. If a concept becomes

confusing or difficult to understand, it may well be the result of one of these

specialized words. As soon as that is cleared up, the path opens again.

1.6 Summary of Important Points

1. A microscope forms an optical image that represents the specimen.

2. The continuous image represents the optical image and is a real-valued

analytic function of two real variables.
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3. An analytic function is not only continuous, but possesses all of its

derivatives at every point.

4. The process of digitization generates a digital image from the optical

image.

5. The digital image is an array of integers obtained by sampling and

quantizing the optical image.

6. The process of interpolation generates an approximation of the con-

tinuous image from the digital image.

7. Image display is an interpolation process that is implemented in hard-

ware. It makes the digital image visible.

8. The optical image, the continuous image, the digital image, and the

displayed image each represent the specimen.

9. The design or analysis of an image processing algorithm must take into

account both the continuous image and the digital image.

10. In practice, digitization and interpolation cannot be done without loss

of information and the introduction of noise and distortion.

11. Digitization and interpolation must both be done in a way that pre-

serves the image content that is required to solve the problem at hand.

12. Digitization and interpolation must be done in a way that does not

introduce noise or distortion that would obscure the image content that

is needed to solve the problem at hand.
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2
Fundamentals of Microscopy

Kenneth R. Castleman and Ian T. Young

2.1 Origins of the Microscope

During the 1st century ad, the Romans were experimenting with different

shapes of clear glass. They discovered that by holding over an object a piece

of clear glass that was thicker in the middle than at the edges, they could make

that object appear larger. They also used lenses to focus the rays of the sun and

start a fire. By the end of the 13th century, spectacle makers were producing

lenses to be worn as eyeglasses to correct for deficiencies in vision. The word lens

derives from the Latin word lentil, because these magnifying chunks of glass

were similar in shape to a lentil bean. In 1590, two Dutch spectacle makers,

Zaccharias Janssen and his father, Hans, started experimenting with lenses.

They mounted several lenses in a tube, producing considerably more magnifi-

cation than was possible with a single lens. This work led to the invention of

both the compound microscope and the telescope [1].

In 1665, Robert Hooke, the English physicist who is sometimes called ‘‘the

father of English microscopy,’’ was the first person to see cells. He made his

discovery while examining a sliver of cork. In 1674 Anton van Leeuwenhoek,

while working in a dry goods store in Holland, became so interested inmagnifying

lenses that he learned how to make his own. By carefully grinding and polishing,

he was able tomake small lenses with high curvature, producing magnifications of

up to 270 times. He used his simple microscope to examine blood, semen, yeast,

insects, and the tiny animals swimming in a drop of water. Leeuwenhoek became

quite involved in science and was the first person to describe cells and bacteria.

Microscope Image Processing
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Because he neglected his dry goods business in favor of science and because many

of his pronouncements ran counter to the beliefs of the day, he was ridiculed by

the local townspeople. From the great many discoveries documented in his

research papers, Anton van Leeuwenhoek (1632–1723) has come to be known

as ‘‘the father of microscopy.’’ He constructed a total of 400 microscopes during

his lifetime. In 1759 John Dolland built an improved microscope using lenses

made of flint glass, greatly improving resolution.

Since the time of these pioneers, the basic technology of the microscope has

developed in many ways. The modern microscope is used in many different

imaging modalities and has become an invaluable tool in fields as diverse as

materials science, forensic science, clinicalmedicine, and biomedical and biological

research.

2.2 Optical Imaging

2.2.1 Image Format ion by a Lens

In this section we introduce the basic concept of an image-forming lens system

[1–7]. Figure 2.1 shows an optical system consisting of a single lens. In the

simplest case the lens is a thin, double-convex piece of glass with spherical

surfaces. Light rays inside the glass have a lower velocity of propagation than

light rays in air or vacuum. Because the distance the rays must travel varies from

the thickest to the thinnest parts of the lens, the light rays are bent toward the

optical axis of the lens by the process known as refraction.

F IGURE 2.1 An optical system consisting of a single lens. A point source at the origin of the focal plane
emits a diverging spherical wave that is intercepted by the aperture. The lens converts this into a spherical
wave that converges to a spot (i.e., the point spread function, psf) in the image plane. If df and di satisfy
Eq. 2.1, the system is in focus, and the psf takes on its smallest possible dimension.
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2.2 .1 .1 Imag ing a Po in t Sou r ce

A diverging spherical wave of light radiating from a point source at the origin of

the focal plane is refracted by a convex lens to produce a converging spherical

exit wave. The light converges to produce a small spot at the origin of the image

plane. The shape of that spot is called the point spread function (psf ).

The Fo cu s Equa t i on The point spread function will take on its

smallest possible size if the system is in focus, that is, if

1

df
þ 1

di
¼ 1

f
(2:1)

where f is the focal length of the lens. Equation 2.1 is called the lens equation.

2.2 .1 .2 Fo ca l Leng th

Focal length is an intrinsic property of any particular lens. It is the distance from

the lens to the image plane when a point source located at infinity is imaged in

focus. That is,

df ¼ 1 ) di ¼ f

and by symmetry

di ¼ 1 ) df ¼ f

The power of a lens, P, is given by P ¼ 1/f ; if f is given in meters, then P is in

diopters. By definition, the focal plane is that plane in object space where a point

source will form an in-focus image on the image plane, given a particular di.

Though sometimes called the object plane or the specimen plane, it is more

appropriately called the focal plane because it is the locus of all points that the

optical system can image in focus.

Magn ifi ca t i on If the point source moves away from the origin to

a position (xo, yo), then the spot image moves to a new position, (xi, yi), given by

xi ¼ �Mxo yi ¼ �Myo (2:2)

where

M ¼ di

df
(2:3)

is the magnification of the system.

Often the objective lens forms an image directly on the image sensor, and the

pixel spacing scales down from sensor to specimen by a factor approximately equal

2.2 Optical Imaging
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to the objective magnification. If, for example, M ¼ 100 and the pixel spacing of

the image sensor is 6.8 mm, then at the specimen or focal plane the spacing is

6.8 mm/100 ¼ 68 nm. In other cases, additional magnification is introduced

by intermediate lenses located between the objective and the image sensor.

The microscope eyepieces, which figure into conventional computations of ‘‘mag-

nification,’’ have no effect on pixel spacing. It is usually advantageous to measure,

rather than calculate, pixel spacing in a digital microscope. For our purposes, pixel

spacing at the specimen is a more useful parameter than magnification.

Equations 2.1 and 2.3 can be manipulated to form a set of formulas that are

useful in the analysis of optical systems [8]. In particular,

f ¼ didf

di þ df
¼ di

M þ 1
¼ df

M

M þ 1
(2:4)

di ¼ fdf

df � f
¼ f (M þ 1) (2:5)

and

df ¼ fdi

di � f
¼ f

M þ 1

M
(2:6)

Although it is composed of multiple lens elements, the objective lens of an

optical microscope behaves as in Fig. 2.1, to a good approximation. In contem-

porary light microscopes, di is fixed by the optical tube length of the microscope.

The mechanical tube length, the distance from the objective lens mounting flange

to the image plane, is commonly 160 mm. The optical tube length, however, varies

between 190 and 210 mm, depending upon the manufacturer. In any case, di � df
and,M� 1, except when a low-power objective lens (less than 10� ) is used.

2.2 .1 .3 Numer i ca l Ape r tu re

It is customary to specify a microscope objective, not by its focal length

and aperture diameter, but by its magnification (Eq. 2.3) and its numerical

aperture, NA. Microscope manufacturers commonly engrave the magnification

power and numerical aperture on their objective lenses, and the actual focal

length and aperture diameter are rarely used. The NA is given by

NA ¼ n sin að Þ � n a=2df
� � � n a=2fð Þ (2:7)

where n is the refractive index of the medium (air, immersion oil, etc.) located

between the specimen and the lens and a ¼ arctan a=2df
� �

is the angle between

the optical axis and a marginal ray from the origin of the focal plane to the edge

of the aperture, as illustrated in Fig. 2.1. The approximations in Eq. 2.7 assume
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small aperture and high magnification, respectively. These approximations

begin to break down at low power and high NA, which normally do not occur

together. One can compute and compare f and a, or the angles arctan(a=2df )
and arcsine(NA/n) to quantify the degree of approximation.

2.2 .1 .4 Len s Shape

For a thin, double-convex lens having a diameter that is small compared to its

focal length, the surfaces of the lens must be spherical in order to convert

a diverging spherical entrance wave into a converging spherical exit wave by

the process of diffraction. Furthermore, the focal length, f, of such a lens is given

by the lensmaker’s equation,

1

f
¼ n� 1ð Þ 1

R1

þ 1

R2

� �
(2:8)

where n is the refractive index of the glass andR1 andR2 are the radii of the front

and rear spherical surfaces of the lens [4]. For larger-diameter lenses, the

required shape is aspherical.

2.3 Dif fract ion-Limited Optical
Systems

In Fig. 2.1, the lens is thicker near the axis than near the edges, and axial rays are

refracted more than peripheral rays. In the ideal case, the variation in thickness

is just right to convert the incoming expanding spherical wave into a spherical

exit wave converging toward the image point. Any deviation of the exit wave

from spherical form is, by definition, due to aberration and makes the psf larger.

For lens diameters that are not small in comparison to f, spherical lens

surfaces are not adequate to produce a spherical exit wave. Such lenses do not

converge peripheral rays to the same point on the z-axis as they do near-axial

rays. This phenomenon is called spherical aberration, since it results from the

(inappropriate) spherical shape of the lens surfaces. High-quality optical sys-

tems employ aspherical surfaces and multiple lens elements to reduce spherical

aberration. Normally the objective lens is the main optical component in

a microscope that determines overall image quality.

A diffraction-limited optical system is one that does produce a converging

spherical exit wave in response to the diverging spherical entrance wave from

a point source. It is so called because its resolution is limited only by diffraction,

an effect related directly to the wave nature of light. One should understand that

a diffraction-limited optical system is an idealized system and that real optical

systems can only approach this ideal.

2.3 Diffraction-Limited Optical Systems
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2.3.1 L inear Sys tem Analys i s

It should be clear that increasing the intensity of the point source in Figure 2.1

causes a proportional increase in the intensity of the spot image. It follows that

two point sources would produce an image in which the two spots combine by

addition. This means that the lens is a two-dimensional linear system [8]. For

reasonably small off-axis distances in well-designed optical systems, the shape of

the spot image undergoes essentially no change as it moves away from the

origin. Thus the system can be assumed to be shift invariant (ignoring magnifi-

cation effects), or, in optics terminology, isoplanatic, as well as linear. The psf is

then the impulse response of a shift-invariant, linear system. This implies that the

imaging properties of the system can be specified by either its psf or its transfer

function [4, 8]. The optical transfer function is the Fourier transform of the psf.

The field of linear system analysis is quite well developed, and it provides us

with very useful tools to analyze the performance of optical systems. This is

developed in more detail in later chapters.

2.4 Incoherent I l lumination

Incoherent illumination may be viewed as a distribution of point sources, each

having a random phase that is statistically independent of the other point

sources [2, 5–7]. Under incoherent illumination, an optical system is linear in

light intensity. The light intensity is the square of the amplitude of the electro-

magnetic waves associated with the light [2]. In the following, we assume

narrow-band light sources. In general, light is a collection of different wave-

lengths, and modern microscopy makes extensive use of wavelengths between

350 nm (ultraviolet) and 1100 nm (near infrared). The term narrow-band implies

using only a small range of wavelengths, perhaps 30 nm wide around some

center wavelength.

2.4.1 The Poin t Spread Func t ion

The spot in the image plane produced by a point source in the focal plane is the

psf. For a lens with a circular aperture of diameter a in narrow-band, incoherent

light having center wavelength l, the psf has circular symmetry (Fig. 2.2) and is

given by

psf(r) ¼ h(r) ¼ 2

J1 p
r

ro

� �� �

p
r

ro

� �
2
664

3
775
2

(2:9)
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where J1(x) is the first-order Bessel function of the first kind [4]. The intensity

distribution associated with this psf is called the Airy disk pattern, after G.B. Airy

[9, 10], and is shown in Fig. 2.2. The constant, ro, a dimensional scale factor, is

ro ¼ ldi
a

(2:10)

and r is radial distance measured from the origin of the image plane, that is,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

q
(2:11)

2.4.2 The Opt i ca l T rans fer Func t ion

Since the imaging system in Fig. 2.1 is a shift-invariant linear system, it can be

specified either by its impulse response (i.e., the psf ) or by the Fourier transform

of its psf, which is called the optical transfer function (OTF). For a lens with

a circular aperture of diameter a in narrow-band incoherent light having center

wavelength l, the OTF (Fig. 2.3) is given by [4]

OTF(q) ¼ F{h(r)} ¼ H(q) ¼
2

p � 2
cos�1 q

fc

� �	
� sin cos�1 q

fc

� �� �

q # fc

0 q $ fc

8<
:

(2:12)

where q is the spatial frequency variable, measured radially in two-dimensional

frequency space. It is given by

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ n2

p
(2:13)

F IGURE 2 .2 The incoherent point spread function. A focused diffraction-limited system produces this psf
in narrow-band incoherent light.
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where u and n are spatial frequencies in the x and y directions, respectively.

The parameter fc, called the optical cutoff frequency, is given by

fc ¼ 1

ro
¼ a

ldi
(2:14)

2.5 Coherent I l lumination

Some microscopy applications require the use of coherent light for illumination.

Lasers, for example, supply coherent illumination at high power. Coherent illu-

mination can be thought of as a distribution of point sources whose amplitudes

maintain fixed phase relationships among themselves. Diffraction works some-

what differently under coherent illumination, and the psf and OTF take

on different forms. Under coherent illumination, an optical system is linear in

complex amplitude as opposed to linear in light intensity, as in the incoherent case.

2.5.1 The Coherent Poin t Spread
Func t ion

For a lens with a circular aperture of diameter a in coherent light of

wavelength l, the psf has circular symmetry (Fig. 2.4) and is given by

h rð Þ ¼ 2
J1 p r=roð Þ½ �
p r=roð Þ (2:15)

where ro is from Eq. 2.10 and r is from Eq. 2.11.

F IGURE 2.3 The incoherent OTF. This is the frequency response of a focused diffraction-limited system in
narrow-band incoherent light.
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2.5.2 The Coherent Opt i ca l T rans fer
Func t ion

For a lens with a circular aperture of diameter a in coherent light of

wavelength l, the OTF (Fig. 2.5) is given by [4]

H qð Þ ¼ P q
ldi
a

� �
(2:16)

where q is from Eq. 2.13 and

P qð Þ ¼
1 qj j < 1

2

0 qj j > 1

2

8>><
>>:

(2:17)

F IGURE 2 .4 The coherent point spread function. A focused diffraction-limited system produces this psf
in coherent light.

F IGURE 2 .5 The coherent OTF. This is the frequency response of a focused diffraction-limited system
in coherent light.
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Notice that, under coherent illumination, the OTF is flat out to the cutoff

frequency, while under incoherent illumination it monotonically decreases. Notice

also that the cutoff frequency in incoherent light is twice that of the coherent case.

Fig. 2.6 illustrates the relationships between the incoherent point spread function

and transfer functionofdiffraction-limitedoptical systemswithcircular exit pupils.

2.6 Resolut ion

One of the most important parameters of a microscope is its resolution, that is,

its ability to reproduce in the image small structures that exist in the specimen.

The optical definition of resolution is the minimum distance by which two point

sources must be separated in order for them to be recognized as separate. There

is no unique way to establish this distance. The psfs overlap gradually as the

a

a

a

1

0

1

0

u2 + ν2

−fc

fc =

fc 

q =

1.22ro 2.23ro 3.24ro

y r

r=
ldi

ldi

ro =x2 + y2

x
di

F IGURE 2.6 The incoherent point spread function and transfer function. This shows how the psf and OTF
depend on wavelength and aperture diameter for a diffraction-limited optical system with a circular aperture.
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points get closer together, and one must specify howmuch contrast is required if

the two objects are to be recognized as distinct. There are, however, two

commonly used criteria for comparing the resolving power of optical systems.

2.6.1 Abbe Dis tance

To a good approximation, the half-amplitude diameter of the central peak of the

image plane psf is given by the Abbe distance (after Ernst Abbe [11]),

rAbbe ¼ 1

M
l
di

a
¼ l

df

a
� l

2NA
¼ 0:5

l

NA

� �
(2:18)

2.6.2 Rayle igh Dis tance

For a lens with a circular aperture, the first zero of the image plane psf occurs at

a radius

rAiry ¼ 1:22ro ¼ 0:61
l

NA

� �
(2:19)

which is called the radius of the Airy disk. According to the Rayleigh criterion of

resolution (after Lord Rayleigh [12]), two point sources can be just resolved if

they are separated, in the image, by the distance d ¼ rAiry. (See Fig. 2.7.) In the

terminology of optics, the Rayleigh distance defines circular resolution cells in

the image, since two point sources can be resolved if they do not fall within the

same resolution cell.

2.6.3 Size Ca l cu la t ions

In microscopy it is convenient to perform size calculations in the focal plane,

rather than in the image plane as previously, since that is where the objects of

F IGURE 2 .7 The Rayleigh criterion of resolution. Two point sources can be just resolved if they are
separated, in the image, by the Airy distance.
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interest actually reside. The projection implemented by the lens involves a 1808
rotation and a scaling by the factor M (Eq. 2.3). The pixel spacing and reso-

lution can then be specified in units of micrometers at the specimen. Spatial

frequencies can be specified in cycles per micrometer in the focal plane.

Since df � f for high-magnification lenses (Eq. 2.6), the resolutionparameters

are more meaningful if we scale them to the focal (specimen) plane rather than

working in the image plane. For a microscope objective, the incoherent optical

cutoff frequency in the focal plane coordinate system is

fc ¼ Ma

ldi
¼ a

ldf
¼ 2NA

l
(2:20)

the Abbe distance is

rAbbe ¼ 1

M
l
di

a
¼ l

df

a
� l

2NA
¼ 0:5

l

NA

� �
(2:21)

and the Rayleigh distance (resolution cell diameter) is

dRayleigh ¼ 1:22ro ¼ 0:61
l

NA

� �
(2:22)

For l ¼ 0:5mm (green light) and an NA of 1.4 (high-quality, oil-immersion

lens), we have fc ¼ 5:6 cycles=mm, rAbbe ¼ 0:179mm, and dRayleigh ¼ 0:218mm.

The foregoing approximations begin to break down at low power and high

NA, which normally do not occur together. Again, one can compute and

compare f and a, or the angles arctan(a=2df ) and arcsine(NA=n), to quantify

the degree of approximation.

2.7 Aberrat ion

Real lenses are never actually diffraction limited, but suffer from aberrations

that make the psf broader, and the OTF narrower, than they would otherwise be

[2, 6, 7]. An example is spherical aberration, mentioned earlier. Aberrations in

an optical system can never increase the magnitude of the optical transfer

function, but they can drive it negative.

2.8 Cal ibrat ion

Making physical size measurements from images is very often required in the

analysis of microscope specimens. This can be done with accuracy only if the
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pixel spacing at the focal plane is known. Making brightness measurements in

the image is also useful, and it requires knowledge of the relationship between

specimen brightness and gray levels in the digital image.

2.8.1 Spat ia l Ca l ibra t ion

The pixel spacing can be either calculated or measured. Calculation requires

knowledge of the pixel spacing at the image sensor and the overall magnification

of the optics (recall Eq. 2.3). Often it can be calculated from

dx ¼ Dx

MoMa

(2:23)

where dx and Dx are the pixel spacing values at the specimen and at the image

sensor, respectively, and Mo is the magnification of the objective. Ma is the

magnification imposed by other optical elements in the system, such as the

camera adapter. Usually this is quoted in the operator’s manual for the micro-

scope or the accessory attachment. The image sensor pixel spacing is quoted in

the camera manual.

Too often, however, the numbers are not available for all the components in

the system. Pixel spacing must then be measured with the aid of a calibrated

target slide, sometimes called a stage micrometer. This requires a computer

program that can read out the (x, y) coordinates of a pixel in the digital

image. One digitizes an image of the calibration target and locates two pixels

that are a known distance apart on the target. Then

dx ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x1ð Þ2 þ y2 � y1ð Þ2

q (2:24)

where dx is the pixel spacing, D is the known distance on the calibration target,

and (x1, y1) and (x2, y2) are the locations of the two pixels in a recorded image.

For precision in the estimate of dx, the two points should be as far apart as

possible in the microscope field of view.

2.8.2 Photometr i c Ca l ibrat ion

Photometric properties that can be measured from a microscope image include

transmittance, optical density, reflectance, and fluorescence intensity. Optical

density calibration, as well as that for reflectance, requires a calibration target.

The procedure is similar to that for spatial calibration [8]. Fluorescence

intensity calibration techniques are covered in Chapter 12.
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2.9 Summary of Important Points

1. Lenses and other optical imaging systems can, in most cases, be treated

as two-dimensional, shift-invariant, linear systems.

2. The assumptions involved in the use of linear analysis of optical systems

begin to break down as one moves far off the optical axis, particularly

for wide-aperture, low-magnification systems.

3. Under coherent illumination, an optical system is linear in complex

amplitude.

4. Under incoherent illumination, an optical system is linear in intensity

(amplitude squared).

5. An optical system having no aberrations is called diffraction-limited

because its resolution is limited only by the wave nature of light

(diffraction effects). This is an ideal situation that real systems can

only approach.

6. A diffraction-limited optical system transforms a diverging spherical

entrance wave into a converging spherical exit wave.

7. The point spread function of an optical system has a nonzero extent

because of two effects: the wave nature of light (diffraction) and

aberrations in the optical system.

8. The optical transfer function is the Fourier transform of the point

spread function.

9. The point spread function is the inverse Fourier transform of the optical

transfer function.

10. For a circularly symmetric lens, the incoherent point spread function is

given by Eq. 2.9.

11. For a circularly symmetric lens, the incoherent optical transfer function

is given by Eq. 2.12.

12. For a circularly symmetric lens, the coherent point spread function is

given by Eq. 2.15.

13. For a circularly symmetric lens, the coherent transfer function is given

by Eq. 2.16.
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3
Image Digitization

Kenneth R. Castleman

3.1 Introduct ion

As mentioned in Chapter 1, digitization is the process that generates a digital

image, using the optical image as a guide. If this is done properly, then the

digital image can be interpolated (again, if done properly) to produce a con-

tinuous image that is a faithful representation of the optical image, at least for

the content of interest. In this chapter we address the factors that must be

considered in order to make this faithful representation happen.

In this day and age, many high-quality commercial image digitizing com-

ponents are available. It is no longer necessary to build an image digitizing

system from scratch. The design of a digital microscope system thus mainly

entails selecting a compatible set of components that are within budget and

adequate for the work to be done. A properly designed system, then, is well

balanced and geared to the tasks at hand. That is, no component unduly restricts

image quality, and none is wastefully overdesigned.

The various components of the imaging system (optics, image sensor, ana-

log-to-digital converter, etc.) act as links in a chain. Not only is the chain no

stronger than its weakest link, but the sum is actually less than any of its parts

(Section 3.8.1). In this chapter we seek to establish guidelines that will lead to the

design of well-balanced systems.

The primary factors that can degrade an image in the digitizing process are

(1) loss of detail, (2) noise, (3) aliasing, (4) shading, (5) photometric nonlinearity,

and (6) geometric distortion. If the level of each of these is kept low enough,

then the digital images obtained from the microscope will be usable for their

Microscope Image Processing
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intended purpose. Different applications, however, require different levels of

accuracy. Some are intrinsically more prone to noise and distortion than others.

Thus the design of a system must begin with a list of the planned applications

and their requirements in these five areas. In this chapter we discuss these five

topics individually before addressing them collectively.

This chapter addresses the various sources of degradation and how to quantify

them and the system design factors that affect overall performance. Other

chapters present image processing techniques that can be used to correct these

degradations. The principal goals are to preserve a suitably high level of detail and

signal-to-noise ratio while avoiding aliasing and to do so with acceptably low

levels of shading, photometric nonlinearity, and geometric distortion.

3.2 Resolut ion

The term resolution is perhaps the most abused word in all of digital microscopy.

It is sometimes used to describe pixel spacing (e.g., 0.25 microns between

adjacent pixel centers), digital image size (e.g., 1024 � 1024 pixels), test target

size (e.g., 1-micron bars), and grayscale depth (e.g., 8 bits, or 256 gray levels).

One must pay careful attention to context in order to know which definition is in

use. Otherwise considerable confusion will result.

In this book we adhere to the definition from the field of optics. Resolution is

a property of an imaging system. Specifically, it refers to the ability of the system

to reproduce the contrast of objects of different size. Notice that an object

necessarily must reside on a background. It is visible because it differs in bright-

ness from that background; that difference in brightness is its contrast. Smaller

objects normally are reproduced with lower contrast than larger objects. Below

some limiting size, objects are imaged totally without contrast, and they disap-

pear. Resolution refers to the smallest size an object can have and still be resolved

(seen to be separate from other objects in the image). This loss of contrast with

decreasing size, however, is a gradual phenomenon, so it is impossible to specify

uniquely the size of the smallest objects that can be imaged. Instead we must

adopt some criterion of visibility to specify the smallest resolvable object size.

At high magnification, in a well-designed system, it is normally the optical

components (principally the objective lens) that determine overall system reso-

lution. At low magnification, however, other components, such as the image

sensor array, may set the limit of resolution.

The optical transfer function (OTF) is a plot of the reproduced contrast of an

imaged object versus object size [1]. Here object size is specified as the frequency

of a pattern of bars with sinusoidal profile. In Fig. 3.1 we see such a test pattern

and note that the contrast of the imaged bars decreases with increasing

frequency. A plot showing this decrease is the OTF.

3 Image Digitization

28



Much to our good fortune, the OTF is the Fourier transform of the point

spread function (psf ), which is discussed in Chapter 2. Thus having either of

these functions makes available the other, and either one is sufficient to specify

the resolution of the system or of one of its components. Here we are making the

assumption that the imaging components under consideration can be modeled

as shift-invariant linear systems [1, 2].

While the OTF and, equivalently, the psf are complete specifications of the

system’s imaging capability, they are curves, and it is often desirable to have

a single number as a specification of resolution. Several of these are used, such as

the frequency at which the OTF drops to 10% of its zero-frequency value. More

common is the Rayleigh resolution criterion [1, 3]. It states that two point

objects can be just resolved if they are separated by a distance equal to the

radius of the first minimum of the psf, commonly called the Airy disk.

3.3 Sampling

The digitization process samples the optical image to form an array of sample

points. These are most commonly arranged on a rectangular sampling grid. The

image intensity is averaged over a small local area at each sample point. This

process can be modeled as convolution with the psf of the system. Further, the

image intensity is quantized at each sample point to produce an integer. This

rather brutal treatment is necessary to produce image data that can be processed

in a computer. If it is done properly, however, the important components of the

image will pass through undamaged.
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F IGURE 3 .1 The optical transfer function (OTF). The OTF specifies how the contrast of sinusoidal
structures of different frequencies is reduced by the imaging process.
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The Shannon sampling theorem [1, 4, 5] states that a continuous function

can be reconstructed, without error, from evenly spaced sample points, provided

that two criteria are met. First the function must be band-limited. That means

that its Fourier spectrum is zero for all frequencies above some cutoff frequency,

which we call fc. This means the function can have no sinusoidal components of

frequency greater than fc. Second, the sample spacing must be no larger than

Dx ¼ 1=2fc. This means there will be at least two sample points per cycle of the

highest-frequency sinusoidal component of the function. If these two criteria are

met, the function can be recovered from its samples by the process of interpol-

ation, if that is properly done.

If Dx < 1=2fc, then we have a smaller sample spacing than necessary, and the

function is said to be oversampled. The major drawbacks of oversampling are

increased file size and increased equipment cost, but reconstructionwithout error

is still possible. IfDx ¼ 1=2fcwehave critical sampling, also knownas sampling at

theNyquist rate [1]. IfDx > 1=2fc, then we have a larger sample spacing than that

required by the sampling theorem, and the function is said to be undersampled.

In this case interpolation cannot reconstruct the function without error if it

contains sinusoidal components of frequency up to fc (see Section 3.3.2).

3.3.1 In terpo la t ion

As a further requirement for perfect reconstruction of a sampled function, the

interpolating function must also be band-limited [6]. By the similarity theorem

of the Fourier transform [1, 2, 7, 8], a narrow function has a broad spectrum,

and vice versa. This means that any suitable interpolating function (such as

sin(x)=x) will extend to infinity in both positive and negative x and y. Clearly we

cannot implement that digitally, so we are constrained to work with truncated

interpolation functions. This means that perfect reconstruction remains beyond

our grasp, no matter how finely we sample. However, we can usually get close

enough, and oversampling is a key to that.

Figure 3.2 shows the results of interpolating a sampled cosine function with

the often-used Gaussian interpolation function, shown at the upper left. Even

though the sampling theorem is satisfied (i.e., Dx < 1=2f ) in all seven cases, the

inappropriate interpolation function creates considerable reconstruction error.

As the sampling becomes finer, the results of interpolation, while still imperfect,

are seen to improve. The lesson is that, even though we are constrained to use

inappropriate interpolation functions, judicious oversampling can compensate

for much of that inadequacy.

Figure 3.3 shows interpolation with a truncated version of the sinc function.

Here the interpolation process is more complicated than with the Gaussian, but

good results are obtained, all the way up to the sampling limit of Dx ¼ 1=2f .
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F IGURE 3 .2 Interpolation with a Gaussian function. Here, sampled cosine functions of different frequen-
cies are interpolated by convolution with the commonly used Gaussian function shown at the upper left.
In each case, the original function appears as a dashed line and the reconstructed function as a solid line.
The sample points appear as diamonds. Notice that the inappropriate shape of the interpolation function gives
rise to considerable reconstruction error and that the amount and nature of that error varies with frequency.
In general, however, the amount of interpolation error decreases as the sample spacing becomes smaller in
relation to the period of the cosine. This phenomenon argues that oversampling tends to compensate for our
having to use a truncated interpolation function.
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This means that the continuous image is truly available to us if we implement

digital interpolation using a decent approximation to the sinc function.

3.3.2 Al ias ing

Aliasing is the phenomenon that occurs when an image is sampled too coarsely,

that is, when the pixels are too far apart in relation to the size of the detail

present in the image [1, 5, 6, 9]. It introduces a very troublesome type of low-

frequency noise. Aliasing can be a significant source of error when images

contain a strong high-frequency pattern, but it can be, and should be, avoided

by proper system design.

If the sample spacing, Dx, is too large (i.e., Dx > 1=2f ), then a sinusoid of

frequency f is undersampled and cannot be reconstructed without error. When it

is interpolated, evenwith an appropriate interpolation function, the phenomenon

of aliasing introduces noise that resembles a Moiré pattern. Aliasing poses

a particular problem in images that contain a high-contrast, high-frequency

parallel-line pattern. Most images have little contrast at the highest frequencies,

so there is less of a visible effect.

Figure 3.4 illustrates aliasing. In the upper left, the cosine is oversampled and

is reconstructed exactly by interpolation with the sinc function. In the other

−10

−1.2

1.21.2

−8 −6 −4 −2 0

Interpolating Function

Pixel Position

Pixel Position

2 Sample Points per Cycle

2 4 6 8 10 0 1 2 3 4 5 6 7 8 9 10

−1.2

1.2

Pixel Position

3.5 Sample Points per Cycle

0 1 2 3 4 5 6 7 8 9 10

−1.2

1.2

Pixel Position

2.5 Sample Points per Cycle

0 1 2 3 4 5 6 7 8 9 10

F IGURE 3.3 Interpolation with a truncated sinc function. Sampled cosine functions of different frequen-
cies are interpolated by convolution with the truncated sinc function, shown in the upper left. In each case, the
original function is shown as a dashed line and the reconstructed function as a solid line. The sample points
appear as diamonds. Notice that the more appropriate shape of the interpolation function gives rise to
considerably less reconstruction error than that apparent in Fig. 3.2.
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three panels, the cosine is undersampled, and, though a cosine is reconstructed,

it has the wrong frequency. Aliasing reduces the frequency of sinusoidal com-

ponents in an image. This can be quite troublesome and should be avoided by

maintaining Dx < 1=2fc.
We mentioned in Chapter 2 that the OTF of a microscope objective lens

(Eq. 2.12) goes to zero for all frequencies above the optical cutoff frequency

fc ¼ l=2NA (Eq. 2.14). Thus the optics provide a built-in antialiasing filter, and

we can be content simply to design for Dx < 1=2fc, at least as far as aliasing is

concerned. However, since we cannot interpolate with the sinc function, as

contemplated by the sampling theorem, we must compensate for this shortcom-

ing by oversampling. Thus it is good practice to set the sample spacing well

below the aliasing limit.

3.4 Noise

The term noise is generally taken to mean an undesired additive component of

an image. It can be random or periodic. The most common noise component is
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F IGURE 3 .4 Aliasing. Here cosine functions of different frequencies are sampled and then interpolated
by convolution with the (untruncated) sinc function. In each case, the original function is shown as a dashed
line and the reconstructed function as a solid line. The sample points appear as diamonds. Notice that
violation of the sampling theorem (i.e., Dx > 1/2f ) gives rise to a peculiar form of reconstruction error. In
each case a cosine of unit magnitude is reconstructed, so amplitude and waveshape are preserved but
frequency is not. The reconstructed cosines are reduced in frequency. This phenomenon affects all sinusoidal
components having frequency greater than half the sampling frequency. Notice that the reconstructed
function, although of the wrong frequency, still passes through all of the sample points.
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the random noise generated by the amplifier circuitry in the camera. Periodic

noise can result from stray periodic signals finding their way into the camera

circuits. Quantization noise results from conversion of the continuous bright-

ness values into integers. As a rule of thumb, the overall noise level will be the

root sum square of the various noise source amplitudes. One can control

quantization noise by using enough bits per pixel. Generally quantization

noise can be, and should be, kept below the other noise sources in amplitude.

Eight-bit digitizers are quite common, and this puts the quantization noise level

(1=256) below 0.5 percent of the total dynamic range. Some applications,

however, require the more expensive 10-bit or 12-bit digitizers.

3.5 Shading

Ideally the contrast of an object would not change as it moved around within the

image. Neither would the gray level of the background area where no objects

reside. This is never the case. An empty field will usually show considerable

variation in brightness, typically as a slowly varying pattern that becomes

darker toward the periphery of the field of view. This is called additive shading

because brightness is added to (or subtracted from) the true brightness of the

object at different locations in the image. Careful adjustment of the microscope

(e.g., lamp centering, condenser focusing) can minimize, but not remove, this

effect. More subtle but equally important is multiplicative shading. Here the

contrast of the object (brightness difference from background) varies with

position. The gray level is multiplied by a factor that varies with position.

Fortunately, both additive and multiplicative shading usually remain con-

stant from one image to the next, until the microscope configuration (e.g.,

objective power) is changed. Thus one can usually record the shading pattern

at the beginning of a digitizing session and remove it from each captured image

by subsequent digital processing (see Chapter 12). Nevertheless, steps taken in

the design phase to reduce inherent shading will reap generous rewards later.

3.6 Photometry

Ideally the gray levels should be linearly related to some photometric property of

the specimen, just as the pixel position (row and column) in the digital image is

related to (x, y) position in the specimen. Then the recorded digital image

describes the specimen and not the system that imaged it. The photometric

property can be transmittance, optical density, reflectance, fluorescence intensity,

etc. If the image sensor array is not linear in the desired photometric property,

then a grayscale transformation (Chapter 6) may be required to bring about the
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desired linear relationship. Special calibration targets containing objects of known

brightness are commonly used to determine the relationship. Step wedge targets

and fluorescent beads of known size and brightness are often useful.

3.7 Geometric Distort ion

Geometric distortion is an unwanted ‘‘warping’’ of the image that distorts the

spatial relationship among the objects in the image. It can change the apparent

size and shape of objects and the spacing between them. Geometric distortion

can undermine the accuracy of spatial measurements, such as length, area,

perimeter, shape, and spacing.

Most modern microscope imaging systems use solid-state image sensor

arrays. The pixel geometry is carefully controlled in the manufacturing process,

and geometric distortion from this source is negligible. Other components,

however, can disturb the geometrical relationships. The imaging optics, for

example, can introduce geometric distortion.

One can reduce the effects of geometric distortion by first measuring and

characterizing it and then correcting it in software after the images have been

digitized. Measurement requires a suitable test target of known geometry, such

as a rectangular grid pattern. Correction requires a suitably defined geometric

operation (see Chapter 5).

To a first-order approximation, geometric distortion is invariant from one

image to the next. This means we can measure it once and for all and correct

the images as a batch process. Changing the microscope configuration (e.g., the

objective lens), of course, will change the distortion pattern, and separate

correction is required for each different setup.

3.8 Complete System Design

No one component single-handedly determines the quality of the images

obtained from a digital microscope. It is the interaction of all components that

establishes image quality.

3.8.1 Cumulat ive Reso lu t ion

Each component in the imaging chain (objective, relay lens, camera, etc.)

contributes to the overall resolution of the system. If each of these is a

shift-invariant linear system, then their cumulative effect can be summarized as

the system psf. The overall system psf is simply the convolution of all of the

component psfs. The problem with this is that each convolution broadens the psf.

Thus the system psf will be broader than any of the component psfs. Looking at
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the problem in the frequency domain, the overall system transfer function (TF) is

the product of the transfer functions of all of the components. Since they all

typically decay with increasing frequency, the system TF will be narrower than

any component TF. The result of all this is that we might assemble a system with

components, each of which has adequate resolution, only to find that the system

itself does not. Searching for a single offending component will be futile, since this

chain is weaker than any of its links. Thus we must select components based on

overall, not individual, performance requirements.

3.8.2 Des ign Rules of Thumb

Here we discuss some principles that can be used to guide the design of a system,

even when this consists mainly of component selection.

3.8 .2 .1 P ixe l Spa c i ng

The cutoff frequency of the objective lens OTF sets the maximum sample

spacing, but one is always wise to oversample generously. One should select the

pixel spacing not only to avoid aliasing for any configuration (objective power,

etc.), but also to make subsequent processing more reliable. Low-magnification

configurations deserve special consideration since the objective lens may not

provide an antialiasing filter, and aliasing becomes more likely.

3.8 .2 .2 Reso lu t i on

Although each component contributes, the numerical aperture (NA) of the

objective lens generally establishes the resolution of the system. For high-quality

lenses, one can assume the diffraction-limited form of the OTF (Eq. 2.12).

A measured OTF is better, however, especially for lower-quality optics, which

may not live up to their full potential. The objective lens OTF should pass the

highest frequencies expected to be present in the specimens of interest. Stated

another way, the psf (Eq. 2.9) should be less than half the size of the smallest

objects of interest to be imaged.

3.8 .2 .3 No i se

The overall noise level is approximately the square root of the sum of squares of

the individual noise sources in the system. Quantization noise should be less

than half the root mean square (RMS) noise level due to all other noise sources.

3.8 .2 .4 Pho tomet r y

One can measure the photometric linearity of a particular microscope configur-

ation using a suitable calibration target (step wedge, fluorescent beads, etc.).
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If there is significant nonlinearity, it can be corrected with a suitable grayscale

transformation (Chapter 6). This can be done as a batch job after the digitizing

session is finished.

3.8 .2 .5 D i s to r t i on

The degree of geometric distortion in a particular microscope configuration can

be measured with a calibration grid target. If it is significant, one can use

a geometric transformation to correct it in each digitized image (Chapter 5).

This can be done as a batch job after the digitizing session is complete.

3.9 Summary of Important Points

1. Aliasing results when the sample spacing is greater than one-half the

period of a sinusoidal component.

2. Aliasing reduces the frequency of sinusoidal components.

3. The systemOTF sets an upper limit on the frequencies that can be present

in an image.

4. The system OTF can act as an antialiasing filter.

5. One can set the sampling frequency to be at least twice the OTF cutoff

frequency to avoid aliasing.

6. A band-limited interpolation function is required for recovery without

error of a sampled function.

7. A truncated sinc function is better for interpolation than a nonnegative

pulse.

8. Oversampling tends to compensate for the use of a truncated interpol-

ation function.

9. Oversampling tends to make subsequent quantitative image analysis

more accurate.
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4
Image Display

Kenneth R. Castleman

4.1 Introduct ion

In some cases a digitized microscope image may be analyzed quantitatively, and

the resulting numerical data is all that is required for the project. In many other

cases, however, a processed image must be displayed for interpretation. Indeed,

more actual scientific discovery is based on viewing images than on observing

data. Even in clinical applications, one usually wishes to see the specimen, if only

to understand and confirm the accompanying numerical data.

Image display is the opposite of digitization. It converts a digital image back

into visible form. It does so by an interpolation process that is implemented in

hardware. Just as image digitization must be done with attention to the elements

that affect image quality, high-quality image displays do not happen by accident

either. In this chapter we discuss processing steps that can help ensure that

a display system presents an image in its truest or most interpretable form.

Image display technologies fall outside our scope and are covered elsewhere

[1–7]. Here we focus on how to prepare digital image data for display.

The primary job of a display system is to recreate, through interpolation, the

continuous image that corresponds to the digital image that is to be displayed.

Recall from Chapter 1 that any digital image is a sampled function that corres-

ponds uniquely to a particular analytic function. The task of the display system

is to produce that analytic function as a pattern of light on a screen, a pattern of

ink on a page, or an image on film. We wish that presentation to be as accurate

as possible or at least good enough to serve the needs of the project.

Microscope Image Processing
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Normally a display system produces an analog image in the form of

a rectangular array of display pixels. The brightness of each display pixel is

controlled by the gray level of the corresponding pixel in the digital image.

However, the primary function of the display is to allow the human observer to

understand and interpret the image content. This introduces a subjective elem-

ent, and it is helpful to match the display process to the characteristics of the

human eye. For example, the human eye has considerable acuity in discrimin-

ating fine detail (high-spatial-frequency information), but is not particularly

sensitive to low-frequency (slowly varying) image information [8]. Some images

may be more easily understood if they are displayed indirectly, using contour

lines, shading, color, or some other representation. Examples of such displays

appear throughout this book.

4.2 Display Characterist ics

In this section we discuss those characteristics that, taken together, determine

the quality of a digital image display system and its suitability for particular

applications. The primary characteristics of interest are the image size, the

photometric and spatial resolution, the low-frequency response, and the noise

characteristics of the display.

4.2.1 Disp layed Image Size

The image size capability of a display system has two components. First is the

physical size of the display itself, which should be large enough to permit

convenient examination and interpretation of the displayed images. For ex-

ample, a larger screen is required for group viewing. The second characteristic

is the size of the largest digital image that the display system can handle. The

native displayed image size must be adequate for the number of rows and

columns in the largest image to be displayed. The trend is toward processing

larger images, and inadequate display size can reduce the effectiveness of an

image processing system.

4.2.2 Aspec t Rat io

Ideally the vertical and horizontal pixel spacings will be equal in the image

digitizing camera and in the display device. This situation is referred to as square

pixels. In many cases, however, the vertical and horizontal pixel spacings will be

different, most likely in the display. An example of the effect of this is readily

seen when a standard 4:3 video image is displayed on a high-definition 16:9
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television screen. The image becomes stretched, in this case, horizontally. Round

objects become oval. While this may not be of critical importance in the

entertainment industry, it can be problematical in science, where quantification

is more important.

Modern image display devices are often capable of operating in several

different aspect ratio modes, and one can often select a mode that minimizes

distortion. Software is readily available that can stretch an image horizontally or

vertically by a specified amount (see Chapter 5). A simple test is to generate

a digital image that contains a square object and measure the height and width

of its displayed image.

4.2.3 Photometr i c Reso lu t ion

For display systems, photometric resolution refers to the accuracy with which the

system can produce the correct brightness value at each pixel position. Of

particular interest is the number of discrete gray levels that the system can

produce. This is partially dependent on the number of bits used to control the

brightness of each pixel.

Some older displays were capable of handling only 4-bit data, therefore

producing only 16 distinct shades of gray, while modern units commonly

handle 8-bit data, for 256 gray levels. However, it is one thing to design

a display that can accept 8-bit data and quite another to produce a system

that can reliably display 256 distinct shades of gray. The effective number of

gray levels is never more than the number of gray levels in the digital data, but

it may well be less.

If electronic noise generated within the display system occupies more than

one gray level, then the effective number of gray levels is reduced. As a rule of

thumb, the RMS noise level represents a practical lower limit for grayscale

resolution. For example, if the RMS noise level is 1% of the total display range

from black to white, then the display can be assumed to have a photometric

resolution of 100 shades of gray. If the display system accepts 8-bit data, it still

has only 100 effective gray levels. If it is a 6-bit display system, then it has 64 gray

levels. The RMS noise level is a convenient measure to use. If the noise can be

assumed to have a normal distribution, then it will stay within +1 standard

deviation about 68% of the time.

A useful tool for determining the grayscale capability of a display system is

the step target (Fig. 4.1). This is a rectangular arrangement of squares of each

different gray level. If all of the boundaries between steps can be seen clearly,

then the display is doing its job well. One often finds that the darkest few steps

and the lightest few are indistinguishable, indicating saturation at the black and/or

white end of the grayscale.
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4.2.4 Graysca le L inear i ty

Another important display characteristic is the linearity of the grayscale. By this

we mean the degree to which the displayed brightness is proportional to input

gray level. Any display device has a transfer curve of input gray level to output

brightness. For proper operation, this curve should be reasonably linear and

constant from one use to the next.

Fortunately perhaps, the human eye is not a very accurate photometer [8].

Slight nonlinearities in the transfer curve, as well as 10–20% intensity shading

across the image, are hardly noticed. If the transfer curve has a definite shoulder

or toe at one end or the other, however, information may be lost or degraded in

the light or dark areas.

4.2.5 Low-Frequency Response

In this section, we consider the ability of a display system to reproduce large

areas of constant gray level (‘‘flat fields’’). Since our goal is to minimize the

visible effects of digital processing, we prefer flat fields to be displayed with

uniform intensity.

4.2 .5 .1 P ixe l Po la r i t y

A flat field can, of course, be displayed at any shade of gray between black and

white. On a monitor display, for example, a high-intensity pixel is displayed as

F IGURE 4 .1 A gray-level step target.
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a bright spot on an otherwise dark screen. Zero-intensity pixels leave the screen

in its intrinsic dark state. In a printer or film recorder, a high-intensity pixel

leaves a black spot on otherwise white paper or transparent film. Zero-intensity

pixels leave the paper white or the film transparent. Thus any display system

has a characteristic pixel polarity. No matter what the display polarity, zero-

intensity flat fields are displayed uniformly flat. Thus flat-field performance

becomes an issue only at intermediate and high gray levels, and these may be

either black or white, depending on the display system polarity.

4.2 .5 .2 P ixe l I n te ra c t i on

Flat-field performance depends primarily on how well the pixels ‘‘fit together.’’

Flat panel displays, such as liquid crystal display (LCD) or thin-film transistor

(TFT) units, use rectangular arrays of rectangular pixels [6, 7]. Their flat-field

performance is affected by the size of the gaps between pixels. Cathode ray tube

(CRT) devices, which are becoming less common for digital image display, use

a rectangular array of circular spots [9–20]. For either type of display device,

close inspection will reveal pixelization (the appearance of pixels) in bright, flat

areas of the displayed image.

4.2.6 High-Frequency Response

How well a display system can reproduce fine detail again depends on display

spot shape and spacing. The ideal sin(x)=x spot shape is unattainable, so

compromise is unavoidable. Processing steps that can improve the rendering

of detail in displayed images are discussed in Section 4.4.

4.2.7 The Spot -Spac ing Compromise

The goals of field flatness and high-frequency response place conflicting con-

straints on the selection of spot spacing. The best compromise depends on the

relative importance of high- and low-frequency information in each individual

image. While spot spacing can be considered a display variable that must be

tailored to the image processing application, it is usually left to the manufacturer

of the display equipment.

4.2.8 Noise Cons iderat ions

Random noise in the intensity channel can produce a salt-and-pepper effect that

is particularly visible in flat fields. The previously stated rule of thumb indicates

that the effective quantizing level is roughly equal to the RMS noise amplitude.

If the noise is periodic and of reasonably high intensity, it can produce a
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herringbone pattern superimposed on the displayed image. If the noise is peri-

odic and synchronized with the horizontal or vertical deflection signals, it can

produce a pattern of bars. The general display quality is adequate if all noise,

random and periodic, is kept at or below one gray level in amplitude. In many

systems, it is actually somewhat worse than that. Preprocessing is not effective at

eliminating noise introduced by the display system. Only repair or replacement

will improve the situation.

4.3 Volati le Displays

The most common types of volatile display are the LCD and the TFT flat panel

monitor [6, 7], although CRT monitors are still common [10–15]. Plasma

displays are made by sandwiching a fine mesh between two sheets of glass,

leaving a rectangular array of cells containing an ionizable gas [21]. By means

of coincident horizontal and vertical addressing techniques, the cells can be

made to glow under the influence of a permanent sustaining electrical potential.

The monitor is usually driven by a display card in the computer that transfers

the image data to the monitor in the proper format. Monitors come with various

native image sizes and aspect ratios, and the physical aspect ratio often does

not match the pixel ratio. These ‘‘nonsquare pixel’’ displays introduce geometric

distortion by stretching the digital image vertically or horizontally to fill the

screen. The 4:3 aspect ratio is a holdover from television broadcast technology

and is still quite common for digital image display monitors. The more modern

16:9 aspect ratio is becoming popular as well. Note that a 4:3 image displayed

on a 16:9 monitor will be distorted. Table 4.1 shows some commonly used 4:3

image display formats.

TABLE 4 .1 Display formats

Format Image Size

VGA 640 � 480

SVGA 800 � 600

XGA 1024 � 768

XGA 1152 � 864

XGA 1280 � 960

XGA 1400 � 1050

XGA 1600 � 1200

XGA 1856 � 1392

XGA 1920 � 1440

XGA 2048 � 1536
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Displayed grayscale formats range from 8-bit monochrome to 16-bit

(64 thousand colors) and 24-bit color (16.7 million colors). The contrast ratio

is the ratio of the intensity of the brightest white to pure black, under ambient

illumination. Values of 500 to 5,000 are typical. Refresh rates vary from 30 to

120 Hz. The display can be either progressive, which scans line by line, or

interlaced. Interlaced scanning is a holdover from early television design [10–

18]. In order to reduce perceived flicker, the odd-numbered lines and even-

numbered lines are scanned alternately. Usually a high-refresh-rate progressive

scan is preferred.

The past decade has seen remarkable developments in image display

technology. High-quality display equipment is now available at reasonable

cost. The trend is toward physically larger displays with more pixels.

4.4 Sampling for Display Purposes

We have mentioned that displaying a digital image is actually a process of

interpolation, in that it reconstructs a continuous image from a set of discrete

samples. We also know, from the sampling theorem, that the proper interpol-

ation function (i.e., display spot shape) has the form sinc(ax) ¼ sin(ax)=ax,
which is, in fact, quite different from the shape of most display pixels.

The solid line in Fig. 4.2 shows, in one dimension, the example of a cosine

function that is sampled at a rate of 3.3 sample points per cycle. That is, the

sample spacing is 30% of the period of the cosine. This sample spacing is small

enough to preserve the cosine, and proper interpolation will reconstruct it from

its samples without error. When this sampled function is interpolated with

1
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−1

F IGURE 4.2 Interpolation with a Gaussian function. The original cosine is shown as a dashed line, the
sample points as squares, and the interpolated function as a solid line. In this case the sample spacing is 30%
of the period of the cosine. The distortion of the reconstructed function results from the inappropriate shape of
the interpolation function.
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a Gaussian display pixel, however, the distorted waveform (solid line) in Fig. 4.2

results. This illustrates that the display process itself can degrade an image, even

one that has survived digitization and processing without damage.

The difficulties encountered in the foregoing sections illustrate that image

display using a physical display spot is a suboptimal process. While it is imprac-

tical to implement display devices with sin(ax)=ax–shaped display spots, there

are things that can be done to improve the situation.

4.4.1 Oversampl ing

The inappropriate shape of the display spot has less effect when there are more

sample points per cycle of the cosine. Thus one can improve the situation by

arranging to have many pixels that are small in relation to the detail in the

image. This is called ‘‘oversampling’’ and is discussed in Chapter 3. It requires

more expensive cameras and produces more image data than other system

design considerations would dictate.

4.4.2 Resampl ing

Another way to improve the appearance of a displayed image is by resampling.

This is the process of increasing the size of the image via digitally implemented

interpolation done prior to display. For example, a 512 � 512 image might be

interpolated up to 1024 � 1024 prior to being displayed. If the interpolation is

done properly, the result will be more satisfactory. Note that this interpolation

adds no new information to the image, but it does help overcome inadequacies

in the display process.

Figure 4.3 shows what happens when two extra sample points are inserted

between each pair in Fig. 4.2. The value at each new sample point is determined

by placing a sin(ax)=ax function at each of the original sample points and

summing their values at each new sample position. Here a ¼ p=t, where t is

the original sample spacing. This is digitally implemented interpolation using

the correct interpolation function. Fig. 4.3 shows that when the new (three times

larger) sampled function is interpolated with a Gaussian display spot, the result

is more satisfactory.

Resampling a digital image by a factor of 2 or 3 increases its size by a factor of

4 or 9, respectively, and this requires a display device that can accommodate the

resulting larger image size. It only needs to be done as the last step prior to display,

however, so the burden is not felt until that stage. If the digital image size is smaller

than the inherent size of the display, most modern display systems use built-in

resampling. Since this algorithm is implemented in hardware, it often lacks sophis-

tication. A more satisfactory result can often be obtained by first resampling the

image up to a size that matches the native pixel resolution of the display device.
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4.5 Display Cal ibrat ion

On both display monitors and hard-copy printers, the transfer curve depends, in

part, on the brightness and contrast settings. Sometimes these also include

a ‘‘gamma’’ setting that affects the shape of the nonlinear transfer curve. Thus

it is possible for the user to alter the transfer curve to suit a particular image or

personal taste. In most cases, however, it is most satisfactory to allow the image

processing to be done by the software and not the display system, which should

merely present the digital image to the operator without additional ‘‘enhance-

ment.’’

A simple calibration procedure can ensure that the display renders the digital

image properly. A grayscale test target, such as that in Fig. 4.1, is displayed on

the monitor or sent to the image printer. Then the various adjustments are set so

that the full range of brightness is visible, with no loss of gray levels at either end.

When an image processing system is in proper calibration, a print from the

hard-copy recorder looks just like the image displayed on the screen, and this in

turn is an accurate rendering of the digital image data.

4.6 Summary of Important Points

1. Image display is a process of interpolation done in hardware.

2. The ideal display spot for interpolation without error has the form

sin(x)=x.

1

0

0 5 10 15 20 25 30

−1

F IGURE 4 .3 Interpolation after resampling. The sample points in Fig. 4.2 were interpolated to place two
new points between each existing pair. The sinc(x) function was used in that digitally implemented interpol-
ation process. The resulting (more dense) sample points were then interpolated, as in Fig. 4.2, with a Gaussian
function. The result is a better reconstruction of the original cosine. Again the original cosine is a dashed line,
the sample points are squares, and the interpolated function is a solid line.
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3. Physical display spots differ significantly from the ideal.

4. Display quality can be improved by resampling the image prior to

display.

5. The horizontal and vertical pixel spacing should be equal, and the aspect

ratio of the display should match that of the image, in order to avoid

distortion.

6. Simple image processing software can be used to prepare an image for

display so as to avoid distortion.
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5
Geometric Transformations

Kenneth R. Castleman

5.1 Introduct ion

Geometric operations are those that distort an image spatially and change the

physical relationships among the objects in an image [1–10]. This includes simple

operations like translation, rotation, and scaling (magnification and shrinking)

as well as more generalized actions that warp the image and move things around

within it. In general, a geometric operation is simply an image copying process,

because the gray-level values of pixels are not changed as they move from input

image to output image. The difference is that the gray levels are copied into

different pixel locations. The general definition of a geometric operation is

g x, yð Þ ¼ f a x, yð Þ, b x, yð Þ½ � (5:1)

where f (x, y) is the input image and g(x, y) is the output image. The spatial trans-

formation functions a(x, y) and b(x, y) specify the physical relationship between

points in the input image and corresponding points in the output image. This,

in turn, determines the effect the operation will have on the image. For example, if

g x, yð Þ ¼ f xþ x0, yþ y0½ � (5:2)

then g(x, y) will be a translated version of f (x, y). The pixel at (x0, y0) moves to

the origin, and everything in the image moves down and to the left by the

amount
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q
. Thus it is the spatial mapping functions, a(x, y) and b(x, y)

that define a particular geometric operation.
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The implementation of a geometric operation requires two separate algo-

rithms. One is the algorithm that defines the spatial transformation itself, that is,

a(x, y) and b(x, y). This specifies the ‘‘motion’’ as each pixel ‘‘moves’’ from its

original position in the input image to its final position in the output image. The

pixels in a digital image reside on a rectangular grid with integer coordinates, but

the spatial transformation generates noninteger pixel locations. Recall from

Chapter 1 that the continuous image, an analytic function that corresponds to

the digital image, can be generated by interpolation. This problem, then, is

solved by a gray-level interpolation algorithm.

5.2 Implementation

The output image is generated pixel by pixel, line by line. For each output pixel

g(x, y), the spatial transformation functions a(x, y) and b(x, y) point to a

corresponding location in the input image. In general, this location falls between

four adjacent pixels (Fig. 5.1). The gray level that maps into the output pixel at

(x, y) is uniquely determined by interpolation among these four input pixels.

Some output pixels may map to locations that fall outside the borders of the

input image. In this case a gray level of zero is usually stored.

5.3 Gray-Level Interpolat ion

There is a trade-off between simplicity of implementation and quality of results

when selecting a technique for gray-level interpolation.

F IGURE 5.1 Pixel mapping. The gray level for a particular output pixel is determined by interpolating
among four adjacent input pixels. The geometric mapping specifies where in the input image the point (x, y)
falls. Normally x and y take on noninteger values.

5 Geometric Transformations

52



5.3.1 Neares t -Neighbor In terpo la t ion

The simplest way to fill the output pixel is just to use the gray level of the input

pixel that falls closest to the mapped position, (x, y). However, this technique is

seldom used because it creates a ragged effect in areas of the image containing

detail such as lines and edges.

5.3.2 Bi l inear In terpo la t ion

In many cases bilinear interpolation offers the best compromise between pro-

cessing speed and image quality. It is a direct 2-D generalization of linear

interpolation in one dimension. Figure 5.2 shows four adjacent pixels and

a fractional location, (x, y), among them. We first use linear interpolation

horizontally to find the values of the continuous image at (x, 0) and (x, 1). We

then interpolate vertically between those two points to find its value at (x, y).

Bilinear interpolation actually approximates the continuous image by fitting

a hyperbolic paraboloid through the four points. The hyperbolic paraboloid

surface is given by

f x, yð Þ ¼ axþ byþ cxyþ d (5:3)

where a, b, c, and d are parameters determined by the interpolation process.

In particular,

f x, yð Þ ¼ f 1, 0ð Þ � f 0, 0ð Þ½ �xþ f 0, 1ð Þ � f 0, 0ð Þ½ �y
þ f 1, 1ð Þ þ f 0, 0ð Þ � f 0, 1ð Þ � f 1, 0ð Þ½ �xyþ f 0, 0ð Þ (5:4)

F IGURE 5.2 Bilinear interpolation. We use linear interpolation first to find f (x, 0) and f (x, 1) and then
between those points to find f (x, y).
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Bilinear interpolation can be implemented with only three multiplication and

six add/subtract operations per pixel and thus is only slightly more computa-

tionally expensive than nearest-neighbor interpolation [1]. It guarantees that the

interpolated function will be continuous at the boundaries between pixels, but it

does not avoid slope discontinuities. In many cases this is not a serious flaw.

5.3.3 Bicub i c In terpo la t ion

With bicubic interpolation, the interpolated surface not only matches at the

boundaries between pixels, but has continuous first derivatives there as well. The

formula for the interpolated surface is

p x, yð Þ ¼
X3
i¼0

X3
j¼0

aijx
iy j (5:5)

The 16 coefficients aij are chosen to make the function and its derivatives

continuous at the corners of the four-pixel square that contains the point (x, y).

This is done by solving 16 equations in the 16 unknown coefficients at each point.

The equations are derived by setting the function and its three derivatives to their

known values at the four corners. Since estimating the derivatives at a pixel

requires at least a 2 � 2 pixel neighborhood, bicubic interpolation is done over

a 4 � 4 or larger neighborhood surrounding the point (x, y).

5.3.4 Higher-Order In terpolat ion

In addition to slope discontinuities at pixel boundaries, bilinear interpolation

has a slight smoothing effect on the image, and this becomes particularly visible

if the geometric operation involves magnification. Stated differently, bilinear

interpolation does not precisely reconstruct the continuous image that corre-

sponds to the digital image. Bicubic interpolation does a better job, and so it is

becoming the standard for image processing software packages and high-end

digital cameras. But even this is still imperfect. We know from the sampling

theorem that the proper form for the interpolating function is sinc(ax) ¼
sin(ax)=(ax). Thus an interpolation technique that better approximates that

function will yield better results.

Higher-order interpolation uses a neighborhood that is larger than 4 � 4 to

determine the gray-level value at a fractional pixel position. An interpolation

function that approximates a truncated sinc(x) function is fitted through the

larger neighborhood. The additional complexity is justified by improved

performance in some applications, particularly if the geometric operation has

the effect of magnifying the image.
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Notice that the hyperbolic paraboloid has four parameters and can be made

to fit through all four points in the neighborhood of Fig. 5.2. Similarly, the

bicubic function has 16 parameters and can fit all 16 points in a 4 � 4 neigh-

borhood. If a higher-order interpolating function has the same number of

coefficients as the neighborhood has points, then the interpolating surface can

likewise be made to fit at every point. However, if there are more points in the

neighborhood than there are coefficients, then the surface cannot fit all the

points, and a curve-fitting or error-minimization procedure must be used.

Higher-order interpolating functions that are widely used include cubic splines,

Legendre centered functions, and the truncated sinc(x) function itself.

5.4 Spatial Transformation

Equation 5.2 specifies the translation operation. Using

g x, yð Þ ¼ f x=Mx, y=My

� �
(5:6)

will scale (magnify or shrink) the image by the factorMx in the x direction andMy

in the y direction. Rigid rotation about the origin through an angle u is given by

g x, yð Þ ¼ f x� cos uð Þ � y� sin uð Þ,x� sin uð Þ þ y� cos uð Þ½ � (5:7)

To rotate about another point, one would first translate that point to the

origin, then rotate the image about the origin, and finally translate back to its

original position. Translation, rotation, and scaling can be combined into

a single operation [1].

5.4.1 Contro l -Gr id Mapping

For warpings too complex to be defined by an equation, it is convenient to

specify the operation using a set of control points [1]. This is a list of certain pixels

whose positions in the input and output images are specified. The displacement

values for the remaining unspecified pixels are determined by interpolation

among those that have been specified. Figure 5.3 shows how four control points

that form a quadrilateral in the input image map to the vertices of a rectangle in

the output image. Displacement values for points inside the rectangle can be

determined with bilinear interpolation. A set of contiguous quadrilaterals that

span the input image (a control grid ) can be mapped into a set of contiguous

rectangles in the output image. The specification of the transformation,

then, consists of the coordinates of the rectangle vertices, along with the x, y

displacement (to the corresponding control-grid vertex) of each.

5.4 Spatial Transformation
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5.5 Applicat ions

Geometric operations are useful in microscopy in several ways. A few of those

are mentioned here.

5.5.1 Dis tor t ion Removal

Microscope images are sometimes affected by geometric distortion due to the

optics or due to the specimen preparation. Optical distortion is usually constant

from image to image and can be removed with batch processing. Physical

distortion of specimens, such as that induced by slicing on a microtome, must

be corrected on an image-by-image basis.

5.5.2 Image Regis t ra t ion

It is often necessary to align multiple images of the same specimen, as in optical

sectioning (Chapter 14) and time-lapse microscopy (Chapter 15). Geometric

operations are useful for these tasks [11]. Cross-correlation (see Chapter 14) is

useful for determining the translation required for alignment.

5.5.3 St i t ch ing

Often it is impossible to get an entire specimen to fit within a single field of view.

Here multiple images of the specimen can be combined into a mosaic image

by the process called stitching. Geometric operations are usually necessary to

make the images match in their regions of overlap. Cross-correlation can be

used in the local region of a control point to determine the displacement values

for a control grid [12]. In areas where images overlap it is useful to blend them

F IGURE 5.3 Control point mapping. The four corners of an arbitrarily shaped quadrilateral in the input
image map to the four corners of a rectangle in the output image. The mapping of the corners is specified, and
the mapping of interior points is determined by interpolation.

5 Geometric Transformations

56



together to smooth out the transition from one to the next [13]. Blending can be

done using a weighted average in the overlapping areas, where the weights taper

off to zero at the image borders [14]. This produces a more seamless appearance

and makes the images easier to interpret. Geometric and radiometric corrections

applied to the input images make automatic mosaicing possible [15].

5.6 Summary of Important Points

1. Geometric operations warp an image, changing the positions of the

objects within.

2. Geometric operations include translation, rotation, and scaling as well as

more general transformations.

3. A geometric transformation can be specified by a formula or by a control

grid.

4. Geometric operations are implemented by mapping output pixel posi-

tions back into the input image.

5. Since output pixels map to noninteger positions in the input image, gray-

level interpolation is used to estimate the underlying continuous image.

6. Bilinear interpolation is more accurate than nearest-neighbor interpol-

ation and simpler than higher-order interpolation.

7. Higher-order interpolation techniques fit an approximation of the trun-

cated sinc(x) function through a neighborhood larger than 2 � 2 pixels.

8. Geometric operations are useful for distortion correction, registration,

and stitching.
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6
Image Enhancement

Yu-Ping Wang, Qiang Wu, and Kenneth R. Castleman

6.1 Introduct ion

Images that come from a variety of microscope technologies provide a wealth of

information. The limited capacity of optical imaging instruments and the noise

inherent in optical imaging make image enhancement desirable for many micro-

scopic image processing applications. Image enhancement is the process of

enhancing the appearance of an image or a subset of the image for better

contrast or visualization of certain features and to facilitate subsequently more

accurate image analysis. With image enhancement, the visibility of selected

features in an image can be improved, but the inherent information content

cannot be increased. The design of a good image enhancement algorithm should

consider the specific features of interest in the microscopic image and the

imaging process itself. In microscopic imaging, the images are often acquired

at different focal planes, at different time intervals, and in different spectral

channels. The design of an enhancement algorithm should therefore take full

advantage of this multidimensional and multispectral information.

A variety of image enhancement algorithms have previously been developed

and utilized for microscopy applications. These algorithms can be classified into

two categories: spatial domain methods and transform domain methods. The

spatial domain methods include operations carried out on a whole image or on

a local region selected on the basis of image statistics. Techniques that belong to

this category include histogram equalization, image averaging, sharpening of

important features such as edges or contours, and nonlinear filtering. The

transform domain enhancement methods manipulate image information in

Microscope Image Processing
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transform domains, such as Fourier and wavelet transforms. Often, interesting

image information cannot be separated out in the spatial domain but can be

isolated in the transform domain. For example, one can amplify certain coeffi-

cients in the Fourier domain and then recover the image in the spatial domain to

highlight interesting image content. The wavelet transform is another powerful

tool that has been developed in recent years and used for image enhancement.

In the following discussion we focus on the enhancement of two-dimensional

(2-D) gray-level and color microscope images. Processing of multispectral and

three-dimensional (3-D) microscope images is discussed in other chapters of the

book (Chapters 13 and 14).

6.2 Spatial Domain Methods

Given a gray-level image with the intensity range [0, L], a global operation on the

image refers to an image transform, T, that maps the image, I, to a new image,

g, according to the following equation:

g ¼ T Ið Þ (6:1)

There are many examples of this type of image transform, such as contrast

stretching, clipping, thresholding, grayscale reversal, and gray-level window

slicing [1]. If the operation results in fractional (noninteger) values, they must

be rounded to integers for the output image.

6.2.1 Contras t S t re t ch ing

Display devices commonly have a limited range of gray levels overwhich the image

features are most visible. One can use global methods to adjust all the pixels in the

image so as to ensure that the features of interest fall into the visible range of the

display. This technique is also called contrast stretching [2]. For example, if I1 and I2
define the intensity range of interest, a scaling transformation can be introduced to

map the image intensity I to the image g with the range of Imin to Imax as

g ¼ ðI � I1Þ
I2 � I1

ðImax � IminÞ þ Imin (6:2)

This mapping is a liner stretch. A number of nonlinear monotonic pixel oper-

ations exist [2, 3]. For example, the following transform maps the gray level of

the image according to a nonlinear curve

g ¼ I � I1

I2 � I1

� �a

ðImax � IminÞ þ Imin 0 < a <1 (6:3)

6 Image Enhancement

60



where a is an adjustable parameter. This image intensity scaling is usually used

for contrast stretching, clipping, display calibration, etc.

6.2.2 C l ipp ing and Thresho ld ing

Image clipping is a special case of contrast stretching that is useful in noise

reduction when the input image, f, is known to lie in the range of 0 to L.

The transform is defined in the equation

g ¼
0 0 # f < a

aI a # f < b

L f $ b

8<
: (6:4)

where a and b are usually obtained from the histogram of the image and they

specify the valley between the peaks of the histogram (see Fig. 6.1). When a ¼ b,

the transform is called thresholding, and the output is a binary image.

6.2.3 Image Subtrac t ion and Averaging

When more than one image of a stationary object is available, averaging over N

images is a simple way to improve the signal-to-noise ratio by
ffiffiffiffiffi
N

p
. In micro-

scopic imaging, multiple images are often obtained. For microscopic video

imaging, frames from the same scene are acquired sequentially. These multiple

images, if properly registered, can then be averaged to reduce noise. Registration

may be required if the images are not already aligned.

Image subtraction is usually performed when two images of the same object

are obtained under different conditions [3]. The image subtraction will highlight

whatever has changed between the two images. Another application is back-

ground correction. In microscopic imaging the image is often affected by a slowly

varying background shading pattern. One can move the microscope stage to an

F IGURE 6.1 Image enhancement using a contrast stretch. The image in (c) is obtained from (a) through
a mapping defined in (b).
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empty field and acquire an image of the background. When the background

image is subtracted from the image containing the specimen, it removes the

shading (see Chapter 12).

6.2.4 His togram Equal izat ion

The gray-level histogram of an image is the probability of occurrence of each gray

level in the image. The goal of histogram equalization is to remap the image

gray levels so as to obtain a uniform (flat) histogram [2]. If no prior information

is available about the gray-level distribution, it is often useful to distribute the

intensity information uniformly over the available intensity levels. Also it is easier

to compare two images taken under different conditions if their histogramsmatch.

Mathematically, the normalized histogram h rið Þ can be expressed as

h rið Þ ¼ ni=n, where ri is the ith gray level in an image having a total of L values,

ni is the number of occurrences of gray level ri in the image, and n is the total

number of pixels in the image. We can use the transformation T(r) to map the

original gray levels ri of the input image into new gray levels si, such that, for the

output image,

si ¼ T rið Þ ¼
Xi

j¼ 0

h rj
� � ¼ Xi

j¼ 0

ni

n
, i ¼ 0, 1, . . . , L� 1 (6:5)

where the transformation T is the cumulative distribution function of the image

gray levels, which is always monotonically increasing. The resulting image will

have a histogram that is ‘‘flat’’ in a local sense, since there is only a finite number

of gray levels available (see Fig. 6.2).

Local histogram equalization is a variant of the histogram equalization oper-

ation described earlier. It applies histogram equalization to small, overlapping

areas of the image [4] that contain local features. This nonlinear operation can

significantly increase the visibility of subtle features in the image. However,

because histogram equalization is carried out in local areas, it is computationally

intensive, and the complexity increases with the size of the local area used in the

operation. There is also a number of other variations in image histogram trans-

formations that take into account local image properties, suchas the local standard

deviation [5].

6.2.5 His togram Spec ificat ion

More generally, histogram specification allows us to modify an image so that its

histogram takes on a specific shape. Assume that f (x, y) is the input image

having histogram h1 rið Þ and that g(x, y) is the output image with the target
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histogram h2 zið Þ. The input image can be modified according to the equalization

transformation, T, given in Eq. 6.5, to produce a flat histogram. Further,

the transformation, V, will give the target image a flat distribution if

V zið Þ ¼
Xi

j¼0

h2 zj
� �

and T rið Þ ¼
Xi

j¼0

h1 rj
� �

i ¼ 0, 1, . . . , L� 1 (6:6)

Then the output image, g(x, y), can be computed from the input image, f (x, y),

using the following cascaded transformation:

g x, yð Þ ¼ V�1 T f x, yð Þð Þ½ � (6:7)

This transformation enables us to obtain an output image with the desired

gray-level distribution, h2 zið Þ.

6.2.6 Spat ia l F i l te r ing

Spatial filtering involves the convolution of an image with a specific kernel

operator. The gray level of each pixel is replaced with a new value that is the

weighted average of neighboring pixels that fall within the window of the kernel.

Count: 333465

0 256

Mean: 25.834
Min: 0
Max: 255
Mode: 7 (86151)StdDev: 41.143

Count: 333465

0 256

Mean: 61.664
Min: 0
Max: 255
Mode: 22 (86151)StdDev: 55.866

(d)

(a)
(b)

(c)

F IGURE 6 .2 The image in (c) is obtained from the image in (a) by histogram equalization.
The histograms of the images in (a) and (c) are shown in (b) and (d), respectively.
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In the continuous form, the output image g(x, y) is obtained as the convolution

of the image f (x, y) with the filter kernel w(x, y) as follows:

g x, yð Þ ¼ f x, yð Þ � w x, yð Þ (6:8)

where the convolution is performed over all values of (x, y) in the defined region

of operation in the image.

In the discrete form, convolution becomes gi, j ¼ fi, j � wi, j, and the spatial

filter wi, j takes the form of a weight mask. Table 6.1 shows several commonly

used discrete filters.

In general, an image can be enhanced by the following sharpening operation:

g x, yð Þ ¼ f x, yð Þ þ le x, yð Þ (6:9)

where l > 0 and e(x, y) is a high-pass filtered version of the image, which usually

corresponds to some form of the derivative of an image. The operation can be

accomplished, for example, by adding gradient information to the image.

A well-known gradient filter is the Sobel filter pair that can be used to compute

an estimate of the gradient in both the x and the y directions. Other commonly

used derivative filters include the Laplacian filter [1], which is defined as

e x, yð Þ ¼ r2f x, yð Þ ¼ @2

@x2
þ @2

@y2

� �
f x, yð Þ (6:10)

In the discrete form, the operation can be implemented as

r2fi, j ¼ fiþ1, j � 2fi, j þ fi�1, j
� �þ fi, jþ1 � 2fi, j þ fi, j�1

� �
(6:11)

The kernel mask used in the foregoing discrete Laplacian filtering is shown in

Table 6.1.

To sharpen a noisy image, a Laplacian of Gaussian (LoG) filter is useful. The

LoG filter first smoothes the image with a Gaussian low-pass filtering, followed

by the high-pass Laplacian filtering. The LoG filter is defined as

r2G x, yð Þ ¼ @2

@x2
þ @2

@y2

� �
Gs x, yð Þ (6:12)

TABLE 6 .1 Examples of discrete kernel masks for spatial filtering

Low-Pass Filter High-Pass Filter Laplacian Filter

wi, j ¼ 1

10

1 1 1

1 2 1

1 1 1

2
4

3
5 wi, j ¼

�1 �1 �1

�1 9 �1

�1 �1 �1

2
4

3
5 wi, j ¼

0 1 0

1 �4 1

0 1 0

2
4

3
5
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where

Gs x, yð Þ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp � x2 þ y2

2s2

� �

is the Gaussian function with variance s, which determines the size of the filter.

A larger size of the filter results in more smoothing of the noise. A discrete form

of the LoG filter is given in [2]. Figure 6.3 shows the result of sharpening an

image using a LoG operation. More examples of medical image enhancement

using local derivative filtering can be found in [6–8].

Image filtering operations are most commonly done globally, that is, over the

entire image. However, because image properties may vary throughout the image,

it is often useful to perform spatial filtering operations in local neighborhoods.

6.2.7 Direc t iona l and Steerab le F i l ter ing

Many images contain edge features in various orientations. Directional filters,

such as the steerable filters [9], are used to enhance image features that lie in

a particular direction. The filtering effect in regard to orientation can be evalu-

ated by computing an orientation map, which is the squared filter response as

a function of filter orientation [1, 6, 10, 11]. The concept of steerable filters [12] is

based on an oriented filter, which is constructed from a linear combination of

a set of directionally oriented basis filters. Here the weighting factors determine

the directionality of the filter. Basis filters can be derived from directional

derivatives of Gaussians and used to compute local orientation maps.

The simplest example of a steerable filter is the partial derivative of

a two-dimensional Gaussian. In polar coordinates, the horizontal and vertical

derivatives are written as

F IGURE 6 .3 The image in (b) is obtained by sharpening the image in (a) using a Laplacian of Gaussian
operation.
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G
(0)
1 r, uð Þ ¼ cos (u) �re�r2=2

	 

(6:13)

and

G
(p=2)
1 r, uð Þ ¼ sin uð Þ �re�r2=2

	 

(6:14)

where the subscript denotes the order of derivative and the superscript denotes

the direction of the derivative. G1 r, uð Þ, at any orientation u, can be synthesized

by taking a linear combination of G
(0)
1 and G

(p=2)
1 as follows:

G
(u)
1 r, uð Þ ¼ cos uð ÞG (p=2)

1 r, uð Þ þ sin uð ÞG(p=2)
1 r, uð Þ (6:15)

This equation implies the steerability of these functions. The directional deriva-

tive, G1, can be generated at any arbitrary orientation using a linear combin-

ation of the basis filters G
(0)
1 and G

(p=2)
1 with coefficients cos uð Þ and sin uð Þ as the

weighting functions, also known as the interpolation functions. Therefore filtering

an image with an arbitrarily oriented filter can be accomplished using a proper

linear combination of the image convolved with the two basis filters.

Steerability can be extended to the higher-order derivatives. The general

steerability condition, for functions that are polar separable, is expressed as

f a r, fð Þ ¼ h f� að Þg rð Þ ¼
XN̂
n¼1

kn að Þh f� anð Þg rð Þ (6:16)

where h fð Þ is the angular portion of the steerable filter, g(r) is the radial portion,

kn að Þ are interpolation functions, and an are a fixed set of N

�

orientations. This

equation can be satisfied by all functions with angular components that are

band-limited to contain no more than N

�

=2 harmonic terms [12]. Examples of

steerable filter sets consisting of higher-order directional derivatives of

a Gaussian, along with steerable approximations to their Hilbert transforms,

can be found in [12]. Orientation maps can be computed as the sum of squared

responses of these filters.

Steerable filters have been used to generate multiscale, self-inverting pyramid

decompositions of images [12] that have the desirable properties of shift and

rotation invariance. By analyzing and selectively processing the transform

coefficients, image feature detection and enhancement can be achieved with

designed flexibility in scale, orientation, and degree of enhancement [9].

Traditional techniques based on conventional convolution filtering and

contrast stretching are limited in what they can do. By decomposing the image

into several differently oriented bases at multiple scales using the steerable

pyramid transform, it becomes easier selectively to detect and enhance certain
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image features that correspond to important object structures at a particular

scale, location, and orientation. Figure 6.4 shows the result of chromosome

image enhancement based on a steerable pyramid transform and selective

processing of the transform coefficients [9].

6.2.8 Median F i l ter ing

The median filter is a commonly used nonlinear operator that replaces the

original gray level of a pixel by the median of the gray levels of the pixels in

a specified neighborhood. The median filter is a type of ranking filter [3], because

it is based on the statistics derived from rank-ordering the elements of a set. This

filter is often useful because it can reduce noise without blurring edges in the

image [1]. The noise-reducing effect of the median filter depends on two factors:

(1) the spatial extent of its neighborhood and (2) the number of pixels involved

in the median calculation. Figure 6.5 shows an example of salt-and-pepper noise

F IGURE 6 .4 (a) An image of five human chromosomes in upright orientation. (b) The steerable pyramid
transform of the image in (a). Three levels of decomposition are performed. A, B, and C show the three
bandpass-filtered images at decomposition level 2, while D, E, and F show them at decomposition level 3,
respectively. Image G shows the down-sampled low-pass image at decomposition level 3. (c) The result of
image enhancement.

F IGURE 6 .5 As shown in image (b), salt-and-pepper noise in image (a) is removed by a 4 � 4 median
filter.
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removal using median filtering. This type of noise otherwise cannot be removed

by conventional convolution filtering.

6.3 Fourier Transform Methods

In many cases, frequency domain filtering is more effective than its spatial

domain counterpart because noise can be more easily separated from the objects

in the frequency domain. When an image is transformed into the frequency

domain, low-frequency components correspond to smooth regions or large

structures in the image; medium-frequency components correspond to image

features; and high-frequency components are dominated by noise. Hence one

can design filters, using the knowledge of the frequency components, to sharpen

the image while suppressing noise [13, 14]. A noise-reducing enhancement filter,

for example, seeks to boost the amplitude of mid-frequency components and to

attenuate the high frequencies at the same time.

6.3.1 Wiener F i l ter ing and Wiener
Deconvolu t ion

The Wiener filter is known to be optimal, in the minimum mean square error

(MSE) sense, for recovering a signal that is embedded in noise [1, 3, 14]. The

observed image, g(x, y), is assumed to be resulting from the sum of the original

image, f(x, y), and stationary noise, n(x, y); that is,

g x, yð Þ ¼ f x, yð Þ þ n x, yð Þ (6:17)

where the noise is spectrally white, with zero mean and variance s2. The transfer

function of the Wiener filter is given by [2]

H u, vð Þ ¼ Pf u, vð Þ
Pf u, vð Þ þ s2

(6:18)

where Pf u, vð Þ is the power spectrum of the signal. The conventional Wiener

filter has certain limitations. For instance, the minimum MSE criterion often

provides more smoothing than the human eye would like. The Wiener filter is

often outperformed by nonlinear estimators [3].

A number of variants of the Wiener filter consider the spatially variant

characteristics of signals and noise [2]. One approach to making the filter

spatially variant is to allow the noise parameter sn to vary spatially, and to

change the filter from one pixel to the next. Another variant is the noise-adaptive

Wiener filter [15], which models the signal as a locally stationary process. Image

recovery using noise-adaptive Wiener filtering is given by
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~f x, yð Þ ¼ mf x, yð Þ þ s2
f x, yð Þ

s2
f x, yð Þ þ s2

n x, yð Þ g x, yð Þ �mf x, yð Þ� �
(6:19)

where mf is the local mean of the signal f and s2
f is the local signal variance.

Another limitation of theWiener filter is that it only accounts for the second-

order statistics of an input image. However, by incorporating nonlinearity into

the processing, this limitation can be overcome. Amodified adaptive filter can be

constructed as a linear combination of the stationary Wiener filter H and an

identity operation [16]:

Ha ¼ H þ 1� að Þ 1�Hð Þ (6:20)

Themodified adaptive filter equals theWiener filter whena ¼ 1, whereaswhen

a ¼ 0 it becomes the identity (null) transformation. Based on a study of human

vision system, an anisotropic component was introduced to improve the preceding

filter [17]:

Ha,g ¼ H þ 1� að Þ g þ 1� gð Þ cos2 w� uð Þ� �
1�Hð Þ (6:21)

where the parameter g controls the degree of anisotropy, w is the angular

direction of the filter, and u defines the orientation of the local image structure.

In this way, the more dominant the local orientation is, the smaller the g value

and the more anisotropic the filter. The local direction and level of anisotropy

can be estimated using three oriented Hilbert transform pairs. The weighting

function cos2 w� uð Þ was imposed by its ideal interpolation properties. The

directed anisotropy filter can also be implemented as a steerable filter [12].

Figure 6.6 shows an example of image deblurring using conventional Wiener

deconvolution.

F IGURE 6 .6 Deblurring of the image in (a) to obtain the image in (b) by applying the conventional
Wiener deconvolution.
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6.3.2 Deconvolu t ion Us ing a Leas t -
Squares Approach

The observed image, g, can be expressed in a matrix form as

g ¼ Hf þ n (6:22)

where g, f, and n are N2 � 1 column vectors, H is an N2 �N2 matrix, f is the

original image, n is the noise, and H stands for blurring. When the blurring is

shift-invariant, the matrix H becomes a block-circulant matrix. If n ¼ 0, we can

find the approximate solution by minimizing the mean square error

e(f̂ ) ¼ kg�Hf̂k2 ¼ g�Hf̂
	 
t

g�Hf̂
	 


(6:23)

by setting the derivative of e f̂
	 


in respect to f̂ to zero:

@e f̂
	 

@ f̂

¼ �2Ht g�Hf̂
	 


¼ 0 (6:24)

The solution for f̂ becomes

f̂ ¼ HtHð Þ�1
Htg ¼ H�1g (6:25)

If n is nonzero, the problem can be formulated as one of constrained

optimization:

e f̂
	 


¼ kQf̂ k2 þ l kg�Hf̂ k2 � knk2
	 


(6:26)

where the first term is a regularization term, such that the solution is smooth,

and the matrix Q is usually taken to be the first or second difference operation

on f̂. l is a constant called the Lagrange multiplier. Similarly, we can set the

derivative of e f̂
	 


in respect to f̂ to zero, as follows,

@e f̂
	 

@ f̂

¼ 2 QtQf̂ � 2 lHt g�Hf̂
	 


¼ 0 (6:27)

and find the solution for f̂:

f̂ ¼ HtHþ 1

l
QtQ

� ��1

Htg (6:28)

It turns out this solution is the general form of solution for the deconvolution

problem.
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6.3.3 Low-Pass F i l ter ing in the
Four ier Domain

Since a low-pass filter can suppress noise in an image, an alternative to spatial

domain filtering is to implement the low-pass filtering in the Fourier domain.

To accomplish this, a 2-D low-pass filter transfer function H(u, v) is multiplied

by the Fourier transform G(u, v) of the image

F̂ u, vð Þ ¼ H u, vð ÞG u, vð Þ (6:29)

where F̂(u, v) is the Fourier transform of the filtered image f (x, y) that we wish to

recover. f (x, y) can be obtained by taking the inverse Fourier transform.

An ideal low-pass filter is designed by assigning a frequency cutoff value

H u, vð Þ ¼ 1 if D(u, v) # D0

0 otherwise

�
(6:30)

where D(u, v) is the distance of a point from the origin in the Fourier domain.

However, since the rectangular pass-band in the ideal low-pass filter causes

ringing artifacts in the spatial domain, usually filters with smoother roll-off

characteristics are used instead. For example, the following Butterworth

low-pass filter of nth order is often used for this purpose:

H u, vð Þ ¼ 1

1þ [D(u, v)=D0]
2n

(6:31)

When the order, n, increases, the roll-off characteristics of the bandpass filter

become more prominent. Hence a first-order Butterworth filter provides the

least amount of ringing artifacts in the filtered image.

6.3.4 High-Pass F i l ter ing in the
Four ier Domain

Whereas a low-pass filter can suppress noise and smooth an image, a high-pass

filter can accentuate edge information and sharpen the image. An ideal high-

pass filter with cutoff frequency D0 is given by

H u, vð Þ ¼ 1 if D(u, v) $ D0

0 otherwise

�
(6:32)

Similar to the ideal low-pass filter discussed earlier, the sharp cutoff charac-

teristics of a rectangular window function in the frequency domain can cause the

ringing artifacts in the filtered image. Therefore, we can also make use of a filter

with smoother roll-off characteristics, such as
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H u, vð Þ ¼ 1

1þ [D0=D(u,v)]2n
(6:33)

which represents a Butterworth high-pass filter of nth order. Note that Eq. 6.33

has the same form as Eq. 6.31, except the terms D0 and D(u, v) in the denom-

inator are interchanged.

6.4 Wavelet Transform Methods

Human visual perception is known to function at multiple scales. Wavelet

transforms were developed for the analysis of multiscale image structures [18].

Unlike traditional transform domain methods, such as the Fourier transform,

wavelet-based methods not only dissect signals into their component frequencies

but also enable the analysis of the component frequencies across different scales.

As a result these methods are more suitable for such applications as image data

compression, noise reduction, and edge detection.

6.4.1 Wavele t Thresho ld ing

The application of wavelet-based methods to image enhancement has been

studied extensively. A widely used technique known as wavelet thresholding per-

forms enhancement through the manipulation of wavelet transform coefficients

so that object signals are boosted while noise is suppressed. Wavelet transform

coefficients are modified using a nonlinear mapping. Hard-thresholding and

soft-thresholding functions [12] are representative of such nonlinear mapping

functions. For example, the soft-thresholding function is given by

u xð Þ ¼
x� T if x > T

xþ T if x < �T

0 if jxj # T

8<
: (6:34)

Small coefficients (below threshold T or above �T) normally correspond to

noise and are reduced to a value near zero. Usually, the thresholding operation

of Eq. 6.34 is performed in the orthogonal or biothorgonoal wavelet transform

domain (see Chapter 7). A translation-invariant wavelet transform may be more

appropriate in some cases [19]. Enhancement schemes based on nonorthogonal

wavelet transforms are also used [10, 20, 22]. Nonlinear mapping functions can

be used in these schemes to accomplish multiscale image sharpening.
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6.4.2 Di f ferent ia l Wavele t Trans form
and Mul t i s ca le Poin twise Produc t

Since edge sharpening is an essential part of image enhancement and edges can

be detected and characterized by differential operators, a particular family

of differential wavelets has been used for this purpose [11, 22]. In this case the

approximation and detail coefficients of the differential wavelet transform of an

image f are defined as S2 j f and W2 j f , and the wavelet transform is computed

using the following equations:

S2 j f ¼ S2 j�1f � h"2 j�1

W2 j f ¼ S2 j�1f � g"2 j�1

�
, 1 # j # J (6:35)

where h and g are the low-pass and high-pass filters, respectively, and "2j�1 is the

up-sampling operation by putting 2 j�1 � 1 zeros between each pair of adjacent

samples in the filter [11]. This differential wavelet transform facilitates

a desirable image representation for the extraction of edges at multiple scales.

Since edge patterns are correlated spatially across multiple scales, one can take

advantage of this property during the identification of the edges and subsequent

enhancement. A multiscale pointwise product (MPP) can be employed to meas-

ure the cross-scale correlation of the differential wavelet transform coefficients

[22]. The MPP is defined as

Pk nð Þ ¼
Yk
j¼1

W2 j f nð Þ (6:36)

where W2 j ff g are the detail coefficients defined in Eq. 6.35. Because the maxima

of W2 j f nð Þ represent edges in the signal and tend to propagate across scales

whereas the maxima of W2 j f nð Þ caused by noise do not, Pk nð Þ reinforces the

responses from edges rather than from noise. Experimental observation of edge

patterns shows that the MPP has a built-in ability to suppress isolated and

narrow impulses while preserving edge responses across different scales [22].

Based on the foregoing consideration, the following nonlinear mapping func-

tion u xð Þ can modify the wavelet coefficient x subject to the MPP criterion [22]:

u xð Þ ¼ lx if Pk nð Þj j $ m
0 otherwise

�
(6:37)

where l is an adjustable constant associated with the degree of enhancement

desired. The threshold parameter, m, can be empirically determined. A larger

value of m results in a higher denoising effect, and vice versa. The choice of m
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also depends on the noise level in the image [22]. Figure 6.7 shows an example of

chromosomal banding pattern enhancement using this approach.

6.5 Color Image Enhancement

Color image processing in microscopy applications usually deals with the

tricolor images acquired with modern color imaging devices. This topic is

discussed in more detail in Chapter 13, which addresses the more general subject

of multispectral image processing. Among many color coordinate systems, the

RGB and HSI are two commonly used formats. The RGB format is most

straightforward because it deals directly with the red, green, and blue images

that are closely associated with the human visual system. The HSI (hue, satur-

ation, intensity) format [21] is a system popularly used among artists. Hue and

saturation can best be described by the use of a color circle [8]. The hue of a color

refers to the spectral wavelength that it most closely matches. The saturation is

the radius of the point from the origin of the color circle and represents

the purity of the color. The RGB and HSI formats can be easily converted

from one to the other [8]. One can also convert a color image to a monochrome

image by averaging the RGB components together, which discards all

chrominance information during the conversion.

When processing the components of a color image, one must exercise caution

to avoid changing the color balance improperly. Essentially all of the image

enhancement techniques discussed previously can be applied to the intensity

component of an image in HSI format, since this component encodes contrast

and edge information. The color information, on the other hand, is encoded in

the hue and saturation components of the image. Enhancement of these color

components should be approached with great caution because they are likely to

upset the color balance.

F IGURE 6 .7 Enhancement of chromosomal banding patterns in the left image based on the differential
wavelet transform and applying the MPP criterion. The enhanced image is shown on the right.
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6.5.1 Pseudo-Co lor Trans format ions

A pseudo-color image transformation involves a mapping from a single-channel

(monochrome) image to a three-channel (color) image. It is used primarily as a

display technique to aid human visualization and interpretation of grayscale

images, since humans can discern the combinations of hue, saturation, and

intensity much better than shades of gray alone. The technique of intensity slicing

and color coding is a simple example of pseudo-color imageprocessing. If an image

is interpreted as a 3-D terrain model, this method can be viewed as one of

painting each elevation with a different color. Pseudo-color techniques are useful

for projecting multispectral image data down to three channels for display

purposes.

6.5.2 Color Image Smooth ing

The difference between color and gray-level image smoothing is that for color

processing the smoothing is performed in each of the three RGB channels using

conventional grayscale neighborhood processing [17], as shown in Eq. 6.38,

where Sxy denotes the neighborhood of a pixel at (x, y). Equivalently, if the

HSI color format is used, one need apply the smoothing operation only to the

intensity image:

~fc x, yð Þ ¼

1

N

X
x, yð Þ2Sxy

fR x, yð Þ

1

N

X
x, yð Þ2Sxy

fG x, yð Þ

1

N

X
x, yð Þ2Sxy

fB x, yð Þ

2
666666664

3
777777775

(6:38)

6.5.3 Color Image Sharpening

Similar to the gray-level counterpart, color image sharpening is accomplished by

extracting and accentuating edge information of an image. The Laplacian

operator provides an example. For a three-component color vector fc(x, y) ¼
fR(x, y), fG(x, y), fB(x, y)

tð Þ, the Laplacian of a vector is defined as a vector

whose components are equal to the Laplacian of each of the individual scalar

components of the input vector. Specifically, the Laplacian of the vector fc x, yð Þ
is given by

r2fc x, yð Þ ¼
r2fR x, yð Þ
r2fG x, yð Þ
r2fB x, yð Þ

2
4

3
5 (6:39)
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which means that one can compute the Laplacian of an RGB color image by

simply computing the Laplacian of each component image separately [17].

Likewise, applying the Laplacian operator only to the intensity component of

the image under the HSI format accomplishes the same objective. Figure 6.8

shows an example of applying a Sobel edge enhancement operator to the RGB

channels of a color image for sharpening.

6.6 Summary of Important Points

1. Image enhancement is the process of enhancing the appearance of an

image or a subset of the image for better contrast or visualization of

image features and to facilitate more accurate subsequent image analysis.

2. Image enhancement can be achieved using computational methods either

in the spatial domain or in the transform domain.

3. The spatial domain methods accomplish image enhancement using

either global operations on the whole image or local operations on

a neighborhood region of each pixel.

4. The operations used to increase contrast in the image include contrast

stretching, clipping and thresholding, image subtraction and averaging,

and histogram equalization and specification.

5. The operations used to sharpen image features and reduce noise include

spatial bandpass filtering, directional and steerable filtering, and median

filtering.

6. If image noise is a random stationary process, variants of the Wiener

filter can be used to reduce the noise effectively.

F IGURE 6.8 The right image is the result of applying color image sharpening to the left image.
This figure may be seen in color in the four-color insert.
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7. Nonlinear filters, such as the median filter, can reduce noise without

blurring edges.

8. Transform domain methods accomplish image enhancement based on

computations performed in a transform domain, such as the Fourier or

wavelet transform. Often, salient image features can be more easily

isolated and extracted in the transform domain than in the spatial

domain.

9. Commonly used Fourier domain image enhancement methods include

Wiener filtering, least-squares deconvolution, and bandpass filtering.

The Wiener filter is optimal for noise removal in the sense of minimum

mean square error.

10. Wavelet domain image enhancement methods leverage the advantages

of multiscale image representation and nonlinear filtering. Since image

edges tend to correlate spatially across multiple scales whereas noise

does not, one can exploit this property and use nonlinear filtering to

accentuate edge structures effectively while suppressing noise in the

image.

11. Essentially all of the techniques developed for the enhancement of

monochrome images can be applied to enhance color images by per-

forming the operations on their intensity or luminance component,

where image contrast and edge information is encoded.
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7
Wavelet Image Processing

Hyohoon Choi and Alan C. Bovik

7.1 Introduct ion

Multiresolution image representations using wavelet transforms have become

quite popular in recent years, owing to their effectiveness in a very broad array

of applications [1]. In essence, wavelets made it possible to formalize the general

concept of multiresolution processing that was being used, for example, in the

computer vision field to enable to detection, analysis, and recognition of image

features and objects over varying ranges of scales. Such important image pro-

cessing tasks as segmentation require that the image be analyzed over neighbor-

hoods of varying sizes in order to capture salient image features and properties

that occur at different scales.

The concept of multiresolution wavelets first emerged about two decades ago

in the signal processing subfield known as filter bank or sub-band filter theory.

At about the same time came the introduction and development of the continu-

ous wavelet transform (CWT) in applied mathematics. Discrete signal transforms

that derive from a unification of these approaches have collectively become

known as discrete wavelet transforms (DWTs). Today, in an amazing variety

of image processing applications, the discrete wavelet transform has become

the indispensable formal mathematical tool for creating and manipulating

multiresolution representations [2].

This chapter introduces the basic concepts and properties of wavelet trans-

forms. It begins with a review of the basic tools of linear transformations and the

classical Fourier transform. This is followed by a discussion of the important

relationships between the CWT, DWT, multiresolution processing, and filter

Microscope Image Processing
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banks. We also discuss a number of topics, such as compactly supported wavelets,

biorthogonal wavelets, and wavelet lifting schemes, because they are useful in

applications. The concepts are first introduced in the context of one-dimensional

(1-D) signals and then extended to two-dimensional (2-D) signals and images.

7.1.1 L inear Trans format ions

Linear system theory plays an important role in wavelet theory. A signal or

function f (x) can often be better described, analyzed, or compressed if it is

transformed into another domain using a linear transform such as the Fourier

transform or a wavelet transform [3]. A signal f (x) can be expressed as a linear

combination of a set of basis functions:

f (x) ¼
X
j

cjcj(x) (7:1)

where j is an integer index, cj are expansion coefficients, and {cj(x)} form a basis

if the coefficients are unique for every signal. If the basis functions are ortho-

normal

cj(x)ck(x)
� � ¼

ð
cj(x)ck(x)dx ¼ 1; j ¼ k

0; j 6¼ k

�
(7:2)

then the coefficients are expressed as inner products of the signal with the

corresponding basis function,

cj ¼ f (x), cj(x)
� � ¼

ð
f (x)cj(x)dx (7:3)

Thus, in orthonormal linear transformations, signals are decomposed, as in

Eq. 7.3, and reconstructed, as in Eq. 7.1, using the same set of basis functions.

If there exists a set of functions ~ck(x) that are linearly independent and not

orthonormal but are orthonormal with respect to another set of basis functions

cj(x)

hcj(x), ~ck(x)i ¼ d( j � k) (7:4)

then these two sets of functions form the basis for a biorthogonal transformation.

Inbiorthogonal transformations, one set of functions is used for the decomposition

and the other for reconstruction.

Linear transformations of discrete signals can be expressed in linear alge-

braic forms, where the signals are considered as vectors and the transformations

as matrix–vector multiplications. The sampled signal, f (x), can be written as
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an N � 1 column vector, f. The discrete linear transformation of f can be

expressed as

cj ¼
XN�1

k¼0

fkcj,k or c ¼ Cf (7:5)

where C is an N � N kernel matrix and c is an N � 1 vector of transform

coefficients. Each row of the kernel matrix is a basis vector, and the rows are

orthonormal:

CCt ¼ I (7:6)

where t indicates the transpose. The vector f is reconstructed using the same set

of basis functions by

f ¼ Ctc (7:7)

that is, by summing the basis functions, which are weighted in amplitude by the

coefficients.

There are many useful linear transformations that map an N � 1 vector to

another N � 1 vector using N � N kernel matrices. The Fourier transform is

a classic example of such a linear transformation, where the orthonormal basis is

composed of sinusoidal functions.

7.1.2 Shor t -T ime Four ier Trans form
and Wavele t Trans form

The Fourier series representation of a 2p-periodic function is defined as

f (x) ¼
X1
n¼�1

cne
inx (7:8)

where i ¼ ffiffiffiffiffiffiffi�1
p

and the Fourier coefficients cn are given by

cn ¼ 1

2p

ð
f (x)e�inxdx (7:9)

A Fourier series decomposes a periodic signal into sinusoidal components by

using a complex sinusoidal basis. It is useful to observe that the frequency

components in Eq. 7.9 are generated by scaling, that is, by expanding or

shrinking, the same basis function along the x-axis. This is a theme that is

explored later in the context of the wavelet transform. The Fourier series and

Fourier transform are the cornerstones of classic linear system theory, and they

remain as powerful tools for signal and image analysis. Yet it has long been

7.1 Introduction
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recognized that classical Fourier theory has limited utility as a tool for analyzing

local, transient, and time-varying signal properties.

Conceptually, each coefficient of a linear transformation can be regarded as

a measure of the degree of similarity between the input signal and that particular

basis function [5]. Thus, if a signal is composed of a few sinusoids, then all but

a few the Fourier coefficients will be zero. Therefore the signal can be compactly

represented by a few nonzero coefficients. In this way a highly efficient (highly

compressed) representation is achieved. However, digital images, such as those

taken through a microscope, contain a great diversity of structures that exhibit,

for example, sharp localization (e.g., abrupt edges and lines), spatial transience

(noise or artifacts), and nonstationarity (many textures). The classical Fourier

basis functions resemble such components poorly and thus are not effective in

compressing and analyzing signals and images containing such components.

Moreover, the Fourier bases are eternally oscillating functions, and hence

they are difficult to adapt for analyzing local temporal or spatial phenomena

in signals or images. One solution to this problem is to employ a window.

The local frequency components of that portion of the signal located around

b, as isolated by a window function g(x� b), are analyzed. The window is

translated by b to enable localized Fourier analysis over all of space or time.

This approach, called the short-time Fourier transform (STFT), was first devel-

oped by Gabor [6], who used Gaussian functions as windows. The STFT yields

a two-dimensional (time–frequency) or four-dimensional (space–frequency) rep-

resentation of one-dimensional temporal signals or two-dimensional spatial

signals, respectively.

The choice of window size in the STFT determines the time–frequency

resolutions that are obtained. Using a small window yields good time resolution

but poor frequency resolution, and vice versa. For analyzing slowly varying

components, such as low-frequency components or large image structures,

a large window should be used, while a small window is better suited for

analyzing short-duration transient components. A limitation of the STFT is

that it uses a fixed-size window for a given signal. The ability to use multiple

windows with variable sizes or scales is the basic conceptualization of

multiresolution (or multiscale) signal and image analysis.

In order optimally to represent and analyze signals and images containing

transient and time-varying components, new classes of basis functions have been

developed that are localized simultaneously in time (or space) and frequency.

Many of these have the appearance of short-duration waves or tapered sinu-

soids, hence the term wavelets. Wavelets that satisfy certain admissibility

conditions may be used to define wavelet transforms, as will be shown shortly.

The basis functions of wavelet transforms have an infinite variety of shapes,

unlike those of the Fourier transform, which take a specific form. Figure 7.1

depicts examples of wavelet basis functions.
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7.2 Wavelet Transforms

First we define some notation that is used in this chapter. Let R and Z denote

the set of integers and real numbers, respectively. Further, let L2(R) denote the

vector space of all real one-dimensional square-integrable functions having

finite energy; e.g., f 2 L2 meansð ��� f (x)���2dx < þ1

7.2.1 Cont inuous Wavele t Trans form

The one-dimensional continuous wavelet transform (CWT), also called integral

wavelet transform, was introduced by Grossman andMorlet [7]. The CWTmaps

a function of a single continuous variable to a function of two continuous

variables using wavelets c(x). If c(x) satisfies the admissibility condition

Cc ¼
ð1
�1

C(v)j j2
vj j dv <1 (7:10)

then c(x) is called a basic wavelet (also called mother wavelet), whereC(v) is the
Fourier transform of c(x). Note that Cc is finite only if C(0) ¼ 0, that is,ð1

�1
c(x)dx ¼ 0 (7:11)

The so-called first-generation wavelet basis functions are generated by scaling

and translating the basic wavelet:

ca,b(x) ¼
1ffiffiffi
a

p c
x� b

a

� �
(7:12)

where a > 0 and b are real numbers. The factor 1=
ffiffiffi
a

p
is used to maintain

the norm. The variables a and b specify scaling and translation, respectively.

For small a, ca,b(x) is narrow (high frequency); for large a, ca,b(x) is broad

(low frequency). Then the CWT of f (x) is [8]

F IGURE 7 .1 Examples of wavelets.
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Wf (a, b) ¼
ð1
�1

f (x)ca,b(x)dx (7:13)

This representation provides the time–frequency localization, but the representa-

tion is highly redundant or overcomplete. Note that as the wavelet becomes

broader, the time resolution becomes worse while the frequency resolution im-

proves.Conversely, as thewavelet becomesnarrower, the time resolution improves

but the results of frequency analysis become less certain. Discretization of a, b

and special choices of c(x) lead to wavelet orthonormal bases, or wavelet series

expansions.

7.2.2 Wavele t Ser ies Expans ion

The wavelet series expansion is analogous to the Fourier series, in that both

methods represent continuous-time signals with a series of discrete coefficients.

A set of basis functions is formed by scaling and translating the basic wavelet,

c(x), but the scaling and translation takes only discrete values.

A set of wavelet basis functions that constitute an orthonormal basis for

L2(R) is given by

cj,k(x) ¼ 2j=2c(2jx� k), j, k 2 Z (7:14)

Observe that c(2jx� k) is obtained from a basic wavelet c(x) by a binary

dilation by a factor 2j, that is, by shrinking it by factor that is a power of 2,

and a dyadic translation by k=2j. The dyadic translation is a shift by the amount

of the width of the wavelet, which is proportional to 2j. Thus, high-frequency

wavelets are translated by small steps, whereas low-frequency wavelets translate

by larger steps [2].

In order for cj,k(x) to be an orthonormal basis, it must satisfy

hcj,k(x), cl,m(x)i ¼ d( j � l)d(k�m) (7:15)

where d(�) is the Kronecker delta function. Any function f 2 L2(R) can then be

expressed

f (x) ¼
X1

j,k ¼�1
cj,kcj,k(x) (7:16)

where cj,k are the wavelet coefficients and are computed by

cj,k ¼ f (x), cj,k(x)
D E

¼
ð1
�1

f (x)cj,k(x)dx (7:17)
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Equations 7.17 and 7.16 are called the analysis and synthesis formulae,

respectively. These terms are used because the forward expansion coefficients

are useful for analyzing the signal or image in some tasks, while the reverse

formula synthesizes the signal from the coefficients.

7.2.3 Haar Wavele t Func t ions

The oldest example of an orthonormal wavelet basis is the Haar function,

c(x) ¼
1 0 # x <

1

2

�1
1

2
# x < 1

0 otherwise

8>><
>>:

(7:18)

The Haar function can constitute an orthonormal basis for L2(R) by iteratively

dilating (or narrowing) and translating the basis function. Note that it has

compact support in time but 1=v decay in frequency, and thus it has good

time localization but poor frequency localization. Figure 7.2 shows the Haar

wavelets, cj,k(x). As defined in Eq. 7.14, the basic wavelet is narrowed iteratively

by a factor of 2 and translated by its width at any given scale j. It is easy to see

from the figure that the basis functions are orthogonal to each other, since there

is no nonzero overlap among them.

7.3 Mult iresolut ion Analysis

The preceding section developed the basic idea of wavelets. This section

discusses how multiresolution fits into the wavelet framework. Multiresolution

analysis is a powerful tool that enables improved performance in a variety of

j
k 0

0

1

1

F IGURE 7.2 Haar wavelets cj,k(x). The oldest orthonormal wavelet basis. Index j is the scale and k is the
translation.
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computer vision and image processing applications, such as image segmenta-

tion, object recognition, compression, and noise reduction. The concept of

multiresolution also provides a solid mathematical framework for forming

interpretations of wavelet bases.

7.3.1 Mul t i reso lut ion and Sca l ing
Func t ion

In amultiresolution analysis, a signal f (x) is decomposed into an ‘‘approximation’’

and ‘‘residual details’’ at a given resolution. The approximation is further decom-

posed into another approximation and residual details at a smaller resolution

[1] (see Fig. 7.3). This process is iterated toward successively finer resolutions.

The vector space that contains the set of all possible approximations of f (x),

at the resolution j, is denoted as Vj, which is a subspace of L2(R), or Vj � L2(R).

At different resolutions, the spaces are nested as Vj � Vjþ1 for all j 2 Z,

� � � � V�1 � V0 � V1 � V2 � � � � � L2 (7:19)

with V1 ¼ L2(R) and V�1 ¼ {0}. If an approximation function f(x) is in Vj,

then the scaled approximation function, f(2x), is in Vjþ1, and, by Eq. 7.19,

f(x) 2 Vjþ1. This means that all lower-resolution spaces are scaled versions of

a higher-resolution space and can be derived from it.

The approximation function f(x) is called a scaling function, and the set of

scaling functions obtained by binary dilations and dyadic translations is an

orthonormal basis for the subspace:

fj,k(x) ¼ 2j=2f(2jx� k) (7:20)

is an orthonormal basis of Vj.

The differences between the spaces Vj and Vjþ1 are denoted as Wj [3]. Thus

the space Vjþ1 is composed of Vj (approximations) and Wj (details):

Vjþ1 ¼ Vj �Wj, j 2 Z (7:21)

V0 W0 W1 W2

V1

V2

V3

. . . 

F IGURE 7 .3 Multiresolution representation of the vector space (after [3]).
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Figure 7.3 illustrates the nesting space of L2. While the set of scaling

functions fj,k(x) is the basis for Vj, the set of wavelet functions cj,k(x) discussed

earlier is the basis forWj. The subspacesVj andWj are orthogonal to each other,

and the intersection of the subspaces Vj is the null space {0}. Thus the basis

functions in both spaces should be orthogonal,

hfj,k(x),ck,l(x)i ¼
ð
fj,k(x)ck,l(x)dx ¼ 0, j, k, l 2 Z (7:22)

The entire space can be written as

L2 ¼ V0 �W0 �W1 �W2 � � � � (7:23)

or it can be written without the scaling space at j ¼ �1
L2 ¼ � � � �W�2 �W�1 �W0 �W1 �W2 � � � � (7:24)

which is the expansion using the wavelet basis as in Eq. 7.17.

7.3.2 Sca l ing Func t ions and Wavele t s

Using the multiresolution structure, a scaling function f(x) in V0, which is also

in V1, can be expressed in terms of the basis in V1:

f(x) ¼
X
n

h0(n)f1,n(x) (7:25)

where

h0(n) ¼ hf(x),fl,n(x)i and
X
n

jh0(n)j2 ¼ 1 (7:26)

Equation 7.25 can be rewritten

f(x) ¼
ffiffiffi
2

p X
n2Z

h0(n)f(2x� n) (7:27)

where the coefficients h0(n) are the scaling function coefficients.

The same idea can be applied to the wavelet function c(x) 2 W0 � W1,

where c(x) can also be expressed in terms of the basis in V1:

c(x) ¼
X
n

h1(n)f1,n(x) (7:28)

which can be rewritten as

c(x) ¼
ffiffiffi
2

p X
n2Z

h1(n)f(2x� n) (7:29)
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Equations 7.27 and 7.29 suggest that one can construct all of the scaling

functions and wavelets starting from only one scaling function.

A scaling function is an approximation function, which means that the

scaling functions are useful for analyzing general trends in the signal, whereas

the details in the signal are analyzed using the wavelets. Thus, any low-pass filter

that satisfies certain conditions can become a scaling function. The simplest

scaling function is the Haar scaling function,

f(x) ¼ 1 if 0 < x < 1

0 otherwise

�

whose filter coefficients are h0(n) ¼ [1=
ffiffiffi
2

p
, 1=

ffiffiffi
2

p
], which is an average filter.

Due to the orthogonality between the wavelet and the scaling functions, h1(n)

and h0(n) are related as

h1(n) ¼ (�1)nh0(1� n) (7:30)

The wavelet satisfying conditions Eq. 7.29 and Eq. 7.30, using the Haar scaling

function, is the Haar wavelet shown in Eq. 7.18 and Fig. 7.2, whose filter

coefficients are h1(n) ¼ [1=
ffiffiffi
2

p
, � 1=

ffiffiffi
2

p
], which is a differential (differencing)

filter. While the Haar scaling filter is a low-pass filter, the Haar wavelet filter is

a high-pass filter. For a finite even-length h0(n), h1(n) ¼ (�1)nh0(N � n), where

N is an odd number; i.e., the high-pass filter h1 is found by reversing the order

and alternating the signs of the low-pass filter h0.

7.4 Discrete Wavelet Transform

This section examines how this multiresolution analysis structure can be used to

formulate the discrete wavelet transform (DWT).

7.4.1 Decompos i t ion

At resolution j, Eq. 7.27 can be written

f(2jx� k) ¼
X
n

h0(n)
ffiffiffi
2

p
f(2jþ1x� 2k� n) (7:31)

After a change of variables m ¼ 2k þ n, Eq. 7.31 becomes

f(2jx� k) ¼
X
m

h0(m� 2k)
ffiffiffi
2

p
f(2jþ1x�m) (7:32)

Similarly, Eq. 7.29 can be expressed at resolution j as
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c(2jx� k) ¼
X
m

h1(m� 2k)
ffiffiffi
2

p
f(2jþ1x�m) (7:33)

Using the multiresolution space defined in Eq. 7.23, a function, f (x), can be

expressed

f (x) ¼
X
k

c0(k)f(x� k)þ
X
k

X1
j¼0

dj(k)2
j=2c(2jx� k) (7:34)

where c0(k) are the approximation coefficients at resolution j ¼ 0 and dj(k) are

the details at resolution j $ 0. That is, any signal in L2 can be constructed,

starting from its coarse approximation, by progressively adding the finer details.

It is also convenient to represent the signal f (x) starting from a high resolution,

say, j þ 1, as

f (x) ¼
X
k

cjþ1(k)2
(jþ1)=2f(2jþ1x� k) (7:35)

At one-scale-lower resolution, using Eq. 7.21, cjþ1(k) is decomposed into an

approximation and detail as

f (x) ¼
X
k

cj(k)2
j=2f(2jx� k)þ

X
k

dj(k)2
j=2c(2jx� k) (7:36)

and cj(k) can be further iteratively decomposed. The approximation coefficient

cj is expressed by the inner product,

cj(k) ¼ h f (x),fj,k(x)i ¼
ð
f (x)2j=2f(2jx� k)dx (7:37)

By taking the inner products of f (x) with both sides of Eq. 7.32, we obtain

h f (x),fj,k(x)i ¼
X
m

h0(m� 2k)h f (x),fjþ1(x)i (7:38)

which is

cj(k) ¼
X
m

h0(m� 2k)cjþ1(m) (7:39)

Similarly, dj can be written as

dj(k) ¼
X
m

h1(m� 2k)cjþ1(m) (7:40)

Equations 7.39 and 7.40 tell us that it is not necessary to know the scaling

functions and wavelets in order to compute the approximations and details,

provided that h0(n) and h1(n) are given.
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Now denote x(n) as the output of a convolution between a filter h(n) and

cjþ1(n):

x(n) ¼
X
m

h(m� n)cjþ1(m)

Then the down-sampled (by a factor of 2) version of x(n) is

x(2n) ¼
X
m

h(m� 2n)cjþ1(m):

Equations 7.39 and 7.40 mean that the scaling and wavelet coefficients are

computed by the convolution with finite-length discrete filters or finite–impulse

response (FIR) filters, h0(n) and h1(n), and followed by down-sampling by

a factor of 2 (retaining only the even-indexed samples).

Figure 7.4 shows the decomposition (or analysis) procedure, or the forward

discrete wavelet transform. The low-pass filtered and down-sampled signal, cj, is

further decomposed into an approximation and a detail. This process repeats on

the approximation coefficients, producing one coarse approximation and details

at each decomposition level. For example, cjþ1 can be represented by cj�2, dj�2,

dj�1, and dj when a three-level decomposition is performed.

It is interesting to observe how the multiresolution analysis divides the

frequency domain. The frequency responses of the analysis filters h0(n) and

h1(n) can be computed using the discrete-time Fourier transform (DTFT),

given by

H(v) ¼
X1

n ¼�1
h(n)e�ivn (7:41)

where i ¼ ffiffiffiffiffiffiffi�1
p

and n 2 Z. This transforms a discrete function h(n) to the 2p-
periodic continuous representation H(v). The frequency responses of the an-

alysis filters are shown in Fig. 7.5. The convolution processes in Eqs. 7.39 and

7.40 imply products between the frequency components of cjþ1 and H0(v) and
H1(v), which divides cjþ1 into low- and high-frequency components, or fre-

quency bands. The low-frequency component, cj, is further decomposed into

low-low- (Vj�1) and low-high- (Wj�1) frequency components, where the low-low

component is computed by convolving cjþ1 twice with h0(n) and the low-

high component is convolved with h0(n) and then once with h1(n). Thus the

h0(−n)

h1(−n)

h0(−n)

h1(−n)

2

2

cj+1(n)

dj(n)

cj(n) cj−1(n)

dj−1(n)

...2

2

F IGURE 7 .4 Forward discrete wavelet transform.
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details (high-frequency components) are computed by convolving cjþ1 with h0(n)

multiple times and then once with h1(n). Since large structures are composed of

low-frequency components, dividing the spectrum into subbands actually sep-

arates different scaling components in the signal. The concept of spectrum

division greatly facilitates understanding of filter banks.

In practice, signals and images are recorded in discrete and finite form.

At each decomposition, the number of coefficients in cj(n) becomes half the

number of samples in cjþ1(n). Thus, the decomposition can repeat until only one

approximation coefficient is left. The maximum number of decomposition is

J when the number of samples in cjþ1(n) is N ¼ 2J . Obviously, the decompo-

sition begins at the finest level. Starting from the coarsest approximation, we can

iteratively add finer details. But there also is a limit beyond which no more fine

detail is available using the discrete representation. The computational com-

plexity of the DWT isO(N) for a signal of lengthN, given that the filter length is

negligible.

7.4.2 Recons t ruc t ion

The reconstruction of cjþ1 can be done by reversing the decomposition process.

By taking inner products on both sides of Eq. 7.36 with fjþ1,k, we get

h f (x),fjþ1,ki ¼
X
m

cj(m)hfj,m,fjþ1,ki þ
X
m

dj(m)hcj,m,fjþ1,ki (7:42)

which can be rewritten after using Eq. 7.32 and Eq. 7.33,

cjþ1(k) ¼
X
m

cj(m)h0(k� 2m)þ
X
m

dj(m)h1(k� 2m) (7:43)

Equation 7.43 implies that cj and dj are first up-sampled by a factor of 2

(inserting zeros at every odd index) and then filtered with h0(n) and h1(n), and

Vj−1 Wj−1 Wj
. . .

H0(  ) H1(  )

0   /4   /2

w w

w
p p p

F IGURE 7 .5 Frequency responses of the analysis filters, and spectrum division by multiresolution
analysis.
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the results are then added to reconstruct cjþ1. Figure 7.6 illustrates this recon-

struction (synthesis) procedure, or the inverse DWT.

As is seen from Eq. 7.43, the same digital filters used in the analysis are used

for the synthesis, since we have defined orthonormal scaling and wavelet func-

tions. This type of transformation is known as an orthogonal (or, more specif-

ically, orthonormal ) discrete wavelet transform. If the analysis and synthesis

filters are different but the transform is invertible, then the transform is known

as a biorthogonal wavelet transform, as explained later in this chapter. Due

to this orthonormality, g0(n) ¼ h0(�n) and g1(n) ¼ h1(�n), and h1(n) can be

expressed in terms of h0(n), as shown in Eq. 7.30. Thus, a carefully designed

low-pass filter, h0(n), is what is needed to compute the orthogonal discrete

wavelet transform [5]. The computational procedure defined in this section

and shown in Figs. 7.5 and 7.6 is known as Mallat’s algorithm [1].

7.4.3 F i l ter Banks

The structure of multiresolution analysis is closely related to filter bank theory

and subband coding [4, 9, 10, 11, 19]. In subband coding, the input signal f (n),

a sequence of samples, is decomposed intoM subbands by convolving the signal

with a set of M bandpass filters, followed by down-sampling each result by

a factor of M. The down-sampled subband signals represent the input data

without redundancy, which means that the total number of coefficients in the

transform domain is equal to the number of input samples. Each subband

contains different frequency components or, equivalently, different scale com-

ponents [12]. To reconstruct the original signal, the subband signals are up-

sampled and convolved with a set of filters, and the resulting signals are then

added together. The analysis and synthesis filters are specifically designed to

recover the original signal without error.

7.4 .3 .1 Two -Channe l Subband Cod ing

In a two-channel subband coding scheme, the signal is filtered by one low-pass

and one high-pass filter and down-sampled by a factor of 2, which is identical to

the one-level decomposition in the DWT. Figure 7.7 is a schematic diagram of

2

2

2

2

...

g1(n)

g0(n) g0(n)

g1(n)dj (n)

cj (n)

dj −1(n)

cj −1(n) cj +1(n)

F IGURE 7 .6 Inverse discrete wavelet transform.
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a two-channel filter bank. The DWT is achieved by repeating the decomposition

on the low-pass filtered result using a two-channel filter bank.

Subband coding was originally developed for compressing digital audio

signals [9, 10]. Using a set of bandpass filters, an audio signal would be decom-

posed into multiple spectral bands. If the filters were designed to resemble

important features in the signal, then the coefficients in the subbands would

have a compact representation, resulting in effective coding. Furthermore, those

frequency bands to which the human ear is more sensitive can be coded with

more bits, while less salient bands could be discarded.

If we want the transform to be invertible using two channels, then ideally

the spectrummight be split at the mid-frequency point, without a gap. However,

the ideal ‘‘brick wall’’ low-pass and high-pass filters yield poor time localization,

since their impulse responses are of infinite extent. To achieve good temporal

localization, the frequency responses of the filters must be smooth if the filter

impulse responses are to be of finite extent. This introduces spectral overlap

between the filters, or subband aliasing. This aliasing can be canceled during the

reconstruction stage, as discussed next.

7.4 .3 .2 Or thogona l F i l t e r Des i gn

To find the conditions on these filters for alias canceling and perfect reconstruc-

tion, z-notation is convenient. The z-transform of a sequence x(n) is defined as

X (z) ¼ P
n x(n)z

�n, where z ¼ eiv.

When a sequence x(n) is down-sampled by a factor of 2, the z-transform of

v(n) ¼ x(2n) is written as [13]

V (z) ¼ 1

2
[X (z1=2)þ X (�z1=2)] (7:44)

If v(n) is up-sampled by a factor of 2, u(n) ¼ v(2n) has a z-transform

U(z) ¼ 1

2
[X (z)þ X (�z)] (7:45)

2

2

2

2

f (n)f (n) g0(n)

g1(n)

c0(n)

d0(n)

h0(n)

h1(n)

ˆ

F IGURE 7.7 Two-channel filter bank. The analysis filters, h0(n) and h1(n), are the low-pass and high-pass
filters, respectively.
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Thus, the decomposition results c0(n) and d0(n) in Fig. 7.7 can be rewritten

C0(z) ¼ 1

2
[H0(z

1=2)F (z1=2)þH0(�z1=2)F (�z1=2)]

D0(z) ¼ 1

2
[H1(z

1=2)F (z1=2)þH1(�z1=2)F (�z1=2)]

(7:46)

The reconstruction process should return the original signal perfectly up to

a delay: f̂ (n) ¼ f (n� l) or F̂(z) ¼ z�lF (z). The reconstructed signal f̂ (n) is

F̂ (z) ¼ C0(z
2)G0(z)þD0(z

2)G1(z) (7:47)

which can be expanded as

F̂ (z) ¼ 1

2
[H0(z)G0(z)þH1(z)G1(z)]F (z)þ 1

2
[H0(�z)G0(z)

þH1(�z)G1(z)]F (�z)

(7:48)

Perfect reconstruction using a two-channel filter bank is obtained when the

filters satisfy

H0(z)G0(z)þH1(z)G1(z) ¼ 2z�l (7:49)

H0(�z)G0(z)þH1(�z)G1(z) ¼ 0 (7:50)

Since F (�z) is the aliased version of the input signal, Eq. 7.50 is the necessary

condition for removing the aliasing. One solution to remove aliasing, proposed

by Esteban and Galand [16] is

H1(z) ¼ H0(�z),

G0(z) ¼ H0(z),

G1(z) ¼ �H1(z) ¼ �H0(�z):

(7:51)

This solution obviously satisfies Eq. 7.50, and substituting the solution into

Eq. 7.49 gives

H2
0 (z)�H2

0 (�z) ¼ 2z�l (7:52)

Since H1(z) is the mirrored version of H0(z) with respect to v ¼ p=2 and both

filters are squared, the filters satisfying Eq. 7.51 are called quadrature mirror

filters (QMFs). There exist no FIR filters that satisfy condition Eq. 7.52 exactly

except for the Haar filter. However, there are many ways to design QMFs that

make the reconstructed signal approximate the input closely [2].
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Another solution, known as conjugate quadrature filters (CQFs) [10], is

H1(z) ¼ z�1H0(�z�1)

G0(z) ¼ H0(z
�1)

G1(z) ¼ H1(z
�1) ¼ zH0(�z)

(7:53)

which implements the orthogonal FIR filters. Again, using Eq. 7.53, the alias

term, Eq. 7.50, becomes zero, and the distortion term, Eq. 7.49, becomes

H0(z)H0(z
�1)þH0(�z)H0(�z�1) ¼ 2z�l (7:54)

Since the filters have real values, using H(e jv) ¼ H(e�jv), Eq. 7.54 can be

written as

H0(e
jv)

�� ��2 þ H0(�e jv)
�� ��2¼ H0(v)

�� ��2 þ H0(vþ p)
�� ��2¼ 2 (7:55)

In this case, there do exist filters h0(n) that satisfy Eq. 7.55, and thus perfect

reconstruction can be realized using two-channel filter banks. It is apparent

from Eq. 7.53 that h1(n) ¼ (�1)nh0(1� n), since H(z�1) implies time reversal

h(�n), while H(�z) implies sign alternation (�1)nh(n). The orthogonal wavelet

transform is achieved using these orthogonal FIR filters. Therefore, the orthog-

onal wavelet transform only requires the design of the scaling vector, h0(n),

having compact support (a small number of nonzero coefficients), and all other

filters are then derived from it. For example, if h0(n) ¼ [a, b, c, d ], then

h1(n) ¼ [d,�c, b,�a], g0(n) ¼ [d, c, b, a], and g1(n) ¼ [�a, b, �c, d ].

7.4.4 Compact Suppor t

A function has compact support if it is nonzero over only a small region of its

range. Representing an image or a signal with a small number of large coeffi-

cients is important not only for data compression but also for noise removal [14].

At certain locations, such as singularities in a signal or lines or edges in an image,

using widely supported wavelet filters will generate many coefficients of various

magnitudes. In order to achieve a local representation of the signal, using an

efficient, small number of large-magnitude coefficients, the support size (non-

zero portion) of the basis functions should be small. Thus, compact support is

important for achieving efficient representations while providing time or space

localization and faster computation.

Daubechies constructed orthonormal wavelets having a minimum support

size given the number of vanishing moments [15]. A wavelet function c(x) hasM
vanishing moments ifð1

�1
tkc(x)dx ¼ 0, for 0 # k <M (7:56)
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The orthonormal wavelets, c, are constructed starting with the 2p-periodic
function H(v), which is the frequency response of

h(n) ¼
ffiffiffi
2

p ð
f(x)f(2x� n)dx (7:57)

If f has compact support, then h(n) has a finite number of nonzero moments. By

Eqs. 7.29 and 7.30, c also has compact support. The orthogonality of h(n)

implies that H(v) should satisfy Eq. 7.55.

The number of vanishing moments is related to the regularity, which de-

scribes the smoothness of f and c. The regularity is defined by the factorization

of H(v) as a trigonometric polynomial,

H(v) ¼
ffiffiffi
2

p 1þ e jv

2

� �M

R(v) (7:58)

which means that H(v) hasM zeros at v ¼ p. By the orthogonality of f and c,
it also follows that G(v) has M zeros at v ¼ 0. It was proved [2] that given M

vanishing moments, h(n) has at least N nonzero coefficients, where N $ 2M.

Daubechies’ orthonormal wavelet filters have the minimum support size of 2M

[2, 15]. Interestingly, when M ¼ 1, the Haar wavelet is the solution for the

Daubechies wavelet system.

The smoothness of the wavelet function greatly affects the visual quality of

a reconstructed image. When the wavelet coefficients are processed in some

manner that produces loss or error of coefficients, such as thresholding or

quantization, then the reconstructed image will differ from the original image.

The differences are usually less noticeable when the images are processed with

continuously differentiable wavelets rather than with discontinuous wavelets,

such as Haar wavelets [14].

Table 7.1 shows the Daubechies scaling function coefficients forM ¼ 2, 3, 5,

and 9. Their corresponding scaling and wavelet functions are shown in Fig. 7.8.

Notice that the regularity increases as the support size increases.

7.4.5 Bior thogonal Wavele t Trans forms

For orthonormal wavelets, the analysis filters and synthesis filters are basically

the same, except they are time-reversed versions of each other. Requiring

orthogonality greatly limits the degrees of freedom, often resulting in compli-

cated design equations and preventing linear phase analysis [3]. Except for Haar

wavelets, linear phase (or even complete symmetry) is not achievable using

compactly supported orthonormal wavelets. However, by using two different

wavelet basis sets, cj,k(x) and ~cj,k(x), satisfying
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hcj,k(x)
~cl,m(x)i ¼ d( j � l)d(k�m) (7:59)

it is possible to obtain symmetrical wavelet representations or linear phase with

compact support [17]. These wavelets are called biorthogonal wavelets.

Biorthogonal expansions can be expressed as

f (x) ¼
X
j,k2Z

hcj,k(x), f (x)i~cj,k(x) ¼
X
j,k2Z

h~cj,k(x), f (x)icj,k(x) (7:60)

Thus, either wavelet can be used for the decomposition, given that the other is

used for the reconstruction.

7.4 .5 .1 B io r t hogona l F i l t e r Banks

The two-channel filter banks shown in Fig. 7.7 also implement the biorthogonal

wavelet transform. In this case, we need to choose a pair of low-pass filters, h0(n)

and g0(n), and derive high-pass filters from them. Using the multiresolution

definition of the scaling functions, an infinite cascade of low-pass filters

generates two scaling functions,

f(x) ¼
ffiffiffi
2

p X
n

h0(n)f(2x� n) and ~f(x) ¼
ffiffiffi
2

p X
n

g0(n) ~f(2x� n) (7:61)

TABLE 7 .1 Coefficients of Daubechies scaling function h0(n) for M ¼ 2, 3, 5 and 9

n M ¼ 2 M ¼ 3 M ¼ 5 M ¼ 9

0 0.48296 0.33267 0.16010 0.03808

1 0.83652 0.80689 0.60383 0.24383

2 0.22414 0.45988 0.72431 0.60482

3 �0.12941 �0.13501 0.13843 0.65729

4 �0.08544 �0.24229 0.13320

5 0.03523 �0.03224 �0.29327

6 0.07757 �0.09684

7 �0.00624 0.14854

8 �0.01258 0.03073

9 0.00333 �0.06763

10 0.00025

11 0.02236

12 �0.00472

13 �0.00428

14 0.00185

15 0.00023

16 �0.00025

17 0.00004
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F IGURE 7.8 Daubechies’ compactly supported orthonormal scaling functions Mf(x) and wavelets Mc(x)
for vanishing moments M ¼ 2, 3, 5, and 9 [2].
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whose Fourier transforms are

F(2v) ¼ 1ffiffiffi
2

p H0(v)F(v) ¼ 1ffiffiffi
2

p
Y1
k¼0

H0(v=2
k)

and

~F(2v) ¼ 1ffiffiffi
2

p G0(v)~F(v) ¼ 1ffiffiffi
2

p
Y1
k¼0

G0(v=2
k)

Perfect reconstruction using analysis and synthesis low-pass filters should satisfy

G0(v)H0(v)þ G0(vþ p)H0(vþ p) ¼ 2 (7:62)

where

G0(p) ¼ H0(p) ¼ 0

G0(0) ¼
X
n

g0(n) ¼
ffiffiffi
2

p

H0(0) ¼
X
n

h0(n) ¼
ffiffiffi
2

p

While the filter lengths must be even in orthogonal systems (or frequency

information is lost at mid-frequencies), the lengths of the low-pass filters can

be either both even or both odd in biorthogonal systems. The high-pass filters

are generated from the low-pass filters as

h1(n) ¼ (�1)nh0(1� n) and g1(n) ¼ (�1)ng0(1� n) (7:63)

The wavelets are then defined by

c(x) ¼
ffiffiffi
2

p X
n

h1(n)f(2x� n) ¼
ffiffiffi
2

p X
n

(�1)nh0(1� n)f(2x� n)

and

~c(x) ¼
ffiffiffi
2

p X
n

g1(n) ~f(2x� n) ¼
ffiffiffi
2

p X
n

(�1)ng0(1� n) ~f(2x� n):

7.4 .5 .2 Examples of Biorthogonal Wavelets

Designing biorthogonal wavelets requires developing appropriate h0(n) and g0(n)

that have compact support. There are many methods for the design of bior-

thogonal wavelets [11, 17, 18]. Cohen, Daubechies, and Feauveau [17] used

splines as scaling functions to construct biorthogonal wavelets. Their family of

biorthogonalwavelets is probably themostwidelyusedbiorthogonalwavelets [3].
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For example, one family of biorthogonal wavelets, known as the Cohen–

Daubechies–Feauveau 9/7 wavelets, is used in the FBI fingerprint compression

standard and in the JPEG 2000 image compression standard as well. Table 7.2

shows their coefficients and Fig. 7.9 shows their scaling functions and wavelets.

7.4.6 L i f t ing Schemes

7.4 .6 .1 B io r t hogona l Wave le t Des ign

There is another method of designing biorthogonal wavelets, called lifting

schemes [18, 20]. Using lifting, new sets of compactly supported biorthogonal

TABLE 7 .2 Cohen–Daubechies–Feauveau 9/7 wavelets

n h0(n) g0(n)

0 0.852698679 0.788485616

1,�1 0.377402855 0.418092273

2,�2 �0.110624404 �0.040689417

3,�3 �0.023849465 �0.064538882

4,�4 0.037828845
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F IGURE 7 .9 Scaling functions and wavelets of Cohen–Daubechies–Feauveau 9/7 biorthogonal wave-
lets. (a) and (c) are analysis scaling function and wavelet, and (b) and (d) are synthesis scaling function and
wavelet, respectively.
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wavelets are constructed from a set of biorthogonal wavelets. Unlike traditional

methods, where wavelets are constructed in the frequency domain with the help

of Fourier transform, lifting schemes can build wavelets and scaling functions in

the spatial domain [18]. Lifting also yields a faster implementation of the DWT.

Given an initial set of finite biorthogonal dual filters (h0, h1, g0, g1), a new set

of finite biorthogonal filters (~h0, h1, g0, ~g1) are constructed with [20]

~H0(v) ¼ H0(v)þH1(v)S
�(2v) (7:64)

~G1(v) ¼ G1(v)� G0(v)S(2v) (7:65)

where S(v) is a trigonometric polynomial and * indicates the complex conju-

gate. These equations allow the formulation of the lifting scheme. Given an

initial set of biorthogonal scaling functions and wavelets (f, c, ~f, ~c) associated
with the filters (h0, h1, g0, g1), a new set of biorthogonal scaling functions and

wavelets (fl, cl, ~f, ~c l) can be found [18]:

fl(x) ¼
ffiffiffi
2

p X1
n¼�1

h0(n)f
l(2x� n)þ

X1
n¼�1

s(�n)cl(x� n) (7:66)

cl(x) ¼
ffiffiffi
2

p X1
n¼�1

h1(n)f
l(2x� n) (7:67)

~cl(x) ¼ ~c(x)�
X1
n¼�1

s(n) ~f(x� n) (7:68)

where s(n) is a finite sequence. These equations allow for the custom design of

biorthogonal wavelets. The number of vanishing moments or the shape of the

wavelets, for example, can be determined by the choice of s(n).

7.4 .6 .2 Wave le t Tran s fo rm Us ing L i f t i ng

Lifting schemes also implement the DWT with less computation than the

standard filter bank implementation. Figure 7.10 shows the forward wavelet

transform using lifting. First the signal is split into even and odd samples (also

called polyphase components) by the lazy wavelet transform. Then the odd

samples are predicted using even samples. This step is called dual lifting. If the

signal is slowly varying, then the even and odd samples are highly correlated;

thus, given one set, predicting the other is reasonably accurate. In dual lifting,

a filter is applied to the even samples and the result is subtracted from the odd

samples. Finally the update stage, called lifting, ensures that the coarser signal

has the same average value as the original signal.

Figure 7.11 shows the inverse wavelet transform using lifting. First the even

samples are recovered by undoing the update, then the prediction is added to the
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even samples to recover the odd samples, and finally the original signal is

recovered by merging them.

Lifting provides many benefits. Lifting steps can be calculated in place,

which means prediction and update results at one stage can be replaced with

the results at the next stage, which can be important for memory-limited

systems. Lifting also permits an integer transform by rounding off the result

of the filter (P or U ) right before adding or subtracting [21], and the system

remains invertible.

Another method of invertible integer wavelet transform uses modular arith-

metic to fix the dynamic range [22]. For example, if the input is an 8-bit image,

then all the wavelet coefficients are 8 bits as well. However, due to the modular

arithmetic, this method causes the large coefficients to become small, which

complicates analysis of the coefficients.

7.5 Two-Dimensional Discrete
Wavelet Transform

7.5.1 Two-Dimens iona l Wavele t Bases

The notion of multiresolution with orthogonal subspaces for one-dimensional

signals can be extended easily to two-dimensional signals [14]. The approximation

z

2

2

P
U

(even)

(odd)

cj,2k
cj−1,2k

d j−1,2k+1

cj,k

cj ,2k+1

F IGURE 7.10 The forward wavelet transform using lifting. The first step is to split the signal into even and
odd samples by lazy wavelet transform. Then the odd samples are predicted using even samples. Finally the
update stage ensures that the coarser signals have the same average value as the original signal.

P
U

2

2 z −1

cj,k

cj−1,2k

d j−1,2k+1

F IGURE 7.11 The inverse wavelet transform using lifting. First, undoing the update recovers the even
samples, then the prediction is added to the even samples to recover the odd samples, and finally the original
signal is recovered by merging them.
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subspace for an image at resolution j is denoted V 2
j , which is in L2(R2),

and its orthogonal complement subspace is denotedW 2
j . As with one-dimensional

multiresolution spaces, the sum of the subspaces V 2
j and W 2

j forms the

finer approximation space V 2
jþ1; that is,

V 2
jþ1 ¼ V 2

j �W 2
j (7:69)

To construct two-dimensional wavelet bases, we first consider the separable

basis, which is obtained by applying the same filters developed for one-

dimensional signals to each dimension separately. In vector spaces, the separable

two-dimensional multiresolution space is defined by the tensor product of

one-dimensional multiresolution spaces,

V 2
j ¼ Vj � Vj (7:70)

Thus the separable two-dimensional scaling function can be written as

f(x, y) ¼ f(x)f(y) (7:71)

which means that one can compute the two-dimensional approximation coeffi-

cients by convolving the one-dimensional scaling filter h0(n) along each dimension

of the image separately.

Using Eqs. 7.69 and 7.70, the detail space can be written as

W 2
j ¼ (Vj �Wj)� (Wj � Vj)� (Wj �Wj) (7:72)

which shows that three wavelets form the orthonormal basis of W 2
j . Thus the

separable two-dimensional orthonormal wavelets are

c1(x, y) ¼ f(x)c(y), c2(x, y) ¼ c(x)f(y), c3(x, y) ¼ c(x)c(y) (7:73)

The family of wavelets in Eq. 7.73 forms the orthonormal basis of W 2
j and thus

of L2(R2). Again, the detail coefficients are computed by convolving h0(n) and

h1(n) in each dimension separately.

7.5.2 Forward Trans form

The forward transform procedure is shown in Fig. 7.12. At each decomposition,

the approximation coefficients cjþ1(n, m) are decomposed into one set of ap-

proximation cj(n, m) and three sets of detail coefficients, d1
j (n, m), d2

j (n, m), and

d3
j (n, m). In order to compute cj(n, m), for example, as shown in Fig. 7.12, the

rows of cjþ1(n, m) are convolved with h0(�n) and column-wise down-sampled

(retain every even-numbered column). Then the output is convolved column-

wise with the same filter and down-sampled row-wise. Since the filtering is
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performed horizontally and vertically, the wavelet decomposition emphasizes

oriented frequency components. That is, d1
j , d

2
j , and d3

j contain horizontal edge

(vertical high frequencies), vertical edge (horizontal high frequencies), and

diagonal edge information, respectively. Figure 7.13a shows how the frequency

information of cjþ1 is split by the decomposition. Due to the orthogonality, the

total number of wavelet coefficients is the same as the number of pixels in the

input image. This is called a complete representation. Figure 7.13b shows

a typical arrangement of the wavelet coefficients.
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F IGURE 7.12 The decomposition procedure for the two-dimensional DWT. The one-dimensional
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Figure 7.14 shows an example of the two-dimensional DWT of an image.

Since the sum of all of the coefficients in each detail set is zero, the average value

(which is zero) is adjusted to 128 (medium gray), and the dynamic range is

adjusted to fit the 8-bit grayscale, for ease of visualization. Notice that the detail

coefficients (high-frequency subbands) have large magnitudes near edges and

details in the image and small magnitudes at locations where no prominent high-

frequency features reside. This sparse representation, also known as energy com-

paction, is quite useful for many applications, especially image compression.

Notice also that the edges at different orientations take large values in each

subband. As the image is decomposed, only major, large-scale structures remain.

This multiresolution representation makes it possible to analyze structures that

appear at different scales in a natural way.

7.5.3 Inverse Trans form

Reconstruction of the input image is achieved by reversing the decomposition

process. As shown in Fig. 7.15, at each decomposition level the wavelet coeffi-

cients are first up-sampled in columns. Then the rows are convolved with g0 or

g1, which are h0(m) and h1(m) in the orthogonal case. The four convolution

outputs are added together in pairs. Then the two resulting outputs are up-

sampled in rows and then the columns are convolved with g0 or g1. The sum of

the two outputs yields the finer approximation. By repeating this process for the

number of decomposition levels, the input image cjþ1(n, m) is reconstructed.

7.5.4 Two-Dimens iona l B ior thogonal
Wavele t s

The forward and inverse two-dimensional wavelet transforms using orthogonal

wavelets are easily extended to biorthogonal wavelets. Again, we consider the

F IGURE 7.14 The two-dimensional discrete wavelet transform of an image. The left image is decom-
posed up to two levels.
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separable case. For the forward transform, the biorthogonal wavelets are given

by Eq. 7.73. The dual wavelets for the inverse transform are

~c1(x) ¼ ~f(x)~c(y), ~c2(x) ¼ ~c(x) ~f(y), ~c3(x) ¼ ~c(x)~c(y)

7.5.5 Overcomplete Trans forms

One of the few drawbacks of the DWT is that the transformation is not invariant

to shifts of position in the input signals or images. That is, the DWT coefficients

of a signal and a shifted version of that signal are different and do not have

a simple relationship between them. Thus, if the coefficients are processed (e.g.,

thresholded for denoising), then different signals are reconstructed for different

amounts of shift. The shift variance of the DWT sometimes causes unwanted

visual artifacts in the neighborhood of discontinuities [23]. A solution to this

problem is the use of an undecimated wavelet transform (UDWT) filter bank or

a redundant DWT [23, 24]. For denoising, all translations of a signal are

estimated, and the resulting signals of the inverse transform after thresholding

are averaged [23]. The forward and inverse DWT filter banks can be modified by

removing the down-sampling and up-sampling operators to achieve UDWT.

Since the number of coefficients computed by UDWT is larger than the size of

the input image, the overcomplete representation is not useful for compression.

However, it has been shown that the UDWT produces superior results for

denoising, as compared to the orthogonal DWT. The benefit comes at the

price of increased computational complexity, which is O(N log2 N) for a signal

of length N and is the same as the FFT’s complexity. For an N �M image, the

computational complexity of an overcomplete expansion is O(NM log2 (NM)),

while it is only O(NM) for DWT.
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F IGURE 7.15 Reconstruction from the two-dimensional DWT.
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7.6 Examples

Wavelets have been used in countless applications, including many in the field of

biomedical image processing [27]. Using compactly supported wavelets that best

approximate the signal, the DWT provides a high-energy compaction relative to

other, traditional transform-based methods. Along with the energy compaction

property, the statistical properties of wavelet coefficients between scales or

within each subband [1, 28] provide objectively and visually superior results in

many applications, such as image compression, denoising, and image fusion.

7.6.1 Image Compress ion

Image compression is one of the most successful applications of the DWT. The

operation of a transform-based coder can be summarized in three steps. First an

image is transformed to have a compact representation, then the coefficients are

quantized, and finally the quantization result is entropy coded. The decompo-

sition of an image using the DWT produces three orientation components in

multiple resolutions. Because of the compact representation of the DWT, the

histograms of these detail coefficients have a unique shape, which has a narrow

peak centered at zero and long tails away from zero. When the coefficients are

quantized, many of the small coefficients will be set to zero value, leaving only

a small number of nonzero coefficients to be encoded. This is one of the main

reasons that the wavelet transform is effective for image compression.

Wavelet-compressed images have been decisively shown to produce fewer

visual artifacts at the same bit rate relative to other coding methods. As the

regularity of the wavelets increases, the visible artifacts are reduced, but the

support size increases, which, in turn, reduces compression. It has been shown

that the 9/7 biorthogonal wavelets yield an excellent trade-off between support

size and regularity, and they deliver the best compression performance [14].

7.6.2 Image Enhancement

The quality of images often degrades when, for example, transmitted through

a band-limited channel, compressed, or obtained through a system that has

various types of noise [29]. The compact representation of the wavelet transform

is also useful for denoising. Wavelet shrinkage [25, 26] is a technique for denois-

ing in which detail coefficients smaller than a threshold are set to zero while large

coefficients are unchanged. This nonlinear process is far more effective than

methods based on frequency filtering. Since the large coefficients correspond to

edges, using wavelet shrinkage preserves the sharp edges, while the noise is

reduced. However, thresholding wavelet coefficients often produces undesirable
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artifacts on the reconstructed images. This drawback can be alleviated using

a shift-invariant wavelet transform, such as the undecimated DWT [23].

7.6.3 Extended Depth-of -F ie ld by
Wavele t Image Fus ion

Wavelet image fusion is a technique of combining, in the wavelet domain,

information from multiple registered images to form a single image. Image

fusion techniques have been particularly popular in medical imaging, where

different modalities are used to capture different information, and in multi-

spectral imaging for remote sensing. When imaging a specimen that is thicker

than the depth-of-field (DOF) of a microscope, only a portion of the specimen is

in focus at any one time, while other areas are blurred because of the point

spread function. To image the whole specimen, a series of images (optical

sections) are often acquired at different depths. However, since analyzing

a stack of images is difficult, a system with extended DOF is desired. What is

needed is one image that shows the entire specimen in focus. The extended DOF

can be achieved by fusing a stack of images in the wavelet domain.

Large wavelet coefficients correspond to the salient objects in the image.

By taking the maximum-amplitude coefficients at each pixel from multiple

transformed images, the resulting composite image will contain all of the salient

objects collected from all of the images. Another interesting observation is that

the coefficients corresponding to the true signal are highly correlated across

scale, whereas the coefficients corresponding to the noise are less correlated

across scale. An overcomplete representation is best suited for observing this

effect. Based on these ideas, the extended DOF for microscope images is

achieved by wavelet image fusion [30]. An example of this process is shown in

Fig. 7.16. Detailed discussion about extended DOF techniques for microscope

imaging can be found in Chapter 16.

7.7 Summary of Important Points

1. Wavelets are short-duration waves whose spectrum resembles the trans-

fer function of a bandpass filter.

2. A basic wavelet is dilated and translated to form a set of basis functions

for the wavelet transform.

3. While the Fourier transform has only sinusoids as basis functions, many

different wavelets can be used as the basic wavelet to form different bases

for the wavelet transform.
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4. The continuous wavelet transform provides time-scale analysis for

a signal. Images are represented as a function of three variables: two

for spatial locations and one for scale.

5. Transient components such as lines, edges, or discontinuities are better

represented using wavelets than waves. Thus, in general, the wavelet

transform yields a compact representation or energy compaction of

signals or images.

6. The DWT can be computed by iterating two-channel filter banks or by

using lifting schemes.

7. The Haar wavelet is the oldest and simplest of orthonormal wavelets.

8. Wavelets that are more regular are smoother but have larger support

size than less regular wavelets.

9. The two-dimensional DWT can be implemented using two-channel

filter banks with separable filters.

10. Biorthogonal wavelets yield invertible transforms and perfect recon-

struction.

F IGURE 7.16 Extended depth-of-field is achieved through a wavelet image fusion technique. Images (a),
(b), and (c) are optical sections taken at different depths, and (d) is the fusion result. Images (a), (b), and (c) have
beendeblurred (Chapter 14) prior to the image fusion [30]. This figuremaybe seen in color in the four-color insert.
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11. Nonlinear operations, such as rounding, can be used in lifting, and the

system remains invertible. Lifting also provides a way of constructing

biorthogonal wavelets.
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8
Morphological Image Processing

Roberto A. Lotufo, Romaric Audigier,
André V. Saúde, and Rubens C. Machado

8.1 Introduct ion

This chapter presents the main concepts of morphological processing (MP) for

the microscope image analyst. Morphological processing has applications in

such diverse areas of image processing as filtering, segmentation, and pattern

recognition, to both binary and grayscale images. One of the advantages of MP

is its being well suited for discrete image processing, because its operators can be

implemented in digital computers with complete fidelity to their mathematical

definitions. Another advantage of MP is its inherent building block structure,

where complex operators can be created by the composition of a few primitive

operators. Further, each of these primitive operators has an intuitive physical

analogy that greatly aids understanding the effects it can produce in an image.

AlthoughMP is based on strong mathematical concepts, there are only a few

references that describe the MP operators with stress on intuitive concepts or

implementation, presumably because of the risk of weakening the mathematical

formalism. This chapter introduces the most commonly used concepts as they

are applied to real situations in microscopy imaging, with explanations that

appeal to one’s intuition whenever possible. Despite the lack of full details, this

chapter remains true to the underlying mathematical theory. The motivated

reader can investigate the many texts where these details and formalisms are

treated in depth [1–2]. This chapter gives the main mathematical equations and

several algorithms, even though they are not necessarily the ones that produce

Microscope Image Processing
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the most efficient implementations. Source codes of implementations of these

equations are available on the Internet site of the SDCMorphology Toolbox [3].

Despite the power and general applicability of MP operators, few existing

software packages implement a wide range of operators, such as the grayscale

operators that are based on morphological reconstruction. This chapter

illustrates how to solve image analysis problems using a combination of the

primitive MP operators that are implemented. Morphological image processing

is based on probing an image with a structuring element and either filtering or

quantifying the image according to the manner in which the structuring element

fits (or does not fit) within the image. A binary image is made up of foreground

and background pixels, and connected sets of foreground pixels make up the

objects in the image. In Fig. 8.1 we see a binary image and a circular structuring

element (probe) that is placed in two different positions. In one location it fits

within the object, but in the other it does not. By marking those locations at

which the structuring element does fit within the object, we derive structural

information about that image. This information depends on both the size and

shape of the structuring element. Although this concept is rather simple, it is the

basis of the majority of the operations presented in this chapter—erosion,

dilation, opening, closing, morphological reconstruction, etc.—as they are ap-

plied to both binary and grayscale images. Common measurements that can be

derived from this concept are the largest disk that fits inside the object and the

area of the object.

In this chapter, only symmetrical structuring elements are used. When the

structuring element is not symmetrical, care must be taken, because only some

properties are valid for a reflected structuring element. Four structuring element

types are used in the illustrations throughout this chapter: (1) the elementary cross,

a 3 � 3 structuring element with the central pixel and its direct four neighbors;

(2) the elementary box, which has the central pixel and its eight neighbors; (3) the

disk of a given radius; and (4) the linear structuring element of a given length and

orientation.

F IGURE 8 .1 Probing an image with a structuring element.
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8.2 Binary Morphology

A binary image is one having only two gray levels, 0 and 1. We refer to pixels

with gray level 0 as ‘‘background pixels’’ and gray level 1 pixels as ‘‘interior

pixels.’’ A connected set of interior pixels forms an ‘‘object’’ in the binary image.

Some of these objects will correspond to physical structures on the microscope

slide. Others may be due to artifacts or noise. Image segmentation (Chapter 9) is

the process of delineating the actual structures in the image, and binary

morphological processing can be very useful in that endeavor.

8.2.1 Binary Eros ion and Di la t ion

The basic fitting operation of morphology is the erosion of an image by

a structuring element. Erosion is done by scanning the image with the structur-

ing element. When the structuring element fits completely inside the object, the

probe position is marked. The erosion result consists of all scanning locations

where the structuring element fits inside the object. The eroded image is usually

a shrunken version of the image, and the shrinking effect is controlled by the

structuring element size and shape. The erosion of set A by set B is defined by

A@B ¼ {x:Bx � A} (8:1)

where� denotes the subset relation and Bx ¼ {bþ x : b 2 B} is the translation of

set B by a point x.

A binary image consists of foreground and background pixels. In morphol-

ogy, for every operator that changes the foreground in a particular way, there is

a dual operator that changes the background in the same way. The complement

of an image is formed by reversing the foreground and background pixels. The

dual of the erosion operator is the dilation operator. Dilation involves fitting

a probe into the complement of the image. Thus it represents a filtering on the

outside of the object, whereas erosion represents a filtering on the inside of the

object, as depicted in Fig. 8.2. Formally, the dilation of set A by B is defined by

A!B ¼ (Ac @ �B)c (8:2)

where Ac denotes the complement of A and �B ¼ {�b : b 2 B} is the reflection

of B, that is, a 1808 rotation of B about the origin.

The foreground is usually labeled with white color, while the background is

labeled black, but the inverse convention is sometimes used.

An alternative way to compute dilation is by ‘‘stamping’’ the structuring

element on the location of every foreground pixel in the image. For instance,

Fig. 8.14d was obtained by stamping small arrows (the structuring element) on

the centroids of the detected spots in Fig. 8.14c.
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Formally, the dilation can be defined by

A!B ¼
[
a2A

Ba (8:3)

Dilation has the effect of expanding the object, filling small holes in and

intrusions into the object (Fig. 8.2b), while erosion has a shrinking effect,

enlarging holes and eliminating small extrusions (Fig. 8.2a).

Since dilation by a disk expands an object and erosion by a disk shrinks

an object, they can be combined to find object boundaries in binary images.

The three possibilities are: (1) the external boundary (dilationminus the image), (2)

the internal boundary (the image minus the erosion), and (3) the morphological

gradient (dilation minus erosion), which is the boundary that straddles the

actual boundary. The morphological gradient is often used as a practical way of

displaying the boundary of segmented objects, as in Fig. 8.23f.

8.2.2 Binary Opening and Clos ing

Besides the two primary operations of erosion and dilation, two more important

operations play key roles in morphological image processing: opening and its

dual, closing.

The opening of an image A by a structuring element B, denoted by A � B, is
the union of all the structuring elements that fit inside the image, as depicted in

Fig. 8.3a.

A � B ¼
[

{Bx :Bx � A} (8:4)

(a) (b)

F IGURE 8 .2 Erosion and dilation. (a) Input object in black and gray and erosion in black (region where
the probe can fit). (b) Input object in black and dilation in black and gray.
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Figures 8.5c through 8.5f show how the result of opening depends on the

structuring element when using different linear structuring elements to open

the same image. The opening is also defined by

A � B ¼ (A@B)!B (8:5)

The dual of opening is closing, which is defined by

A � B ¼ (Ac � �B)c

A � B ¼ (A!B)@B
(8:6)

Figure 8.3b shows an example of closing. Note that, whereas the position of the

origin relative to the structuring element has a role in both erosion and dilation,

it plays no role in opening or closing.

Opening and closing have two important properties [4]. First, once an image

has been opened (or closed), successive openings (or closings) using the same

structuring element produce no further effect. Second, an object in an opened

image is contained in the original object, which, in turn, is contained in the

closed image, as illustrated in Fig. 8.3.

As a consequence of this property, we can consider the subtraction of the

opening from the input image, called the opening top-hat operation, and the

subtraction of the image from its closing, called closing top-hat operation,

respectively, defined by

A �̂ B ¼ A� (A � B)
A �̂ B ¼ (A � B)� A

(8:7)

(a) (b)

F IGURE 8 .3 Opening and closing. (a) Input image in black and gray and opening in black (region
where the probe fits). (b) Input image in black and closing in black and gray.
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The opening top-hat and closing top-hat results correspond to the gray parts of

Figs. 8.3a and 8.3b, respectively.

As a filter, opening can clean the boundary of an object by eliminating

small extrusions, but it does this in a much finer manner than erosion. The

net effect is that the opened image is a much better replica of the original

than the eroded image (compare Fig. 8.3a with Fig. 8.2a). Analogous remarks

apply to closing and the filling of small intrusions (compare Fig. 8.3b with

Fig. 8.2b).

Binary images can have both additive noise (extraneous foreground pixels in

the background) and subtractive noise (extraneous background pixels in the

foreground). One strategy for correcting this is to open the image to eliminate

additive noise and then to close it to fill subtractive noise.

The open–close strategy works when noise components are small, but it fails

when attempts to remove large noise components destroy too much of the

original object. In this case, a better strategy is to employ an alternating sequen-

tial filter (ASF). Here open–close (or close–open) filters are performed itera-

tively, beginning with a very small structuring element and then proceeding with

ever-larger structuring elements.

ASFn
co(S) ¼ (((((S � B) � B) � 2B) � 2B) . . . � nB) � nB (8:8)

ASFn
oc(S) ¼ (((((S � B) � B) � 2B) � 2B) . . . � nB) � nB (8:9)

8.2.3 Binary Morphologi ca l
Recons t ruc t ion f rom Markers

One of the most important operations in morphological image processing is

reconstruction from markers. The basic idea is to mark certain image compon-

ents and then to reconstruct that portion of the image that contains the marked

components.

8.2 .3 .1 Connec t i v i t y

A region (set of pixels) is said to be connected if any two pixels in the set can be

linked by a sequence of neighbor pixels also in the set. If the region is

4-connected, the linking involves only vertically and horizontally adjacent pixels.

If the region is 8-connected, the linking involves diagonally adjacent pixels

as well.

Every binary image can be expressed as the union of connected regions.

A region is maximally connected if it is not a proper subset of a larger connected

region in the image. The maximally connected regions are called the connected

8 Morphological Image Processing

118



components of the image. A connected object has only one component. The

union of all connected components Ck recovers the input image A and the

intersection of any two connected components is empty:

A ¼
[n
k¼1

Ck (8:10)

To find all the connected components of an image, one can iteratively (1) find

any foreground pixel of the image as a starting point, (2) use it to reconstruct

its connected component, (3) remove that component from the image, and

(4) iteratively repeat the same extraction until no more foreground pixels are

found in the image. This operation, called labeling, decomposes an image into its

connected components (objects). These can be numbered sequentially as they

are found. The result of the labeling operation can be conveniently stored as

a grayscale image (‘‘object membership map’’) in which the gray level of each

pixel is its object number. An example of labeling can be seen in Fig. 8.6c.

8.2 .3 .2 Marke r s

Themorphological reconstruction of an imageA from amarker M (a subset of A)

is denoted by ADM and defined as the union of all connected components of

image A that intersect marker M. This filter is also called a component filter:

ADEM ¼
[

{Ck :Ck \M 6¼ [} (8:11)

The reconstruction operation requires the input image, the marker, and

a selection of the type of connectivity. The marker specifies which component

of the input image is to be extracted. The result of the reconstruction depends on

the connectivity, E, used.

An example of reconstruction from markers using 8-connectivity is shown in

Fig. 8.4. Figure 8.4a is the input image, which is a collection of grains. Figure

8.4b is the marker image, that is, a central vertical line intersecting the grains.

Figure 8.4c shows the reconstruction from the markers, which extracts the three

central components from the original image.

There are typically three ways to select the marker placement for the

component filter: (a) a priori selection, (b) selection from the opening, and

(c) selection by means of some more complex operation.

An example of reconstruction from an a priori marker can be seen in

Fig. 8.27d, where the background component, in black, was selected by placing

a marker at the top left of the image in Fig. 8.27c. In this case, we work on the

complement of the image. This dual reconstruction has the overall effect of

filling in bounded regions.
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8.2 .3 .3 The Edge -O f f Ope ra t i on

The edge-off operation, particularly useful for removing objects that touch the

image border, combines reconstruction and top-hat concepts. The objects

touching the border are selected by reconstructing the image using its border

as an a priori marker. The objects not connected to the image frame are then

selected by subtracting the reconstructed image from the input image. The result

is an image containing only those objects that do not touch the border.

Figure 8.22 illustrates a variant of the edge-off operation applied to grain

boundaries. Here we want to keep only the boundaries of those grains that do

not touch the image border in Fig. 8.22f. The boundaries connected to the

border cannot simply be removed, because that would also remove the bound-

aries of the neighboring grains that do not directly touch the border. So the

strategy is first to fill in all the bounded grains that do not directly touch the

border by reconstruction of the border from the complement of the image in

Fig. 8.22f (see Fig. 8.22g). Thenwe remove the thin grain boundaries that do touch

the border by applying an opening. The final result, in Fig. 8.22h, is obtained

by intersecting the remaining inner grains and the boundaries in Fig. 8.22f.

8.2.4 Recons t ruc t ion f rom Opening

With marker selection by opening, the marker is found by opening the input

image with a particular structuring element. The result of the reconstruction

detects all of the connected components into which that structuring element fits.

By using the mechanism of reconstruction from the opening to detect objects

with particular geometric features, one can design more complex techniques to

find the markers from combined operators. At the last step, the reconstruction

reveals those objects that exhibit those geometric features.

The biomedical application illustrated in Fig. 8.5 detects overlapping human

chromosomes by using the intersection of four reconstructions from openings.

(a) (b) (c)

F IGURE 8.4 Reconstruction from markers. (a) Input image. (b) Marker image. (c) Reconstructed image.
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Because chromosome length is highly variable, the structuring element, length,

is a critical parameter for good filter performance. A length of 30 pixels was used

in this example.

To identify overlapping chromosomes, as shown in Fig. 8.5b, only the

objects (connected components) into which all four of the linear structuring

elements can fit are chosen. This is achieved by performing four reconstructions

from opening operations and intersecting them. The four linear structuring

elements used are vertical, horizontal, and + 458 (Figs. 8.5c to 8.5f ).

The top-hat concept can be applied to reconstruction by opening, producing

the reconstruction from opening top-hat operation. This is the image minus its

reconstruction. In this case the operator reveals the objects that do not exhibit

a specified fitting criterion. For instance, to detect thin objects, one can use

a disk of diameter larger than the thickest of those objects. Then only objects too

thin to contain the disk remain.

These operations are not restricted to openings. Analogous dual operations

can be developed to form sup-reconstruction from closing and sup-reconstruction

from closing top-hat respectively.

F IGURE 8 .5 Detecting overlapping chromosomes. (a) Input image. (b) Intersection (in gray) of four
reconstructions from openings. (c) Opening (in gray) by horizontal line and its reconstruction. (d) Opening
(in gray) by vertical line and its reconstruction. (e) Opening (in gray) by a 458 line and its reconstruction.
(f ) Opening (in gray) by �458 line and its reconstruction.
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8.2.5 Area Opening and Clos ing

Another common criterion for selection of connected components is area. This

is achieved by an area opening, which removes all connected componentsCi with

area less than a specified value a:

A � (a)E ¼
[

{Ci, area(Ci) $ a} (8:12)

E denotes the connectivity used. Figure 8.23e shows how the area opening can

behave as a filter to remove small artifacts from the image in Fig. 8.23d and

select only the large objects (epithelial cells) having area greater than 1000 pixels.

The next demonstration targets cytogenetic images of human metaphase cells.

This is a classical application of area opening. The task is to preprocess the image

by segmenting out the chromosomes from the nuclei, stain debris, and the back-

ground. Figure 8.6 shows the input image (a), the thresholded (binary) image (b),

the labeling (c) of the identified connected components, and the result (d), with the

components classified by area. The components with area less than 100 pixels are

background noise, those with area greater than 10,000 pixels are nuclei (shown in

dark gray), and the rest are the chromosomes, shown in light gray.

The dual operation, called area closing, is also useful in many applications.

F IGURE 8 .6 Preprocessing chromosome spreads using area opening. (a) Input image. (b) Thresholded
image. (c) Labeled (grayscaled) image. (d) Objects classified by area: residues in white (area < 100 pixels),
chromosomes in light gray (area between 100 and 10,000 pixels), and nuclei in dark gray (area > 10,000
pixels).
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Figure 8.23d shows how area closing can be used to fill small aggregate holes

with area less than 200 pixels (c) that are specific to a texture, to form significant

clusters of interest. Similarly, small holes in Fig. 8.30g, having area less than 100

pixels, are closed and merged to recover the objects of interest (Fig. 8.30h).

In this section, we have introduced several component filters, their duals,

and their top-hat versions. That is, filters that do not introduce false edges

because they are able to select out (entirely) certain connected components of

the image, the selection being based on an area or shape fitting criterion.

8.2.6 Skele ton izat ion

A standard problem in image processing is finding a thinned replica of a binary

image to use either in a recognition algorithm or for data compression.

A commonly employed thinning procedure is skeletonization, which is based

on the concept of maximal disks. In microscopy images, skeletons have been

successfully used for feature extraction for classification purposes.

Given a point interior to an object in a binary image, there exists a largest

disk having the point at its center and also lying within the object. Regarding the

largest disk at a point, there are two possibilities: Either there exists another disk

lying within the object and properly containing the given disk, or there does not

exist another disk within the object properly containing the given disk. Any disk

satisfying the second condition is called a maximal disk. The centers of all

maximal disks comprise themedial axis of the image. As an illustration, consider

the isosceles triangle in Fig. 8.7, whose skeleton is depicted in part (a) of the

figure. Part (b) shows a maximal disk D(x) situated at point x so that x lies on

the skeleton. In part (c), D(w) is the largest disk centered at w; however, it is not

maximal, since it is properly contained inDP, which itself lies within the triangle.

Thus, w does not lie in the skeleton.

(a) (b)

Dp

D(x)

w

x D(w)

(c)

F IGURE 8.7 Triangle medial axis. (a) Medial axis. (b) Maximal disk D(x) for skeleton point x. (c) w is not
a skeleton point because D(w) is contained in disk Dp.
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As might be expected, adaptation of the skeleton to the digital setting

requires some care, since Euclidean disks are defined in a continuous space.

Efficient algorithms for the Euclidean medial axis in discrete spaces now exist,

but implementations based on discrete disks are still widely used. We begin with

some ‘‘disklike’’ digital primitive, and the actual skeleton obtained depends on

the choice of that primitive. For the moment, let B denote the 3 � 3 square

structuring element, and let nB be defined by the iterated dilation of Eq. 8.13,

nB ¼ B!B! � � � !B (8:13)

where n is any positive integer. Equation 8.13 implies that 2B ¼ B!B,

3B ¼ B!B!B, and so on. The notion of maximal disk is put into the digital

setting by considering ‘‘disks’’ chosen from among 0B, B, 2B, 3B, . . . , where 0B

is simply the origin. The discrete skeleton can be characterized morphologically.

Let S be the set of object pixels, for n¼ 0, 1, . . . , and we define the skeletal subset

Skel(S; n) to be the set of all pixels x in S such that x is the center of a maximal

disk nB. Then it is evident, from the definition of the skeleton, that the skeleton

is the union of all skeletal subsets:

Skel(S) ¼
[1
n¼0

Skel(S;n) (8:14)

It can be shown that the skeletal subsets are given by

Skel(S;n) ¼ (S@nB)� [(S@nB) � B] (8:15)

Together Eqs. 8.14 and 8.15 yield Lantuejoul’s formula for the skeleton:

Skel(S) ¼
[1
n¼0

(S@nB)� [(S@nB) � B] (8:16)

The drawbacks of such discrete skeletons are illustrated further, in a

comparison with Euclidean skeletons. Lantuejoul’s formula is not applicable to

Euclidean disks, but there are efficient algorithms for Euclidean skeletons avail-

able, and we can define such skeletons. We denote by d(x, y) the Euclidean

distance between points x and y. The usual definition of an n-dimensional discrete

Euclidean disk of radius R and center point x is the set DE(x, R) given by

DE(x, R) ¼ {y 2 Z
n, d(x, y) < R} (8:17)

The discrete Euclidean medial axis is thus defined by the same terms as its continu-

ous counterpart, but with discrete Euclidean disks. Similarly to the continuous

medial axis, each maximal disk that composes the discrete medial axis can be

reconstructed from its center and its radius, and the original object can be recon-

structedby the unionof all suchdisks.However, topologypreservation is no longer
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guaranteed. For instance, the discrete medial axis of a single connected set may be

composed of many disconnected subsets. This problem is solved by the combi-

nation of the discrete medial axis with a topology-preserving thinning process.

A basic topology-preserving thinning process is based on the notion of

a simple point. A simple point is a point that can be removed from the object

without changing its topology. The sequential removing of simple points from the

object, with the constraint of not removing points of the object’s medial axis,

constitutes a thinning process that preserves object topology and guarantees

object reconstruction. To preserve some characteristics of the object’s geometry,

the thinning process can be guided by a priority function based on geometric

information. Later we present the algorithm of a thinning process guided by the

Euclidean distance transform. In a binary image, the distance transform is defined

for any point in a given set as the distance from this point to the complement of

the set. In a guided thinning, when the thinned object has no simple point, the

process stops and the resulting subset is called the Euclidean skeleton.

For skeleton analysis, one may need to prune spurious branches that result

from boundary irregularities and noise. There are many thinning and pruning

algorithms described in the literature.

The following function computes the Euclidean skeleton.

Function sk ¼ EuclSkel(f,T)

f: input image
T: threshold value for pruning the medial axis

1. Medial axis extraction and pruning
M <- discrete medial axis of f, with all disks radii
pM <- x in M, x is center of a disk with R > T

2. Initialize guided thinning
DT <- distance transform of f
for all x in DT

if DT(x) ¼ 1 then inHFQ(x,DT(x))

3. Propagation
while HFQ is not empty:

p <- outHFQ
for each q neighbor of p:

inHFQ(q,DT(q) )
if p is simple and M(p) ¼ 0 (p not in the medial axis)
then

f(p) <- 0 (p is deleted)
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In this function, the hierarchical FIFO queue (HFQ) includes the following

operations: inHFQ( p,v), insert pixel pwith priority n; outHFQ, remove the pixel

with the lowest priority with the FIFO policy for pixels at the same priority.

The detection of overlapping chromosomes, performed earlier by other

means, can now be done by detecting crossing points in the chromosomes’

skeletons. In the following, we illustrate the skeletons of overlapping chromo-

somes. In order to detect crossing points, a further mask-matching operation

must be performed.

In Fig. 8.8 we compare the Euclidean skeleton with the discrete skeleton nB.

Figure 8.8a shows the Euclidean skeleton, obtained by a topology-preserving

thinning process guided by the Euclidean distance, with the constraint of not

removing the points of the exact Euclidean medial axis. The skeleton presented

in Fig. 8.8b has been obtained by a topology-preserving thinning process guided

by the 8-neighbor distance, with the constraint of not removing the points of the

exact medial axis with nB disks. Despite the presence of many branches in

the Euclidean skeleton, the number of branches on the skeleton in Fig. 8.8b

is greater, showing how the discrete skeleton nB is more sensitive to noisy

boundaries.

The effect of skeleton pruning is shown in Fig. 8.9, where different skeletons

based on Euclidean disks are superimposed on the chromosomes. The exact

Euclidean medial axis is presented in Fig. 8.9a. In the medial axis, some isolated

points are due to the noisy chromosome boundaries and may be discarded

without affecting the quality of the resulting skeleton. In Fig. 8.9b the points

that represent centers of maximal disks with (squared) radii less than 36 are

removed from the medial axis. The filtering of small-radius disks is one of the

simplest skeleton-pruning techniques. With the constraint of not removing the

points of the pruned medial axis, we perform a topology-preserving thinning

process guided by the Euclidean distance, and we obtain the Euclidean skeleton

of Fig. 8.9c. Finally, the reverse process (reconstruction of the object) is

F IGURE 8.8 Comparison of skeletons. Skeletons superimposed on the original chromosomes:
(a) Euclidean skeleton with topology preservation, containing the exact Euclidean medial axis; (b) discrete
skeleton with topology preservation, containing the exact medial axis by nB disks.
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performed on the pruned skeletons, and Fig. 8.9d shows the details of the

boundaries that could not be reconstructed.

8.3 Grayscale Operations

It is useful to look at a grayscale image as a surface. Figure 8.10 shows

a grayscale image made of three Gaussian-shaped peaks of different heights

F IGURE 8 .9 Skeletonization and pruning. The skeletons are superimposed on the original chromo-
somes. (a) The exact Euclidean medial axis (center of maximal discrete Euclidean disks); (b) Pruned medial
axis, disks with (squared) radius less than 36 have been removed; (c) Euclidean skeleton with topology
preservation, containing the pruned medial axis shown in (b); (d) points on the boundaries that could not be
reconstructed by the reverse process of the pruned skeleton.

F IGURE 8.10 Graphical representations of a grayscale image. (a) Grayscale mapping: zero is dark
and 255 is bright. (b) Reverse grayscale mapping: zero is bright and 255 is dark. (c) Top-view shaded
surface. (d) Surface mesh plot.
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and widths. The image is depicted in four different graphical representations: (a)

the pixel values mapped in gray levels (low values are dark and high values are

bright gray tones); (b) the pixel values also mapped in grayscale but in a reverse

order; (c) the same image but as a top view of a shaded surface; and (d) a mesh

plot of the same surface.

8.3.1 Thresho ld Decompos i t ion

The threshold sets of a grayscale image contain all the pixels of the binary

objects obtained by thresholding the image at all (e.g., 256) gray levels. Thresh-

old decomposition of a grayscale image is the process that creates the threshold

sets. A level component in a grayscale image is defined as a connected set of

pixels in a threshold set of the image at a particular gray level. A grayscale

image, then, can be thought of as a cardboard landscape model, that is, a stack

of thin, flat pieces of cardboard. The cardboard is first cut into the shape of

each binary object (level component) from the threshold sets, and then the

pieces are stacked up to form the topography. Each cardboard piece, then,

corresponds to a level component of one threshold set for that grayscale image.

The image can be characterized uniquely by its threshold sets. Recovering an

image from its threshold sets is called stack reconstruction. Note that, for stack

reconstruction to be possible, the threshold sets must satisfy the stack property.

This means that each level component at a gray level must contain the level

component above it and must be contained in the level component below.

The threshold decomposition of a grayscale image, f, is the collection of all

the threshold sets, Xt( f ), obtained at each gray level t:

Xt( f ) ¼ {z : f (z) $ t} (8:18)

The image can be characterized uniquely by its threshold decomposition.

The image can be recovered from its threshold sets by stack reconstruction:

f (x) ¼ max {t :x 2 Xt( f )} (8:19)

In all the grayscale morphological operations presented here, we use flat

structuring elements, that is, structuring elements that have no grayscale vari-

ation and that are the same as those used in the case of binary images.We use the

term flat structuring elements so as not to confuse them with their grayscale

analogs. This restriction greatly simplifies the definition, characterization, and

use of grayscale operators as an extension of the binary case. Care must be taken,

however, when using a non-flat grayscale structuring element, because the

erosion (dilation) is not a moving-minimum (moving-maximum) filter anymore,

the threshold decomposition property does not hold for the primitive operators,
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nor does it hold for grayscale morphological reconstruction. As mentioned

earlier, only symmetrical structuring elements are discussed in this chapter.

8.3.2 Eros ion and Di la t ion

Grayscale erosion (dilation) of an image, f, by a flat structuring element D is

equivalent to a moving-minimum (moving-maximum) filter over the window

defined by the structuring element. Thus, erosion f @D and dilation f !D in this

case are simply special cases of order-statistic filters:

( f @D)(x) ¼ min f (z) : z 2 Dxf g
( f !D)(x) ¼ max f (z) : z 2 Dxf g (8:20)

An example of erosion by a disk on a grayscale image is shown in Fig. 8.11. The

two images on the left, input and eroded, are represented in grayscale, and the

two on the right are the same images represented as top-view surfaces. Note how

well the term erosion fits this example. The eroded surface appears to have been

created by a pantograph engraving machine equipped with a flat disk milling

cutter. The pantograph follows the original surface while shaping the eroded

surface with the flat disk milling cutter.

F IGURE 8.11 Illustration of grayscale erosion. (a) Input image. (b) Surface view of the input image.
(c) Erosion by a disk. (d) Surface view of the eroded image.
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The intuitive interpretation for grayscale erosion is the following: Slide the

structuring element along beneath the surface, and at each point record the

highest altitude to which the structuring element can be translated while still

fitting beneath the surface. Alternatively, one can simply compute the erosion

(dilation) of a grayscale image by computing the threshold decomposition of the

image, applying binary erosion (dilation) to the threshold sets, and following up

with stack reconstruction.

Figure 8.12 illustrates grayscale erosion by means of threshold decompo-

sition. At the right of the grayscale images (original (a) and eroded (e)) are three

threshold sets, at gray levels 80, 120, and 180, respectively. Note that the binary

images shown in (f ), (g), and (h) are eroded versions of the binary images shown

in (b), (c), and (d).

The filters that can be implemented by threshold decomposition are called

stack filters. A stack filter can be built from any binary filter as long as the stack

property is satisfied. Dilation and erosion by a flat structuring element are, in

this sense, stack filters. So, too, is the median filter. A practical characteristic of

a stack filter is that it stores all results of filtering the input thresholded images.

So when dealing with stack filters, instead of thresholding the image and then

applying the filter, it is better first to apply the filter, keeping the image in

grayscale, and to threshold the result later. That is, put the parametric operation

at the end of the procedure.

F IGURE 8.12 Illustration of grayscale erosion by means of threshold decomposition. (a) The input
image. (e) The eroded grayscale image. (b), (c), and (d) show the input image thresholded at gray levels
80, 120, and 180, respectively. (f ), (g), and (h) show the eroded image thresholded at gray levels 80, 120,
and 180, respectively.
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8.3 .2 .1 Grad ien t

Observe that the morphological gradient (dilation minus erosion), previously

described for binary pictures, is extensible directly to grayscale morphology if

grayscale erosions and dilations are used. At each point the morphological

gradient yields the difference between the maximum and minimum values,

over the neighborhood, at the point determined by the flat structuring element.

The grayscale morphological gradient is often used as one step of a more

complex process, such as segmentation. For instance, Fig. 8.31b shows the

gradient of the yeast cells in Fig. 8.31a that we wish to segment. The segmenta-

tion of urology specimens in Fig. 8.30a and the chromosomes in Fig. 8.27a also

use gradient computation (Fig. 8.30b and Fig. 8.27b, respectively).

8.3.3 Opening and C los ing

As an extension of the binary case, grayscale opening (closing) can be achieved

simply by threshold decomposition, followed by binary opening (closing) and

stack reconstruction. Grayscale opening and closing have the same properties as

their binary equivalents [4]. The intuitive interpretation for opening is the

following: Slide the structuring element beneath the surface and, at each point,

record the maximum altitude to which the structuring element can be translated

while still fitting beneath the surface. The position of the origin relative to the

structuring element is irrelevant. Note the slight difference between the opening

and the erosion. While in the opening, the maximum altitude is recorded for all

points of the structuring element; in the erosion, only the location of the

structuring element is recorded.

Figure 8.26b shows the grayscale opening of the input image (a) by a disk of

radius 20. Note the manner in which the white dots are removed and the image is

filtered from the bottom in accordance with the shape of the structuring element.

An intuitive interpretation of closing can be seen from the duality relation.

Opening filters the image from below the surface, whereas closing filters it from

above. By duality, closing is an opening of the negated image. Hence, to apply

closing, simply flip the image upside down (invert), filter by the opening, and

then flip it back. The filtering effect of closing is illustrated in Fig. 8.30c, which

shows the closing of image (b) by a 7 � 7 box structuring element.

8.3 .3 .1 Top -Ha t F i l t e r i ng

The top-hat concept is also valid for grayscale images.Grayscale opening top-hat

is the subtraction of the opened image from the input image, and grayscale

closing top-hat is the subtraction of the image from its closing. By choosing an

appropriately sized structuring element, one can use the top-hat transform to

mark narrow peaks while not marking wider peaks in the image. In some
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applications it is impossible to separate desirable from undesirable bright spots

simply by using an appropriately sized structuring element, but it is possible to

separate them by an appropriately chosen threshold.

The following application illustrates the use of grayscale closing and

grayscale closing top-hat (Fig. 8.13). The input is a grayscale image of

a microelectronic circuit. The relevant objects in this image are vertical metal

stripes. Irregularities in these stripes are to be detected. This procedure uses the

grayscale closing top-hat, followed by filtering (by size threshold) of the res-

idues. The top part of Fig. 8.13 shows the grayscale images, while the lower part

shows their surface views. The input image is shown in (a); its closing by

a vertical line of length 25 pixels, is shown in (b). Then the top-hat result is the

subtraction of the original from the closing (c), revealing dark defects in the

metal stripes. It shows the discrepancies of the image where the structuring

element cannot fit the surface from above. In this case, it highlights vertical

depressions longer than 25 pixels. Thresholding the top-hat image, followed by

the elimination of small objects by an area opening of 5 pixels, results in the

detected regions with irregularities, which are shaded in black in the original

image (d).

Open top-hat is very useful as a preprocessing step to correct uneven illumin-

ation (see Chapter 12) before applying a threshold, thereby implementing an

adaptive thresholding technique (see Chapter 9). The following application

illustrates this.

F IGURE 8 .13 Illustration of grayscale closing and closing top-hat. (a) Input image. (b) Closing by
a vertical structuring element. (c) Closing top-hat. (d) Thresholded top-hat (black areas) overlaid on original.
(e)–(h) Surface view of the corresponding images above.

8 Morphological Image Processing

132



For a real-world biological application, we consider fluorescent in situ

hybridization (FISH) imaging, which is discussed in Chapter 12. A DNA probe

labeled with a fluorophore hybridizes to a matching sequence of DNA in the cell,

and the dye fluoresces at some particular color when excited by illumination in

a microscope.

Figure 8.14 shows the open top-hat transform applied to a FISH image:

(a) the FISH image; (b) open top-hat of the FISH image by a disk of radius 4;

(c) binary image resulting from thresholding the top-hat image at a gray level of

50; and (d) final result with an arrow indicating the position of each detected

spot. Due to noise, the top-hat methodology typically yields a number of very

small extraneous spots in the thresholded top-hat image. These can be elimin-

ated by filtering image with a grayscale area opening operation of two pixels.

The arrows were overlaid automatically by a dilation of the centroids of the

detected spots with an arrow-shaped structuring element having its origin

translated slightly from the arrow tip so as not to disturb the visualization of

the original spots in the image.

An illustration of the detection of thin structures using the closing top-hat

can be seen in Figs. 8.22c–d. In (c) we see crystals surrounded by a dark contour

and a bright oriented shade. The application of a closing top-hat by a disk with

diameter larger than the thickness of the dark contours (see Fig. 8.22c) removes

the bright shade and enhances the contours of the crystals.

To detect both peaks and valleys, one can apply the open top-hat transform,

threshold to find peak markers, apply the close top-hat transform, threshold to

find valley markers, and then form the union of the two marker images.

8.3 .3 .2 A l te rna t i ng Sequen t ia l F i l t e r s

Grayscale opening can be employed to filter positive noise spikes from an image,

and closing can remove negative noise spikes. Typically one encounters both,

and, as long as the noise spikes are sufficiently well separated, they can be

suppressed by an opening and closing or by a closing and opening operation.

However, selection of an appropriate structuring element size is crucial. If the

F IGURE 8.14 Grayscale open top-hat example. (a) Input image. (b)Opening top-hat bya disk of radius 4.
(c) Thresholded area open (by 2 pixels). (d) Dilation of centroids by arrow, for illustration, overlaid on original.
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spacingbetweennoise spikes is unevenand they are not sufficiently separated, one

can employ an alternating sequential filter (ASF). This is a sequence of alternating

opening and closing operations with increasingly larger structuring elements.

Figure 8.15 shows an example of grayscale image filtering using ASF.

A single-stage close–open filter (shown in (b)) is the result of the closing followed

by an opening using a 3 � 3 diamond-shaped structuring element. For the

second stage, another close–open operation is concatenated using a 5 � 5 dia-

mond structuring element. In (c) a three-stage ASF was applied, with the last

stage being processed by a 7 � 7 diamond structuring element.

For correction of uneven illumination, the background can be estimated by

an ASF filter. An example of this technique appears in Fig. 8.22. Part (a) is the

input image, which shows a strong, uneven illumination component; in part (b)

the background is estimated by a 10-stage close–open ASF using a family of

different-size octagonal disks.

8.3.4 Component F i l te r s and Graysca le
Morphologi ca l Recons t ruc t ion

The concept of a connected component filter, which was introduced in Section

8.2.3, on binary morphology, can be extended to grayscale morphology. Such

a filter can be constructed from (1) reconstruction from markers operations,

(2) reconstruction from opening operations, and (3) area-opening operations.

These grayscale operators can be constructed from their corresponding binary

counterparts by using threshold decomposition, described earlier (Section

8.3.1). A grayscale component filter is an operator that removes only a few

level components (cardboard pieces) in such a way that the stack reconstruction

property is not violated. That is, a level component is removed only if all

the level components above it are also removed. One important property

of a component filter is that it never introduces a false edge, so it is one

of a family of edge-preserving smoothing filters. Recall that the definition of

F IGURE 8.15 Grayscale alternating sequential filtering. (a) Input image. (b) Close–open by an
elementary cross; (c) ASF close–open with three stages.
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component filters requires the specification of a connectivity convention, which

can be either 4- or 8-neighbor connectivity.

8.3 .4 .1 Morpho log i ca l Re con s t r u c t i on

Morphological reconstruction is one of the most used tools for building com-

ponent filters [5–7]. As with binary reconstruction, grayscale reconstruction

proceeds from markers. As with the binary case, in the morphological recon-

struction frommarkers, there are mainly three ways to design the marker image:

(a) with a priori selection, (b) using selection from opening (grayscale recon-

struction from opening, see Section 8.3.4.2) [9], and (c) determination frommore

complex processing (see Section 8.3.4.4).

The morphological reconstruction of an image from a marker can be

obtained by (1) threshold decomposition of the image and the marker, followed

by (2) binary reconstruction from markers done at each gray level and (3) stack

reconstruction of the results. This can be interpreted intuitively by using the

cardboard landscape model of the image. Imagine that the cardboard pieces are

stacked but not glued. The markers are seen as needles that pierce the model

from bottom to top. If one shakes the model while holding the needles, those

cardboard pieces not pierced by the needles will be lost. The remaining card-

board pieces constitute a new model, possibly with fewer objects, and that

corresponds to the final result of grayscale morphological reconstruction.

Note that the marker can be a grayscale image, with the pixel gray level

corresponding to the height that the needles reach as they pierce the model.

This process is also called inf-reconstruction. By duality, the sup-reconstruction

works in the same manner on the complemented image.

8.3 .4 .2 Alternating Sequential Component Filters

An important class of component filters is composed of those generated from

alternating reconstructions from openings and closings. These are called alter-

nating sequential component filters (ASCFs). Figure 8.16 shows two examples of

a grayscale ASCF, using, as input, the image shown in Fig. 8.15. A three-stage

close–open filter (shown in (b)) is the result of the sup-reconstruction from

closing followed by an inf-reconstruction from opening using a 3 � 3, 5 � 5,

and 7 � 7 diamond structuring element in the first, second, and last stage,

respectively. One can compare the fidelity of the edges between the results of

this component filter and the results of the ASF filters shown in Fig. 8.15.

8.3 .4 .3 Grayscale Area Opening and Closing

Grayscale area opening is another type of component filter [8]. It is defined

analogously to the binary case. The size-a area opening of a grayscale image can
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be modeled as a stack filter in which, at each level, only level components

containing at least a pixels are retained. This operation removes all cardboard

pieces whose area is less than a. An area closing is the same operation performed

on the complement image.

In Fig. 8.16c an area close–open operation is applied using 30 pixels as the

area parameter.

8.3 .4 .4 Edge -O f f Ope ra to r

The grayscale edge-off operator can easily be derived from the binary case, and

it is very useful in many situations. As with the binary case, the edge-off operator

is the top-hat of the reconstruction from a marker placed at the image border

(i.e., an example of the case where the marker is placed a priori). In the

cardboard landscape model (threshold decomposition), all the cardboard pieces

that touch the image border are removed, leaving only those cardboard

pieces that form domes inside the image.

The following application illustrates the use of an area close–open filter as

a preprocessing filter followed by the edge-off operator to enhance pollen grains.

It is known a priori that the pollen grains have areas ranging from 5000 to

150,000 pixels at the resolution of these images. Figure 8.17a shows the input

image containing two grains. Figure 8.17b is the area close–open ASCF result.

It was used with an area parameter of 1500 pixels, first filling holes of less than

this size and then removing level components with area less than 1500 pixels.

Note that there are deep, dark areas around the pollen grains, and these make it

useful to apply the edge-off operator, shown in Fig. 8.17c. The process of

enhancing the pollen grain images was done entirely in the grayscale domain.

Finally, a segmentation can be obtained by thresholding Fig. 8.17c at a gray

level of 5 (Fig. 8.17d).

F IGURE 8.16 Grayscale alternating sequential component filtering. (a) Input image. (b) Reconstructive
close–open by a 3 � 3 diamond structuring element of stage 3. (c) Area close–open with area parameter of
30 pixels.
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8.3 .4 .5 h -Max ima and h -Min ima Opera t i on s

The reconstruction of an image f after subtracting h from itself is called the

h-maxima operation:

HMAXh,E( f ) ¼ f DE ( f � h) (8:21)

This is a component filter that removes any object with height less than or equal

to h, and it decreases the height of the other objects by h. The intuitive inter-

pretation of the h-maxima operation based on the threshold decomposition

concept is that the height attribute associated with a particular level component

(cardboard piece) is one plus the maximum number of levels that exist above it

in that object. The h-maxima filter removes all the cardboard pieces with height

attribute less than or equal to h. The dual operator of h-maxima is called

h-minima, HMINh,E( f ). It fills in any basin with depth less than h and decreases

the depth of the other basins by h.

8.3 .4 .6 Reg iona l Max ima and Min ima

Considering the threshold decomposition of a grayscale image, regional maxima

are level components with height attribute equal to 1; i.e., there are no other level

components above them. These are the cardboard pieces at the top of their

respective peaks. For instance, Fig. 8.29c shows the regional maxima of the

image in Fig. 8.29b. All regional maxima can be found by subtracting the

h-maxima with h ¼ 1 from its original image, f:

RMAXE( f ) ¼ f �HMAX1,E( f ) (8:22)

F IGURE 8.17 Segmenting pollen grains with grayscale component filters. (a) Input image. (b) Area
close–open ASCF. (c) Edge-off operation. (d) Thresholding.
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By duality, a regional minimum is a flat connected region that is at the bottom of

a basin. Regional maxima and minima are generically called extrema of the

image.

RMINE( f ) ¼ HMIN1,E( f )� f (8:23)

8.3 .4 .7 Reg iona l Ex t rema as Marke r s

The watershed transform, described in Section 8.4, is an important morpho-

logical segmentation process. One of the crucial steps in watershed transform

segmentation is marker extraction. A marker must be placed inside every object

that needs to be extracted. The regional maxima (minima) can be used as

markers for watershed segmentation. Marker finding, using the regional max-

ima, is most effective when done on filtered images. One advantage of this

method is its independence of any grayscale thresholding values.

Typically, an image presents a large number of regional maxima because of

noise inherent in the acquisition process. If the regional maximum operator is

applied to a gradient image, then the situation is even worse. Filtering the image

can remove small regional maxima, which are likely due to noise. This is usually

accomplished using (1) opening, (2) reconstruction from opening, (3) area

opening, (4) h-maxima, or combinations thereof. The choice of filter to use is

a part of the design strategy.

Figure 8.18 shows the regional maxima of an input image following four

different filters: (a) input image; (b) regional maxima without filtering; (c) regional

maxima following opening by a disk of radius 3; (d) regional maxima following

reconstruction from opening by the same disk; (e) regional maxima following area

opening; and (f) regional maxima following an h-maxima operation. Note how

the oversegmentation (excessive number of separate markers) produced by the

direct regional maxima in (b) is reduced by the subsequent filtering.

In the next section these markers are used to segment an image using the

watershed transform (see Fig. 8.21). Analogously, in Figs. 8.23c and 8.22e, the

h-minima operator is used to filter minima in the images of Figs. 8.23b and

8.22d, respectively, prior to the watershed transform.

8.4 Watershed Segmentation

The watershed transform is a key building block for morphological segmenta-

tion of images [10]. The watershed segmentation method has become highly

developed to deal with numerous real-world contingencies, and a number of

algorithms have been implemented [11–12].
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8.4.1 C lass i ca l Watershed Trans form

The most intuitive description of the watershed transform is based on a flooding

simulation. Consider the input grayscale image as a topographic surface (recall

Fig. 8.10).The goal is toproduce thewatershed lines on this surface.Todo so,holes

are punched at each regional minimum in the image. The topography is slowly

flooded from below by allowing water to rise from each regional minimum at

a uniform rate across the image. When the rising water coming from two distinct

minima is about to merge, a dam is built to prevent the merging. The flooding will

eventually reach a stage when only the tops of the dams are visible above the water

surface, and these correspond to the watershed lines. The final segmented regions

arising from the various regional minima are called catchment basins.

Figure 8.19 illustrates this flooding process on a one-dimensional signal with

four regional minima generating four catchment basins. The figure shows some

steps of the process: (a) input image, (b) holes punched at minima and initial

flooding, (c) dam created when waters from different minima are about tomerge,

and (d) final flooding, yielding three watershed lines and four catchment basins.

F IGURE 8.18 Regional maxima of a filtered image. (a) Input image. (b) Regional maxima. (c) Regional
maxima after opening by a disk of radius 3. (d) Regional maxima after reconstruction from opening by the
same disk. (e) Regional maxima after an area opening of 100 pixels. (f ) Regional maxima after h-maxima
filtering with h ¼ 20.
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For image segmentation, the watershed is usually, but not always, applied to

a gradient image. Since real digitized images present many regional minima in

their gradients, this typically results in an excessive number of catchment basins,

the result being called watershed oversegmentation. We now address how to

prevent this.

8.4.2 F i l ter ing the Min ima

One solution to cope with oversegmentation is to filter the image to reduce the

number of regional minima, creating fewer catchment basins. Figure 8.20 shows

the application of the classical watershed transform. The input image (a) is a small

synthetic image with three different-size Gaussian peaks. Part (b) shows its

morphological gradient using a 3 � 3 box-structuring element. Part (c) shows

a typical watershed result with oversegmentation due to spurious regional

minima, each one generating a catchment basin. By filtering the gradient image

with the h-minima operator, with h ¼ 9, the watershed gives the desired result,

shown in Fig. 8.20d. This kind of filtering is very subtle to the eye because the

spurious regional minima that are eliminated are quite small and difficult to see.

Figure 8.21 illustrates reducing oversegmentation of the watershed algo-

rithm by filtering the minima in the input image with several different filters.

(a) (b) (c) (d)

F IGURE 8.19 Flooding simulation of the watershed transform. (a) Input signal. (b) Punched holes at
minima and initial flooding. (c) A dam is created when waters from different minima are about to merge.
(d) Final flooding, with three watershed lines and four catchment basins.

F IGURE 8.20 Classical watershed segmentation with regional minimum filtering. (a) Small synthetic
input image (64�64). (b)Morphological gradient. (c)Watershedon themorphological gradient. (d)Watershed
on the h-minima (h¼ 9) filtered morphological gradient.
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In (a) is the input image; (b) is the watershed of (a) without filtering; (c) is when

filtered with a closing operation with a disk of radius 3; (d) is when filtered with

sup-reconstruction from closing with the same disk; (e) is when filtered with area

closing; and (f ) is when filtered with the h-minima operator. This example is

equivalent to the regional maxima simplification shown in Fig. 8.18. If we

compute the regional minima in the filtered images, we get the same results as

in that figure. Note that to filter regional minima, we use filters that operate on

the valleys, such as closings and h-minima operators. Applying filters that

operate on peaks does not reduce the number of minima or the number of

catchment basins found by the watershed algorithm.

The next application we consider deals with an electron micrograph of silver

halide T-grain crystals embedded in emulsion. Automated crystal analysis

involves segmentation of the grains for size measurement. This segmentation

problem looks simple at first, but the image has several things that make

segmentation difficult. The image has a strong illumination gradient, the interior

gray-level values for the crystal grains are the same as the background, the image

has strong white ‘‘shadow’’ noise, it has a wide range of grain sizes, and there are

F IGURE 8.21 Regional maxima of filtered image. (a) Input image. (b) Watershed of the input image.
(c) Watershed of the input image after closing with a disk of radius 3. (d) Watershed of the input image after
sup-reconstruction from closing by the same disk. (e) Watershed of the input image after area closing of 100
pixels. (f) Watershed of the input image after h -minima filtering with h ¼ 20.
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overlapping and touching grains. Despite all these problems, watershed

segmentation can produce very good results. The two key points here are the

background correction and the enhancement of the dark contours using

a close top-hat operation with a disk diameter larger than the thickness of

these contours. The crystals are surrounded by dark contour lines that are

to be used for the watershed-based segmentation. The preprocessing stage is

intended to enhance only these lines.

The input image is shown in Fig. 8.22a. The illumination gradient is esti-

mated with a 10-stage alternating sequential filtering using an octagon structur-

ing element in (b). The input image is then divided by this background estimate,

normalized by its minimum value in (c). This division ensures that the dark

contours have the same depth; so in the dark regions of the image, the depths of

the dark contours are increased by this procedure. This is necessary to yield

uniform segmentation when applying the h-minima filtering later. A classical

closing top-hat filter detects the dark contours in (d). The size of the structuring

F IGURE 8 .22 Silver halide T-grain crystal segmentation. (a) Input image. (b) Alternating sequential
filter applied. (c) Input image divided by (b). (d) Contour enhancement. (e) h -minima filter. (f ) Watershed.
(g) Removal of grains touching the border. (h) Watershed lines not touching the border. (i) Final result.
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element must be larger than the thickness of the dark contours. Note that the

white areas of the image do not affect the detection of the dark contours.

The watershed transform detects the dividing lines between the dark regions.

In this case, it is not necessary to compute the gradient, since the contour lines

have already been enhanced. We apply an area closing followed by an h-minima

operation in (e). The choices of parameters for the filters used in this example are

crucial, and they have been found by trial and error. Application of the water-

shed on the simplified contour image gives the watershed lines shown in (f ).

Grains connected to the image border are removed in (g). After that, the

intersection of the watershed lines and the grains not connected to the image

border gives the final boundaries of grains not touching the border in (h). For

display purposes, the contours are overlaid on the original image (i).

8.4.3 Texture Detec t ion

Oversegmentation, usually seen as a drawback of the watershed transform, can

be useful to separate homogeneous from textured regions of an image. Indeed,

the watershed transform will create large catchment basins in rather homoge-

neous regions and very small catchment basins in textured regions.

The following example, illustrated in Fig. 8.23, finds the segmentation of

epithelial cells frommonochrome images. Because the cells are nearly transparent,

F IGURE 8.23 Epithelial cell segmentation. (a)Original image. (b)Morphological gradient. (c)Watershed
lines (with oversegmentation) on h -minima (h ¼ 6) filtered gradient. (d) Area closing to merge small catchment
basins. (e) Area opening to select only the large objects. (f) Outline (in white) of the segmented objects.
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the idea is to use the watershed to detect small catchment basins due to the texture

present in the interior of these cells. The catchment basins are area-closed and

then opened to remove noise. Although the oversegmentation of the watershed

algorithm is desirable, a component filtering operation is still required to detect

only those catchment basins inside the cells. An h-minima operation on the

gradient is used. In Fig. 8.24, (a) is the original image containing the almost-

transparent target cells; (b) is the morphological gradient; (c) shows the watershed

lines of the h-minima filtered gradient; (d) shows the merging of small catchment

basins by area closing; (e) is the result of the area opening to detect large objects;

and in (f ) the contours (gradient) of segmented objects are overlaid on the input

image.

The example that follows shows an image analysis technique for detecting

anhydrous phase and aggregate in a polished concrete section, imaged by the

scanning electron microscope (SEM) in Fig. 8.24a as homogeneous white and

medium-gray grains, respectively.

The steps in this analysis are: (1) anhydrous detection by automatic thresh-

old analysis, (2) homogeneous grain detection using the watershed technique,

and (3) identification of aggregates as homogeneous grains that are not from

the anhydrous phase. The automatic threshold analysis is done using one-

dimensional morphological processing of the gray-level histogram with the

watershed algorithm.

F IGURE 8.24 Aggregate and anhydrous phase extraction from a concrete section imaged by a SEM.
(a) Input image. (b) Gray-level histogram. (c) Automatic threshold from histogram using watershed. (d) Contour
(in black) of the anhydrous regions from automatic thresholding. (e) Watershed lines from filtered regional
minima of the gradient. (f) Contour (in black) of the aggregate regions obtained from area open–close of the
watershed.
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The histogram in Fig. 8.24b has a small peak in the white region due to the

anhydrous phase. The threshold value is automatically determined with the 1-D

watershed technique. This is done by computing the one-dimensional watershed

on the filtered, negated histogram. The filter is based on a closing of 5 points

followed by an h-minima operation with h ¼ 10 (see Fig. 8.24c). The threshold

parameter is taken as the position of the watershed point.

Anhydrous regions are detected by applying the automatic threshold and by

removing objects with area less than 20 pixels. Their contour, computed from

the gradient, is overlaid (in black) on the input image in Fig. 8.24d. Figure 8.24e

shows the watershed applied on the filtered gradient of the input image.

The filter is the h-minima with h ¼ 10. The larger catchment basin regions are

the aggregate and the anhydrous. These regions are filtered out using an area

opening of 300 pixels followed by an area closing of 50 pixels to eliminate small

holes. The aggregate, contoured in black in (f ), is obtained by removing the

anhydrous phase already computed.

8.4.4 Watershed f rom Markers

The watershed from markers technique is a very effective way to reduce over-

segmentation if one can place markers within the objects to be segmented. The

watershed from markers can also be described as a flooding simulation process.

In this case, holes are punched at the marker regions. Each marker is associated

with a color. The topography is flooded from below by letting colored water rise

from the hole associated with its color, this being done for all holes at a uniform

rate across the entire image. If the water reaches a catchment basin with no

marker in it, then the water floods that catchment basin without restriction.

However, if the rising waters of distinct colors are about to merge, then a dam

is built to prevent the merging. The colored regions are the catchment basins

associated with the various markers. To differentiate these catchment basins from

the ones obtained with the classical watershed transform, we call the latter

primitive catchment basins.

Figure 8.25 illustrates the flooding of the watershed from markers in one

dimension. There are markers placed into the two rightmost primitive catch-

ment basins. Part (a) shows the two holes punched at the markers and some

initial flooding. When the water rises, a primitive catchment basin without

a marker is flooded without creating a dam, as shown in part (b). In part (c),

a dam is built to prevent the merging of waters coming from the two markers.

Finally, part (d) shows the final flooding, with only one watershed line separating

the two marked regions.

The classical watershed transform can be constructed using the watershed

from markers technique, and vice versa. If we place the markers at all regional

minima of the input image, then the watershed frommarkers technique gives the
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classical watershed transform result. To obtain the watershed from markers

result from the standard watershed transform, we must apply the classical

watershed transform to the sup-reconstruction of the image from the markers.

8.4.5 Segmentat ion of Over lapped
Convex Cel l s

Application of the watershed transform often involves a certain spatial decom-

position. Given a set of isolated points (grains) in a binary image, its Voronoi

diagram is composed of lines that partition the plane into regions, each consisting

of the points that are closest to one particular grain. More generally, the grains

can consist of connected components of arbitrary sets, instead of isolated points.

In this case, the Voronoi regions are called influence zones, and the Voronoi

diagram is called a skeleton by influence zones (SKIZ).

In a binary image, the distance function, or distance transform, is defined, for

any point inside an object, as the distance from that point to the nearest point

outside the object. The watershed transform is a useful method for computing

the Voronoi diagram and the SKIZ. The idea is to compute the classical

watershed transform of the distance transform of the background of the objects.

The catchment basins are the influence zones, and the watershed lines compose

the SKIZ.

This concept can address one of the earliest uses of the watershed transform,

the problem of binary-image segmentation of images with touching and over-

lapping objects. For instance, in Fig. 8.26c, seven cells appear to be overlapping

to form a single connected component. Our goal is to segment that component

in a manner consistent with the integrity of each cell. A key to this problem, and

with many segmentation problems, is to find markers for each of the objects.

InFig. 8.26, after the input image (a) is filtered using an openingwith a disk (b),

the image is thresholded in (c). Using the watershed transform to segment

the overlapped cells works in the following way. The distance transform is

computed on the binary image, and one marker is required for each cell.

In the case of rounded cells, these markers can be extracted from the regional

(a) (b) (c) (d)

F IGURE 8 .25 Flooding simulation of the watershed from markers. (a) Punched holes at markers and
initial flooding. (b) Flooding a primitive catchment basin without a marker. (c) A dam is created when waters
coming from different markers are about to merge. (d) Final flooding, only one watershed line.
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maxima of the distance function. Depending on the difficulty of this extraction,

it may require filtering the distance function. This can be done via an opening

according to the methodology of marker extraction using regional maxima,

which is discussed in Section 8.3.4.7. In this case the distance function was

filtered by an opening with a disk of radius 15. The lines from the watershed

transform on the negated distance function from the markers are used to cut the

input binary image (e). The shaded distance function, displayed in part (d) of

Fig. 8.26, is overlaid with the marker (in white) and the watershed lines

(in white). In part (f ), the input image is overlaid by the morphological gradient

of the binary image.

Overlapping cells may appear in complex images, such as cytogenetic speci-

mens prepared with FISH techniques. Figure 8.27 illustrates such an applica-

tion, where the task is to find and segment chromosomes, interphase cell nuclei,

and DNA-probe dots in the images. (a) is the blue channel; (b) is the morpho-

logical gradient; (c) is the watershed transform calculated on (b), after an

h-minima filtering with height 7; in (d), the objects are filled out using recon-

struction; in (e) cut nucleus cells have been filtered from reconstruction from open

by a circle; nuclei and chromosomes have been segmented in (f ) and (g) respect-

ively; (h) is the red channel image; in (i), spots were detected by thresholding the

h-maxima; Note the classical binary-image segmentation problem in (e), where

the touching round nuclei are separated.

We now discuss the other operations that were performed in this application.

The sup-reconstruction of the watershed result, which selects the whole

F IGURE 8.26 Segmentation of overlapping convex cells. (a) Input image. (b) Preprocessing by opening
with a disk of radius 20. (c) Threshold of the preprocessed image. (d) Distance transform of complement image
(in gray) overlaid by marker (white) and watershed lines (white). (e) Watershed lines used to cut the binary
overlapped cells. (f) Cell boundaries overlaid on the input image.
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components from (d), is tricky: The marker of the sup-reconstruction is a white

image with a single black point. To detect the red dots from the original color

image, the red channel is selected, and a simple h-maxima filter, with a high

dynamics parameter (e.g., 20), selects the red dots. The dynamic of a regional

maximum is the height we must climb down from that maximum in order to

reach another maximum of higher elevation [13]. Similarly, the dynamic of

a minimum is the minimum height we must climb from that regional minimum

in order to reach a lower regional minimum.

8.4.6 Inner and Outer Markers

A typical watershed-based segmentation problem is to segment cell-like objects

in a grayscale image. The general approach commonly used to solve these

problems is threefold: (1) preprocessing using a smoothing filter, (2) extraction

of object markers (inner markers) and background markers (outer markers),

F IGURE 8 .27 Fluorescence in situ hybridization image. (a) Blue channel. (b) Morphological gradient.
(c) Watershed calculated on (b), after an h -minima filtering with height 7. (d) Objects filled out using
reconstruction. (e) Cut nucleus cells filtered with reconstruction from open by a circle. (f ) Outline (in black)
of the segmented nuclei overlaid on the blue channel. (g) Outline (in black) of the detected chromosomes
overlaid on the blue channel. (h) Red channel image. (i) Spots (in black) detected by thresholding h -maxima
and overlaid on the blue channel.
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and (3) obtaining watershed lines of the morphological gradient from the

markers. Usually the most critical part is the extraction of object markers,

since an object not marked properly will be missed in the final segmentation.

Figure 8.28 shows a typical application of the watershed from markers

technique using inner and outer markers. The input image for this example is

the same one used in Fig. 8.20. Parts (a), (b), and (c) are the same images

presented in the illustration of the classical watershed in Fig. 8.20. In this

case, however, oversegmentation is avoided by using the inner and outer

markers concept applied to the watershed from markers technique. The inner

markers are detected from the regional maxima of the input image opened with

a small disk (see part (d) ). For the outer markers, we first negate the input image

(e) and then compute the watershed transform on it. In the negated input image,

the peaks become basins, and taking the watershed transform of the inner

markers yields the skeletons of the influence zones of the basins. These compose

the background (outer) marker (f ). Care is required in combining both markers

because they can touch each other at some points. We first label the inner

markers with integers and then label the outer marker with 1 greater than the

maximum inner-marker label. In (g) the different markers are painted with

different colors. The final segmentation is in (h).

To illustrate watershed segmentation using inner and outer markers, we

consider the poor-quality microscopic image of a cornea tissue shown in

Fig. 8.29a. The cell markers are extracted as the regional maxima of the opening

F IGURE 8.28 Watershed from markers. (a) Small synthetic input image (64 � 64). (b) Morphological
gradient. (c) Oversegmentation using watershed on the morphological gradient. (d) Detection of inner
markers. (e) Inner markers overlaid on negated input image. (f) Outer marker as the watershed from markers.
(g) Inner and outer markers (labeled). (h) Watershed from markers applied to the morphological gradient.
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with a disk operation performed on the input image. The criterion used with

regional maxima is mainly topological. We can model each cell as a small hill,

and we want to mark the top of each hill that has a base larger than the disk used

in the opening. Parts (b) and (c) of the figure show the opened image and its

regional maxima, respectively. The inner and outer markers (d) are detected by

the same procedure as in Fig. 8.28. The regional maxima constitute the inner

markers, and the outer markers are obtained by a watershed transform on the

negated input image. After labeling the markers, the morphological gradient is

computed in (e). Although it is a very noisy gradient, the final watershed lines,

which are overlaid on the input image in (f ), provide a satisfactory segmentation.

The watershed transform is most often applied to a gradient image, a top-hat

image, or a distance function image, but in other cases the input image itself is

suitable for application of the watershed transform. Figure 8.30 illustrates this

on a brightfield image of a urology specimen. The task is to find the boundaries

of the low-contrast objects in the image. The idea is to segment the low-contrast

structures in (a) by a watershed from markers operation applied directly to the

input image, because the input image already has a gradient-like structure. For

this to work, it is necessary to detect the markers only on the urology specimens.

So the first step is to find a mask image roughly larger than the specimens. We

achieve this by thresholding the filtered gradient image. Part (b) shows the

gradient of the input image, and part (c) is the closing of the gradient by a box

of size 7 � 7, followed by an area opening of 120 pixels in (d). These parameters

F IGURE 8 .29 Segmentation of cornea cells from a noisy image. (a) Input image. (b) Filtered by an
opening operation. (c) Regional maxima of the opening (inner markers). (d) Inner and outer markers
(watershed lines of the negated input image from the inner markers). (e) Morphological gradient of the
original image. (f) Final watershed lines overlaid on the input image.
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were chosen based on the thickness of the objects. Part (e) is the thresholding

of the filtered image, which, after a union operation with the regional minima of

the input image, forms the markers for the watershed, as seen in (f ). The result

of the watershed frommarkers is seen in (g). An area closing fills in the catchment

basins, as seen in (h), and the contours computed from the gradient of part (h) are

overlaid on the input image in (i).

8.4.7 Hierarch i ca l Watershed

A hierarchical, or multiscale, watershed (MSW) transform creates a set of nested

partitions. The multiscale watershed presented here can be obtained by applying

the watershed from markers technique to a decreasing set of markers.

Thewatershed at scale 1 (finest partitioning) is the classical watershed,made up

of the primitive catchment basins, andperhapswith oversegmentation.As the scale

increases, fewermarkers are involved, and the coarsest partition is the entire image,

obtained from a single marker at the regional minimum of largest dynamic.

F IGURE 8.30 Segmentation of a urology specimen. (a) Input image. (b) Gradient. (c) Closing with a
box of size 7 � 7. (d) Area opening by 120 pixels. (e) Thresholding (presegmentation). (f) Markers given by
the regional minima of the input image, masked by the presegmentation. (g) Watershed from markers of the
input image. (h) Area closing. (i) Contour (gradient) overlaid on the input image.
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Figure 8.31 illustrates the multiscale watershed transform applied to a real

image. The decreasing sets of markers are obtained by applying the h-minima

filter; that is, the dynamics of the minima are used. We show a mosaic image

where the primitive catchment basins of the gradient are displayed with gray

level proportional to the dynamics of their regional minima. Then we show three

levels in the hierarchy, with markers taken as the regional minima with dynamics

above 3, 8, and 15. In Fig. 8.31, (a) is the input image, (b) is the morphological

gradient, (c) is the mosaic image, and (d), (e), and (f ) show the results of the

watershed transform from the markers taken as the regional minima having

dynamics greater than 3, 8 and 15, respectively. Note that the highest dynamic

corresponds to the background, the second highest dynamic corresponds to the

largest circular cell, and the third highest corresponds to the elongated cell lying

above it. This observation is confirmed by the two most prominent objects on

the background in (f ).

8.4.8 Watershed Trans form Algor i thms

There are many watershed transform algorithms in the literature, and this can be

quite confusing. Two types of algorithms are the most important. One is based

on immersion simulation and the other is based on minimum-cost paths. We

present an algorithm based on the minimum-cost path for the watershed-

from-markers transform, in which the definition and implementation are

consistent. The classical watershed transform is obtained when the markers

are the regional minima of the image.

F IGURE 8.31 Multiscale watershed transform. (a) Original image. (b) Morphological gradient.
(c) Mosaic image. (d) Markers as the regional minima with dynamics above 3. (e) Markers as the regional
minima with dynamics above 8. (f ) Markers as the regional minima with dynamics above 15.
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The image is modeled as a graph, and each pixel is a node. The minimum-

path cost between two pixels, p and q, in the graph is given by the minimal cost

of all the paths connecting p and q:

C�( p, q) ¼ minifC(pi( p ! q) )g
where pi(p ! q) denotes a path from p to q. The cost of a simple connected path

from p ! q is given by a lexicographic cost C( p), where the first component,

C1(p), is the maximum pixel value in the path and the second component,C2( p),

is the number of times the first component cost is the same before arriving at pn:

C( p1, p2, . . . , pn) ¼ C1( pn), C
2( pn)

� �
C1( p1) ¼ 0 (8:24)

C1( pn) ¼ max C1( p1), f ( p2), . . . , f ( pn)
� �

, for n > 1

C2( pn) ¼ max j:C1( pn) ¼ C1( pn�j)
� �

, j ¼ 0, 1, . . . , n� 1

Here f is the input image and C1( pn) is the maximum pixel value of f ( pi), where

pi is in the path p1 ! pn.

The catchment basin CBk associated with the marker Lk is defined by those

nodes p having a path cost from this marker that is less than or equal to the path

cost from any other marker; that is,

CBk ¼ p:C�(Lk, p) # C�(Lj, p), j 6¼ k
� �

(8:25)

whereC�(L, p) is the minimum-cost path from region L to pixel p, and this is the

minimum-cost path from any pixel of region L to p, that is,

C�(L, p) ¼ min C�(l, p): l 2 Lf g
A simple but efficient implementation of this watershed definition is the

following algorithm, cb( f, L), where f is the input image, L is a labeled image

where nonmarker pixels have the value 0, and the output of the algorithm is L,

which shows the final catchment basin regions.

Function L ¼ cb(f, L)
f: input image
L: labeled image (input and output)

1. Initialization
for L(p) !¼ 0:

inHFQ(p, 0)
(Continued )
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2. Propagation
while HFQ is not empty:

p <- outHFQ
for each non-labeled q neighbor of p:

L(q) <- L(p)
inHFQ(q, f(q))

In this function, the hierarchical FIFO queue (HFQ) has the following

operations: inHFQ( p, n)—insert pixel p with priority n; outHFQ—remove the

pixel with the lowest priority, with the FIFO policy for pixels at the same

priority. This FIFO policy implements intrinsically the second component of

the lexicographic cost of Eq. 8.24.

Two points are worth mentioning in the formulation of the catchment basins

given in Eq. 8.25. First, watershed lines are not defined by this algorithm. Second,

many optimal solutions are possible. This is because the criterion for a pixel’s

belonging to a particular catchment basin is merely that its cost relative to that

basin marker be less than or equal to its cost relative to any other basin marker.

Thus watershed lines can be assigned to pixels that have the same minimal cost

relative to more than one marker. With this approach, the watershed lines can be

thick. If one wants one-pixel-thick watershed lines, a thinning can be used.

8.5 Summary of Important Points

1. Morphology processing has to do with the fitting, or not fitting, of

a structuring element inside the objects in an image.

2. Morphology processing can be directly and efficiently applied to discrete

images.

3. Morphology processing can be applied to both binary and grayscale

images.

4. Morphology algorithm design is based on a building block concept,

where complex operators are built up from sequences of simple ones.

5. Erosion and dilation are primitive operators of morphology processing,

and they are duals.

6. The erosion of an image consists of all locations where the structuring

element fits inside an object.

7. Opening and closing are created from the composition of erosion and

dilation. They are dual operations.
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8. An image contains its opening, whereas it is contained by its closing.

9. The opening of an image by a structuring element is the union of all the

structuring elements that fit inside the objects. It is a way of marking

objects that have certain specified morphological properties.

10. An alternating sequential filter combines openings and closings with

increasing structuring element sizes to filter out iteratively both additive

and subtractive noise components.

11. The top-hat concept consists of subtracting the input image from the

output image of a morphological filter, or the inverse.

12. The labeling process decomposes an image into its connected components.

13. The morphological reconstruction of an image from a marker is the

union of all connected components of the image that intersect that

marker.

14. The area-opening operation removes all connected components with

area less than a specified value.

15. Skeletonization is a classic tool for image processing that shrinks an

object’s boundaries to thin lines. It has been widely used in microscopy,

primarily for segmentation and shape analysis.

16. Grayscale erosion (or dilation) by a flat structuring element is equivalent

to a moving-minimum (moving-maximum) filter over the window

defined by the structuring element.

17. The morphological gradient is defined as the subtraction of the erosion

from the dilation.

18. When a flat structuring element is used, grayscale erosion, dilation,

opening, closing, ASF, morphological reconstruction, alternating

sequential component filters, area opening, and closing are stack filters.

They can be implemented by operating on the threshold sets with their

binary-equivalent operator, followed by stack reconstruction.

19. The h-maxima operator is a component filter that removes any peaks

with height less than or equal to h and decreases the height of the

remaining peaks by h. The h-minima operator is its dual.

20. A regional maximum (or minimum) is a flat connected region that is on

top of a peak (or at the bottom of a basin).

21. Intuitively, the watershed transform is a flood simulation, where the

watershed lines separate waters flooded in from different regional

minima of the image.
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22. Normally, the watershed is computed on the image gradient to detect

contour lines around homogeneous regions.

23. In noisy images there are normally too many minima, resulting in

a watershed oversegmentation effect.

24. Watershed oversegmentation is effectively eliminated by filtering the

image with closing, area-closing, or h-minima operators.

25. The watershed oversegmentation phenomenon can be useful to separate

homogeneous from textured regions.

26. Another way to eliminate watershed oversegmentation is by using the

watershed from markers technique, where water can flood only from

markers instead of from all regional minima.

27. The watershed-based segmentation from markers technique typically

requires inner markers for the objects and outer markers for the

background.

28. The classical watershed transform can be constructed using the

watershed from markers technique, and vice versa.

29. A multiscale watershed transform creates a set of nested partitions.
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9
Image Segmentation

Qiang Wu and Kenneth R. Castleman

9.1 Introduct ion

Image segmentation is a task of fundamental importance in digital image

analysis. It is the process that partitions a digital image into disjoint (nonover-

lapping) regions, each of which typically corresponds to one object. Once

isolated, these objects can be measured and classified, as discussed in Chapters

10 and 11, respectively. Unlike human vision, where image segmentation takes

place without effort, digital processing requires that we laboriously isolate the

objects by breaking up the image into regions, one for each object [1]. Errors in

the segmentation process almost certainly lead to inaccuracies in any subsequent

analysis. Further, the exact location of object boundaries is subject to interpre-

tation, and different segmentation algorithms often produce different, though

not erroneous, results.

In this chapter we describe a number of techniques for locating and isolating

objects in a digital image. We focus the discussion on the segmentation of 2-D

gray-level images, but most of the techniques can be extended to multispectral

images (see Chapter 13) and 3-D images (see Chapter 14). Segmentation is also

treated in Chapter 8, for it is a major application of morphological image

processing.

Image segmentation is usually approached from one of two different but

complementary perspectives, by seeking to identify either the regions or the

boundaries of objects in the image [2, 3]. A region is a connected set of (adjacent)

pixels. In the region-based approach, we consider each pixel in the image and

assign it to a particular region or object. In the boundary-based approach, either
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we attempt to locate directly the boundaries that exist between the regions or

we seek to identify edge pixels and then link them together to establish the

required boundaries. Segmentations resulting from the two approaches may not

be exactly the same, but both approaches are useful to understanding and

solving image segmentation problems, and their combined use can lead to

improved performance [2–4]. Real-world applications in digital microscopy

often pose very challenging segmentation problems. Variations and combi-

nations of the basic techniques presented here often must be tailored to the

specific application to produce acceptable results.

9.1.1 Pixe l Connec t iv i ty

Before introducing various methods for image segmentation, it is important to

understand the concept of connectivity of pixels in a digital image (see also

Chapters 8 and 14). In a set of connected pixels, all the pixels are adjacent or

touching [5]. Between any two pixels in a connected set there exists a connected

path wholly within the set. A connected path is one that always moves between

neighboring pixels. Thus, in a connected set, one can trace a connected path

between any two pixels without ever leaving the set.

There are two rules of connectivity. If only laterally adjacent pixels (up, down,

right, left) are considered to be connected, we have ‘‘4-connectivity,’’ and the

objects are ‘‘4-connected.’’ Thus a pixel has only four neighbors to which it can

be connected. If diagonally adjacent (458 neighbor) pixels are also considered to be
connected, thenwe have ‘‘8-connectivity,’’ the objects are ‘‘8-connected,’’ and each

pixel has eight neighbors to which it can be connected. Either connectivity rule can

be adopted as long as it is used consistently. Any region that is 4-connected is also

8-connected, but the converse is not necessarily true. Overall, 8-connectivity is

more commonly used, and it produces results that are closer to one’s intuition.

9.2 Region-Based Segmentation

Region segmentation methods partition an image by grouping similar pixels to-

gether into identified regions. Image contentwithin a region should beuniformand

homogeneous with respect to certain attributes, such as intensity, rate of change in

intensity, color, and texture. Regions are important in interpreting an image

because they typically correspond to objects or parts of objects in a scene. In this

section we discuss a number of widely used techniques that fall into this category.

9.2.1 Thresho ld ing

Thresholding is an essential region-based image segmentation technique that is

particularly useful for scenes containing solid objects resting on a contrasting
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background. It is computationally simple and never fails to define disjoint

regions with closed, connected boundaries. The operation is used to distinguish

between the objects of interest (also known as the foreground ) and the

background on which they lay. The output is either the label ‘‘object’’ or

‘‘background,’’ which can be represented as a Boolean variable. In general,

a gray-level thresholding operation can be described as

G(x, y) ¼ F , if I(x, y) $ T

B, if I(x, y) < T

�
(9:1)

where I(x, y) is the original image, T is the threshold, G(x, y) is the thresh-

olded image, and F corresponds to the foreground labeled with either

a designated gray-level value or the original gray level, I(x, y). Thus all pixels

at or above the threshold are assigned to the foreground and all pixels below

the threshold are assigned to the background, which is labeled B. The bound-

ary is then that set of interior points, each of which has at least one neighbor

outside the object. It should be noted that the given formulation assumes we

are interested in high gray-level objects on a low gray-level background.

For the converse, one can simply invert the image and the discussion here is

still applicable.

Thresholding works well if the objects of interest have uniform interior gray

level and rest on a background of unequal but uniform gray level. If the objects

differ from the background by some property other than gray level (color, texture,

etc.), one can first use an operation that converts that property to gray level. Then

gray-level thresholding can segment the processed image. Thresholding can also

be generalized to multivariate classification operations, in which the threshold

becomes a multidimensional discriminant function classifying pixels based on

several image properties. Readers interested in multivariate image thresholding

and clustering are referred to [6–8] for details.

9.2 .1 .1 G loba l Th re sho ld i ng

In the simplest implementation of thresholding, the value of the threshold gray

level is held constant throughout the image. If the background gray level is

reasonably constant over the image and if the objects all have approximately

equal contrast above the background, then the gray-level histogram is bimodal,

and a fixed global threshold usually works well, provided that the threshold, T,

is properly selected. In most cases the threshold is determined from the gray-

level histogram of the image to be segmented. In general, the choice of the

threshold, T, has considerable effect on the boundary position and overall size

of segmented objects. This, in turn, affects the values obtained from subsequent

object measurement. For this reason, the value of the threshold must be

determined carefully.
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9.2 .1 .2 Adap t i ve Th re sho ld ing

Due to uneven illumination and other factors, the background gray level and the

contrast between the objects and the background often vary within the image.

In such cases, global thresholding is unlikely to produce satisfactory results,

since a threshold that works well in one area of the image might work poorly in

other areas. To cope with this variation, one can use an adaptive, or variable,

threshold that is a slowly varying function of position in the image [9].

One approach to adaptive thresholding is to partition an N � N image into

nonoverlapping blocks of n � n pixels each (n < N), analyze gray-level histo-

grams of each block, and then form a thresholding surface for the entire image

by interpolating the resulting threshold values determined from the blocks. The

blocks should be of proper size so that there is a sufficient number of back-

ground pixels in each block to allow reliable estimation of the histogram and

setting of a threshold [10].

Adaptive thresholding can also be implemented as a two-pass operation

[10, 11]. Before the first pass, a threshold is computed based on the histogram

of each block by choosing, for example, the value located midway between the

background and object peaks. Blocks containing unimodal histograms can be

ignored. In the first pass, the object boundaries are defined using a gray-level

threshold that is constant within each block but differs for the various blocks.

The objects so defined are not extracted from the image, but the interior mean

gray level of each object is computed. On the second pass, each object is given

its own threshold that lies midway between its interior gray level and the

background gray level of its principal block.

Figure 9.1 shows an example of applying thresholding for segmentation of

human chromosomes in a microscope image. In this example, the background

gray level varies due to nonuniform illumination, and contrast varies from one

chromosome to the next. In Fig. 9.1a, a global threshold has been used on the

F IGURE 9 .1 The results of global (a) and adaptive (b) thresholding for chromosome segmentation.
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image to isolate the chromosomes. Each isolated chromosome is displayed with

a boundary. In Fig. 9.1b, an adaptive threshold has been used instead. This

results in fewer segmentation errors, that is, cases where multiple chromosomes

are stuck together. The accuracy of the area measurement for chromosomes is

improved by adaptive thresholding as well [10, 12].

9.2 .1 .3 Th re sho ld Se le c t i on

The selection of the threshold value is crucial to the success of a thresholding

operation. Unless the object in the image has very steep sides, any variation in

threshold value can significantly affect the boundary position and thus the

overall size of the extracted object. This means that subsequent object measure-

ments, particularly the area measurement, are quite sensitive to the threshold

value. While no universal methodology for threshold selection works on all

kinds of images, a wealth of techniques have been developed to facilitate the

determination of threshold values under different circumstances [13, 14].

An image containing an object on a contrasting background normally has

a bimodal gray-level histogram (Fig. 9.2). The two peaks correspond to the

relatively large numbers of pixels that belong to the object and to the back-

ground. The dip between the peaks corresponds to the relatively few pixels

around the edge of the object. When a threshold value, T, is chosen, the area

of the object is given by

area ¼
ðT
0

H(I)dI (9:2)

where H(I ) is the gray-level histogram of the image. Notice in Fig. 9.2 that

increasing the threshold from T to T þ DT causes only a slight change in area if

the threshold is placed at the dip in the histogram; hence the threshold chosen at

or near the dip minimizes the sensitivity of the object area measurement to small

variations in threshold value.

T

H(I)

IT + ΔT

F IGURE 9.2 A bimodal histogram. The shaded areas show the effect of threshold variation on the area
of the object.
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Hi s tog ram Smoo th ing If the region of the image containing the

object is small and noisy, the histogram itself will be noisy. Unless the dip is

unusually sharp, the noise can make its location obscure and unreliable. This

can be overcome to some extent by smoothing the histogram using either a

convolution filter or a curve-fitting procedure.

A simple yet effective smoothing operation is the convolution of the input

histogram with a moving-average filter, also known as a box filter:

Houtput(i) ¼ 1

W

X(W�1)=2

j¼�(W�1)=2

Hinput(i � j) (9:3)

where W is an odd number, typically chosen to be 3 or 5. This operation is

designed to reduce small fluctuations without shifting the peak positions. If the

two peaks are unequal in size, smoothing may tend to shift the position of the

dip in the histogram, making it difficult to locate uniquely. The peaks, how-

ever, are easy to locate and relatively stable under reasonable amounts of

smoothing. Therefore, placing the threshold at some designated position rela-

tive to the two peaks can be more reliable than trying to place it at the dip.

In this section we introduce several methods based on different threshold

selection criteria.

The I soda ta A lgo r i t hm The isodata algorithm is an iterative

threshold selection technique [15]. Initially, the histogram is divided into two

parts using a starting threshold, T (0), placed midway between the maximum and

minimum gray level. Next we compute the sample mean, m
(0)
F , of the gray-level

values associated with the foreground pixels and the sample mean, m
(0)
B , of the

gray-level values associated with the background pixels, respectively. A new

threshold value, T (1), is then obtained as the average of these two sample means.

This process is repeated using the new threshold, until the threshold value no

longer changes; that is,

T (k) ¼ m
(k�1)
F þ m

(k�1)
B

2
, until T (k) ¼ T (k�1), k > 0 (9:4)

The Backg round Symmet r y A lgo r i t hm The background

symmetry algorithm works under the assumption that there is a dominant

background peak in the histogram, and it is symmetrical about its maximum

[16]. Preprocessing the histogram with a smoothing operation may help improve

the performance of this algorithm. The position of the peak maximum, Imax, is

determined by searching the entire histogram. After that, the algorithm searches

on one side of the background peak that is farther away from the foreground
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to locate a certain percentile point, Ip. Using the symmetry assumption, the

threshold value is then selected on the other side of the background peak at an

equal displacement from the background peak; that is,

T ¼ Imax � (Ip � Imax) (9:5)

This algorithm can easily be adapted to the case where the object peak dominates

instead of the background peak and is approximately symmetrical.

The Tr i ang le A lgo r i t hm The triangle algorithm is known to be

particularly effective when the object pixels produce a weak peak in the

histogram [17], as illustrated in Fig. 9.3, where low gray-level objects reside on

a high gray-level background. One first finds the maximum peak of the

histogram. A line is then constructed to connect the maximum peak point

Imax, H(Imax)½ � to the lowest point Ilowest, H(Ilowest)½ � in the histogram. This is

followed by the computation and comparison of the distances between that line

and all the histogram points H(I), with I ranging from Ilowest to Imax. The

threshold value, T, is taken as the value of I where this distance is greatest.

Grad ien t -Ba sed A lgo r i t hms A variant of the preceding methods

is the construction of a histogram of only those pixels having relatively high

gradient magnitude [18]. This eliminates a large number of interior and exterior

pixels from consideration, which may make the dip in the histogram easier to

locate [19]. One can also divide the histogram by the average gradient of pixels

at each gray level to enhance the dip further [18], or average the gray level of

high-gradient pixels to determine a threshold [19].

9.2 .1 .4 Th re sho ld i ng C i r cu la r Spo t s

In many important cases it is necessary to find objects that are roughly circular

in shape. Suppose an image I(x, y) contains a single spot. By definition, this

D

IImaxIlowest

T
H(I)

F IGURE 9 .3 Illustration of the triangle algorithm.
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image contains a point (x0, y0) of maximum gray level. With polar coordinates

centered on (x0, y0), the image can be represented as I(r, u) and we have

I(r1, u) $ I(r2, u), r2 > r1 (9:6)

for all values of u. If equality is not allowed in Eq. 9.6, I(x, y) is amonotone spot.

An important special case occurs if all contours of a monotone spot are circles

centered on (x0, y0). Such a special case is referred to as a concentric circular spot

(CCS). To a good approximation, this model can be used to represent the noise-

free images of certain types of cells in a microscope. For a CCS, the function

I(r, u) is independent of u, and it serves as the 1-D spot profile function. This

function is useful for threshold selection. For example, one can locate the

inflection point and select the gray-level threshold to place the boundary at

the point of maximum slope. Other unique points on the profile, such as the

maximum magnitude of the second derivative [19], can also be used. If we

threshold a monotone spot at a gray level T, we define an object with a certain

area and perimeter. As we vary T throughout the range of gray levels, we

generate the threshold area function, A(T ), and the perimeter function, P(T).

Both of these functions are unique for any spot. They are both continuous for

monotone spots, and either is sufficient to specify a CCS completely. If two spots

have identical perimeter functions or identical histograms, they are known as

p-equivalent or h-equivalent, respectively. It turns out that h-equivalent spots

have identical threshold area functions [19].

Analytical expressions relating the profile function to the threshold area

function and the perimeter function of a CCS can be derived to guide the

selection of threshold. The radius of the circular object obtained by thresholding

a CCS at gray level T is

r(T) ¼ 1

p
A(T)

� �1=2
¼ 1

p

ðT
0

H(I)dI

� �1=2
(9:7)

For a monotone spot, the histogram H(I ) is nonzero between its minimum and

maximum gray levels. This means that the area function A(T ) is monotonically

increasing, and so is r(T ). Thus the inverse function of r(T ) exists, and it is the

spot profile. Thus we can compute the area-derived profile of a CCS by inte-

grating the histogram to obtain the area function, followed by taking the square

root and then the inverse function. Similarly, the profile may also be obtained

from the perimeter function through the relationship

r(T) ¼ 1

2p
P(T) (9:8)
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9.2 .1 .5 Th re sho ld ing Non c i r c u la r and
No i s y Spo t s

For an image containing a noise-free CCS, we can easily obtain the profile

simply by taking the gray levels along the scan line that contains the peak.

Even for near-circular spots and noisy spots that analysis can still be useful. For

example, one can use the histogram of a near-circular spot to obtain the profile

of the h-equivalent CCS and select the threshold gray level that maximizes the

slope at the boundary. On the other hand, it is useful to measure the perimeter

function and determine the profile of the p-equivalent CCS. Either technique

could be used to select thresholds suitable for the image under consideration.

In some microscope images the noise level is so high that differentiating a single

scan line cannot reliably identify the inflection point on the profile. Nonetheless,

since the area-derived and perimeter-derived profiles are computed using most

or all of the edge pixels in the object, the noise is reduced inherently in the

process by averaging.

Further noise reduction can be achieved by smoothing the histogram or

perimeter function before profile computation or by smoothing the profile

function itself. The area-derived profile is easier to compute, and it has

a greater noise reduction effect. Random noise in the image usually makes the

spot boundary jagged. While this may have little effect on the area function,

it tends to make the perimeter function erroneously large. Even though the error

can be reduced by boundary smoothing built into the perimeter measurement

routine, the area-derived profile clearly has the advantage of computational

simplicity.

In the study described in [19], nine methods of threshold selection were

compared, including two based on the area-derived profile (maximum magni-

tudes of the first and second derivatives) for measuring the diameter of fluores-

cent microspheres. Generally the method based on maximum magnitude of

second derivative was found to be the most accurate of the nine for spheres of

different sizes and intensities. It also performed well for cells in culture [19, 20].

Other methods tended to underestimate object size.

Nonc i r c u l a r Spo t s For highly noncircular spots, the h-equivalent and

p-equivalent CCS profiles may no longer be acceptable for placing the gray-level

threshold. For objects of arbitrary shape, we can examine the average gradient

around the boundary as a function of the threshold gray level that defines the

boundary [10]. Suppose a noncircular monotone spot is thresholded at gray

levels of I and I þ DI , as shown in Fig. 9.4. At some point a on the outer

boundary, Dr is the perpendicular distance to the inner boundary. Since Dr is
perpendicular to a contour line, it lies in the direction of the gradient vector at
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point a. The magnitude of the gradient vector at point a on the outer boundary

is given by

rIj j ¼ lim
DI!0

DI

Dr
(9:9)

To obtain the average gradient around the boundary, we can simply average

jrI j around the outer boundary. If Dr is small compared to the perimeter, the

area between the two boundaries is approximately

DA ¼ P(I)Dr (9:10)

where Dr is the average perpendicular distance from the outer to the inner

boundary and P(I) is the perimeter function. To obtain the average gradient

around the boundary, we substitute Dr for Dr in Eq. 9.9 and get

rIj j ¼ lim
DI!0

DI

DA
�P(I) ¼ P(I)

H(I)
(9:11)

Hence the average boundary gradient turns out to be the ratio of the perimeter

function to the histogram. This function is not difficult to compute, and it

readily identifies the threshold gray level that maximizes the slope at the bound-

ary. For noisy images, it may be beneficial to smooth the perimeter function and

the histogram before this computation.

Ob je c t s o f Gene ra l Shape Objects of arbitrary shape that are

nonmonotonic and relatively flat on top (without a unique peak) usually

have sides that slope uniformly down toward the background. The point

spread function of microscope optical systems forbids sides of infinite slope

I + ΔI

I + ΔI

I

a b
Δr

ΔI

Δr

r

I

F IGURE 9 .4 Threshold selection for a noncircular object. (After [2].)
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in real images. On the sides of the objects, the contour lines are closed and

generally convex curves, but they may have local concavities. We can assume

that each threshold gray level defines a single closed contour for each object.

Under these conditions we need to consider only the range of gray levels

corresponding to the sloping sides of the object, and the ways to establish

the maximum slope threshold can be summarized as follows:

1. Select T at a local minimum in the histogram. This is the easiest tech-

nique, and it minimizes the sensitivity of the area measurement to small

variations in T.

2. Select T corresponding to the inflection point in the h-equivalent CCS

profile function. This is a simple computation, and it involves considerable

averaging for noise reduction.

3. Select T to maximize the average boundary gradient. This involves com-

puting the perimeter function but requires no approximation regarding

equivalent spot images.

4. Select T corresponding to the inflection point in the p-equivalent CCS

profile function.

For large-scale studies, one may use one of these methods to characterize the

objects under study. Then a shortcut method can be implemented for efficiency.

If a profile analysis shows, for example, that the optimal threshold gray level for

isolated cells in microscope images occurs midway between the peak and the

background gray level, then this simplified technique can be employed for

routine use.

9.2.2 Morpholog i ca l Process ing

After thresholding, a given image is segmented into a binary image of object

(foreground) and background. If this initial segmentation is not satisfactory,

a set of morphological operations or the procedures based on these operations

and their variants can be utilized to improve the segmentation results. The

techniques of morphological processing provide versatile and powerful tools

for image segmentation. The design of particular algorithms involves using one’s

knowledge of what effect each of the primitive operations has on an image and

combining them appropriately to obtain the desired result. For a more thorough

discussion of morphological operations, see Chapter 8.

Many of the binary morphological operations can be implemented as 3 � 3

neighborhood operations. In a binary image, any pixel, together with its

eight neighbors (assuming 8-connectivity), represents 9 bits of information.
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Thus there are only 512 possible configurations for a 3 � 3 neighborhood in

a binary image. Convolution of a binary image with the 3 � 3 kernel

1 2 4

8 16 32

64 128 256

2
4

3
5

generates a 9-bit (512-gray-level) image, in which the gray level uniquely speci-

fies the configuration of the 3 � 3 binary neighborhood centered on that pixel.

Neighborhood operations thus can be implemented with a 512-entry lookup

table with 1-bit output. Whether the operation is implemented in software or in

specially designed hardware, it is often much more efficient to use a lookup table

for fast ‘‘pipeline processing’’ [21–23] than other ways of implementation.

In the general case, morphological image processing operates by sliding

a structuring element over the image, manipulating a square of pixels at a time

similar to convolution (Fig. 9.5). Like the convolution kernel, the structuring

element can be of any size, and it can contain any complement of 1’s and 0’s.

At each position, a specified logical operation is performed between the struc-

turing element and the underlying binary image. The binary result of that logical

operation is stored in the output image at that pixel position. The effect created

depends on the size and content of the structuring element and on the nature of

the logical operation.

Binary erosion is the process of eliminating all the boundary points from

an object, leaving it smaller in area by one pixel all around the perimeter.

By definition, a boundary point is a pixel that is located inside the object but

that has at least one neighbor outside the object. If the object is circular, its

diameter decreases by two pixels with each erosion. If it narrows to less than

three pixels thick at any point, it will become disconnected (into two objects) at

Structuring
Element

Input
Image

Output
Image

Output
Pixel

Row Row

Column
Logical

Operation

Column

F IGURE 9 .5 Implementation of morphological image processing operation. (After [2].)
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that point. Objects no more than two pixels thick in any direction are eliminated.

Binary erosion is useful for removing from a thresholded image objects that are

too small to be of interest.

Conversely, binary dilation is the process of incorporating into the object all

the background points that touch the object, leaving it larger in area by that

amount. If the object is circular, its diameter increases by two pixels with each

dilation. If two objects are separated by less than three pixels at any point, they

will become connected (merged into one object) at that point.

9.2 .2 .1 Ho le F i l l i ng

Dilation-based propagation (also known as reconstruction) can be used,

for example, to fill interior holes of segmented objects in a thresholded image.

Figure 9.6 shows an example of such a procedure. Starting from the binary

segmented image of the object shown in Fig. 9.6a, one inverts this image to create

a mask. Then the border of the image is used as the marker of a propagation

(reconstruction) inward toward the mask. This generates the image shown

in Fig. 9.6b. Inverting this propagated image produces the desired result, which

contains the object with all interior holes filled (Fig. 9.6c).

9.2 .2 .2 Bo rde r -Ob je c t Remova l

Another useful procedure is the removal of border-touching objects. In quanti-

tative microscopy the objects that are connected to the image border are par-

tially obscured and usually not suitable for subsequent analysis. In such cases

one can use the procedure illustrated in Fig. 9.7 to eliminate border-touching

objects. Here the binary thresholded image (in Fig. 9.7a) is used as the mask, and

the border of the image is used as the marker. A propagation from the border

inward toward the mask generates the image shown in Fig. 9.7b. Then comput-

ing the logical exclusive OR (XOR) operation of the propagated image and the

mask image produces the image shown in Fig. 9.7c.

(a) (b) (c)

F IGURE 9 .6 Filling interior holes of segmented objects using binary morphological operations.
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9.2 .2 .3 Separa t i on o f Tou ch ing Ob je c t s

Binary morphological processing can also be used to separate slightly touching

objects that result from the segmentation process. As illustrated in Fig. 9.8, the

procedure works as follows. Starting from a binary segmented image (Fig. 9.8a),

compute a few erosions that are enough to separate the touching objects

(Fig. 9.8b). Invert the resulting image and compute the skeleton (Fig. 9.8c).

This is known as the exoskeleton because it is the skeleton of the background

outside the objects [16]. It is then followed by computing the logical operation

AND of the original binary image and the inverted skeleton image. The final

result is shown in Fig. 9.8d, where the touching objects are separated.

9.2 .2 .4 The Wate r shed A lgo r i t hm

Perhaps the best-known morphological processing technique for image segmen-

tation is thewatershed algorithm. This topic is discussed extensively inChapter 8.

Figure 9.9 shows a 1-D illustration of how this approach works. For this

example we assume the objects are of low gray level, on a high-gray-level

background. Figure 9.9 shows the gray levels along one scan line that cuts

through two objects lying close together. The image is initially thresholded at

a low gray level, one that segments the image into the proper number of objects.

(a) (b) (c)

F IGURE 9 .7 Removing border objects using binary morphological operations.

(a) (b) (c) (d)

F IGURE 9 .8 Illustration of separating touching objects. (a) A binary segmented image. (b) After a few
erosions and inversion. (c) The exoskeleton. (d) Separated objects resulting from applying AND between the
images in (a) and (c).
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Then the threshold is raised gradually, one gray level at a time. The object

boundaries will expand as the threshold increases. When they touch, however,

they are not allowed to merge. Thus these points of first contact become the final

boundaries between adjacent objects. The process is terminated before the

threshold reaches the gray level of the background.

Rather than simply thresholding the image at the optimum gray level, the

watershed approach begins with a threshold that is low enough to isolate the

individual objects properly. Then the threshold is gradually raised to the opti-

mum level, but merging of objects is not allowed. This can solve the problem

posed by objects that are either touching or too close together for global thresh-

olding to work. The final segmentation will be correct if and only if the segmen-

tation at the initial threshold isolates the individual objects correctly. Both the

initial and final threshold gray levels must be well chosen. If the initial threshold

is too low, objects will be oversegmented and low-contrast objects will be missed

at first and then merged with nearby objects as the threshold increases. If

the initial threshold is too high, objects will be merged from the start. The

final threshold value determines how well the final boundaries fit the objects.

The threshold selection methods discussed in this chapter can be useful in setting

these two values.

9.2.3 Region Growing

The fundamental limitation of histogram-based region segmentation methods,

such as thresholding, is that the histograms describe only the distribution of gray

levels without providing any spatial information. Region growing [4, 24–26] is an

approach that exploits spatial context by grouping adjacent pixels or small

regions together into larger regions. Homogeneity is the main criterion for

merging the regions. With this approach, one begins by dividing an image into

many small regions. These initial regions can be small neighborhoods or even

individual pixels known as the seeds. In each region one computes suitably defined

Object 1 Object 2

F IGURE 9 .9 Illustration of the watershed algorithm. (After [2].)
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functions of image property parameters that reflect on its membership in an

object. The parameters that distinguish different objects may include average

gray level, texture, color, etc. Thus the first step assigns to each region a set of

parameters whose values reflect the object to which it belongs. Next, all bound-

aries between adjacent regions are examined. A measure of boundary strength is

computed utilizing the differences of the parameters of the adjacent regions.

A given boundary is strong if the parameters differ significantly on either side of

that boundary, and it is weak if they do not. Strong boundaries are allowed to

stand; weak boundaries are dissolved and the adjacent regions merged. This

process is iterated by alternately recomputing the object membership parameters

for the enlarged regions and once again dissolving weak boundaries, until it

reaches a point where no boundaries are weak enough to be dissolved.

Region-growing methods often produce good segmentation results that

correspond well to the visually apparent edges of objects in the image. Observing

this procedure gives one the impression that regions in the interior of an object

are growing and merging until their boundaries reach the edge of the object.

Although region-growing algorithms are computationally more expensive than

the simpler techniques, the methods are able to utilize several image parameters

directly and simultaneously in determining the final boundary location.

Figure 9.10 shows four stages in the region-growing process for the nucleus

of a squamous epithelial cell on a microscope slide. In this example, gray-level

was the sole region membership parameter. Part (d) shows the final region. Note

that two starting regions eventually merge into one.

F IGURE 9.10 Example of region growing.
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9.2.4 Region Spl i t t ing

Opposite to the ‘‘bottom-up’’ approach of region growing, region splitting is

a ‘‘top-down’’ operation. The basic idea of region splitting is to break the image

into disjoint regions within which the pixels have similar properties. In a sense,

the morphological procedures discussed earlier, such as the exoskeleton and

watershed algorithms, can be viewed as region-splitting methods since they work

to separate touching objects. However, morphological techniques are generally

more suitable for segmenting regularly shaped objects and for those cases where

there are distinct bottleneck connections between touching objects.

Region splitting usually starts with the whole image as a single initial region.

It first examines the region to decide if all pixels contained in it satisfy certain

homogeneity criteria of image properties. Region-splitting methods generally

use homogeneity criteria similar to those that region-growing methods use, and

they differ only in the direction of application. In region splitting, if the criterion

is met, then the region is considered homogeneous and hence left unmodified in

the image. Otherwise the region is split into subregions, and each of the subre-

gions, in turn, is considered for further splitting. This recursive process continues

until no further splitting occurs.

The most commonly used region-splitting algorithms employ a pyramid

image representation known as the quadtree. Regions are square-shaped and

correspond to the nodes of the quadtree. After region splitting, the resulting

segmentation may contain neighboring regions that have identical or similar

image properties. Hence a merging process can be used after each split to

compare adjacent regions and merge them if necessary. Such combined oper-

ations lead to the methods known as region-splitting and -merging algorithms,

which exploit the advantages of both approaches [27]. Figure 9.11 illustrates the

basic idea of these methods.We use F to denote the whole image (Fig. 9.11a) and

suppose that not all the pixels in F meet the chosen criterion of homogeneity.

Thus the region is split as in Fig. 9.11b. We then assume that all pixels within

regions F1, F2, and F3 are homogeneous, respectively, but that those in F4

F1 F2

F3

F1 F2

F3F4
F41 F42

F43 F44

F

(a) (d)(c)(b)

F1 F2

F3
F41 F42

F43

F IGURE 9.11 Example of region splitting and merging. (a)Whole image. (b) First split. (c) Second split.
(d) Merge.
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are not. Hence F4 is split next, as in Fig. 9.11c. Now, if we assume that all pixels

within each resulting region are homogeneous with respect to that region and

that, after comparing all the regions, regions F41 and F42 are found to be

identical or similar. These regions are therefore merged, as in Fig. 9.11d.

9.3 Boundary-Based Segmentat ion

The region-based methods discussed in the previous section aim to segment an

image by partitioning the image into sets of interior and exterior pixels accord-

ing to the similarity of certain image properties. Boundary-based techniques, on

the other hand, seek to extract object boundaries directly, based on identifying

the edge pixels located at the boundaries in the image. In this section we discuss

a number of methods in this category.

9.3.1 Boundar ies and Edges

In the simplest cases, for scenes containing isolated solid objects on a contrasting

background, image segmentation can be readily done by thresholding. To

obtain the boundaries of these objects, one can perform a dilation and an

erosion of the binary segmented image separately. Then subtracting the eroded

image from the dilated one will result in the object boundaries. In practice,

however, input images are less ideal, and the localization of object boundaries

requires more sophisticated gray-level computation.

In general, edges correspond to those points in an image where gray level

changes sharply. Such sharp changes or discontinuities usually occur at object

boundaries. Pixels exhibiting the characteristics of an edge can be detected and

used to establish the boundaries of the objects. One can locate these pixels by

computing the derivatives of the image. This is illustrated for the one-dimensional

case in Fig. 9.12. Theoretically, we can detect edges either by applying a high-

pass frequency filter in the Fourier domain or by convolving the image with an

appropriate derivative operator in the spatial domain. In practice, however,

edge detection is usually performed in the spatial domain, because it is

1
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(a) (b) (c)
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F IGURE 9.12 An edge and its first and second derivatives. (After [2].)
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computationally less expensive and often yields better results. There are many

derivative operators designed for 2-D edge detection, most of which can be

categorized as gradient-based or Laplacian-based methods. The gradient-based

methods detect the edges by looking for the maximum in the first derivative of

the image. The Laplacian-based methods search for zero-crossings in the second

derivative of the image to find edges.

9.3.2 Boundary Track ing Based on
Maximum Gradient Magni tude

Because object or region boundaries are associated with high gradient magni-

tudes, one can track the boundaries based on the information in a gradient

magnitude image. Suppose a gradient magnitude image is computed from

a noise-free input image that contains a single object on a contrasting back-

ground. We can start the boundary tracking on this image from the highest-

gray-level pixel as the first boundary point, since it is certainly on the boundary.

If several points have the maximum gray level, then we choose arbitrarily. Next

we search the 3� 3 neighborhood centered on the first boundary point and take

the neighbor with the maximum gray level as the second boundary point. If two

neighbors have the same maximum gray level, we choose arbitrarily. From this

point on, we begin the iterative process of finding the next boundary point, given

the current and last boundary points. Working in the 3 � 3 neighborhood

centered on the current boundary point, we examine the neighbor diametrically

opposite the last boundary point and the neighbors on either side of it

(Fig. 9.13a). The next boundary point is one of those three that has the highest

gray level. If all three or two adjacent boundary points share the highest gray

(a) (b)

Candidate
boundary

points
Current
direction

q

Previous
boundary

points

Current
boundary

points
Current

boundary
point

Candidates
for next

boundary point
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boundary
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F IGURE 9.13 Illustration of the boundary-tracking process. (After [2].)
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level, then we choose the middle one. If the two nonadjacent points share the

highest gray level, we choose arbitrarily.

With the assumption of a noise-free image of a monotone spot, this algorithm

will trace out themaximum gradient boundary nicely. However, if noise is present,

the tracking is likely to go away from the boundary. Noise effects can be reduced

by smoothing the gradient image before tracking or by implementing a tracking

bug, which works as follows. First a rectangular averagingwindow, usually having

uniformweights, is defined to embody the bug (Fig. 9.13b). The last two or last few

boundary points define the current boundarydirection. The rear portionof thebug

is centered on the current boundary point, with its axis oriented along the current

direction. The bug is subsequently oriented at an angle u to either side, looking for
direction, and the average gradient under the bug is computed for each position.

The next boundary point is then taken as one of the pixels under the front portion

of the bug when it is in the highest average gradient position.

Essentially, the tracking bug is a spatially larger implementation of the

boundary-tracking procedure described earlier. The larger size of the bug

implements smoothing of the gradient image and makes it less susceptible to

noise. It also limits how sharply the boundary can change directions. The size

and shape of the bug may be adjusted for best performance. The ‘‘inertia’’ of the

bug can be increased by reducing the side-looking angle u.
In practice, boundary tracking on gradient magnitude images is useful only

in low-noise cases. The tracking algorithms do not guarantee closed boundaries,

and they can even get lost in cases where the noise level is high.

9.3.3 Boundary F ind ing Based on
Gradient Image Thresho ld ing

If we threshold a gradient image at moderate gray level, we find both object and

background below threshold and most edge points above (Fig. 9.14). Kirsch’s

Threshold

Object

Gradient

x

F IGURE 9 .14 One-dimensional illustration of gradient image thresholding using Kirsch’s algorithm.
(After [2].)
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segmentation method makes use of this phenomenon [28]. In this technique, one

first thresholds the gradient at a moderately low level to identify the object and

the background, which are separated by bands of edge points that are above

threshold. Then the threshold is gradually increased. This causes both the object

and the background to grow. When they touch, they are not allowed to merge;

rather, the points of contact define the boundary. This is essentially an application

of the watershed algorithm to the gradient image.

While this method is computationally more expensive than thresholding, it

tends to produce maximum gradient boundaries, and it avoids many of the

problems of gradient tracking. For multiple object images, the segmentation

is correct if and only if it is done accurately by the initial thresholding

step. Smoothing the gradient image beforehand may help produce smoother

boundaries.

9.3.4 Boundary F ind ing Based on
Laplac ian Image Thresho ld ing

TheLaplacian is a scalar second-derivative operator for 2-D images. It is defined as

r2I(x, y) ¼ @2

@x2
I(x, y)þ @2

@y2
I(x, y) (9:12)

and can be implemented digitally by any of the following convolution kernels:
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(9:13)

The Laplacian has the advantage that it is an isotropic measure of the second

derivative. The edge magnitude is independent of the orientation and can be

obtained by convolving the image with only one kernel. As a second-derivative

operator, the Laplacian produces an abrupt zero-crossing at an edge that is easy

to find in a noise-free image. Thresholding a Laplacian filtered image at zero

gray level may produce closed connected contours at the boundaries of objects.

The presence of noise, however, imposes a requirement for a smoothing oper-

ation prior to using the Laplacian. Usually, a Gaussian filter is chosen for this

purpose. Since convolution is associative, we can combine the Gaussian and

Laplacian into a single Laplacian of Gaussian (LoG) kernel [29, 30]:

LoG(x, y) ¼ �r2 1

2ps2
e
�x2þy2

2s2 ¼ 1

ps4
1� x2 þ y2

2s2

� �
e
�x2þy2

2s2 (9:14)
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This LoG filter is also known as the Mexican hat filter, since it has the shape of

a positive peak in a negative dish. It is separable in the x and y directions and

thus can be implemented efficiently. The parameter s controls the width of the

peak, which is related to the amount of smoothing. The edge positions can

be determined by the zero-crossings in the LoG-filtered image.

9.3.5 Boundary F ind ing Based on Edge
Detec t ion and L ink ing

As discussed earlier, edges are closely associated with the boundaries of objects

in an image. Pixels exhibiting the required characteristics are known as edge

points. Edge points can be detected and used to establish the boundaries. We can

examine each of these pixels and its immediate neighborhood to determine if it

is, in fact, on the boundary of an object. Due to noise and shading effects, edge

points seldom form closed connected boundaries that are required for image

segmentation. Thus a linking process is usually required to fill in the gaps and

associate nearby edge points so as to create a closed connected boundary.

9.3 .5 .1 Edge De te c t i on

The goal of edge detection is to mark the pixels in an image at which the gray

level changes sharply. The two parameters of interest are the slope and direction

of the transition. An image in which gray level reflects how strongly each pixel

meets the requirements of an edge point is called an edge map, whereas an image

that encodes the direction of the edge instead of the magnitude is known as

a directional edge map. An example pair of edge map and directional edge map is

the magnitude and direction of the gradient vector of an image. Edge detection

operators examine each pixel neighborhood and quantify the slope (and often

the direction as well) of the gray-level transition. Most of these operators

perform a 2-D spatial gradient measurement on an image I(x, y) using convo-

lution with a pair of horizontal and vertical derivative kernels, gx and gy. Each

pixel in the image is convolved with both kernels, one estimating the gradient in

the x direction and the other in the y direction. These kernels are designed to

respond maximally to edges running horizontally and vertically relative to the

pixel grid. The output of these two convolutions can be combined to form the

estimated absolute magnitude of the gradient Gj j and its orientation u at each

pixel. This gradient magnitude is computed by taking the square root of the sum

of the squares of the output from the two orthogonal kernels; that is,

Gj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
(9:15)
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where Gx and Gy are the output of the estimated derivative function in the x and

y directions, respectively,

Gx ¼ I(x:y) � gx, Gy ¼ I(x:y) � gy (9:16)

Likewise, the gradient direction can be computed from the ratio of Gy and Gx by

u ¼ arctan
Gy

Gx

� �
(9:17)

In practical implementations, an approximation to the gradient magnitude is

often used instead, for faster computation. It is given by

Gj j ¼ Gxj j þ Gy

�� �� (9:18)

In the following, we discuss several sets of widely used derivative-based

kernels for edge detection.

The Robe r t s Edge De te c to r The Roberts operator represents one

of the earliest methods of finding edges in an image using small convolution

kernels to approximate the first derivative of the image [31]. It uses the following

2 � 2 derivative kernels:

gx ¼ 1 0

0 �1

� �
, gy ¼ 0 1

�1 0

� �
(9:19)

The Sobe l Edge De te c to r The Sobel operator is characterized by

the following pair of 3 � 3 convolution kernels [32]:

gx ¼
�1 0 1

�2 0 2

�1 0 1

2
4

3
5, gy ¼

�1 �2 �1

0 0 0

1 2 1

2
4

3
5 (9:20)

Compared with the Roberts operator, the Sobel operator is a little slower to

compute, but its larger convolution kernels smooth the image to a greater

extent, making it less sensitive to noise. It also generally produces considerably

higher output values for similar edges [32].
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The P rew i t t Edge De te c to r The Prewitt operator is related to the

Sobel operator and uses slightly different kernels [33]:

gx ¼
1 0 �1

1 0 �1

1 0 �1

2
4

3
5, gy ¼

�1 �1 �1

0 0 0

1 1 1

2
4

3
5 (9:21)

This operator produces results similar to those of the Sobel operator, but it is

not as isotropic in its response.

The Canny Edge De te c to r Generally, edge detection based on

the aforementioned derivative-based operators is sensitive to noise. This

is because computing the derivatives in the spatial domain corresponds to

high-pass filtering in the frequency domain, thereby accentuating the noise.

Furthermore, edge points determined by a simple thresholding of the edge

map (e.g., the gradient magnitude image) is error-prone, since it assumes all

the pixels above the threshold are on edges. When the threshold is low, more

edge points will be detected, and the results become increasingly susceptible to

noise. On the other hand, when the threshold is high, subtle edge points may be

missed. These problems are addressed by the Canny edge detector, which uses

an alternative way to look for and track local maxima in the edge map [34].

The Canny operator is a multistage edge-detection algorithm. The image is

first smoothed by convolving with a Gaussian kernel. Then a first-derivative

operator (usually the Sobel operator) is applied to the smoothed image to

obtain the spatial gradient measurements, and the pixels with gradient magni-

tudes that form local maxima in the gradient direction are determined. Because

local gradient maxima produce ridges in the edge map, the algorithm then

performs the so-called nonmaximum suppression by tracking along the top of

these ridges and setting to zero all pixels that are not on the ridge top. The

tracking process uses a dual-threshold mechanism, known as thresholding with

hysteresis, to determine valid edge points and eliminate noise. The process

starts at a point on a ridge higher than the upper threshold. Tracking then

proceeds in both directions out from that point until the point on the ridge falls

below the lower threshold. The underlying assumption is that important edges

are along continuous paths in the image. The dual-threshold mechanism allows

one to follow a faint section of a given edge and to discard those noisy pixels

that do not form paths but nonetheless produce large gradient magnitudes.

The result is a binary image where each pixel is labeled as either an edge point

or a nonedge point.
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9.3 .5 .2 Edge L ink ing and Boundar y
Re f i nemen t

An edgemap characterizes the objects in an imagewith edge points. If the edges are

strong enough and the noise level is low, one can threshold an edge map and thin

the resulting binary image down to single-pixel-wide closed connected boundaries.

Under less than ideal conditions, however, the edge points seldom form closed

connected boundaries required for image segmentation. Hence another step is

usually required to complete the delineation of object boundaries before object

extraction can be performed. Edge linking is the process of associating nearby

edge points so as to create a closed connected boundary. This process fills in the

gaps in the edge map that are often caused by noise and shading in the image.

Generally, edge linking for small gaps can be accomplished by searching

a neighborhood around an endpoint for other endpoints and then filling in

boundary pixels as required to connect them. Typically this neighborhood is

a square region of 5 � 5 or larger. In complex scenes with dense edge points,

however, this can oversegment the image. To avoid oversegmentation, one can

require that the two endpoints agree in gradient magnitude and orientation to

within specified tolerances before they are allowed to be connected.

Heur i s t i c Sea r ch For those boundary gaps in an edge map that are too

wide to fill accurately with a straight line, one can establish, as a quality measure,

a function that can be computed for every connected path between the two

endpoints, which we denote as A and B. This edge quality function may, for

example, be defined to be the average of the gradient magnitudes of the points,

minus some measure of their average disagreement in orientation angles [35, 36].

The search starts by evaluating the neighbors of endpoint A as the candidates

for taking the first step toward B. Normally only the neighbors that lie in the

general direction of endpoint B would be considered. The one that maximizes

the edge quality function from A to that point is selected. Then it becomes the

starting point for the next iteration. When the linking finally reaches B, the edge

quality function over the newly created path is compared to a threshold. If the

newly created edge is sufficiently strong, it is accepted. Otherwise it is discarded.

Heuristic search techniquesusuallyperformwell in relatively simple images,but

they do not necessarily converge to the globally optimal path between endpoints.

They become computationally expensive if the gaps to be traversed are numerous

and wide, in which case complicated edge quality functions must be used.

Cu r ve F i t t i ng So far, we have discussed edge linking using searching or

tracking methods. All of these require the existence of a continuous path of edge

points. If the edge points are so sparse that few connected or even nearby edge
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points are available, it might be desirable to fit a piecewise linear or higher-order

spline curve through them to establish a boundary suitable for object extraction.

For example, one can use a piecewise linear method called iterative endpoint

fitting [37] for this purpose. Suppose there is a group of edge points lying

scattered between two particular edge points A and B and that a subset of these

are to be selected to form the nodes of a piecewise linear path from A to B.

We start by establishing a straight line from A to B, and we continue by

computing the perpendicular distance from that line to each of the remaining

edge points. The furthermost one becomes the next node on the path, which now

has two branches. This process is repeated on each new branch of the path until

no remaining edge point lies more than a specified distance away from the nearest

branch. When this type of fitting is done all around the object, it produces

a polygonal approximation to the boundary.

Hough Trans fo rm The Hough transform [38, 39] can detect shapes and

establish object boundaries in an image by recognizing evidence in a transformed

parameter space. Because the transform requires the data points to be specified

in some parametric form, the technique is most commonly used to detect curves

of regular shape, such as lines, circles, and ellipses. It is particularly useful when

the input image is noisy and the data points are sparse.

Given an equation for a parameterized 2-D curve

f (x, y, t1, . . . , tn) ¼ 0 where n $ 2 (9:22)

which defines the curve in the (x, y) plane, and t1, . . . , tn are the parameters, one

can first select a candidate set of points from the image, such as those points that

have high probability of being located on object boundaries. In the n-dimensional

parameter space, a histogram is constructed to quantify the strength of evidence

with respect to different parameter values. Each edge point that satisfies Eq. 9.22

is transformed into a curve in the parameter space, and the histogram bins that

lie along this curve are incremented. In this way, each edge point in the image

votes for the parameterized curve it fits best, and the histogram distribution

characterizes the relative strength of evidence that the curves with parameter

values t1, . . . , tn are detected in the image.

As an example, a straight line y ¼ kxþ b can be expressed in polar

coordinates as [37]

r ¼ x cos(u)þ y sin(u) (9:23)

where r, u defines a vector from the origin to the nearest point on that line

(Fig. 9.15a). This vector will be perpendicular to the line. One can consider

a two-dimensional parameter space defined by r and u. Any line in the x, y plane
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corresponds to a point in the parameter space. Thus the Hough transform of

a straight line in image space is a point in the r, u space.

Now consider a particular point x1, y1 in the x, y plane. There are many

straight lines that pass through the point x1, y1, and each of these corresponds to

a point in the r, u space. These points, however, must satisfy Eq. 9.23 with x1 and

y1 as constants. Thus the locus of all such lines in the x, y space is a sinusoid in the

parameter space, and any point in the x, y space (Fig. 9.15b) corresponds to

a sinusoidal curve in the r, u space (Fig. 9.15c).
If a set of edge points xi, yi lie on a straight line with parameters r0, u0, then

each edge point corresponds to a curve in the r, u space. However, all these

curves must intersect at the point r0, u0, since this is a line they all have in

common (Fig. 9.15c).

Thus, to find the straight-line segment on which the edge points fall, one can

set up a two-dimensional histogram in the r, u space. For each edge point xi, yi,

all the histogram bins in the r, u space that lie on the sinusoid curve for that

point are incremented. When this is done for all the edge points, the bin contain-

ing r0, u0 will be a local maximum. One can then search the histogram in the r, u
space for local maxima and obtain the parameters of linear boundary segments.

Similarly, one can detect and establish boundaries of circular objects using

the Hough transform. In this case the parametric equation is

(x� a)2 þ (y� b)2 ¼ r2 (9:24)

where a and b are the coordinates of the center of the circle and r is its radius.

Notice that the computational complexity begins to increase, because there are

now three variables in the parameter space, and hence a 3-D histogram must

now be constructed. In general, the computational complexity of the transform

increases substantially with the number of parameters required to represent the

curve. Hence, the Hough transform described here is practical only for curves
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F IGURE 9.15 Illustration of the Hough transform. (a) A straight line and its polar coordinate. (b) Sample
edge points in x, y space. (c) The sinusoids (corresponding to the edge points) in r, u space. (After [2].)
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for which simple analytic parameterizations exist. Nonetheless, the advantages

of the technique are the tolerance of gaps in data points and relatively robust

performance when image noise is present.

Ac t i ve Con tou r s Because the shape of many natural objects cannot be

described accurately by rigid graph representations, such as polygons and

circles, edge linking based on the techniques discussed so far often results

in only coarsely delineated object boundaries. The active contour, or snake,

is a boundary refinement technique [40]. The active-contour model allows

a simultaneous solution for both the segmentation and tracking problems and

has been applied successfully in a number of ways [41, 42]. The model uses a set

of connected points (called a snake), which can move around so as to minimize

an energy function formulated for the problem at hand. The curve formed by the

connected points delineates the active contour. Properties of the image (e.g.,

gray level, gradient) contribute to the energy of the snake, as do constraints on

the continuity and curvature of the contour itself. In this way, the snake contour

can react to the image and move in a continuous manner, ensuring continuity

and smoothness as it locates the desired object boundary. Furthermore, the

iterative nature of the algorithm allows active adjustment of the weights

employed in the energy function to affect the dynamic behavior of the active

contour. Processing time is consumedmostly by the first iteration, and subsequent

iterations require little additional computation time.

A number of different implementations of active contour have been de-

scribed in the literature. The first seminal approach was developed using vari-

ational calculus and spline models [40]. Other approaches include dynamic

programming [43], neural networks [44], and ‘‘greedy’’ algorithms [45]. There

are various advantages and disadvantages to each approach. Since dynamic

programming and neural network approaches are known to be computationally

intensive, variational calculus and greedy algorithms are often preferred. Their

main advantages are relative algorithmic simplicity and computational effi-

ciency. The main disadvantage is the extremely local nature of the decision

criteria used.

The crucial part of active-contour methodology is the formulation of the

energy minimization function. Following the notation in [40], given a parametric

representation of the snake, v(s) ¼ (x(s), y(s)), where s 2 0, 1½ �, the energy function
can be written as

E�
snake ¼

ð1
0

Esnake(v(s))½ �ds

¼
ð1
0

Eint(v(s))þ Eimage(v(s))þ Econst(v(s))
	 


ds

(9:25)
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This is simply an integration of energy along the length of the contour, which

in the discrete greedy model would correspond to summing the energy of all

the points on the contour after one iteration of the snake. In the greedy

implementation, this integration is not actually performed. The greedy nature

of the algorithm assumes that local greedy decisions at each contour point

automatically result in a tendency toward a global minimum of this function.

The energy terms in Eq. 9.25 correspond, respectively, to (1) internal forces

between points of the contour (analogous to tension and rigidity), (2) image

forces such as gradient magnitude and gray-level magnitude, and (3) external

constraints. Note that each term in the energy function, E, once computed, must

be normalized and weighted in the following manner

E ¼ v� (min�«)

(max�min)

� �
(9:26)

where « is the energy term, v is a contribution weight, and min and max are the

minimum and maximum energy computations, respectively, in the search neigh-

borhood of a contour point. The internal energy is modeled using two terms,

a continuity term (tension) and a curvature term (rigidity); that is,

Eint ¼ Econt þ Ecurv (9:27)

Often, the continuity term is made proportional to the distance between the

point being examined and the previous point on the contour. This, however,

causes the snake either to contract or to expand, depending on the sign of the

contribution weight. Because the snake boundary is expected to remain close to

the original initialized boundary, the continuity term will be made proportional

to the difference between that distance and the average interpoint distance for

the snake; i.e.,

«cont ¼ �d � kvi � vi�1k (9:28)

where vi denotes the coordinates of the ith contour point and �d is the average

interpoint distance, calculated at the end of each snake iteration. This will not

only encourage equal spacing of points but cause the snake to contract if the

interpoint distance is larger than the average and expand if it is smaller.

The energy associated with the curvature at a point is approximated by taking

the square of the magnitude of the difference between two adjacent unit tangent

vectors,

«curv ¼ u*iþ1

ku*iþ1k �
u*i

ku*ik
����

����
����

����
2

(9:29)
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where u*i ¼ vi � vi�1 and u
*

i

ku* ik is a discrete approximation to the unit tangent

at ui. This gives a quick and reasonable estimate of local curvature and, in

general, has the effect of causing the contour to straighten, thus favoring

smoother outlines. The contributing measurement for the image energy term

can be, for example, the result of a Sobel gradient operator; that is,

«image ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx

2 þ Gy
2

q
(9:30)

Note that the normalization causes the snake to be affected by relative local

gradients, regardless of the strength of the gradient. This may be especially

effective in localizing the characteristically low contrast cell boundaries that

are often found in microscope images.

The term Econst corresponds to external constraints that can be modeled with

prior knowledge, such as the shape of the objects. For example, one can

investigate the use of shape constraints to aid in the segmentation of cells with

indistinct overlapping boundaries. A shape bias contributing to the energy of the

snake can act as a guiding force to prevent the boundary from taking on an

impossible shape.

Figure 9.16 shows an example of applying the active contour method to the

delineation of cell boundary in a fluorescence microscope image. After 15

iterations of energy function minimization, the improvement in the accuracy

of boundary delineation is clearly noticeable.

9.3.6 Encoding Segmented Images

After image segmentation, sometimes it is not necessary to extract the objects

from the original image if only gross measurements (e.g., area) of each object are

required. In other cases, however, it may be desirable to compose a new image

F IGURE 9.16 (a) A cell image with the boundary delineated after initial segmentation. (b) The same cell
image with improved boundary delineation after 15 iterations of active contour computation.
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showing the objects extracted or to display each object in a separate image. One

may also wish to perform further measurement or other processing on each of

the individual objects. Hence, encoding a segmented image in a convenient

format facilitates subsequent measurement and processing of the individual

objects. Usually, each object in an image is assigned a sequence number as it is

found. This object number can be used to identify and track the individual

objects in the image.

9.3 .6 .1 Ob je c t Labe l Map

From the segmented regions in an image, one can generate a separate image of

size equal to the original, to encode object membership on a pixel-by-pixel basis.

In the object label map, the gray level of each pixel encodes the sequence number

of the object to which the corresponding pixel in the original image belongs. For

instance, all pixels belonging to the 11th object in the image will have a gray level

of 11 in the label map.

The object label map is not a particularly compact approach to storing

segmentation information because it requires an additional full-size image to

encode object membership, even when the image contains only one small object.

However, images of this type of can be compressed quite significantly, since they

normally contain large areas of constant gray level. If only object size and shape

are of interest for subsequent analysis, the original image may be discarded after

segmentation. Further data reduction is possible when there is only one object

or if the objects need not be differentiated. In this case the label map becomes

a binary image.

In some cases, the computation requirements of an image segmentation

algorithm dictate that the process be carried out in several passes over the

image data. A binary or multilevel label map is often useful as an intermediate

data representation in a multiple-pass image segmentation procedure.

9.3 .6 .2 Boundar y Cha in Code

The boundary chain code (BCC) is another well-known technique often used

to encode the results of image segmentation. Compared with the object label

map, it is a more compact way to store the image segmentation information

[46]. With such an approach, only the boundary is required to define an object,

and therefore it is not necessary to store the location of interior pixels.

Furthermore, the boundary chain code exploits the fact that boundaries are

connected paths; hence, highly efficient data encoding, with little redundancy,

becomes possible.

The chain code starts by specifying an arbitrarily selected starting point with

coordinate (x, y) located on the boundary of the object. This point has eight

neighbors. At least one of these must also be a boundary point. The boundary
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chain code specifies the direction in which a step must be taken to go from the

present boundary point to the next. Figure 9.17 shows the eight directions of

the neighboring pixels. The eight possible directions can be represented by three

bits. Thus the boundary chain code consists of the coordinates of the starting

point, followed by a sequence of direction codes that specify the path around

the boundary.

With the boundary chain code, encoding the segmentation of an object

requires only one (x, y) coordinate and then three bits for each boundary

point. This is considerably less data than that required for the object label

map. When a complex scene is segmented, the program can encode each object

boundary as a single record consisting of the object number, the perimeter

(number of boundary points), and the chain code. Several size and shape

features can also be computed directly from the chain code. If needed, even

the object label map can be constructed from the boundary chain code by filling

the enclosed region with the object number using a region-filling algorithm [47].

Generation of the boundary chain code usually requires random access to

the input image because the boundary must be tracked through the image. The

operation is a natural adjunct to the boundary-tracking and -refinement pro-

cedures of image segmentation. When further processing of individual object

images is required, the chain code becomes less useful, since the interior points of

objects must be accessed and computed.

9.4 Summary of Important Points

1. Image segmentation is the process that partitions an image into disjoint

regions consisting of connected sets of pixels. These regions correspond

to either the background or the objects in the image.

2. Region-based and boundary-based methods are different but comple-

mentary approaches to image segmentation.

001

100

000
111

011101

010110

F IGURE 9.17 Boundary direction codes.
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3. Region-based techniques partition the image into sets of interior and

exterior pixels according to similarity of image properties.

4. Boundary-based techniques establish object boundaries by detecting

edge pixels that are associated with differences in image properties.

5. Gray-level thresholding is a simple region-based segmentation technique.

6. Unless the background gray level and object contrast are relatively

constant, it is usually necessary to vary the threshold within the image.

This is adaptive thresholding.

7. The selection of the threshold value is crucial and can significantly affect

the boundaries and areas of segmented objects.

8. For images of simple objects on a contrasting background, placing the

threshold at the dip of the bimodal histogram minimizes the sensitivity

of object area measurement to threshold variation.

9. Both the profile function of a concentric circular spot and the average

gradient around a contour line can be derived from the histogram or

from the perimeter function of its image.

10. Morphological processing can improve the initial segmentation results

from thresholding by using procedures such as separation of touching

objects and filling of internal holes.

11. Unlike thresholding, region growing and splitting techniques exploit the

spatial context in complex scenes.

12. Region growing combines adjacent regions into larger regions, within

which the pixels have similar properties.

13. Region splitting partitions larger regions into smaller adjacent regions,

within which the pixels have different properties.

14. Edges correspond to the image points where gray level changes

abruptly, and they usually occur on object boundaries. Edge points

can be detected and used to establish the boundaries of objects.

15. Gradient-based methods detect edges by looking for the pixels with

large gradient magnitude.

16. Laplacian-based methods search for zero-crossings in the second

derivative of the image to find edges.

17. Object boundaries can be established by thresholding either the gradient

image or the Laplacian image if edges are strong and the noise level is low.
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18. The detected edge points seldom form closed connected boundaries

that are required for image segmentation. Therefore edge linking and

boundary refinement are usually performed to complete the object

boundary delineation process.

19. The Hough transform can fit a parameterized boundary function to

a scattered set of edge points.

20. Active contours can be used to refine boundaries that have been found

by other methods.

21. The result of image segmentation can be encoded and stored conveni-

ently either as an object label map or as a boundary chain code.

References

1. E Davies, Machine Vision, Academic Press, 1990.

2. KR Castleman, Digital Image Processing, Prentice-Hall, 1996.

3. R Gonzales and R Woods, Digital Image Processing, Addison-Wesley, 1992.

4. AK Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

5. A Rosenfield, ‘‘Connectivity in Digital Pictures,’’ Journal of the ACM, 17:146–160, 1970.

6. JM Prats-Montalbán, A Ferrer, ‘‘Integration of Colour and Textural Information in

Multivariate Image Analysis: Defect Detection and Classification Issues,’’ Journal of

Chemometrics, 21(1):10–23, 2007.

7. E Bala and A Ertuzun, ‘‘A Multivariate Thresholding Technique for Image Denoising

Using Multiwavelets,’’ EURASIP Journal on Applied Signal Processing, 8:1205–1211,

2005.

8. JC Noordam, WHAM van den Broek, and LMC Buydens, ‘‘Multivariate Image Seg-

mentation with Cluster Size Insensitive Fuzzy C-means,’’ Chemometrics and Intelligent

Laboratory Systems, 64(1):65–78, 2002.

9. F Liu et al., ‘‘Adaptive Thresholding Based on Variational Background,’’ Electronics

Letters, 38(18):1017–1018, 2002.

10. RJ Wall, ‘‘The Gray Level Histogram for Threshold Boundary Determination in Image

Processing to the Scene Segmentation Problem in Human Chromosome Analysis,’’ PhD

thesis, University of California at Los Angeles, 1974.

11. KR Castleman and R. Wall, ‘‘Automatic Systems for Chromosome Identification,’’ in

Nobel Symposium 23—Chromosome Identification, T Caspersson, ed., Academic Press,

1973.

12. KR Castleman and J Melnyk, ‘‘An Automated System for Chromosome Analysis: Final

Report,’’ Document No. 5040-30, Jet Propulsion Laboratory, Pasadena, CA, 1976.

13. PK Sahoo, S Soltani, and KC Wong, ‘‘A Survey of Thresholding Techniques,’’ Com-

puter Vision Graphics and Image Processing, 41:233–260, 1988.

9 Image Segmentation

192



14. CA Glasbey, ‘‘An analysis of Histogram-Based Thresholding Operations,’’ Computer

Graphics and Image Processing, 55:532–537, 1993.

15. TW Ridler and S Calvard, ‘‘Picture Thresholding Using an Iterative Selection Method,’’

IEEE Transactions on Systems, Man, and Cybernetics, 8(8):630–632, 1978.

16. IT Young, JJ Gerbrands, and LJ van Vliet, eds., Image Processing Fundamentals, online

book at http://www.qi.tnw.tudelft.nl/Courses/FIP/noframes/fip.html.

17. GW Zack, WE Rogers, and SA Latt, ‘‘Automatic Measurement of Sister Chromatid

Exchange Frequency,’’ Journal of Histochemistry & CytoChemistry, 25(7):741–753,

1977.

18. J Weszka, ‘‘A Survey of Threshold Selection Techniques,’’Computer Graphics and Image

Processing, 7:259–265, 1978.

19. ME Sieracki, SE Reichenbach, and KL Webb, ‘‘Evaluation of Automated Threshold

Selection Methods for Accurately Sizing Microscopic Fluorescent Cells by Image An-

alysis,’’ Applied and Environmental Microbiology, 55(11):2762–2772, 1989.

20. CL Viles and ME Sieracki, ‘‘Measurement of Marine Picoplankton Cell Size by Using

a Cooled, Charge-Coupled Device Camera with Image-Analyzed Fluorescence Micro-

scopy,’’ Applied and Environmental Microbiology, 58(2):584–592, 1992.

21. SR Sternberg, ‘‘Parallel Architectures for Image Processing,’’ Proceedings of the 3rd

International IEEE COMPSAC, 1981.

22. SR Sternberg, ‘‘Biomedical Image Processing,’’ IEEE Computer, 16(1):22–34, 1983.

23. RM Lougheed and DL McCubbrey, ‘‘The Cytocomputer: A Practical Pipelined Image

Processor,’’ Proceedings of the 7th Annual International Symposium on Computer Archi-

tecture, 1980.

24. Y Tuduki et al., ‘‘Automated Seeded Region Growing Algorithm for Extraction of

Cerebral Blood Vessels from Magnetic Resonance Angiographic Data,’’ Proceedings

of the International Conference of the IEEE Engineering in Medicine and Biology Society,

3:1756–1759, 2000.

25. T Pavlidis and YT Liow, ‘‘Integrating Region Growing and Edge Detection,’’ IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(3):225–233, 1990.

26. S Zucker, ‘‘Region Growing: Childhood and Adolescence,’’ Computer Graphics and

Image Processing, 5:382–399, 1976.

27. S Chen, W Lin, and C Chen, ‘‘Split-and-Merge Image Segmentation Based on Localized

Feature Analysis and Statistical Tests,’’ Computer Graphics and Image Processing, 53(5):

457–475, 1991.

28. RA Kirsch, ‘‘Computer Determination of the Constituent Structure of Biological

Images,’’ Computers in Biomedical Research, 4:315–328, 1971.

29. D Marr and E Hildreth, ‘‘Theory of Edge Detection,’’ Proceedings of the Royal Society

of London, B 207:187–217, 1980.

30. D Marr, Vision, Freeman, 1982.

31. JK Aggarwal, RO Duda, and A Rosenfeld, eds., Computer Methods in Image Analysis,

IEEE Press, 1977.

References

193



32. LS Davis, ‘‘A Survey of Edge Detection Techniques,’’ Computer Graphics and Image

Processing, 4:248–270, 1975.

33. J Prewitt, ‘‘Object Enhancement and Extraction,’’ in Picture Processing and Psychopic-

torics, B. Lipkin and A., Rosenfeld, eds., Academic Press, 1970.

34. J Canny, ‘‘A Computational Approach to Edge Detection,’’ IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8:679–714, 1986.

35. R Nevatia, ‘‘Locating Object Boundaries in Textured Environments,’’ IEEE Transac-

tions on Computers, 25:1170–1180, 1976.

36. JM Lester et al., ‘‘Two Graph Searching Techniques for Boundary Finding in White

Blood Cell Images,’’ Computers in Biology and Medicine, 8:293–308, 1978.

37. RO Duda, PE Hart and D Stork, Pattern Classification, Wiley, 2001.

38. D Ballard and C Brown, Computer Vision, Prentice-Hall, 1982.

39. D Ballard, ‘‘Generalizing the Hough Transform to Detect Arbitrary Shapes,’’ Pattern

Recognition, 13(2):111–122, 1981.

40. M Kass, AWitkin, and D Terzopoulos, ‘‘Snakes: Active Contour Models,’’ Proceedings

of the First International Conference on Computer Vision, pp. 259–269, 1987.

41. P Fua and AJ Hanson, ‘‘An Optimization Framework of Feature Extraction: Applica-

tions to Semiautomated and Automated Feature Extraction,’’ Proceedings of the DARPA

Image Understanding Workshop, pp. 676–694, 1989.

42. C Garbay, ‘‘Image Structure Representation and Processing: A Discussion of Some

Segmentation Methods in Cytology,’’ IEEE Transactions on Pattern Analysis and

Machine Intelligence, 8:140–146, 1986.

43. AAmini, S Tehrani, and TEWeymouth, ‘‘Using Dynamic Programming forMinimizing

the Energy of Active Contours in the Presence of Hard Constraints,’’ Proceedings of the

Second International Conference on Computer Vision, pp. 95–99, 1988.

44. CT Tsai, YN Sun, and PC Chung, ‘‘Minimizing the Energy of Active Contour Model

Using a Hopfield Network,’’ IEEE Proceedings, 140(6):297–303, 1993.

45. DJ Williams andM Shah, ‘‘A Fast Algroithm for Active Contours,’’ Computer Graphics

and Image Processing, 55(1):14–26, 1992.

46. H Freeman, ‘‘Boundary Encoding and Processing,’’ in Picture Processing and Psycho-

pictorics, B. Lipkin and A. Rosenfeld, eds., Academic Press, 1970.

47. T Pavlidis, ‘‘Filling Algorithms for Raster Graphics,’’ Computer Graphics and Image

Processing 10:126–141, 1979.

9 Image Segmentation

194



10
Object Measurement

Fatima A. Merchant, Shishir K. Shah, and Kenneth R. Castleman

10.1 Introduct ion

Providing objectivity for any image processing task requires quantitative meas-

urement of an area of interest extracted from an image or the image as a whole.

In Chapter 9 we discussed methods for segmenting or extracting objects from an

image. In this chapter we discuss the problemofmeasuring each of the segmented

objects so that a quantitative measurement can be associated with the extracted

image region. Measuring object properties has been a subject of study since

the early 1970s and is considered to be the culmination of considerable

development [1–6].

The basic objectives of object measurement are application dependent. It can

be used simply to provide a measure of the object morphology or structure by

defining its properties in terms of area, perimeter, intensity, color, shape, etc.

It can also be used to discriminate between objects by measuring and comparing

their properties. In this chapter we introduce the basic concepts of object

measurement. For a more detailed treatment of the subject matter, the reader

should consult the broader image analysis literature [7–11].

An image that has undergone segmentation and perhaps morphological

postprocessing will clearly define objects from which measurements can be

computed. The extracted objects can be treated either as binary objects or as

gray-level objects. In either case, the object of interest is presented with an object

label map (Chapter 9). Binary objects are typically represented such that pixels

belonging to the object take a value of ‘‘1,’’ and the remaining pixels are ‘‘0.’’

Microscope Image Processing

Copyright � 2008, Elsevier Inc. All rights reserved.

ISBN: 978-0-12-372578-3



Object measurements can be broadly classified as (1) geometric measures,

(2) ones based on the histogram of the object image, and (3) those based on the

intensity of the object. Geometric measures, including those that quantify object

structure, can be computed for both binary and grayscale objects. In contrast,

histogram- and intensity-based measures are applicable to grayscale objects.

Another category of measures, which are distance based, can be used for

computing the distance between objects or between two or more components

of objects. In the rest of this chapter we discuss some commonmeasurements for

both binary and gray-level objects.

10.2 Measures for Binary Objects

A binary object can be described in terms of its size, shape, or distance to other

objects. Some common measures are presented in this section.

10.2.1 Size Measures

The size of an object can be defined in terms of its area and its perimeter. Area is

a convenient measure of overall size. Perimeter is particularly useful for dis-

criminating between objects with simple shapes and those with complex shapes.

Compared to irregular objects that have complex structures, a regular object

with a simple shape requires less perimeter to enclose its area. Both area and

perimeter measurements can be performed during the extraction of an object

from a segmented image.

10.2 .1 .1 Area

Consider the function In i, jð Þ described for an object label map of an N � N

image (i.e., the result of segmentation as described in Chapter 9):

In i, jð Þ ¼ 1 if I i, jð Þ ¼ nth object number

0 otherwise

� �
(10:1)

The area in pixels of the nth object is then given by

An ¼
XN�1

i¼0

XN�1

j¼0

In i, jð Þ (10:2)

10.2 .1 .2 Pe r ime te r

The simplest measure of perimeter is obtained by counting the number of bound-

ary pixels that belong to an object. This can be obtained by counting the number
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of pixels that take a value of ‘‘1’’ and that have at least one neighboring pixel with

a valueof ‘‘0.’’ The neighborhoodof a pixel is normally defined in terms of either its

4-connectivity or 8-connectivity (Chapter 8). Due to the discrete spatial arrange-

ment of pixels, counting boundary pixels is normally biased, since small changes in

curvature of the boundarywill result in a number of 458 or 908 turns. This produces
an exaggerated estimate of the perimeter. Unbiased estimators of perimeter based

on boundary pixel count using either 4-connectivity or 8-connectivity have been

formulated assuming a uniform distribution of orientation changes that occur

in the boundary [7, 12]. This is given as [12]

N4

1:273
and

N8

0:900
(10:3)

where N4 and N8 are the boundary pixel counts using 4-connectivity and

8-connectivity, respectively.

Another concern in computing the perimeter is differentiating between

the internal and external perimeter of an object. It is generally understood that

the true vertex point of a boundary pixel lies at the center of that pixel. Using the

location of the boundary pixels for measuring the perimeter yields the internal

perimeter; using the boundary of the background pixels surrounding the object

yields the external perimeter. A simple solution to this is to add p to the internal

perimeter measurements [12]. More complicated methods resulting in better

estimates of perimeter measurement have been developed as well [13–15].

10.2 .1 .3 Area and Pe r ime te r o f a Po l ygon

Without loss of generality, we can assume any object to be a polygon.

Mathematically, there is a simple way to compute both the area and the perimeter

of a polygon in a single traversal of its boundary [11]. The area of a polygon can

be measured as the sum of areas of all triangles formed by lines that connect the

vertices of the polygon to an arbitrary point (x0, y0). Let us assume that point to

be the origin, as shown in Fig. 10.1. Consider Fig. 10.2, which shows a single

triangle having a vertex at the origin. As seen in the figure, the region is divided

into rectangles by the horizontal and vertical lines such that some of the rectangles

have sides of the triangle as their diagonals. Thus half of each such rectangle is

outside the triangle. By inspection of Fig. 10.2 we can write [11]

dA ¼ x1y2 � 1

2
x2y2 � 1

2
x1y1 � 1

2
x1 � x2ð Þ y2 � y1ð Þ (10:4)

This expression simplifies to

dA ¼ 1

2
x1y2 � x2y1ð Þ (10:5)
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and the total area can be written as

A ¼ 1

2

XNb

i¼1

xiyiþ1 � xiþ1yi½ � (10:6)

where Nb is the total number of boundary points.

Note that, if the origin falls outside the object, an area that is not within the

polygon can be included in any particular triangle. Note also that depending on

the direction in which the boundary is being traversed, the area of a particular

triangle can be either positive or negative. By the time a complete traversal

around the boundary is complete, the area that falls outside the object has been

subtracted out.

Another approach is to use Green’s theorem. This says that the area enclosed

by a closed curve in the x-, y-plane is given by the contour integral [11]

y

x2, y2

x1, y1

x

x0, y0

dA

Triangular
segment of the

polygon

Vertices of the polygon

F IGURE 10.1 Computing the area of a polygon. (After [11].)

y2

y1

x1x20, 0

An individual triangle from a general polygon
representing the object shape 

F IGURE 10.2 Area measurement for a triangle. (After [11].)
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A ¼ 1

2

ð
x dy� y dxð Þ (10:7)

where the integration is carried out around the closed curve. We can discretize

Eq. 10.7, yielding [11]

A ¼ 1

2

XNb

i¼1

xi yiþ1 � yið Þ � yi xiþ1 � xið Þ½ � (10:8)

and manipulate this expression into the form of Eq. 10.6. The corresponding

perimeter is the sum of the side lengths of the polygon. Side lengths can easily be

calculated from the boundary chain code (Chapter 9). If all boundary points are

used as vertices, the perimeter will simply be the sum of lateral and diagonal

steps, written as [11]

P ¼ Ne þ
ffiffiffi
2

p
No (10:9)

whereNe is the number of even andNo the number of odd steps in the boundary

chain code.

10.2.2 Pose Measures

The pose of an object is typically defined by its location and orientation.

Measuring its centroid can indicate the location of an object. Object orientation

is normally measured by computing the angle subtended by its major axis.

10.2 .2 .1 Cen t ro id

Following the definition of Eq. 10.1, the center of the nth object, (icn, j
c
n), can be

given as

icn ¼
1

An

XN�1

i¼0

XN�1

j¼0

iIn i, jð Þ

jcn ¼
1

An

XN�1

i¼0

XN�1

j¼0

jIn i, jð Þ
(10:10)

where An is the area of that object. Since i and j index the image space, the center

so computed will be relative to the image coordinate space. Thus, the location

of the object determined is within the two-dimensional image plane. The same

measurement can also be obtained using moments and is described in

Section 10.2.3.5.
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10.2 .2 .2 Or ien ta t i on

One method of measuring the orientation of an object is based on computing the

axis of the least second moment [16]. Intuitively, this defines the axis of least

inertia that can be rotated to align it with the x-axis. Consider the arbitrary

shape shown in Fig. 10.3. If we define the orientation of least inertia for this nth

object as un, it can be calculated as [11]

tan 2unð Þ ¼
2
PN�1

i¼0

PN�1

j¼0

ijIn i, jð Þ

PN�1

i¼0

PN�1

j¼0

i2In i, jð Þ � PN�1

i¼0

PN�1

j¼0

j2In i, jð Þ
(10:11)

10.2.3 Shape Measures

Shape measures are increasingly used as features in object-recognition and

-classification applications to distinguish objects of one class from other objects.

Shape features are generally invariant to translation, rotation, and scaling.

These features can be used independent of, or in conjunction with, area and

perimeter measurements. In this section, we consider some commonly used

shape parameters.

i

ic, jc

j

q

Axis of least second moment

F IGURE 10.3 Axis of least inertia for an arbitrary shaped object. (After [18].)
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10.2 .3 .1 Th inne s s Ra t i o

Thinness is typically used to define the regularity of an object. Having computed

the area A and perimeter P of an object, we can define the thinness ratio as

T ¼ 4p
A

P2

� �
(10:12)

This measure takes a maximum value of 1 for a circle. The same measure can

also be used to quantify the roundness of an object, and it is referred to as the

compactness ratio. Objects of regular shape have a higher thinness ratio than

similar irregular ones.

10.2 .3 .2 Rec tangu la r i t y

The rectangularity of an object can be measured with the rectangle fit factor [11]

R ¼ A

AR

(10:13)

This is simply the ratio of the object’s area to the area of its minimum enclosing

rectangle (MER), AR. The MER for an object is defined as its bounding box

aligned such that it encloses all the points in the object with the areaminimized. To

determine the MER, the object boundary is rotated through 908 in steps of �38.
Following each stepwise rotation, a horizontally aligned bounding box is fit

to the object boundary, and the minimum and maximum x and y values of

the rotated boundary points are recorded. At a particular angle, the area of the

bounding box is minimized, and this defines the MER.

The rectangle fit factor represents how well an object fills its minimum

enclosing rectangle. This parameter takes on a maximum value of 1 for rec-

tangular objects. It is bounded between 0 and 1, taking the value p=4 for circular
objects and smaller values for slender, curved objects.

Another related shape measure is the aspect ratio, computed as [17]

Aspect ¼ W

L
(10:14)

It is the ratio of the width to the length of the minimum enclosing rectangle, and

it is used to distinguish slender objects from roughly square or circular objects.

10.2 .3 .3 C i r cu l a r i t y

Circularity is a shape feature, which is minimized by the circular shape. Typically

used to reflect the complexity of the object boundary, it can be written as [11]

C ¼ P2

4pA
(10:15)
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which is the ratio of the perimeter squared to the area. Circular shapes yield the

minimum circularity value of 1.0, and the value increases for complex shapes.

Notice that it is the reciprocal of thinness ratio, defined earlier.

Another shape measure that is related to circularity is the boundary energy [4].

Consider an object with perimeter P. We can measure the distance around the

boundary starting at some point p. Then at any instance, the radius of the circle

tangent to the boundary at that point defines its radius of curvature, r(p),

as shown in Fig. 10.4. The curvature function, K(p), which is periodic with period

P at point p, is written as [11]

K pð Þ ¼ 1

r pð Þ (10:16)

The average energy per unit length of boundary is given by [11]

E ¼ 1

P

ðP
0

K pð Þj j2dp (10:17)

The circle has, for fixed area, minimum boundary energy, given by [11]

E0 ¼ 2p

P

� �2

¼ 1

R

� �2

(10:18)

where R is the radius of the circle. Curvature and boundary energy can be

computed from the chain code (see Chapter 9) [4, 5]. It has been shown that

the boundary energy reflects the boundary complexity better than the circularity

measure of Eq. 10.15 [4].

Direction of traversal

Starting point

r(p)

p

y

x

K(p)=1/r(p)

F IGURE 10.4 Circularity computation and radius of curvature. (After [11].)
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10.2 .3 .4 Eu le r Number

For an image, the Euler number is defined as the number of objects minus

the holes [19]. For an extracted object, the Euler number is used to represent the

completeness of that object, and it corresponds to the number of closed curves

contained within the object [20]. The determination of the number of objects and

holes in an image was described earlier, in Chapters 8 and 9.

10.2 .3 .5 Momen t s

The moments of a function, which originate from probability theory [21, 22],

can be used to define a group of shape features that have several desirable

properties [23, 24]. For a bounded function f (x,y), the set of moments of two

variables is defined by [11]

Mjk ¼
ð1
�1

ð1
�1

xjykf x, yð Þdx dy (10:19)

where j and k take on all nonnegative integer values and they generate an infinite

set of moments. The set of moments, Mjk

� �
, is sufficient to specify the function

f x, yð Þ completely and is unique for the function, such that only f x, yð Þ has that
particular set of moments.

If f x, yð Þ takes on the value 1 inside the object and 0 elsewhere, it represents

a silhouette function, which ignores internal gray-level details and reflects only

the shape of the object. This function can be used as a shape descriptor, such

that every unique shape corresponds to a unique silhouette and the correspond-

ing unique set of moments. The order of the moment is given by j þ k. There is

only one zero-order moment, and it gives the area of the object as

M00 ¼
ð1
�1

ð1
�1

f x, yð Þdx dy (10:20)

There are two first-order moments and correspondingly more moments of

higher orders. All the higher-order moments can be normalized to be invariant

to object size, by dividing them by M00.

Cen t ra l Momen t s The so-called central moments are computed using

the center of gravity as the origin and hence are location invariant. The

coordinates of the center of gravity of the object are given by [11]

m10 ¼
M10

M00

and m01 ¼
M01

M00

(10:21)
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Moments of higher order, where j þ k > 1, are normally defined in terms of

the object’s location. This leads to a more generalized mathematical definition

for central moments, given as

mjk ¼
ð1
�1

ð1
�1

x� m10ð Þj y� m01ð Þkf x, yð Þdx dy (10:22)

Ob je c t D i spe r s i on The three second-order moments provide a

measure of how dispersed the pixels in an object are with respect to its

centroid. They correspond to j þ k ¼ 2 and are written as

m20 ¼ M20 �M2
10

M00

, m02 ¼ M02 �M2
01

M00

, and

m11 ¼ M11 �M10M01

M00

(10:23)

These are proportional to the object’s spread over the x-axis, over the y-axis,

and in both orientations, respectively.

Ro ta t i ona l l y I nva r i an t Momen t s While central moments are

location invariant, they are not rotationally invariant. This means that, given

a change in an object’s orientation, the central moments will yield different

measures. The angle of rotation u that causes the second-order central moment

to vanish can be obtained from Eq. 10.11. Then, the principal axes x’, y’ of an
object are at an angle u from thex-, y-axes. If themoments are computed relative to

the principal axes or if the object is rotated through u before the moments are

computed, then the moments are rotation invariant. In general, it is desirable that

object measures be invariant under simple transformations such as translation,

rotation, and scale. The area-normalized centralmoments computed relative to the

principal axis are translation, rotation, and scale invariant. Rotationally invariant

moments, which are functions of the second-order moments [25], are given by

m20 þ m02 and m20 � m02ð Þ2þ 4m2
11 (10:24)

The magnitude of the invariant moments can be used as shape features in

pattern recognition.

Zern ike Momen t s Zernike moments are derived from a complex

polynomial that forms an orthogonal set from a unit circle as its domain [26].

The set of these polynomials Zmn(x, y)f g are of the form [26]

Znm x, yð Þ ¼ Znm r, uð Þ ¼ Rnm exp jmuð Þ (10:25)

10 Object Measurement

204



where n $ 0, m is an integer subject to the constraints that n� mj jmust be even

and mj j # n, r is the length of the vector from the origin to (x, y), and u is the

angle between the vector r and the x-axis in the counterclockwise direction.

Rnm rð Þ in Eq. 10.25 is a radial polynomial defined as [26]

Rnm rð Þ ¼
Xn� mj j=2

s¼0

�1ð Þs� n� sð Þ!
s! n þ mj j

2
� s

	 

! n � mj j

2
� s

	 

!
rn�2s (10:26)

The Zernike moment of order n, with repetition m, for a continuous image

function I(x, y) that vanishes outside the unit circle is [26]

Anm ¼ nþ 1

p

ð ð
x2þy2#1

I x, yð ÞZ�
nm r, uð Þdx dy (10:27)

which is the projection of the image function onto the orthogonal basis functions

given in Eq. 10.25. Discretizing the integrals in Eq. 10.27, we have [26]

Anm ¼ nþ 1

p

X
x

X
y

I x, yð ÞZ�
nm r, uð Þ x2 þ y2 # 1 (10:28)

If Anm represents the moments associated with an image, and Ar
nm represents the

moments of the same image rotated by an angle f, then

Ar
nm ¼ Anm� exp �jmfð Þ (10:29)

The magnitude of the Zernike moments is therefore invariant to rotation. On

the other hand, they are not translation and scale invariant. Nonetheless,

translation invariance can be achieved by moving the origin of the image to

the centroid of the object. In typical applications requiring object shape meas-

urements, up to eight orders of Zernike moments are used. Only moments of

order 2 to 8 are relevant for discrimination purposes, since, after object normal-

ization for scale and translation invariance, moment A00j j is constant and

moment A11j j is zero [27]. Since the Zernike moments themselves are complex

numbers and are sensitive to rotation of the image, typically the magnitudes of

the moments (i.e., Anmj j) are used as shape features [28].

10.2 .3 .6 E longa t i on

Ameasureused frequently todescribe the shapeof anobject is elongation.Oneway

of calculating this measure is by taking the ratio of an object’s length to its breadth

El ¼ length

breadth
(10:30)
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Another way of defining the same thing is based on computing the bounding

rectangle for the object and taking the ratio of the long side to the short side. An

easy away to approximate this is by scanning the object image and finding the

maximum and minimum values along the spatial indices. The ratio can then

by given by

El ¼ jmax � jmin þ 1

imax � imin þ 1
(10:31)

The samemeasure canbecalculatedas the ratioof second-ordermomentsof the

object defining its major andminor axes. Elongation in this case would be given by

El ¼ l1
l2

(10:32)

where

l1 ¼ m20 sin
2 uþ m02 cos

2 uþ 2m11 sin u cos u

l2 ¼ m20 cos
2 uþ m02 sin

2 u� 2m11 sin u cos u
(10:33)

where u is the angle of rotation, described in Eq. 10.11. All of the preceding

measures of elongation provide similar but not necessarily identical results.

10.2.4 Shape Descr ip tors

A shape descriptor is another way of describing an object’s shape. It provides

a more detailed description of shape than that offered by the single parameter

shape measures described earlier. Shape descriptors also allow a more compact

representation of shape than what is reflected by the object image itself.

10.2 .4 .1 D i f f e ren t i a l Cha in Code

The most common shape descriptors include the boundary chain code (BCC) and

its derivative known as the differential chain code (DCC) [14, 29, 30]. As discussed

in Chapter 9, the BCC represents the boundary tangent angles as a function of

distance around the object. For a simple polygon, Fig. 10.5 shows the associated

BCC and DCC. The DCC reflects the curvature of the object’s boundary.

Convexities and concavities in the boundary show up as peaks and valleys,

respectively, in the differential chain code. Both of these functions can be analyzed

further to obtain shape measures.

10.2 .4 .2 Fou r i e r Des c r i p to r s

Fourier descriptors exploit the periodicity in the BCC representation of the

boundary [31]. The complex boundary function is defined asB pð Þ ¼ x pð Þ þ jy pð Þ,
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where x(p) and y(p) are the coordinates of the pth boundary point, measured from

an arbitrary starting point, and j is the imaginary unit. B(p) is a complex-valued

periodic function with periodP, and thus its Fourier series can be computed [11].

It is the low-frequency components in this Fourier series expansion that represent

the basic shapeof the object. These components are inherently shift invariant, and

their complex magnitudes are rotation invariant and independent of the starting

point as well. Thus they can be used as shape descriptors.

10.2 .4 .3 Med ia l Ax i s Tran s fo rm

Medial axis transformation (MAT) is another data reduction technique that is

used as a shape descriptor (Chapter 8) [11, 32]. The medial axis of an object is

a set of points inside the object such that each point is the center of a circle that

is tangent to the boundary at two nonadjacent points. Normally a value is

associated with each point on the medial axis, and it is the minimum distance

to the object boundary from that point.

The simplest technique to find the medial axis is by erosion (Chapter 8). By

successively removing the outer perimeter of points, one can detect the point

whose removal would disconnect the object. That point is then considered to be

on the medial axis. Its associated value is simply the number of layers removed

or the number of erosion iterations required. The MAT is a useful descriptor for

long, narrow, and curved objects. In some applications, the medial axis is used
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F IGURE 10.5 The chain code and its derivative for an arbitrary shape. (After [11].)
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only as a graph, ignoring the associated values. In others, the graph is used to

derive additional shape measures, such as the number of branches and the total

length [33].

10.2 .4 .4 Graph Repre sen ta t i on s

Graphs have been used as a tool for translation- and rotation-invariant

representation of object shapes [34]. These are descriptors that define the structure

among a set of points located on the boundary of an object [35]. The two graphs

used most often are the minimum spanning tree (MST) and the Delaunay

triangulation (DT).

Min imum Spann ing Tree Consider an arbitrary shaped object as

shown in Fig. 10.6a, with a set of points n given by P ¼ p1, p2, . . . , pnf g located

on the boundary. A tree is constructed by connecting pairs of points from the set

so as to form a tree structure that ‘‘spans’’ the set of points. There are many ways

to draw this tree, but if the sum of branch lengths for a particular tree is less than

the sum of branch lengths for any other spanning tree, then that tree is called the

minimum spanning tree (MST), as shown in Figure 10.6b. The MST is a type

of skeleton of the object, and it can give rise to a number of shape descriptors,

such as total, average, and standard deviation of branch length, average

p1

p4

p3

p2

(b)  Minimum spanning tree(a)  Arbitrary shape with a set of points

(d)  Delaunay triangulationVoronoi diagram(c)

F IGURE 10.6 An object represented with a set of boundary points and its associated graphs.
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branching angle, and number of nodes. These descriptors have been used in

numerous applications [36, 37].

De launay Tr i angu la t i on In representing an object using Delaunay

triangulation (DT), edges are formed by joining pairs of points from the set

P ¼ p1, p2, . . . , pnf g in such a way that as many triangles as possible are

generated, but without any crossing lines. DT is a specific triangulation based

on locally equiangular triangles [38] and is normally derived from the Voronoi

partitioning of the object shape [39, 40]. The Voronoi diagram partitions the

object into disjoint regions such that each region Ri is composed of a subset of

points pi and is defined as

Ri ¼ x:Ed x, pið Þ < Ed x, pj
� �� �

for all j 6¼ i (10:34)

where Ed is the Euclidean distance (described shortly in Section 10.3.1). The

partitioning of the example object is shown in Fig. 10.6c. The DT is now defined

by joining two points, pi and pj, if and only if their corresponding regions share

a side. The resulting triangulation is shown in Fig. 10.6d. Once the triangulation is

defined for the object, it can be characterized by the same measures as the MST.

10.3 Distance Measures

Measures of distance provide a way to compute the separation between two

points in an image [3, 41]. These can be two points within the same object (such

as points on the major and minor axes) or points on two different objects. The

three most common ways of measuring distance are presented here.

10.3.1 Euc l idean Dis tance

Euclideandistance, by far themost commonlyusedmeasure ofdistance, is given by

De ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i � kð Þ2þ j � lð Þ2

q
(10:35)

where the two points have spatial indices (i, j) and (k, l), respectively.

10.3.2 C i ty -B lock Dis tance

City-block distance is an approximation to the Euclidean measure that is

computationally faster. It is also called Manhattan distance or the absolute

value metric. It is written as [12]

Dm ¼ i � kj j þ j � lj j (10:36)
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10.3.3 Chessboard Dis tance

The chessboard distance measure is the maximum separation in either the x or y

direction between the two points. Also known as the maximum value metric, it is

written as [12]

Dc ¼ max i � kj j, j � lj jð Þ (10:37)

10.4 Gray-Level Object Measures

Object measurements derived as a function of the intensity distribution of the

object are called gray-level object measures. Most of the measures defined earlier

for binary objects can also be used for gray-level objects. There are three

main categories of gray-level object measurements. Intensity and histogram

measures are normally defined as first-order measures of the gray-level distri-

bution, whereas texture measures quantify second- or higher-order relationships

among gray-level values.

10.4.1 In tens i ty Measures

Images most often contain regions that show heterogeneous intensity distribu-

tions. Intensity-based measures can be used to quantify intensity variations across

and between objects. Some of the commonly used measures are described next.

10.4 .1 .1 In teg ra ted Op t i ca l I n t en s i t y

The integrated optical density (IOD) is the sum of the gray levels of all pixels in

the object [8–11]. It reflects the ‘‘mass’’ or ‘‘weight’’ of the object and is numer-

ically equal to the area multiplied by the mean interior gray level. Consider for

an object, if (i, j) are the spatial indices, I(i, j) represents the gray level, and A is

the area of the object, then

IOD ¼
X
i, j2A

I i, jð Þ (10:38)

10.4 .1 .2 Average Op t i ca l I n t en s i t y

The average optical density (AOD) is merely IOD divided by area [8–11]. The

total number of object pixels is the simplest measure of an object’s area. Thus,

the AOD of an M � N image can be calculated by

AOD ¼ 1

A

XM
i¼1

XN
j¼1

I i, jð Þ (10:39)

where A ¼ M � N is the area of the image. For an object, the summations are

taken over all pixels inside the object.

10 Object Measurement

210



10.4 .1 .3 Con t ra s t

A measure of contrast of an object is the brightness (AOD) difference between

the object and the surrounding background.

10.4.2 His togram Measures

The histogram of the image of an object provides a description of the distribu-

tion of intensity values within the object. When normalized by the size of the

object, the histogram is the probability density function (pdf ) of the gray levels.

Thus, measures derived from the normalized histogram of the object image

provide statistical descriptors characterizing the gray-level distribution of the

object [8–11]. Common first-order measures calculated on the histogram include

mode, mean, standard deviation, skew, energy, and entropy. Second-order

measures are based on joint distribution functions and are representative of

the texture of the object [42]. Consider the gray-level probability density func-

tion given as

P gð Þ ¼ h gð Þ
M

(10:40)

where h(g) is the number of pixels with gray level g and M is the total number of

pixels in the image. Eachof the first-ordermeasures can be calculated from the pdf.

10.4 .2 .1 Mean Gray Leve l

Mean gray level provides a measure of the average intensity of the image. It can

be calculated as

�g ¼
XL�1

g¼0

P gð Þ � g (10:41)

where L is the number of gray levels present in the image. Note that this is the

same as AOD.

10.4 .2 .2 S tanda rd Dev ia t i on o f Gray Leve l s

Standard deviation is a measure that provides an understanding of the spread of

intensities across the image. This is also an indicator of contrast in the image.

Standard deviation is measured by

sg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL�1

g�0

g� �gð Þ2�P gð Þ
vuut (10:42)
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10.4 .2 .3 Skew

Skew measures the asymmetry in the image’s intensity distribution. We can

calculate skew by

k ¼ 1

s3
g

XL�1

g¼0

g� �gð Þ3�P gð Þ (10:43)

10.4 .2 .4 En t ropy

Entropy provides a measure of an image’s smoothness in terms of gray-level

values. The higher the entropy, the more gray levels are present in the image.

Entropy can be calculated by

Entropy ¼ �
XL�1

g¼0

P gð Þ� log2 P gð Þ½ � (10:44)

10.4 .2 .5 Ene rgy

Energy is another measure that shows how the gray-level values are distributed

within the image. It has an inverse relation to entropy, in that the energy of an

image is highest if it has only one gray-level value. The more gray levels present

in an object, the lower its energy. We can calculate energy as

Energy ¼
XL�1

g¼0

P gð Þ½ �2 (10:45)

10.4.3 Texture Measures

The word texture originally referred to the appearance of fabric. A general

definition is ‘‘the arrangement or characteristics of the constituent elements of

anything, especially as regards to surface appearance or tactile qualities’’ [43].

A more relevant definition for image analysis is ‘‘an attribute representing

the spatial arrangement of the gray levels of pixels in a local region’’ [44]. In

the current context, we are specifically concerned with the measurement of the

texture of an object in an image. Perception of texture is scale dependent. For

example, in viewing an image of a tiled floor from a distance, texture would be

perceived as the repetition observed in tile placement. By contrast, observing an

individual tile on the tiled floor may lead to perceiving the texture within that

tile. Broadly speaking, we can define texture as patterns of local variations in

image intensity that are too fine to be distinguished as separate objects at the

observed resolution [18].
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Electronic noise induced by a camera is an example of a random texture.

Here the gray-level variation exhibits no recognizable repeating pattern. Cross-

hatching, by contrast, is a pattern texture that does exhibit a visible regularity.

Statistical properties such as standard deviation of gray level (i.e., texture

amplitude) and autocorrelation width (i.e., texture size) are commonly used to

characterize random textures. Similarly, pattern textures can be characterized

by measurements that quantify the nature and directionality of the pattern, if it

has any.

A texture feature quantifies some characteristic of the gray-level variation

within an object. It is normally independent of object position, orientation, size,

shape, and average brightness. Presented here are some of the more common

methods for computing texture features.

10.4 .3 .1 S ta t i s t i c a l Tex tu re Measu re s

Statistical measures of intensity variation include standard deviation, variance,

and skew. These can be computed as moments of the gray-level histogram,H, of

the object. Similarly, a feature referred to as the module can be computed as [45]

I ¼
XN
i¼1

Hi �M=Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hi 1�Hi=Mð ÞþM 1�1=Nð Þ

N

q (10:46)

whereM is the number of pixels in the object andN is the number of gray levels in

the grayscale. Although the human eye is insensitive to textural differences of

order higher than second (i.e., the variance), texture features such as the ‘‘module’’

often rely on quantifiable differences, where they exist.

Gray-Level Co-occurrence Matrix The gray-level co-occurrence matrix

(GLCM) provides a number of second-order statistics relating to the gray-level

relationships in a neighborhood around a pixel [42, 46, 47]. Computation of

GLCM features is a two-step process. The GLCM is created as the first step,

then it is used to compute a number of statistics, and those are the texture

features.

The GLCM, Pd , is a 2-D histogram that specifies how often two gray levels

occur in pairs of pixels separated by a particular offset distance. First, one

must pick the offset distance and direction. Then each entry, (i, j ), in Pd

corresponds to the number of occurrences of the gray levels i and j, in pairs

of pixels that are separated, in the image, by the chosen distance and direction.

Once the GLCM is formed, one can compute specific statistical values from it

(see below). Selecting a different offset direction and distance gives rise to

a new GLCM.
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Several widely used statistical and probabilistic features can be derived from

the GLCM [48, 49]. Examples include entropy, given by

H ¼ �
X
i, j

Pd i, jð Þ log Pd i, jð Þð Þ (10:47)

inertia, which is

I ¼
X
i, j

i � jð Þ2Pd i, jð Þ (10:48)

energy, defined as

E ¼
X
i, j

Pd i, jð Þ½ �2 (10:49)

maximum probability, given as

P ¼ maxi, j Pd i, jð Þ (10:50)

inverse differential moment (IDM), defined by

IDM ¼
X

i, j(i 6¼ j)

Pd i, jð Þ
i � jð Þ2 (10:51)

and correlation, denoted by

C ¼ 1

sisj

X
i, j

i � mið Þð j � mjÞPd i, jð Þ (10:52)

Some co-occurrence matrix-based texture features correspond to character-

istics that can be recognized by the eye [50], but many do not. In general one

must determine experimentally which of these features have discriminating power.

10.4 .3 .2 Power Spe c t r um Fea tu re s

Power spectrum features are measures of texture that are derived from

the Fourier transform of the object image. The power spectrum, defined as the

magnitude squared of the 2-D Fourier spectrum, gives rise to a set of texture

measures. These measures can be defined by averaging the power spectrum in

annular rings to produce a 1-D function that ignores directionality or by

averaging along radial lines to produce a 1-D function that shows only the

directionality. These one-dimensional functions of frequency (or angle) can be

further reduced to single measurement values that reflect salient characteristics

of the texture pattern.
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10.5 Object Measurement
Considerat ions

Image analysis can provide several measures of an object’s structure by defining

its characteristics in terms of area, perimeter, elongation, compactness, contrast,

and texture, as shown in Table 10.1. The table shows object measures computed

for different particle types from the urinary sediment, including, red blood cells

(RBC), calcium oxalate crystals (CAOX), white blood cells (WBC), bacteria

(BACT), granular casts (GRAN), cellular cast (CCST), squamous epithelial cells

(SQEP), sperm (SPRM), and hyphae yeast (HYST). It is clear that size measures

such as area and perimeter can be used to distinguish smaller particles, such as

RBC, from the larger cells types, such as SQEP. Similarly, the elongation and

compactness measures readily differentiate the circular shaped cells (e.g., RBC,

WBC, and SQEP) from the elongated cells (e.g., SPRM and HYST). Finally,

intensity-based measures such as contrast and texture measures can be used to

differentiate between low-contrast objects (e.g., SPRM, SQEP, and HYST)

and high-contrast objects, such as crystals (e.g., CAOX, RBC, and WBC) and

between objects with textured interiors (e.g., SPRM, SQEP, and HYST)

and relatively untextured objects (e.g., CAOX, RBC, and WBC).

In computing measurements of an object, it is important to keep in mind the

specific application and its requirements. A critical factor in deciding which

object measurement to use is its robustness, that is, its ability to provide

consistent results in different applications. For example, if we wish to design

a system that can differentiate between types of cells under different illumination

conditions, we may not want to use an intensity measure, such as average optical

density, as the only measurement made on the object. This would provide

inconsistent results due to lighting changes that will alter the measured AOD

of cells. Instead, we may wish to measure cell area. Another important

consideration is the invariance of the measurement under rotation, translation,

and scale.When deciding on the set of objectmeasures to use, these considerations

should guide one in identifying a suitable choice.

10.6 Summary of Important Points

1. Object measurements are normally computed from the binary represen-

tation of a segmented object or the gray-level intensity distribution within

the object boundary.

2. Measurements of an object can be based on either its size, its shape, or its

intensity values.
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TABLE 10 .1 Measurements of object structure for a variety of particle types

Object Measures

Cell Type A (mm2) P (mm) Elongation Compactness Contrast Texture

RBC 56.16 22.8 1.123 1.142 0.4874 127.4

CAOX 236.16 50.4 1.034 1.065 0.8083 106.5

WBC 390.24 63.6 1.119 1.242 0.5081 73.8

BACT 146.88 49.2 2.429 1.17 0.1189 122.9

GRAN 1121.76 145.2 2.373 1.451 0.3202 192.6

CCST 1882.08 205.2 3.158 1.411 0.4852 183.6

SQEP 5127.84 256.8 1.139 1.355 0.1422 275.2

SPRM 416.16 146.4 2.629 3.680 0.0275 346.0

HYST 918.72 225.6 3.933 2.670 0.2900 344.8
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3. Area, length, width, and perimeter are common measures of object size.

4. Object shape can be captured by measures of circularity, rectangularity,

moments, and Euler number, among other features.

5. Histogram measures capture the statistics of an object’s gray levels.

6. Texture measures capture the statistics of an object’s gray-level structure.

7. Objects can be described using compact descriptors such as a chain codes,

the medial axis transform, and graphs.
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11
Object Classification

Kenneth R. Castleman and Qiang Wu

11.1 Introduct ion

Classification is the step that tells us what is in the image. Assuming the objects

in the image have been segmented and measured, classification identifies them

by assigning each of them to one of several previously established categories or

classes. There are several mathematical approaches that can be taken to address

the classification problem, and a complete coverage is beyond our scope. Here

we illustrate the process of classification with the very useful maximum-likelihood

method. This technique is widely used because it minimizes the probability of

making an incorrect assignment.More specifically, we present theminimumBayes

risk classifier, assuming Gaussian statistics, along with several of its interesting

special cases. We also address other classification strategies.

11.2 The Classificat ion Process

When we encounter an object in a microscopic image, we know three things

about it. First, we know the a priori probability that it belongs to each of the

classes. For example, if we are attempting to separate abnormal from normal

cells, we might know from past experience that 90% of all cells encountered are

normal. Thus the a priori probability for class 1 (normal) is 0.9, while for class 2

(abnormal) it is 0.1:

P C1ð Þ ¼ 0:9 and P C2ð Þ ¼ 0:1 (11:1)

Microscope Image Processing
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This knowledge applies to all of the objects. Quite a large sample size may be

required to estimate the a priori probabilities [1]. Second, we know the object’s

measured feature values. This is the quantitative data that is unique to that

particular object. Third, we know the probability density function (pdf) of those

features for each of the classes. This specifies what is known about each class.

Given these three pieces of knowledge, we seek to make an optimal assignment

of that object to a class. For the moment we take the probability of error as the

performance criterion, and we seek to minimize it.

11.2.1 Bayes’ Ru le

Wenowconsider how to combine the three thingsweknowabout anobject tofind

its most likely class. After an object has been measured, we should be able to use

the measurement data and the class-conditional pdfs to improve our knowledge

of the object’s most likely class membership. The a posteriori probability that

the object belongs to class i is given by Bayes’ theorem; that is,

P Cijxð Þ ¼ P Cið Þp xjCið Þ
p xð Þ (11:2)

where P Cið Þ is the a priori probability of class i, p xjCið Þ is the pdf of the feature
x for class i, and

p xð Þ ¼
XN
i¼1

p xjCið ÞP Cið Þ (11:3)

is the normalization factor that is required to make the set of a posteriori

probabilities sum to unity. Bayes’ theorem, then, allows us to combine the

a priori probabilities of class membership with the measurement data and the

class-specific pdf to compute the probability that the measured object belongs to

each class. Given this information, we can assign each object to its most likely

class.

11.3 The Single-Feature,
Two-Class Case

To illustrate the classification process, we first consider the simple case where

two types of objects must be sorted on the basis of a single measurement. For

this example, assume we are attempting to separate abnormal from normal cells

on the basis of nuclear diameter alone. This means that the cells encountered

belong either to class 1 (normal) or to class 2 (abnormal). For each cell,
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we measure one property, nuclear diameter, and this is the feature we call x.

It may be that the pdf of the diameter measurement, x, is already known for one

or both classes of cells. If not, we would have to estimate it by measuring a large

number of normal and abnormal cells and plotting histograms of their nuclear

diameters. After normalization to unit area and perhaps some smoothing, these

histograms can be taken as estimates of the corresponding pdfs. If the histogram

fits the Gaussian form, to a reasonable approximation, we can compute the

mean, m, and variance, s, and use the parametric representation for the normal

distribution

p xð Þ ¼ 1ffiffiffiffiffiffi
2p

p e
� x�mð Þ2

2s2 (11:4)

There are other standard statistical distributions for the pdf that might fit the

histograms if the Gaussian does not. If we use the Gaussian, then only the mean

and variance are required to completely specify the pdf for a class.

11.3.1 A Pr ior i Probabi l i t ies

The a priori probabilities represent our knowledge about an object before it has

been measured. In this example, we assume that an unmeasured cell has a 9:1

chance of being normal (Eq. 11.1).

11.3.2 Condi t iona l Probabi l i t ies

Figure 11.1 shows what the two pdfs might look like. We denote the conditional

pdf for normal cell diameter as p(xjC1), which can be read as ‘‘the probability
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F IGURE 11.1 Probability density functions for a two-class problem.
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that diameter xwill occur, given that the cell belongs to class 1.’’ Similarly, p(xjC2)

is the probability that diameter x will occur, given cell class 2 (abnormal).

If we scale each of the pdfs by the a priori probability of its class, as in Figure

11.2,we get a better picture of the error situation.We could establish a decision rule

by setting a threshold value,T, on the nuclear diameter and classifying cells normal

if they fall below that and abnormal if they fall above it. The area under the dotted

curve, to the left of the threshold, is proportional to the probability of calling

an abnormal cell normal. Similarly, the area under the solid curve, to the right

of the threshold, is proportional to the probability of misclassifying a normal cell.

11.3.3 Bayes’ Theorem

Before a cell has been measured, our knowledge of it consists of only the a priori

probabilities of class membership. After measurement, however, we can use the

measurement and the conditional pdfs to improve our knowledge of the cell’s class

membership. After measurement, the a posteriori probability that the object

belongs to class i is given by Bayes’ theorem [2–5]

P Cijxð Þ ¼ P Cið Þp xjCið Þ
p xð Þ (11:5)

where P Cið Þ is the a priori probability of class i, p xjCið Þ is the pdf of the feature x
for class i, and

p xð Þ ¼
XN
i¼1

p xjCið ÞP Cið Þ (11:6)

is a normalization factor that is required to make the set of a posteriori

probabilities sum to unity. Bayes’ theorem, then, allows us to combine the
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F IGURE 11.2 Probability density functions for a two-class problem, scaled by the a priori probabilities.

11 Object Classification

224



a priori probabilities of class membership with the measurement and the class-

specific pdf to compute the probability that the measured object belongs to each

class. Figure 11.3 shows the a posteriori probabilities for this example. For any

nuclear diameter x, the solid curve gives the probability that a cell having that

diameter belongs to class 1. The dotted curve gives the probability that the cell

belongs to class 2.

In our cell-sorting example, we would assign the object to class 1 (i.e., call it

normal) if

P C1jxð Þ > P C2jxð Þ (11:7)

and assign it to class 2 (abnormal) otherwise. At the decision threshold, T, where

equality holds in Eq. 11.7, we may assign arbitrarily. The classifier defined by

this decision rule is called a maximum-likelihood classifier because it maximizes

the probability of a correct assignment. Note in Fig.11.3 that cells with nuclear

diameter less than 4 micrometers can be confidently assigned to class 1, while

cells larger than 6 micrometers easily can be called abnormal. It is for cells with

nuclear diameter near 5 micrometers that one would expect misclassification

errors to occur.

11.4 The Three-Feature,
Three-Class Case

We next consider the case where there are three types of objects and three

measurements are made on each. The particular example we use here is the

classification of pixels in a color image. The three measurements made on each

1087654321
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F IGURE 11.3 A posteriori probabilities for the two-class problem.
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pixel are the red, green, and blue intensity values. We assume that each pixel

belongs to one of three classes: the interior of a normal cell, the interior of an

abnormal cell, or the background.

Each pixel can be considered to represent a point in three-dimensional color

space. Thus each of the different-colored objects in the image will correspond

to a ‘‘cloud’’ of points in color space, and segmentation becomes the task of

isolating these clusters. More specifically, we wish to define a set of decision

surfaces that carve up the space into three disjoint regions, one for each class.

11.4.1 Bayes C lass ifier

One straightforward and quite powerful approach is the use of the Bayes

maximum-likelihood classifier. It generates second-order surfaces that partition

the color space into disjoint regions, one for each object type (i.e., for each

color of pixel). Assuming Gaussian distributions for the clusters of points in

color space, the Bayes classifier maximizes the probability that each pixel will be

assigned correctly.

We illustrate the use of the Bayes classifier with a simple example.We assume

that a three-color RGB (red, green, blue) system is used to digitize a fluorescent

microscope image. The vector of gray levels at a single pixel location is

x ¼ xj
� � ¼

x1
x2
x3

2
4

3
5 (11:8)

where

j ¼
1 ) red

2 ) green

3 ) blue

(

We further assume that the images contain two types of objects, normal and

abnormal cells. Both types of cells bind the blue fluor, the normals also bind the

green fluor, but the abnormals pick up the red fluor instead. One would expect

a three-dimensional histogram (scatter plot) of the color space to show three

clusters of points, one each for background, normal cells, and abnormal cells.

Since the background is dark, its cluster will fall near the origin of color space.

The normal cells will give rise to a cloud of points near the cyan corner, while the

abnormals will fall near the magenta corner, as in Fig. 11.4.

11.4 .1 .1 Pr io r P robab i l i t i e s

Let us assume that the area of a typical image is 90% occupied by background and

10% by cells. Further assume that, overall, only 10% of the cells are abnormal.
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Thus the vector of prior probabilities, where Pi ¼ P{pixel belongs to

class i}, is

P ¼
0:90
0:09
0:01

2
4

3
5 (11:9)

where

i ¼
1 ) background

2 ) normal

3 ) abnormal

(

11.4 .1 .2 C la s s ifie r Tra i n i ng

The first step is to train the classifier to recognize the three types of pixels. For

this we require a training set containing pixels that are known to fall in the

background, inside normal cells, and inside abnormal cells. It is the statistics of

these training set pixels that constitute the knowledge the classifier has about the

problem. Estimating these statistics is the process of classifier training.

11.4 .1 .3 The Mean Vec to r

Using the training set, we calculate, for each class i, the mean pixel brightness in

each color j. That is,

mij ¼
1

Ni

XNi

k¼1

xijk (11:10)

F IGURE 11.4 The three-dimensional RGB color space.
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whereNi is the number of pixels in class i and xijk is the value, in color j, of pixel k

in class i of the training set. The mean vector for class i is

mi ¼
mi1

mi2

mi3

2
4

3
5 (11:11)

This vector, the mean vector of the training set, is an estimate of the mean of the

entire population of class i pixels. If the training set is both adequately large and

representative of the population, it will be a good estimate. Otherwise, it will be

a poor estimate, and classifier accuracy will suffer, as will our ability to predict

how well it will work.

11.4 .1 .4 Cova r ian ce

We calculate the covariance matrix for each class [2, 3, 6] as

Sij1j2 ¼
1

Ni � 1

XNi

k¼1

xij1kxij2k �Nimij1
mij2

" #
(11:12)

11.4 .1 .5 Var ian ce and S tanda rd Dev ia t i on

The diagonal elements of a covariance matrix are the variances of the features

for that class. The variance is the square of the standard deviation. That is,

s2
ij ¼ Sijj and sij ¼

ffiffiffiffiffiffi
Sijj

p
(11:13)

11.4 .1 .6 Co r re la t i on

From the covariance matrix we can compute the correlation matrix for each

class [2, 3, 6]. For class i, this is

Cij1j2 ¼
Sij1j2

sij1sij2

(11:14)

The elements of the correlation matrix are bounded by +1. A correlation

of 1 means the corresponding two features are proportional to each other.

A correlation of �1 means each is proportional to the negative of the other.

A correlation of zero means the two features are uncorrelated. Using highly

correlated features is not only redundant, but it can actually degrade classifier

accuracy. One can either combine highly correlated features (by averaging, for

example) or simply discard all but one of them. In this example we assume the

features are not highly correlated.
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11.4 .1 .7 The P robab i l i t y Dens i t y Fun c t i on

The probability density function for class i is

pi xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þn Sij j

p exp � 1

2
x� mið ÞT S�1

i x� mið Þ�� ��� �
(11:15)

where x is the vector of RGB values for a pixel, as in Eq. 11.8, and n ¼ 3 is the

number of features in use. The superscript T indicates the matrix transpose, and

S�1
i is the inverse of the covariance matrix for class i. Equation 11.15 is the

multidimensional generalization of Eq. 11.4.

11.4 .1 .8 C la s s ifi ca t i on

Each class of pixels is now characterized by its prior probability, mean vector, and

covariance matrix. The classifier has been trained.We now have enough statistical

information about the problem to begin classifying pixels. By Bayes’ rule, the

likelihood that an unknown pixel having color vector x belongs to class i is

Li ¼ Pi

pdfi xð Þ
p xð Þ where p xð Þ ¼ pdf1 xð Þ þ pdf2 xð Þ þ pdf3 xð Þ (11:16)

or

Li ¼ Pi

p xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ3 Sij j

q exp � 1

2
x� mið ÞT S�1

i x� mið Þ�� ��� �
(11:17)

Thus we can compute the three likelihoods (one for each class) and assign the

pixel to the most likely (largest likelihood) class. If the pdfs are, as we have

assumed, Gaussian (normal) density functions, then no other partitioning of

color space will result in lower overall error rates [2].

11.4 .1 .9 Log L ike l i hoods

Since the logarithm is a monotonic function, we can take the log of both sides of

Eq. 11.17 and use the resulting value for classification purposes. Equation 11.17

then becomes

ln Lið Þ ¼ ln Pið Þ � 1

2
x� mið ÞTS�1

i x� mið Þ�� ��
� 3

2
ln 2pð Þ � 1

2
ln Sij jð Þ � ln p xð Þ� 	 (11:18)
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The third and fifth terms are constants and, for classification purposes, can be

dropped, leaving

LLi ¼ ln Pið Þ � 1

2
x� mið ÞTS�1

i x� mið Þ�� ��� 1

2
ln Sij jð Þ (11:19)

The first term accounts for the prior probabilities, while the third term accounts

for the within-class scattering of the features. The larger this variation, the less

confidently one can assign the pixel to that class. The second term is the square

of the Mahalanobis distance. It represents the variance-normalized distance, in

feature space, from the unknown color to the class mean.

11.4 .1 .10 Maha lanob i s D i s t an ce C la s s ifie r

We can simplify the Bayes classifier further by computing only the Mahalanobis

distance from an unknown pixel to each class mean,

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
x� mið ÞTS�1

i x� mið Þ�� ��
r

(11:20)

and assigning each pixel to the class having the nearest mean. This results in

what is called a Mahalanobis distance classifier. It corresponds to the special

case where the prior probabilities are equal among the classes, and likewise for

the within-class variations. This distance classifier is sometimes used when the

prior probabilities are unknown and the covariance matrix cannot be estimated

accurately, due to limited training set size. Distance in feature space can be

computed in other ways as well (e.g., Euclidean), and this gives rise to other

types of distance classifiers.

11.4 .1 .11 Unco r re la ted Fea tu re s

While 30 or so pixels per class in the training set might be sufficient to estimate

the feature means and variances, considerably more might be required to

estimate the off-diagonal elements of the covariance matrix. If the training set

is necessarily small, one solution is to set the off-diagonal elements to zero. This

is equivalent to assuming that the features are uncorrelated. Under pressure of

limited training set size, this can yield a more stable and better-performing

classifier than one designed around inadequately estimated covariances. Using

a distance classifier, which automatically assumes uncorrelated features, results

in an even simpler classifier. Since there are so many pixels in an image, however,

it is possible to accumulate quite large training sets, and covariances could be

estimated quite accurately in this example.
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11.4.2 A Numer i ca l Example

To illustrate the operation of the three-class Bayes classifier, we include

a numerical example having six pixels from each class in the training set.

While this is hopelessly inadequate for any real case, it serves to illustrate the

calculations. This example will permit readers who choose to implement a Bayes

classifier to check their implementation for numerical accuracy.

Assume the training set is

33 31 46 57 18

42 10 24 38 56

62 50 34 21 33

2
64

3
75

6 28 47 21 58

96 116 126 84 73

70 82 96 117 90

2
64

3
75

78 115 122 76 134

12 52 34 70 22

81 100 146 78 70

2
64

3
75 (11:21)

for the RGB color values of six pixels each of background, normal cells, and

abnormal cells, respectively. The mean vectors for the three classes are then

m1 ¼
37

34

40

2
4

3
5 m2 ¼

32

99

91

2
4

3
5 m3 ¼

105

38

95

2
4

3
5 (11:22)

The covariance matrices are

S1 ¼
223:5 �79 �112:25

�79 310 �58:5

�112:25 �58:5 257:5

2
64

3
75 S2 ¼

428:5 �24 86:25

�24 482 �79:75

86:25 �79:75 306

2
64

3
75

S3 ¼
700 �154:5 265:75

�154:5 542 21:5

265:75 21:5 934

2
64

3
75 (11:23)

from which the standard deviations (square roots of diagonal elements) are

s1 ¼
15:0
17:6
16:0

2
4

3
5 s2 ¼

20:7
22:0
17:5

2
4

3
5 s3 ¼

26:5
23:3
30:6

2
4

3
5 (11:24)
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the correlation matrices (Eq. 11.14) are

C1 ¼
1 �:300 �:468

�:300 1 �:207
�:468 �:207 1

2
64

3
75 C2 ¼

1 �:053 :238

�:053 1 �:208
:238 �:208 1

2
64

3
75

C3 ¼
1 �:251 :329

�:251 1 :030

:329 :030 1

2
64

3
75 (11:25)

and the determinants of the covariance matrices are

S1j j ¼ 1:053� 107 S2j j ¼ 5:704� 107 S3j j ¼ 2:917� 108 (11:26)

Suppose we have an unknown pixel having color vector

x ¼
38

80

78

2
4

3
5 (11:27)

The three likelihoods (from Eq. 11.17) are

L ¼
0:000015
0:088083
0:000213

2
4

3
5 (11:28)

and the pixel would be assigned to class 2. The log likelihoods, with constant

terms dropped (Eq. 11.19), are

LL ¼
�20:9
�12:3
�18:3

2
4

3
5 (11:29)

Again the pixel would be assigned to class 2. The Mahalanobis distances to the

class means (Eq. 11.20) are

D ¼
3:57
0:97
1:99

2
4

3
5 (11:30)

This pixel would be assigned to class 2 by a distance classifier as well, since it is

the closest.

11.5 Classifier Performance

Once a classifier has been designed and trained, it is necessary to test it to establish

its accuracy. This is usually done by classifying a test set of known objects and
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tabulating the number of errors. If the test set is the same as the training

set, the performance estimates will be optimistically biased. If it includes none of

the training data, they will be pessimistically biased. If the test set is large, the

effects of this bias will be slight. If the number of available preclassified objects is

small, one canuse the ‘‘round robin’’ or ‘‘leave one out’’method.Here the classifier

is trained on all but one of the objects and tested on the remaining object. This

process is repeated until every object has been used for testing. The results of

the various experiments are then averaged together to estimate the error rates.

11.5.1 The Confus ion Matr ix

A very handy tool for specifying the accuracy of a multiclass classifier is the

confusion matrix. This is an N � Nmatrix, C, where N is the number of classes.

The columns of C correspond to the classes to which objects actually belong,

while the rows of C correspond to the classes to which objects can be assigned.

Thus the element cij corresponds to the situation of an object that belongs to

class j being assigned to class i. That is, true class ¼ j, assigned class ¼ i.

One can set up the confusion matrix to summarize the results of a classifier

test in several ways. A raw confusion matrix results when the value of each

element is simply set to the number of times the corresponding situation

occurred in a particular test of the classifier. Other values, however, may be

more useful. For example, sensitivity is defined, for each class, as the probability

that an object belonging to that class will be correctly assigned. We obtain an

estimate of the sensitivity matrix by dividing the raw confusion matrix elements

by the total number of objects in the true class. Each element, then, shows what

percentage of the objects that actually belong to that class are assigned to that

class. The columns of the sensitivity matrix sum to unity.

Specificity, for a particular class, is defined as 1 minus the ratio of the number

of objects incorrectly assigned to the class to the total number of objects not in

that class. Specificity is seldom a very useful parameter because it almost always

takes on values quite close to unity. A more useful specification is positive

predictive value (PPV). This is the probability that an object assigned to a class

actually belongs to that class. The PPV matrix is estimated by dividing the

elements in each row of the raw confusion matrix by the total number of objects

assigned to that class. In this case the rows sum to unity.

When analyzing the performance of a classifier, one finds the sensitivity matrix

and the PPV matrix to be very useful. In short, the sensitivity matrix tells you

where each type of object is going, while the PPV matrix tells you what is going

into each of the classes. Studying these twomatrices can yield considerable insight

into the strengths and weaknesses of a particular classifier.

As an example, consider the sensitivity matrix and PPV matrix shown

in Fig. 11.5. They correspond to the three-class pixel classifier example
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mentioned earlier. We see from Fig. 11.5 that this classifier has two problems.

First, 9% of the pixels in abnormal cells are being called normal. This could lead

to abnormal cells being missed. Second, 7% of the pixels that are called abnor-

mal are actually normal. This could lead to false-positive errors. We would

conclude that this classifier needs to be improved in its ability to discriminate

between pixels in the normal and abnormal classes.

11.6 Bayes Risk

We now introduce a generalization of the maximum-likelihood Bayes classifier

that allows one to bias the classifier so as to reduce the occurrence of certain

costly types of misclassification errors, in exchange for making more of other,

less serious errors [2, 3]. Our three-class example had nine elements in the

confusion matrix. Three correspond to correct decisions, while the remaining

six represent different types of errors. Suppose that it is considered to be more

serious to confuse a pixel that falls inside an abnormal with one from a normal

cell, or to call a normal pixel abnormal, than it is to make any of the four other

possible errors. The minimum Bayes risk classifier allows us to account for this.

11.6.1 Minimum-Risk C lass ifier

We begin by setting up a cost matrix. It has the same format as the confusion

matrix, except its elements represent the ‘‘cost’’ of that situation’s occurring.

Specifically, Cij represents the cost of assigning to class j a pixel that actually

belongs to class i. If i ¼ j, this corresponds to a correct classification, and a cost

of zero might be assigned to those elements. If all misclassification errors are

equally unfortunate, then 1’s could be placed in all of the off-diagonal elements.

In this case a maximum-likelihood classifier results. However, larger values can

be assigned to cost matrix elements that correspond to the more serious errors.

A possible cost matrix for our three-class example is

C ¼
0 1 1

1 0 4

1 2 0

2
4

3
5 (11:31)
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F IGURE 11.5 Confusion matrices.
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Here we have said that (1) correct classifications cost nothing, (2) calling an

abnormal pixel normal has a cost of 4, (3) calling a normal pixel abnormal has

a cost of 2, and (4) the four remaining errors have unit cost. Note that the actual

cost values areunitless, and their values are relevant only in relation toone another.

Given a cost matrix, we can set up the Bayes classifier to minimize its long-

term cost of operation. The Bayes risk for assignment to a particular class is the

cost of each outcome times the likelihood of that outcome, summed over all

possible assignments to that class. It can be computed, for the unknown pixel of

Eq. 11.27, as

Ri ¼
X3
j¼1

Ci, jLj R ¼
0:0883
0:0009
0:1762

2
4

3
5 (11:32)

In this example, the unknown pixel would be assigned to Class 2 because the risk

is lowest there.

11.7 Relat ionships Among
Bayes Classifiers

Note that the minimum-risk classifier is the most general Bayes classifier. The

maximum-likelihood classifier is a special case, namely when all costs are set to

be equal. Further reductions in generality result when the a priori probabilities

are assumed to be equal, or the off-diagonal covariances are assumed to be

zero. The minimum-distance classifier is a further restricted special case that

results when both the a priori probabilites and the within-class variation are

ignored. In this example, all three forms of the Bayes classifier, the minimum-

risk, maximum-likelihood, and minimum-distance classifiers, assigned the un-

known pixel to the same class. This will not be the case in general, as objects

that fall near the decision boundaries will be assigned differently by the

different classifiers. Objects that fall near the class mean will be classified

correctly by any of the classifiers.

11.8 The Choice of a Classifier

If a considerable amount of training data is available, one can simply

estimate the required pdfs and use those estimates in the classification

process. Such classifiers are called nonparametric. Often, however, it is diffi-

cult to obtain large numbers of preclassified objects. In that case one can
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assume a particular functional form for the pdf (the Gaussian, for example)

and use the training data only to estimate the parameters. This gives rise to

a parametric classifier. Considerably less training data is then required for

training, and one benefits from the powerful mathematics that have been

developed for those cases.

It is often useful to begin a classifier design effort with a classical Bayes

classifier, as described earlier. At the very least this establishes a baseline of

performance against which other types of classifiers can be tested and evaluated.

Further, if the underlying assumptions are met, the Bayes classifier, assuming

Gaussian statistics, may well perform as well as or better than any other

classifier.

Problems arise when the underlying pdfs do not fit the assumed form. The

classifier’s performance and one’s predictions of its accuracy are only as good as

the underlying assumptions. It is rather difficult to prove that a population of

objects actually fits, for example, a Gaussian distribution. As a rule of thumb, if

the marginal distributions (one-dimensional histograms) are unimodal and

symmetrical, one can often assume Gaussian statistics (although there are no

guarantees, and notable exceptions exist). Even if they are not unimodal and

symmetrical, one can do things to make them unimodal and symmetrical.

11.8.1 Subc lass ing

If the feature histograms of a class are multimodal (i.e., they have two or more

peaks), one would suspect that two or more distinct subclasses exist within the

class. By subdividing the class, one can often achieve unimodal pdfs, but with

a larger number of classes. This is a fair trade if it justifies the assumption

of Gaussian statistics. An example is shown in Fig. 11.6. This is the single-

feature, two-class example used earlier in this chapter. Here the nuclear

diameter histogram of normal cells is unimodal, but that of the abnormals is

bimodal.

If we reexamine the training set, we may find that two distinct populations of

cells exist within the abnormal class. In this case we can establish a new class

called ‘‘atypical’’ and assign some of the previously ‘‘abnormal’’ cells to it, based

on their morphology. The result is a three-class problem where the feature

histograms are unimodal (Fig. 11.7). This is a very profitable trade if it permits

the use of the assumption of Gaussian statistics.

11.8.2 Feature Normal izat ion

An asymmetrical or non-Gaussian pdf often can be corrected by a suitably

designed nonlinear transformation of the feature values [3]. A feature histogram
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normalized to unit area is an estimate of the pdf of that feature. The cumulative

distribution function (CDF) is the integral of the pdf; that is,

P(x) ¼
ðx
0

p(u)du ¼ 1

Ao

ðx
0

H(u)du (11:33)

where H(x) is the histogram, p(x) is the pdf, P(x) is the CDF, and Ao is the area

under the histogram. The CDF is quite a well-behaved function, increasing

monotonically from zero to 1. If it is used to transform feature x into a new

feature, y, that is, y ¼ P xð Þ, then feature y will have a flat histogram (uniform
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F IGURE 11.6 A two-class problem with a bimodal pdf.
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F IGURE 11.7 The use of subclassing to eliminate a bimodal pdf. The result is a three-class problem with
unimodal pdfs.

11.8 The Choice of a Classifier

237



distribution). As a special case, the CDF corresponding to a Gaussian pdf

will transform a feature with a Gaussian pdf into one with a flat histogram.

It follows that the inverse function of the Gaussian CDFwill transform a feature

with a flat histogram into one with a Gaussian histogram. Thus we can trans-

form a feature so that it has a Gaussian histogram by concatenating two

nonlinear transformations:

y ¼ P2 P1 xð Þ� 	
(11:34)

where P1 xð Þ is the CDF of the feature and P2 xð Þ is the inverse of the CDF of

a Gaussian. P1 xð Þ makes the pdf uniform, and P2 xð Þ makes it Gaussian.

Note that, in amultifeature classification problem, transforming the individual

features to haveGaussian pdfs does not guarantee that the overallmultivariate pdf

will be Gaussian. As a practical matter, however, such a transformation canmake

the assumption of Gaussian statistics much less of an approximation. Feature

normalization works best in the commonly occurring case where the raw feature

histograms are not radically different from a Gaussian to begin with.

11.9 Nonparametric Classifiers

If the functional form of the pdfs of the classes is unknown, then the parametric

approach cannot be used. In this case one must estimate the pdfs directly

from the training data [2]. This generally requires a much larger training set.

However, the maximum-likelihood and minimum-risk formulations still apply.

The basic problem of nonparametric pdf estimation is straightforward:

Given a set of training samples, model the pdf of the data without making any

assumptions about the form of the distribution. Suppose we have Nj training

samples from class j. To estimate the pdf, the L-dimensional feature space can be

partitioned into small regions that are L-dimensional hypercubes, with volume

V ¼ hL, where h is the bin size. Let R be such a region and kj be the number of

samples from class j falling into R, with kj # Nj. A straightforward estimate of

the pdf can be expressed as

p̂(xjCj) ¼ kj=Nj

V
(11:35)

This basic estimator corresponds to an L-dimensional histogram. Essentially,

the feature space is divided into a finite number of hypercube bins, and the

probability density at the center of each hypercube is estimated by the fraction

of samples in the training set that fall into that hypercube bin. The bin size,

h, and the starting position of the first bin are two ‘‘parameters’’ that determine

the shape of the histogram.
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The histogram is a simple and effective form of pdf estimation, but it has

several drawbacks. The shape of the estimate is affected by both the bin size and

the starting point of the bins. The discontinuities of the estimate are not due to

the underlying probability density but are caused, rather, by the particular

choice of bin locations. A more serious problem is the curse of dimensionality,

since the number of bins grows exponentially with the number of dimensions.

In high dimensions we would require a very large number of training samples, or

else most of the bins would be empty.

A more advanced nonparametric pdf estimation method makes use of the

so-called Parzen window for a unit hypercube centered at the origin:

c(v) ¼ 1, jvqj # 1

2
, q ¼ 1, 2, . . . , L

0 otherwise

(
(11:36)

Hence c( (x� xi)=h) equals unity if xi is within the hypercube at x and is zero

elsewhere. The number of training samples that fall into this hypercube can be

written as

k ¼
XNj

i¼1

c( (x� xi)=h)

Substituting it in Eq. 11.35, we have

p̂(xjCj) ¼ 1

Nj

XNj

i¼1

1

V
c( (x� xi)=h) (11:37)

Notice that the Parzen window density estimate resembles the histogram,

except the hypercube locations are determined by the training sample points

rather than by the histogram bins. The expression in Eq. 11.37 shows that the

estimate p̂(xjCj) is made of an average of functions of x and the samples xi. Based

on the foregoing formulation, we can adopt two basic approaches. We can choose

a fixed value of k and determine the corresponding volume V from the training

samples. This gives rise to the so-called k nearest neighbor (kNN) approach. We

can also choose a fixed value of the volume V and determine k from the samples.

This leads to the methods commonly referred to as kernel density estimation

(KDE).

11.9.1 Neares t -Neighbor C lass ifiers

The kNN is a very intuitive nonparametric approach that classifies unknown

objects based on their similarity to the samples in the training set. For an

unknown object x, it finds the k ‘‘nearest’’ samples xi in the training set and assigns

x to the class that appears most frequently among the k nearest samples. A great
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advantage with the kNN approach is that no estimation of the pdf is required

because the function is only approximated locally, and all computation is deferred

until the classification stage. However, the disadvantages are the memory require-

ment to store training samples and the computational complexity required to

search for the k nearest samples during the classification of each unknown object.

On the other hand, with the KDE methods one can generalize the hypercube

Parzen window with a smooth nonnegative kernel function c(x) that satisfies the
condition

Ð
c(x) dx ¼ 1. Just as the Parzen window estimate can be considered

a sum of boxes centered at the samples, the smooth kernel estimate is a sum of

‘‘bumps’’ placed at the samples, and the kernel function determines the shape of

the bumps. Usually c(x) is chosen to be a radially symmetric, unimodal pdf, such

as the multivariate Gaussian. The kernel function is used essentially for interpol-

ation, and each sample contributes to the estimate according to its distance from x.

It can be shown [2] that both of these approaches converge to the true pdf as

Nj ! 1, that is, limNj!1 p̂(xjCj) ¼ p(xjCj), provided that V shrinks with Nj and

that k grows with Nj properly. For applications with high-dimensional feature

space, the curse of dimensionality affects all classifiers, without exception. The

available training samples are usually inadequate to obtain an accurate estimation

in these cases. One solution to the problem is to choose independent features so

that p(xjCj) ¼
QL

i¼1 p(xijCj), by mapping the original features using a proper

subspace transformation such as independent component analysis (ICA) [7].

Thus the problem of estimating an L-dimensional multivariate pdf p(xjCj) is

reduced to that of estimating multiple one-dimensional univariate pdfs

p(xijCj), i ¼ 1, 2, . . . , L. This way the training set size requirement becomes

much easier to meet.

11.10 Feature Select ion

Ideally one would prefer to use a rather small number of highly discriminating,

uncorrelated features. Increasing the number of features increases the dimen-

sionality and hence the volume of the feature space [8–10]. This, in turn,

increases the requirements for training set and test set size [2–4]. Adding

features that have poor discrimination or are highly correlated with the

other features can actually degrade classifier performance [2].

11.10.1 Feature Reduc t ion

There are well-developedmathematical procedures for reducing a large number of

features down to a smaller number without severely limiting the discriminating
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power of the set. Principal component analysis (PCA) [6] and linear discriminant

analysis (LDA), also known as Fisher discriminant analysis (FDA) [11], discussed

later, are among the best-known subspace methods that can be used for this

purpose. Both generate a new set of features, each of which is a linear combination

of the original features. In both cases the new features are ranked so that one can

select only a few of the most useful ones, thereby reducing the number of features.

11.10 .1 .1 Pr i n c i pa l Componen t Ana l y s i s

In general, suppose x is an L-dimensional feature vector and W is a Q� L

matrix, then

yi ¼
XL
j¼1

wi, jxj, i ¼ 1, 2, . . . , Q, or y ¼ Wx (11:38)

defines a linear transformation of the vector x. The result is a Q� 1 vector y,

which is a projection of x onto a linear subspace defined by the transform

matrix W. Each element yi is the inner product of a basis vector, which is

made up of the ith row of W, with the input vector x. Consider a set of L-

dimensional sample feature vectors x1, x2, . . . , xM . Without loss of generality,

we can assume these are zero-mean vectors, since we can always redefine

x ¼ x0 � m, where m is the mean vector of all these samples. Then X is an

L�M data matrix whose columns comprise the M sample vectors x1, x2, . . . ,
xM, and St ¼ XXT is defined as the total scatter matrix of the sample vectors. The

aim of PCA is to find the transform matrix of a subspace whose basis vectors

correspond to the maximum-scatter directions in the original L-dimensional

feature space. Therefore the PCA transformmatrix,WPCA, is chosen to maximize

the determinant of the total scatter matrix of the projected samples

WPCA ¼ argmax
W

j~Stj (11:39)

where ~St ¼ WStW
T . The solution to this equation is the transformationmatrixW,

constructed so that its row vectors are the eigenvectors, wj, of the scatter matrix,

St, arranged in the order of decreasingmagnitude of the corresponding eigenvalues

lj, that is,

Stwj ¼ ljwj, j ¼ 1, 2, . . . ,Q (11:40)

where the lj are nonzero eigenvalues associated with the eigenvectors wj,

Q denotes the rank of St, and it cannot exceed the lesser of L and M.

Because of the maximum-scatter projection, PCA provides an optimal

transformation for representing the original data vector, x, from a lower-

dimensional subspace in terms of minimum mean square error (MSE) [2]. Let
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ŴPCA be the R� L matrix (R < L) formed by discarding the lower L�R rows

of WPCA. Then the transformed R� 1 vector ŷ is given by ŷ ¼ ŴPCAx: The x

vector can still be reconstructed as x̂ ¼ ŴT
PCAŷ, with approximation error given

by MSE ¼ PL
k¼Rþ1 lk. Overall, PCA uncorrelates the new features and maxi-

mizes their variance. The number of new PCA features is equal to the number of

original features, and one can decide how many of them to use.

11.10 .1 .2 L inea r D i s c r im inan t Ana l y s i s

Unlike PCA, LDA seeks a linear subspace that best discriminates among object

classes rather than the one that represents samples with the least MSE. Specif-

ically, LDA selects the transform matrix WLDA in such a way that the ratio

of the between-class scatter and within-class scatter is maximized [11]. If we

define the between-class scatter matrix as

Sb ¼
Xc

i¼1

Mi mi � mð Þ mi � mð ÞT (11:41)

and the within-class scatter matrix as

Sw ¼
Xc

i¼1

XMi

j¼1

xj � mi

� 	
xj � mi

� 	T
(11:42)

whereMi is the number of samples in class i, c is the number of object classes, mi

is the mean of type i sample vectors, and m is the total mean of sample vectors of

all classes. The optimization criterion here is to maximize the determinant ratio

of between-class and within-class scatters of the projected samples

WLDA ¼ argmax
W

~Sb

�� ��
~Sw

�� ��
( )

(11:43)

where ~Sb ¼ WSbW
Tand ~Sw ¼ WSwW

T. It has been proven [11] that if Sw is

nonsingular, the determinant ratio in Eq. 11.43 is maximized when the row

vectors of the transform matrix, W, are the generalized eigenvectors of S�1
w Sb

corresponding to

S�1
w Sbwi ¼ liwi, i ¼ 1, 2, . . . ,m (11:44)

where li, i ¼ 1, 2, . . . ,m are the generalized eigenvalues and m is the number of

nonzero generalized eigenvectors, m # c� 1. Notice that the dimensionality

of the LDA subspace is upper-bounded by c� 1, meaning that the total number
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of LDA features is 1 less than the number of classes. This is because Sb is of rank

c� 1 or less. Also, since the rank of Sw is at mostM � c,Mmust be greater than

or equal to Lþ c in order to ensure that Sw does not become singular.

In summary, since LDA maximizes the ability of the new features to

discriminate among the classes, it is generally considered to be more effective

than PCA for feature reduction prior to classification.

11.11 Neural Networks

A completely different approach to classification is the use of artificial neural

networks (ANNs) [5]. Here a network is composed of one or more layers of

interconnected processing elements (PEs). Each PE creates its output as

a weighted sum of its inputs (see Fig. 11.8). The feature values are the inputs

to the first layer, and the output values of the final layer are used to assign the

object to a class.

The ANN is trained by adjusting the weighting factors in each of its PEs.

A large training set of preclassified objects is presented to the network repeatedly

and in random order. Each time, the weights are adjusted to bring the output

to other processing elements

Xk = g (Sk)

wk1

unit 1 unit 2 unit 3

unit k

unit j

wk2

x1 x2 x3 xj

wk3 wkj

F IGURE 11.8 A neural network processing layer.
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value toward its correct value. The training process is continued until the error

rate stops declining.

The computation performed by such a PE is a function of a dot product,

O ¼ g X�Wð Þ ¼ g
XN
i¼1

xiwi

" #
¼ g Sð Þ (11:45)

where O is the (scalar) output, X is the input vector, and W is the weight vector

associated with that processing element. The weights are adjusted during the

training process, and they remain fixed during ordinary usage.

The weighted sum is subjected to a nonlinear transformation by the activa-

tion function, g(S), which has a sigmoid (S-curve) shape. It is monotonically

increasing and differentiable, and it asymptotically approaches 0 and 1 at large

negative and positive values of its argument, respectively. An example is

g(S) ¼ 1

1þ e�S
(11:46)

The primary purpose of the activation function is to limit the output of the PE to

the range [0, 1]. By convention, outputs are all positive, but interconnection

weights can be either positive or negative.

One advantage of the ANN is that it is not necessary to know the statistics

(i.e., pdfs) of the features in order to develop a functioning classifier. Further,

the decision surfaces that the ANN can implement in feature space are more

complex than the second-order surfaces that the parametric Bayes classifier, for

example, generates. This can be helpful when the pdfs are multimodal.

A disadvantage of the ANN, as compared to the statistical classifiers previ-

ously discussed, is that it is a ‘‘black box,’’ and one is hard pressed to understand

or explain its behavior. It also lacks the rich analytical underpinning of the

classical approach that provides guidance in the design and development pro-

cess. This makes it difficult to prove optimality or to predict error rates. Further,

if the training is not done properly, on representative training sets of sufficient

size, then the net can overfit, or ‘‘memorize the training set,’’ that is, perform

well on the training set but not generalize to objects not previously seen.

11.12 Summary of Important Points

1. A well-trained Bayes classifier can be quite effective at multiclass,

multifeature classification, even in the presence of considerable noise.

2. One should pay particular attention to numerical precision issues since

some of the parameters in the probability calculations can become quite

large or quite small.
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3. If the marginal distributions are unimodal and symmetrical, it may be

useful to assume Gaussian statistics (multivariate normal pdfs).

4. A nonlinear transformation can make a feature’s pdf symmetrical.

5. A multimodal pdf suggests the presence of subclasses. Judicious use of

subclassing and feature transformations can often make the Gaussian

assumption work.

6. When a particular functional form for the pdf (the Gaussian, for ex-

ample) is known, less training data is required since it is used only to

estimate the parameters. This gives rise to a parametric classifier.

7. If the functional form of the pdf is not given or it is known to be non-

Gaussian, one must estimate the pdfs directly from the training data.

Such classifiers are nonparametric, and they usually require considerably

more training data.

8. When available training samples are inadequate to estimate the pdfs

accurately, one can choose independent features by mapping the

original features using a proper transformation such as independent

component analysis. With this method the problem of estimating a

multivariate pdf is simplified to that of estimating multiple univariate

pdfs, thereby considerably reducing the size requirements of training sets.

9. PCA and LDA are two well-known techniques for reducing a large

number of features down to a smaller number without losing their

discriminating power. PCA uncorrelates the new features and maxi-

mizes their variance, whereas LDA maximizes the ability of the features

to discriminate among the classes.

10. An ANN classifier has the advantages that it is not necessary to know

the statistics of the features in order to function, and the decision

surfaces it can implement in feature space are more complex than the

second-order surfaces that the parametric Bayes classifier generates.

However, its disadvantages are that it is a ‘‘black box’’ and it is difficult

to prove optimality or to predict error rates. It also lacks the rich

analytical underpinning that supports the design of statistical classifiers.
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12
Fluorescence Imaging

Fatima A. Merchant and Ammasi Periasamy

12.1 Introduct ion

Fluorescence microscopy is one of the most basic tools used in biological

sciences for the visualization of cells and tissues. The popularity of fluorescence

microscopy for the examination of biological specimens, both fixed and live,

stems from its inherent ability to target fluorescent probes to molecules at low

concentrations with high selectivity and specificity (and relatively high signal-to-

noise ratios (SNRs) due to separation of the excitation light from the recorded

fluorescence image).

Modernization of imaging techniques, robotic instrumentation, develop-

ment of new fluorescent tagging proteins and synthetic fluorophores, and the

rapid growth in computer and informatics technology have only compounded

its utilization in the observation of the temporal and spatial dynamics of cellular

components and activity. The past decade has witnessed a renaissance of fluor-

escence microscopy, with digital imaging playing a pivotal role in automated

detection and analysis of molecular and cellular processes, resulting in a shift of

paradigm from qualitative to quantitative biology. The current emphasis in

biology is now on quantitative analysis of information so that observations

can be integrated and their significance understood. Digital image processing

can provide numerical data to quantify and substantiate biological processes

observed by fluorescence microscopy. This chapter covers the principles of

fluorescence and highlights problems inherent to fluorescence microscopy and

methods to correct them digitally. In subsequent sections, various fluorescence

Microscope Image Processing
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microscopy techniques are introduced, with an emphasis on the image pro-

cessing and image analysis algorithms used for enhancing and analyzing

fluorescence images.

12.2 Basics of F luorescence Imaging

Electrons in certain types of molecules can absorb light, reach excited higher-

energy states, and then decay back to their ground state by losing energy in the

form of heat and emitted light. If the electron’s spin is unchanged, the excited

state is called the singlet state, whereas if the spin is altered by the excitation,

the electron enters the triplet state. Decay from the singlet excited state results

in fluorescence emission, whereas decay from the triplet state is known as phos-

phorescence. The phenomenon of fluorescence occurs when certain molecules

(called fluorophores, fluorochromes, or fluorescent dyes) absorb light and reach an

excited, unstable electronic singlet state (S1). Under normal conditions, an

unexcited molecule typically resides in the stable ground state S0, at its lowest

vibrational or rotational energy level. The absorption of a photon moves

amolecule to one of the vibrational or rotational energy levels of a higher-energy

state (S1). Internal energy conversions (time on the order of�1 ps) then force the

molecule to relax back to the lowest-energy level ofS1. Fromhere, they transition

back to the singlet ground state (S0), following the emission of fluorescent light at

a characteristic wavelength (time order of �1–10 ns). Internal conversion again

relaxes the molecule back to the lowest-energy level of S0.

Fluorescence emission always occurs due to decay from the lowest-energy level

of S1 to some level of the ground state, regardless of the initial state of excitation.

Thus the energy of excitation is greater than the energy of emission, and

the emission spectrum is independent of the energy of the exciting photon. The

energy of the emitted photon is the difference between the energy levels of the

excitationand emission states, and it determines thewavelength of the emitted light

lEM as follows

lEM ¼ hc=EEM (12:1)

where EEM is the difference between the energy levels of the two states during

emission (EM) of light, h is Planck’s constant, and c is the speed of light. The

wavelength of emission is always longer than that of excitation, and the difference

between the two is known as the Stokes shift.

The emitted fluorescence can be expressed as

IEM ¼ IEX� «� c� x�f (12:2)

where IEX is the intensity of the illuminating light, « is the extinction coefficient

of the fluorophore, c is the concentration of the fluorophore, x is the optical path
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length, and f is the quantum efficiency, which reflects the fluorophore’s ability

to convert absorbed light into emitted fluorescence (i.e., the ratio of the number

of photons emitted to the number of photons absorbed). The level of intensity,

or brightness, of the emission produced by a fluorophore depends on its ability

to absorb light at a particular wavelength (i.e., its extinction coefficient, «) and
on the quantum efficiency. Typical values of « for fluorophores at their charac-

teristic absorption wavelength are in the range of tens of thousands, whereas the

f may range from 0 (no fluorescence) to 1 (100% efficiency). Fluorescence

intensity is also influenced by the intensity of the incident illumination; that is,

with an increase in illumination intensity, a larger number of fluorophore

molecules are excited, and the number of emitted photons increases. Under

conditions of constant illumination wavelength and intensity and low fluoro-

phore concentrations, the emitted fluorescence is a linear function of the number

of fluorophore molecules present. Nonlinearity typically results at very high

fluorophore concentrations, partly due to reabsorption of the emitted light.

In fluorescence imaging, specimens are labeled with fluorophores. The distri-

bution of fluorescence is then observed under exciting illumination and captured

by photosensitive detectors that measure the intensity of the emitted light

and create a digital image of the sample. Conventional wide-field microscopy

(epifluorescence mode) is most commonly used for fluorescence microscopy of

thin fixed samples, whereas confocal and two-photon fluorescence microscopy

are more appropriate for thicker samples and for dynamic live cell imaging [1–3].

12.2.1 Image Format ion in F luorescence
Imaging

Fluorescence microscopy is an incoherent imaging process. Each point in the

specimen contributes independently to the light intensity distribution in the

observed image. Each fluorophore molecule in the sample acts as a light source,

and image formation occurs by the integration of these secondary light sources

in the specimen. Thus the principle of linear superposition applies in fluores-

cence microscopy, such that the combination of multiple sources generates an

image that is the sum of the individual responses of the point sources. Most

fluorescence microscopes are epifluorescence systems [2], in which both sample

illumination and the collection of emitted light from the sample occur through

the same objective lens. Imaging in a fluorescence microscope can be modeled as

a space-invariant linear system [4], where the intensity distribution is given by [1]

I x, y, zð Þ /
ð
R3

hlem
x

M
� u,

y

M
� v,

z

M2
� w

� ���� ���2x u, v, wð Þ du dv dw (12:3)
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whereM is the magnification of the objective, x is an object-dependent function

related to the fluorophore concentration that describes the specimen’s ability to

emit light at lem. The incoherent point spread function (Chapter 2), denoted

by hlemj j2, is the impulse response that defines the image of an ideal point object

and is given by the two-dimensional (2-D) Fourier transform of the pupil

function [1],

hl x, y, zð Þ ¼
ð
R2

P u,vð Þ exp i2pz
u2 þ v2

2lf 2

� �
exp �i2p

xuþ yv

lf

� �
du dv (12:4)

where f is the focal length of the objective and P is the pupil function representing

the circular aperture of the objective. The focal length, f, is related to the radius

of the circular aperture of the objective as f ¼ r=NA, where NA is the numerical

aperture. NA is a measure of the angular dimension of the light cone emerging

from the sample that is collected by the objective, and it affects both resolution

and depth of field. Fluorescence intensity typically increases with an increase in

theNA.The light intensityat thedetector isapproximatelyproportional toNA4 [5].

Detailed descriptions of image formation, imaging resolution, and sampling

concepts can be found in other publications [Chapters 1–3 this book, 6–8].

12.3 Optics in Fluorescence Imaging

Wide-field, confocal, and two-photon microscopes can be used to perform

single- and/or multidimensional fluorescence microscopy [3]. The key require-

ment is that the microscope be appropriately equipped to allow (1) illumination

at the required excitation wavelength, (2) separation and effective removal of the

excitation light from the emitted fluorescence, and (3) detection of the emitted

light. Mercury or xenon lamps that produce ‘‘white light’’ (i.e., visible spectrum,

with peaks at certain characteristic wavelengths) are used as the light source in

wide-field microscopy, whereas lasers are used for illumination in confocal and

two-photon imaging. The selection of light of a particular wavelength is

achieved by inserting an excitation filter in the illumination path and an emis-

sion filter (also known as a barrier filter) in the fluorescence emission path.

Separation of reflected excitation light from the emitted light is accomplished

by a dichroic mirror, which reflects or transmits light depending on wavelength

(e.g., reflects excitation and transmits emission wavelengths). Information

regarding fluorescence microscopes, filters, and objectives can be found in

other publications [9–11].

Finally, it is critical to choose an appropriate detector. In fluorescence

microscopy, CCD (charge-coupled device) cameras and image-intensified
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systems are often used. For detailed information on detector selection and

performance evaluation, see [12–16].

12.4 Limitat ions in Fluorescence
Imaging

Most modern microscopy equipment is constructed to minimize phase distor-

tion and optical aberrations. Nevertheless, no optical system is completely free

of distortion, and, in practice, aberrations are always present to some extent.

For a detailed description of the sources of aberrations in fluorescence micro-

scopy, see [17]. The sources of aberrations in fluorescence microscopy broadly

fall into two categories; instrumentation based and sample based. In addition,

sample preparation and microscope handling also constitute important and

frequent sources of inhomogeneity observed in fluorescence images.

12.4.1 Ins t rumentat ion-Based Aberrat ions

The choice and configuration of a fluorescence microscopy system has a pro-

found effect on the quality of the acquired image. The illumination source, type

of microscope, objectives, excitation and emission filters, and photosensitive

detector must all be carefully and appropriately chosen and adjusted to achieve

sharp images with high SNR [15, 16]. Illumination sources should be stable and

should generate reliable, reproducible, and uniform field illumination with

proper spectral separation and registration. The quality and performance of

the objective lens are related directly to the system resolution, and the objective

lens must be chosen to fit the application requirements. Similarly, detectors should

be chosen to satisfy the Nyquist sampling criteria, linearity of photometric re-

sponse, high SNR, and sensitivity (Chapters 2–4). Photomultiplier tubes (PMTs)

and CCDs when used properly are linear detectors and are thus used in most

fluorescence microscopy applications. Despite appropriately chosen instrumenta-

tion for performance optimization, certain limitations inherent to the equipment

may result in measurement noise in images [7, 14, 18]. Common sources of

noise and related image processing algorithms for correction are described in the

following sections.

12.4 .1 .1 Pho ton Sho t No i se

Apart from the diffraction-limited spatial resolution inherent in light micro-

scopy, the major source of aberration introduced by the imaging process

is intrinsic photon noise. In fluorescence imaging, the quantum nature of

light gives rise to a fundamental limitation of any photodetector, known as

photon shot noise, which results from the random nature of photon emission.
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The absorption of a photon by the CCD creates a photoelectron in the CCD

well, and during readout the accumulated photoelectrons are counted. The

number of photons collected by the detector determines the image amplitude

at any given point in the image. Photon shot noise is random, with a Poisson

distribution of the number of detected photons, given by [19]

p Nð Þ ¼
YM
i¼1

mN exp �mð Þ
N!

(12:5)

where N is the number of detected photons and m is the mean of the Poisson

process. Although other factors, such as the integration time and quantum

efficiency of the detector, influence photon shot noise [20], its intrinsically

random nature make it impossible to avoid. Thus, even in the absence of other

noise sources, photon noise leads to the finite SNR of detectors [7]. This limiting

SNR is given by [7]

SNRphoton ¼ 10 log10 mð Þ (12:6)

Thus photon shot noise is independent of the detector electronics and can be

reduced only by increasing the light intensity or the exposure time. Consequently,

the SNR can only be improved by increasing the exposure of specimens to light.

12.4 .1 .2 Da rk Cu r ren t

Dark current is another intrinsic source of noise present in photodetectors. It is

the number of induced electrons per pixel that arise from sources such as

thermal agitation [12]. Thermal energy is mostly responsible for the generation

of dark current, with higher temperatures resulting in higher kinetic energy of

the electrons and stronger dark current. For CCD detectors, dark current tends

to charge the CCD pixel wells when the integration time or the temperature is

too high. For PMTs, thermal energy often results in spontaneous electron

emissions and, consequently, dark current as well. Dark current also follows

the Poisson distribution for the number of thermal electrons produced over

a given time interval. The presence of dark current introduces an offset in the

pixel value, resulting in noise and a reduced dynamic range. The most effective

method to alleviate dark current noise is to cool the detector. Consequently,

most modern high-sensitivity scientific-grade cameras are available as cooled

device detectors that have reduced thermal noise, even at long integration times.

12.4 .1 .3 Aux i l i a r y No i se Sou r ce s

Electronics associated with CCD cameras are also responsible for generating

noise during readout. Similarly, fluctuations in the internal gain of PMT devices
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also result in noise. This type of noise is called readout noise, and its amplitude

depends on the camera’s readout rate [7, 19]. Readout noise is inversely related

to the pixel readout frequency, with the power spectral density of the noise

decreasing as 1=f. Scientific-grade CCD cameras that operate in the frequency

range of 20–500 kHz typically have low readout noise that can be ignored. For

higher readout frequencies, the readout noise appears as additive, Gaussian

distributed noise that can be problematic.

12.4 .1 .4 Quan t i za t i on No i se

All digital detectors produce quantization noise. The digitization of the CCD

image into a collection of integer values (i.e., the digital image) introduces

a form of noise that is not band-limited. Quantization noise is inherent in the

amplitude quantization process that occurs in the analog-to-digital converter

(ADC). It is independent of the signal and can be modeled as additive noise

when the dynamic range has intensity levels$24 (equivalent to bit depth,B, of 4 ).

For a digitized image, if the ADC is adjusted so that 0 corresponds to the

minimum video signal value, and 2B� 1 corresponds to the maximum video

value, then the SNR for quantization, SQ, is given by [19]

SQ ¼ 6� Bþ 11 (12:7)

measured in decibels. It is good practice to keep the quantization noise level to

one-half the RMS noise level due to other sources.

12.4 .1 .5 Othe r No i se Sou r ce s

Finally, the ambient radiation, especially in the infrared domain, can also be

a source of background noise in images. With recent advances in imaging

hardware, most detectors are manufactured such that noise from other sources

is negligible, and detector noise is essentially limited to only photon shot noise.

Most state-of-the-art photodetectors have high quantum efficiency, low dark

current (especially for cooled devices), high sensitivity, and excellent linearity.

12.4.2 Sample-Based Aberrat ions

The optical characteristics of a sample not only are important for image forma-

tion, but also play a role in introducing image aberrations. The sample-based

aberrations most often observed in fluorescence images include effects of

photobleaching, autofluorescence, absorption, and scattering.

12.4 .2 .1 Pho tob lea ch ing

Photobleaching is an inherent phenomenon in fluorophores, and it has

a damaging effect in fluorescence microscopy. Specifically, it causes an effective
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reduction in and, ultimately, a complete elimination of fluorescence emission.

The term bleaching covers all of the processes that cause the fluorescent signal to

fade permanently [11], due to photon-induced chemical damage and covalent

modification. This is different from the process of quenching (reduction in the

excited-state lifetime and quantum yield), which is the reversible loss of fluores-

cence that occurs due to noncovalent interactions between a fluorophore and its

molecular environment.

At the molecular level, photobleaching occurs when an excited electron

reaches the triplet state. This state is long-lived, allowing more time for the

fluorophores to react with another molecule to produce an irreversible cova-

lent chemical modification. For example, in the presence of oxygen,

a fluorophore molecule can transfer its energy to oxygen molecules, exciting

them to a reactive singlet state. Chemical reactions with singlet oxygen mol-

ecules then covalently alter the fluorophore. This leads to permanent changes

by which the molecule loses its ability to fluoresce or becomes nonabsorbent at

the excitation wavelength. The kinetics of bleaching vary among fluorophores,

since the number of excitation and emission cycles for each fluorophore

depends on its molecular structure and the local milieu. Overall, bleaching is

an irreversible process that has a collective effect; that is, a reduction in

exposure time or excitation intensity does not prevent bleaching, but only

reduces the rate at which it occurs.

Another detrimental side effect of the process is phototoxicity, which may

result from the interaction of the radical singlet oxygen species with other

organic molecules. In fluorescence imaging, bleaching limits the total intensity

of light and the exposure time in all samples, and in dynamic studies it may

decrease viability of living tissue over time. On a positive note, the photobleach-

ing phenomenon has been the basis of many fluorescence measurement tech-

niques (described in Section 12.7.7). Sample preparation and experimental

methods to reduce photobleaching are described in detail elsewhere [11],

whereas image processing–based correction is described in Section 12.5.9.

12.4 .2 .2 Au to f l uo re s cen ce

Autofluorescence is the term used to describe the emission of fluorescence from

organic or inorganic molecules that are naturally fluorescent. In fluorescence

imaging, molecules that emit fluorescence in the visible domain can be visual-

ized, even in unstained samples. Autofluorescence is a significant source

of background noise in fluorescence images. In quantitative fluorescence im-

aging, background signals due to autofluorescence become problematic when

there is an overlap with the emission of a target fluorophore, and more so when

the latter is sparsely expressed or exhibits weak fluorescence. Autofluorescence is

observed in both plant and animal tissue. For example, the fluorescent pigment
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lipofuscin is found in the cytoplasm of mammalian cells and in chloroplasts of

plant cells. The mounting and embedding material may also exhibit low

amounts of autofluorescence. Although sample preparation methods are avail-

able to reduce autofluorescence [21], computational background subtraction,

described later, can prove to be a very effective method for correction.

12.4 .2 .3 Abso rp t i on and S ca t t e r i ng

Absorption and scattering of light are the most common causes of optical

aberrations observed in fluorescence imaging. Light at both the excitation and

emission wavelengths can be scattered due to particles, refracted due to inter-

faces, or absorbed by the specimen material itself. This typically occurs due to

(1) the presence of particles in the specimen with sizes comparable to the

wavelength of light and (2) a mismatch in the refractive indices of the specimen

and the immersion layers. The optical aberration introduced is observed as

a reduction in the intensity of light with increasing depth into the specimen.

In light microscopy, the effect is manifested as both a reduction in the intensity

of illumination with increasing depth and a limitation on the depth within the

specimen from which an emitted light signal can be detected. These effects are

apparent as a reduction in image contrast when imaging deep within the

specimen, and they are most obvious in wide-field and confocal microscopy.

The problems are somewhat alleviated in two-photon imaging, in which exci-

tation at a longer wavelength allows imaging deeper within the sample.

Methods to correct for depth-dependent signal attenuation are described in

Section 12.5.10.

12.4.3 Sample and Ins t rumentat ion
Handl ing–Based Aberrat ions

Variability in sample preparation and improper illumination alignment are the

two most common and frequently observed sources of light intensity inhomo-

geneity in fluorescence images. Sample preparation can result in variation of

light intensity across the image due to inconsistent staining and nonspecific

fluorescence probe binding. Besides sample handling problems, uneven illumin-

ation of the specimen due to improper centering of the lamp contributes to

further degradation of the image signal. Both halogen (transmitted light) and

mercury (fluorescence light) lamps must be adjusted for uniform illumination of

the field of view prior to use. Moreover, microscope optics and cameras can also

introduce vignetting, in which the corners of the image are darker than the

center. Depending on the nature of the intensity variation observed, digital

image correction can be implemented to remove brightness variations as

described next.
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12.5 Image Correct ions in
Fluorescence Microscopy

In modern biological microscopy, fluorescence imaging is used to record and

quantify location, functional status, and abundance of a tagged target molecule.

This requires the application of image correction techniques and calibration

methods for both image visualization and quantitative analysis. Digital image

processing algorithms for correction and calibration strategies are discussed in

the following sections.

12.5.1 Background Shading Correc t ion

The process of eliminating nonuniformity of image background intensity by

application of image processing to facilitate visualization and segmentation or

to obtain accurate quantitative intensity measurements is known as background

correction, background flattening, flat-field correction, or shading correction.

These brightness variations in images are typically observed as intensity shad-

ings across the field of view. In microscopy, image shading may occur due to

nonuniform illumination, inhomogeneous detector sensitivity, dirt particles in

the optics, nonspecific sample staining, or autofluorescence. Some of the most

frequently used methods for correction or elimination of background shading

are described here.

For fluorescence imaging, intensity shading can be described by the following

model [19]

b x, yð Þ ¼ Iill x, yð Þ� a x, yð Þ (12:8)

where b x, yð Þ is the image produced by the interaction of the illumination

Iill x, yð Þ with the sample a x, yð Þ and x, yð Þ represents the spatial coordinates.

Assuming low fluorophore concentrations, c x, yð Þ, for fluorescence imaging, the

sample can be denoted as a x, yð Þ ¼ c x, yð Þ.
Incorporation of the effects of the detector gain and offset gives the following

discrete expression in integer coordinates [19]

c m, n½ � ¼ gain m, n½ �� b m, n½ � þ offset m, n½ � (12:9)

where b m, n½ � is the digital image that would have been recorded if there were no

shading (Eq. 12.8) in the image. Equation 12.9 can then be expressed as

c m, n½ � ¼ gain m, n½ �� Iill m, n½ �� a m, n½ � þ offset m, n½ � (12:10)

The goal of all correction algorithms is to determine a m, n½ � given c m, n½ �.
Algorithms used to correct shading effects are described next.
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12.5.2 Correc t ion Us ing the Recorded Image

In the first approach, the recorded digital image c m, n½ � is used to estimate the

background shading pattern. Three different methods can be used to estimate

the shading pattern. In the first, low-pass filtering is applied to smooth c m, n½ �,
where the smoothing effect is larger than the size of objects in the image.

The choice of the low-pass filter requires that the spatial frequencies where

the shading persists be known. The corrected image, â m, n½ �, is then estimated

as follows [19]

â m, n½ � ¼ c m, n½ � � LowPass c m, n½ �f g þ constant (12:11)

Second, instead of low-pass filtering c m, n½ �, smoothing can be performed by

using morphological filtering (Chapter 8). Morphological filtering is used when

the background variation is irregular and cannot be estimated by surface fitting

(Section 12.5.4). The assumptions behind this method are that foreground

objects are limited in size and are smaller than the scale of background vari-

ations and that the intensity of the background differs from that of the features.

The approach is to use an appropriate structuring element to describe the

foreground objects. Neighborhood operations are used to compare each pixel

to its neighbors. Regions larger than the structuring element are taken as

background. This operation is performed for each pixel in the image, producing

a new image. The result of applying this operation to the entire image is to

shrink the foreground objects by the radius of the structuring element and to

extend the local background brightness values into the area previously occupied

by the objects. The choice of the appropriate structuring element for smoothing

depends on the size of the largest object of interest in the image. For example, an

opening operation can be used to estimate the shape of the background. The

corrected image, â m, n½ �, is then estimated as [19]

â m, n½ � ¼ c m, n½ � � Sm c m, n½ �f g þ constant (12:12)

where Sm{c[m, n]} is a morphological smoothing operation.

Finally, homomorphic filtering can be used to estimate the shading [22]. The

logarithm of Eq. 12.10 is taken, assuming the offset [m, n] to be zero, the term

gain m, n½ ��Iill m, n½ �f g to be slowly varying (low frequency), and a m, n½ � to be

rapidly changing (high frequency). Thus, high-pass filtering can effectively

attenuate any shading. The background is characterized as low intensity and

as having low spatial frequency content. The corrected image can be computed

by taking the exponent (i.e., the inverse logarithm) [19]

â m, n½ � ¼ exp HighPass ln c m, n½ �f gf gf g (12:13)
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This approach, also known as frequency domain filtering, assumes that the

background variation in the image is a low-frequency signal and can be separ-

ated in frequency space from the higher frequencies that define the objects of

interest in the image. The high-pass filter removes the low-frequency back-

ground components. This approach is typically used to remove shading due to

nonuniform illumination or staining, and it is most appropriate when no infor-

mation is available about the imaging system used to acquire the data. When

implemented by convolution, the kernels tend to be quite large.

12.5.3 Correc t ion Us ing Ca l ibrat ion
Images

In this approach, calibration images are acquired in advance using the imaging

system. Although several different algorithms are involved, the underlying

principle is to use previously acquired calibration or test images. A few such

algorithms are described here.

12.5 .3 .1 Two- Image Ca l i b ra t i on

One approach is to record two calibration images using the microscope [19]. First,

a black image is acquired by blocking all light to the detector (i.e., b m, n½ � ¼ 0 in

Eq. 12.9). The recorded image is then BLACK m, n½ � ¼ offset m, n½ �. A second

calibration image is then recorded using a white reflecting surface or uniformly

fluorescing glass, with no specimen in the light path, such that a m, n½ � ¼ 1, giving

WHITE m, n½ � ¼ gain m, n½ �� Iill m, n½ � þ offset m, n½ �. The corrected image is then

computed as follows [19]

â m, n½ � ¼ constant � c m, n½ � � BLACK m, n½ �
WHITE m, n½ � � BLACK m, n½ � (12:14)

where the term constant determines the dynamic range. The choice of the

parameter constant is important, since the corrected image will have integer

values obtained by rounding real numbers. If small values are chosen for

constant the dynamic range will be limited, whereas if large values are chosen,

image display can become problematic. The exposure time (or integration time)

has to be the same when acquiring the images in Eq. 12.14. The black image

is also known as the dark-current image. This approach corrects images for

shading due to uneven illumination and dark-current effects.

12.5 .3 .2 Backg round Sub t ra c t i on

Another approach is to use a single calibration image. One ‘‘background’’ image

is acquired in which a uniform reference surface or specimen is inserted in place
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of actual samples to be viewed, and an image of the field of view is recorded.

The image thus acquired is the background image. It represents the intensity

variations that occur without a specimen in the light path, leaving only those

due to any inhomogeneity in illumination source, system optics, or camera.

It can then be used to correct all subsequently recorded images. When the

background image is subtracted from a given image, areas that are similar to

the background will be replaced with values close to the mean background

intensity. The process, called background subtraction, is applied to even out the

background intensity variations in a microscope image. It should be noted that,

if the camera is logarithmic with a gamma of 1.0, then the background image

should be subtracted. However, if the camera is linear, then the acquired

image should be divided by the background image. Background subtraction

can be used to produce a flat background and compensate for nonuniform

lighting, nonuniform camera response, or minor optic artifacts (such as dust

specks that mar the background of images captured from a microscope). In the

process of subtracting (or dividing) one image by another, some of the dynamic

range of the original data will be lost.

12.5.4 Correc t ion Us ing Sur face F i t t ing

This approach also uses a recorded image, but instead of using a smoothed

version of the recorded image, it uses the process of surface fitting to estimate the

background image (i.e., devoid of any objects). This method is especially useful

when a reference specimen or the imaging system is not available to acquire

a background image experimentally. Typically, a polynomial function is used to

estimate variations of background brightness as a function of location. The

process involves an initial determination of an appropriate grid of background

sample points. To be accurate, the fit must be done through background pixels

only. In particular, it is critical that the points selected for surface fitting

represent true background areas in the image, and that no foreground (or

object) pixels are included. If a foreground pixel is included in the fitting process,

the surface fit will be biased, resulting in an overestimation of the background.

In some cases it is practical to locate the points automatically for background

fitting. This is feasible when working with images that have distinct objects that

are well distributed throughout the image area and contain the darkest (or

lightest) pixels present. The image can then be subdivided into a grid of smaller

squares or rectangles. The darkest (or lightest) pixels in each subregion are

located, and these points are used for the fitting [23].

Another issue comprises the spatial distribution and number of the sample

points. The greater the number of valid points that are uniformly spread over

the entire image, the greater will be the accuracy of the estimated surface fit.

A least-squares fitting approach may then be used to determine the coefficients
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of the polynomial function. For a third-order (cubic) polynomial, the functional

form of the fitted background is

B x, yð Þ ¼ a0 þ a1� xþ a2� yþ a3�xyþ a4� x2 þ a5� y2 þ a6� x2y
þ a7� xy2 þ a8�x3 þ a9� y3 (12:15)

This polynomial has 10 (a0; . . . ; a9) fitted constants. In order to get a good fit

and to diminish sensitivity to minor fluctuations in individual pixels, it is usual to

require several times the minimum number of points. We have found it effective

to use about three times the total number of coefficients to be estimated.

Figure 12.1 demonstrates the process of background fitting. Panel a shows the

original image, panel b presents its 2-D intensity distribution as a surface plot,

panel c shows the background surface estimated via the surface fitting algorithm,

panel d shows the background subtracted image, and panel e presents its 2-D

intensity distribution as a surface plot.
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F IGURE 12.1 Background subtraction via surface fitting. (a) shows the original image; (b) presents its
2-D intensity distribution as a surface plot; (c) shows the background surface estimated via the surface fitting
algorithm; (d) shows the background subtracted image; and (e) presents its 2-D intensity distribution as
a surface plot. (Reproduced with permission from [10].)
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12.5.5 His togram-Based Background
Correc t ion

Another simple histogram-based approach is used for background estimation in

biological images of sparse objects, where the majority of the pixels are back-

ground pixels. This method is based on the assumption that the distribution of

the dominant noise source in the image is unbiased and unimodal (which holds

for Poisson noise) [24]. The background is estimated by fitting a parabola

through the maximum values in the histogram. The corrected image is computed

by subtracting the estimated background image from the recorded image.

12.5.6 Other Approaches for
Background Correc t ion

Several other approaches for shading correction have been published. For

example, the variation of illumination intensity can be determined on the basis

of the uniform bleaching characteristics of standardized uniformly fluorescing

reference slides. This can be used for shading correction and image comparison

in quantitative fluorescence microscopy [25]. One can also estimate the temporal

variability of signal and noise in microscopic imaging, which separates mono-

tonic, periodic, and random components of every pixel intensity change in time

and allows the simultaneous determination of dark, photonic, and multiplicative

components of noise [26].

Reducing brightness variations by subtracting a background image, whether

obtained by experimental measurement, mathematical fitting, or image process-

ing, is not a cost-free process. Subtraction reduces the dynamic range of the

image, and clipping must be avoided in the subtraction process or it might

interfere with subsequent analysis of the image. In general, given the huge

diversity of biological samples being imaged with fluorescence microscopy, no

single background-estimation algorithm is suitable universally for shading

correction. The choice of the correction technique is application dependent.

12.5.7 Autof luores cence Correc t ion

The background correctionmethods just described are also effective in attenuating

shading effects due to autofluorescence. In another approach to remove auto-

fluorescence effects, two images are recorded, one illuminated at the excitation

wavelength of the fluorophore of interest and the other at the excitation wave-

length of the autofluorescence [27]. Subtraction of the latter (i.e., autofluorescence-

only image) from the former (representing the total fluorescence image, that is,

the specific fluorophore plus the autofluorescence) results in an autofluorescence-

free image. This technique assumes the autofluorescence image can be captured
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using appropriate narrow-band excitation filters such that the autofluorescence

excitation wavelength lies outside the excitation spectrum of the target fluoro-

phore. If this is not the case, anadditional correction factor canbeused.This factor

is computed by recording images of an unstained sample at both the autofluores-

cence and target fluorophore excitationwavelengths. The ratioR of the two images

at the desired emission wavelength of the target fluorophore is then used to

compute the specific fluorescence as [27]

SF ¼ TF� R�AFð Þ (12:16)

where SF is the specific fluorescence, TF is the total fluorescence, and AF is the

autofluorescence. An alternative method based on time-delayed fluorescence

imaging can also be used to eliminate autofluorescence effects [28, 29].

12.5.8 Spec t ra l Over lap Correc t ion

The most common problem encountered in multicolor fluorescence imaging

(i.e., when two or more different-colored fluorophores are used) stems from the

unavoidable overlap among fluorophore emission spectra and among camera

sensitivity spectra. The result is that the individual colors, rather than being

confined to one color channel, are smeared across all the channels. Intensity

overlap between various color channels is problematic for both visualization and

quantification. Examples include studies involving measuring concentrations of

tagged molecules, colocalization of multiple target molecules, and segmentation

of components in color images. A method called color compensation effectively

isolates three fluorophores by separating them into three color channels (RGB)

of the digitized color image [30]. This technique can account for black-level offset

and unequal integration times [31]. Color compensation and other advanced

signal processing methods for spectral unmixing are described in Chapter 13.

12.5.9 Photob leach ing Correc t ion

Photobleaching causes an overall decrease in intensity during intermittent or

constant illumination over a period of time and can present barriers for both

visualization and quantification in fluorescence imaging. Thus it is often neces-

sary to analyze the kinetics of photobleaching of fluorophores objectively and

make corrections. In fluorescence imaging, photobleaching manifests itself

either as a first-, a second-, or a higher-order exponential decay in the average

intensity of the image series as a function of time.

For a monoexponential bleaching process, the average intensity of an image

at time t is given by [32]

i x, y, tð Þh it ¼ i x, y, t0ð Þh i0 exp �kt½ � (12:17)
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where i x, y, t0ð Þh i0 is the average intensity of the first image in the time series

and k is the bleaching decay constant, having reciprocal time units. The angular

brackets in Eq. 12.17 indicate spatial averaging over the entire image or a region

of interest.

For a biexponential bleaching process, the average intensity of an image at

time t is given by [32]

i x, y, tð Þh it ¼ A exp �kt½ � þ B exp �jt½ � (12:18)

where j is a second bleaching rate and A and B are amplitude constants.

Similarly, higher-order exponential decay functions can be expressed as

i x, y, tð Þh it ¼
X
i

Di exp �kit½ � (12:19)

Using the appropriate photobleaching process model (Eq. 12.17, 12.18, or

12.19), it is possible to characterize empirically the intensity decay from the

image (or region of interest) time series data. The decay curves can be obtained

by fitting the appropriate exponential function to the data. To perform the

exponential fitting, the average intensity values of the image or region of interest

is determined for all the images of a bleaching series. The photobleaching decay

curves are generated by plotting these intensity values as a function of time

(in arbitrary units). Figure 12.2 presents an example of photobleaching observed

in a time series of images captured for a triple-stained slide of bovine pulmonary

artery endothelial cells. The cells were probed with anti–bovine-tubulin mouse

F IGURE 12.2 Photobleaching of DAPI, fluorescein, and Texas Red. Time points were taken in 2-min
intervals over 10 min. (a–f ) Time¼ 0, 2, 4, 6, 8, and 10 min, respectively. This figure may be seen in color in
the four-color insert.

12.5 Image Corrections in Fluorescence Microscopy

263



monoclonal antibody and visualized with bodipy fluorescein goat anti-mouse

immunoglobulin. The actin filaments are labeled with Texas Red-X phalloidin,

and the nuclei are counterstained with DAPI (4’,6-diamidino-2-phenyl indole

dihydrochloride). The images were acquired using a triple bandpass filter ap-

propriate for Texas Red dye, fluorescein, and DAPI. The images in Fig. 12.2

were taken at 2-min intervals to excite the three fluorophores simultaneously

while also recording the combined emission signals. The integration time for

each image was 2.5 s. Note that all three fluorophores have a relatively high

intensity in Fig. 12.2a, but the Texas Red intensity starts to drop rapidly

at 2 min and is almost completely gone at 4 min (Fig. 12.2c). Similarly, the

intensity of the green fluorescence drops dramatically over the course of

the timed sequence (10 min). The photobleaching decay curves were generated

by plotting these intensity values as a function of time (Fig. 12.3).

Nonlinear fitting methods, such as the Levenberg–Marquardt algorithm, can

be used to determine the best-fit parameters [33]. Typically the fitting procedure

minimizes a merit function with nonlinear dependencies to find the best-fit

parameters. The minimization proceeds iteratively by giving trial values for

the parameters, and the algorithm improves the trial solution until the value

for the merit function stops (or effectively stops) decreasing. Generally, the

estimated parameters are constrained to be positive so that the exponential

function does not become negative [34]. Finally, for correction, every pixel is

multiplied by the ratio of the fitted value at time 0 to the fitted value at the time

the image was recorded.

Alternatively, several other functions have been defined to model the photo-

bleaching process. For example, a stretched exponential decay [25] and a single
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F IGURE 12.3 Photobleaching decay curves for DAPI, fluorescein, and Texas Red.
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exponential function plus a constant term [35] provide much better fits to the

photobleaching kinetics than a monoexponential function.

12.5.10 Correc t ion of F luorescence
At tenuat ion in Depth

Attenuation of the fluorescence emission intensity with increasing depth due to

absorption and scattering is a common problem encountered in fluorescence

microscopy. This effect is most specifically relevant to three-dimensional (3-D)

fluorescence imaging (see Chapter 14), where serial optical sections are acquired

along the axial plane to obtain volumetric data stacks. Correction of loss of

intensity with depth is essential for both visualization and quantitative analysis

of data. However, correction of intensity loss is an inverse problem that has no

unique solution [36]. Consequently, various empirical methods have been devel-

oped to model the effects of the intensity loss with depth, and several methods

have been published for the correction of sections in a 3-D volumetric stack.

These methods can be broadly classified into two major types, statistical and

geometrical. Statistical approaches of attenuation correction employ empirical

parametric functions to model the decay of light intensity with depth [37–45].

The geometrical approaches rely on the optical characteristics of the speci-

men. They model the distribution of light based on the underlying optical path

traveled by the light, and they compute the attenuation of light with depth by

integrating all light paths within the specimen [46–51].

The statistical methods are computationally simpler and take intensity decay

due to photobleaching into account, though they are limited to specimens with

nearly homogeneous fluorophore distribution. The geometrical approaches, on

the other hand, are computationally complex and do not account for photo-

bleaching effects. They do not, however, require the fluorophore distribution to

be homogeneous. Instead, image intensity is a function of fluorophore density.

Typically attenuation information at the previous slice is used to calculate the

attenuation coefficients at the current slice.

Some work has been done on reducing the complexity of geometrical

approaches [48, 50], and on correcting for spherical aberration in addition

to scattering and absorption [51]. Also, a fully automated parameter-setting

approach based on maximum entropy can be applied to both the statistical

and the geometrical methods [36]. A drawback of both methods is the lack of

improvement in SNR.

The overall correction algorithm is similar in both approaches. The fitted

curve is obtained based on the underlying model (statistical or geometrical) and

then used for the calculation of correction factors. First a one-dimensional

(along the z-axis) spatial correction factor based on the statistical or geometric

model is computed. The light intensity at the current z-position (slice) is then
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adjusted with a multiplicative correction factor, and a new compensated series is

computed. For example, if the loss of intensity with depth is modeled to follow

the exponential decay law, then the procedure for attenuation correction is as

follows [52]. A reference 3-D stack of N images is taken of a representative area

in the target specimen at a similar position, depth, and exposure as for each slice in

the sample 3-D image. The sequence number of each image (k ¼ 1, . . . , N) is

proportional to the total integration time. The images in the reference stack are

background corrected. An exponential decay curve, ln Ikð Þ ¼ ln I1ð Þ � lk, where l
is the decay rate and I1 and Ik are the fluorescence intensities of the first and the kth

image, respectively, is fitted to the reference data, and the value of l is estimated.

The correction is implemented by multiplying the background-corrected signal

in each slice k of the sample image by exp lkð Þ [52].

12.6 Quanti fying Fluorescence

In modern biological microscopy, fluorescence imaging of live and fixed tissue is

now used routinely. Quantitative analysis of fluorescence images allows meas-

urements of (1) amounts or concentrations of cellular components and their

interactions and (2) dynamics of cellular processes in space and time, at the

subcellular, cellular, and tissue levels. The use of sophisticated imaging systems

in conjunction with the image correction methods described earlier allows

a direct correlation between the distribution of fluorescence and the digitally

measured fluorescence signal, such that quantitative analysis can be performed.

A key to quantitative analysis is (1) to take into account critical details of the

entire protocol, starting with the optical properties of both the microscope and

the specimen, (2) applying the appropriate corrections as needed, and (3)

computing numerical values based on the properties of the fluorophores and

the imaging parameters.

12.6.1 F luorescence In tens i ty Versus
F luorophore Concent ra t ion

The amount of fluorescence emitted, IEM, is proportional to the light absorbed.

Given that IEX is the intensity of the light that illuminates a sample and I is the

amount of light that passes through the sample, then the portion of light

absorbed is IEX � I . The intensity of the emitted fluorescence can then be

denoted by [9]

IEM ¼ f IEX � Ið Þ where IEX � Ið Þ � IEX� «� c� x (12:20)
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as defined earlier in Eq. 12.2. According to the Beer–Lambert law, the relationship

between the exciting, emitted, and absorbed light can be expressed as [9]

IA ¼ � log I=IEXð Þ, or I ¼ IEXe
�IA (12:21)

Thus Eq. 12.20 can be rewritten as [9]

IEM ¼ fIEX 1� e�IA
� �

(12:22)

From Eq. 12.22, it can be seen that when the absorption, IA, is zero, IEM is zero.

When IA approaches infinity, IEM ¼ fIEX. Thus, when IA is small, the term

1� e�IAð Þ approaches IA and IEM ¼ IAfIEX. That is, the amount of light

absorbed by the fluorophore is related to the concentration of the fluorophore,

with IA / kc, where k is a constant and c is the fluorophore concentration. Thus,

at low concentrations, the fluorescence intensity is directly proportional to the

concentration of the fluorophore, with IEM ¼ kcfIEX, and at high concentra-

tions IEM ¼ fIEX, which is independent of the concentration. The linear rela-

tionship between absorbance and fluorescence holds at low absorbance values

(�#0.2) [9]. This linear relationship of fluorescence to excitation intensity

enables quantitative measurements of concentration or amounts using fluores-

cence microscopy. It should be noted that fluorescence is a relative quantity, and

a large number of factors can affect fluorescence measurements (discussed

earlier, in Section 12.4). Thus careful calibration of the instrumentation, stan-

dards, and image correction methods are required for accurate quantification.

Several quantitative microscopy techniques based on fluorescence imaging and

the associated image analysis approaches are described next.

12.7 Fluorescence Imaging
Techniques

The choice of the fluorescence imaging method used depends on the application.

While the simplest form of fluorescence imaging involves the use of single-color

fluorescence microscopy to measure the amounts and localization of cellular

components, dual-color imaging is used for colocalization analysis, and more

sophisticated approaches, such as fluorescence resonance energy transfer, are

used to study protein interactions and for the dynamic investigation of molecular

processes.

12.7.1 Immunofluorescence

Immunofluorescence is extensively used for the visualization and quantitation

of the distribution of specific cellular components (such as proteins) in cells
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or tissue. There are two major types of immunofluorescence techniques. In

direct immunofluorescence, the primary antibody is labeled with a fluorescent

dye and binds directly to the appropriate antigen. The specificity of this method

is high, but the overall fluorescence signal is weak. In indirect immunofluores-

cence, a secondary antibody labeled with a fluorophore is used to recognize

a primary antibody. This approach allows an increase of the fluorescence

intensity, due to the larger number of antigenic sites available for binding the

fluorescently labeled antibody.

Immunofluorescence microscopy is used to image the expression of proteins

such as receptors, ion channels, and enzymes. This technique is useful for

visualization of proteins but has two inherent limitations. The processing of

tissue sections for mounting and staining may introduce artifacts, and, more

importantly, structure and function cannot be studied in real time.

The most commonly observed problems in immunofluorescence microscopy

are (1) nonspecific fluorescence due to cross-reactivity and background fluores-

cence and (2) photobleaching of the labeled target. Image preprocessing pro-

cedures typically involve the use of background correction, minimization of

autofluorescence, and estimation of photobleaching characteristics. Analysis

procedures include specific algorithms for localization of the spatial distribution

of the target molecules and quantitative estimation of the relative amounts.

Figure 12.4 presents an image of the cytoskeletal architecture of mouse

fibroblasts determined via direct immunofluorescence labeling and imaging of

the rhodamine phalloidan–stained filamentous actin network. Images of the

cytoskeletal architecture were acquired using a laser scanning confocal micro-

scope [53]. The cytoskeletal morphology of the filamentous actin network was

F IGURE 12.4 Image of the cytoskeletal architecture of mouse fibroblasts determined via direct
immunofluorescence labeling and imaging of the rhodamine phalloidan–stained actin network. (After [53].)
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evaluated. The cells are of stellate form, with a round or oval cell body and

intact, long filopodial processes.

Figure 12.5 presents an image of fluorescently labeled molecules of

a genetically modified bacterial protein, H5, interacting with NIH/3T3 mouse

fibroblasts [54]. The interaction of H5 with cell membranes was studied by

visualization and quantitation of the toxin molecules via indirect immunofluor-

escence labeling and confocal imaging. The labeled cells were imaged, and the

relative amounts of the interacting protein and its spatial distribution in cells

were determined by digital image analysis. The 3-D spatial distribution of the

immunofluorescently labeled H5 was generated by determining the distance of

each nonzero voxel from the center of mass of the cell. The total amount of H5

interacting with cell membranes was determined in terms of the volume of

immunofluorescently labeled H5 normalized with respect to the cell volume.

Image analysis algorithms included preprocessing of the acquired images using

median filtering followed by segmentation using adaptive gray-level threshold-

ing and 3-D region labeling. Surface modeling estimation using superquadric

surfaces was used to identify the localization of the toxin molecules [55].

F IGURE 12.5 Montage showing immunofluorescently labeled molecules of a genetically modified
Staphylococcus aureus alpha toxin protein interacting with mouse fibroblasts. Panels 1, 2, 3, 4, and 5 show
single-optical-section confocal micrographs of cells treated with 5, 10, 25, 50, and 100 mg/ml of H5,
respectively, for 20 minutes.
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12.7.2 F luorescence in s i tu
Hybr id izat ion (F ISH)

Fluorescence in situ hybridization (FISH) is a molecular cytogenetic technique

that is very similar to immunofluorescence. It is used specifically for the visual-

ization and localization of deoxyribonucleic acid (DNA) and ribonucleic acid

(RNA) sequences. It has been widely applied in many areas of diagnosis and

research, including prenatal and postnatal screening of genetic aberrations, pre-

implantation genetic diagnosis, cancer genetics, and developmental molecular

biology. FISH allows the microscopic analysis of chromosomal abnormalities

suchas an increaseor reduction in the numberof chromosomesanda translocation

of part of one chromosome onto another.

The basic principle of the method is that a DNA probe for a specific

chromosomal region will recognize and hybridize to its complementary

sequence. Similar to immunofluorescence, two approaches are used for staining,

direct and indirect. For direct labeling, the probe is tagged with a fluorescent

dye, whereas in indirect labeling it is chemically modified by the addition of

hapten molecules (biotin or digoxigenin) and then fluorescently labeled. The

target DNA is stained with a fluorophore of complementary color. A fluores-

cence microscope equipped with filters specific for the fluorescently labeled

probe and the counterstain is used to visualize the target. Normally, in

interphase cells, the nucleus is counterstained using DAPI, and chromosome–

specific DNA probes are directly or indirectly labeled with green (e.g., fluores-

cein) or red (e.g., Texas Red) dyes to visualize blue nuclei with colored dots (red,

green, aqua, orange, etc.) [56]. Typically, multilabel (two-, three-, or four-color)

FISH analysis is performed for cytogenetic analysis. The number of detected

chromosomes or genes can be increased using combinatorial labeling, where the

number of targets is 2n�1, with n colors used for labeling (see multispectral

FISH, discussed in Chapter 13).

Analysis of an interphaseFISHspecimen consists ofdetermining thenumberof

dots of each color, per cell [57]. Dot counting accuracy depends not only upon the

hybridization efficiency, but also on the spatial location of chromosomes within

the nucleus. Automated image analysis has been used to address most of these

issues. Effective and efficient algorithms based on optical section deblurring and

image fusion and gaussian modeling are used to differentiate between overlapping

dots, split dots, and duplicated dots [10].

An example algorithm for automated image analysis is described here.

Preprocessing is usually performed using background subtraction (Section

12.5.3.2) andcolor compensation (Chapter 13).Automatedgray-level thresholding

(generally, blue for the DAPI counterstain) is used to obtain binary images of

cells. The cells are then uniquely identified using a region-labeling procedure
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(Chapter 9). The 8-connected pixel neighborhood is used to determine the pixel

belonging to a certain object. Each pixel in the connected neighborhood is then

assigned a unique number so that all the pixels belonging to an object will have

the same unique label. The number of pixels in each object is computed and used

as a measure of cell size. Subsequently, shape analysis is used to discard large cell

clusters and noncircular objects. Further, a morphological technique is used for

automatically cutting touching cells apart (Chapter 8). The morphological

algorithm shrinks the objects until they separate, and then it thins the back-

ground to define cutting lines. An exclusive-OR operation then separates the

cells. Cell boundaries are smoothed by a series of erosions and dilations, and the

smoothed boundary is used to obtain an estimate of the cellular perimeter.

Performing a binary AND operation on the thresholded image and the mor-

phologically processed mask with the other two red and green planes of the

color-compensated image yields grayscale images containing only dots that lie

within the cells. Objects are then located by thresholding in the probe color

channels, using smoothed boundaries as masks. A minimum size criterion is

used to eliminate noise spikes, and shape analysis is used to flag noncompact

dots. The remaining objects are counted. The spatial location of each isolated

dot is compared with the cell masks to associate each chromosomal dot with its

corresponding cell.

Statistical modeling approaches may be applied to determine unbiased esti-

mates of the proportion of cells having a given number of dots. For example, the

befuddlement theory provides guidelines for dot-counting algorithm develop-

ment by establishing the point at which further reduction of dot-counting errors

will not materially improve the estimate [58]. This occurs when statistical sam-

pling error outweighs dot-counting error. FISH-labeled interphase cells pro-

cessed via automated image analysis are illustrated in Fig. 12.6. The image

shows six female (XX) cells. Cells are counterstained blue (DAPI); X chromo-

somes are labeled in red (Texas Red). Panels a-d in Fig. 12.6 shows the results of

automated image analysis. Panel a is the original image, panel b shows the

background subtracted image, panel c shows the color compensated image,

and panel d presents results of automated cell and dot finding. As seen in the

figure, automated image analysis, correctly finds single cells, separates touching

cells, and detects the red dots in individual cells.

12.7.3 Quant i ta t ive Co loca l i za t ion Analys i s

Colocalization studies are used to identify functionally related molecules. They

involve the simultaneous analysis of the location and expression of multiple

target molecules. The most common application is to determine the spatial
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colocalization between two fluorescently labeled proteins. Quantitative coloca-

lization analysis allows estimation of the extent to which two or more proteins

occur routinely at the same physical location in a cell or tissue region. This

enables the mapping of potential protein-to-protein interactions with subcellular

precision, thereby providing a better understanding of how intracellular mech-

anisms are regulated. In terms of image analysis, this involves the quantification

of overlapping signals in multiple channels.

As described earlier, it is essential to correct the fluorescence images for

background staining, spectral bleed-through, and other influences, such as lamp

alignment and camera exposure settings, before colocalization can be quanti-

fied. Several approaches have been proposed for colocalization analysis. Tech-

niques such as cross-correlation analysis [59] and cluster analysis of the 2-D

histogram [60] have been applied to prove the existence of colocalization.

Generally, given two proteins labeled using antibody (Ab) 1, colored red, and

Ab 2, colored green, colocalization is based on the fact that the superimposition

of the two proteins appears yellow. Figure 12.7 presents colocalization images of

nascent DNA labeled with CldUrd (green) and IdUrd (red). Optical sections

through the center of double-labeled nuclei (Chinise Hamster V79 cells) showing

two early S-phase DNA replication patterns are presented in the figure. Nascent

DNA was labeled with CldUrd (green) and IdUrd (red) at two different times.

Time between the labels was 0 min in the control experiment (a), showing

virtually complete colocalization, 25 and 45 min in (b) and (c), respectively,

leading to less colocalization. This experiment shows that the DNA replication

machinery moves through the nucleus.

Pearson’s correlation coefficient, rp, provides a nonlinear estimate of the

amount of colocalized signals in the red and green channels [61]:

F IGURE 12.6 FISH image of six female (XX) cells. Cells are counterstained blue (DAPI); X chromosomes
are labeled in red (Texas Red). Results of automated image analysis: (a) original image, (b) background-
subtracted image, (c) color-compensated image, and (d) results of automated cell and dot finding. This figure
may be seen in color in the four-color insert.
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rp ¼
P
i

Ri � Ravð Þ� Gi � Gavð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

Ri � Ravð Þ2� P
i

Gi � Gavð Þ2
r (12:23)

where Ri and Gi are the values of pixel i of the red and green components of

a dual-color image, respectively, and Rav and Gav are the average values of Ri

and Gi, respectively. rp provides information on the similarity of shape inde-

pendent of the average intensity of the signals. Its value ranges from �1 to 1,

and interpretation of the degree of overlap of the two signals may be ambiguous

when negative values are encountered. Alternatively, an overlap coefficient can

be computed as follows [62]

r ¼
P
i

Ri�GiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

Rið Þ2� P
i

Gið Þ2
r (12:24)

The value of r ranges from 0 to 1, and it is independent of differences in signal

intensities, when compared to rp. The fraction of colocalizing regions in each

component of dual-color images can be computed by dividing r into two

different coefficients [63], as

r1 ¼
P
i

Ri�GiP
i

R2
i

and r2 ¼
P
i

Ri�GiP
i

G2
i

(12:25)

The coefficients r1 and r2 are dependent on the intensities of the red and

green signals, respectively. Two other coefficients, known as the Mander’s

F IGURE 12.7 Images of double-labeled nuclei (Chinese Hamster V79 cells) with nascent DNA labeled
with CldUrd (green) and IdUrd (red) at two different times. Time between the labels was 0 min in the control
experiment (a), showing virtually complete colocalization, 25 and 45 min in (b) and (c), respectively, leading to
less colocalization. This figure may be seen in color in the four-color insert. (Images courtesy of Erik Manders.)
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co-localization coefficients, can be defined to be independent of the signal

intensities as follows [63]

M1 ¼
P
i

Ri,colocP
i

Ri

, where Ri,coloc ¼ Ri if Gi > 0 and

Ri,coloc ¼ 0 if Gi ¼ 0

M2 ¼
P
i

Gi,colocP
i

Gi

, where Gi,coloc ¼ Gi if Ri > 0 and

Gi,coloc ¼ 0 if Ri ¼ 0 (12:26)

Mander’s colocalization coefficients are proportional to the amount of fluores-

cence of the colocalizing objects in each component of the image, relative to the

total fluorescence in that component. The significance of Mander’s coefficients

can be assessed by a comparison with an expected random pattern obtained by

repeatedly randomizing the pixel distribution in one of the channels [64].

Although these coefficients provide an indication of the coexistence of two

proteins, they provide no information about whether the intensity of staining

for the two proteins varies in synchrony (i.e., whether the two target proteins are

structural elements of a common complex).

Intensity correlation analysis can be used to determine whether the staining

intensities in the dual-color images are associated in a random, a dependent, or

a segregated manner [65]. If N is the number of pixels, Ri and Gi are the

intensities in the red and green channels, and Rav and Gav the mean values of the

red and green distributions, respectively, then we compute the sum of products of

the differences between the pixel values and their means as follows [65]

XN
i

Ri � Ravð Þ Gi � Gavð Þ (12:27)

The intensity correlation analysis technique involves generating scatter plots

of the red dye or green dye against the product of the differences of each pixel in

red and green intensities from their respective means (Eq. 12.27). The resulting

plots emphasize the high-intensity-stained pixels, allowing the identification of

protein pairs based on the variations in protein concentrations across the cell

and not simply on their locations. If the two proteins are randomly distributed,

then the value of Eq. 12.27 will tend toward zero, whereas if they are dependent

the value will be positive, and if they are segregated the value tends to be

negative. The polarity of each Ri � Ravð Þ Gi � Gavð Þ value can be used to com-

pute the intensity correlation quotient (ICQ), which provides a statistically
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testable, single-value assessment of the relationship between the stained protein

pairs. The ratio of the number of positive values to the total number of pixel

pairs is first computed, and then the ICQ is determined by subtracting 0.5 from

this value to distribute the quotients in the range �0.5 to þ 0.5. With random

(or mixed) staining, ICQ � 0; with dependent staining, 0 < ICQ #þ0:5; and
for segregated staining, 0 > ICQ $�0:5 [65]. The intensity correlation ICQ

analysis allows identification of potential low-affinity protein complexes while

retaining information on the cellular and subcellular locations.

12.7.4 F luorescence Rat io Imaging (RI )

In fluorescence imaging, ratio imaging has three major applications: combina-

torial ratio labeling, comparative genome hybridization (CGH), and ion ratio

imaging. Combinatorial ratio labeling is used in multispectral fluorescence

in situ hybridization (MFISH), in which the ratio between the intensities of

different fluorophores is used to expand the number of colored labels. This

number is typically limited by the number of fluorophores that can be spectrally

separated (Chapter 13). In CGH, an estimate of the DNA sequence copy

number as a function of position on the chromosome is obtained by measuring

the ratio between sample DNA and the reference/control DNA to detect gene

amplifications and deletions. Finally, ion ratio imaging is also used to measure

either absolute or relative changes in spatial and temporal ion concentrations

within living cells. This is achieved by measuring the fluorescence emission of

special dyes that have been designed to change their spectral properties or

emission intensities on binding to the ion of interest.

The principle underlying fluorescence ratio imaging is that the ratio of

intensities at two or more wavelengths, computed for a single pixel or a region

of interest, avoids the major problems associated with intensity variations in

single-wavelength images. Gray-level changes in fluorescence images are very

difficult to interpret, because of (1) variations in the intensity of the peak

absorption or emission signals, (2) variations in local dye concentration, (3) pho-

ton shot noise, (4) fluctuations in the excitation light intensity, and (5) variations

in detector gain. These intensity variations can be misinterpreted as a change in

the concentration of the target. Moreover, specimen thickness may be problem-

atic in single-wavelength images that display the amount of fluorescence only,

with thicker portions of the sample looking brighter than smaller regions. The

calculation of a ratio between the two channels corrects the result for intensity

fluctuations and specimen thickness [66].

The protocol for ratio imaging is as follows. The ion-sensitive fluorescent dye

is introduced into the cell, and two images are captured. The first image is

acquired at the characteristic emission wavelength for binding, and the second

at a reference wavelength (unbound). A ratio is then taken of the gray-level
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changes at the same location at the two different wavelengths. This normal-

izes changes in the cell that are independent of a change in target concentration,

such as the distance through a cell. Ratio imaging thus allows detection of ion

transport and binding sites in living cells with relatively short optical path

lengths (a few micrometers). It requires that the sources of measurement error

(Section 12.4) be understood and appropriately corrected (Section 12.5) before

quantitative measurement of concentration.

There is a wide range of fluorophores, with different spectral properties for

numerousdifferent ions. Intracellular calcium is themostwidely imaged ion since it

is involved in many different physiological processes, including muscle contrac-

tion, the release of neurotransmitters, ion channel gating, and second messenger

pathways. Two types of fluorescence indicators are available for the measurement

of intracellular calcium: (1) fluorescent dyes (Fluo-4, Fura-2, calcium green, etc.)

and (2) fluorescent proteins (aequorin, derivatives of the green fluorescence protein

(GFP) such as yellow camaleons, etc.). An advantage of the fluorescent proteins

is that they can be targeted to different cell compartments while most dyes cannot.

The procedure for ratio imaging is relatively straightforward. For example,

for analysis of Caþ2 concentration using Fura-2 fluorescence dye, two excitation

wavelengths are used, 340 nm and 380 nm. In the absence of any stimulus, in

Fura-2-loaded cells, the Caþ2 is bound in cell compartments. When excited at

380 nm, the Fura-2 molecules show strong fluorescence at an emission of

510 nm, whereas an excitation at 340 nm produces only weak fluorescence.

On stimulation, the cell releases Caþ2 from storage compartments and the

Fura-2 molecules form complexes with the released Caþ2 ions. The emitted

signal now increases when excited with 340 nm and decreases when excited

with 380 nm. The images are corrected for background variations, and the

ratio between the signals of the two excitation channels is used to quantify the

change of intensity. The ratio images can also be calibrated so that ratio values

correspond to concentrations as [67]

Caþ2

 � ¼ KDb R� Rminð Þ ðRmax � R= Þ (12:28)

where R is the ratio of fura-2 fluorescence with 340-nm excitation divided by the

fluorescence with 389-nm excitation at a given point in time. Rmax is the ratio

when all the Fura-2 is bound to Caþ2, Rmin is the ratio when all the Fura-2 is in

the free acid form, b is the ratio of fluorescence of free Fura-2 to the fluorescence

of Caþ2-bound Fura-2 with 380-nm excitation, and KD is the dissociation

constant for Fura-2 and Caþ2 binding. Typically, the values of Rmax, Rmin,

and b for intracellular Caþ2 concentration calibration are determined as follows.

Following the recording of Caþ2 dynamics during an experiment, a calcium

ionophore, such as ionomycin, is introduced into a cellular buffer solution

that has a high free [Caþ2] to raise the intracellular [Caþ2]. Recording images
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after the cytosol reaches equilibrium allows the determination of Rmax, because

the 340-nm excitation signal is at its highest and the 380-nm excitation signal is

at its lowest. Subsequently, a calcium chelator (e.g., ethylene glycol tetraacetic

acid) is added to drop the intracellular [Caþ2], and, at equilibrium, images are

acquired to measure Rmin. The value of KD is fluorophore specific and can be

obtained from the manufacturer. Ratio imaging can be performed using wide-

field, confocal, or two-photon microscopy, with the most critical requirement

being the simultaneous or near-simultaneous acquisition of two images at

different excitation or emission wavelengths [68].

12.7.5 F luorescence Resonance Energy
Trans fer (FRET)

Fluorescence resonance energy transfer (FRET) is a relatively new technique in

fluorescence imaging that can be used to obtain information on the immediate

environment (in the nanometer range) of a labeled molecule, to detect macro-

molecular interactions, and to determine the intra- and intermolecular proximity

of two appropriately paired fluorophores. Protein-to-protein interactions mediate

the majority of cellular processes. Identification of a protein’s interacting partners

is critical in understanding its function, placing it in a biochemical pathway, and

thereby establishing its relationship to important disease processes.

Fluorescence resonance energy transfer is a process involving the radiation-

less transfer of energy from a donor fluorophore to an appropriately positioned

acceptor fluorophore [69, 70]. FRET can occur when the emission spectrum of

a donor fluorophore significantly overlaps (>30%) the absorption spectrum

of an acceptor. In the absence of spectrum overlap, FRET cannot occur. For

FRET, the emission dipole of the donor and the acceptor absorption dipole

should be oriented nonperpendicular to each other. A dipole is an electromag-

netic field that exists in a molecule with two oppositely charged regions. With

overlapping spectra, the donor’s oscillating emission dipole looks for a matching

absorption dipole of the acceptor to oscillate in synchrony. The magnitude

of the relative orientation of the dipole–dipole coupling values ranges between

1 and 4, and the efficiency of energy transfer varies inversely with the sixth power

of the distance separating the donor and acceptor fluorophores. Thus, the

distance over which FRET can occur is limited to in the range of 1–10 nm.

When the spectral, dipole orientation, and distance criteria are satisfied, excita-

tion of the donor fluorophore results in sensitized fluorescence emission of the

acceptor, indicating that the tagged proteins are separated by <10 nm. This

FRET-inferred proximity between two labeled cellular components consider-

ably surpasses the resolution of normal light microscopy, which can resolve

distances of �200 nm at best. The most commonly used fluorophore pairs for
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FRET can be found in the literature along with their respective spectra and filter

combinations [71, 72].

FRET has been implemented using wide-field, confocal, and two-photon

fluorescence microscopy [72]. Wide-field FRET (W-FRET) imaging provides

the 2-D spatial distribution of steady-state protein-to-protein interactions [73].

An advantage of W-FRET is that it allows the use of any excitation of

wavelength using interference filters for various fluorophore pairs. A disadvan-

tage of W-FRET is that it contains out-of-focus information in the FRET

signal. However, this low-cost system is used widely to monitor protein asso-

ciations in living specimens where confocality is not an issue, such as following

events in the nucleus. In confocal FRET (C-FRET) and two-photon (2p)

excitation FRET (2p-FRET) microscopy, one can discriminate the out-of-

focus information to obtain the FRET signal at the selected focal plane [74].

Moreover, 2p-FRET microscopy uses infrared (IR) laser light as an excitation

wavelength and has the ability to excite most of the selected fluorophore pairs

as compared to the confocal systems, where fixed laser lines are available at

a few limited excitation wavelengths. It is important to choose 2p-FRET

fluorophore pairs with different 2p absorption cross sections to avoid simul-

taneous excitation by one wavelength. The use of infrared laser light excitation

instead of ultraviolet laser light also reduces phototoxicity in living cells. In

general, 2p-FRET microscopy is superior for deep-tissue FRET imaging [74].

Also, spectral imaging, either by confocal or two-photon systems, is an intensity-

based imaging technique, which provides an excellentway to obtain aFRETsignal

(see Figs. 12.8 and 12.9) [75].

Figure 12.8 presents images of GHFT1 cells expressing alpha enhancer

binding protein (C/EBPa) either with YFP, yellow fluorescent protein, (ac-

ceptor) alone or CFP, Cyan fluorescent protein (donor) or with both. The

same optical settings were used for imaging both single- and double-labeled

cells. These images were unmixed, based on the reference spectra of donor and

acceptor using a spectral unmixing algorithm provided by the Zeiss Company.

The experimental details regarding data acquisition and processing is described

in the literature [75, 76]. We used a Carl Zeiss laser scanning 510 confocal/

multiphoton/spectral imaging system to collect the data. The following is shown

in Fig. 12.8: Spect I panel—DA_DS is the spectral image from the double-

labeled specimen under donor excitation; e_s and f_s are unmixed fromDA_DS;

Spect II panel—DA_AS is the spectral image from the same double-labeled

specimen but under acceptor excitation; g_s is unmixed from DA_AS; Spect III

panel—A_AS is the spectral image from the single-labeled acceptor specimen

under the same acceptor excitation as that from the double-labeled specimen;

d_s is unmixed from A_AS; Spect IV panel—A_DS is the spectral image from

the single-labeled acceptor specimen under the same donor excitation as that

from the double-labeled specimen; c_s is unmixed from A_DS, which is only
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F IGURE 12.8 Spectral FRET data acquisition and linear unmixing. GHFT1 cells expressing alpha
enhancer binding protein (C/EBPa) either with yellow fluorescent protein (acceptor) alone or cyan fluorescent
protein (donor) or with both. Same optical settings were used for imaging both single- and double-labeled
cells. These images were unmixed, based on the reference spectra of donor and acceptor using spectral
unmixing algorithm provided by the Zeiss Company. This figure may be seen in color in the four-color insert.
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acceptor bleed-through. There are donor components from unmixing for DA_AS,

A_DS, and A_AS; they are blank images in the figure and are not required for the

data analysis. CFP and YFP fingerprints were obtained from single-labeled donor

and single-labeled acceptor to use for linear unmixing. All the linear unmixing was

implemented using CFP, YFP, and background spectra.

Figure 12.9 illustrates the results of the implementation of the processed

spectral FRET (psFRET) algorithm [76] on the spectrally unmixed images.

The f_s image in the panel Spect I (Fig. 12.8) contains the FRET signal and the

acceptor spectral bleed-through signal. The bleed-through signal was analyzed

and removed using the algorithmdescribed in the literature [75, 76], and shown in

Fig. 12.9 as a histogram for both conditions. The localization of C/EBPa protein

in the living cell nucleus is clearly shown as a spot in the image.

unprocessed FRET (sFRET)

processed FRET (psFRET)

71

0

2963

10µm

ASBT

912

F IGURE 12.9 The f_s image in the panel Spect I (Fig. 12.8) contains the FRET signal and the acceptor
spectral bleed-through signal. The bleed-through signal was analyzed and removed using the algorithm as
described in the literature [76] and is shown in the figure as histogram for both conditions.
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Förster’s basic rate equation for a donor and acceptor pair at a distance

d from each other, is

k� ¼ 1=tD R0=dð Þ6 (12:29)

where kt is the rate of energy transfer, tD is the donor excited state lifetime in the

absence of the acceptor, and R0 is the Förster distance (a distance at which

coupling efficiency reaches 50%). The energy transfer efficiency (E ) is represented

by the equation

E ¼ R0= R6
0 þ d 6

� �
(12:30)

Typically, the efficiency drops if the distance between donor (D) and acceptor (A)

molecules change from the Förster distance. The energy transfer efficiency (E )

and the distance (d ) measurement between donor and acceptor can also be

calculated using the following equations

d ¼ R0 1=Eð Þ � 1f g1=6 (12:31)

R0 ¼ 0:211 k2n�4QDJ lð Þ� 
1=6
(12:32)

where QD is the quantum efficiency of the donor molecule, J is the spectral

overlap between the donor emission and acceptor absorption power spectrum

(cm2 s4=mol), n is the refractive index of the energy transfer medium, and k2 is
orientation factor, which varies between 0 and 4. The overlap integral J, which

expresses the degree of spectral overlap between the donor emission fluorescence

and the acceptor absorption, is given as

J lð Þ ¼
Z 1

0

fD lð Þ«A lð Þl4 dl (12:33)

where l is the wavelength of the light, «A(l) is the molar extinction coefficient of

the acceptor at that wavelength, and fD(l) is the normalized fluorescence inten-

sity at that wavelength. The energy transfer efficiency may also be calculated by

ratioing the donor image in the presence and absence of the acceptor

E ¼ 1� IDA=ID½ � (12:34)

where IDA and ID are the fluorescence intensities in the presence and the absence

of acceptor, respectively.

As described earlier, all these techniques require the removal of certain signal

contaminations, such as camera insensitivities and background fluorescence

[75, 76]. One of the important conditions for FRET to occur is the overlap
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of the emission spectrum of the donor with the absorption spectrum of the

acceptor. As a result of spectral overlap, the FRET signal is always contaminated

by donor emission into the acceptor channel and by the excitation of acceptor

molecules by the donor excitation wavelength. Both of these signals are termed

spectral bleed-through (SBT) of signal into the acceptor channel. There are various

methods to assess the SBT contamination in FRET image acquisition [77–80].

One approach eliminates both the donor and acceptor SBT problems and corrects

the variation in fluorophore expression level (FEL), using the same cell as used for

FRET imaging [74, 81, 82]. The letters D, A, and DA are used to denote donor,

acceptor, and donor–acceptor pairs, respectively. Seven images (denoted by a, b,

c, d, e, f, g) are acquired as follows: double-labeled (three images; donor excita-

tion/donor ‘‘e’’ and acceptor ‘‘f ’’ channel; acceptor excitation/acceptor channel

‘‘g’’), single-labeled donor (two images: donor excitation/donor ‘‘a’’ and acceptor

‘‘b’’ channel), and single-labeled acceptor (two images; donor excitation/acceptor

‘‘c’’ channel; acceptor excitation/acceptor channel ‘‘d’’). This approach works on

the assumption that the double-labeled cells and single-labeled donor and acceptor

cells, imaged under the same conditions exhibit the same SBT dynamics [82].

A practical impediment to implementation arises from the fact that there are

three different cells (D, A, and D þ A), where individual pixel locations cannot

be compared. Instead, comparison of pixels with matching fluorescence levels is

performed. The algorithm follows fluorescence levels pixel by pixel to establish the

level of SBT in the single-labeled cells and then applies these values as a correction

factor to the appropriate matching pixels of the double-labeled cell. The following

equations are used to remove the spectral bleed-through signal from the FRET

channel image. The corrected FRET signal image, denoted as PFRET (precision

FRET) is computed as [83]

PFRET ¼ UFRET�DSBT�ASBT (12:35)

where UFRET (image ‘‘f ’’) is uncorrected FRET, ASBT is the acceptor

spectral bleed-through signal, and DSBT is the donor spectral bleed-through

signal, computed as follows. To correct the DSBT, three images are required

(one double-labeled ‘‘e’’ and two single-labeled donor images ‘‘a’’ and ‘‘b’’).

To obtain the DSBT values, the following equations are used [83]

rd( j) ¼
Pm
i¼1

bi

Pm
i¼1

ai

, DSBT( j) ¼
Xn
p¼1

ep � rd( j)
� �

, DSBT ¼
Xk
j¼1

DSBT( j) (12:36)

where j is the jth range of intensity, rd( j) is the donor bleed-through ratio for

the jth intensity range,m is the number of pixels in ‘‘a’’ for the jth range, ai is the

intensity of pixel i, DSBT( j) is the donor bleed-through factor for the range j, n is
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the number of pixels in ‘‘e’’ for the jth range, ep is the intensity of pixel p, k is the

number of the range, and DSBT is the total donor bleed-through.

The ASBT correction follows the same approach as DSBT, using three

images (one double-labeled ‘‘g’’ and two single-labeled acceptor images ‘‘c’’

and ‘‘d’’). To obtain the ASBT values, the following equations are used [83]

ra( j) ¼
Pm
i¼1

ci

Pm
i¼1

di

, ASBT( j) ¼
Xn
p¼1

gp � ra( j)
� �

, ASBT ¼
Xk
j¼1

ASBT( j) (12:37)

where j is the jth range of intensity, ra( j) is the acceptor bleed-through ratio for

the jth intensity range,m is the number of pixels in ‘‘d’’ for the jth range, di is the

intensity of pixel i, ASBT( j) is the acceptor bleed-through factor for the range j,

n is the number of pixels in ‘‘g’’ for the jth range, gp is the intensity of pixel p, k is

the number of the range, and ASBT is the total acceptor bleed-through.

The PFRET image is then used for further data analysis, such as estimation

of the distance between donor and acceptor molecules and the energy transfer

efficiency E%, as follows. The sensitized emission in the acceptor channel is due

to the quenching of the donor or energy transferred signal from the donor

molecule in the presence of acceptor. Adding the PFRET to the intensity of

the donor in the presence of acceptor gives ID. This ID is from the same cell used

to obtain the IDA. Then from Eq. 12.34 and Eq. 12.35, we have

En ¼ 1� IDA=IDA þ PFRET½ �, where ID ¼ IDA þ PFRET (12:38)

It is important to note that a number of processes are involved in the excited

state during energy transfer. The equation for energy transfer efficiency En

(see [83] for details) is thus calculated by generating a new ID image and by

including the detector spectral sensitivity for donor and acceptor channel images

and the donor quantum yield, with the PFRET signal as follows [83]

En ¼ 1� IDA= IDA þ PFRET� cdd=caað Þ � ðQd=QaÞ½ �f g (12:39)

where

cdd

caa

¼ PMT gain of donor channel

PMT gain of acceptor channel

� ��

� spectral sensitivity of donor channel

spectral sensitivity of donor channel

� �� (12:40)

where cdd and caa are collection efficiency in the donor and acceptor channel, Qd

is the donor quantum yield and Qa is the acceptor quantum yield. Using R0

defined in Eq. 12.32, the distance, dn, between donor and acceptor, is computed

as [83]
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dn ¼ R0 1=Enð Þ � 1f g1=6 (12:41)

An alternative approach for measuring FRET is to determine the fluores-

cent lifetime of the donor in the presence and absence of the acceptor. The

advantages of this approach are that it is dependent directly on excited-state

reactions and independent of the fluorophore concentration and light path

length (and consequently photobleaching), thus allowing the donor–acceptor

distance to be mapped more accurately.

12.7.6 F luorescence L i fe t ime Imaging
(FL IM)

The fluorescence lifetime, t, of a fluorophore is the average time, in the picosecond-

to-nanosecond range, that a fluorophore spends in the excited state following

photon absorption. Decay from the excited state occurs through spontaneous

emission of fluorescence, internal conversion, photobleaching, and FRET.

Thus, the measurement of the lifetime of the donor excited state by fluorescence

lifetime imaging (FLIM) can also be used for studying FRET. It can be

detected as a decrease in the fluorescence lifetime of the donor fluorophore.

However, FLIM can be technically challenging, for it requires specialized equip-

ment [84, 85], is difficult to apply in live cells, and is computationally complex [82].

In practice, the fluorescence lifetime is defined as the time inwhich the fluorescence

intensity decays to 1/e of the intensity immediately following excitation.

In FLIM measurements, several time-resolved fluorescence images of a

sample are obtained at various delay times (nanosecond). Typically, gated

detection is performed following pulsed laser excitation of the field of view or

region of interest. The effective fluorescence lifetime is calculated pixel by pixel

by assuming a single exponential decay using time-resolved images taken at

different delay times (typically 2–8 ns). Curve fitting is performed, and the

lifetimes are determined by an iterative least-squares analysis. For a monoexpo-

nential decay, provided the pulse duration	 t, the emitted fluorescent intensity

can be written as [85]

I tð Þ ¼ I0� exp �t

t

� �
(12:42)

where I(t) is the fluorescent intensity as a function of time, I0 is the fluorescent

intensity immediately after the pulse, t is the time after the light pulse, and t is

the excited-state lifetime. For example, if two delay times are used, t can be

measured as [85]

t ¼ t1 � t2

ln D1 �D2ð Þ (12:43)
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where t1 and t2 are the time delay between the excitation pulse and the start of

detection interval 1 and 2, respectively, and D1 and D2 are the integrated

intensities in intervals 1 and 2, respectively. Figure 12.10 presents representative
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F IGURE 12.10 Comparison of C-FRET, 2p-FRET, and FLIM-FRET. C-FRET and 2p-FRET images of the
quenched donor (a, c) and the PFRET images (b, d) are shown. The respective efficiency (E ) and the distance
(r ) are shown in the table below the figure. For the same cell, the donor lifetime images were acquired in the
absence (e) and the presence (f) of the acceptor. This figure may be seen in color in the four-color insert.
(Reproduced with permission from [82].)
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images for measuring the donor quenching or donor lifetime for estimating

energy transfer efficiency (E%) [86, 87]. The figure illustrates images comparing

C-FRET, 2p-FRET, and FLIM-FRET. C-FRET and 2p-FRET images of the

quenched donor (a, c) and the PFRET images (b, d) are shown. The respective

efficiency (E ) and the distance (r) are shown in the table below the figure.

The distance between donor and acceptor molecules appears to be higher for

2p-FRET than for C-FRET. This may be due to the difference in methodology

of acquisition of photons. Both C-FRET and 2p-FRET signals were collected in

the same cell and optics using the Biorad Radiance2100 confocal/multiphoton

microscopy system. For the same cell, the donor lifetime images were acquired

in the absence (e) and the presence (f ) of acceptor. As stated in the text, the

natural lifetime of the donor (2.62 ns) was reduced to 1.9 ns (mean value) due to

FRET. Lifetime measurements are the accurate values of the distance distribu-

tion of the dimerization of C/EBPD244 protein molecules in mouse pituitary

GHFT1-5 cell nucleus [82].

In summary,FRET-FLIM is an important technique for investigating a variety

of phenomena that produce changes in molecular proximity and for monitoring

intermolecular interactions and localization of proteins in cells and tissues [73].

12.7.7 F luorescence Recovery Af ter
Photob leach ing (FRAP)

Fluorescence recovery after photobleaching is used for studying the dynamic

behavior of labeled molecules, specifically the behavior of proteins in living cells.

The process involves photobleaching a region of interest, thereby allowing the

temporal study of the consequent fluorescent recovery in that bleached region as

a result of the movement of nonbleached fluorescent molecules from the sur-

rounding area. The extent to which this recovery occurs and the speed at which it

occurs are measures for the fraction of mobile molecules and the speed at which

they move, respectively [88]. The basic FRAP experiment is straightforward.

First, a region of limited dimensions within a larger volume is illuminated with

a short pulse of an intense laser beam at the excitation wavelength of the dye to

be bleached. Subsequently the molecules in the exposed region are no longer

fluorescent. If the target labeled molecule is fixed, the region will remain dark.

However, if the target molecules are mobile, they diffuse, with new fluorescent

molecules from the surrounding unbleached regions moving into the bleached

region and mixing with the bleached molecules. This leads to a continuous

increase of fluorescence in the bleached region until the bleached and new

fluorescent molecules have been completely redistributed over the entire volume.

If the bleached area is relatively large compared to the total volume in which

the target molecules reside, the final recovery of fluorescence will be less than the

prebleaching level. This process can be followed on a microscope by visualizing
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the fluorescence either in the bleached region or in the total volume. After

a statistically relevant number of cells or regions have been sampled, the average

mobility of the fluorescent molecules can be determined by averaging the

normalized fluorescence intensity of the individual regions.

One approach to normalizing FRAP data is to express the data relative to

the prebleaching value [88]

Inorm,t ¼ It � Ibackground
� �

= Iprebleach � Ibackground
� �

(12:44)

where Iprebleach is the measurement before bleaching (or the average of a number

of recordings before bleaching) and Ibackground is the signal level in the absence of

any fluorescence [88]. Alternatively, normalization can be performed by fitting

the data to the analytically derived descriptions of diffusion, as follows [88]

Inorm,t ¼ It � I0ð Þ= Ifinal � I0ð Þ (12:45)

where Ifinal is the final value at the completion of fluorescence recovery. This

process yields a curve that starts at zero immediately after bleaching and reaches

unity at recovery. The curve fit can be performed using any equation that

represents the diffusion process and with any fitting algorithm, such as the

least-squares method. A variety of analytical functions representing 2-D and

3-D diffusion models and the Monte Carlo simulation approach to generating

FRAP curves are covered in the literature [88–91].

Another application of FRAP is to determine quantitatively the immobile

fraction of the labeled molecule under investigation. This is achieved as [88]

Inorm,t ¼ It � I0ð Þ Iprebleach � I0
� �

(12:46)

where I0 is the intensity immediately after bleaching. This approach yields a curve

for which the prebleaching value is unity and the fluorescence level immediately

after bleaching is zero [88, 89]. If the fraction of mobile bleached molecules is

negligible, compared to the total amount of fluorescence molecules, that is, if the

FRAP curve would return to prebleaching levels when no immobile fraction was

present, then the immobile fraction can be estimated as 1� Inorm,final.

The confocal laser scanning microscope is ideal for performing FRAP

experiments because the laser illumination can be limited to defined coordinates,

allowing any region to be selected for bleaching. Applications of FRAP

include the study of exchange between cells or organelles, diffusion of proteins

within membranes or organelles, and determination of protein turnover in com-

plexes. To aid in localization of the target molecule postbleaching, sometimes

a second fluorophore that remains visible throughout the time course of the

experiment is introduced to the target. This process is termed fluorescence local-

ization after photobleaching (FLAP) [92]. Another complementary technique is
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fluorescence loss in photobleaching (FLIP), which involves repeated photobleach-

ing of a region of fluorescence within the cell [92]. Over time, this repeated

bleaching leads to permanent loss of fluorescent signal throughout the cell. This

indicates that free exchange of molecules occurs between the photobleached

region and the rest of the cellular compartments. Thus, nonbleaching ofmolecules

within the cell indicates where molecules are isolated and specifically localized in

distinct cellular compartments.

12.7.8 Tota l In terna l Ref lec tance
F luorescence Microscopy (T IRFM)

Total internal reflectance fluorescence microscopy (TIRFM) is used to monitor

the behavior of biomolecules directly at the single-molecule level, both in vitro

and in living cells. It is most suited to image events occurring at or close to the

plasma membrane of live cells. This technique is based on the principle that

when the excitation light is incident above a ‘‘critical angle’’ on the glass/water

interface, the light is totally reflected internally, and it generates a thin electro-

magnetic field (called the evanescent field ) with the same wavelength as the

incident light [93]. The evanescent field that decreases exponentially is created

at a depth of �150 nm below the glass/water interface [94, 95]. The intensity of

the evanescent field decays exponentially with distance from the glass surface;

thus it is only able to excite molecules near the glass surface. This has the

advantage that fluorophores further from the surface are not excited, resulting

in a reduction of background noise. The constant of the exponential spatial

decay of the field is the penetration depth, dp, which depends on the physical

parameters of the total internal reflection setup and the incident light.

In TIRF microscopy the field penetrates from the cover glass to the liquid in

which the specimen is mounted. The penetrating energy is used as excitation to

image a thin slice in the liquid substrate. The image intensity of a pixel depends

on its depth z(x, y) above the interface, given by [94, 95]

Iz x, yð Þ ¼ Imax exp
� z x, yð Þ�zminð Þ=dpð Þ (12:47)

where Imax is the maximum intensity and zmin is the corresponding height, whose

value is an experimental constant depending on the thickness of the region under

observation.

TIRFM is used to measure the time course, trajectory, and distribution of

molecular properties for individual biomolecules in vitro and in living cells [93, 96].

Specific applications include examination of plasma membrane events, such as

endocytosis and exocytosis, spatial and quantitative analyses of receptor–ligand

binding interactions, mobility of plasma membrane components, dynamics of

cytoskeletal filaments, and themonitoring of chemical reactions. Image processing
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and analysis algorithms are typically dictated by the application, and most are

customized to analyze quantitatively the parameters of interest.

12.7.9 F luorescence Corre la t ion
Spec t roscopy (FCS)

Fluorescence correlation spectroscopy (FCS) imaging is a highly sensitive

method that provides fast temporal and high spatial resolution for single-

molecule imaging. The basis of this technique is monitoring the fluorescence

fluctuations that arise from molecule diffusion within a small optically defined

volume (on theorder of femtoliters), following excitationby a focused laser beam.

These fluctuations in fluorescencemay arise as a result of flow, chemical reaction,

and Brownian diffusion. In conventional imaging, fluctuations in intensity are

problematic and constitute noise.However, inFCS the fluctuations constitute the

signal. The imaging approach is to record the fluctuations in fluorescence inten-

sity as a function of time. FCS is based on correlation analysis, comparing time

signals for a series of lag times t. The decrease in the autocorrelation function of

the time series provides a measure of the diffusion coefficient of the fluorophore.

The most commonly used normalized autocorrelation function, relating the

fluorescence intensity I(t) at time t to that t seconds later, I(tþ t), is [97]

G tð Þ ¼ 1þ dI 0ð ÞdI tð Þh i
Ih i2 (12:48)

In FCS, for the evaluation of experimental data, the following analytical

expression is used [97]

G tð Þ ¼ 1þ 1

N
1þ t

tD

� ��1

1þ t

R2tD

� ��1=2

, where R ¼ vz=vxy

(12:49)

Equation 12.49 gives the correlation function for translational diffusion. The

function is time dependent and represents the fluorescence fluctuation that occurs

due to Brownian motion. Assuming that the molecules within the observed

volume element follow Poisson statistics, N is the average number of molecules

in the sample volume. The number of molecules is inversely proportional to the

amplitude of the autocorrelation curve, tD is the average time the molecules take

to move across the observation volume in the radial direction, andR is the ratio of

the axial half-axis to the lateral half-axis of the observation volume [97].

The autocorrelation curve resulting from processing FCS data is interpreted

by fitting equations to it. Typically, mathematical functions that represent

different diffusion models (such as Eq. 12.49) are fitted to the autocorrelation
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curve. Parameters such as the translational diffusion time, which characterizes

the average residence time of the fluorescent molecule in the defined excitation

volume, and the average number of fluorescent molecules in the volume can then

be determined. FCS has been used to measure the location, accumulation, and

mobility of fluorescently tagged molecules in membranes and the cell wall from

very low-bulk concentrations. Also, fluorescence cross-correlation spectroscopy

(FCCS) has been used to measure protein-to-protein interaction between two

fluorescently tagged targets. The reader is referred to other publications for

a comprehensive review on FCS [98–100].

12.8 Summary of Important Points

1. Fluorescence imaging provides an incomparable degree of flexibility,

given its ability to maintain a ‘‘molecular’’ resolution with high specifi-

city in a tremendously complex biological background.

2. Fluorescence occurs when a molecule absorbs a photon and then emits

a photon as it returns to a lower state.

3. Fluorescence microscopy is an incoherent imaging process; that is, each

point of the object or sample contributes independently to the light

intensity distribution in the observed image.

4. Wide-field, confocal, and two-photon microscopes can be used to per-

form single- and multidimensional fluorescence microscopy. The key

requirements are illumination at the required wavelength and effective

blocking of the excitation light during detection of the emitted light.

5. In practice, instrument- and sample-based aberrations are always pre-

sent in fluorescence microscopy. It is critical that the sources of noise be

identified and appropriately corrected.

6. Fluoresence images can be corrected easily for background inhomoge-

neity, dark current, autofluorescence, photobleaching, and intensity

attenuation with depth.

7. The linear relationship between fluorescence and excitation intensity

enables quantitative measurements of concentration using fluorescence

microscopy.

8. Fluorescence is a relative quantity, and a large number of factors

can affect fluorescence measurements, requiring calibration of instru-

mentation, standards, and image correction methods for accurate

quantification.
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9. Several techniques are available for fluorescence microscopy. The choice

of the fluorescence microscopy method used depends on the application.

10. Immunofluorescence is extensively used for the visualization and quan-

titation of the distribution of specific cellular components (such as

proteins) in cells or tissue.

11. Fluorescence in situ hybridization is a molecular cytogenetic technique

that is used specifically for the visualization and localization of DNA

and RNA sequences.

12. Colocalization studies are performed to identify functionally related

molecules, and they involve the simultaneous analysis of the location

and expression of multiple target molecules.

13. Ratio imaging is most widely used to measure either absolute or relative

changes in spatial and temporal ion concentrations within living cells.

14. FRET can be used to obtain information on the immediate environment

(in the nanometer range) of a labeled molecule, to detect macromolecu-

lar interactions, and to determine the intramolecular and intermolecular

proximity between two appropriately paired fluorophores.

15. FLIM can be used for studying FRET by detecting the decrease in the

fluorescence lifetime of the donor fluorophore.

16. FRAP, FLIP, and FLAP are used for studying the dynamic behavior of

labeled molecules, specifically the behavior of proteins in living cells.

17. TIRFM is used to monitor the behavior of biomolecules directly at the

single-molecule level, both in vitro and in living cells.

18. FCS is a highly sensitive method for single-molecule imaging.
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13
Multispectral Imaging

James Thigpen and Shishir K. Shah

13.1 Introduct ion

Spectral imaging methods have long been used in the fields of astronomy [1],

remote sensing [2], and chemical compound analysis [3], to elucidate the com-

position and characteristics of terrestrial and atmospheric elements. In recent

years, spectral imaging has found utility in microscopy applications ranging

from spectral karyotyping [4], general cell visualization [5], and cell trafficking of

variously colored fluorescent proteins [6].

Spectral imaging is the combination of two mature technologies: spectros-

copy and imaging. In recent years, spectroscopy has found increased usage in

analyzing biological samples, specifically for characterizing and delineating

colorimetric and chemical stains, autofluorescence, and natural and man-made

fluorophores, many of which may be present in the same sample. Due to its

ability to identify the chemical composition of molecules, it has become one

of the fastest-growing techniques in biosciences. The combined use of spectros-

copy and imaging is a relatively new development, and its usage and benefits are

less well understood. Spectral imaging results in the transformation of wave-

length information over a spatial extent into a spectral image. In this chapter we

discuss the principles of spectral imaging and several algorithms that are useful

for the analysis of spectral images.

Microscope Image Processing
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13.2 Principles of Mult ispectral
Imaging

Spectral imaging combines spectroscopy and imaging to acquire a spectral

image that specifies the complete wavelength spectrum of a sample at each

point in the imaging plane. Spectral images are three-dimensional (3-D) cubes

of data, Ix,y lð Þ, composed of a series of two-dimensional (2-D) images, Ix,y, one

for each value of l. Just as an image is composed of pixels (grayscale or color)

corresponding to each point in the spatial region of interest, spectral images are

composed of spectral pixels, corresponding to a spectral signature of the corre-

sponding imaged region. A spectral pixel is a pixel that stores not a grayscale or

RGB value, but the entire measured spectrum of the corresponding spatial

point. That is, each pixel location x,yð Þ contains a spectral signature stored

along the l-axis corresponding to that spatial location in the image, as shown in

Fig. 13.1. Each Ix,y, for a fixed l, corresponds to a 2-D grayscale image.

This image can be stored in computer memory in several ways. One is band-

sequential (BSQ), where each wavelength is stored as an image and the images

are ‘‘stacked like a deck of cards’’ [7]. Other representation methods are band-

interleaved-pixel (BIP) and band-interleaved-line (BIL). In BIP, the spectra for

pixels are stored in a sequential fashion. Unlike BSQ representation, BIP has

the advantage that a single spectral pixel may be accessed without accessing the

entire image cube. Of course, a spectral image may be converted from any

representation to any other.

Many different technologies have been used to generate spectral images [8].

To understand the process of image acquisition and the characteristics of

x

y

l

F IGURE 13.1 A three-dimensional stack representing data in spectral images. x and y dimensions
represent the spatial information while l represents the spectral information. This figure may be seen in color in
the four-color insert.
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spectral imaging, we first briefly discuss the two elements of the imaging process:

spectroscopy and imaging.

13.2.1 Spec t roscopy

Spectroscopy is a broad and well-established science that has been used extensively

to explain the spectral characteristics of matter. The first use of spectroscopy dates

back to 1666, whenNewton described the dispersion of white light into its constitu-

ent colors.Later, the same capability provided the spectrumofhydrogen,whichwas

explained by Balmer in 1885, eventually leading to the Böhr model of the atom in

1913. The measured spectrum is related directly to the structure of the atoms and

molecules under examination and is ameasure of their energy levels. Energy, which

is provided in microscopy applications by the brightfield and fluorescent illumi-

nation sources, is absorbed by the atoms in the molecule, which cause electrons

to move to a higher energy level.

In typical use of fluorescence microscopy, either the sample to be observed is

tagged with fluorescent molecules or the sample itself has fluorescing properties.

On excitation from an external energy source, electrons jump to a higher meta-

stable state and rapidly decay back to their ground state, releasing photons that

are recorded as fluorescent intensity. The energy released by an excited molecule

in returning to its ground state is unique for that molecule, and the measured

spectrum provides a precise signature of the molecule [9]. Furthermore, the

fluorescent intensity detected has a direct relationship to the concentration of

the measured molecule. In most applications, the excitation light is many times

stronger than the light emitted from the sample. The precise detection of emitted

light requires the use of various filters that can provide maximum separation of

the two light sources (Chapter 12).

In brightfield microscopy, the measured energy is related to the energy lost in

exciting the electrons of the sample of interest. Hence, the measured spectrum is

characteristic of a sample’s ability to absorb or scatter the exciting light. Unlike

intensity measurements using fluorescence microscopy, it has been found that, in

a brightfield setup, the measured signal may be directly proportional not to the

concentration of the observed molecules, but rather to its logarithm [9].

In typical spectroscopy configurations, the spectrum of a sample is measured

by dispersing the exciting light into its constituent wavelengths, with the emitted

intensity at each wavelength being detected. Many different methods of light

dispersion are available, and each results in a different configuration in con-

structing a spectral imaging system. One of the common light dispersion systems

is a monochromator, which uses a plane grating, concave holographic grating,

or prism. Irrespective of the specific dispersing mechanism used, all spectral light

sources operate as a function of the same geometric optics. To measure the
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spectrum of a sample accurately, spectral analysis of the data must take into

account the spectrum of the light source.

In a monochromator, wavelengths are sampled sequentially. If a diffraction

grating is used as the dispersing mechanism, the broadband light emitting

from the illumination source strikes the grating at an angle of incidence and

is diffracted at an angle of diffraction. The angle of diffraction varies with

wavelength, and hence manipulating the angle of light incidence can vary

the wavelength of light emitted from the monochromator. The theory behind

dispersion mechanisms, specifically diffraction gratings and prisms, is well cov-

ered in the literature [10]. Some key characteristics of a spectroscope are (1) its

spectral resolution, which determines how close the wavelengths can be and still

be detected and measured independently; (2) the spectral range, which deter-

mines the range of the spectra that can be measured; (3) the signal-to-noise ratio

(SNR); and (4) the dynamic range, which determines the smallest measurable

signal and the number of distinct levels in a measurement.

These parameters depend on both the characteristics of the light source and

the detector used to measure a spectrum. The spectral resolution, or resolving

power, R, of a spectroscope is given by

R ¼ l=dl (13:1)

where dl is the smallest difference in wavelengths that can be detected at wave-

length l. It can be interpreted as the minimum distance in the spectral dimension

by which two spectral measurements must be separated in order to be discretely

detected by the spectrograph. The Rayleigh criterion defines the resolvability of

two values as being when the maximum of one falls on the first minimum of the

other. In spectrometers that use diffraction gratings, it has been shown that

R ¼ l=dl ¼ kN (13:2)

where k is the refraction order andN is the number of grooves on the illuminated

width of the grating. Actual spectral resolution, also referred to as bandpass,

also depends on the width of the entrance aperture and the focal length of

the system. So the numerical resolution, R, should not be confused with the

observed resolution or bandpass of the illumination source. For most real

systems, the reported resolution is dominated by the bandpass determined by

the slit width and the natural spectral bandwidth of the natural emission

spectrum. For a detailed treatment of the fundamentals of spectrometers, one

can consult the excellent review by Lerner [10].

13.2.2 Imaging

Imaging is the science and technology of acquiring multidimensional data with

the primary emphasis on extracting spatial and temporal information from
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samples. The most advanced and applicable method of acquiring data is digital

imaging. Digital imaging captures data using a sensor such as a charged couple

device (CCD) camera, complementary metal oxide semiconductor (CMOS)

camera, photomultiplier tube (PMT), or any other light-detecting device. The

process of imaging and the quality of detector define the characteristics of

the recorded image data. The amount of information that can be extracted

from an image is determined by the following common parameters that charac-

terize the acquired images [11]: (1) Spatial resolution, which depends on the

wavelength (l), the numerical aperture (NA) of the objective lens, the magnifi-

cation, and the pixel size of the detector, determines the closest distinguishable

feature in the object; (2) the magnification and pixel size determine the sampling

frequency, which must be equal to or greater than the Nyquist frequency

(see Chapter 3) to achieve full optical resolution [11]; and (3) the quantum

efficiency of the detector defines the lowest detectable signal. Other factors

that affect the signal are the illumination power spectrum, the NA and quality

of the optics, and the noise level of the system. All these should be optimized to

obtain the best signal possible, especially in applications such as fluorescence

imaging and live-cell imaging, where the number of photons is limited.

The dynamic range of the acquired data typically depends on the ratio

of the maximum number of electrons at each pixel to the lowest detectable signal.

Hence the dynamic range defines the number of unique intensity levels that can be

measured in an image. Field of view (FOV) is dependent on the physical dimension

of the detector and determines the maximal area that can be imaged.

Modern detectors also provide control of parameters such as exposure time

and the binning of CCD pixels to gain sensitivity by trading off dynamic range

or spatial resolution. Appropriate settings should be dictated by the application.

CCD-based detectors are commonly used in quantitative optical microscopy

due to their high sensitivity in detecting photons. CCD pixel wells operate

fundamentally as capacitors whose charge is proportional to the number of

photons that reach the detector [12, 13]. The ability of a CCD detector to

measure the number of photons is specified by its quantum efficiency, which

is the ratio of the number of photons sensed to the number of incident

photons. Modern CCD detectors come in various configurations, including

front-illuminated, back-illuminated, back-thinned, and intensified. Each config-

uration has its advantages and disadvantages, mostly varying in their quantum

efficiencies. CCD detectors also offer different modes of data transfer, depen-

dent on the construction of the electronics associated with the photosensitive

element and the registers used to transfer the charge from each sensing element.

These include full-frame, frame transfer, and interline transfer mechanisms

[14–19]. The main difference among the transfer modes is mostly in the time

taken to read out the image. For example, standard RS-170 CCD chips take less

than 10ms to acquire two video fields [15]. Scientific-grade interline transfer
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cameras are even faster and take as little as 200 ns to transfer a frame. Each of

the foregoing characteristics should be considered in making a final choice of the

detector to be used for imaging and specifically for spectral imaging.

13.2.3 Mul t i spec t ra l Mic roscopy

Multispectral microscopy has generally been explored in the context of fluores-

cence or brightfield microscopy. In either mode of microscopy there are

a number of options that result in the ability to acquire spectral data sets,

each having its own set of advantages and disadvantages. Traditional use of

multispectral imaging has been coupled to fluorescence microscopy and, in turn,

based on multiposition filter wheels. Other methods include tunable illumi-

nation (as with monochromators), Fourier transform imaging spectroscopy,

and various forms of tunable bandpass filtering. A variety of detectors has

also been used for acquiring spectral images, the more common ones being

CCDs and photomultipliers.

13.2.4 Spectral Image Acquisition Methods

There is a fundamental challenge in acquiring a spectral image, due to the fact

that a spectral image is multidimensional, and typical image detectors are either

2-D or lower. This challenge has led to the development of different approaches

for spectral image acquisition. Spectral imaging methods can be divided into

the following methods, as defined in [9]: (1) wavelength-scan methods, which

acquire the spectral image as a stack of images, measured one wavelength at

a time, (2) spatial-scan methods, which acquire the spectral image one portion at

a time (e.g., line by line) while measuring the whole spectrum of each portion and

simultaneously scanning the image, and (3) time-scanmethods, which acquire the

spectral image based ondata transform techniques such as theFourier transform,

where the data itself is a set of images, each one being a superposition of spectral

or spatial image information.

13.2 .4 .1 Wave leng th -S can Methods

Spectral imaging using wavelength-scanning methods is based on acquiring

a series of 2-D images, one for each wavelength of interest. This populates the

data cube one planar image at a time and corresponds directly to the BSQ image

representation. The simplest method of achieving spectral imaging is to use

color filters. Most modern microscopes are equipped with filter wheels that

can accommodate a range of optical filters. Spectral images can be acquired

by simply capturing a set of images, changing the filter position between each

image. This approach, however, is useful only when measuring a small number
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of wavelengths, because the number of slots in the filter wheel limits the

number of wavelength bands that can be measured. In addition, measuring

new wavelengths of interest requires replacing the filters in the filter wheel

with a new set. Optical filters may also present additional problems, in that

their transmission spectra may decay unpredictably with time.

A more convenient method of capturing spectral data is through the use of

tunable filters. There exist several types of such filters, circular-variable filters

(CVFs) [20], liquid-crystal tunable filters (LCTFs) [21], and acousto-optical

tunable filters (AOTFs) [22, 23]. A CVF is a continuous circular filter with

narrow bands defined spatially along its surface. Wavelengths are selected by

positioning the illumination source at a certain point along the filter surface.

However, due to the continuous nature of the filter and the nonuniform nature

of all illumination sources, a spectral gradient will be present in any imaged field.

AOTFs and LCTFs are electro-optical components having no moving parts.

With these systems, changing wavelengths is a very fast operation, which can

occur on the order of microseconds for AOTFs or milliseconds for LCTFs [24].

These filters typically have relatively low transmittance, and their spectral

resolution is hardware dependent and fixed for a given wavelength [24].

The monochromator provides another method for scanning wavelengths.

A monochromator has many moving parts, so changing wavelengths is several

orders of magnitude slower than with AOTFs or LCTFs. The bandwidth is

adjustable, however, via entrance and exit slits on the monochromator.

Decreasing the bandwidth results in a lower spectral resolution, but it also

increases the light output of the system, which may be beneficial for imaging

systems with low sensitivity [25].

Irrespective of the filters chosen, the major advantage of this approach is that

the wavelengths are user selectable, and images can be acquired with the flexi-

bility of choosing an optimal exposure time for each wavelength. On the other

hand, the spectral resolution is usually hardware dependent and, for a given

system, cannot be changed. A comprehensive review is presented by Gat [24].

The use of filters and the wavelength-scan method of spectral image acquisition

can be adapted for both fluorescence and brightfield microscopy. This method

benefits from simplicity, relatively low cost, and minimal image degradation,

since no additional optical or mechanical elements are interposed in the imaging

light path.

13.2 .4 .2 Spa t i a l - S can Methods

In this method, a prism or grating is placed in the emission path before the

detector so that light from a slit can be spread onto a 2-D imaging sensor such as

a CCD. In this configuration, all columns of the detector are measuring the same

row of pixels from the sample, but each column sees a different wavelength.
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Images are captured as I x,yð Þ and scanned across the second spatial dimension,

y [26]. This approach is commonly used with confocal microscopy [27]. For most

applications, the number of wavelengths to bemeasured is much smaller than the

spatial dimension of the sample, and hence the detector requires a significantly

smaller number of detector elements for the acquisition, relative to CCD-based

methods. This results in a much longer acquisition time in comparison to the

CCD-based systems in order to achieve the same SNR. This method is most

commonly used for brightfield microscopy, but it is applicable for fluorescence

microscopy as well.

13.2 .4 .3 T ime-S can Method s

Time-scan approaches rely on the use of data transformation techniques to

acquire spectral images. The measured data itself is a superposition of the

spectral or spatial information. One approach that uses this method is Fourier

spectroscopy [28, 29]. This approach uses principles of light interference, instead

of filters, to measure the spectrum. The key component of this approach is an

interferometer, which splits a beam of light into two beams, creating an optical

path difference (OPD). When the two beams join back to interfere at the

detector, intensity is measured by the detector as a function of many OPDs,

resulting in a pattern known as the interferogram. This pattern is specific to

a tested spectrum. The Fourier transform of the interferogram provides the

spectrum. Michelson or Sagnac interferometers are the ones commonly used in

microscopic applications [28, 29]. Another method used more recently is based

on the Hadamard transform [30].

These methods can also be used for both brightfield and fluorescence

microscopy. The advantage of this approach includes the ability to tune acqui-

sition parameters, such as spectral resolution, without any changes to the

hardware. On the other hand, the major drawbacks of these approaches is

computational complexity, due to the data transformations required, as well

as an inability to select specific wavelengths of interest, since the entire spectrum

must be captured to acquire any portion of it.

13.3 Mult ispectral Image Processing

A spectral image usually contains thousands of spectral pixels. The data files

generated are large and multidimensional, making visual interpretation difficult

at best. This necessitates a comprehensive set of tools for acquisition, analysis,

visualization, and presentation of the results [31]. Many modern image process-

ing methods and algorithms are capable of analyzing multidimensional images.

These are, in general, adequate and relevant for spectral image processing.
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For a review, see [32]. Specific applications require the design of image analysis

algorithms, some of which may require the use of both spectral and image

features [33, 34]. Spectral image analysis, in itself, is a growing field, and some

of the basic algorithms are described here.

13.3.1 Cal ibrat ion for Mul t i spec t ra l
Image Acquis i t ion

A key utility of multispectral microscopy is its ability to characterize the inher-

ent chemical properties of a sample. This is achieved by measuring the sample’s

spectral response. In imaging any composite biological material, the interpre-

tation of the spectra is a complicated problem. A primary reason for this is that

any detector used for data acquisition does not have uniform quantum efficiency

across the excitation spectrum, and this leads to interference effects. These

interference effects necessitate the use of effective calibration algorithms before

quantitative analysis of any specimen can be meaningful. Interference effects are

introduced by nonhomogenous illumination, attenuation of the illumination at

the shorter wavelengths vs. longer wavelengths, and variations in the SNR, due

to a decreased quantum efficiency (QE) of the detector at the shorter wave-

lengths (i.e., the blue part of the spectrum). The observed spectrum of a sample

depends on the spectral power distribution of the light source.

In brightfield multispectral microscopy, gray-level image intensities may be

used to determine the proportion of light transmitted by each particle across the

exciting spectra. The transmission factor, T, is defined as

T ¼ It

Ii
(13:3)

where It is the intensity of the transmitted radiation by the sample and Ii is the

intensity of the incident light. The incident light intensity can be approximated

by measuring the average intensity of the background or the media surrounding

the sample. The radiation transmitted by the sample is measured as the inte-

grated intensity of the sample divided by the size of the sample. Thus, one can

compute the absorption parameter for the sample, a measure of the sample’s

spectrum, using the Beer–Lambert law [35–37] as

A ¼ log
1

T

� �
(13:4)

For each sample to be analyzed, one can measure the absorption parameter

across all wavelengths to generate a spectral signature.

Figure 13.2 shows images of white blood cells (WBCs) obtained at 450 nm,

550 nm, and 650 nm at three constant exposures. The corresponding profile of
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the mean background intensity and the transmission factor, a spectral charac-

teristic for a WBC, is shown in Fig. 13.3. The background intensity is highly

varying across wavelengths, and hence a true spectral signature would not be

quantifiable from these raw images. This shows that it is critical to calibrate for

the spectral balance of the imaging system before accurate spectral signatures

can be measured. This problem is similar to that of achieving white balance in

color imaging, where one expects equal amplitude in the red, green, and blue

channels. If one were to use a fixed gain and exposure setting for a camera and

acquire images across the wavelengths, it would be difficult to separate the true

spectral signature of the sample from the response of the imaging system.

A system configuration for brightfield multispectral microscopy is shown

in Fig. 13.4. The system uses a grating-based spectral light source coupled

to a standard optical microscope allowing 2-D image acquisition by a high-

resolution cooled CCD camera. A quarter-meter class, Czerny–Turner type

monochromator (Photon Technology International, Inc., NJ) provides a

tunable light emission spectrum at 10-nm resolution (marked as a). The wave-

length range used is 400–700 nm. The monochromator is connected to an

Wavelength vs. Exposure

450 nm

10 ms

50 ms

90 ms

550 nm 650 nm

F IGURE 13.2 White blood cells imaged at three different wavelengths (450 nm, 550 nm, and
650 nm) using three separate exposures (10 ms, 50 ms, and 90 ms) showing the variability in both the
illumination source and the quantum efficiency of the detector.
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Olympus (Olympus America, Inc., PA) BX-51 upright optical microscope

(marked as c) in such a way that the light output from the monochromator

passes into the transmitted light path of the microscope. This allows for the use

of conventional optical microscopy to acquire brightfield images at any desired

wavelength (transmitted light). An Olympus UPlanApo 20X NA 0.7 objective is

used for imaging. A SenSysTM (Photometrics, AZ) CCD camera (marked as b),

Transmission Factor Profile and Background Variability
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F IGURE 13.3 Transmission factor profile of white blood cells and the respective image background
across the spectra for the uncalibrated system.

F IGURE 13.4 A multispectral imaging system for brightfield imaging based on the use of
a monochromator coupled to an upright light microscope. (a) camera, (b) microscope, (c) monochrometer.
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having 768 � 512 pixels of size 9mm� 9mm and 8-bit digitization, provides for

high-resolution, low-light image acquisition. The illumination from the mono-

chromator is adjusted for Köhler illumination to obtain uniform excitation of

the specimen. The condenser, aperture diaphragm, and field stop are held

constant during the measurements. Focusing can be done at the central wave-

length of 550 nm or at each wavelength separately before image acquisition, to

minimize chromatic aberration.

One approach to calibrating the variations due to illumination effects and

varying quantum efficiency of CCD cameras at different wavelengths is to

normalize the camera exposure for each wavelength. This must be done in

such a way as to avoid saturation. The goal is to have the incident light intensity

uniform across the wavelengths. Since average background intensity is

a measure of illumination strength, the problem of calibration is to adjust the

exposure for each wavelength so that the average background intensity is

uniform. This problem is formulated as one of similarity matching. Measures

of similarity generally use the average optical density (AOD) and gray-level

histograms of images taken at different wavelength and exposure. A least-

squares error solution can be used to determine the final exposure value at

each wavelength.

To initialize the calibration procedure, a reference image is selected to serve

as the template for matching exposure across the wavelengths. One choice is to

use an image at 550 nm as the reference, since most CCDs offer uniform

quantum efficiency in the wavelength band 500–600 nm. The exposure value

for this wavelength is selected so that the average optical density for the chosen

wavelength–exposure image is close to the middle of the grayscale dynamic

range. For 8-bit images, for example, the value could be 128, which allows for

a broad dynamic range for measuring transmission factors. Let I l, eð Þ denote one
wavelength–exposure image pair, where l is the wavelength and e signifies

the exposure value in milliseconds. Thus, the reference image is denoted as Iref
such that

Iref ¼ I 550, erefð Þ (13:5)

where

eref ¼ argmin
e

AOD I(550, e)
� �� 128

� �2
(13:6)

and

AOD I 550, eð Þ
� � ¼ 1

X�Y
XX
x

XY
y

I 550, eð Þ x, yð Þ (13:7)
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The first calibration approach is AOD equalization. This procedure chooses

the exposure for each wavelength so that the AOD is equal to the AOD of the

reference image. Then the spectral image set should have uniform background

intensity across all wavelengths. The required exposures are given by

el ¼ argmin
e

AOD I l, eð Þ
� ��AOD Irefð Þ� �2

(13:8)

Other similarity measures are based on histogram matching (see Chapter 6).

This approach preserves the ordinal relationship among pixels, and the spatial

structure of the image is not affected. Histogram matching transforms an image

so that its histogram matches that of another image. A distance measure is

computed between the histogram of the reference image and each image across

all the exposures for each wavelength. The exposure producing the smallest

distance is chosen at each wavelength. Four different distance measures,

drawn from signal processing and statistics, are presented here.

For two histograms, HIref and HI l, eð Þ , with entries hIref and hI l, eð Þ , the

most common distance measure is based on the Minkowski metric, which

has the form

dM HIref , HI l, eð Þ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM�1

m¼0

hI l, eð Þ m½ � � hIref m½ �
� �2

vuut (13:9)

Another metric that has been found to work well for histogram matching is

the Jeffrey divergence [38]. For this case, the divergence is given as

dJ HIref , HI l, eð Þ

� �
¼
XM�1

m¼0

hIref m½ � log 2hIref m½ �
hIref m½ � þ hI l, eð Þ m½ �

 !

þ hI l, eð Þ m½ � log
2hI l, eð Þ m½ �

hIref m½ � þ hI l, eð Þ m½ �

 !
(13:10)

Various other distance metrics have been proposed to evaluate the similarity

of two histograms [39]. Two different calculations of the x2 distancemetric [40, 41]

can be used. One would use x2
HIref

when the theoretical distribution is known.

Even though this is not known, in practice one can approximate the continuous

distribution from the image. The distance measure can be computed as

x2
HIref

HIref , HI l, eð Þ

� �
¼
XM�1

m�0

hI l, eð Þ m½ � � hIref m½ �
� �2

hIref m½ � (13:11)
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The second distance measure, x2
HIref

HI(l, e)
, is meant to compare two real

histograms. It is computed as

x2
HIref

HI
l, eð Þ

HIref , HI l, eð Þ

� �
¼
XM�1

m�0

hI l, eð Þ m½ � � hIref m½ �
� �2
hIref m½ � þ hI l, eð Þ m½ � (13:12)

Any of the foregoing metrics can be used to compute the distance measure for

every exposure at each of the wavelengths. The exposure value that minimizes the

metric is chosen for each wavelength; that is

el ¼ argmin
e

D l, eð Þ (13:13)

where D is one of the distance measures described earlier.

In a recent study comparing the preceding metrics, it is shown that AOD

equalization provided the best set of exposure values [42]. Images acquired by

the calibrated system at the same three wavelengths (450 nm, 550 nm, and

650 nm) are shown in Fig. 13.5. The average background intensity across the

wavelengths for exposure values chosen based on three of the distance metrics is

plotted in Fig. 13.6. The profile across the wavelengths is relatively flat, as would

be expected if the camera is color balanced across the wavelengths.

Furthermore, to evaluate the result of nonuniform illumination compensa-

tion, Fig. 13.7 shows the measured transmission factor of WBCs that are

distributed spatially in the image. The transmission factors are overlaid next

to the corresponding cell in the image. The values are similar and show minimal

variance. The overall spectral profile for WBCs in a commercial blood standard,

as imaged under the calibrated system, is shown in Fig. 13.8.

13.3.2 Spec t ra l Unmixing

In brightfield and fluorescence microscopy, cellular components are stained with

absorbing dyes or labeled with fluorophores. Spectral information from these

Images from Calibrated Spectral System

450 nm @ 200 ms 550  nm @ 40 ms 650  nm @ 120 ms

F IGURE 13.5 An image of white blood cells imaged at three different wavelengths (450 nm, 550 nm,
and 650 nm) on the calibrated multispectral microscope.
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F IGURE 13.6 Average background intensity profile across all the wavelengths for exposures computed
using three of the defined distance measures.

F IGURE 13.7 Transmission factor for white blood cells located across the spatial extent of the calibrated
spectral image.
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chemical components in the specimen can become confused due to overlap in the

spectra of the dyes or labels used. Spectral unmixing is the process of unraveling

that confusion.

In multispectral fluorescence applications, N fluorophores are used to label

N different cellular components, and each fluorophore has a characteristic

emission spectrum. Typically an N-channel multispectral image acquisition

system is designed to isolate the images of the different fluorophores so that

only one appears in each of the color channels. This way the spectral image is

simply an overlay of the N different fluorophore concentration images, and

analysis of colocalization and structural interactions is straightforward.

When using a small number of fluorophores whose emission spectra are well

separated, bandpass filters centered on the emission peak of each fluorophore can

isolate each fluorophore image to one of the color channels. However, the fluor-

ophore emission spectra tend to overlap. Thus, when imaging N fluorophores

simultaneously, the image recorded in each channel contains contributions from

several fluorophores due to the overlap of emission spectra. Thus one of the

fundamental processing requirements in analyzing such multispectral images is

that of spectral unmixing.

In multispectral brightfield applications, the signal to be measured is

the absorption spectrum of a molecule, which is related to the concentration

of the molecule present in the sample. If the sample is stained with several

different dye molecules, each with different absorption spectra, the resulting

measured absorption spectrum is an overlap of the individual molecule spectra.

Thus the problem here is similar to that of overlapping spectra in the case of
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F IGURE 13.8 Transmission profile of white blood cells in a commercial blood standard measured
from the spectral image acquired after calibration of the multispectral brightfield microscope.

314

13 Multispectral Imaging



multispectral fluorescence applications. Spectral unmixing is the method used to

separate mixed contributions to a pixel, for both colocalized fluorophores and

absorbing dyes [43–46]. Spectral unmixing is simple to implement, but it requires

that the emission spectrum of each fluorophore (or the absorbance profile

of each stain) be known in advance.

13.3 .2 .1 F l uo re s cen ce Unmix ing

Spectral unmixing algorithms for fluorescence assume that the measured signal

at each pixel is a linear combination of the overlapping spectra at that point [46].

Further, these algorithms also assume that the measured signal is linearly

proportional to the concentration of the fluorophore or dye at that point. This

assumption holds true when the absorption and fluorophore concentrations

are low but may be disrupted by energy transfer between colocalized fluoro-

phores [45], and in such cases appropriate correction terms are necessary

(see Chapter 12).

For fluorescence-based applications, assume that N fluorophores are used,

each one labeling a different cellular component, and that a spectral imaging

camera produces an L-channel multispectral image, where L $ N. The emission

spectrum of each fluorophore, under the same imaging conditions, is known

prior to actual analysis of the sample. The unmixing algorithm processes the

spectral image so that each fluorophore is isolated to a single channel. If L > N,

then the problem is overconstrained, and L – N of the channels in the processed

image will be empty.

At a single pixel, the recorded intensity is a vector, I ¼ Ij
	 


, where

j ¼ 1, . . . ,L indexes the spectral channels. The actual intensity observed is

a function of the fluorophore concentrations at any given pixel. If C ¼ Ci½ � is
the vector of fluorophore concentrations, Ci, where i ¼ 1, . . . ,N is the index of

fluorophores, the measured intensity at each pixel is given in matrix form as

I1
I2

..

.

IL

2
6664

3
7775 ¼

s1,1 s1,2 � � � s1,N
s2,1 s2,2

..

. ..
. . .

. ..
.

sL,1 � � � sL,N

2
6664

3
7775�

C1

C2

..

.

CN

2
6664

3
7775 (13:14)

The L�N matrix, S ¼ sj,i
	 


, called the smear matrix, represents the set of

sensitivities of each color channel to the spectrum of each fluorophore. The

measured intensity is simply

I ¼ S� C (13:15)

If L ¼ N and if S is known and invertible, then the inverse matrix, S�1, can be

used to calculate the fluorophore concentrations at each pixel by
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C1

C2

..

.

CN

2
6664

3
7775 ¼ S�1 �

I1
I2

..

.

IL

2
6664

3
7775 (13:16)

Ideally, the smear matrix, S has all positive elements and is approximately

equal to the identity matrix, so matrix inversion is not problematic. The problem

becomes one of determining S. This is readily done if images of known speci-

mens labeled with single fluorophores are available. In each such case, only

one element of C is nonzero, and digitizing each such image yields one row of

S [11, 48]. One must account for background brightness levels and, if different,

for exposure times in each channel [11, 49].

If suitable training samples are not available, one can solve for S in several

other ways, discussed later. However, such a solution may produce negative

elements in S, due to noise, and this does not correspond to reality, since

negative concentrations are impossible. Possible solutions to this problem

include modification of the foregoing formulation based on nonnegative

constraints [47] as discussed later.

M-F ISH Examp le One application that benefits from the foregoing

unmixing algorithm is multispectral fluorescence in situ hybridization (M-FISH)

for chromosomal analysis. The 46 chromosomes in a human cell are known to

occur as 22 homologous pairs plus two sex-determinant chromosomes, yielding

24 distinct types. Cytogeneticists examine chromosome ‘‘spreads’’ to look for

extra, missing, or altered chromosomes. In M-FISH, combinations of five

different fluorophores are used to label each of the 24 chromosome types, and

a sixth is used as a counterstain. There are 25 � 1 ¼ 31 possible combinations of

five fluorophores, so each of the 24 human chromosome types can be labeled

with a unique combination. Identification of each chromosome in the acquired

images is simple if the combination of fluorophores on each chromosome can be

determined. Typically a six-channel spectral imaging system is used, with

the color channels matched to the emission spectra of the six fluorophores.

In reality, however, each pixel’s intensity is a weighted combination of the six

individual fluorophore brightnesses.

An example of an M-FISH chromosome spread image is shown in

Fig. 13.9a. The image was acquired over a spectral range of 450–780 nm, with

10-nm spectral resolution (i.e., L ¼ 34). The 34 spectral channels have been

projected into the 3-D RGB color space for purposes of visualization. The

spectral image has been processed according to the algorithm described earlier,

unmixing each of the fluorophore images into a single spectral channel. The

resulting 6-channel spectral image has been segmented, and each pixel has been
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classified by comparing the computed combination of labels to a table of standard

labeling based on the known combinations of the five fluorophores used in the

sample preparation. The classification results are displayed in Fig. 13.9b, in which

each color represents a different chromosome type. This approach results in

accurate classification with high specificity in the vast majority of specimens,

even on complex samples [50, 51]. Similar applications, called spectral karyotyping

(SKY) and COBRA-FISH, also use spectral unmixing [28, 52]. Various

other applications have been enabled by this technique as well, both for

immunofluorescence detection and elimination of autofluorescence [53–56].

13.3 .2 .2 Br igh t f i e l d Unmix ing

In the case of multispectral brightfield imaging, spectral unmixing is somewhat

more complex because the relevant information is contained in the absorption of

specific wavelength energy at each pixel. The absorption spectrum of a dye

molecule is given by the Beer–Lambert law

I lð Þ ¼ It lð Þ� 10�« lð Þ�c�l (13:17)

where I lð Þ is the measured transmission through the sample at wavelength

l, It lð Þ is the spectrum of the light source, c is the concentration of the

molecules, l is the light path length in the sample, and « lð Þ is the extinction

coefficient that specifies the probability that light of wavelength l will be

absorbed by a molecule. The spectrum of the light source, It lð Þ, can be deter-

mined by recording an image under the same conditions but without a sample

present. The absorbance is given by the exponent of Eq. 13.17, which is

A lð Þ ¼ « lð Þ� c� l (13:18)

F IGURE 13.9 (a) A six-color M-FISH image acquired using multispectral fluorescence microscopy
based on a filter-wheel configuration. (b) The result of spectral unmixing using the linear decomposition
method. This figure may be seen in color in the four-color insert.
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Multiple absorbing molecules, indexed by i, have extinction coefficients

«i lð Þ. Absorbance is linear with the number of molecules along the optical

path and can be expressed as a linear combination of the different wavelength

contributions. The total absorbance due to all absorbing molecules present can

be written as

A lð Þ ¼
X
i

«i lð Þ� ci� li
If l is assumed to be constant for the given sample, this reduces to a case similar

to spectral unmixing in fluorescence images. The absorption spectrum of each

individual dye can be measured in advance, and the measurement of total

absorbance at each point in the image is expressed as

A lð Þ ¼ � log I lð Þ=It lð Þð Þ
In general, when the sample contains more than a few absorbing dyes, the

transmission spectrum has a more complex structure [57]. Several applications

have been developed, including analysis of histological sections and cell smears

[35, 58].

One common application of multispectral brightfield imaging is the analysis

of stained histological samples. When multiple cellular components are to be

detected, each stained with a different chromogen, spectral unmixing can allow

measurement of their individual concentrations. It allows the separation of

multiple stains, leading to visualization of the image as if it were stained with

a set of single stains. Colocalization of proteins and relevant cell structures can

be analyzed by correlating the resulting single-stain distributions.

In the example shown in Fig. 13.10a, a cytological smear of thyroid cancer

was treated with Papanicolaou stain (hematoxylin and cytostain). Spectral

images were captured with a calibrated system (see Section 13.3.1) covering

the wavelength range of 400–700 nm with a spectral resolution of 10 nm.

Figure 13.10b shows a color image that is re-created from the spectral image,

in which the separate cellular components are labeled in different colors.

13.3 .2 .3 Unsupe r v i sed Unmix ing

The spectral unmixing algorithm described earlier requires prior knowledge of

the fluorophore or stain spectra and thus belongs to a class of algorithms called

supervised classification methods. Specifically, the smear matrix S (Eq. 13.15)

must be known. In contrast, algorithms categorized as unsupervised operate

without any knowledge of the spectra but rely on ‘‘blind decomposition’’ of

the measured signal to determine S, using the constraint that the signal is known

to be a linear combination of spectral components. These methods are normally
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couched in terms of clustering or matrix factorization, and they require minimal

input from the user, such as the number of fluorophores or stains that have

been used.

Pr i n c i pa l Componen t Ana l y s i s Principal component analysis

(PCA) is one such unsupervised unmixing method. It relies on a statistical

analysis of the whole data set (i.e., spectra of all the pixels in the image) to

find meaningful explanations for the similarities and differences in the data.

PCA, also known as the Karhunen–Loeve transform, creates a linear

transformation of an L-dimensional space that maximizes the variance of the

data along each of its new axes. A data set may be reduced in dimensionality by

eliminating low-variance components [59]. To use PCA to estimate S for

spectral unmixing, we must assume that the gray-level values have a normal

distribution (i.e., Gaussian pdf ).

In the M-FISH application, for example, PCA can be used to estimate a

smear matrix, S, that will map the six fluorophores into six color channels. Each

pixel in the spectral image is considered to be a vector, and PCA is performed to

identify a transform that minimizes the variance along each new axis while

maximizing the variance between the axes. The image shown in Fig. 13.11a is

an RGB projection of a six-channel M-FISH image. PCA was used to develop a

linear transformation similar to Eq. 13.15. Figure 13.11b shows an RGB pro-

jection of the transformed image. Notice that pairs of similar chromosomes take

on similar coloring. Classification of the pixels in the transformed (unmixed)

image is more accurate, since the label combinations are more evident.

In the case of multispectral brightfield microscopy, the same procedure

is followed. Figure 13.12a shows the brightfield image associated with the

F IGURE 13.10 A brightfield image of a Papanicolaou-stained thyroid cell smear (40� objective lens,
NA ¼ 0.90). (a) The spectral image acquired using multispectral brightfield microscopy. (b) The result
of spectral unmixing based on the linear decomposition method. This figure may be seen in color in the
four-color insert.
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spectral image acquired for a thyroid cancer smear stained with Papanicolaou

stain. The spectral image has 31 channels, each acquired between thewavelengths

of 400 nm and 700 nm at 10-nm intervals. The PCA transform of the spectral

image was computed, and the dimensionality was reduced to the first three

principal components, representing the maximum difference between

axes. That is, PCA was used both to decorrelate the spectral data and to

F IGURE 13.11 (a) A six-color M-FISH image acquired using multispectral fluorescence microscopy
based on a filter-wheel configuration, and (b) the result of spectral unmixing using principal component
analysis. This figure may be seen in color in the four-color insert.

F IGURE 13.12 (a) A brightfield image of a Papanicolaou-stained thyroid cell smear corresponding to
the spectral image acquired using multispectral brightfield microscopy, and (b) the result of spectral unmixing
and dimensionality reduction based on principal component analysis. This figure may be seen in color in the
four-color insert.
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reduce the total dimensionality of the transformed image from 31 to 3. Figure

13.12b shows the transformed image, where the three PCA variables are

mapped to the RGB color space.

I ndependen t Componen t Ana l y s i s Another unsupervised

unmixing approach to extract linearly independent signals from images is

independent component analysis (ICA). Like PCA, ICA develops a linear

transformation to project the data onto a different set of axes. But while PCA

attempts to decorrelate the data, ICA searches all possible projections of the data

to realize independence across all statistical orders. ICA can extract each signal

from the mixture as long as the recorded image is a linear combination of

independent signals. Two key assumptions required for ICA are that the signals

are statistically independent and that they are notGaussian distributed. Successful

use of ICAhas been demonstrated in several spectralmicroscopy applications [60].

Nonnega t i ve Ma t r ix Fa c to r i za t i on Another approach to

solve the unmixing problem (i.e., to estimate S) is nonnegative matrix

factorization (NMF). The differences between PCA, ICA, and NMF arise from

different constraints imposed on the smear matrix, S, and the vector of signal

concentrations, C. Both PCA and ICA allow the entries of the two matrices

to be of arbitrary sign, where cancellations between positive and negative

numbers realize the required linear combination of signals. Since individual

stains or fluorophores actually cannot have a negative concentration, this

decomposition fails to duplicate reality. NMF does not allow negative entries

and thus permits only additive combinations. It is an iterative technique that

produces a nonnegative smear matrix. In addition, NMF does not impose the

assumption of signals being statistically independent, and this is more realistic for

most applications [61].

13.3.3 Spec t ra l Image Segmentat ion

Segmentation of the sample under study is a necessary precursor to measure-

ment and classification of the objects in a spectral image (see Chapter 9). For

biological samples, this is a significant problem due to the complex nature of

the samples and to inherent limitations in microscopy. Spectral images share

the following characteristics: (1) poor contrast, (2) many cluttered cells, part-

icles, and debris in a single view, (3) inhomogeneity of staining and labeling,

and (4) spectral variability, in that the gray levels of the structures change as

a function of wavelength. A number of techniques, such as wavelets, entropy,

probability, fuzzy sets, and neural networks, have been used [64]. Here we
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discuss one approach that has proved useful in segmenting multispectral

microscopy images.

13.3 .3 .1 Comb in ing Segmen ta t i on w i th
C la s s i f i c a t i on

Traditional image analysis methods view segmentation as a low-level operation

decoupled from higher-level analysis such as measurement and classification (see

Chapter 9). Each pixel has a scalar gray-level value, and the objects are first

isolated from the background based on gray level and then identified based on

a set of measurements reflecting their morphology. With spectral imaging, how-

ever, each pixel is a vector of intensity values, and the identity of an object, in

addition to its mere presence, is encoded in that vector. Thus segmentation and

classification aremore closely related and can be integrated into a single operation.

The process then becomes one of ‘‘pixel classification,’’ where ‘‘background’’ is

just another class to which a pixel might belong. This approach has been used with

success in chromosome analysis and in optical character recognition [62, 63].

13.3 .3 .2 M-F I SH P ixe l C l a s s i f i c a t i on

We illustrate this approach for the M-FISH application discussed earlier. The

objective in segmenting M-FISH images is to classify individual pixels to deter-

mine to which of the chromosome types each one belongs. It is important to do

this on a pixel-by-pixel basis because pieces of one chromosome can become

translocated onto other chromosomes, and this has clinical significance.

In M-FISH, five fluorophores attach to the various chromosomes in

different combinations, and a sixth, the counterstain, labels all chromosomes.

The traditional approach is to segment the image, after unmixing, using the

counterstain channel alone, and then to classify each interior pixel based on its

brightness in the other five color channels. This second step is a standard

24-class, five-feature classification problem that can be approached using the

techniques outlined in Chapter 11. An alternative, however, is to include the

counterstain channel intensity as a feature and to include ‘‘background’’ as

a class. Then it becomes a six-feature, 25-class problem, with image segmentation

and pixel classification integrated into a single step. Segmentation is implicit, in

that the background class contains all nonchromosome pixels.

An example of a typical M-FISH image is shown in Fig. 13.13a, and the

result of pixel-by-pixel segmentation combined with classification appears in

Fig. 13.13b. Overall, this approach provides over 96% accuracy in detecting

pixels for each of the 24 chromosomes.
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13.4 Summary of Important Points

1. Multispectral imaging is the acquisition of spectral information at each

pixel of a sample.

2. Multispectral imaging involves the combined use of spectroscopy and

imaging.

3. Multispectral imaging is a relatively new technique that is being explored

for many applications in both brightfield and fluorescence microscopy.

4. Spectral resolution refers to the closest wavelengths that can be distin-

guished.

5. A key utility of multispectral microscopy is the ability to characterize

inherent chemical constituents of a sample.

6. Multispectral image acquisition can be achieved via three different

methods: wavelength-scan methods, spatial-scan methods, and time-

scan methods.

7. Multispectral image analysis is often necessary because spectral images

are too big and complex to be interpreted visually.

8. Most standard image processing methods and algorithms can be gener-

alized to spectral image analysis.

F IGURE 13.13 (a) A six-color M-FISH image acquired using multispectral fluorescence microscopy
based on a filter-wheel configuration, and (b) the result of segmentation based on pixel classification. This
figure may be seen in color in the four-color insert.
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9. Interference effects due to varying quantum efficiency of detector, vari-

able attenuation of illumination, and nonhomogenous illumination

necessitate the use of effective calibration algorithms to ensure the

accuracy of acquired spectral images.

10. Spectral unmixing isolates the light from one stain or fluorophore to

a single color channel.

11. Multispectral pixel classification combines segmentationand classification

into one step.
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14
Three-Dimensional Imaging

Fatima A. Merchant

14.1 Introduct ion

Cells and tissues are three-dimensional (3-D) entities, and most cellular activities

occur in 3-D space. Thus 3-D imaging techniques are needed to improve our

ability to study them. Three-dimensional light microscopy offers a noninvasive,

minimally destructive option for obtaining spatial and volumetric information

about the structure and function of cells and tissues. The last decade has

seen both an increase in the development of methods for 3-D imaging and

a consequent growth in techniques for 3-D image processing and analysis.

In this chapter we describe commonly used microscopy methods for the

acquisition of 3-D data and related image processing and analysis algorithms.

14.2 Image Acquis i t ion

The techniques available for 3-D microscopy include electron microscope

tomography and optical sectioning light microscopy. An advantage of optical

microscopy is that it is nondestructive; that is, it involves no physical manipu-

lation of the specimen, allowing imaging of intact cells and tissues. The focus of

this book is image analysis in optical microscopy, so other microscopy methods,

such as electron microscopy, are not covered.

Microscope Image Processing
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There are two major approaches for 3-D optical microscopy: far-field and

near-field imaging. Far-field methods rely on light diffraction from specimens

for image formation, and their resolution is thus limited by the wavelength of

visible light. Conventional light microscopy is a far-field technique. Near-field

methods utilize a solid mechanical probe to examine the specimen surface and

are not limited by the Abbe equation (see Chapter 2). The near-field optical

microscope, scanning tunneling microscope, and the atomic force microscope all

employ near-field optics. Near-field microscopy methods are slower, and there is

danger of mechanical damage to the specimen when compared to the far-field

techniques such as light microscopy.

Here we address the most popular and widely commercialized approaches to

3-D microscopy, which include the far-field techniques of wide-field, confocal,

and multiphoton microscopy. Other high-resolution 3-D microscopy methods

that are newly developed and not yet commercially available are described only

briefly.

14.2.1 Wide-F ie ld Three-Dimens iona l
Mic roscopy

Conventional wide-field light microscopy can be used to collect 3-D information

from a specimen in the form of a series of two-dimensional (2-D) images taken at

different focal planes. When used to collect 3-D data, wide-field microscopy is

referred to as computational optical sectioning microscopy or deconvolution

microscopy [1]. The drawback of this method is that light emitted from planes

above and below the in-focus regions is also captured in each optical section.

This occurs because the entire specimen is flooded with light, such that all parts

of the specimen, throughout the optical path, are illuminated, and all of the

radiated light is detected by a camera. This also reduces both lateral resolution

and depth discrimination. Computational deconvolution, based on the physics

of image formation and recording, can be used to remove the out-of-focus

information from each 2-D image in the series.

14.2.2 Confoca l Mic roscopy

Confocal imaging is a microscopy technique that provides increased resolution

and increased depth discrimination ability over the conventional wide-field

microscopes. Confocal microscopy achieves a theoretical improvement in axial

resolution of ~1=
ffiffiffi
2

p
as compared to conventional wide-field microscopy. The

confocal microscope has three important features that give it advantages over

conventional microscopes. First, the lateral resolution can be as much as one

and a half times better than that of a conventional microscope. Second,

and most importantly, the confocal microscope has the ability to remove
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out-of-focus information and thus produce an image of a very thin section of

a specimen. Third, because of the absence of out-of-focus information, much

higher-contrast images are obtained.

The confocal microscope, developed in 1957, uses point illumination and

a pinhole in front of the detector to eliminate out-of-focus information [2]. Only

the light within the plane of focus is detected, so the image quality is much better

than that of wide-field images. In contrast to wide-field microscopy, in most

confocal microscopes the illumination light is focused to the smallest possible

spot in the plane of focus, using a coherent light source such as a collimated

laser beam.

Confocal microscopes are categorized into two major types, depending

on the imaging instrument design. The scanning confocal microscope scans

the specimen by physically moving either the stage or the illumination beam.

By contrast, the spinning-disk (Nipkow disk) confocal microscope employs a

stationary stage and light source. Generally speaking, confocal laser scanning

microscopy yields better image quality, but the imaging frame rate is quite slow

(less than three frames/second), whereas spinning-disk confocal microscopes can

achieve imaging at video rates, which is desirable for dynamic observations.

Detailed reviews of the concepts, advantages, and aberrations of confocal

microscopy are available [3].

Although live-cell imaging is possible with confocal microscopy, phototoxi-

city and photobleaching from repeated exposures to visible light limit its prac-

tical application. In conventional one-photon confocal fluorescence microscopy,

the total excitation, which depends linearly on incident illumination intensity, is

constant in each plane throughout the specimen. Confocal microscopy exposes

the entire sample to high-energy photons every time an optical section is gener-

ated. Since fluorophores are bleached when excited, photobleaching occurs

throughout the thickness of a sample when collecting a series of images. This

limits not only the maximum time for image collection, but also the amount of

time that living tissues can be observed because of photodamage due to the

production of toxic by-products. Photodamage and photobleaching can be

minimized by using multiphoton microscopy optical sectioning, in which excita-

tion is confined to the optical section being observed by the process of two-photon

absorption.

14.2.3 Mul t iphoton Microscopy

Two-photon microscopy is probably the most important development in fluor-

escence microscopy since the introduction of confocal imaging. Two-photon

laser scanning microscopy is a nonlinear process that retains the optical section-

ing ability of confocal microscopy while improving on its ability to image live

cells [4]. It involves exciting the fluorophore by the simultaneous absorption
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of two photons. The combined effect of two low-energy photons is to raise

the fluorophore from the ground state to the same excited state as would

be caused by a single photon of half the wavelength (i.e., twice the energy).

The fluorophore then relaxes back to the ground state, emitting the absorbed

energy as fluorescence, just as if it had been excited by a single photon. Unlike

linear fluorescence excitation, the emission wavelength is shorter than the

excitation wavelength.

Because a fluorophore must absorb two photons for excitation, fluorescence

depends on the square of the incident beam intensity. Moreover, the intensity of

the exciting light falls off as 1=z2 (where z is the distance from the focal plane)

above and below the focal plane. Thus, the probability of exciting a fluorophore

falls off as 1=z4. This highly nonlinear behavior limits the excitation to a high-

intensity region near the focal plane of the focused laser beam. The extremely

high intensities near the focal plane confine 80% of the fluorescence excitation to

a 10�10ml volume when a high-numerical-aperture (NA) objective is used. This

process uniquely localizes the excitation to the diffraction-limited spot of the

focused beam, giving rise to the intrinsic optical sectioning ability of two-photon

microscopy. Its high 3-D resolution is due to the confinement of absorption and,

consequently excitation, to the focal volume. Therefore out-of-focus photo-

bleaching and photodamage and the attenuation of the excitation beam by

out-of-focus absorption are avoided. Photodamage at the focal plane does

occur, as with conventional confocal microscopy, but damage above and

below the plane of focus is greatly reduced [5].

Two-photon imaging is also useful with ultraviolet excitable dyes in live cells

because the excitation is achieved with infrared light, and the cells are never

exposed to the more damaging ultraviolet excitation. Moreover, the infrared

excitation used in two-photon imaging penetrates into tissue more efficiently

than shorter wavelengths, allowing for imaging of thicker specimens. Since the

probability of absorbing two photons depends on the square of the illumination

intensity, infrared lasers that compress all of their output into very short

(~10�13 s) high-energy pulses (�2kW) are used. It is possible to produce these

very short, intense light pulses with a ‘‘mode-locked’’ laser light source. Mode-

locked lasers generate pulses relatively far apart (~10�8 s), so a peak power in the

kilowatt range is reduced to a mean power of only a few tens of milliwatts at the

specimen, and these moderate mean power levels do not damage the specimen.

The laser most commonly employed to date is a tunable titanium-doped

sapphire (Ti:sapphire) laser that operates in the range of 690–1000 nm. This

allows two-photon excitation of fluorophores that are normally excited by single

ultraviolet, blue, or green light photons.

The theoretical resolution of two-photon microscopy is typically up to

1.3-fold better (lower resolution) than that of conventional fluorescence micro-

scopy because of the longer excitation wavelength used [6, 7]. When maximum
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resolution is required, two-photon microscopy is often coupled with confocal

detection (by a pinhole) [8], or two-beam interference illumination is combined

with confocal detection [9].

14.2.4 Other Three-Dimens iona l
Mic roscopy Techn iques

Recent years have seen the development of several other methods for

three-dimensional microscopy. Optical coherence tomography (OCT) is a 3-D

microscopy technique in which axial resolution is improved by interferometric

measurement of the time-of-flight of short-coherence light [10]. Typically,

a Michelson-type interferometer is illuminated by a femtosecond laser pulse or

superluminescent light-emitting diode (LED) light, and the reference arm is

dithered to generate a heterodyne signal by the interference with the backscat-

tered light from the sample point. The 3-D image is constructed via mechanical

scanning over the sample volume.

Another technique is optical projection tomography (OPT), which is based on

the transmission and detection of visible light through a 3608-step-rotated speci-

men. Data are collected at each angular position, and the 3-D image is recon-

structed by a back-projection algorithm. OPT has the advantage over confocal

microscopyandOCTof increaseddepthpenetration [11].Analternative ismultiple

imaging axis microscopy, where wide-field images (2-D projections) are taken of

a stationary sample using several objective lenses mounted at different angles,

and the recorded images are then combined to reconstruct a 3-D image [12].

Single-plane illumination microscopy (SPIM) is another technique used for

optical sectioning [13]. Here the sample is illuminated, rotated about a vertical

axis, and observed in a direction perpendicular to the illumination plane. An

advantage of SPIM is that only those parts of the sample that are being observed

are illuminated, so out-of focus light is not generated. The sample is attached to

a stage that can be rotated and translated. This allows 3-D data stacks to be

recorded along different directions.

Other methods that offer improved 3-D resolution include interference and

structured illumination methods, such as (1) 4-pi-confocal [9], (2) InM

(e.g., incoherent interference illumination microscopy) [14], and (3) HELM

(harmonic excitation light microscopy) [15]. In interference microscopy two or

more light sources are used to generate a periodic pattern of light at the sample

plane. When these patterns are used to excite fluorescence, they interact with the

sample structure, and the recorded emission carries higher-resolution informa-

tion than what can be achieved by conventional microscopy. Typically two

objective lenses are used at the front and rear of the sample, and the emitted

fluorescence is collected from both objectives and combined to interfere at

the image plane. Structured illumination microscopy is covered in Chapter 17.
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14.3 Three-Dimensional Image Data

Three-dimensional data obtained frommicroscopes consists of a stack of optical

sections, referred to as the z-series (see Fig. 14.1). The optical sections are

obtained at fixed intervals along the z-axis. Each 2-D image is called an optical

slice or optical section, and all the slices together comprise a volume data set.

Building up the z-series in depth allows the 3-D specimen to be reconstructed.

14.3.1 Three-Dimens ional Image
Representat ion

For image processing and analysis purposes, a 3-D digital image is represented

as a 3-D array whose elements are called volume elements, or voxels. Other terms

used to refer to 3-D images include 3-D data set, 3-D volume, volumetric image,

and z-stack. Many 3-D image processing techniques are simply extensions of

the corresponding 2-D image processing algorithms. A few of the truly 3-D

algorithms that operate on volume data sets are discussed next.

14.3 .1 .1 Th ree -D imens iona l Image No ta t i on

A 3-D image, f x, y, zð Þ, is represented as a 3-D matrix of dimensions

L�M �N, where x, y, z denote column, row, and slice coordinates, respec-

tively. Each voxel has a physical size Dx �Dy �Dz in units that are typically

millimeters or micrometers. Ideally, a voxel is a cube with the same dimension in

depth as in lateral spacing, but in practice (especially in 3-D microscopy) this is
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F IGURE 14.1 A schematic representation of 3-D image acquisition in optical sectioning microscopy.
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rarely achieved, and the z dimension is much thicker. In the following sections

we describe the methods for deblurring and restoration of images obtained via

optical sectioning. Then we describe some 3-D image processing, analysis, and

display techniques.

14.4 Image Restoration and
Deblurr ing

The aim of image restoration is to bring an image as close as possible to what it

would have been if it had been recorded without degradation. Typically, restor-

ation encompasses the processes of noise removal and image deblurring via

deconvolution. The primary task of deblurring is to remove or reduce the out-

of-focus haze arising from objects located above and below the plane of focus.

In order to achieve this, the deconvolution process estimates the amount of out-

of-focus light characterizing the particular microscope optics in use and then

attempts either to subtract out this light or to redistribute it back to its point of

origin in the specimen volume. In other words, the goal is to recover the function

f x, y, zð Þ from a series of images g x, y, zð Þ taken at different focal plane levels z.

While this approach faces theoretical limitations it can be done well enough

to make it an important tool in biological research, particularly in microscopy.

14.4.1 The Poin t Spread Func t ion

The out-of-focus light can be characterized by the 3-D point spread function

(psf), which is the image of a point source of light. The psf is the basic unit that

makes up any image (see Chapter 2). For example, fluorescent molecules in

a specimen can be likened to point sources of light, where their intensity is

proportional to the concentration of the fluorophore at that point. A copy of the

3-D psf is produced by each of these sources, and the 3-D summation of these is

the 3-D image. Thus the out-of-focus light in the image arises from the summed

contributions of many psfs. This process can be modeled mathematically as

a convolution operation, whereby light emitted from out-of-focus points in the

specimen is convolved with the defocus psf, and it appears as a blurred region in

the image. Deconvolution is used to reverse the process and deblur the image.

Typically the entire stack of 2-D images is processed in order to deblur each

optical slice in the z series.

The first step in any 3-D deconvolution algorithm design is to determine the

3-D psf. Three methods are commonly used for estimating the psf of

a microscope: experimental, theoretical, and analytical. Experimentally, images

of one or more pointlike objects (typically fluorescent beads smaller than the

resolution of the microscope) are collected and used to estimate the psf [16, 17].
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The recommended bead diameter is one-third of the Rayleigh resolution value,

or 0:41l=NA [18]. For an NA ¼ 1.4 objective operating with green fluorescence

(500 nm), a bead diameter of 0:15mm is recommended. It is important to

emulate the microscopy conditions of the planned experiment as closely as

possible. For example, the same mounting medium should be used, and the

optical system should have the same objective lens, relay lenses, and detectors.

Typically an experimentally measured psf closely matches the actual psf for that

experimental setup. An experimentally measured psf, however, may exhibit low

signal-to-noise ratio (SNR), with symmetric features in radial planes but asym-

metry along the axial plane due to spherical aberration. Typically, high-quality

optical components that are precisely aligned are used to produce psfs that are

symmetrical.

In the theoretical method, the psf is computed using a mathematical model

from diffraction theory (see Eq. 14.1). A theoretically determined psf will have

axial and radial symmetry. Figure 14.2 presents cross-sections through theor-

etically determined psf’s for wide-field and confocal microscope systems. The

psf’s were determined using a 1.4-NA oil-immersion lens and a wavelength of

630 nm. Both psf’s were calculated via the XCOSM software [1, 17]. As seen

in the figure, the psf for the wide-field system, which exhibits an Airy disk

pattern, clearly shows the central disk and side lobes (first row, second column

F IGURE 14.2 Cross sections through the point spread function (psf ). Top row: xy, or horizontal,
sections at the plane of best focus. Bottom row: xz, or vertical, sections at the center of the psf. The two
leftmost columns illustrate the psf of a wide-field microscope. The leftmost column is displayed using a linear
brightness scale, and the second column from the left is displayed using a logarithmic brightness scale of four
decades. The two rightmost columns illustrate the psf of a confocal microscope. The second column from the
right is displayed using a linear brightness scale, and the rightmost column is displayed using a logarithmic
brightness scale of four decades. (Image courtesy of José-Angel Conchello.)
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from the left). The confocal psf, which is equal to the square of the Airy

disk, exhibits a narrower central disk with very weak side lobes (first row,

rightmost column).

The third method for determining the psf is analytical. In this case, the psf is

determined by computationally extracting it directly from recorded 3-D image

data. Section 14.4.3.6 discusses doing this by means of blind deconvolution.

14.4 .1 .1 Theo re t i c a l Mode l o f t he Po in t
Sp read Fun c t i on

The psf may be calculated theoretically using a diffraction-based model

[19, 20], as

h x, y, z; cð Þ ¼
ð1
0

J0
KNar

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
M

 !
exp jKf z, cð Þf gr dr

�����
�����
2

(14:1)

where J0 is the first order Bessel function, K is the wave number, Na is the

numerical aperture, M is the magnification, and j is the square root of �1.

The vector  denotes the measurement setup parameters (i.e., refractive index of

the immersion oil, thickness of the coverslip and specimen, and the microscope

tube length), and � denotes the normalized radius in the back focal plane.

The distance from the in-focus plane to the point of evaluation is z, and f �ð Þ
denotes the phase aberration. When more than one or two physical parameters

are unknown in Eq. 14.1, the psf can be modeled in terms of purely mathemat-

ical parameters by replacing the phase term, exp jKf z, cð Þf g, with A rð Þ
exp jW r, zð Þf g, where [20, 21]

W r, zð Þ ¼ zC rð Þ þ B rð Þ

A rð Þ ¼
XKa

k¼0

akxk rð Þ

B rð Þ ¼
XKb

k¼0

bkqk rð Þ

C rð Þ ¼
XKc

k¼0

cknk rð Þ

The unknown parameters ak, bk, ck, and xk �ð Þ, qk �ð Þ, nk �ð Þ, are suitably chosen

bases. It is possible to represent A rð Þ, B rð Þ, and C rð Þ either as power series

expansions or in terms of radial Zernike polynomials [22]. Several articles that

provide tutorial information on the psf are recommended for an in-depth review

[1, 3, 17, 23, 24].
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14.4.2 Models for Mic roscope Image
Format ion

Most microscopes can be assumed to be shift-invariant linear systems with

a position-independent psf, where point sources located anywhere in the sample

create psf’s of constant shape at the detector. In its simplest form, then, the

formula for microscope image formation incorporates two known quantities,

the psf, h x, y, zð Þ, and the recorded 3-D image, g x, y, zð Þ, and one unknown

quantity, the actual distribution of light in the 3-D specimen, f x, y, zð Þ.
These terms are related by the imaging equation

g x, y, zð Þ ¼ f x, y, zð Þ � h x, y, zð Þ (14:2)

where * indicates 3-D convolution. In practice, however, image recording is

corrupted by intrinsic and extrinsic noise. Intrinsic noise obeys a Poisson model

and is introduced when each photon hits the detector, thus creating a random

number of photoelectrons. Other sources introduce random extrinsic noise that

can be modeled as additive Gaussian noise. Mathematical models for 3-D

fluorescence microscopy imaging based on the Poisson and Gaussian noise

statistics are commonly used [20].

14.4 .2 .1 Po i s son No i se

Poisson modeling [20] of both the signal emitted by the specimen and the

background noise can be represented mathematically as follows [20]

og x, y, zð Þ ¼ P o f x, y, zð Þ � h x, y, zð Þ½ �ð Þ þP o b x, y, zð Þ½ �ð Þ x, y, z 2 R (14:3)

where o is the reciprocal of the photon-conversion factor, og x, y, zð Þ is the

number of measured photons, P is a Poisson process, and b x, y, zð Þ is the

background noise. In fluorescence microscopy, the photon-conversion factor

depends on several physical parameters, such as the exposure time and the

quantum efficiency of the detector. Both

P o f x, y, zð Þ � h x, y, zð Þ½ �ð Þ and P o b x, y, zð Þ½ �ð Þ
are independent Poisson random variables; hence, the measured output is

a Poisson random variable [20].

14.4 .2 .2 Gaus s i an No i se

The Gaussian noise model [20] is given by

g x, y, zð Þ ¼ f x, y, zð Þ � h x, y, zð Þ þ w x, y, zð Þ x, y, z 2 R (14:4)
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where w(x, y, z) represents the additive Gaussian noise. The background term is

omitted because it can be estimated and then removed. For the Poisson noise

model, the background term cannot be incorporated in a term that is independ-

ent of ( f (x, y, z) * h(x, y, z)) and thus must be explicitly defined. As explained

earlier, deconvolution recovers an estimate of f x, y, zð Þ from g x, y, zð Þ, given
a knowledge of h x, y, zð Þ. The following section describes some of the com-

monly used algorithms for deconvolution.

14.4.3 Algor i thms for Deblur r ing
and Res torat ion

On the basis of their mode of implementation (2-D or 3-D), deconvolution

algorithms can be broadly divided into two classes, deblurring and image restor-

ation. Algorithms that are applied sequentially to each 2-D plane of a 3-D image

stack, one at a time, are classified as deblurring procedures. Appropriately, they

are not really deconvolution methods because they do not use the imaging

formula and are not based on an estimation of f x, y, zð Þ as outlined in

Eq. 14.2. On the other hand, image restoration (or deconvolution) algorithms

operate simultaneously on every voxel in a 3-D image stack and are truly

implemented in 3-D to restore the actual distribution of light in the specimen

by determining f x, y, zð Þ. In this chapter, the term deconvolution is used to refer

to both deblurring and restoration.

Different deconvolution methods solve for f x, y, zð Þ in different ways, and

six major categories of deconvolution algorithms have evolved so far. These

approaches differ in the type of mathematical model used to emulate image

formation and recording and in the underlying assumptions used in the simula-

tion to reduce complexity. This section describes the following approaches to

deconvolution: (1) the no-neighbor methods, (2) neighboring plane methods,

(3) linear methods, (4) nonlinear methods, (5) statistical methods, and (6) blind

deconvolution. Prior to deconvolution, the 3-D image data recorded from

a microscope should be preprocessed (or corrected) to remove background

inhomogenities, such as those due to spatially nonuniform illumination, uneven

sensitivity of the detector, and intensity attenuation with depth (Chapter 12).

Other image preprocessing algorithms and enhancement methods are described

in Chapter 6.

14.4 .3 .1 No-Ne ighbo r Me thods

The no-neighbor processing scheme is a 2-D method for deblurring an individ-

ual section through the object from a single image [25]. It is based on the

principle that in-focus structures in the image are ‘‘sharper’’ than out-of-focus
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ones, which tend to blur or flatten out. While sharpness is typically represented

by higher spatial frequencies, the out-of-focus components tend to be composed

of lower spatial frequencies (i.e., the light intensity varies more slowly over the

field of view). The idea is that removing lower spatial frequencies will remove

mainly out-of-focus structures and leave behind the in-focus objects of interest.

Retaining the higher frequencies also tends to improve the picture by sharpening

edges of structures. This approach, then, is simply a sharpening (high-pass) filter

[26] that can be implemented by convolution. This approach is applicable for

specimens that tend to be composed mostly of higher-spatial-frequency com-

ponents, i.e., small structures such as pointlike objects and filaments [25].

A significant advantage of this approach is its computational simplicity and

the resulting speed of processing. A disadvantage is that most specimens are

actually a complex mixture of low and high spatial frequencies, and there is the

danger of filtering out components of interest.

14.4 .3 .2 Neare s t -Ne ighbo r Me thod

This method also falls under the category of deblurring algorithms, which were

first introduced in 1971 for deblurring light microscope image stacks [27].

Each 2-D image in a 3-D stack contains information from the corresponding

in-focus specimen plane plus a sum of defocused adjacent specimen planes. The

diffraction-limited transfer function (Chapter 2) tends to discriminate against

high spatial frequencies but passes low-frequency content. It is thus possible to

partially remove defocused structures by subtracting adjacent plane images that

have been blurred by convolution with the appropriate defocus psf. In the nearest-

neighbor method only two immediately adjacent planes are used, one above

the plane of focus and the other below. While the image taken at any one focal

plane actually contains out-of-focus light from all specimen planes, the nearest-

neighbor method assumes that the strongest contributions come from the nearest

two adjacent planes. For example, as shown in Eq. 14.5, the nearest-neighbor

algorithm operates on a plane k by blurring its neighboring planes k+ 1, using

a digital blurring filter, and then subtracting the blurred planes from k [28]

f̂k x, yð Þ ¼ gk x, yð Þ � c gk�1 x, yð Þ � hk�1 x, yð Þ þ gkþ1 x, yð Þ � hkþ1 x, yð Þ½ � (14:5)

where the subscript k indicates the optical slice number. One 2-D image is

sharpened at a time, with the neighboring images immediately above and

below it blurred, and a fraction c of them subtracted out. Figure 14.3 shows

the effect of deblurring using the nearest-neighbor method [29]. Panels a–c show

three optical slices taken from May-Giemsa-stained blood cells. The images

were obtained at a z interval of 0:5mm. The centermost slice (panel b) was

deblurred, using neighboring slices, immediately above (panel a), and below

(panel c). The deblurred image is shown in panel d.
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Multineighbor methods extend this concept to a user-selectable number of

planes. The entire 3-D stack is processed by applying the algorithm to each

image in the stack to remove blurring from that plane. Not only does increasing

the number of planes used for deblurring increase the computational load of the

technique, but the amount of improvement also falls off rapidly as more planes

are used. The deblurred images can be sharpened further with a Wiener inverse

filter (Chapter 6) to reduce the remaining blur. After processing, the content of

each image corresponds predominantly to the in-focus information from the

corresponding specimen plane.

Nearest-neighbor methods work best when the amount of blur from one

plane to the next is significant, that is, when the planes are relatively far apart.

They are most applicable to specimens containing sparse structures distributed

through a transparent or nonfluorescing tissue, such as thin filaments. Since

the algorithms involve relatively simple calculations on single image planes,

they are also most useful in situations when quick image sharpening is needed

and computing power is limited. The advantages of this approach include

computational speed, improved contrast, and sharpening of features in each

optical slice. There are also several disadvantages to this approach. These

methods are sensitive to noise and may produce noisier images, since noise

from several planes tends to get added together. They also tend to introduce

structural artifacts because each optical slice can contain diffraction rings or

light from other structures that may be sharpened as if it were in that focal plane.

Contrast is also reduced by the deblurring process, because intensities are

removed rather than redistributed. Therefore it is better to use these methods

for visualization rather than prior to quantitative analysis. For specimens con-

taining structures that fluoresce over large areas or volumes, these simple

methods do not perform well, and some of the approaches described next may

be more applicable.

F IGURE 14.3 Deblurring using the nearest-neighbor method. Panels a–c show three optical slices taken
fromMay-Giemsa-stained blood cells. The images were obtained at a z interval of 0.5 mm. The optical section
in b was deblurred, using neighboring slices, immediately above a and below c. The resulting deblurred
image is shown in d. (Image reproduced with permission from [29].)
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14.4 .3 .3 L inea r Me thod s

Linear methods fall under the category of image restoration techniques and

represent one of the simplest 3-D methods for deconvolution. With linear

methods, the deconvolution algorithm is implemented in the frequency domain.

This is because convolution in the spatial domain corresponds to multiplication

in the frequency domain. These methods employ Eq. 14.2 to recover an estimate

of f (x, y, z) from g(x, y, z), and they require knowledge of the 3-D psf.

Transforming Eq. 14.2 into the frequency domain yields

G u, v, wð Þ ¼ F u, v, wð ÞH u, v, wð Þ (14:6)

where u, v, and w are frequency variables in the x, y, and z directions, respect-

ively. The spectrum of the specimen function is

F u, v, wð Þ ¼ G u, v, wð ÞH 0 u, v, wð Þ (14:7)

where H ’(u, v, w) is the inverse 3-D optical transfer function (OTF), given by

H 0 u, v, wð Þ ¼ 1

H u, v, wð Þ (14:8)

The OTF, H(u, v, w), which is the Fourier transform of the psf of the micro-

scope, describes mathematically how the system treats periodic structures

(Chapter 2). Essentially, the OTF drops off at higher frequencies and goes to

zero at fc ¼ 2NA=l, the optical cutoff frequency. Frequencies above the cutoff
are not recorded in the microscope image. As seen in Eqs. 14.2–14.8, division in

the Fourier domain is equivalent to deconvolution in the spatial domain. This

inverse filtering is the simplest way to remove the effects of the psf, and it forms

the basis of all linear methods of deconvolution. Most linear methods thus

involve Fourier transforming an image and then dividing by the Fourier trans-

form of the psf.

In linear methods, noise in the measured data becomes a problem, particu-

larly at frequencies where the denominator, H (u, v, w), is small or even zero.

As discussed in Chapter 2, the OTF is almost always small at high spatial freq-

uencies. Further, the specimen typically contains little energy at the high fre-

quencies, so noise can dominate the upper part of the frequency spectrum.

To address this problem, linear deconvolution methods often adopt some

noise-reduction strategy. The goal is to strike a balance by reducing the contri-

bution of high-spatial-frequency noise while retaining sharpness in the image.

Several algorithms for linear deconvolution have been described, including

(1) inverse filtering, (2) Wiener deconvolution, (3) regularized least squares,

(4) linear least-squares restoration, and (5) Tikhonov–Miller regularization.
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I nve r se F i l t e r i ng An inverse filter uses an approximate direct linear

inversion of the imaging equation, Eq. 14.7, as

f̂ x, y, zð Þ ¼ F�1 G u, v, wð Þ
H u, v, wð Þ
� �

(14:9)

The main drawback of this method is that H(u, v, w) is usually a low-pass filter,

and therefore 1=H(u, v, w) is a high-pass filter that takes on large values at the

higher frequencies. Thus, Eq. 14.9 becomes numerically unstable for small

values of H(u, v, w), and this greatly increases the high-frequency noise contri-

bution. This makes simple inverse filtering very sensitive to noise. One method

to combat this is to limit the inverse OTF as follows [20]

f̂ x, y, zð Þ ¼ F�1 G u, v, wð Þ
H u, v, wð Þ
� �

if jH(u, v, w)j $ «

0 if jH(u, v, w)j # «

8<
: (14:10)

where « is a small positive constant. The choice of « balances resolution versus

noise in the resulting image estimate. For example, small « results in sharper

images with finer resolution but more noise.

Another approach for reducing noise is to apply an adjustable smoothing

operation. The inverse filtering algorithm is most useful when a known low-pass

filter has blurred the image, since it is theoretically possible to recover that image

via inverse filtering. In microscopy, these algorithms use either a theoretical or

a measured psf to remove image blurring rapidly and effectively. The results are

usually qualitative and generally better than the no- and nearest-neighbor

methods. However, as discussed earlier, inverse filtering is very sensitive to

additive noise. The Wiener filtering approach, described next, implements an

optimal trade-off between inverse filtering and noise smoothing.

Wiener De convo lu t i on One of the most widely used image-

restoration techniques is Wiener deconvolution. Unlike simple inverse

filtering, this method attempts to reduce noise while restoring the original

signal. It implements a balance between inverse filtering and noise smoothing

that is optimal in the mean square error (MSE) sense. Assuming the white

Gaussian noise model described in Eq. 14.4, the orthogonality principle

implies that the Wiener filter can be expressed in the Fourier domain as [20, 28]

Ĥ u, v, wð Þ ¼ H� u, v, wð Þ
H u, v, wð Þj j2þ Pw u, v, wð Þ

Pf u, v, wð Þ
� 	n o (14:11)
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where Ĥ u, v, wð Þ is the 3-D Fourier transform of ĥ x, y, zð Þ, ‘‘*’’ is the complex

conjugation operation, and Pw u, v, wð Þ and Pf u, v, wð Þ are the power spectral

densities of the noise and the specimen, respectively [30]. Equation 14.11 can be

rewritten as

Ĥ u, v, wð Þ ¼ 1

H u, v, wð Þ
H u, v, wð Þj j2

H u, v, wð Þj j2þ 1
SNR u, v, wð Þ

" #
(14:12)

where

SNR u, v, wð Þ ¼ Pf u, v, wð Þ
Pw u, v, wð Þ

Equation 14.12 can be interpreted as two filters in cascade in the frequency

domain, where 1=H(u, v, w) is the inverse filter and the term in brackets is the

Wiener filter. The term SNR(u, v, w) is the signal-to-noise ratio as a function of

frequency. In the absence of noise, (i.e., infinite SNR), theWiener deconvolution

filter reduces to the standard inverse filter. However, as noise is added, the SNR

decreases, and the term in square brackets decreases as well. The Wiener filter

attenuates certain frequencies according to their SNR. It not only performs

deconvolution, which is a high-pass filtering operation, but it also reduces noise

with low-pass filtering. Wiener deconvolution performs well in the presence of

noise, but it has other problems that limit its effectiveness. First, the MSE

criterion of optimality is not a particularly good one for human observation.

It tends to smooth the image more than the eye would like. Second, it weighs all

errors equally, regardless of their location in the image. Finally, classical Wiener

deconvolution cannot handle a spatially variant microscope psf.

L i nea r Lea s t Squa re s The linear least-squares (LLS) method is also

used to restore images corrupted with additive white Gaussian noise [31]. This

approach is based on linear algebra. The Gaussian noise imaging model in

Eq. 14.4 can be rewritten in discrete form as a matrix-vector equation [32],

G ¼ HFþW (14:13)

where G is the recorded image, F is the specimen object,W is the noise, andH is

the matrix representing the psf. In this formulation F, G, and W are vectors

formed by stacking the columns of the respective images. IfW¼ 0 or if we know

nothing about the noise, we can set up the restoration as a least-squares

minimization problem in the following way. We wish to select F̂ so that, if it is

blurred by H, the result will differ from the observed image G, in the mean

square sense, by as little as possible. Since G itself is simply F blurred by H, this

is a satisfying approach. If F and F̂, both having been blurred by H, are nearly
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equal, then hopefully F̂ is a good approximation to F. This formulation is

distinctly different from that used in the Wiener filter. There we sought to

minimize the difference between the restored signal and the original. Here we

are satisfied to minimize the difference between the blurred original and

a similarly blurred estimate of the original. We cannot expect the results of

these two formulations to be the same.

Let eðF̂Þ be a vector of residual errors that results from using F̂ as an

approximation to F. Equation 14.13 then becomes

G ¼ HF ¼ HF̂þ eðF̂Þ, or eðF̂Þ ¼ G�HF̂ (14:14)

and we seek to minimize the function

fðF̂Þ ¼ keðF̂Þk2¼ kG�HF̂k2¼ ðG�HF̂ÞTðG�HF̂Þ (14:15)

where kak¼
ffiffiffiffiffiffiffiffi
aTa

p
denotes the Euclidean norm of a vector, that is, the square

root of the sum of the squares of its elements. Then, setting to zero the derivative

of fðF̂Þ with respect to F̂ and solving for F̂ gives [32]

F̂ ¼ HTH

 ��1

HTG (14:16)

where the matrix H can be constructed from the discrete psf and has a Toeplitz

structure. The variance and the error depend on the eigenvalues, which are

used for the matrix-inversion operation. The algorithm searches the optimal

number of eigenvalues to be used in the inversion process by discarding the

lowest eigenvalues. The estimate F̂ of the 3-D image is obtained in a single pass.

One drawback is that, since the OTF of a microscope gives rise to a singular or

quasi-singular matrix, the inversion of such a matrix system is an ill-posed

problem [32].

Regu la r i za t i on A ‘‘well-posed’’ estimation problem is one in which

(1) a solution exists, (2) that solution is unique, and (3) it depends on the input

data in a continuous fashion. The deconvolution ofG, i.e., Eq. 14.13, is often an

ill-posed problem. This means, in particular, that a large, uncontrolled

amplification of the noise can be expected, and the resulting solution of the

inverse problem is useless. Regularization helps one find a useful solution. It

seeks a solution that approaches the true input distribution as the amount of

noise is reduced [18]. It provides additional information for solving the ill-posed

problem. For example, additional constraints on the image to be restored are

utilized, such as nonnegativity, statistical properties of the image; or even

information about the degree of smoothness of the image. Mostly this results

in a trade-off between the smoothness of the reconstruction (with less noise)
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and the degree of the deblurring. A regularized filter typically imposes certain

constraints on the estimate, allowing the algorithm to select the most reasonable

estimate from the large number of solutions that might arise because of the noise.

Moreover, the result is usually smoothed by the elimination of higher frequencies

that are well beyond the resolution limit of the microscope [33].

T ikohnov Regu la r i za t i on Tikhonov regularization is the most

commonly used method for regularization of ill-posed problems. Here the

same image distortion model is assumed as in the linear least-squares method.

The approach involves minimizing the Tikhonov functional, which is given

by [33]

fðF̂Þ ¼ kHF̂�Gk2 þ lkCF̂k2 (14:17)

where l is the regularization parameter and C is the regularization matrix. The

matrix C penalizes the solution of F̂ in the regions where it oscillates due to the

noise. In matrix notation F̂ is given as [20]

F̂ ¼ HTHþ lCTC
� 
�1

HTG (14:18)

Regularization can be applied in one step within an inverse filter (discussed

earlier), or it can be applied iteratively as discussed next.

14.4 .3 .4 Non l i nea r Me thods

The linear methods just described are quick to compute, but they have several

drawbacks. These include the inability to incorporate prior knowledge about the

true image, the fact that negative intensities might occur in the deconvolved

image, and ringing artifacts that may be created near edges. Artifacts result from

an inability to estimate the high-frequency components that are cut off by the

diffraction-limited objective. Because these frequency components are not in the

recorded image, it is difficult to obtain a correct estimate of the specimen. One

method to address this problem is to use algorithms that incorporate a priori

information about the specimen, such as nonnegativity, finite support, and

smoothness. This may be used to enforce regularization constraints that the

specimen estimate must satisfy. Nonlinear methods are usually iterative, involv-

ing operations that are performed repetitively until certain criteria are satisfied.

Thus, these methods are also called constrained iterative algorithms. The

constraints minimize noise or other distortions, consequently improving the

restoration of the blurred image. The drawback is that iterative methods

require more computational time. Some of the most widely used nonlinear
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methods are described in the following sections. They provide a way to impose

constraints on the restored image, after each iteration step, to avoid convergence

to an infeasible solution.

Jan s son –van C i t t e r t Me thod The Jansson–van Cittert (JVC)

method of repeated convolution has been applied to digital microscope images

[34–37]. It is an iterative spatial domain transform that generates successive

approximations of the specimen image. The JVC method is most useful for

image reconstruction in microscopy, where a consistent blurring function,

(i.e., the psf) has degraded an image. The effects of blurring are attenuated

using the following iterative process

f̂kþ1 ¼ f̂k þ rðg� h � f̂kÞ (14:19)

where g is the recorded image (typically a version that has been smoothed to

reduce noise), f̂k is the kth iteration image estimate, and h is the microscope psf.

The relaxation function, r, controls, during the iteration, voxel-specific con-

straints and image convergence constraints. The method proceeds by repeatedly

adding a high-pass filtered version, ðg� h � f̂kÞ, scaled by r, of the current image

iteration, k, to itself. Typically, r is a finite weight function that is defined over

a positive intensity range. It is used to prevent unusually bright intensities in the

estimated image and negative intensities, because a specimen cannot have

negative fluorescence. Thus any voxel value in the estimate that becomes nega-

tive during the computation is automatically set to zero. Convergence is

achieved when the difference between the image estimate at iteration k, f̂k, and

the smoothed image, g, approaches zero.

A critical factor in reconstruction quality is the mitigation of noise.

As iterations proceed, noise is amplified. Most implementations suppress this

with a smoothing filter (e.g., Gaussian), which simultaneously attenuates both

signal and noise. Residual structures are then amplified by a high-pass filter.

Most often, the smoothing operation does not work well for low-SNR images.

Cons t ra ined Leas t - Squa re s Me thod In the nonlinear least-

squares (NLS) approach, the sum of the squared difference between the

distorted recorded image and the estimated image is minimized. That is, the

NLS method aims iteratively to find the specimen function f̂ x, y, zð Þ that

minimizes

X
i, j, k

gi, j, k � f̂ � h
h i

i, j, k

����
����
2

(14:20)
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where i, j, and k are the voxel coordinates of the recorded 3-D image and *
represents 3-D convolution. In contrast to the linear least-squares method, the

function f̂ x, y, zð Þ is refined iteratively until the MSE is minimized. High-

frequency noise imposes the same challenges as described earlier. The recorded

image may contain components that do not correspond to any (blurred)

physically possible component of the specimen. This situation can force the

iterative process to include artificial high-frequency components in the recon-

structed specimen. Impulse noise in g x, y, zð Þ, for example, might correspond

to physically impossible high-frequency components in f̂ x, y, zð Þ. Combined

with truncation (and often undersampling), particularly in the z direction,

least-squares reconstruction can lead to inaccurate results. Remedies for

these problems include smoothing f̂ x, y, zð Þ between iterations [37] and

terminating the reconstruction process before the high-frequency artifacts

build up.

The Ca r r i ng ton A lgo r i t hm Carrington proposed a regularization

method based on a minimization with constraints in the least-squares sense. The

Carrington algorithm seeks the nonnegative function f̂ x, y, zð Þ that minimizes

[32, 38, 39]

min
f̂$0f g

X
g x, y, zð Þ �

ð ð ð
h x, y, zð Þf̂ x, y, zð Þ dx dy dz

����
����
2

þ a

ð ð ð
f̂ x, y, zð Þ
��� ���2dx dy dz

(14:21)

where a is a constant. The first term in the equation represents the difference

between the original and the restored images. The second term enforces smooth-

ness on f̂ x, y, zð Þ to prevent noise in g x, y, zð Þ from introducing unwarranted

oscillations. The value of a determines the amount of smoothing that is enforced

on f̂ x, y, zð Þ. If a is too small, we face the same problems as with least-squares

deconvolution. If a is too large, f̂ x, y, zð Þ will be too smooth to show details of

interest.

Iterative Constrained Tikhonov–Miller Algorithm The

Tikhonov–Miller algorithm is the linear restoration filter that minimizes the

Tikhonov functional from Eq. 14.17. The iterative constrained Tikhonov–

Miller (ICTM) algorithm [40, 41] is a nonlinear algorithm that iteratively

minimizes the Tikhonov functional. In this method, regularization is achieved

by imposing the nonnegativity constraint by clipping to zero the negative

intensities at each iteration step. This algorithm finds the minimum of the
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Tikhonov functional using the method of conjugate gradients [42]. The

conjugate gradient direction is given by [33]

dk ¼ rk þ jkdk�1 (14:22)

where for the kth iteration jk ¼ krk k2 =krk�1k2 and rk is the steepest descent

direction, given by

rk ¼ � 1

2

� �
r

f̂
f f̂
� 	

¼ HTHþ lCTC
� 


f̂k �HTG

The next new conjugate gradient estimate is found by [33]

f̂kþ1 ¼ f̂k þ bkdk f̂k þ bkdk $ 0

0 otherwise

�
(14:23)

where bk is the optimal step size, which can also be analytically determined [33].

Values for b can be found using an iterative one-dimensional minimization

algorithm, such as the golden section rule [42, 43], or by using a first-order Taylor

series expansion of Eq. 14.23 with respect to b. Although the ICTM algorithm

used with a nonnegativity constraint is less sensitive to errors than noniterative TM

restoration, it is more computationally expensive.

14.4 .3 .5 Maximum-Likel ihood
Restoration

Most of the constrained deconvolution methods just described are based on the

assumption that the noise statistics follow a Gaussian distribution and can be

modeled as additive noise. However, this assumption is not always valid, espe-

cially in the case of photon-limited imaging. In these situations, when the noise

component is either large or dominated by Poisson noise, statistical processing

methods are typically used to improve the deconvolution process. They incorp-

orate information about the statistics of the noise and impose necessary con-

straints. Statistical methods are usually based on the premise that, given the

probability distribution of the observed image for a known specimen and

a known microscope psf, one can statistically estimate the true specimen

image that best satisfies not only the mathematical description of image forma-

tion and recording but also the original recorded image [44]. These methods are

also capable of recovering certain information that is not passed by the objective

lens [44]. The algorithms are iterative and computationally more expensive than

the constrained iterative methods.
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Maximum-likelihood (ML) restoration has been applied to optical section

deblurring [45]. If the psf, h, of the microscope is known, the probability

density function (pdf ) Pr gj fð Þ, which is the likelihood of the recorded image g,

is a function of the true specimen image f. Then the problem of image

restoration is to estimate the unknown parameters f Xð Þ, 8X 2 Sf , where Sf

is the support of f. Using the log-likelihood function, the ML solution for the

image estimate f̂ , which is most likely to give rise to the observed image g, is

found by solving [46]

f̂ ¼ arg min
f

� log Pr gj f , hð Þ (14:24)

In the case of Gaussian noise, the probability density function is given by [46]

Pr gj fð Þ ¼ 1

2pð ÞN=2sN
exp

�kg�Hf k2
2s 2

� �
(14:25)

where N is the number of voxels in the image and s2 is the noise variance.

Equation 14.24 can now be written as

f̂ ¼ argmin
f

k g�Hf k2
2s2

which is similar to the least-squares solution. Iterative techniques, such as the

steepest-descent method, may then be used for minimization [46]

f̂kþ1 ¼ f̂k þ hHT g�Hfð Þ (14:26)

where T denotes matrix transpose, subscript k denotes the kth iteration, and h is

a predetermined parameter such that 0 < h < 2=s2
1, where s1 is the largest

singular value of the matrix H. This method is usually referred to as the Land-

weber method [47]. For large values for h, convergence to the optimal image is

rapid, but may be unstable, whereas smaller values for h, although slower,

afford more stability. It is important to have a criterion for stopping the

iterations. For example, the discrepancy error, ek ¼kHf k � gk22, is widely used

for stopping the iterations when it is less than a predetermined threshold [47].

The number of iterations also allows regularization, and the process can be

stopped to avoid overfitting the noise. Other constraints, such as nonnegativity

and band-limitedness, can also be applied after each iteration step.

The EM-ML A lgo r i t hm In the case of Poisson noise, if A represents

the mean of the number of photons counted at all the image voxels, then the

probability of counting exactly n photons during the exposure time of one voxel

is Poisson distributed, with density [46]
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Pr nð Þ ¼ An

n!
exp �Að Þ (14:27)

This uncertainty in the number of photons appears as Poisson noise in the

observed image, and it is correlated with intensity. The pdf can be written as [46]

Pr gj f , hð Þ ¼ Hfð Þg
g!

exp �Hfð Þ (14:28)

The maximum-likelihood solution is then found by setting @ log Pr g fj Þð Þ=@fð to

zero, which is the expectation maximization–maximum likelihood (EM-ML)

algorithm [44, 48, 49].

The expectation-maximization (EM) algorithm is an iterative procedure to

compute the maximum-likelihood (ML) estimate in the presence of missing or

hidden data. The aim is to estimate the model parameters (specimen function, f̂ )

for which the observed data are the most likely. In microscopy, the recorded

(diffraction-limited) image g x, y, zð Þ represents an incomplete data set, whereas

the specimen image f x, y, zð Þ is the image to be estimated. Details of the

implementation are given in the references [44, 45, 48, 49]. The EM algorithm

has a slow convergence rate and is quite computationally intensive.

The R i cha rd son – Lu cy A lgo r i t hm The Richardson–Lucy (RL)

algorithm is similar to the maximum-likelihood algorithm for Poisson noise

[50, 51]. The maximization of Pr gj f , hð Þ with respect to f leads to the iterative

form [46]

f̂kþ1 ¼ HT g

Hf

� �
f̂k (14:29)

where k is the iteration number andHT denotes the transpose of the convolution

matrix corresponding to the psf. As long as the initial guess for the estimated

image f̂0 is nonnegative, the estimate at the kth iteration will remain nonnega-

tive. This makes the algorithm sensitive to the initial guess and influences its

performance. Typically, a smooth initial solution is used to avoid the amplifi-

cation of high-frequency noise. The Richardson–Lucy algorithm is constrained

but not regularized. The number of iterations is used to stop the computations.

The MSE (between the estimated image and the true solution) decreases with

the number iterations until it reaches a minimum, it increases again when noise

overfitting begins. At this point, the algorithm is usually stopped to avoid

noise amplification.

Maximum-Penalized-Likelihood (MPL) Method Typically

in ML restoration, it is difficult to determine the optimal number of iterations.
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Regularization can be applied as a penalty function added to the likelihood

function. This is known as the maximum-penalized-likelihood (MPL) method

[44, 48]. In MPL, the likelihood function is modified such that it decreases when

the noise increases. That is, the log-likelihood function can be modified by

subtracting a penalty term that increases with unwanted characteristics, such

as high-frequency content and intensity saturation. For example, an ‘‘intensity

penalty’’ is applied to address problems associated with very bright spots in the

images, and a ‘‘roughness penalty’’ is applied to prevent high-frequency noise, in

which large changes between neighboring voxels are encountered [44, 48].

Maximum a Pos te r i o r i (MAP) Me thod Alternatively,

Bayesian statistics can be used for regularization in the form of a prior

probability distribution, known as the maximum a posteriori (MAP) methods.

In this approach, prior knowledge about the true image, i.e., the image to be

estimated, is taken in the form of a prior pdf. For example, if the pdf Pr( f )

represents prior knowledge about the true image, then using Bayes’ theorem,

this prior distribution can be modified, based on the recorded image, into the

a posteriori distribution [28]. According to Bayes’ theorem, the posterior

probability can be calculated as (see Chapter 11)

Pr f jgð Þ ¼ Pr gj fð ÞPr fð Þ
Pr gð Þ (14:30)

where Pr(g) depends on the observed image only and can be regarded as

a normalizing constant and the likelihood Pr gj fð Þ denotes the conditional pdf
of g given f. The mode of the posterior distribution is often selected to be the

estimated true image. In this case, it is known as the MAP solution and is

obtained by maximizing Pr gj fð ÞPr fð Þ. The Pr( f) can be regarded as a penalty

function that penalizes undesired features of the solution. The maximization of

the penalized likelihood can be interpreted as the maximization of the posterior

probability [46]

f̂ ¼ arg max
f

Pr gj fð ÞPr fð Þ (14:31)

The selection of the prior probability distribution is difficult. A prior distri-

bution that performs well for one class of images might not be suitable for

another. Several forms of the prior distribution have been published, including

the Gibbs distribution [46], the Good’s roughness penalty [52], and the total

variations penalty function [53]. Alternatively, when information about the true

image (other than nonnegativity) is not available, the probability Pr fð Þ can be

based on the entropy of f [54].
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The difference between MAP and MPL is that in MPL methods only the

undesired characteristics of the true image need to be known, whereas in MAP

the probability distribution of the specimen must be known a priori [44]. MPL

reduces to MAP if the penalty function is taken to be the prior pdf.

14.4 .3 .6 B l i nd Deconvo lu t i on

Given an inaccurate psf, all of the image restoration methods described earlier

are ineffective in estimating the true specimen image. In practice, a truly accur-

ate determination of the psf is difficult to obtain. Noise is always present in an

experimentally measured psf, and a theoretical psf cannot completely account

for the aberrations present in the microscope optics. Blind deconvolution

algorithms do not require knowledge of the psf. Instead, they estimate the

microscope psf and the original 3-D specimen image simultaneously from the

acquired image.

Several authors have described blind deconvolution algorithms [21, 55, 56].

One approach is to constrain the psf to be circularly symmetric and band-limited

[55]. Another approach is to apply a quadratic parameterization to enforce

nonnegativity on f and use a psf parameterization based on phase aberrations

in the pupil plane for h [56].

A parametric blind deconvolution algorithm based on a mathematical model

of the psf is described as follows. In general, an iterative estimate of the object is

computed as [20, 21]

f̂ kiþ1 x, y, zð Þ ¼ g x, y, zð Þ
f̂ ki x, y, zð Þ � ĥk�1 x, y, zð Þ

" #
� ĥk�1 �x, �y, �zð Þ

( )
f̂ ki x, y, zð Þ (14:32)

and the psf is estimated as

ĥkiþ1 x, y, zð Þ ¼ g x, y, zð Þ
ĥki x, y, zð Þ � f̂ k�1 x, y, zð Þ

" #
� f̂ k�1 �x, �y, �zð Þ

( )
ĥki x, y, zð Þ (14:33)

In the first iteration step, the object estimate is simply the recorded image,

which is convolved with a theoretical psf calculated from the optical parameters

of the imaging system. The resulting blurred specimen estimate is compared with

the raw image, and a correction is computed. This correction is used to generate

the next estimate. The same correction is also applied to the psf, generating

a new psf estimate. In further iterations, the psf estimate and the object estimate

are updated together using Eqs. 14.32 and 14.33. Constraints, such as axial

circular symmetry and band-limitedness, can be imposed on the psf. These

constraints are imposed at each iteration step, after the computation of each
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new estimate. Circular symmetry can be enforced on the psf by averaging the

values equidistant from the optical axis. The frequency band-limit constraint is

imposed by setting to zero all values of the Fourier transform of ĥkþ1 x, y, zð Þ
that lie above the cutoff frequency.

In 3-Dmicroscopy, lateral and axial resolutions are usually different, and the

psf can be adjusted accordingly. Blind deconvolution methods take twice as long

per iteration as theML technique because two functions (i.e., object and psf) are

being estimated. They can produce better results than using a theoretical psf,

especially if unpredicted aberrations are present. The algorithm adjusts the psf

to fit the data and can thus partially correct for spherical aberration. Blind

deconvolution is used when the psf is unknown.

14.4 .3 .7 In te rp re ta t i on o f De convo lved
Images

Deconvolution techniques can be applied to wide-field and even confocal and

two-photon microscope images. Generally, of all the deconvolution algorithms

described here, the methods that model the image formation characteristics

most precisely lead to the best results. Depending on the imaging modality

being used (wide-field, confocal, two-photon, etc.) and the system optics, the

psf can have a different shape. The results obtained from deconvolution pro-

cedures also depend heavily on image quality, specifically signal-to-noise ratio

and sampling density. Finely sampled, low-noise images yield the best results.

Artifacts often arise due to the noise sensitivity of the algorithm, a poor choice

of algorithm regularization parameters, inaccurate psf estimation, and coarse

data sampling. Interpretation of deconvolved images typically requires some

knowledge of the processing methods so that the user can recognize artifacts

and identify real features. For a discussion of interpreting deconvolved images,

refer to [17, 24]. Figure 14.4 presents deconvolution results using linear

and nonlinear methods. Deconvolution using a Wiener filter (linear, nonitera-

tive method) is compared with a constrained maximum-likelihood iterative

(nonlinear) method.

14.4 .3 .8 Commer c ia l De convo lu t i on
Packages

Commercial deconvolution software packages are available fromMedia Cyber-

netics, VayTek, Scanalytics, Intelligent Imaging Innovations, and Applied

Precision and from most major microscope manufacturers, such as Zeiss,

Olympus, Leica, and Nikon. Most of these packages include features for 3-D

psf generation in addition to image deblurring algorithms. The linear methods

of inverse filtering and Weiner deconvolution are available in most commercial
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software packages. The key commercial vendors in this field market different

implementations of the nonlinear algorithms. For example, Vaytek, Intelligent

Imaging Innovations, Applied Precision, Carl Zeiss, and Bitplane market an

implementation of the modified JVC algorithm [36, 37]. Scanalytics and Vaytek

also market a reconstruction algorithm based on Carrington’s regularized

least-squares minimization method [38, 39]. Various implementations of the

maximum-likelihood estimation (MLE) and expectation maximization (EM)

algorithms have been commercialized by SVI, Bitplane, ImproVision, Carl

Zeiss, and Media Cybernetics. Freely available deconvolution packages include

XCOSM [17] and plugins for ImageJ [57].

14.5 Image Fusion

Image fusion is an approach frequently used in 3-D microscopy to combine a set

of optical section images into a single 2-D image containing the detail from each

optical section in the stack. This simulates a microscope with much larger depth

of field. One effective method uses the wavelet transform (see Chapter 7) for

image fusion. See Chapter 16 for a thorough description of this technique.

Image fusion involves combining multiple images into one image such that

the fused image contains the interesting components collected from all of the

input images.

F IGURE 14.4 Linear versus nonlinear deconvolution. Deconvolution using a Wiener filter is compared
with a constrained maximum-likelihood iterative method. The results are presented using maximum intensity
projection. The top row presents the xy projection (horizontal), and the bottom row presents the xz projection
(vertical). The leftmost column shows an image of hystoplasma capsulatum collected with a 100�/1.3 NA oil-
immersion objective at a fluorescent wavelength of 570 nm. The center column presents deconvolution results
obtained with a Wiener filter (linear noniterative method), and the right column shows results obtained with
a constrained maximum-likelihood iterative (nonlinear) method. Scale bar ¼ 10mm, with a 0.1-mm pixel size
along all axes. (Image courtesy of José-Angel Conchello. Original image contributed by W. Goldman.)
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14.6 Three-Dimensional Image
Processing

Three-dimensional image processing can be performed using three different

approaches. The first approach involves performing 2-D image processing

operations on the individual optical sections of the image stack. This approach

does not take into account the 3-D nature of the data set and may be suboptimal

in certain situations. The second approach is to perform image processing using

the entire 3-D data set, treating the voxel (volume element) as the basic unit of

brightness in three dimensions. In this approach, all operations are performed

on cubic voxel arrays. Finally, the fused image of a stack can be processed by

2-D techniques. For most image processing techniques, the 2-D counterpart

can easily be extended to 3-D. The following sections discuss several image

processing algorithms useful in 3-D microscopy.

14.7 Geometric Transformations

Transformations for 3-D images, such as translation and reflection, are direct

extensions of the corresponding 2-D image transforms (Chapter 5). Image

translation by a vector (dx, dy, dz) is given by [58]

x0

y0

z0

2
4

3
5 ¼

x

y

z

2
4
3
5þ

dx

dy

dz

2
4

3
5 (14:34)

where x, y, and z are the original coordinates and x’, y’, and z’ are the

corresponding translated voxel elements. The translation operation can be

formulated as [58]

a x, y, zð Þ ¼ b xþ dx, yþ dy, zþ dzð Þ (14:35)

Similarly, reflection about the z-axis can be formulated as

a x, y, zð Þ ¼ b x, y, Dz � zð Þ (14:36)

where Dz is the image dimension in the z direction, that is, the total number of

optical slices. Reflection along the x and y directions can be computed in

a similar fashion. Rotation is another operation that is often applied to 3-D

images to enable visualization of the data set from different viewpoints. This

operation requires each voxel, (x, y, z), in the original volume to be mapped into

a new position, (xx, yy, zz). The computation can be performed as [58]
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x� xc
y� yc
z� zc

2
4

3
5 ¼

cos u � sin u cosf sin u sinf
sin u cos u cosf � cos u sinf
0 sinf cosf

2
4

3
5 xx� xxc

yy� yyc
zz� zzc

2
4

3
5 (14:37)

where (xc, yc, zc), (xxc, yyc, zzc) are the rotation centers in the input and output

images, and u and f are the rotation angles about the z- and x- axis, respectively.

Typically, such computations result in noninteger values for the coordinates

that need to be truncated or rounded. This may result in more than one voxel’s

being mapped to the same position, which leaves holes in the rotated image

(see Chapter 5). This can be avoided by using an inverse implementation, where,

for each voxel (xx, yy, zz) of the output image, the corresponding input voxel

(x, y, z) value is evaluated [58]. Both translation and rotation are rigid-body

transforms, in which lengths and angles are preserved. Scaling is an affine

transformation, where lengths are changed. It can be computed as [58]

x0

y0

z0

2
4

3
5 ¼

sx 0 0

0 sy 0

0 0 sz

2
4

3
5 x

y

z

2
4
3
5 (14:38)

where sx, sy, sz are the scaling factors in the x, y, and z directions, respectively.

14.8 Pointwise Operations

Pointwise operations that are performed in 2-D can also be applied in 3-D on

a voxel-by-voxel basis. For example, gray-level mathematical operations such as

subtraction and addition and binary operations such as OR, XOR, and AND

can be expressed for 3-D images as follows [58]

addition: c x, y, zð Þ ¼ a x, y, zð Þ þ b x, y, zð Þ
subtraction: c x, y, zð Þ ¼ a x, y, zð Þ � b x, y, zð Þ
binary OR: c x, y, zð Þ ¼ a x, y, zð Þ k b x, y, zð Þ

(14:39)

14.9 Histogram Operations

The gray-level histogram is a function showing, for each gray level, the number

of voxels in the image that have the same gray level. In other words, the pdf of

the voxel intensities is called the histogram. For a 3-D image of dimensions

Dx �Dy �Dz havingK discrete intensity levels i1, . . . , iK , the histogram value at

a certain intensity is given by the frequency of occurrence of that intensity [58]
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p ikð Þ ¼ nk

DxDyDz

(14:40)

where nk is the number of voxels having intensity ik. A histogram is plotted as

a display of the frequencies at each intensity value, where the gray-level intensity

is the abscissa and the ordinate is the frequency of occurrence. The cumulative

histogram is a variation of the histogram in which the vertical axis represents not

just the counts for a single gray level, but, rather, denotes the counts for the

intensity in consideration plus all values less than that intensity. The cumulative

density function (cdf) is given by [58]

P ikð Þ ¼ 1

DxDyDz

XK
l¼1

nl (14:41)

The histogram contains important information about image quality and can

be used for image enhancement (Chapter 6). A popular histogram-based

enhancement operation is histogram equalization, in which the histogram of

the output image is made to be uniform (flat) such that it has an equal number

of voxels at every gray level. Histogram equalization for an input image f (x, y, z)

to generate the output g(x, y, z) can be achieved using a pointwise intensity

transformation function as follows [58]

g x, y, zð Þ ¼ T f x, y, zð Þð Þ such that g ¼ T fð Þ ¼
ðf
0

pf wð Þ dw (14:42)

where pf is the histogram of the input image and image intensities are normal-

ized to the [0, 1] range. Although image contrast is improved, histogram

equalization tends to enhance noise, and image smoothing is often applied

prior to histogram equalization for improved performance.

Histogram equalization is not appropriate for interactive image enhance-

ment applications because it generates only one result, an approximation to

a uniform histogram. In situations where a particular histogram shape, capable

of highlighting certain gray-level ranges, is desired, another method, known as

histogram specification, can be used. This transforms an image so that its

histogram more closely resembles a given histogram. An image f x, y, zð Þ with
a histogram function pf can be transformed into a new image g x, y, zð Þ, having
a given histogram, pg, by [58]

g x, y, zð Þ ¼ P�1
g Pf f x, y, zð Þð Þ
 �

(14:43)

where Pf and Pg are the cumulative histograms for the 3-D images f x, y, zð Þ and
g x, y, zð Þ, respectively, and P�1

g is the inverse function of Pg.
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14.10 Fi l ter ing

Image filtering operations are typically used either to reduce noise by smooth-

ing or to emphasize edges. Analogous to their 2-D counterparts (Chapter 6),

3-D filters can be defined as operators that map one 3-D image into another

3-D image as b x, y, zð Þ ¼ f a x, y, zð Þð Þ, where b x, y, zð Þ is the output (filtered)
image that results from processing the input image a x, y, zð Þ. Each voxel in the

output image is computed as a function of one or several voxels located in its

neighborhood in the input image. Depending on the nature of the filter

function f, the operation can be classified as linear or nonlinear. Digital con-

volution filters are linear, since the output voxel values are linear combinations

of the input image voxels, but other types of filters are nonlinear.

14.10.1 L inear F i l ter s

Linear filters can be implemented either as convolution operations in real space

or as multiplication operations in Fourier space. A linear filter can be specified

either by its convolution kernel, or by its transfer function. The kernel and the

transfer function form a Fourier transform pair.

14.10 .1 .1 F i n i t e Impu l se Re spon se ( F IR ) F i l t e r

A finite impulse response (FIR) filter has a kernel (matrix of filter coefficients)

that is zero outside a relatively small region near the origin. It is implemented as

a convolution of the kernel with the input image a x, y, zð Þ as [58]
b x, y, zð Þ ¼ h x, y, zð Þ � a x, y, zð Þ

¼
XL�1

i¼0

XM�1

j¼0

XN�1

k¼0

h i, j, kð Þa x� i, y� j, z� kð Þ (14:44)

where h x, y, zð Þ is the filter kernel, defined over 0 # x < L, 0 # y <M, and

0 # z < N.

This moving-average filter is also known as the arithmetic-mean filter, where

the values of all the filter coefficients in the kernel are equal to 1/LMN for

a kernel of dimensions L�M �N. From this definition, one can see that if

a voxel value is noise, taking the average gray level of the voxels surrounding it

tends to normalize its gray level. Thus an averaging filter smooths areas of high

frequency and only subtly changes constant areas. While it is useful for reducing

random noise, it is not as effective against impulse noise like the nonlinear filters

described next. With a less restricted kernel, Eq. 14.44 can be used to implement

a variety of linear filters for low-pass, or high-pass filtering simply by selecting

an appropriate kernel or transfer function (see Chapter 6).
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14.10.2 Nonl inear F i l ter s

Nonlinear filters can also be implemented by b x, y, zð Þ ¼ f a x, y, zð Þð Þ, as

earlier, except that f is no longer a linear function. They are more general and

can be designed to preserve edge information and remove impulse noise. Some

representative nonlinear 3-D filters are discussed next.

14.10 .2 .1 Med ian F i l t e r

A median filter belongs to the class of order-statistic filters, i.e., filters based on

a rank ordering of the input voxel values. Most implementations use a square

kernel of neighborhood pixels (e.g., 3 � 3, 5 � 5) as the filter window. Consider

the voxels X1,X2, . . . ,XW , where W is an odd number, within a filter window of

size W ¼ L�M �N. Then the rank-ordered voxel values can be expressed as

X1 < X2 < � � � < Xi � � � < XW , and the median is defined as the middle voxel

value, given by Xmed ¼ XððWþ1Þ=2Þ, and the median filter is defined as the value

that minimizes [58]

XW
i¼1

Xi � Xmedj j (14:45)

The median filter is implemented by moving the filter window over the 3-D

data set. At each window position, the central voxel is replaced by the value of

Xmed inside the window neighborhood. This process is slow, especially in 3-D,

due to the requirement of sorting all the voxels in each neighborhood based on

their gray level. One approach for reducing the computational complexity is to

apply successive 1-D median filtering along the rows, columns, and sections

(image planes). This process is called a separable median filter, and the resulting

output image differs from that of the 3-D median filter.

14.10 .2 .2 We igh ted Med ian F i l t e r

The weighted median filter is a variation of the median filter that incorporates

spatial information of the voxels when computing the median value. A weighted

3-D median filter is implemented as follows [58]

b x, y, zð Þ ¼ medianfw1 & X1, . . . , wN & XNg (14:46)

where X1, . . . ,XN are the voxel values inside a window centered at x, y, zð Þ and
w& X denotes replication of X , w times. The advantage of this approach is

that, by applying larger weight values on certain voxels, spatial or structural

information can be incorporated into the filtering process.
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14.10 .2 .3 Min imum and Max imum F i l t e r s

Another set of widely used nonlinear filters are theminimumandmaximumfilters.

Like themedian filter, these two are also order-statistic filters. Themaximum filter

fills the central voxel of the 3-Dwindowwith themaximumXN among the ordered

set of voxel intensities, whereas the minimum filter replaces it with the minimum

value, X1. Unlike themedian filter, these filters havemuch reduced computational

complexity. The implementation of these filters is also speeded up by performing

three successive 1-D filtering operations along the three axis directions.Maximum

filters are used to suppress negative impulses and to brighten up the image,

whereas minimum filters reduce positive impulses and tend to darken the image.

14.10 .2 .4 a- Tr immed Mean F i l t e r s

a-trimmed mean filters are widely used for the restoration of signals and images

corrupted by additive symmetric noise. The filter rejects a certain percentage of

outlying voxels (extremely high and low values) and then averages the remaining

voxels within the filter window. The filter is implemented as follows [58]

b x, y, zð Þ ¼ 1

1� 2að ÞN
X1�að ÞN

i¼aNþ1

Xi 0 # a # 0:5 (14:47)

where N is the number of voxels within a filter window centered at (x, y, z).

The approach involves ordering the voxels within the filter window and then

rejecting a percentage (specified by a) of the lower- and upper-rank voxels. The

filter output is the average of the remaining voxels. The rejection parameter, a, is
selected in relation to the noise statistics. The filters are simple to implement and can

be applied iteratively for optimizing a and thereby controlling the filtering effects.

These filters are generally used to eliminate spike noise without smearing the image.

Anextensionof the trimmedfilter is themodified trimmedmeanfilter.This filter

sets a thresholdT and averages only those voxels’ values where the difference from

the mean or median value is less than the threshold. This process is written as [58]

b x, y, zð Þ ¼
P
i

aiXiP
i

ai
where ai ¼ 1 if Xi � �Xj j # T

0 otherwise

�
(14:48)

where �X is either the mean or the median value within the filter window. The

threshold is determined based on the noise statistics.

14.10.3 Edge-Detec t ion F i l ters

Similar to boundaries in 2-D images, the surfaces of the different 3-D regions are

represented by intensity changes in the data volume and can be detected using
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specialized linear filters that highlight edges. Three-dimensional edge operators

are direct extensions of the 2-D edge-based operators (Chapter 9), and 3-D edges

(or, more appropriately, surfaces) represent discontinuities in image intensity.

The intensity gradient can be expressed in 3-D as [58]

rf x, y, zð Þ ¼ @f

@x
,
@f

@y
,
@f

@z

� �
(14:49)

Edge activity can then be detected by computing the gradient magnitude or the

L1 norm as follows [58]

edge x, y, zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@f

@x

� �2

þ @f

@y

� �2

þ @f

@z

� �2
s

or edge x, y, zð Þ ¼ @f

@x

����
����þ @f

@y

����
����þ @f

@z

����
����

(14:50)

The algorithm for edge detection involves convolution with a kernel that

creates an approximation of the partial derivative in a given direction. Thus, for

3-D edge detection, three masks are used, one for each direction. For example,

the Sobel edge detector (Chapter 9) can be generalized for 3-D processing as

a set of three 3-Dmasks, one for each of three directions [58]. For the y direction

(vertical edges), this 3 � 3 � 3 matrix is

�1 0 1

�2 0 2

�1 0 1

2
4

3
5 �2 0 2

�3 0 3

�2 0 2

2
4

3
5 �1 0 1

�2 0 2

�1 0 1

2
4

3
5 (14:51)

The other two operators are obtained via 908 rotations of the one shown in

Eq. 14.51. Edge-detection filters are commonly used for image segmentation.

For the most part, 3-D filtering is an extension of the 2-D filtering process

described in Chapter 6, but with somewhat increased computational complexity

due to the added third dimension. For a more complete description of filters, the

reader should consult a textbook on image processing [28, 58].

14.11 Morphological Operators

Mathematical morphological operators are a subclass of nonlinear filters that

are used for shape and structure analysis and for filtering in binary and grayscale

images. Three-dimensional morphological operators are straightforward exten-

sions of their 2-D counterparts (as described in Chapter 8), with sets and

functions defined in the 3-D Euclidean grid Z3. In this section we extend the

362

14 Three-Dimensional Imaging



concepts introduced in Chapter 8 to three dimensions. An in-depth description

of the mathematical basis of morphological operators is presented in [58–60].

14.11.1 Binary Morphology

Mathematical morphological operators are based on set theory. An object O in

a binary 3-D image can be denoted as

O ¼ v: f vð Þ ¼ 1, v ¼ x, y, zð Þ 2 Z3
� �

(14:52)

where f is called the characteristic function of O. Similarly, the object back-

ground, Oc, can be defined as follows [58]

Oc ¼ v: f vð Þ ¼ 0, v ¼ x, y, zð Þ 2 Z3
� �

(14:53)

All morphological operations utilize a structuring element (also known as

the kernel), which determines the precise details of the effect that the operator

has on the input image. In 3-D morphology, the structuring element is a small

cluster of voxels, arranged in a geometric pattern (sphere, cube, octahedron,

etc.) relative to some origin. Normally, Cartesian coordinates are used to

represent each voxel, and the origin is typically at the center of the cluster.

The origin of the structuring element is typically translated to each voxel

position in the input image in turn, and the points within the translated struc-

turing element are compared with the underlying image voxel values. The details

of the operation and the effect of the outcome depend on which morphological

operator is being used. The two basic mathematical operations of dilation and

erosion are denoted as [58]

dilation: O!BS ¼ v 2 Z3:Bv \O 6¼ 0
� �

erosion: O@BS ¼ v 2 Z3:Bv � O
� � (14:54)

where BS is the symmetric of B with respect to the origin (0, 0, 0). Dilation is an

expanding operation, whereas erosion has a shrinking effect. The successive

application of erosion and dilation is opening; dilation followed by erosion is

closing [58]

opening: X @BS
� 


!B

closing: X !BS
� 


@B
(14:55)

Opening smooths the surface and typically smears sharp spurs on the object

boundary, whereas closing fills small holes and typically unites objects that are

close to each other. Note that applying either opening or closing more then once

produces no further effect.
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14.11.2 Graysca le Morphology

Grayscale images can be denoted as functions, f, whose domain D is a subset of

the Euclidean grid Z3 [58]

f vð Þ, v ¼ x, y, zð Þ 2 D � Z3 (14:56)

The structuring element can also be denoted as a function g within domain G

[58]

g vð Þ, v ¼ x, y, zð Þ 2 G � Z3 and the symmetric of g is

gs vð Þ ¼ g �vð Þ (14:57)

The operations of dilation, erosion, opening, and closing are then defined as

follows [58]

dilation: f !gs½ � vð Þ ¼ max
v2D,v�d2G

f vð Þ þ g v� dð Þf g
erosion: f @gs½ � vð Þ ¼ min

v2D,v�d2G
f vð Þ � g v� dð Þf g

opening: f @gsð Þ!g½ � vð Þ
closing: f !gsð Þ@g½ � vð Þ

(14:58)

where d is a vector that defines the translation. Grayscale opening suppresses

positive impulses but enhances negative ones, whereas closing does the con-

verse. Additionally, opening and closing can be combined to create filters such

as the close–open and open–close filters, which suppress both negative and

positive impulses. Another morphological operator of interest is the top-hat

transform, which is very similar to a high-pass filter. It can be applied to 3-D

images to produce peaks of the object features. The top-hat transform is

denoted as [58]

g vð Þ ¼ f vð Þ � fkB vð Þ (14:59)

where kB ¼ B!B!B! � � � !B, k times.

Finally, mathematical operators can also be used as edge detector as

follows [58]

e vð Þ ¼ f vð Þ � f @kB½ � vð Þ (14:60)

where e is the output edge image.

Three-D image stacks are usually anisotropic; that is, the sampling interval

along the axial dimension is larger than in the radial dimension. For this reason

the structuring element should be chosen as an anisotropic 3-D kernel.
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For example, the quasi-spherical structuring element of size 3 � 7 � 7 shown in

Eq. 14.61 has been used for a 3-D morphological opening operation [61]
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(14.61)

From Eq. 14.61, the kernel (b) is applied to the optical slice in the middle,

whereas (a) and (c) are applied to slices above and below [61].

Other widely used 3-D morphological techniques include the watershed

algorithm and skeletonization (see Chapter 8). The interested reader is directed

to other publications for information on these techniques [58–61].

14.12 Segmentat ion

Segmentation is a procedure that classifies all the voxels in an image to divide the

image up into regions ultimately, each of which corresponds to a different object.

Two-dimensional segmentation is discussed in Chapter 9. Here we generalize

those concepts to 3-D. The segmentation process is based on the notion that

voxels belonging to a certain region share some similar characteristics, such as

intensity, texture, and spatial position. Segmentation algorithms may be applied

either to unprocessed images or after the application of certain transformations or

filters, and they may be automated, or interactive, that is, requiring human input.

Segmentation is often the most challenging step in image analysis. If segmen-

tation is done improperly, then all subsequent stages of image analysis are

incorrect. The challenges of segmentation are further confounded when process-

ing 3-D microscopy images. The difficulty in segmenting regions of volumetric

images arises from several factors. Regions are often touching each other or

overlapping and irregularly arranged, with no definite shape. Illumination vari-

ations are also common in thick specimens, with intensity falling off with increas-

ing depth due to factors such as absorption, scattering, and diffraction of the light

by structures located above and below the focal plane (Chapter 12).
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There are two methods to implement segmentation of 3-D images. The first

approach is slice by slice, in which the 2-D images in the 3-D stack are individu-

ally processed, and the 3-D regions are extracted when the processed 2-D slices

are stacked. The disadvantage of this implementation is that discontinuities of

volume between the slices may occur, and thus it is not possible to derive

accurate 3D-volumetric morphology. Object boundaries that lie parallel to the

focal plane cannot be extracted accurately.

The second approach is the volume-oriented approach, which is based on

processing the complete set of consecutive slices, in its entirety, as a single 3-D

image. The trade-off here is that volumetric information is retained but compu-

tational complexity is increased. Regardless of the implementation chosen, there

are three general approaches to segmentation: point-based, edge-based, and

region-based methods.

14.12.1 Point -Based Segmentat ion

In thresholding, which is also known as point-based segmentation, voxels are

allocated to categories according to the range of intensity in which a voxel value

lies. For example, if voxels that form a certain object fall within a specific intensity

range that is different from the intensity of the background voxels and from the

intensity rangeof other objects in the image, then theobject canbe segmentedusing

a pair of intensity thresholds.Given a pair of thresholds t1 and t2, the voxel located

at position x, y, zð Þ with grayscale value f x, y, zð Þ is allocated to a category

C1 if t1 < f x, y, zð Þ # t2.Otherwise, thevoxel is allocated toadifferent category.

The success of thresholding algorithms depends heavily on the selected

threshold, for which selection is challenging and often subjective. Several auto-

matic threshold selection methods have been developed, but very often the

procedure requires some user interaction. Reviews of automated threshold

selection methods for 2-D images are available [62, 63]. While most algorithms

simply use the histogram, others make use of contextual information, such as

gray-level occurrences in adjacent pixels. Most of these methods are applicable

to 3-D images and require use of the image’s 3-D gray-level histogram.

A representative iterative algorithm for automated threshold selection for 3-D

images, often referred to as the intermeans algorithm, is presented here [64]. An

initial guess, typically the median intensity value, is used for the threshold at the

start. This threshold is used to generate two categories, and the mean values of

voxels in the two categories are calculated as [65]

m1 ¼
PT
k¼0

khk

PT
k¼0

hk

and m2 ¼

PN
k¼Tþ1

khk

PN
k¼Tþ1

hk

(14:62)
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where T is the median voxel value chosen such that
PT

k¼0 hk $ n2=2 >
PT�1

k¼0 hk
and hk specifies the number of voxels in the image with gray-level value k, N

is the maximum voxel value (typically 255), and n is the total number of voxels,

i.e., Dx �Dy �Dz. Next, the threshold is computed to lie exactly halfway

between the two means

T ¼ m1 þ m2

2

i h
(14:63)

where ] [ indicates only integer values. The mean values are then calculated

again, and the process is repeated to compute a new threshold, and so on, until

the threshold stops changing value between consecutive computations.

There are other methods that use recursive or iterative thresholding as well

[66, 67]. Most iterative methods split the image iteratively into regions by finding

the peaks in the histogram due to each region or by dividing the histogram based

on specific criteria to pick the threshold. Another common segmentation

approach is to determine multilevel thresholds, whereby different objects are

segmented in different threshold bands. This is done by determining multiple

threshold values by searching the global intensity histogram for peaks or by

using specific criteria to divide the histogram [68].

Thresholding is most suitable for images in which the objects display homo-

geneous intensity values against a high-contrast uniform background. If the

objects have large internal variation in brightness, thresholding will not produce

the desired segmentation. In 3-D images, intensity typically falls off deep within

the specimen due to diffraction, scattering, and absorption of light, and a single

threshold value is not applicable for the entire stack. Multilevel thresholding

methods with localized threshold determination for individual 2-D slices in the

stack are typically more appropriate. Moreover, thresholding algorithms that

are based solely on gray level and do not incorporate spatial information result

in segmented images in which objects are not necessarily connected. Most often

the outcome of a thresholding operation is not used as the final result; rather,

refinement procedures such as morphological processing and region-based

segmentation algorithms are applied to delineate regions further.

14.12.2 Edge-Based Segmentat ion

In 2-D edge-based segmentation, an edge filter is applied to the image, and pixels

are classified as edge or nonedge, depending on the filter output (Chapter 9).

Typical edge filters produce images in which pixels near rapid intensity changes

are highlighted. For 3-D data, surfaces represent object edges or boundaries,

and edge detection in 2-D can be extended to 3-D surface detection.
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For example, the Marr–Hildreth operator for 3-D surface detection operates as

follows [58, 69]

C x, y, zð Þ ¼ r2 I x, y, zð Þ � G x, y, z, sð Þð Þ (14:64)

where

G x, y, z, sð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ3

q
�s3

� e� x2þy2þz2ð Þ=2s2

I x, y, zð Þ is the 3-D image, G x, y, z, sð Þ is the Gaussian function, C x, y, zð Þ is
the resulting contour (surface) image, and r2 is the Laplacian operator. Equa-

tion 14.64 can be written as [58]

C x, y, zð Þ ¼ I x, y, zð Þ � r2G x, y, z, sð Þ (14:65)

where r2G is the Laplacian of a Gaussian operator. An implementation of the

difference of Gaussians (DOG) operator is shown in Eq. 14.66. The DOG

operator is separable and can be implemented as [58]

r2G x, y, z, sð Þ 	 G x, y, z, seð Þ � G x, y, z, sið Þ
	 G x, seð Þ � G y, seð Þ � G z, seð Þ � G x, sið Þ � G y, sið Þ � G z, sið Þ

(14:66)

In order for the DOG operator to approximate ther2G operator, the values for

se and si must be [69]

se ¼ s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=r2ð Þ

2 ln r

r
and si ¼ r�se (14:67)

where r is the ratio si:se.

The values of se and si are determined such that the bandwidth of the filter is

small and the sensitivity is high. As seen in Eq. 14.64, this edge-detection filter

uses a Gaussian filter to smooth the data and remove high-frequency compon-

ents. The amount of smoothing can be controlled by varying the value of s,
which is the standard deviation (i.e., width) of the Gaussian filter. Moreover, the

Laplacian component is rotationally invariant and allows the detection of edges

at any orientation.

Overall, surface-based segmentation is most useful for images with ‘‘good

boundaries,’’ that is, the intensity value varies sharply across the surface, is

homogeneous along the surface, and the objects that the surfaces separate are

smooth andhave anuniform surface [70].Generally, special surfaces, such as those

that are planar, spherical, or ellipsoidal, are detected as the boundaries between
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objects [71, 72]. Themedical imaging field offers a number of promising algorithms

that seek to optimize the surface of the object by balancing edge/region parameters

measured from the image with a priori information about the shape of the object

[73]. Despite their success in medical image analysis, boundary detection methods

are seldom optimal for microscopy data where the intensity changes are typically

gradual and heterogeneous along the surface. A major disadvantage of the edge-

based algorithms is that they can result in noisy, discontinuous edges that require

complex postprocessing to generate closed boundaries. Typically, discontinuous

boundaries are subsequently joined using morphological matching or energy

optimization techniques to find the surface that best matches the gradient map

[74]. An advantage of edge detection is the relative simplicity of computational

processing. This is due to the significant decrease in the number of voxels that

must be classified and stored when considering only the voxels of the surface,

as opposed to all the voxels in the volume of interest.

14.12.3 Region-Based Segmentat ion

Region-based methods are further classified into region-growing, region-splitting,

and region-merging methods. These algorithms operate iteratively by grouping

together adjacent voxels that are connected as neighbors andhave similar values or

by splitting groups of voxels that are dissimilar in value. Grouping of voxels is

determined based on their connectivity.

14.12 .3 .1 Connec t i v i t y

For 3-D images there are three widely used definitions of connectivity: 6-

neighborhood, 18-neighborhood, and 26-neighborhood connectivity. Given

a voxel v ¼ x, y, zð Þ, the 6-neighborhood N6 vð Þ of v consists of the six voxels

whose positions in the 3-D space differ from v by +1 in only one coordinate.

These voxels are called 6-neighbors of v, and their coordinates x0, y0, z0ð Þ satisfy
the following condition [58]

N6 vð Þ ¼ x0, y0, z0ð Þ: x� x0j j þ y� y0j j þ z� z0j j ¼ 1f g (14:68)

Similarly, the 18-neighborhood, N18 vð Þ, and 26-neighborhood, N26 vð Þ, voxels
satisfy the following conditions [58]

N18 vð Þ ¼ f x0, y0, z0ð Þ: 1# x� x0j j þ y� y0j j þ z� z0j j# 2 and

max x� x0j j, y� y0j j, z� z0j jð Þ ¼ 1g
N26 vð Þ ¼ x0, y0, z0ð Þ: max x� x0j j, y� y0j j, z� z0j jð Þ ¼ 1f g

(14:69)

Any voxel p in the 6-neighborhood of a voxel x shares one face, in the

18-neighborhood shares at least one edge, and in the 26-neighborhood shares
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at least one vertex with the voxel x. As in the 2-D case, connectivity in 3-D is

defined in terms of the following adjacency pairs: (6, 26), (26, 6), (18, 6), and

(6, 18), where the first component represents connectivity of the foreground and

the second component represents connectivity of the background. Region-based

methods typically utilize some characteristic, such as connectivity, intensity

value, structural property, probabilistic correlation (e.g., Markow random

field models), or correlation between voxels in a neighborhood, to attribute

voxels to different objects or to the background.

14.12 .3 .2 Reg ion Growing

Region-growing segmentation techniques start with marked voxels, or small

regions (called seeds), that have near-uniform properties based on chosen

criteria. The seeds can be placed automatically or interactively. Then, moving

along the boundary of each seed, neighboring (connected) unassigned voxels are

examined sequentially to determine if each should be incorporated into the

region. The procedure is repeated and the region grows until no further neigh-

boring voxels qualify for incorporation. Notice that this procedure produces

a segmentation in which no regions overlap, and many voxels may remain

unassigned to any region.

14.12 .3 .3 Reg ion Sp l i t t i ng and Reg ion
Merg ing

Region-splitting methods start from a segmented region and proceed recursively

toward smaller regions through a series of successive splits. Each region is

checked for homogeneity based on some predefined criteria, and, if found to

be nonhomogenous, it is tentatively split into eight octant regions. These are

examined, and octants with different properties remain as separate new regions,

while similar octants are remerged. The splitting procedure is repeated for the

newly created regions. The procedure will stop when (1) all of the split regions

remerge, (2) no more regions qualify for splitting, or (3) a minimum region size

has been reached.

Region merging acts to merge touching regions that have similar properties

based on predefined criteria. The process terminates when no further region

merging is possible. This process can correct oversegmentation.

Region splitting and region merging can be performed together as a single

algorithm known as the split-and-merge technique. This recursive method starts

with the entire image as a single region and uses the splitting technique to divide

nonhomogenous regions based on predefined similarity criteria. Splitting con-

tinues until no further splitting is allowed. Then merging is used until it termi-

nates. The resulting regions then constitute the segmentation results. This

approach usually yields better segmentation results than the region-splitting or
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region-merging methods alone. The region-growing method frequently results in

oversegmentation, and split-and-merge operations can be applied to improve

the results.

14.12.4 Deformable Models

Deformable models, popularly known as active contours or snakes in 2-D image

processing (see Chapter 9), can be extended to 3-D image processing, where they

are referred to as active surfaces or balloons [74]. These models represent geo-

metric forms such as surfaces that are designed to simulate elastic sheets so that

when they are placed close to an object’s boundary the models will deform under

the influence of internal and external forces to conform to the shape of the object

boundary. External forces, also known as image forces, are driven by image

attributes and pull the active surface toward strong edges in the image. Internal

forces typically enforce regularity based on specified properties of elasticity or

rigidity that the surface must maintain.

There are two major classes of 3-D deformable models, explicit [73] and

implicit [75], and they differ at the implementation level. The surface of explicit

deformable models is defined in a parametric form that uses global and local

parameters. The surface S is defined in a parametric form. The two parameters

s and r specify points that are on the surface as follows [58, 73]

u s, rð Þ ¼ u1 s, rð Þ, u2 s, rð Þ, u3 s, rð Þð Þ s, r 2 0, 1½ � (14:70)

For every pair (s, r), u1, u2, and u3 define the (x, y, z) coordinates of a point

on the surface. The following energy functional, E, is associated with the

surface [58]:
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ð
V

 
w10

@u

@s

����
����

����
����
2

þ w01

@u

@r

����
����

����
����
2

þ 2w11

@2u

@s@r

����
����

����
����
2

þ w20

@2u

@s2

����
����

����
����
2

þ w02

@2u

@r2

����
����

����
����
2

þ P u s, rð Þð Þ
!

ds dr

(14:71)

where V ¼ 0,1½ � � 0,1½ �, and w10, w01 represent surface elasticity, w20, w02 repre-

sent surface rigidity, and w11 represents its resistance to twist. The internal or

image force, P(u), which drives the surface toward the local gradient maxima, is

given by [58]

P uð Þ ¼ �krI uð Þk2 (14:72)

The deformation process can be controlled by changing the values of the

elasticity, rigidity, and resistance parameters or by using user-defined external
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forces, such as a pressure to drive the initial estimates until an edge is detected or

a weight that pulls the surface down until an object surface is detected. The

Euler–LaGrange equation can be used to represent the local minimum of the

energy functional E as [58]
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(14:73)

where F(u) is the sum of all forces acting on the surface. Typically, initial

estimates are used to solve the following equation and compute the local

minima [58]
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Equation 14.74 is solved using the finite difference and finite element methods.

This formulation of the explicit deformable model is also known as the

energy-minimization formulation [76].

An alternative, known as the dynamic force formulation [74], provides the

flexibility of applying different types of external forces to the deformable model.

For example, the deformable model can start as a sphere inside the object and

then use balloon force to push the model out to the boundary by adding

a constant inflation pressure inside the sphere [74]. In general, explicit deform-

able models are easy to represent and have a fast implementation but do not

adapt easily to topology. Topological changes occurring during deformation are

better handled by implicit deformable models [77], which represent the curves

and surfaces implicitly as a level set of higher-dimensional scalar function

[78]. However, the implicit models’ descriptions are not intuitive, and their

implementations are computationally expensive.

14.12.5 Three-Dimens iona l Segmentat ion
Methods in the L i tera ture

Several composite algorithms for 3-D image segmentation of microscopy data

have been published. The overall consensus is that no single method can be

generalized adequately to be applicable to a variety of images and that most

methods must be customized to solve a particular problem in a specific set of

images from a given system. Both interactive and automatic algorithms are used
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to perform 3-D segmentation. Interactive methods, based on manually tracing

regions with a mouse in a sequence of images, are typically superior to automatic

algorithms in performance, based on visual judgment of the results, and they

constitute the gold standard. Although interactive segmentation is simple and

generally applicable, it is very time consuming and monotonous, and it demands

constant precision from the operator. In contrast, automatic segmentation

techniques offer the advantages of high speed, robustness, and a lack of bias.

Many methods for automated image segmentation have been proposed, but

completely automatic 3-D image segmentation is still not reliable. It is difficult

to quantify and measure the quality of segmentation due to the inherently

subjective nature of the process and the large variances in manual segmentation,

which continues to be used as the ground truth. Most applications still rely on

semiautomated or manual methods. For 3-D segmentation, the most popular

approaches have combined region-based, edge-based, and morphological

methods to achieve the desired results. A description of all the published

literature in the area of 3-D segmentation is beyond our scope, but a few

examples of 3-D segmentation algorithms for microscopy are mentioned here.

One 3-D segmentation method integrates several morphological image pro-

cessing algorithms, including gray-level opening, top-hat transformation, geo-

desic reconstruction, particle deagglomeration by the watershed algorithm, and

a final discrimination by adaptive thresholding to segment nuclei in 3-D tissue

samples of normal rat liver and in situ carcinoma of the esophagus [79]. The

automated algorithm worked well for detecting nuclei in the liver samples, but

interactive user intervention was required for the cancerous tissue, where nuclei

were tightly clustered.

Another 3-D approach combines initial thresholding with a split-and-merge

algorithm to identify volumes, followed by a final watershed algorithm to divide

clusters of overlapping nuclei. Images are preprocessed with gradient filters and

then globally thresholded, followed by local adaptive thresholding. Segmented

regions are processed further to separate connected regions using 3-D watershed

or a cluster analysis algorithm [80–82].

Other methods have utilized a combination of global thresholding followed by

processing of individual slices in 3-Ddata sets to segment images [83]. The segmen-

tation results from global thresholding are optimized by further processing using

morphological filtering and segregation by the watershed algorithm to segment

each 2-D slice of the 3-D image. Shape-based criteria, such as convexity, are then

applied to the segmented object’s contours to perform nuclei deagglomeration in

the z direction (depth). Four different types of samples, including hyperplasia of

a prostatic lesion, prostatic intraepithelial neoplastia, and well-differentiated and

poorly differentiated carcinoma, were used for testing the algorithms.

A semiautomated method for 3-D segmentation incorporates automated

thresholding followed by 3-D volume visualization and interactive division of
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clusters of nuclei by a seeded region-growing technique [84]. The seeding is

performed manually by marking the centers of nuclei, and this is followed by

automatic region growing from the markers. Predefined criteria of size and

shape are used to restrict the region-growing process. Finally, parametric mod-

eling based on an ellipsoidal model is used to aid interactive refinement, allowing

further optimization of the segmentation of nuclei.

Iterative multilevel thresholding followed by region splitting has also been

applied to automate 3-D segmentation [85]. This approach allows segmentation

of images where objects have varying levels of brightness and heterogeneity.

Iterative multilevel thresholding and splitting (IMTS) initially splits a region by

iterative thresholding to segment the 3-D images into volumes, and then it splits

larger volumes into smaller volumes using intensity homogeneity and volume

size criteria. The volumes are finally extracted via a slice-merging method, where

each 2-D optical slice is processed and the segmented volumes are merged based

on the connectivity of adjacent image planes.

Another semiautomated approach for segmentation utilizes an adaptive

algorithm to determine the gradient-weighted average threshold, followed by

interactive classification of each object. Objects classified as clusters are divided

iteratively into subcomponents using the distance transform and a watershed algo-

rithm [86]. Postprocessing techniques, such as partial-differential-equation–based

filters, can also be used to improve the segmentation results [87].

Segmentation methods can also combine automation with manual interven-

tion at several interim stages to achieve optimal results [88]. For example,

automatic algorithms based on the Hough transform (see Chapter 9) and an

autofocusing algorithm (see Chapter 16) have been used to estimate the size of

nuclei and to separate regions of fluorescence-stained nuclei and unstained

background. Subsequent manual review is then used to classify the segmented

regions as individual nucleus, a cluster of multiple nuclei, a partial nucleus, or

debris. Next, automated analysis, based on morphological reconstruction and

the watershed algorithm, is used to divide clusters into smaller objects. These are

again manually reclassified, and the procedure is repeated until all the clusters

have been analyzed, at which point the analyst indicates which partial nuclei

should be joined to form complete nuclei.

The watershed algorithm (Chapter 8) is commonly used for separating

touching objects [89]. Region-based segmentation methods are combined with

the watershed algorithm to separate clustered objects. Region merging can then

be used to effect the final segmentation.

Alternatively, edge-based segmentation is used to split clustered objects. For

example, contour-based methods can split clustered objects based on indenta-

tions along their boundaries [90]. One strategy is to use the restricted convex hull

computation to achieve slicewise segmentation and then to join the information

obtained per slice to construct the 3-D objects.
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Finally, mathematical modeling methods can be used extract objects. For

example, Gaussian Markov random fields can be used to segment nuclei by

modeling the local dependencies of the nuclei within predefined neighborhoods

[91, 92].

Overall, several different approaches have been developed for 3-D segmen-

tation, and the most popular approaches have combined region-based, edge-

based, and morphological methods to achieve the desired results. The general

consensus is that most applications require a customized set of specific segmen-

tation algorithms and that most images require tuned parameters for optimal

results.

14.13 Comparing Three-
Dimensional Images

In some applications it is necessary to determine the similarity between two

images or to find the position of the best match between an image and a 3-D

template. The similarity between two three-dimensional images can be deter-

mined by computing the 3-D correlation between them [58]

Rab x0, y0, z0ð Þ ¼
XP1�1

x¼0

XP2�1

y¼0

XP3�1

z¼0

a x, y, zð Þ b xþ x0, yþ y0, zþ z0ð Þ (14:75)

where the input images a and b have regions of supportRP1, P2, P3 andRQ1, Q2, Q3,

respectively. The correlation is defined in the region �Q1, P1ð Þ � �Q2, P2ð Þ�
�Q3, P3ð Þ. Correlation of two different images is called cross-correlation, whereas

correlation of an image with itself is autocorrelation. The position of the peak in

the cross-correlation function specifies the shift required for alignment, and the

strength of that peak gives the degree of similarity.

14.14 Registrat ion

In optical sectioning microscopy, where the sample is stationary during image

acquisition (except in live-cell imaging), all of the sections in the 3-D optical

stack are well aligned. Thus registration of the image slices is not required. For

physically sectioned samples, however, the process of cutting the sections and

fixing them to the glass slide creates distortion, and registration of the section

images is required to form a 3-D image. Cross-correlation, just described, can be

used to determine the offset between adjacent section images. Another popular

method to register images is based on the concept of mutual information content

(or relative entropy) from the field of information theory. This has been used for
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multimodal images in medical imaging and is also effective for optical sections in

a z stack [93]. Mutual information content is a measure of the statistical

dependence, or information redundancy, between the image intensities of cor-

responding voxels in adjacent optical slices. Maximal values are obtained if the

images are geometrically aligned. The main advantage of this method is that

feature calculation is straightforward, since only gray-level values are used, and

the accuracy of the methods is thus not limited by segmentation errors.

14.15 Object Measurements in Three
Dimensions

The ultimate objective of most microscopy investigations is to evaluate

a sample in terms of features that convey essential information about the

structure and function of the specimen. Image analysis algorithms are typically

applied to measure object features such as topology, shape, contrast, and

brightness. Intensity-based measurements for objects in 3-D are similar to

those described in Chapter 10 for 2-D objects. Morphological and topological

measurements for 3-D objects are specialized, since the third dimension is

required, and some of the algorithms for performing these measurements are

described here. Topological features convey information about the structure of

objects, and they refer to those properties that are preserved through any

deformation. Typically, the definitions of adjacency and connectivity given in

Section 14.12.3.1 are the most common topological notions used in 3-D image

analysis. Another topological characteristic commonly measured for 3-D ob-

jects is the Euler number, which is based on the number of cavities and tunnels

in the object. Structural features include measures such as surface area,

volume, curvature, and center of mass.

14.15.1 Eu ler Number

A cavity is the 3-D analog of a hole in a 2-D object, and it is defined as

a background component that is totally enclosed within a foreground compon-

ent [58]. The number of cavities is determined by applying the region-growing

algorithm (Section 14.12.3.2) to the background voxels in the image. This gives

a count of the total number of background components, and the total number of

cavities in the image is 1 less, since the background is also counted. Tunnels in

3-D objects are more difficult to compute, since a tunnel is not a separate

background object. The first Betti number of the object is used to estimate of

the number of tunnels in an object. The first Betti number equals the number of

nonseparating cuts one can make in an object without changing the number
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of connected components [58]. The Euler number of a 3-D object is then defined

as [58]

x Sð Þ ¼ componentsð Þ � tunnelsð Þ þ cavitiesð Þ (14:76)

The Euler number corresponds to the topology of a closed surface rather than

the topology of an object, and thus it cannot differentiate between surfaces from

distinct objects and surfaces originating from the same object, such as an object

with a hole. The Euler number is used as a topology test in 3-D skeletonization

algorithms [94].

14.15.2 Bounding Box

The simplest method to measure the size of an object is to estimate the dimen-

sions of its bounding box, that is, the smallest parallelepiped that contains the

object. This can be done by scanning the 3-D volume and finding the object

voxels with the minimum and maximum coordinates along each dimension [58]

as follows

x ¼ xmax � xmin, y ¼ ymax � ymin, z ¼ zmax � zmin (14:77)

14.15.3 Center o f Mass

The centroid of an object may be defined as the center of mass of an object of the

same shape with constant mass per unit volume. The center of mass is, in turn,

defined as that point where all the mass of the object could be concentrated

without changing the first moment of the object about any axis [95]. In the 3-D

case the moments about the x-, y-, and z-axes are

Xc

ð ð
I

f (x, y, z) dx dy dz ¼
ð ð

I

x f (x, y, z) dx dy dz

Yc

ð ð
I

f (x, y, z) dx dy dz ¼
ð ð

I

y f (x, y, z) dx dy dz

Zc

ð ð
I

f (x, y, z) dx dy dz ¼
ð ð

I

z f (x, y, z) dx dy dz

(14:78)

where f (x, y, z) is the value of the voxel at (x, y, z), and Xc,Yc,Zcð Þ is the position
of the center of mass. The integral appearing on the left side of these equations

is the total mass, with integration taken over the entire image. For discrete

binary images, the integrals become sums, and the center of mass for

a 3-D binary image can be computed as
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(14:79)

where f (i, j, k) is the value of the 3-D binary image (i.e., the intensity) at the point

in the ith row, jth column, and kth section of the 3-D image (i.e., at voxel (i, j, k)).

Intensities are assumed to be analogous to mass, so zero intensity represents

zero mass.

14.15.4 Sur face Area Es t imat ion

The surface area of 3-D objects can be estimated by examining voxel connectivity

in the 26-connected voxel neighborhoods of foreground voxels. A foreground

voxel is considered to be a surface voxel if at least one of its 6-neighbors belongs to

the background. The algorithm to find boundary voxels examines all object voxels

to determine if there are any background voxels in their 6-neighborhood. The

number of border voxels found is used as an estimate of the object’s surface area.

Other methods to estimate the surface have also been described [96].

A parametric modeling method popular in the field of computer graphics can

also be employed in digital image analysis for estimating the 3-D surface area.

This approach uses superquadric primitives with deformations to compute the

3-D surface area. Superquadrics are a family of parametric shapes that are used

as primitives for shape representation in computer graphics and computer

vision. An advantage of these geometric modeling primitives is that they allow

complex solids and surfaces to be constructed and altered easily from a few

interactive parameters. Superquadric solids are based on the parametric forms

of quadric surfaces such as the superellipse and the superhyperbola, in which

each trigonometric function is raised to a power. The spherical product of

pairs of such curves produces a uniform mathematical representation for the

superquadric. This function is referred to as the inside–outside function of

the superquadric, or the cost function. The cost function represents the surface

of the superquadric that divides the 3-D space into three distinct regions: inside,

outside, and surface boundary. Model recovery may be implemented by using

3-D data points as input. The cost function is defined such that its value depends

on the distance of points from the model’s surface and on the overall size of

the model. A least-squares minimization method is used to recover model

parameters, with initial estimates for minimization obtained from the rough

position, orientation, and size of the object. During minimization, all the model
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parameters are adjusted iteratively to deform the model surface so that most of

the input 3-D data points are near the surface.

To summarize, a superquadric surface is defined by a single analytic function

that can be used to model a large set of structures such as spheres, cylinders,

parallelepipeds, and shapes in between. Further, superquadric parameters can

be adjusted to include such deformations as tapering, bending, and cavity

deformation [97]. For example, superellipsoids may be used to estimate

the 3-D bounding surface of biological cells. The inside–outside cost function

F(x, y, z) of a superellipsoid surface is defined by

F x, y, zð Þ ¼ x

a1
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(14:80)

where x, y, and z are the position coordinates in 3-D space, a1, a2, a3 define the

superquadric size, and «1 and «2 are the shape parameters. The superquadric

cost function is defined as [98]

F xW , yW , zWð Þ ¼ F xW , yW , zW : a1, a2, a3, «1, «2, f, u, c, c1, c2, c3ð Þ
(14:81)

where a1, a2, a3, «1, and «2 are as just described, w, u, c are orientation angles,

and c1, c2, c3 define the position in space of the center of mass. To recover a 3-D

surface it is necessary to vary these 11 parameters to define a set of values such

that most of the outermost 3-D input data points lie on or near the surface. The

orientation, the size, and the shape parameters are varied, and the cost function

is minimized using an algorithm such as the Levenberg–Marquardt method

[95]. Typically, severe constraints are essential during minimization to obtain

a unique solution, since different sets of parameter values can produce almost

identical shapes. Figure 14.5 presents an application of this approach for deter-

mining the separation distance in 3-D between the fluorescent in situ hybridiza-

tion (FISH) dots (i.e., signals) of a duplicated gene. Optical sections were

obtained through FISH-labeled cells at a z interval of 0:1mm. Object boundary

points were determined for each of the two FISH dots, in each optical section of

the z stack, and used to estimate the 3-D surface for each dot using Eq. 14.81.

In the figure, the green symbols represent points on the estimated 3-D surface for

the two dots. The two dots are shown using blue and red symbols. The line

segment PQ shows the separation distance between the two dots [29].

14.15.5 Length Es t imat ion

Length measurement in 3-D can be performed via two different approaches. The

first is a straightforward extension of the chain code–based length estimator
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for 2-D images described in Chapters 9 and 10. In this method, connected voxels

along a straight line of N elements are segregated into three types: grid parallel,

square diagonal, and cube diagonal. The numbers of elements in each class

ðngrid, nsquare, ncubeÞ are scaled using predefined weight coefficients a, b, gð Þ to
determine the 3-D length as follows [99]

L ¼ angrid þ bnsquare þ gncube (14:82)

Several different values for the weight parameters, such as a ¼ 0:9016,
b ¼ 1:289, g ¼ 1:615, have been published [100–102].

The second method for measuring length in 3-D is based on techniques from

stereology. This approach works best for long curves or on sets of curves,

yielding an estimate of the total length. The length is estimated by counting

the number of intersections between the projection of the original curve onto

a plane and a few equidistantly spaced straight lines in that plane [103].

14.15.6 Curvature Es t imat ion

Curvature is increasingly used as a feature in object recognition and classifica-

tion applications. The definitions of normal, Gaussian, and mean curvature are

as follows. If ~u and ~n are the tangent and normal vectors, respectively, to any

surfaceM at a point P, then the normal curvature ofM at P, in the direction of~u,
is the curvature of the space curve C formed by the intersection of M with the

plane N spanned by~u and ~n. The minimum and maximum values of the normal

curvature are known as the principal curvatures, p1 and p2, respectively. The

Gaussian curvature K of a surface M at a point P is computed as the product of

the two principal curvatures (i.e.,K ¼ p1p2). Finally, themean curvature H is the
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F IGURE 14.5 Surface estimation using superquadric modeling primitives. This figure may be seen in
color in the four-color insert.
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mean of the two principal curvatures, H ¼ 1=2 p1 þ p2½ �. Several techniques are
available for curvature estimation [104]. Two approaches, surface triangulation

and the cross-patch method, are described next [104].

14.15.6 .1 Su r fa ce Tr i angu la t i on Me thod

In this method, a surface patch is approximated by a series of adjacent triangles.

Since each triangle is flat, the Gaussian curvature is estimated at the common

vertex of the triangles (the center of the patch). The Gaussian curvature,

K ¼ Du=A, where Du ¼ 2p �Pi ui, is a quantity called the angle deficit, ui is
the vertex angle of the individual triangles in the series, and A is the sum of the

areas of the triangles [104].

14.15 .6 .2 C ro s s -Pa t ch Me thod

In this method, a discreet surface patch consisting of a cross-shaped (þ) set of

points is modeled as a sampling of a continuous patch, ~S u, vð Þ, such that [104]

~S u, vð Þ ¼ x u, vð Þ y u, vð Þ z u, vð Þ½ �T (14:83)

where x u, vð Þ, y u, vð Þ, and z u, vð Þ are polynomial functions whose coefficients

are determined from the input data points using least-squares fitting [104]. The

parameters u and v represent traces along the surface in two orthogonal planes

(the cross). These planes (1) must contain the inspection point at which curva-

ture is to be estimated, (2) must be parallel to the coordinate planes (the x-y, x-z,

and y-z planes), and (3) must be the two such planes (out of three) that are most

coincident with the surface normal at the inspection point, as indicated by the

magnitude of the 2-D vector resulting from projection of the normal onto the

plane. The result of fitting coefficients for the x u, vð Þ, y u, vð Þ, and z u, vð Þ poly-
nomials is used to estimate the original continuous surface, and the parameters

are used to determine the surface area and its curvature.

14.15.7 Volume Es t imat ion

The simplest approach to obtain an estimate of the volume of a 3-D object is an

extension of the 2-D procedure for measuring area. The region of interest is

initially outlined on each of the individual sections, and then the area of each

segmented region on each section is multiplied by the section thickness

(the z interval). The total volume is then the sum of the volumes from each

individual section. Alternatively, complex computer graphics models are esti-

mated for the 3-D surface of the region of interest, and the enclosed volume

can be determined mathematically [95–97]. For example, polyhedral and

curved surface representations allow piecewise integration to be used for volume

measurement.
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14.15.8 Texture

Three-dimensional texture measures are used to describe the variations of image

intensity value and contrast within the image. For example, a cell can contain

directional texture indicative of the formation of fibers. Texture can be meas-

ured in 3-D by simply extending work done in 2-D analysis of textures to 3-D

images. A description of 2-D texture measures is presented in Chapter 10.

14.16 Three-Dimensional Image
Display

One of the greatest challenges in 3-D imaging is the final step, that of visual

representation and display of the images. Given the vast amount of information

that exists in 3-D data sets, it is difficult to extract useful information from the

raw data, and well-designed visualization methods are essential to understand

the 3-D structures and their spatial relationships truly. Volumetric data may be

displayed using techniques such as surface rendering, volume rendering, and

maximum intensity projection. A projection technique is almost always required

to move data from higher dimensions to 2-D for viewing on a screen or print.

Traditional display methods, such as the computer monitor and paper prints,

are inherently 2-D, while the data is inherently 3-D. Thus various perceptual

cues, such as shading and rotating a projection of the image volume are needed

to impart a sense of depth when displaying 3-D data. Here we describe some of

the popular techniques used to display microscopy data: as a montage of a series

of 2-D slices, as a 2-D projection image, and as a 3-D rendering with stereo pairs

and anaglyphs.

14.16.1 Montage

A montage is typically used to display a series of images. These images may be

(1) the sequence of serial optical sections in a 3-D image stack, (2) a series of

projected images, each of which is created by rotating the 3-D image to a specific

angle, or (3) images from a time-lapse experiment. A montage display is a

composite image created by combining several separate images. The images

are tiled on the composite image, in a grid pattern, typically with the name of

the image optionally appearing just below the individual tile. Each individual

image in the montage is scaled to fit a predefined maximum tile size.

In 3-Dmicroscopy, because we are optically sectioning the specimen volume,

a montage is the appropriate way to visualize all the serial cross sections through

the specimen simultaneously, rather than visualizing sequential presentations of

single sections. The simultaneous presentation of images in a montage allows
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a visualization of the continuity of image features in depth and other spatial

relationships.

Figure 14.6 shows a montage of serial sections through a mouse 3T3

fibroblast obtained at an optical sectioning, z interval of 1.8 mm. The labels

1–8 in Fig. 14.6 represent cell depths ranging from 0 to 14.4 mm. Panel 1

shows the top of the cell at 0 mm, panel 5 is the center of the cell at a depth of

7.2 mm, and panel 8 shows the bottom of the cell at a depth of 14.4 mm. The

cell was treated with bacterial toxin H5 prior to immunofluorescence labeling.

The bacterial toxin interacts only with cell membranes. The montage display

allows the 3-D image data to be viewed simultaneously, thus permitting

direct visualization of the peripheral localization of the toxin without cellular

internalization.

F IGURE 14.6 A montage of a series of optical sections through a mouse 3T3 fibroblast. The images
were obtained using a z interval of 1.8mm for optical sectioning. The labels 1–8 represent cell depths ranging
from 0 to 14.4mm. Panel 1 shows the top of the cell, at 0mm, panel 5 is the center of the cell, at a depth of
7.2mm, and panel 8 shows the bottom of the cell, at a depth of 14.4mm. The cell was treated with bacterial
toxin H5 prior to immunofluorescence labeling.
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14.16.2 Pro jec ted Images

A projected image offers a 2-D view of a 3-D image. It is created by projecting

the 3-D image data onto a plane. This is done by suitably combining the voxel

intensity values along a given set of rays extending through the image volume

and onto the plane. Different algorithms are available for generating such

projections, two of which are discussed here: ray casting and voxel projection.

Ray casting consists of tracing a line perpendicular to the viewing plane from

every pixel in the serial sections into the 2-D projection image. Voxel projection

involves projecting voxels encountered along the projection line from the 3-D

image directly onto the 2-D projection image. Of the two methods, voxel

projection is computationally faster.

14.16 .2 .1 Voxe l P ro je c t i on

The most straightforward and computationally simple approach to perform

image projection is to use the maximum intensity projection (MIP) algorithm

[105]. This algorithm works for a projection path that is orthogonal to the slices

(2-D image planes) in a 3-D data set. The MIP algorithm picks up the brightest

voxel along a projection ray and displays it on the projected 2-D image. The

projected image is the same size as the slice images. MPI is most effective when

the objects of interest in the 3-D image have relatively simple structures with

uniformly bright voxels. It produces images that have a particularly high con-

trast for small structures, but it does not represent fluorescence concentrations

quantitatively and thus cannot be used prior to further numerical analysis.

Alternatively, but at the risk of losing image sharpness, average (mean)

intensity projection (AIP) can be used when quantification is required. AIP

can be useful for measuring relative fluorophore concentrations and their

dynamic changes [106]. The ranged-intensity projection (RIP) method allows

the user to select a range of intensity values that are of most interest in a specific

application [107]. It works like AIP, except only those voxel intensities that are

within the specified range are accumulated during projection. A major advan-

tage of these methods is that they do not require segmentation. Their main

drawback is their poor performance in noisy images. Figure 14.7 presents

a maximum-intensity projection image of microvasculature at an islet transplant

site in the rat kidney.

14.16 .2 .2 Ray Cas t i ng

Ray casting requires segmented image data. It models the process of viewing the

3-D object in space. Rays from a virtual light source are simulated as reflecting

off the surface of the objects in the 3-D image. The reflected rays are modeled to

intersect a virtual screen between the data set and the observer. The intensity
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and color of each reflected ray determine the intensity and color of the corre-

sponding pixel on this screen. When this is done for all pixels in the output

image, it becomes a 3-D view of the object. A view from another direction can be

calculated by moving the screen to another point in the virtual space of the data

set. Views from several different viewing angles can be grouped together as

sequential frames to form a movie of the object rotating in space.

14.16.3 Sur face and Volume Render ing

Three-dimensional graphical rendering is popularly used in the field of computer

graphics for displaying 3-D objects. Volume-rendering algorithms can be used

to create 2-D projection images showing stacks of 2-D cross-sectional images

from various points of view. Two algorithms for rendering are described briefly

here, and the reader is directed to published texts for an in-depth description

[108, 109].

14.16 .3 .1 Su r fa ce Rende r i ng

Object surfaces in a segmented 3-D image are portrayed by the surface-rendering

process. Standard 3-D graphics techniques are used to render objects, in which

F IGURE 14.7 Maximum-intensity projection image of the microvasculature of an islet graft at the renal
subcapsular site. The image is color coded to denote depth. The blood vessels appearing in the lower portion
(blue) are at a depth of 30mm, whereas those in the middle and upper portions of the image are at a depth of
~85mm (yellow) and 135mm (violet), respectively. This figure may be seen in color in the four-color insert.

385

14.16 Three-Dimensional Image Display



their surfaces are approximated by a list of polygons. Several algorithms are

available to generate the polygons that represent an object’s surface. The most

widely used method to triangulate a 3-D surface is known as the marching cube

algorithm [110]. Following triangulation, the desired viewing angle is selected,

and the object is displayed by projecting the polygons onto a plane perpendicular

to the viewing direction. The object can be viewed from any desired angle, either

by applying a rotation matrix to the polygon list or by changing the viewing

direction used in the projection process. Shading or changing the transparency of

the rendered objects can be used to improve the aesthetics and enhance the 3-D

viewing effect. The quality of a displaymade using surface triangulation is highly

dependent on the accuracy of the prior segmentation process, which, if poorly

done, can result in a loss of detail in the rendered object.

14.16 .3 .2 Vo lume Render i ng

An alternative approach that does not require defining the surface geometry

with polygons is to render the entire volume by projecting colored, semitrans-

parent voxels onto a chosen projection plane. There are three steps in volume

rendering: classification, shading (also known as compositing), and projection.

In the classification step, each voxel is assigned an opacity value ranging from

zero (transparent) to 1 (opaque) based on its intensity value. In order to avoid

uneven transitions between transparency and opacity, a hyperbolic tangent

mapping of voxel intensities is often applied. Every voxel is then considered

to reflect light, with the goal of determining the total amount of light it directs to

the viewing screen. Shading is used to simulate the object’s surface, including

both the surface’s position and orientation with respect to the light source and

the observer. An illumination model is used to implement the shading function

[111], and the color and opacity of each voxel is computed [112].

The final stage is the projection step. Here the colored, semitransparent

voxels are projected onto a plane perpendicular to the observer’s viewing

direction. Ray casting is used to project the data, as before. It involves tracing

a line perpendicular to the viewing plane into the object volume. For each grid

point (m, n) in the projection plane, a ray is cast into the volume, and the color

and opacity are computed at evenly spaced sample locations. Compositing

(shading) is applied in a back-to-front order to yield a single pixel color

C(m, n). A detailed description of this approach is given in [112, 113].

Most of the major commercial imaging programs for microscopy include

a volume-rendering module, and specialized software for 3-D visualization is

also available. For a comprehensive listing of available software, see [108]. There

are also several free volume-rendering programs available, but only a few of them

(e.g., Voxx, VisBio) can import the 3-D image files produced by microscopy

systems [114, 115]. Free volume-rendering plug-ins are also available for the

386

14 Three-Dimensional Imaging



ImageJ software package [57]. Figure 14.8 shows an example of volume render-

ing of the ureteric tree of a fetal mouse kidney. Optical sections of an E13Hoxb7/

GFP kidney were collected using a laser scanning confocal microscope and

volume rendered using theVolocity software (Improvision, Inc.,Waltham,MA).

14.16.4 Stereo Pai r s

Stereoscopic techniques are used to retain the depth information when mapping

3-D data into a 2-D view for visualization. Onemethod is to present the observer

simultaneously with ‘‘left eye’’ and ‘‘right eye’’ views differing by a small paral-

lax angle of about 68. Stereo pairs can be generated from volumetric data in two

ways. The first method is to rotate the full 3-D data set anywhere from +38 to
+108 and then to project each of these rotated views onto a 2-D plane [108].

Alternatively, instead of rotating the image data, the projection images can be

created simply by summing the stack of serial images with an appropriate

constant horizontal offset between the adjacent sections, to generate a top-

down view. This can be described by the stereo ‘‘pixel shift’’ function [108]

xv ¼ xi þ dx � zv, yv ¼ yi, zv ¼ zi (14:84)

where fs is the parallax angle, dxleft ¼ tan 0:5 � fsð Þ, and dxright ¼ �dxleft.
Alternatively, the optimal pixel shift can be computed using [108, 116]

dp ¼ 2 � nzcalib �M � sin arctan dx � nzi=nzcalibð Þð Þ (14:85)

F IGURE 14.8 Volume rendering of the ureteric tree of a fetal mouse kidney. This figure may be seen in
color in the four-color insert. (Image courtesy of Deborah Hyink.)
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where dp is the parallax shift between equivalent points in the two views, nzcalib is

the calibrated z size of the data (thickness of the specimen), and M is the

magnification. The left view is made by shifting each image in the stack sequen-

tially to the left, progressing from the farthest to the nearest section. The number

of pixels to be shifted depends on the pixel size and the distance between sections.

The resulting left and right views are known as a stereo pair. They must be

visually ‘‘fused’’ into a 3-D representation by positioning each view in front of

the corresponding eye. The observer then perceives a single 3-D view at the

appropriate viewing distance. Alternatively, side-by-side stereo pairs can be

viewed with a horizontal prismatic viewer that appropriately presents the images

to each eye. Figure 14.9, shows a maximum-intensity stereo pair image of

Histoplasma capsulatum.

14.16.5 Color Anaglyphs

Anaglyphing [117] is amethod of presenting a stereo pair to the viewer’s eyes. The

anaglyph is a stereo pair in which the left eye image is printed in red and the right

eye image in blue (or cyan). It is viewed through a special pair of glasses having

a red lens over the left eye and a blue lens over the right eye. The two images

combine to create the perception of a three-dimensional image. Figure 14.10

shows a red–cyan anaglyph of a pancreatic islet.

14.16.6 Animat ions

Animations make use of the temporal display space for visualization. This

technique involves the sequential display, in rapid succession, of rotated views

F IGURE 14.9 Maximum-intensity stereo pair image of the of Histoplasma capsulatum. (Image courtesy
of José-Angel Conchello.)
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of the object. The rotation angle is successively increased, and a rendered image

is created at each angle. When the different views are presented in sequential

frames, the result is a movie of the spinning object. The requirements for

creating smooth animations are (1) fine rotation steps, (2) a short-persistence

noninterlaced monitor, and (3) a display frame rate greater than 10 Hz [108].

Animations have proven to be a valuable support tool, especially for the

assessment of the shape and relative position of 3-D structures. A complex

structure is generally easier to comprehend in a moving animation than in

a series of cross-sectional images.

14.17 Summary of Important Points

1. Three-dimensional light microscopy offers a noninvasive, minimally

destructive option for obtaining spatial and volumetric information

about the structure and function of cells and tissues.

2. The most popular and widely commercialized approaches to 3-D micros-

copy include the far-field techniques of wide-field, confocal, and multi-

photon microscopy.

3. Newmethods for 3-Dmicroscopy that offer improved resolution, include

4-pi-confocal, InM, HELM, OCT, OPT, and SPIM.

F IGURE 14.10 Red–cyan anaglyph image of a pancreatic islet. This figure may be seen in color in the
four-color insert.
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4. Three-dimensional data obtained from microscopes consists of a stack

of 2-D images (optical sections), referred to as the z stack, 3D-stack, or

volumetric data.

5. In 3-D imaging, light emitted from planes above and below the in-focus

regions is also captured in each optical section, and it appears as out-of-

focus blurring.

6. The out-of-focus light can be characterized by the point spread function

(psf), which is the 3-D image of a point source of light.

7. Three methods are commonly used for estimating the psf of a micro-

scope: experimental, theoretical, and analytical.

8. Image formation can be modeled mathematically as a convolution

operation, whereby light emitted from each defocused point in the speci-

men is convolvedwith the psf and appears as a blurred region in the image.

9. The deconvolution process (deblurring or restoration) estimates the

amount of out-of-focus light characterizing the particular microscope

optics in use (i.e., psf) and then attempts either to subtract out this light

or to redistribute it back to its point of origin in the specimen volume.

10. Algorithms that are applied sequentially to each 2-D plane of a 3-D

image stack, one at a time, are classified as deblurring procedures.

11. Image restoration algorithms operate simultaneously on every voxel in

a 3-D image stack and are implemented in 3-D space to restore the

actual distribution of light in the specimen.

12. There are six major categories of deconvolution algorithms: (1) no-

neighbor methods, (2) neighboring plane methods, (3) linear methods,

(4) nonlinear methods, (5) statistical methods, and (6) blind

deconvolution.

13. The choice of the deconvolution procedure used is often dictated by the

imaging system, experimental conditions, and the specific application.

14. The results obtained from deconvolution procedures depend heavily on

image quality, specifically the signal-to-noise ratio, and the sampling

density.

15. Deconvolution software is available both commercially and as freeware.

16. Image fusion is an approach frequently used in 3-D microscopy

to combine a set of optical section images into a single 2-D image

containing the detail from each optical section in the stack.

390

14 Three-Dimensional Imaging



17. Three-dimensional image processing can be performed via three differ-

ent approaches: (1) by performing 2-D image processing operations on

the individual optical sections, (2) by performing operations using the

entire 3-D data set, and (3) by performing 2-D operations on the fused

image of a stack.

18. For most image processing techniques, the 2-D counterpart can easily

be extended to 3-D.

19. Gray-level mathematical operations, such as subtraction and addition,

and binary operations, such as OR, XOR, and AND, can be expressed

for 3-D images, using the voxel as the brightness unit.

20. Image transformations, such as translation, reflection, rotation, and

scaling, can also be expressed in 3-D.

21. Image filtering operations are typically used either to reduce noise by

smoothing or to emphasize edges.

22. Digital convolution filters are linear, since the output pixel values are

linear combinations of the input image pixels, but other types of filters

are nonlinear.

23. Edge-detection filters are commonly used for segmentation based on

surface detection in 3-D.

24. Mathematical morphological operators are a subclass of nonlinear

filters that are used for shape and structure analysis and for filtering in

binary and grayscale images.

25. Three-dimensional morphological operators are straightforward

extensions of their 2-D counterparts, with sets and functions defined

in the 3-D Euclidean grid Z3.

26. Three-dimensional image stacks are usually anisotropic; that is, the

sampling interval is larger along the axial dimension than in the lateral

dimension. For this reason, the structuring element should be chosen as

an anisotropic 3-D kernel.

27. Segmenting regions of volumetric images is challenging, because, in

3-D, regions are often touching each other or overlapping and irregu-

larly arranged, with no definite shape, and intensity typically falls off

deep within the specimen due to diffraction, scattering, and absorption

of light.

28. There are three general approaches to segmentation: point-based,

edge-based, and region-based methods.
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29. For 3-D segmentation the most popular approaches have combined

region-based, edge-based, and morphological methods to achieve the

desired results.

30. Two 3-D images can be compared by computing the 3-D correlation

between them.

31. One popular method for registering images in an optical stack is based

on the concept of mutual information content (or relative entropy).

32. Intensity-based measurements for objects in 3-D are similar to those for

2-D objects.

33. Morphological and topological measurements, such as surface area,

volume, curvature, length, Euler number, and center of mass for 3-D

objects, are different from their 2-D counterparts since the thirddimension

is required.

34. Traditional display methods are inherently 2-D, so well-designed visu-

alization methods are essential to display and understand 3-D structures

and their spatial relationships.

35. Typically perceptual cues, such as shading and rotating a projection of

the image volume, are needed to impart a sense of depth when displaying

3-D data.

36. Popular techniques used to display 3-D microscopy data include

a montage of a series of 2-D slices, 2-D projection images, and 3-D

rendering with stereo pairs and anaglyphs.
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15
Time-Lapse Imaging

Erik Meijering, Ihor Smal, Oleh Dzyubachyk,
and Jean-Christophe Olivo-Marin

15.1 Introduct ion

By their very nature, biological systems are dynamic, and a proper understanding

of the cellular and molecular processes underlying living organisms and how to

manipulate them is a prerequisite to combating diseases and improving human

health care. One of the major challenges of current biomedical research, there-

fore, is to unravel not just the spatial organization of these complex systems, but

their spatiotemporal relationships as well [1]. Catalyzed by substantial improve-

ments in optics hardware, electronic imaging sensors, and a wealth of fluores-

cent probes and labeling methods, light microscopy has, over the past decades,

matured to the point that it enables sensitive time-lapse imaging of cells and even

of single molecules [2–5]. These developments have had a profound impact on

how research is conducted in the life sciences.

An inevitable consequence of the new opportunities offered by these devel-

opments is that the size and complexity of image data are ever increasing. Data

sets generated in time-lapse experiments commonly contain hundreds to thou-

sands of images, each containing hundreds to thousands of objects to be

analyzed. Figure 15.1 shows examples of frames from image sequences acquired

for specific time-lapse imaging studies containing large numbers of cells or

subcellular particles to be tracked over time. These examples illustrate the

complexity of typical time-lapse imaging data and the need for automated

image analysis, but they also show the difficulty of the problem.

Microscope Image Processing
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Such huge amounts of data cannot be digested by visual inspection or

manual processing within any reasonable amount of time. It is now generally

recognized that automated methods are necessary, not only to handle the

growing rate at which images are acquired, but also to provide a level of

sensitivity and objectivity that human observers cannot match [6].

Roughly speaking, time-lapse imaging studies consist of four successive steps:

(1) planning the experiment and acquisition of the image data, (2) preprocessing

thedata tocorrect for systemicandrandomerrors and to enhance relevant features,

(3) analysis of the data by detecting and tracking the objects relevant to the

biological questions underlying the study, and (4) analysis of the resulting trajec-

tories to test predefined hypotheses or to detect new phenomena. Figure 15.2 gives

a topical overview of the process. The circular structure of the diagram reflects the

F IGURE 15.1 Sample frames from image sequences acquired for specific time-lapse imaging studies.
The sequences contain large numbers of cells or subcellular particles to be tracked over time. (a) Single frame
(36� 36mm) from a fluorescence microscopy image sequence (1 s between frames) showing labeled
microtubule plus-ends moving in the cytoplasm of a single COS-7 cell (only partly visible). (b) Single frame
(30� 30mm) from a fluorescence microscopy image sequence (about 12 s between frames) showing labeled
androgen receptors moving in the nucleus of a Hep3B cell. (c) Single frame (73� 73mm) from a fluorescence
microscopy image sequence (about 16 min between frames) showing labeled Rad54 proteins in the nuclei of
mouse embryonic stem cells. (d) Single frame (about 500� 500mm) from a phase contrast microscopy image
sequence (12 min between frames) showing migrating human umbilical vein endothelial cells in a wound-
healing assay. Together, these examples show the complexity of typical time-lapse imaging data and the need
for automated image analysis. But at the same time they illustrate the difficulty of the problem. (Images a
through d courtesy of N Galjart, A Houtsmuller, J Essers, and T ten Hagen, respectively.)
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iterative nature of the imaging process, in that the results of previous experiments

usually trigger the planning of new studies.

This chapter addresses each of these issues from an informatics perspective.

It focuses on methodological, rather than hardware or software, aspects. It gives

examples of image processing and analysis methods that have been used suc-

cessfully for specific applications. The ultimate goal of this chapter is to prepare

the reader to select methods intelligently.

15.2 Image Acquis i t ion

Time-lapse imaging experiments involve the acquisition of not only spatial

information, but also temporal information and often spectral information as

well, resulting in up to five-dimensional (x, y, z, t, s) image data sets. Figure 15.3

shows different configurations and dimensionalities in time-lapse microscopy

imaging. Notice that dimensionality, as used here, does not necessarily describe

the image configuration unambiguously. For example, 4-D imaging may refer

either to spatially 2-D multispectral time-lapse imaging or to spatially 3-D

IMAGE ACQUISITION

IMAGE PREPROCESSING

IMAGE ANALYSIS

TRAJECTORY ANALYSIS

Microscope Setup
Spatial Dimensionality
Temporal Resolution

Image Denoising
Image Deconvolution
Image Registration

Cell Tracking
Cell Segmentation
Cell Association

Particle Tracking
Particle Detection
Particle Association

Geometry Measurements
Diffusivity Measurements
Velocity Measurements

Time-Lapse
Microscopy

Imaging

F IGURE 15.2 The circle of life in time-lapse microscopy imaging. The diagram depicts the successive
steps in the imaging process and, at the same time, gives an overview of the topics addressed in this chapter.
Following image acquisition, preprocessing is often required to increase the success of subsequent automated
analysis of the images and, eventually, of the resulting trajectories. The circular structure of the diagram reflects
the iterative nature of the imaging process: The results of previous experiments usually trigger the planning of
new experiments.
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time-lapse imaging. To avoid confusion, it is better to use the abbreviations 2-D

and 3-D to refer to spatial dimensionality only and to indicate explicitly whether

the data also involves a temporal or spectral coordinate. Therefore, in this

chapter we indicate spatially 2-D and 3-D time-lapse imaging by 2-Dþt and

3-Dþt, respectively, rather than by 3-D and 4-D.

Regardless of the imaging technique being used, a careful design of the

microscope setup is imperative, because shortcomings may require additional

pre- or postprocessing of the resulting image data or may even lead to artifacts

that cannot be removed and that hamper data analysis. We include here a few

general remarks concerning the choice of microscopy, spatial dimensionality,

and temporal resolution from the perspective of subsequent data analysis.

15.2.1 Microscope Setup

Time-lapse imaging experiments generally involve living cells and organisms.

A fundamental concern is keeping the specimen alive during the acquisition of

hundreds or thousands of images over a period of time that may range from

1-D

t t t t

t

t

s

s s

t

t

x x

x

x
z

y

x x
z

t

y

y

y y

z

2-D 3-D 4-D 5-D

F IGURE 15.3 Possible image configurations and dimensionalities in time-lapse microscopy imaging.
Each dimension corresponds to an independent physical parameter or coordinate: x and y commonly denote
the in-plane spatial coordinates, z the depth or axial coordinate, and t the time coordinate, and here s denotes
any spectral parameter, such as wavelength. Notice that dimensionality, as used here, does not necessarily
describe the image configuration unambiguously. For example, 4-D imaging may refer either to spatially 2-D
multispectral time-lapse imaging or to spatially 3-D time-lapse imaging. To avoid confusion, it is better to use
the abbreviations 2-D and 3-D to refer to spatial dimensionality only and to indicate explicitly whether the data
also involves a temporal or spectral coordinate. Therefore, in this chapter we indicate spatially 2-D and 3-D
time-lapse imaging by 2-Dþt and 3-Dþt respectively, rather than by 3-D and 4-D.
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minutes to hours. This not only calls for a suitable environment with controlled

temperature, humidity, and a stably buffered culture medium [7], but it also

requires economizing light exposure, since living cells are subject to photo-

damage [8]. In fluorescence microscopy, excessive illumination bleaches fluor-

ophores, and this limits their emission time span and generates free radicals that

are toxic for living cells.

Two very important factors determine whether automated methods can be

applied successfully, and they strongly affect accuracy. They are signal contrast

(the intensity difference between objects and background) and noise, which, in

light microscopy, is signal dependent. These two factors are usually combined

into a single measure, the signal-to-noise ratio (SNR), calculated as the differ-

ence in mean intensity between the object, Io, and the background, Ib, divided by

a representative noise level, s, that is, SNR ¼ Io � Ibð Þ=s. Ideally, experiments

should be designed so as to maximize SNR to allow robust and accurate

automated image analysis, and the only way to accomplish this is with high

light exposure levels.

These contradictory requirements call for a careful choice of the type of micro-

scopy to be used. This also depends on the type of objects to be studied, their

dimensions, motility, and viability. Living cells in culture medium, for example,

produce poor contrast with standard brightfield illumination, and they often

require contrast-enhancing imaging techniques, such as phase contrast and differ-

ential interference contrast microscopy. Intracellular particles are hardly visible

without contrast enhancement and are better studied using fluorescence micro-

scopy (cf. Tables 15.1 and 15.2). In all cases the system shouldmake the best use of

the available light, implying the use of high-numerical-aperture objectives in con-

junction with highly sensitive detectors. In many cases this may also mean that

wide-field microscopy is preferable over confocal microscopy [7–9], with the pro-

viso that 3-D wide-field microscopy requires images to be deconvolved.

In practice, for any biological application, there is often no single best

microscope setup. This means that a compromise must be found between

sufficient (but not toxic) illumination and (spatial and temporal) resolution so

that the maximum number of acceptable images (optical slices and time frames)

can be acquired before the specimen is completely photobleached or damaged [7].

Here acceptable means having the minimum SNR required by automated

image analysis techniques (discussed later in this chapter). To this end, a good

understanding of different microscope systems is needed, for which we refer

to excellent introductory texts [5].

15.2.2 Spat ia l D imens ional i ty

One of the fundamental questions to be addressed when setting up an experi-

ment is whether imaging needs to be performed in two or in three spatial
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TABLE 15 .1 Selected cell-tracking methods and some of their features and applications

Ref. Dim. Segmentation Association Microscopy Application Auto.

[22] 2Dþt Manual indication Template matching PC Leukocytes MI

[46] 3Dþt Multiple

thresholding

Template matching F Dictyostelium

discoideum

FA

[64] 2Dþt Otsu thresholding þ
watersheds

Distance þ area þ
overlap

F HeLa cells FA

[100] 2Dþt Manual indication þ
edges

Monte Carlo tracking PC Leukocytes MI

[54] 2Dþt Manual indication þ
active contours

Active contour

evolution

PC Endothelial cells MI

[67] 2Dþt Manual indication Coupled mean shift

processes

PC Cancer and

endothelial cells

MI

[44] 3Dþt Thresholding Nearest cell HMC Cancer cells FA

[55] 2Dþt Active contours Active contour

evolution

F Dictyostelium cells FA

[56] 3Dþt Multiple level sets Level set evolution F Entamoeba

histolytica and

epithelial cells

FA

[51] 2Dþt Manual outlining þ
watersheds

Unknown matching

algorithm

PC PC-3 cells MI

[48] 2Dþt Template matching Probabilistic

association

PC Hematopoietic

stem cells

FA

[65] 2Dþt Manual indication Template matching PC HSB-2 T-cells MI

[68] 2Dþt Manual outlining Active contour

evolution

BF Fibroblasts MI

[57] 2Dþt Level sets Level set evolution PC Leukocytes FA

[58] 2Dþt Manual indication Contour evolution þ
Kalman filtering

PC Leukocytes MI
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[30] 2Dþt Space-time

filtering þ
thresholding

Space-time trace

angle þ distance

PC Leukocytes FA

[60] 2Dþt Active contours Monte Carlo tracking F HeLa cells FA

[66] 2Dþt Manual outlining þ
active contour

Fourier-based

template matching

PC Keratocytes MI

[53] 2Dþt Marker-controlled

watersheds

Mean shift þ
Kalman filtering

F HeLa cells FA

[61] 2Dþt Manual outlining Active contour

evolution

PC Entamoeba

histolytica

MI

From left to right the columns indicate the reference number describing the method, the dimensionality of the data for which the method was designed, the main

features of spatial segmentation and temporal association used by the method, the type of microscopy used and the applications considered in the described

experiments, and the level of automation of the method.

BF¼ brightfield; F¼ fluorescence; FA¼ fully automatic, meaning that in principle no user interaction is required, other than parameter tuning; HMC¼Hoffman

modulation contrast; MI ¼ manual initialization, meaning that more user interaction is required than parameter tuning; PC ¼ phase contrast.
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TABLE 15 .2 Selected particle-tracking methods and some of their features and applications

Ref. Dim. Detection Association Microscopy Application Auto.

[77] 2Dþt Gaussian fitting Distance þ
intensity

F Lipoproteins,

influenza viruses

FA

[72] 2Dþt Thresholding þ
centroid

Nearest particle F Microspheres, actin

filaments

FA

[31] 3Dþt Pyramid linking Intensity þ
velocity þ
acceleration

F Microspheres,

vimentin

FA

[87] 2Dþt Template matching Minimum-cost

paths

F Quantum dots,

glycine receptors

FA

[18] 3Dþt Thresholding þ
centroid

Template matching F Subchromosomal

foci

FA

[11] 3Dþt Gaussian mixture

fitting

Template matching F Kinetochore

microtubules

FA

[28] 2Dþt Artificial neural

networks

Velocity and virtual

flow

F Microspheres FA

[81] 3Dþt Multiscale

products

Interacting

multiple models

F Quantum dots,

endocytic vesicles

FA

[36] 3Dþt Thresholding Fuzzy logic F Chromosomes,

centrosomes

FA

[73] 2Dþt Thresholding þ
centroid

Nearest particle F Low-density

lipoprotein

receptors

FA

[15] 2Dþt Local maxima Nearest particle F R-phycoerythrin FA

[78] 2Dþt Gaussian fitting Nearest particle F P4K proteins FA

[9] 3Dþt Thresholding þ
centroid

Nearest particle F Secretory granules FA

[85] 2Dþt Thresholding þ
centroid

Nearest particle F Actin filaments FA
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[33] 3Dþt Laplacian of

Gaussian

Dynamic

programming

F Telomeres FA

[86] 2Dþt Local maxima Distance þ
intensity

moments

TIRF Lipoproteins,

adenovirus-2,

quantum dots

FA

[80] 3Dþt Gaussian mixture

fitting

Global weighted-

distance

minimization

F Chromosomes,

spindle pole

body

FA

[20] 2Dþt Gradient

magnitude þ
tracing

Fuzzy logic F Secretory vesicles,

speckles

FA

[88] 2Dþt Local maxima

selection

Multilayered

graphs

F Actin and tubulin

fluorescent

speckles

FA

[74] 2Dþt Thresholding þ
centroid

Area þ major/

minor axes þ
distance

F Actin filaments FA

From left to right the columns indicate the reference number describing the method, the dimensionality of the data for which the method was designed, the main

features of spatial detection and temporal association used by the method, the type of microscopy used and the applications considered in the described

experiments, and the level of automation of the method.

F ¼ fluorescence; FA ¼ fully automatic, meaning that in principle no user interaction is required, other than parameter tuning; TIRF ¼ total internal reflection

fluorescence.
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dimensions over time (denoted as 2-Dþt and 3-Dþt, respectively, and the latter

is also referred to as 4-D). Despite the amount of 4-D imaging reported in the

literature, the vast majority of experiments today are still performed in 2-Dþt

(cf. Tables 15.1 and 15.2). Often this is due to limitations imposed by photo-

bleaching and phototoxicity, which preclude wasting light, as one can in con-

focal microscopy imaging. In other studies, in particular those addressing

intracellular dynamic processes, acquiring multiple optical slices would simply

take too much time relative to the motions of interest, resulting in intrascan

motion artifacts. In cases, for example, when studying cell migration in mono-

layers or microtubule dynamics in neurons, the structures of interest may be

sufficiently flat to allow 2-Dþt imaging by wide-field microscopy to give a good

understanding of a process. The improved light collection and the lower number

of optical slices in such cases yields a better SNR and allows for a higher

temporal resolution.

Most cellular and intracellular processes, however, occur in three dimensions

over time, and they require 3-Dþt imaging to fully characterize cell morphody-

namics [8]. It is known, for example, that tumor cells treated with drugs that

block migration on 2-D substrates can still move inside an artificial 3-D collagen

matrix by means of a very different type of motility [4, 10]. Regarding intracel-

lular processes, studies into kinetochoremicrotubule dynamics [11] have recently

revealed that trajectories obtained from 2-Dþt imaging may differ significantly

from those obtained from 3-Dþt imaging and may lead to severe misinterpret-

ation of the underlying processes. These findings suggest that a paradigm shift

may be necessary, in that 2-Dþt imaging studies should always be preceded by

experiments confirming the validity of that approach. This could be as important

as making sure that fluorescent probes, in fluorescence microscopy imaging,

do not alter physiology.

15.2.3 Tempora l Reso lu t ion

Another issue of great importance in time-lapse experiments is the rate at which

images should be acquired over time, also referred to as the temporal sampling

rate or temporal resolution. Ideally, this should be sufficiently high to capture the

relevant details of object motion. However, similar to spatial resolution, the

temporal sampling rate is not an independent parameter that can be fixed to any

desired value; it is constrained by the limited viability of living cells under

illumination.

From sampling theory it is known that, in order to be able to reconstruct

a continuous signal from a set of samples, the sampling rate must be at least

twice the highest frequency at which a component is present in the signal (see

Chapter 2). This minimum sampling rate, often called the Nyquist rate, also

applies to sampling in time. Object position as a function of time is a continuous

410

15 Time-Lapse Imaging



signal, and high-fidelity reconstruction of this signal and any derived motion

parameters, such as velocity and acceleration, is possible only if temporal

sampling is done at a rate that complies with the theory.

Establishing this rate, however, is a chicken-and-egg problem. Before sam-

pling, one must have knowledge of the expected velocities to be estimated, which

can only be obtained by sampling at or above the proper rate in the first place.

In practice, a series of experiments at different sampling rates is often necessary

to arrive at the optimal setting. Several studies can be found in the literature

[11–13] that discuss temporal resolution for specific applications. They clearly

demonstrate how undersampling may have a significant effect on velocity esti-

mation. From the point of view of image analysis it should also be realized that

many automated cell-tracking algorithms (cf. Table 15.1) fail if the displacement

between time frames is larger than the cell diameter [4], especially in the cases

involving cell contact. Similar limitations exist for particle-tracking algorithms

(cf. Table 15.2), particularly in cases of high particle densities or when trying to

characterize Brownian motion.

15.3 Image Preprocessing

During image acquisition there are many factors that may cause image quality

degradation (see Chapter 3). Since illumination levelsmust be kept to aminimum

to avoid photobleaching and photodamage in fluorescencemicroscopy, the SNR

in the acquired images is often rather low. Further, any optical imaging device

has limited resolution due to diffraction phenomena, and this manifests itself as

blurring. In addition, out-of-focus light causes a loss of contrast for in-focus

objects, especially in wide-field microscopy imaging. Finally, even if the micro-

scope setup is perfectly stable, unwantedmotionmay occur in the specimen. This

is the case, for example, when studying intracellular dynamic processes while the

cells themselves are migrating. In this section we discuss methods developed

specifically for reducing these artifacts. A more in-depth discussion of these

methods can be found elsewhere in this volume and in other works [5].

15.3.1 Image Denois ing

Any image acquired with a physical device will be contaminated with noise. For

the purposes of this chapter we refer to noise as any random fluctuation in image

intensity, as distinct from systematic distortions, such as hot or cold pixels in

charge-coupled devices (CCDs), or background shading, which can be compen-

sated by other methods. In optical microscopy imaging, noise originates from

sources that fall into four categories: (1) the quantum nature of light, which
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gives rise to photon shot noise, (2) random electron generation due to thermal

vibrations, called thermal noise, (3) random fluctuations in the analog electric

signals in the imaging sensors before digitization, referred to as readout noise,

and (4) round-off error introduced by converting the analog signal into digital

form, known as quantization noise. Whereas thermal, readout, and quantization

noise can be controlled by careful electronic design and proper operating

conditions, photon shot noise is inherent to optical imaging and can only be

reduced by increasing exposure [14].

Although noise cannot be avoided during acquisition, it can be reduced

afterwards, to some degree, by image processing. A wide variety of ‘‘denoising’’

techniques are available for this purpose, and they can be divided into linear and

nonlinear filtering methods. The linear methods are typically implemented by

convolution filtering (see Chapter 6). Examples include uniform local averaging

[15] and Gaussian smoothing [16]. While effective in reducing noise, these

methods also blur relevant image structures. This can be avoided by using

nonlinear methods. The most common of these is median filtering [17, 18].

More sophisticated methods that are increasingly being used in time-lapse im-

aging [17, 19, 20] are based on the principle of anisotropic diffusion filtering [21].

By avoiding blurring near object edges, these methods usually yield superior

results. Methods based on gray-level morphology (see Chapter 8) have also been

used to remove not only noise, but small-scale image structures as well [22].

15.3.2 Image Deconvolu t ion

Conventional wide-field microscopes are designed to image specimens at the

focal plane of the objective lens, but they also collect light emanating from

out-of-focus planes. This reduces the contrast of in-focus image structures.

In confocal microscopes, this out-of-focus light is largely rejected by the use of

pinholes, resulting in clearer images and increased resolution, both laterally and

axially [5]. In either case, however, diffraction occurs as the light passes through

the finite-aperture optics of the microscope, introducing a blurring effect. For

a well-designed imaging system, this blurring can be modeled mathematically as

a convolution of the true incident light distribution with the point spread

function (psf ) of the system [23]. If the psf is known, it is possible, in principle,

to reverse this operation, at least partially. This process is called deconvolution

(see Chapter 14).

A number of methods are available for deconvolution, and these vary greatly

in computational demand, the requirement for accurate knowledge of the psf,

and their ability to reduce blur, improve contrast, increase resolution, and

suppress noise [23–25]. Similar to denoising, they can be divided into linear

and nonlinear methods. The former category includes the nearest-neighbor and

Fourier-based inverse filtering algorithms, which are conceptually simple and
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computationally fast but have the tendency to amplify noise and can even

introduce artifacts. Generally they are not successful when studying small,

intracellular structures and dynamic processes. More sophisticated, nonlinear

methods involve iterative constrained algorithms, which allow enforcement of

specific constraints. The nonlinear category also includes blind deconvolution

algorithms [25], which do not require knowledge of the psf, for it is estimated

from the data during the process. Time-lapse imaging of thick samples may

require even more sophisticated, space-variant deconvolution methods.

While some authors have advocated always to deconvolve image data if

possible [23], the question of whether deconvolution, as a separate preprocessing

step, is really necessary or beneficial depends on the application. Particularly in

studies requiring tracking of subresolution particles, explicit deconvolution

seems less relevant, except perhaps when wide-field microscopes are used

[7, 9]. This is because the localization of such particles, which appear in the

images as diffraction-limited spots, can be done with much higher accuracy and

precision than the resolution of the imaging system [26, 27]. Indeed, when the

detection and localization algorithm involves fitting (a model) of the psf, this is,

in fact, deconvolution to some degree, carried out implicitly.

15.3.3 Image Regis t ra t ion

One of the difficulties frequently encountered in quantitative motion analysis is

the presence of unwanted movements confounding the movements of interest.

In time-lapse imaging of living specimens, the observed movements are often

a combination of global displacements and deformations of the specimen as

a whole, superposed on the local movements of the structures of interest [7, 17].

For example, in intravital microscopy studies, which involve living animals, the

image sequences may show cardiac, respiratory, or other types of global motion

artifacts [28–30]. But even in the case of imaging live-cell cultures, the dynamics

of intracellular structures may be obscured by cell migration, deformation, or

division [18, 31–33]. In these situations, prior motion correction is necessary.

This can be achieved by global or local image alignment, also referred to as

image registration.

Many image registration methods have been developed over the past decade

for a wide variety of applications (see Chapter 14), notably in clinical medical

imaging [34, 35]. The aspects of a registration method that determine its suit-

ability for a specific registration problem include (1) the type of information

(extrinsic or intrinsic), (2) the measure (such as cross-correlation or mutual

information) used to quantify the similarity of images, (3) the type of geomet-

rical transformations supported (rigid, i.e., translation and rotation, versus

nonrigid, which also includes scaling, affine, and elastic deformations), and

(4) various implementation issues (such as the interpolation, optimization, and
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discretization strategies used). From the large body of literature on the subject,

it was recently concluded [35] that the currently popular mutual-information-

based methods are suitable for numerous clinical applications, but that they may

notbeauniversal cure for all registrationproblems.Also, specific implementation

choices may have a large influence on the results.

In biological imaging, image registration methods are less common than in

clinical medical imaging, but a variety of techniques are increasingly used in both

3-D and time-lapse microscopy. For tracking leukocytes in phase-contrast images,

for example, normalized cross-correlation of edge information has been used to

achieve translational background registration [22, 29, 30]. By contrast, tracking of

intracellular particles in fluorescence microscopy usually requires correction for

translation and rotation or even formore complex deformations. This can be done

by intensity-based cross-correlation [18] or by using the labeled proteins as land-

marks in an iterative point-based registration scheme [34, 36]. In fluorescence

microscopy, large parts of the images often bear no relevant information, so the

use of landmarks can improve the robustness and accuracy of registration [37].

At present, no clear consensus about which method works best has emerged.

15.4 Image Analysis

The ultimate goal of time-lapse imaging experiments is to gain insight into

cellular and intracellular dynamic processes. Inevitably this requires quantita-

tive analysis of motion patterns. Approaches to this problem fall into three

categories. The first consists of real-time, single-target tracking techniques.

These usually involve a microscope setup containing an image-based feedback

loop controlling the positioning and focusing of the system to keep the object of

interest in the center of the field of view [38, 39]. Only a small portion of the

specimen is illuminated this way, which reduces photodamage and allows

imaging to be done faster or over a longer time. The second category consists

of ensemble tracking approaches, such as fluorescence recovery after photo-

bleaching (FRAP) and fluorescence loss in photobleaching (FLIP) [8] (see

Chapter 12). While useful for assessing specific dynamic parameters (e.g., diffu-

sion coefficients and association and dissociation rates of labeled proteins), they

are limited to yielding averages over larger populations. The third category, on

which we focus here, consists of approaches that aim to track all individual

objects of interest present in the data. These are usually performed off-line.

Different possible levels of computerization range from simply facilitating

image browsing and manual analysis, to manual initialization followed by

automated tracking, to full automation (cf. Tables 15.1 and 15.2). In the interest

of efficiency, objectivity, and reproducibility, full automation is to be preferred.

However, given the large variety of imaging techniques and cellular components
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of interest, the objects to be tracked have widely differing and even time-varying

appearances. As a consequence, full automation usually can be achieved only by

developing very dedicated algorithms that are tuned for the specific application.

This explains why existing commercial tracking software tools, which are devel-

oped for broad, general applicability, often fail to yield satisfactory results for

specific tracking tasks.

In this section we discuss published approaches to automated object tracking

in time-lapse microscopy images. A distinction is made between cell tracking and

particle tracking. Two different strategies exist for both problems. The first

consists of the identification of the objects of interest in the entire image

sequence, separately for each frame, followed by temporal association, which

tries to relate identified objects either globally over the entire sequence or from

frame to frame. In the second strategy, objects of interest are identified only in

a first frame and are subsequently followed in time by image matching or by

model evolution. In either case, the algorithms usually include a detection or

segmentation stage and a temporal association stage. Both are essential to

performing motion analysis of individual objects. Alternative approaches

based on optic flow have also been studied [17, 19, 40, 41], but these are limited

to computing collective cell motion and intracellular particle flows, unless

additional detection algorithms are applied.

15.4.1 Ce l l T rack ing

Cell motility and migration are of fundamental importance to many biological

processes [4, 10, 42, 43]. In embryonic development, for example, cells migrate

and differentiate into specific cell types to form different organs. Failures in this

process may result in severe congenital defects and diseases. In adult organisms

as well, cell movement plays a crucial role. In wound healing, for example,

several interrelated cell migration processes are essential in regenerating dam-

aged tissue. The immune system consists of many different proteins and cells

interacting in a dynamic network to identify and destroy infectious agents.

Many disease processes, most notably cancer metastasis, depend heavily on

the ability of cells to migrate through tissue and reach the bloodstream. Because

of its importance for basic cell biology and its medical implications, cell migra-

tion is a very active field of research. Automated methods for segmenting cells

and following them over time (Table 15.1) are becoming essential in quantifying

cell movement and interaction under normal and perturbed conditions.

15.4 .1 .1 Ce l l Segmen ta t i on

The simplest approach for separating cells from the background is intensity

thresholding (see Chapter 9). This involves a single threshold parameter that can
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be set manually or derived automatically from the data, based on the intensity

histogram. Although used in many cell-tracking algorithms [13, 44, 45], this

approach is successful only if cells are well separated and their intensity levels

differ markedly and consistently from that of the background. In practice,

however, this condition is rarely met. In phase-contrast microscopy, for exam-

ple, cells may appear as dark regions surrounded by a bright halo, or vice versa,

depending on their position relative to the focal plane. In the case of fluorescence

microscopy, image intensity may fall off as a function of time due to photo-

bleaching. While the situation may be improved by using adaptive thresholding

or some sort of texture filtering [46, 47], thresholding based on image intensity

alone is generally inadequate.

A fundamentally different approach to cell detection and segmentation that

is particularly relevant to phase-contrast and differential-interference-contrast

microscopy is to use a predefined cell intensity profile, also referred to as

a template, to be matched to the image data. This works well for cells that do

not change shape significantly, such as certain blood cells and algal cells [48, 49].

However, most cell types are highly plastic and move by actively changing

shape. Keeping track of such morphodynamic changes would require the use

of a very large number of different templates, which is impractical from both

algorithm design and computational considerations.

Another well-known approach to image segmentation is to apply the water-

shed transform [50] (see Chapter 9). By considering the image as a topographic

relief map and by flooding it from its local minima, this transform completely

subdivides the image into regions (catchment basins) with delimiting contours

(watersheds). Fast implementations exist for this intuitively sensible method,

which is easily parallelized. The basic algorithm has several drawbacks, how-

ever, such as sensitivity to noise and a tendency toward oversegmentation [50].

Carefully designed pre- and postprocessing strategies are required for acceptable

results. By using marking, gradient-weighted distance transformation, and

model-based merging methods (see Chapter 9), several authors have successfully

applied the watershed transform to cell segmentation in microscopy [16, 51–53].

Currently there is increasing interest in the use of deformable models for cell

segmentation [4, 54–61]. These usually take the form of parametric active

contours, or ‘‘snakes’’ [62], in 2-D and implicit active surfaces or level sets [63]

in 3-D. They begin with an approximate boundary and iteratively evolve in the

image domain to optimize a predefined energy functional. Typically this

functional consists of both image-dependent and boundary-related terms. The

former may contain statistical measures of intensity and texture in the region

enclosed by the developing boundary or gradient magnitude information along

the boundary. Image-independent terms concern properties of the boundary

shape itself represented by the front, such as boundary length, surface area, and

curvature, and the similarity to reference shapes. It is this mixture of terms,
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enabling flexible incorporation of both image information and prior knowledge,

that makes deformable models easily adaptable to specific applications [4, 56].

This approach is discussed in more detail in Chapter 9.

15.4 .1 .2 Ce l l A s so c i a t i on

Several strategies exist for performing interframe cell association. The simplest

is to associate each segmented cell in one frame with the nearest cell in a

subsequent frame, where nearest may not only refer to spatial distance between

boundary points or centroid positions [12, 44, 47]. It may refer to similarity in

terms of average intensity, area or volume, perimeter or surface area, major and

minor axis orientation, boundary curvature, angle or velocity smoothness, and

other features [28, 64]. Generally, the more features involved, the lower is the

risk of ambiguity. However, matching a large number of features may be as

restrictive as template matching, since cell shape changes between frames are less

easily accommodated [22, 46, 65, 66]. Some applications may not require keep-

ing track of cell shape features, so robust tracking of only cell center position

may be achieved by mean-shift processes [53, 67].

In addition to boundary delineation, deformable model approaches lend

themselves naturally to capturing cell migration and cell shape changes over

time [4]. At any point in an image sequence, the contours or surfaces obtained

in the current frame can be used as initialization for the segmentation process in

the next frame [56, 57, 61, 68]. With standard algorithms, however, this usually

works well only if cell displacements are limited to nomore than one cell diameter

from frame to frame [56, 59]. Otherwise, more algorithm sophistication is

required, such as the use of gradient-vector flows [58, 59, 61] or the incorporation

of known or estimated dynamics [54, 60].

Rather than using explicitly defined models (parametric active contours),

recent research efforts have shown a preference toward implicitly definedmodels

(through level sets), since they can easily handle topological changes, such as cell

division, and can be extended readily to deal with higher-dimensional image

data [56]. In either case, however, several adaptations of the standard algorithms

are usually necessary to be able to track multiple cells simultaneously and to

handle cell appearances, disappearances, and touches. While this is certainly

feasible [56–58, 61], it usually introduces a number of additional parameters that

must be tuned empirically for each specific application. This increases the risk of

errors and reduces reproducibility. This, in turn, may require postprocessing to

validate tracking results [69].

15.4.2 Par t i c le T rack ing

The ability of cells to migrate, perform a variety of specialized functions, and

reproduce is the result of a large number of intracellular processes involving
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thousands of different-sized biomolecular complexes, collectively termed par-

ticles in this chapter. Since many diseases originate from a disturbance or failure

of one or more of these processes, they have become the subject of intense

current research by academic institutes and pharmaceutical companies. Fluor-

escent probes permit visualization of intracellular particles [70]. Combined with

time-lapse optical microscopy, they enable studying the dynamics of virtually

any protein in living cells. Automated image analysis methods for detecting and

following fluorescently labeled particles over time (Table 15.2) are becoming

indispensable in order to take full advantage of the image data acquired from

such studies [3].

15.4 .2 .1 Par t i c l e De te c t i on

In fluorescence microscopy imaging, the particles of interest are never observed

directly, but their position is revealed indirectly by the fluorescent molecules

attached to them. Typically these fluorophores are cylindrically shaped mol-

ecules having a length and diameter on the order of a few nanometers. In most

experimental cases it is unknown how many fluorescent molecules are actually

attached to the particles of interest. Commonly, however, a fluorescently labeled

particle will be much smaller than the optical resolution of the imaging system.

Even though recent advances in light microscopy have led to significantly

improved resolution [71], most confocal microscopes currently in use today

can resolve about 200 nm laterally and around 600 nm axially. Therefore,

fluorescently labeled particles effectively act as point sources of light, and they

appear in the images as diffraction-limited spots, also called foci.

From several recent studies [26, 27] it follows that localization accuracy of

single particles and the resolvability of multiple particles depend on a number of

factors. If magnification and spatial sampling are properly matched to satisfy

the Nyquist sampling criterion, the limiting factor is the SNR, or effectively the

photon count, with higher photon counts yielding greater accuracy and resolv-

ability. The consensus emerging from these studies is that a localization accur-

acy for single particles of around 10 nm is achievable in practice. Estimation of

the distance between two particles is possible with reasonable levels of accuracy

for distances of about 50 nm and larger. Smaller distances can be resolved, but

with rapidly decreasing accuracy. In order to improve accuracy in such cases,

the number of detected photons would have to be increased substantially, which

typically is not possible in time-lapse imaging experiments without causing

excessive photobleaching.

A number of approaches to particle detection and localization exist. Similar

to cell segmentation, the simplest approach to discriminate between objects and

background is to apply intensity thresholding. The localization of a particle

is often accomplished by computing the local centroid, or center of intensity,
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of image elements with intensity values above a certain threshold [9, 18, 72–74].

Clearly such threshold-based detection and localization will be successful only in

cases of very limited photobleaching, unless some form of time-adaptive thresh-

olding is used. More robustness can be expected from using the intensity profile

of an imaged particle in one frame in a template-matching process to detect the

same particle in subsequent frames [75, 76]. This approach can be taken one step

further by using a fixed template representing the theoretical profile of a particle.

In the case of diffraction-limited particles, this profile is simply the psf of the

microscope, which is often approximated in practice by the Gaussian function

[77–79]. Extensions of this approach involving Gaussian mixture model fitting

has been used for detecting multiple closely spaced particles simultaneously

[11, 80]. For larger particles with varying shapes and sizes, detection schemes

using wavelet-based multiscale products have been used successfully [81, 82].

In a recent study [83], several common algorithms to particle detection and

localization were compared quantitatively, as a function of SNR and object

diameter, in terms of both accuracy (determinate errors or bias) and precision

(indeterminate errors). The algorithms included two threshold-based centroid

detection schemes, Gaussian fitting, and template matching using normalized

cross-correlation or the sum of absolute differences as similarity measures.

It was concluded that for particles with diameter less than the illumination

wavelength, Gaussian fitting is the best approach, by several criteria. For

particles having much larger diameter, cross-correlation-based template match-

ing appears to be the best choice. It was also concluded that the SNR constitutes

the limiting factor of algorithm performance. As a rule of thumb, the SNR

should be at least 5 in order to achieve satisfactory results using these algo-

rithms. Subsequent evaluation studies [84] even mentioned SNR values of 10

and higher. Since such levels are quite optimistic in practice, especially in time-

lapse imaging experiments, the quest for more robust detection schemes is likely

to continue for some time to come.

15.4 .2 .2 Par t i c l e As so c i a t i on

Similar to cell association, the simplest approach to particle association is to use

a nearest-neighbor criterion, based on spatial distance [9, 15, 72, 73, 78, 85].

While this may work well in specimens containing very limited numbers of well-

spaced particles, it will fail to yield unambiguous results in cases of higher

particle densities. In order to establish the identity of particles from frame to

frame in such cases, additional cues are required. When tracking subresolution

particles, for example, the identification may be improved by taking into

account intensity and spatiotemporal features (such as velocity and acceler-

ation) that have been estimated in previous frames [77, 31, 86]. Larger particles

may also be distinguished by using spatial features such as size, shape, and

419

15.4 Image Analysis



orientation [74]. In the limit, matching a large number of spatial features is

similar to performing template matching [11, 18].

Rather than finding the optimal match for each particle on a frame-by-frame

basis, the temporal association problem can also be solved in a more global

fashion. Such an approach is especially favorable in more complex situations of

incomplete or ambiguous data. For example, particles may temporarily disap-

pear, either because they move out of focus for some time or (as in the case of

quantum dots) because the fluorescence of the probe is intermittent. For single

or well-spaced particles, this problem has been solved by translating the tracking

task into a spatiotemporal segmentation task and finding optimal paths through

the entire data [33, 87].

The problem becomes more complicated, however, with high particle den-

sities and the possibility of particle interaction. For example, two or more

subresolution particles may approach each other so closely at some point in

time that they appear as a single spot that cannot be resolved by any detector.

Then they may separate at some later time to formmultiple spots again. Keeping

track of all particles in such cases requires some form of simultaneous associ-

ation and optimization. Several authors have proposed to solve the problem

using graph-theoretic approaches, in which the detected particles and all pos-

sible correspondences and their likelihoods together constitute a weighted graph

[76, 80, 86, 88]. The subgraph representing the best overall solution is obtained

by applying a global optimization algorithm.

Most particle-tracking algorithms published to date are deterministic, in that

they make hard decisions about the presence or absence of particles in each

image frame and the correspondence of particles between frames. There is now

increasing interest in the use of probabilistic approaches to reflect the uncer-

tainty present in the image data [81, 89]. Typically these approaches consist of

a Bayesian filtering framework and involve models of object dynamics, to be

matched to the data. It has been argued that incorporating assumptions about

the kinematics of object motion is risky in biological tracking since little is

known about the laws governing that motion, and the purpose of tracking is

to deduce this [46]. However, biological investigation is an iterative endeavor,

leading to more and more refined models of cellular and molecular structure and

function, so it makes sense at each iteration to take advantage of knowledge

previously acquired.

15.5 Trajectory Analysis

The final stage in any time-lapse microscopy imaging experiment is the analysis

of the trajectories resulting from cell or particle tracking, to confirm or reject

predefined hypotheses about object dynamics, or to discover new phenomena.
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Qualitative analysis by visual inspection of computed trajectories may already

give hints about trends in the data, but it usually does not provide much more

information than can be obtained by looking directly at the image data itself or

projections thereof. Quantitative analyses of the trajectories are required in

order to achieve higher sensitivity in data interpretation and to be able to

perform statistical tests. Of course, which parameters to measure and analyze

depends very much on the research questions underlying a specific experiment.

Here we briefly discuss examples of measurements frequently reported in the

literature.

15.5.1 Geometry Measurements

Once the objects of interest in an image sequence are detected, segmented, and

associated, a multitude of measures concerning the geometry of the resulting

trajectories as well as of the objects themselves can readily be computed. An

example is the maximum relative distance from the initial position that was

reached by the object [51, 54, 67]. Other examples are the length of the trajectory

(the total distance traveled by the object) and the distance between starting point

and end point (the net distance traveled). The latter measures relate to the so-

called McCutcheon index [47], which is often used in chemotaxis studies to

quantify the efficiency of cell movements. It is defined as the ratio between the

net distance moved in the direction of increasing chemoattractant concentration

and the total distance moved. Derived parameters, such as the directional

change per time interval and its autocorrelation [43], are indicative of the

directional persistence and memory of a translocating cell. Information about

the cell contour or surface at each time point allows the computation of a variety

of shape features, such as diameter, perimeter or surface area, area or volume,

circularity or sphericity, convexity or concavity [43], and elongation or

dispersion [55], and how they change over time.

15.5.2 Di f fus iv i ty Measurements

A frequently studied parameter, especially in particle-tracking experiments, is the

mean square displacement (MSD) [9, 11, 15, 18, 33, 72, 77, 90]. It is a convenient

measure to study the diffusion characteristics of individual particles [91–93], and

it allows assessment of the viscoelastic properties of the media in which they

move [93, 94]. By definition, the MSD is a function of time lag, and the shape of

theMSD–time curve for a given trajectory is indicative of the mode of motion of

the corresponding particle (Fig 15.4). For example, in the case of normal diffu-

sion by pure thermally driven Brownian motion, the MSD will increase linearly

as a function of time, where the diffusion constant determines the slope of the

line. In the case of flow or active transport, on the other hand, the MSD will
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increase more rapidly, and in a nonlinear fashion. The contrary case of anomal-

ous subdiffusion, characterized by a lagging MSD–time curve compared to

normal diffusion, occurs if themotion is impeded by obstacles. Confinedmotion,

caused by corrals or tethering or other restrictions, manifests itself by a conver-

ging curve, where the limitingMSD value is proportional to the size of the region

accessible for diffusion. Mathematically, the MSD is the second-order moment

of displacement. A more complete characterization of a diffusion process is

obtained by computing higher-order moments of displacement [86, 95].

Some prudence is called for in diffusivity measurements. In isotropic media,

where the displacements in each of the three spatial dimensions may be assumed

to be uncorrelated, the 2-D diffusion coefficient is equal to the 3-D diffusion

coefficient [93]. In practical situations, however, it may be unknown in advance

whether isotropy can be assumed. In this context we stress again the importance of

experimental verification of one’s assumptions [4, 10, 11]. Furthermore, the diffu-

sivity of a particle may depend on its diameter relative to the microstructure of

the biological fluid in which it moves. Here, a distinction must be made between

microscopic, mesoscopic, and macroscopic diffusion [93]. Also, in the case of

normal diffusion, the relation between the slope of the MSD–time line and the

diffusion constant strictly holds only for infinite trajectories [91]. The shorter

the trajectories, the larger the statistical fluctuations in the diffusivity measure-

ments and the higher the relevance of studying distributions of diffusion constants

rather than single values. But even for very long trajectories, apparent subdiffusion

patterns may arise at short time scales, caused solely by the uncertainty in particle

localization in noisy images [90]. Finally, care must be taken in computing

theMSDover an entire trajectory, for it may obscure transitions between diffusive

and nondiffusive parts [92].
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F IGURE 15.4 Different types of diffusivity characterized by the MSD as a function of time lag. The
idealized curves apply to the case of noise-free measurements and consistent object motion. In the case of
localization errors and nonconsistent motion, the curves will show offsets and irregularities.
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15.5.3 Veloc i ty Measurements

Another commonly studied parameter in time-lapse imaging experiments is

velocity [44, 47, 51]. It is computed simply as distance over time. Instantaneous

object velocity can be estimated as the distance traveled from one frame to the

next divided by the time interval. Average velocity, also referred to as curvilinear

velocity, is then computed as the sum of the frame-to-frame distances traveled,

divided by the total time elapsed. If the temporal sampling rate is constant, this

is the same as averaging the instantaneous velocities. The so-called straight-line

velocity, another type of average velocity, is computed as the distance between

the first and last trajectory positions divided by the total elapsed time. The ratio

between the latter and the former, known as the linearity of forward progression

[12, 13, 45], is reminiscent of the McCutcheon index mentioned earlier. Histo-

grams of velocity [19, 47, 85, 88, 91] are often helpful in gaining insight into

motion statistics. Object acceleration can also be estimated from velocity, but it

is rarely studied [43].

Several cautions are in order regarding velocity estimation. In the case of cell

tracking, motion analysis is tricky, due to the possibility of morphological

changes over time. Often, to circumvent the problem, a center position is tracked

[12, 13, 44, 45]. In the case of highly plastic cells, however, centroid-based

velocity measurements can be very deceptive [43]. For example, an anchored

cell may extend and retract pseudopods, thereby continuously changing its

centroid position and generating significant centroid velocity while the cell is

not actually translocating. In the contrary case, a cell may spread in all direc-

tions at high velocity in response to some stimulant while the cell centroid

position remains essentially unchanged. Another caution concerns the accuracy

of velocity estimation in relation to the temporal sampling rate [43]. The

higher this rate, the more detailed are the movements captured and the

closer will the velocity estimates approach the true values. Statistically speaking,

as the sampling rate decreases, velocities will, on average, be increasingly

underestimated.

15.6 Sample Algori thms

In the previous section we discussed existing methodologies for cell and particle

tracking. In order to illustrate the intricacies of the tracking problem and some

of the solutions that have been proposed, we now describe two specific algo-

rithms in more detail, one for cell-tracking and one for particle-tracking appli-

cations. Both are based on the use of models, and they represent the currently

most promising, but necessarily more involved, cell- and particle-tracking

approaches.
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15.6.1 Ce l l T rack ing

Possibly the most extensively studied approach to image segmentation in recent

years is the use of level-set methods [63]. These methods have also been explored

for cell segmentation and tracking [56, 57, 96], with promising results. Most

classical model–based approaches involve cumbersome explicit representations

of objects by marker points and parametric contours or surfaces [62, 97].

In contrast, level-set methods conveniently define object boundaries, in an

implicit way, as the zero level set of a scalar function, denoted by w(.) here.
This level-set function is defined such that w(x) > 0 when x lies inside the object,

w(x) < 0 when x is outside the object, and w(x) ¼ 0 at the object boundary,

where x denotes position within the image domain. The important advantages

of this representation over explicit representations are its topological flexibility

and its ability to handle data of any dimensionality without the need for

dedicated modifications.

The idea of level-set-based image segmentation is to evolve the level-set

function w(.) iteratively so as to minimize a predefined energy functional. In

principle, it is possible to define w(.) in such a way that its zero level includes the

boundaries of all objects of interest in the image and to evolve these boundaries

concurrently by evolving this single function. However, in order to have better

control over the interaction between object boundaries when segmenting mul-

tiple cells and to conveniently keep track of individual cells, it is advisable to

define a separate level-set function, wi(.), for each object, i¼ 1, . . . ,N. Using this

approach, we can define the energy functional as

E(w1, . . . , wN) ¼
ð
V

XN
i¼1

�
ad(wi(x)) rwi(x)j j þH(wi(x) )ei(x)

þ e0(x)
1

N

YN
j¼1

(1�H(wj(x)))þ g
X
i<j

H(wi(x))H(wj(x))

�
dx

(15:1)

where d(.) is the Dirac delta function, H(.) denotes the Heaviside step function,

a and g are positive parameters, the integral is over the entire image domain,

denoted by V, and the ei(.) are object energy functions, with e0(.) denoting the

background energy function. The model-based aspect of the level-set approach

lies primarily in the latter functions.

The core of this equation consists of four terms, each with an intuitive

meaning. The first, with weight a, boils down to the size of the object boundary

(contour length in 2-D and surface area in 3-D). The second term adds energy

values for positions inside the boundary, the third is the total background

energy, and the fourth, with weight g, is a penalty term for overlapping

424

15 Time-Lapse Imaging



boundaries. The formula for iterative evolution of the level-set functions

corresponding to the N objects follows from the Euler–Lagrange equations

associated with the minimization of the functional in Eq. 15.1:

@wi(x) ¼ d(wi(x))

�
ar� rwi(x)

rwi(x)j j � ei(x)þ e0(x)
Y
j 6¼i

(1�H(wj(x)))

� g
X
j 6¼i

H(wj(x))

�
@t (15:2)

where @t denotes the step size in artificial (evolution) time, that is, for segmen-

tation carried out within a single image frame, not to be confused with the

real-time interval between image frames. Once the energy functional is mini-

mized, and thus a segmentation (boundary) has been obtained for a given image

frame, the resulting level-set functions can be used to compute any morpho-

logical feature of interest and can also serve as initialization for the minimization

procedure for the next image frame.

In summary, the main steps of a level-set-based tracking algorithm and the

associated points of attention concerning its application to multiple cell tracking

in time-lapse microscopy are:

1. Define the object and background energy functions, ei(.) and e0(.),

respectively. These functions mathematically describe the deviation of

object and background features from their desired values. This allows

one to incorporate prior knowledge about cell and background appear-

ance. In practice, it often suffices to model appearance in terms of simple

image statistics, such as the deviation from the mean intensity within the

cell or background, and intensity variance.

2. Specify the parameters a and g. These determine the influence of the

boundary-magnitude and overlap-penalty terms, respectively, relative to

the object and background energy terms in the total energy functional

(Eq. 15.1), and are necessarily application dependent. Optimal values for

these parameters will have to be obtained by experimentation.

3. Segment the first image of the sequence. This is done by defining a single

level-set function w(.) and evolving it according to the single-object

version of Eq. 15.2 until it converges. Since proper initialization is crucial

to achieving fast convergence and arriving at the global optimum, the

initial level-set function chosen must be as close as possible to the

true boundaries. For example, one could apply a simple segmentation

scheme and initialize w(.) based on that outcome.
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4. Initialize the level-set functions in the first image of the sequence.

Cell objects are obtained by finding connected components in the

segmentation resulting from step 3. For each detected object Oi, a level-

set function wi(.) is computed from the signed distance function applied to

the boundaries of Oi, with positive values inside and negative values

outside Oi.

5. Evolve the level-set functions wi(.) concurrently according to Eq. 15.2

until convergence. The time step @t > 0 in the discretized version of the

evolution equation should be chosen with care. Values too small may

cause unnecessarily slow convergence. Conversely, values too large may

cause object boundaries to be missed. In practice, values between 0.01

and 0.1 give satisfactory results. To speed up the computations, one could

choose to update the level-set functions only for positions x in a narrow

band around the current zero level sets, for which wi(x) ¼ 0.

6. Detect incoming and dividing cells. An additional level-set function could

be used to detect cells that enter the field of view from the boundaries of

the image. Cell division could be detected by monitoring cell shape over

time. Drastic morphological changes are indicative of approaching di-

vision. If, just after such an event, a level-set function contains two

disconnected components, one could decide to replace the function with

two new level-set functions.

7. Initialize the level-set functions for the next frame of the sequence. This

can be done simply by taking the functions from the previous frame.

Notice that in order for this approach to work in practice, cells should

not move more than their diameter from one frame to the next. To

prevent the level-set functions from becoming too flat, it may be advan-

tageous to reinitialize them to the signed distance to their zero level after

a fixed number of iterations.

8. Repeat steps 5–7 until all frames of the image sequence are processed.

The resulting level-set functions wi(.) as a function of real time enable

estimation of the position and morphology of the corresponding cells for

each frame in the sequence.

Sample results with specific implementations of this cell-tracking algorithm

[56, 96] applied to the tracking of the nuclei of proliferating HeLa and Madin–

Darby canine kidney (MDCK) cells are shown in Fig. 15.5. The examples

illustrate the ability of the algorithm to yield plausible contours even in the

presence of considerable object noise and strongly varying intensities, as caused,

for example, by photobleaching in the case of FRAP experiments. The render-

ings demonstrate the ability of the algorithm to keep track of cell division.
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15.6.2 Par t i c le T rack ing

An interesting and promising approach to particle tracking is to cast the

temporal association problem into a Bayesian estimation problem [81, 89].

In general, Bayesian tracking deals with the problem of inferring knowledge

F IGURE 15.5 Sample results from applying the described level-set-based cell-tracking algorithm. (a–c)
Segmentations (white contours) for arbitrary frames taken from three different 2-Dþt image sequences. The
examples illustrate the ability of the algorithm to yield plausible contours even in the presence of considerable
object noise and strongly varying intensities, as caused, for example, by photobleaching in the case of FRAP
experiments. (d) Visualization of segmented surfaces of cell nuclei in four frames of a 3-Dþt image sequence.
The renderings demonstrate the ability of the algorithm to keep track of cell division. (e) Illustration of tracking
cell division in a 2-Dþt image sequence. (Images a, b, c, e courtesy of G van Cappellen.)
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about the true state of a dynamic system based on a sequence of noisy meas-

urements or observations. The state vector, denoted by xt, contains all relevant

information about the system at any time t, such as position, velocity, acceler-

ation, intensity, and shape features. Bayesian filtering consists of recursive

estimation of the time-evolving posterior probability distribution p(xt j z1:t) of
the state xt, given all measurements up to time t, denoted as z1:t. Starting with an

initial prior distribution, p(x0 j z0), with z0 ¼ z1:0 being the set of no measure-

ments, the filtering first predicts the distribution at the next time step:

p(xt j z1:t�1) ¼
ð
D(xt jxt�1) p(xt�1 j z1:t�1)dxt�1 (15:3)

based on aMarkovianmodel,D(xtjxt�1), for the evolution of the state from time

t� 1 to time t. Next, it updates the posterior distribution of the current state by

applying Bayes’ rule,

p(xt j z1:t) / L(zt j xt) p(xt j z1:t�1) (15:4)

using a likelihood, L(zt j xt), that models the probability of observing zt given

state xt. The power of this approach lies not only in the use of explicit dynamics

and observation models, but also in the fact that at any time t, all available

information up to that time is exploited.

The foregoing recurrence relations are analytically tractable only in a

restricted set of cases, such as when dealing with linear dynamic systems and

Gaussian noise, for which an optimal solution is provided by the so-called

Kalman filter. In most biological imaging applications, where the dynamics

and noise can be expected to be nonlinear and non-Gaussian, efficient numerical

approximations are provided by sequential Monte Carlo (SMC) methods, such

as the condensation algorithm [98]. In that case, the posterior distribution is

represented by Ns random state samples and associated weights:

p(xt j z1:t) �
XNs

i¼1

w
(i)
t d xt � x

(i)
t

� �
(15:5)

where d(:) is the Dirac delta function and the weights w
(i)
t of the state samples x

(i)
t

sum to 1. The problem of tracking large numbers of objects using this frame-

work is conveniently solved by representing the filtering distribution by an

M-component mixture model:

p(xt j z1:t) ¼
XM
m¼1

vm,t pm(xt j z1:t) (15:6)
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where the weights vm,t of the components pm sum to 1, the total number of

samples is N ¼ MNs, and each sample is augmented with a component label

denoted by c
(i)
t , with c

(i)
t ¼ m if state sample i belongs to mixture component m.

This representation is updated in the same fashion as the single-object case.

At each time step, statistical inferences about the state, such as the expected

value or the maximum a posteriori (MAP) or minimum mean square error

(MMSE) values, can easily be approximated from the weighted state samples

for each object.

In summary, the main steps of an SMC-based tracking algorithm and the

associated points of attention concerning its application to multiple particle

tracking in time-lapse microscopy are:

1. Define the state vector xt. In most experimental situations it will be

sufficient to include position (xt, yt, zt), velocity (vx,t, vy,t, vz,t), acceler-

ation (ax,t, ay,t, az,t), and intensity (It).

2. Define the state evolution model D(xt j xt�1). This model mathematically

describes the probability of a particle to jump from the previous state xt�1

to state xt. It allows one to incorporate prior knowledge about the

dynamics of the objects to be tracked and is therefore necessarily appli-

cation dependent. An example of such a model is the Gaussian weighted

deviation of xt from the expected state at time t based on xt�1 (for

instance, expected position at time t based on velocity at time t� 1 and

expected velocity at t based on acceleration at t� 1). This framework also

permits the use of multiple interacting models to deal with different types

of motion concurrently (such as random walk, or directed movement,

with constant or changing velocity). Notice that having It as part of the

state vector also allows one to model the evolution of particle intensity

(photobleaching).

3. Define the observation model L(zt jxt). This model mathematically

describes the likelihood or probability of measuring state zt from the

data, given the true state xt. It allows one to incorporate knowledge

about the imaging system, in particular the psf, as well as additional,

static object information, such as morphology. Such a model could, for

example, be defined as the Gaussian weighted deviation of the total

measured intensity in a neighborhood around xt, from the expected

total intensity based on a shape model of the imaged objects and from

the background intensity, taking into account the noise levels in the object

and the background.

4. Specify the prior state distribution p(x0 j z0). This can be based on infor-

mation available in the first frame. For example, one could apply
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a suitable detection scheme to localize the most prominent particles and,

for each detected particle, add a Gaussian-shaped mixture component pm
with weightvm,0 proportional to size or intensity. Each component is then

sampled Ns times to obtain state samples x
(i)
t and associated weights w

(i)
t

for that component. The detection step does not need to be very accurate

because false positives will be filtered out rapidly as the system evolves.

5. Use the posterior state distribution p(xt�1 j z1:t�1) at time t� 1 to compute

the predicted state distribution p(xt j z1:t�1) at time t according to Eq. 15.3,

and subsequently use this prediction to compute the updated posterior

state distribution p(xt j z1:t) according to Eq. 15.4. Effectively this is done

by inserting each sample x
(i)
t�1, i ¼ 1, . . . , N, into the state evolution

model, taking a new sample from the resulting probability density func-

tion to obtain x
(i)
t , and computing the associated weight w

(i)
t from w

(i)
t�1

based on the likelihood and dynamicsmodels and an auxiliary importance

function. A penalty function can be used to regulate particle coincidence.

6. Update the sample component labels c
(i)
t . This step is necessary if particle-

merging and -splitting events are to be captured. It involves the applica-

tion of a procedure to recluster the state samples from the M mixture

components to yield M’ new components. This procedure can be imple-

mented in any convenient way, and it allows one to incorporate prior

knowledge about merging and splitting events. In the simplest case one

could apply a K-means clustering algorithm.

7. Update the mixture component set and the corresponding weights vm,t.

To determine whether particles have appeared or disappeared at any time

t, one could apply some detection scheme as in step 4 to obtain a particle

probability map and compare this map to the current particle distribu-

tion, as follows from the posterior p(xt j z1:t). For each appearing particle,

a new mixture component is added with predefined initial weight vb.

Components with weights below some threshold vd are assumed to

correspond to disappearing particles and are removed from the mixture.

The weights vm,t are computed from the vm,t�1 and the weights w
(i)
t of the

state samples.

8. Repeat steps 5–7 until all frames of the image sequence are processed.

The resulting posterior state distributions pm(xt j z1:t) enable estimation of

the states of the corresponding particles at any t.

Sample results with a specific implementation of this algorithm [89] applied

to the tracking of microtubule plus-ends in the cytoplasm and androgen receptor

proteins in the cell nucleus are shown in Fig. 15.6. This example illustrates the

ability of the algorithm to deal with photobleaching, to capture newly appearing
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F IGURE 15.6 Sample results from applying the described SMC-based particle-tracking algorithm.
(a and b) Estimated current locations (white squares) and trajectories (white curves) up to the current time,
for the most prominent particles in an arbitrary frame from the 2-Dþt image sequences shown in Figs. 15.1a
and 15.1b, respectively. The trajectories in B are due to Brownian motion and are therefore strongly confined.
(c) Artistic rendering of the trajectories linking multiple frames of data set (a). (d) Illustration of the capability of
the algorithm to deal with photobleaching, to capture newly appearing particles, to detect particle disappear-
ance, and to handle closely passing particles.
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particles, to detect particle disappearance, and to handle closely passing

particles. Experiences with an alternative but related Bayesian filtering algo-

rithm [81] applied to the tracking of cytoplasmic and nuclear HIV-1 complexes

can be found in [99].

15.7 Summary of Important Points

In this chapter we have sketched the current state of the art in time-lapse

microscopy imaging, in particular cell and particle tracking, from the perspective

of automated image processing and analysis. While it is clear that biological

investigation is relying increasingly on computerized methods, it also follows

that such methods are still very much in their infancy. Although there is

a growing consensus about the strengths and weaknesses of specific approaches,

there is currently no single best solution to the problem in general. On the

contrary, themain conclusion emerging from the literature is that, with currently

available image processing and analysis methodologies, any given tracking

application requires its own dedicated algorithms to achieve acceptable results.

1. Living cells are sensitive to photodamage and require economizing of

the light exposure.

2. Success rates of automated image analysis generally increase with

increasing SNR.

3. Time-lapse microscopy requires trading off SNR against spatial and

temporal resolution.

4. Biological processes occur in 3-Dþt and should preferably be studied as

such.

5. Studies in 2-Dþ t should be accompanied by 3-Dþ t experiments to

confirm their validity.

6. Sampling theory applies not only to sampling in space but also to

sampling in time.

7. Nonlinear filtering methods allow reducing noise while preserving

strong gradients (edges).

8. Deconvolution of time-lapse microscopy imaging data is not always

necessary.

9. Object motion is often a superposition of global and local displacements.

10. Global motion can be corrected by image registration.
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11. Object tracking requires dedicated detection, segmentation, and associ-

ation methods.

12. Optic flow methods can be used to compute collective cell motion and

particle flows.

13. Image intensity thresholding alone is generally not adequate for

segmentation.

14. Template matching works best for objects that do not change shape

significantly as they move.

15. Watershed-based segmentation requires careful pre- and postprocessing

strategies.

16. Deformable models allow easy use of both image information and prior

knowledge.

17. By design, deformable models are very suitable for capturing morpho-

dynamics.

18. Implicitly defined models are generally more flexible than explicitly

defined models.

19. In fluorescence microscopy, objects are observed only indirectly, via

fluorescent probes.

20. Fluorescent (nano)particles act as point light sources and appear as

psf-shaped spots.

21. Particle localization accuracy and resolvability depend strongly on

photon count.

22. For single particles, a localization accuracy of about 10 nm is achievable

in practice.

23. Two particles are resolvable with reasonable accuracy for separation

distances greater than 50 nm.

24. Gaussian fitting is most suitable for detecting particles with diameter

less than one wavelength.

25. Template matching is most suitable for detecting particles with diameter

of several wavelengths.

26. For most particle detection methods, the SNRmust be greater than 5 to

achieve satisfactory results.
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27. Reliable temporal association usually requires the use of more criteria

than just spatial distance.

28. Tracking of many closely spaced particles requires some form of joint

association.

29. Probabilistic tracking methods reflect the uncertainty in the image data.

30. Models of object dynamics are helpful in tracking but should be used

with care.

31. Displacement moments provide detailed information about diffusion

characteristics.

32. The shape of the MSD–time curve of an object is indicative of its mode

of motion.

33. In isotropic media, the 2-D diffusion coefficient is equal to the 3-D

diffusion coefficient.

34. Distinction must be made between microscopic, mesoscopic, and

macroscopic diffusion.

35. Short trajectories show large statistical fluctuations in diffusivity

measurements.

36. Subdiffusive patterns at short time scales may be due to noise in particle

localization.

37. Computing the MSD over entire trajectories may obscure transitions in

diffusivity.

38. Different velocity measures result from considering different distance

measures.

39. Centroid-based velocity measurements can be very deceptive in cell

tracking.

40. Velocities are increasingly underestimated with decreasing temporal

resolution.
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16
Autofocusing

Qiang Wu

16.1 Introduct ion

With the rapid development in cellular and molecular technology at micro- and

nanoscale levels, there is a growing need for high-throughput automatic ‘‘walk-

away’’ instruments for microscope imaging. Automated microscopy is used in

a wide range of biomedical applications where automatic acquisition of speci-

men images in unattended operation is required. An essential and indispensable

component of automated microscopy is automatic focusing of the microscope.

In addition to facilitating automation of imaging, microscope autofocusing

enables objective, accurate, and consistent image measurements for quantitative

analysis. Fast, accurate, and reliable autofocusing is crucial to high-throughput

scanning microscopy applications, where large numbers of specimens must be

imaged and analyzed routinely.

16.1.1 Autofocus Methods

There are two primary types of autofocus techniques used in automated micro-

scopy instruments. The first type, known as active focusing, utilizes active

surface sensing of the specimen by directing energy, such as a laser beam, toward

the object. These methods measure distance to the object independent of the

optics and automatically adjust the optical system for accurate focus. They are

fast and can be used for real-time imaging because multiple image captures

are not required [1]. However, active methods generally require calibration

of the in-focus imaging position with a single surface from which the light

Microscope Image Processing
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beam is reflected. These requirements are impractical for many biological

applications, since specimens typically exhibit variable depth and multiple

reflective surfaces [2].

The second type is known as passive focusing because it is based only on the

analysis of the content of captured images. The in-focus position is determined by

searching for the maximum of an autofocus function using measurements from

a series of images captured at different focal planes. The passive autofocus

methods, albeit slower due to the acquisition time required for capturingmultiple

images, are not affected by the reflective surfaces of a specimen and therefore are

often more suitable for biomedical microscopy applications. In this chapter, we

limit our discussion to passive autofocusing methods, since those involve image

processing algorithms. Interested readers are referred to [1] for further information

on active techniques.

16.1.2 Pass ive Autofocus ing

The objective of autofocusing is to locate the z-axis position of best image focus.

In passive autofocusing this is done by computing an autofocus function at

several values of z and taking the position of the largest one. There are a number

of ways to compute a value that reflects focal sharpness, and these are discussed

here. Similarly there are several different ways to select particular z-axis posi-

tions at which the focus values are to be computed. It is frequently useful to

begin with a coarse search over a wide range and to follow that with a finer

search over a narrower range. This process can be facilitated by curve fitting or

multiresolution methods. The final selection of the in-focus position can be done

by curve fitting, exhaustive search, or using an optimal search technique, such as

hill climbing.

16.2 Principles of Microscope
Autofocusing

Generally, a microscope autofocusing system determines the in-focus position of

a given field of view by searching for the maximum of an autofocus function over

a range of z-axis positions. An autofocus function, computed on images captured

at various z-axis positions, provides a quantitative measure of focal sharpness at

each position for a particular field of view (see Fig. 16.1). By searching along the

z-axis and comparing the autofocus function values obtained, the in-focus

position can be located as the one where the autofocus function is maximized.

In the following sections we discuss autofocusing techniques based on single-

channel grayscale images. For microscope systems using RGB color images, the
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images are usually converted to grayscale by computing the luminance. The

resulting monochrome images are then used to compute the autofocus function,

since most of the focus-relevant information is encoded in the luminance rather

than in the chrominance components of a color image.

16.2.1 F luorescence and Br ight f ie ld
Autofocus ing

Fluorescence and brightfield microscopy, which are the two major modalities

used inbiomedical applications, employdifferent illumination sources and imaging

conditions. The fluorescence microscope is used to analyze specimens labeled

with fluorescent dyes, while brightfield microscopy is used on specimens prepared

with light-absorbing stains.

In fluorescence microscopy, specimens are treated with special reagents that

make their individual molecules absorb and emit light at different wavelengths

(see Chapter 12). The fluorescence image can be used directly for autofocusing.

However, due to photobleaching and the formation of destructive by-products,

light exposure of photosensitive specimens should be kept to a minimum [3].

This places a stringent requirement on the speed of autofocusing algorithms.

In brightfield microscopy, the autofocus function is typically unimodal, with tails

that extend over a broad depth range. By contrast, fluorescence images typically

have a low signal-to-noise ratio (SNR), and the assumptions mentioned above do

not always hold true.

In brightfield microscopy, specimens are illuminated with transmitted light,

concentrated by a substage condenser. The specimens appear dark against

a bright background, typically with a high SNR. Further, the specimens usually

do not deteriorate as rapidly as fluorescently labeled samples. Hence most

existing autofocusing methods work better for brightfield microscopy than for

its fluorescence counterpart.

Start position

Interim position

End position

z-
ax

is

F IGURE 16.1 The autofocus function is defined over a range of focal distance encompassing the
in-focus imaging position.
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16.2.2 Autofocus Func t ions

The autofocus function and its computation are crucial to the accuracy and

efficiency of a microscope autofocusing system. Research on the subject dates

back more than a quarter of a century, and many methods have been developed

[4–17].

A comprehensive comparative study of 11 autofocus functions for bright-

field microscopy established a set of criteria for the design of a microscope

autofocusing system [5], and these have been widely applied [2, 9, 11]. This

study used metaphase chromosome spreads and electron microscopy grids as

the specimens. The conclusions drawn from this study were that autofocus

functions based on intensity gradients or variance yielded the best performance.

Another study tested a number of autofocus functions on brightfield images

of lymph node tissue and synthetic images [8]. It concluded that autofocus

functions based on the image power performed better than those based on

cellular logic and spectral moments, while histogram-based functions performed

the worst.

Autofocusing for tissue specimens has also been investigated [12]. Four

categories of autofocus functions were evaluated: (1) frequency domain func-

tions, (2) gradient functions, (3) information content functions, and (4) gray-

level variance functions. They observed that the gray-level variance functions

performed best in the presence of noise but were less accurate in determining

the in-focus position.

As an alternative, to reduce photo damage and bleaching of fluorescently

labeled specimens, autofocusing with phase-contrast microscopy has been

evaluated [2], using the same set of 11 autofocus functions mentioned earlier [5].

A significant difference was observed between the two in the best in-focus

position. Nevertheless, the difference was sufficiently constant to allow for

correction.

A theoretical study of autofocusing in brightfield microscopy [9] found that

the signal power in the middle frequencies, instead of that at the high-frequency

end, is most affected by defocus and should be used in the autofocus function.

They also found that the signal-sampling density significantly influences the

performance of autofocus algorithms.

A recently published algorithm uses signal power computed after convolving

the image with a first-order derivative of Gaussian (DoG) filter. This technique

is intended to be generally applicable to several light microscopy modalities,

including fluorescence, brightfield, and phase-contrast microscopy, and on

a large variety of specimen types and preparation methods. However, the

algorithm utilizes an exhaustive search method for finding the in-focus position,

presumably to circumvent problems caused by noise in the computed autofocus

function values.
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Another study systematically evaluated 13 autofocus functions for FISH

studies of counterstained nuclei [14]. Using a proposed figure-of-merit criterion

that weighs five different characteristics of an autofocus function, it reported

that functions based on correlation measures have the best performance for the

specific images studied.

The autofocus functions just mentioned can be categorized into methods

based on (1) edge strength, (2) contrast, (3) autocorrelation, and (4) the Fourier

spectrum of an image. Table 16.1 tabulates these functions along with their

definition and references. In this table the image is represented by gi, j, where

i and j are the spatial coordinates, g is the pixel intensity, Gx and Gy are the first-

order derivative of Gaussian filters in the x and y directions, n is the number of

pixels in the image, H(k) is the gray-level histogram at level k, the superscript T

indicates the matrix transpose, and * indicates the convolution operation.

Several of the listed autofocus functions have been patented, including

F4, F6, F7, andF9. According to previously published studies, the best-performing

autofocus function for fluorescence microscopy is F4. For brightfield micro-

scopy however, F1, F2, F3, and F5 are recommended, although F7 performs

best in the presence of noise but suffers from lower accuracy. The recently

patented autofocus function F6 reportedly achieved very good performance

on several light microscopy modalities, including fluorescence, brightfield, and

phase-contrast microscopy, when performed with an exhaustive z-axis search.

In general, one observes that there are a number of approaches to com-

puting an autofocus function, and one that works well for a particular imaging

modality, sampling density, and specimen type might not work well for another

configuration.

16.2.3 Autofocus Func t ion Sampl ing
and Approximat ion

In order to locate the in-focus position, one needs to find the z-axis position where

the autofocus function reaches its maximum. The brute-force approach is to

search exhaustively over the z-axis range that is known to include the maximum

autofocus function value. In many applications, however, due to speed consider-

ations and time constraints for limiting specimen light exposure, the search is

better done in stages. The autofocus function is first coarsely sampled at sparse

intervals over a wide range along the z-axis. The search is then narrowed to

a smaller range with finer sampling. At each stage, a unimodal curve, such as

a parabola, is fitted to the set of autofocus function values. This allows one to

identify a smaller z-axis interval that contains the maximum autofocus value.

In the finest iteration, the peak of the fitted curve is taken as the point of focus.

One advantage of curve fitting is that it tends to smooth out irregularities in the

autofocus function values. Two such techniques are discussed next.
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TABLE 16 .1 Summary of existing microscope autofocus functions

Autofocus Function Description References

F1 ¼
P
ij

([�1, 2, �1] � gi, j)2 Laplacian [5]

F2 ¼
P
ij

([1, 0, �1] � gi, j)2 Brenner’s function [2, 7–9, 13, 14]

F3 ¼
P
ij

([1, �1] � gi, j)2 Squared gradient [2, 5, 9, 13, 14]

F4 ¼
P
ij

gi, jgiþ1, j �
P
ij

gi, jgiþ2, j Autocorrelation [2, 7, 14]

F5 ¼
P
ij

�1 0 1

�2 0 2

�1 0 1

2
4

3
5 � gi, j

0
@

1
A

2

þP
ij

1 2 1

0 0 0

�1 �2 �1

2
4

3
5 � gi, j

0
@

1
A

2 Tenengrad function [12, 14]

F6 ¼
P
ij

[(Gx � gi, j)2 þ (Gy � gi, j)2] Derivative of Gaussian [11, 13]

F7 ¼
P
ij

(gi, j � �g)2 Variance [5, 8, 12, 14]

F8 ¼ 1
�g

P
ij

(gi, j � �g)2 Normalized variance [5, 14]

F9 ¼ 1
n(n�1)

n
P
ij

p2i, j �
P
ij

pi, j

 !2
0
@

1
A

where

pi, j ¼
�1 �1 �1

�1 9 �1

�1 �1 �1

2
4

3
5 � gi, j

Contrast

[2]

F10 ¼ max {k jHk > 0}�min {k jHk > 0},

Hk denotes the number of pixels with gray level k.

Range of maximum and

minimum gray levels

[8, 14]

F11 ¼
P
k

Pk log10 (k),

Pk is the percent power in the kth spectral component.

Fourier spectral moment [8]

4
4
6

1
6

A
u
to
fo
cu

sin
g



16.2 .3 .1 Gaus s i an F i t t i ng

The properties of the Gaussian function make it useful for fitting the autofocus

function data. Suppose f1, f2, and f3 are the autofocus function values measured

at z1, z2, and z3, respectively:

f1 ¼ f (z1), f2 ¼ f (z2), f3 ¼ f (z3), z1 6¼ z2 6¼ z3 (16:1)

Then the fitted Gaussian and its maximum value are

f (z) ¼ A exp � (z� m)2

2s2

 !
and fmax(z) ¼ f (m) ¼ A (16:2)

The problem is to find m, which is the z coordinate that corresponds to fmax.

Since we have

ln ( fi) ¼ ln (A)� (zi � m)2

2s2
where i ¼ 1, 2, 3 (16:3)

and

ln ( f2)� ln ( f1) ¼ (z1 � m)2 � (z2 � m)2

2s2

ln ( f3)� ln ( f2) ¼ (z2 � m)2 � (z3 � m)2

2s2

(16:4)

The solution can be derived as

m ¼
1

2

B � (z3 þ z2)� (z2 þ z1)

B� 1
, if (z3 � z2) ¼ (z2 � z1)

1

2

B � (z23 � z22)� (z22 � z21)

B � (z3 � z2)� (z2 � z1)
, otherwise

8>><
>>:

,

where B ¼ ln ( f2)� ln ( f1)

ln ( f3)� ln ( f2)

(16:5)

16.2 .3 .2 Parabo la F i t t i ng

For broadly shaped autofocus function curves, using a parabola-fitting approxi-

mation may be more appropriate. Again assuming f1, f2, and f3 are sampled

autofocus function values, a best-fitting parabola function and its maximum

value can be defined by

f (z) ¼ �C(z� y)2 þD, fmax(z) ¼ f (y) ¼ D, C > 0 (16:6)
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where C and D are constants and y is the z coordinate corresponding to fmax.

Since we have the relationships

f3 � f2 ¼ C[(z2 � y)2 � (z3 � y)2] (16:7)

and

f2 � f1 ¼ C[(z1 � y)2 � (z2 � y)2] (16:8)

we can derive the solution to the problem as

y ¼
1

2

E � (z3 þ z2)� (z2 þ z1)

E � 1
, if (z3 � z2) ¼ (z2 � z1)

1

2

E � (z23 � z22)� (z22 � z21)

E � (z3 � z2)� (z2 � z1)
, otherwise

8>><
>>:

,

where E ¼ f2 � f1

f3 � f2

(16:9)

16.2.4 F ind ing the In-Focus Imaging Pos i t ion

As discussed earlier, autofocus function approximation by curve fitting

can expedite finding the in-focus position by narrowing the search to a smaller

z-axis range within which the maximum of the fitted curve is located. This way

an exhaustive search [11, 13] over the entire focal range is avoided. However, the

fitted curve is based on a small number of sampled points and thus provides only

a coarse approximation of the underlying autofocus function. Thus the peak of

the fitted unimodal curve may not coincide with the maximum of the autofocus

function. To improve accuracy, one can perform a secondary sampling and

refined curve fitting over a reduced focal range. Determination of the actual in-

focus position can be achieved by searching around the area where the max-

imum autofocus function value is predicted to be. As an alternative to curve

fitting, the position of the maximum autofocus function value can be found via

an optimal search algorithm. For example, the hill-climbing method has been

used to speed up the process for finding the in-focus position [9]. Fast search

algorithms, such as the Fibonacci method, have also been used to speed up the

autofocusing process [12]. While the hill-climbing algorithm is known for its

simplicity and speed, it is not always accurate. The Fibonacci search algorithm

has been shown to be optimal, with guaranteed precision for unimodal curves.

16.3 Mult iresolut ion Autofocusing

A common attribute of the autofocusing methods described earlier is that the

measurement and search procedures are performed based on image analysis
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done only at the resolution of the captured images. There are several shortcom-

ings associated with single-resolution techniques. First, noise in microscope

images largely manifests itself at the higher frequencies. Computing focus

measures on images at full resolution can produce a noisy autofocus function

and may lead to inaccurate determination of the in-focus position. Second, due

to the possibility of multiple peaks on noisy autofocus functions, fast search

algorithms may find a local maximum rather than the global maximum.

To avoid this, exhaustive search would have to be performed, and this requires

capturing and processing considerably more images along the z-axis. Such

a solution is unacceptable in exposure-sensitive applications. Photobleaching,

for example, poses stringent constraints on exposure time, prohibiting exces-

sively repeated imaging of fluorescence specimens. Third, the processing speed

of an autofocusing algorithm depends primarily on the number of pixels

involved in the computations. Calculating autofocus function values always at

full resolution involves a much larger number of pixels than computing them at

a lower image resolution.

To address these issues, a new approach, based on multiresolution image

analysis, has been introduced for microscope autofocusing [18]. Unlike the

single-resolution counterparts, the multiresolution approach seeks to exploit

salient image features from image representations not just at one particular

resolution, but across multiple resolutions. The image features and autofocus

functions associated with different resolutions are utilized to facilitate highly

flexible and efficient multiresolution autofocusing methods.

16.3.1 Mul t i reso lu t ion Image
Representat ions

Many known image transforms, such as the Laplacian pyramid, B-splines, and

wavelet transforms (Chapter 7), can be used to generate multiresolution repre-

sentations of microscope images. Multiresolution analysis has the following

characteristics: (1) Salient image features are preserved and are correlated across

multiple resolutions, whereas the noise is not; (2) it yields generally smoother

autofocus function curves at lower resolutions than at full resolution; and (3) if

the autofocus measurement and search are carried out at lower resolutions, the

computation can be reduced exponentially.

These characteristics are illustrated by the examples given here. Figure 16.2

shows an in-focus (left) and an out-of-focus (right) image of a DAPI-counter-

stained FISH specimen represented at three different resolutions using a wavelet

transform. The differences between the in-focus and out-of-focus images are

remarkable and can be observed even at the lowest resolution. It is clear from

these images that, in order to determine whether the images are in focus or not,

the use of the high-resolution image is unnecessary because the lower-resolution
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images provide just as much information to arrive at the same decision. This

observation can lead to a substantial saving of autofocusing time because the

computation of the autofocus function value can be carried out on images of

exponentially smaller size. Furthermore, the autofocus function curves meas-

ured from lower-resolution images also appear to behave better than those

measured at full resolution. Figure 16.3 shows a 3-D plot of a wavelet-based

autofocus function measured along the z-axis and across different image reso-

lutions. Clearly the lower the image resolution is (i.e., at higher image scale),

the less noisy the autofocus curve becomes. Such a characteristic property of

autofocus function can be exploited to design highly efficient multiresolution

autofocusing algorithms.

F IGURE 16.2 An in-focus (left) and an out-of-focus (right) view of a DAPI-counterstained FISH specimen
represented at three different resolutions.
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F IGURE 16.3 Three-dimensional illustration of a wavelet-based autofocus function measured along the
z-axis (in micrometers) and across different image resolutions. Image scale from 0 to 7 corresponds to images
from high to low resolution.
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16.3.2 Wavele t -Based Mul t i reso lu t ion
Autofocus Func t ions

A wavelet-transform-based method to compute autofocus functions at multiple

resolutions is described here [18]. If we denote the 2-D wavelet transform as

Wk
2 j I(x, y) ¼ (I � c k

2 j )(x, y), j ¼ 0, 1, . . . , J, k ¼ 1, 2, 3 (16:10)

whereWk
2 j I(x, y) is the wavelet transform of an image I(x, y) at resolution j and

in subband k, c k
2 j is the corresponding wavelet, and J is the minimum resolution

(i.e., maximum decomposition) level to be computed, then the wavelet-based

autofocus function at resolution j is computed as the sum of the squared values

of the wavelet coefficients at resolution j; that is,

f ¼
X
k

X
x

X
y

Wk
2 j I(x, y)

� �2
, while Wk

2 j I(x, y)
�� �� $ � (16:11)

Here � is a threshold value that can be determined empirically. Depending on

which wavelet filters are used in the wavelet transform, different multiresolution

autofocus function measurements can be obtained with this computation

procedure.

16.3.3 Mul t i reso lu t ion Search for
In-Focus Pos i t ion

To some extent, the multiresolution microscope autofocusing method resembles

the process that experienced microscopists use to focus a microscope manually.

In general, a technician will switch between different magnification objective

lenses to look for and focus on specimen objects more quickly, rather than using

a single objective lens.

With multiresolution autofocus function measurements, the sampling and

approximation techniques discussed in Section 16.2.3 are applied to search more

efficiently for the in-focus imaging position. The multiresolution search algo-

rithm described next combines hill climbing with the Gaussian approximation to

locate the in-focus position at a coarse scale (i.e., low resolution) and combines

the Fibonacci algorithm with the parabola approximation to determine the best

in-focus position at a fine scale (i.e., high resolution). The steps are:

1. Compute the autofocus function, f, using Eq. 16.11 from the wavelet

coefficients at a coarse scale (low resolution) of an image captured at an

initial position z0.

2. Apply the hill-climbing algorithm to locate three reference z-axis

positions where f1, f2, and f3 cover a wide range encompassing the peak
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of the autofocus function curve. That is, the middle value is larger than

either of the endpoints.

3. Use these three points to compute the Gaussian approximation to predict

the coarse-scale in-focus position, m, using Eq. 16.5, and capture an

image there.

4. Compute the autofocus function, f, using Eq. 16.11, but this time use the

wavelet coefficients at a fine scale (high resolution) of the image captured

in step 3.

5. Apply the Fibonacci algorithm at high resolution to locate three new

reference z-axis positions, where f1, f2, and f3 are now closer together but

still cover the in-focus peak of the autofocus function curve.

6. Use these three points to compute the parabola approximation to find the

fine-scale in-focus position, y, using Eq. 16.9.

Figures 16.4 and 16.5 demonstrate the multiresolution autofocusing tech-

nique just described. Figure 16.4a shows the result of the Gaussian fitting

(dashed line), based on the f1, f2, and f3 that are computed from three low-

resolution images shown in Figs. 16.4b, 16.4c, and 16.4d, respectively. Corre-

spondingly, Fig. 16.4e shows the result of the parabola fitting (dashed line)

based on the f1, f2, and f3 computed from three high-resolution images shown

in Figs. 16.4f, 16.4g, and 16.4h, respectively. Figure 16.5a illustrates the process

of multiresolution search for the in-focus z-axis position, and Fig. 16.5b displays

the image acquired at the predicted fine-scale in-focus position y.
Because only low-resolution images are used in the coarse search, the com-

putational cost for the autofocus function is significantly reduced. Besides,

during the coarse search, the hill-climbing algorithm is applied to a smoother

curve, and this avoids the problems with local maxima. During the fine search,

however, the autofocus function is computed from high-resolution images to

ensure focusing accuracy, and the Fibonacci search is conducted over the near-

focus region of the autofocus function curve, which is typically unimodal.

16.4 Autofocusing for Scanning
Microscopy

Scanning microscopy is frequently used for high-throughput screening applica-

tions, where a large number of specimens must be imaged and analyzed. For

slide-based scanning microscopy, it is important to take into consideration

stage- and sample-based focus variations as the system scans across multiple

fields of view on the microscope slide. Experience has shown that it is impossible
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F IGURE 16.4 Sampling and curve fitting of the autofocus function at both coarse and fine scale.
(a) Result of the Gaussian fitting (dashed line) based on the three sampled autofocus function values that are
computed from the low-resolution images shown in (b), (c), and (d), respectively. (e) Result of the parabola
fitting (dashed line) based on the three sampled autofocus function values computed from the high-resolution
images shown in (f), (g), and (h), respectively.
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F IGURE 16.5 (a) Illustration of a multiresolution search for the in-focus position. (b) The image acquired
at the predicted fine-scale in-focus position.
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to maintain focus by relying on the in-focus position of any one location or

simply by finding the in-focus positions at two locations on a slide and scanning

along the line between them [2]. Even with careful microscope stage calibration,

variations in focus over a scan area will still exist, due to such factors as

mechanical instability of the microscope, irregularity of glass slide surfaces,

and presence of artifacts and debris.

Moving between adjacent fields of view normally requires only a slight

change of focus. This can be exploited in the design of an efficient autofocusing

algorithm for scanning microscopy. After finding the in-focus position for one

field of view, it can be taken as the starting position for the adjacent field of view

because it is unlikely to be very different. If, for some reason, a large discrepancy

occurs between the in-focus positions of adjacent fields, it signals what is likely

to be a focusing error that needs to be corrected.

Another practical issue concerning the efficiency of an automated scanning

microscope is the detection and handling of empty, or ‘‘blank’’ fields that

contain no material. It is a waste of time and resources to attempt to focus on

these fields or even to record their images. These empty fields can be identified by

their narrow histogram and low focus function value. If the first image captured

at a particular location indicated a blank field, then no further processing is done

at that location. It is sometimes possible to identify ‘‘junk’’ fields by their

histograms and focus values as well.

16.5 Extended Depth-of-Field
Microscope Imaging

One of the fundamental problems that plagues automated microscopy

originates from specimens thicker than the depth-of-field (DOF) of the micro-

scope objective lens. Images acquired under these circumstances are usually of

low quality because the objects cannot be brought completely into focus. Blur-

ring introduced by objects that lie outside the in-focus plane affects the accuracy

of image segmentation and measurement. Quantitative analysis is prone to error

due to the presence of blurred image information.

A number of techniques have been developed to overcome the inherent

limitations caused by out-of-focus objects in a three-dimensional specimen

that is imaged with a two-dimensional system. These include both hardware-

and software-based methods for extendedDOF imaging. ExtendedDOF images

increase the amount of accessible structural information available in microscope

images of thick specimens.

A well-known hardware-based method, referred to as wavefront coding,

incorporates both optical modifications to the microscope and subsequent

digital image processing. A custom-made optical component, known as the
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cubic-phase plate, is inserted into the optical path. An image captured with this

modified microscope appears distorted. It can be modeled as a filtered image,

where the filter kernel is approximately invariant to defocus. A digital inverse filter

is applied to the captured image to produce the effect of extended DOF [19].

By contrast, software-based methods generally resort to digital image fusion

to generate a single composite image from a set of optical section images that

have been captured across a range of focal distances around the best in-focus

position. These optical section images are usually captured along the z-axis, with

a translation step Dz no larger than the DOF of the objective lens. Each image is

intended to contain some portions of the specimen in focus, and the whole set of

images covers the desired range of focal depth. The following sections discuss

software-based methods. Readers interested in hardware-based methods are

referred to [19, 20] for further information.

16.5.1 Dig i ta l Image Fus ion

Digital image fusion is the technique of combining information from multiple

images into one composite image. An implicit assumption used by most image

fusion techniques is that all input images are registered, which means that each

physical component is aligned to the same location in all of the images. For

extended DOFmicroscope imaging, since all optical section images are captured

from the same field of view, albeit at different focal planes, such an assumption

can be easily met.

The central idea of image fusion methods for extended DOF microscope

imaging is to select, from different optical section images, those pixels or regions

that contain the most in-focus information, because in-focus components con-

tain more structural information than out-of-focus components. The amount of

information in a region or component of an image is usually estimated by

a quantitative focus measure, which is now a 2-D function of (x, y) location in

the image. Notice that this differs from the autofocus functions discussed in

previous sections, which are 1-D functions of z alone and are computed from the

entire image. A 2-D fusion map is generated to indicate, at each (x, y) position,

which one of the optical section images has the highest focus measure. This

fusion map is used to determine from which optical section image that compon-

ent in the composite image should be gathered. Finally the selected components

from all corresponding optical section images are assembled, according to the

fusion map, to form the extended DOF image.

Given a set ofN optical section images, as I1(x, y), I2(x, y), . . . , IN(x, y), the
component focus measure for each of these images at location (x, y) is

Rn(x, y), n ¼ 1, 2, . . . , N. The fusion map is then defined as

M(x, y) ¼ argmax
n

Rn(x, y)j j, n ¼ 1, 2, . . . , N (16:12)

455

16.5 Extended Depth-of-Field Microscope Imaging



which is an index function with integer value ranging from 1 to N. The

composite image resulting from image fusion is given by

I 0(x, y) ¼
[

n¼M(x, y)
In(x, y)f g (16:13)

The preceding discussion assumes single-channel grayscale images. For

RGB images, a color-space transformation should first be performed to convert

the images from RGB to another space, such as the YUV or principal compon-

ent analysis (PCA) space. Then the component focus measure, Rn(x, y), is

computed using only one grayscale image from the transformed space (such as

the luminance or the first principal component), since this image encodes most

focus-relevant information. Subsequently, the fusion map is generated based on

this grayscale image, and it is used to assemble the fused image from the stack of

RGB images. In the following sections, three different image fusion schemes for

extended DOF microscope imaging are described.

16.5.2 Pixe l -Based Image Fus ion

In pixel-based image fusion schemes, the component focus measure Rn(x, y) is

computed at each pixel coordinate (x, y) and then compared among all optical

section images In(x, y), n ¼ 1, 2, . . . , N. A representative approach [21] is

described here. Pixels are selected out of different optical section images based

on a maximum or minimum selection rule and fused together to form the

composite image. Specifically,

Rn(x, y) ¼ In(x, y)� Imean(x, y)j j (16:14)

Q(x, y) ¼ Imax(x, y)� Imean(x, y)j j � Imin(x, y)� Imean(x, y)j j (16:15)

where

Imax(x, y) ¼ max I1(x, y), I2(x, y), . . . , IN(x, y)f g,
Imin(x, y) ¼ min I1(x, y), I2(x, y), . . . , IN(x, y)f g

Imean(x, y) ¼ 1

N

XN
k¼1

Ik(x, y)

For each pixel, the composite image I 0(x, y) is assembled with either Imax(x, y)

or Imin(x, y), depending on whether Q(x, y) $ 0 or Q(x, y) < 0. This simple

approach has been widely used over the years. However, pixel-based methods

have the problem that they ignore the context of the underlying physical

structure of objects when fusing the images. For instance, neighboring pixels

are likely to correspond to portions of the same object. Therefore, these portions
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normally should come from the same or neighboring planes. However, a pixel-

based method might choose adjacent pixels from widely separated planes and

thus generate an inaccurate image.

16.5.3 Neighborhood-Based Image Fus ion

With neighborhood-based image fusion schemes, the component focus measure

Rn(x, y) is computed based on a set of neighboring pixels [22] instead of

individual pixels as in the pixel-based schemes. Several such methods have

been studied in the past. The first type of methods uses differential or gradient

operations to process the images and characterize their focus measure. For

example a 3 � 3 differential operator has been used [21]. Each optical section

image is convolved with this operator to generate the component focus measure:

Rn(x, y) ¼ In(x, y)
�

�1 1 1

�1 0 1

�1 �1 1

2
4

3
5 (16:16)

Since the differential operation detects abrupt image intensity changes such as

edges, the value of Rn(x, y) is closely related to the strength of image edges. The

assembly of the composite image is straightforward using Eqs. 16.12 and 16.13.

The second type of neighborhood-based schemes takes into consideration

some form of image variance in a neighborhood of every pixel when the optical

section images are fused. One algorithm uses the regional coefficient of variance

of a 5 � 5 area [22]. The component focus measure in this case is defined as the

squared coefficient of variance based on the values of the pixels in the area. It is

computed by

Rn(x, y) ¼

P2
i¼�2

P2
j¼�2

In(xþ i, yþ j)� �In(x, y)
2

� �
�In(x, y)

2
(16:17)

where

�In(x, y) ¼ 1

25

X2
i¼�2

X2
j¼�2

In(xþ i, yþ j)

Thus the pixels with the maximum regional variance over the entire stack

of optical section images contribute to the formation of the resultant

composite image.

While the preceding neighborhood-based schemes take into consideration

the information in the surrounding region of pixels, the rectangular spatial
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context models are still somewhat restrictive. A good neighborhood-based

image fusion scheme requires knowledge about the physical structure of the

objects in the specimen in order to determine their boundaries. However, to

incorporate segmentation of image regions into the fusion process significantly

increases the complexity of the algorithm.

16.5.4 Mul t i reso lu t ion Image Fus ion

Multiresolution-based image fusion schemes employ multiscale image trans-

forms and have an intermediate level of complexity between the pixel-based

and the neighborhood-based approaches [23–25]. Unlike the pixel-based ap-

proach, a fusion decision made on a transform coefficient in the low-resolution

representation can affect a number of pixels instead of just one. On the other

hand, contrary to the neighborhood-based approach, defining precise boundar-

ies of neighborhoods is rarely required in order to obtain good performance.

The early studies of multiresolution image fusion were based on pyramid

transforms [26, 27]. More recently, however, discrete wavelet transforms have

gained popularity because of their sound underlying mathematical theory and

the availability of fast algorithms [28, 29]. Image fusion methodology based on

the wavelet transform has been described [24], in which a wavelet transform was

performed on each of the images to be fused. The coefficient of maximum

absolute value was selected at each pixel, and these were combined into one

transform coefficient image. An inverse wavelet transform then generated the

fused image. The results were found to be better andmore stable than techniques

based on the Laplacian pyramid transform [24]. One disadvantage of discrete

wavelet transforms, though, is shift variance. To overcome this problem, the use

of overcomplete wavelet transforms with shift invariance has been introduced

[23]. More recently, the study using complex wavelet transforms for the same

purpose was also reported [25].

Generally, a multiresolution image fusion scheme can be summarized by the

block diagram shown in Fig. 16.6. Unlike previously discussed single-resolution

techniques, with a multiresolution scheme the computations of the component

Component Focus
Measurement

Multiresolution
Transform

Inverse Multiresolution
Transform

Fusion Map
Generation

Fusion
Input

Images
Fused
Image

F IGURE 16.6 Block diagram of a general scheme for multiresolution image fusion.
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focus measure, the fusion map, and the composite image are all carried out on

the coefficient data resulting from the multiresolution transform. For image

fusion based on the wavelet transform, we denote the 2-D wavelet transform as

S2 J I(x, y) ¼ (I � f2j )(x, y)

Wk
2 j I(x, y) ¼ (I � ck

2j )(x, y)

�
, j ¼ 0, 1, . . . , J, k ¼ 1, 2, 3 (16:18)

where S2J I(x, y) is the scaling component of the transform, f2j is the corre-

sponding scaling function,Wk
2 j I(x, y) is the wavelet component of the transform

on image I(x, y) at resolution j and in subband k, c k
2 j is the corresponding

wavelet, and J is the minimum resolution (i.e., maximum decomposition) level

to be computed. The component focus measure at (x, y) based on the wavelet

transform of the nth optical section image at resolution j and in subband k is

computed as

Rn(x, y, 2
j, k) ¼ Wk

2j
In(x, y)

�� ��, k = 1, 2, 3

S
2J
In(x, y)

�� ��, k = 0

�
(16:19)

where j ¼ 1, 2, . . . , J and n ¼ 1, 2, . . . , N. Correspondingly, the fusion map is

M(x, y, 2j, k) ¼ argmax
n

Rn(x, y, 2
j, k)

� 	
, j ¼ 0, 1, . . . , J,

k ¼ 1, 2, 3, n ¼ 1, 2, . . . , N
(16:20)

The actual image fusion is carried out by assigning the jth-level, kth-subband

component of the fused wavelet transform coefficient image as

S2J I
0(x, y) ¼ S2J In(x, y)

Wk
2 j I

0(x, y) ¼ Wk
2j
In(x, y)

�
, j ¼ 0, 1, . . . , J, k ¼ 1, 2, 3,

n ¼ M(x, y, 2 j, k)

(16:21)

Finally the fused composite image I 0(x, y) is obtained via an inverse wavelet

transform.

16.5.5 Noise and Art i fac t Cont ro l in
Image Fus ion

Most image fusion methods are formulated based on the underlying assumption

that the important information content of an image corresponds to abrupt

changes in the image. Thus, almost all focus measures represent various estimates

of the strength of high-frequency components in the image. In practice, however,

such an assumption and any estimates derived using it are prone to error because
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noise tends to weigh significantly in the high-frequency end of the image spectrum.

As a result these methods tend to boost image noise and artifacts.

16.5 .5 .1 Mu l t i s ca l e Po in tw i se P roduc t

A new image fusion scheme for extended DOF microscope imaging that

responds well to image signals but is insensitive to noise has been described

[30]. Similar to the schemes described in Section 16.5.4, this form of image fusion

is performed in the wavelet domain. However, the component focus measure in

this case is not just a simple estimate of the strength of high-frequency energy,

but an adaptive measure constrained by a multiscale pointwise product (MPP,

defined shortly) criterion. This technique enables filtering of the high-frequency

wavelet transform coefficients so that image signals, rather than noise, are

included in the focus measure. This originates from the fact that the MPP

criterion naturally discourages the selection of noise components while

enforcing the selection of image signal components.

Specifically, the MPP approach uses an overcomplete cubic spline wavelet

transform to decompose the optical section images into their multiresolution

image representations that are shift invariant [30]. The forward and inverse

transforms can be implemented very efficiently, for only additions and bit shift

operations are required [31]. Given an optical section image I(x, y), the jth-level

decomposition of the forward transform is defined as

S2j I(x, y) = S2j�1I(x, y) � (h, h)"2 j�1

W 1
2j I(x, y) = S2j�1I(x, y) � (g(2), d )"2 j�1

W 2
2j I(x, y) = S2j�1I(x, y) � (d, g(2))"2 j�1

W 3
2j
I(x, y) = S2j�1I(x, y) � (g(1), g(1))"2 j�1

8>><
>>:

(16:22)

where S1I(x, y) ¼ I(x, y) and �(h, g)"2j�1 represents the separable convolution of

the rows and columns of the image with 1-D filters [h]"2j�1 and [g]"2j�1 , respect-

ively; [h]"m represents the up-sampled sequence of the filter {h(n)} by an integer

factorm in general; and the symbol d denotes the Dirac delta function with value

1 at the origin and zero elsewhere. The image can be recovered with the

following reconstruction formula of the inverse transform:

S2j�1I(x, y) ¼ W 1
2 j I(x, y) � (~g(2), u)"2 j�1 þW 2

2 j I(x, y) � (u, ~g(2))"2 j�1

þW 3
2 j I(x, y) � (~g(1), ~g(1))"2 j�1 þ S2 j I(x, y) � (~h, ~h)"2 j�1

(16:23)

Details on the filters used for decomposition and reconstruction in the cubic

spline wavelet transform can be found in [31]. Under wavelet-based multiresolu-

tion representations, image signals of specimen objects are observed generally

to have strong correlation across multiple scales, whereas noise components
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do not. This observation has motivated the introduction of MPP [32], which is

defined as

MPP(x, y, k) ¼

QJ
j¼1

S2j I(x, y), k = 0

QJ
j¼1

Wk
2j
I(x, y), k = 1, 2, 3

8>>><
>>>:

(16:24)

where MPP(x, y, k) represents the MPP for the wavelet transform at (x, y) in

subband k and J is the number of wavelet decomposition levels computed. Since

the MPP only reinforces the responses from image signals, its magnitude is small

for noise components. Thus its absolute value naturally becomes a desired com-

ponent focus measure for image fusion. To fuse a set of N optical section images

I1(x, y), I2(x, y), . . . , IN(x, y), theMPP-based fusion map can be generated as

M(x, y, k) ¼ argmax
n

MPPn(x, y, k)j jf g, k ¼ 0, 1, 2, 3 (16:25)

The image fusion is carried out by assigning the jth-level, kth-subband component

of the fused wavelet transform coefficient image as

S2J I
0(x, y) ¼ S2J In(x, y)

Wk
2 j I

0(x, y) ¼ Wk
2 j In(x, y)

�
, j ¼ 0, 1, . . . , J,

k ¼ 1, 2, 3, n ¼ M(x, y, k)

(16:26)

With the MPP focus measure incorporating a thresholding mechanism into

the fusion process, it can easily accommodate further denoising. Since a low

MPP does not represent an image signal, high-frequency coefficients from the

optical section images are not included if the corresponding MPP value is too

low [32]. We can achieve greater denoising by replacing Eq. 16.26 with

S2J I
0(x, y) ¼ S2J In(x, y)

Wk
2j
I 0(x, y) ¼ Wk

2j
In(x, y), max

n
MPPn(x, y, k)j jf g > T

0, otherwise

(
8><
>: (16:27)

where j ¼ 0, 1, . . . , J, k ¼ 1, 2, 3, n ¼ M(x, y, k), and T is a threshold param-

eter that can be empirically determined based on the number of decomposition

levels computed and the wavelet filter kernel used.

16.5 .5 .2 Cons i s t en cy Che ck ing

Since most object structures in the image are larger than one pixel, the pixel-

based maximum selection rule for generating the fusion map may lead to

unnatural results or even artifacts. It is intuitively more appealing to have pixels
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within a certain part of an object coming from the same image rather than from

different images. Consistency checking can be applied to refine the fusion map

for this purpose. For example, a simple majority filter with different kernel sizes

can improve image fusion performance [23]. The fusion map can be smoothed

by repeatedly applying a 3 � 3 median filter until it no longer changes [33].

16.5 .5 .3 Reas s i gnmen t

On the other hand, as a consequence of selecting maximum absolute value

coefficients in the wavelet domain, the fusion may yield results that are ‘‘non-

convex’’ combinations of the pixel values of the input images [25]. In such a case

the resulting composite image will have pixels with values outside the dynamic

range of all the input images. The increased dynamic range is likely to cause

saturation and can boost energy and noise. To address this problem, a reassign-

ment algorithmas a postprocessing stepwas introduced in [25], where outliers are

eliminated and the closest available values from the input images are selected

instead. Computationally, the reassignment algorithm can be expressed as

I 00(x, y) ¼
[
k

Ik(x, y)f g, k ¼ arg
n

min I 0(x, y)� In(x, y)j jf g (16:28)

In this case the final composite image I 00(x, y) is reassigned with the pixel values

present in the input data that are closest to the pixel values of the fused image

I 0(x, y).

16.6 Examples

This section presents examples of extended DOF microscope images based on

the digital image fusion methods described in this chapter. Figure 16.7 shows the

extended DOF images of a brightfield microscope specimen. The top left picture

is the original image, selected as the most in-focus image from a stack of optical

sections. The remaining pictures display the results of various image fusion

methods. In Fig. 16.8, extended DOF images of a fluorescence microscope

specimen are shown. Again the top left is the selected most in-focus image

of an optical section stack, whereas the image fusion results are shown for

comparison in the remaining pictures.

16.7 Summary of Important Points

1. In addition to facilitating automation of imaging,microscope autofocusing

enables objective, accurate, and consistent image measurements for

quantitative analysis.
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2. A microscope autofocusing system determines the in-focus imaging

position of a given field of view by searching for the maximum of an

autofocus function.

3. Autofocus function approximation by curve fitting can expedite the

search for the in-focus position by narrowing down the search to

a smaller focal range within which the maximum of the fitted curve is

located.

4. To expedite the search for the in-focus position, one can use a fast search

method, such as the hill-climbing or the Fibonacci algorithm, to carry out

the search efficiently instead of relying on an exhaustive search method.

F IGURE 16.7 Examples of extended DOF images generated by the digital image fusion methods
described in the text. The top left is the original image of a brightfield microscope specimen, selected as the
most in-focus image from a stack of optical section images. The top right is the result of pixel-based image
fusion. Themiddle left is the result of neighborhood-based image fusion using a 3�3 nondirectional differential
operator. The middle right is the result of neighborhood-based image fusion using a 5 � 5 coefficient of
variance operator. The bottom left is the result of wavelet-based multiresolution image fusion. The bottom
right is the result of MPP multiresolution image fusion.
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5. Compared with single-resolution methods, an multiresolution approach

utilizes salient image features and autofocus functions across multiple

resolutions to enable autofocusing. The process facilitates a highly flexible

search algorithmoperatingat anexponentially reduced computational cost.

6. For slide-based scanning microscopy, it is important to take into consid-

eration stage- and sample-based variations as the system scans across

multiple fields of view on the microscope slide. The spatial constraints of

specimen objects that extend across adjacent fields of view can be

exploited in the design of an efficient autofocusing algorithm and for

detection of focus errors.

F IGURE 16.8 More examples of extended DOF images generated by the digital image fusion methods
described in the text. The top left is the original image of a fluorescence microscope specimen, selected as the
most in-focus image froma stack of optical section images. The top right is the result of pixel-based image fusion.
The middle left is the result of neighborhood-based image fusion using a 3 � 3 nondirectional differential
operator. The middle right is the result of neighborhood-based image fusion using a 5 � 5 coefficient of
variance operator. The bottom left is the result of wavelet-basedmultiresolution image fusion. The bottom right is
the result of MPP multiresolution image fusion. This figure may be seen in color in the four-color insert.
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7. A fundamental problem in microscopy originates from imaging speci-

mens thicker than the DOF of microscope objective lens. Digital image

fusion provides an effective software-based solution by generating

extended DOF images that maximize the amount of accessible structural

information available in microscope images.

8. The central idea of applying digital image fusion to generate an

extended DOF microscope image is to assemble from different optical

section images the components that contain the most in-focus informa-

tion into a composite image. These optical section images should be

captured along the z-axis, with a translation step Dz that is no larger

than the DOF of the imaging system, and the whole set of images covers

approximately the desired focal depth of a specimen.

9. Pixel-based image fusion schemes are simple and do not make use of any

contextual information when fusing the images.

10. Neighborhood-based image fusion schemes take into consideration the

information in a surrounding region of each pixel.

11. Multiresolution-based image fusion schemes have an intermediate level

of complexity because fusion decisions are made on multiresolution

transform coefficients and can affect a number of pixels; therefore,

defining regions of neighborhoods is unnecessary.

12. One potential side effect of digital image fusion is the possible increase

in noise and artifacts in the fused image. These problems can be effect-

ively handled by incorporating denoising and consistency checking into

the fusion process. Furthermore, postprocessing steps can be taken to

refine the fused images by enforcing physical constraints.
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17
Structured Illumination Imaging

Leo G. Krzewina and Myung K. Kim

17.1 Introduct ion

In this chapter we explore the rich subset of light microscopy known as

structured illumination microscopy (SIM). In general, a SIM setup is one in

which the specimen is illuminated with a specific spatial pattern rather than

with uniform illumination. This is typically accomplished by a mask placed in

the optical path or by interference of one or more coherent sources. The

structured light pattern encodes additional information into the image beyond

what is available under full illumination. This comes at the cost of requiring

multiple exposures for full coverage of the specimen. Image processing is a key

component of SIM since it is essential to the process of decoding the information

in the image. SIM has proven to be highly successful, and it has rapidly

expanded, in both usage and variety. This chapter reviews one important SIM

illumination structure, the linear sinusoid, which illustrates the advantages and

limitations of SIM.

17.1.1 Convent iona l L ight Mic roscope

Use of the conventional light microscope (CLM) is constrained to objects

having a size scale no smaller than microns, due to the wavelength of visible

light. The lateral resolution of a diffraction-limited system depends on its

numerical aperture (NA) and the wavelength of the illumination (see Chapter 2).

The resolution at the focal plane is approximated by the Abbe distance,

Microscope Image Processing
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r0 � l

2NA
(17:1)

For example, with a central wavelength of l ¼ 550 nm and an NA of 1.4, the

lateral resolving power is about 0:2mm. This diffraction limit, however, can be

surpassed by using structured illumination [1, 2]. In theory at least, a SIM

microscope could approach unlimited lateral resolution [3].

When three-dimensional objects are examined, we must also consider reso-

lution along the optical axis. If the optical axis is along the z direction, the

in-focus region (the depth of field, DOF) is given approximately by

Dzfield � nl

NA2
(17:2)

where n is the index of refraction of the medium in which the object is immersed

(Chapter 2). As with lateral resolution, this is the diffraction-limited case. Thus,

to maintain focus throughout a thick object, a large DOF is required, and this

implies a lower NA. This is in conflict with high lateral resolution, as one can see

by comparing Eq. 17.1 and Eq. 17.2.

17.1.2 Sec t ion ing the Spec imen

One way to circumvent the problem of limited depth of field is by physical

sectioning, that is, cutting the object into slices thin enough to fit entirely within

the DOF, as shown in Fig. 17.1. This method, however, is destructive of the

F IGURE 17.1 In physical sectioning, the object is sliced into sections thinner than the DOF to maintain
focus. With optical sectioning, there is no need to destroy the specimen. (Rendering courtesy of Kratos
Productions.)
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specimen. For the same parameters used in the preceding example and with

n ¼ 1, the slices, or sections, should not be thicker than about 0:28mm. The

technique of optical sectioning (see Chapter 14) accomplishes the same result but

is implemented by optical means. Besides being physically nondestructive, it

avoids the inconvenience of slicing and preparing sample slides. Optical section-

ing can be done using only the inherently limited DOF of the objective lens, but

it can be made considerably more effective with SIM. Optical sectioning with

structured illumination offers other benefits besides improving axial and lateral

resolution. By including feedback and iteration, light structure can be optimized

to correct for uneven illumination [4].

17.1.3 St ruc tured I l luminat ion

Three basic approaches are employed in structured illumination microscopy to

improve specific characteristics of the microscope image.

1. Array confocal microscopy (ACM) illuminates the specimen with a rec-

tangular array of pinholes and senses the image with a CCD camera [5].

This approach obtains a narrow-depth-of-field image in a much shorter

time than a (single pinhole) confocal microscope requires.

2. A Ronchi ruling (one-dimensional grid) forms the illumination mask for

linear SIM [2, 3].

3. Dynamic speckle illumination (DSI) microscopy uses the speckle pattern

produced by two interfering coherent beams [1, 6].

Each of these methods requires digital processing of the image for its implemen-

tation. We now describe two forms of linear structured illumination. These

typically offer trade-offs in terms of speed of image acquisition, resolution,

cost, difficulty of implementation, and complexity of image processing.

In the late 1990s, the use of a linear sinusoidal light pattern for improved

resolution in both the axial and lateral directions was proven experimentally.

These both require a minimum of three frame acquisitions per image, along

with substantial image processing. This technique is addressed in more detail

later.

The seemingly random form of light structure known as speckle can be used

in SIM to discriminate depth in microscopic imaging. A speckle pattern is

composed of high-contrast light and dark areas and can be generated by either

incoherent or coherent illumination [6, 7]. The dynamic speckle illumination

approach exploits the speckle pattern that arises from constructive and destruc-

tive interference of a laser beam passing through thick objects [6]. This has the

advantage of being less susceptible to noise due to scattering within the object

than is linear structured illumination, and it maintains a wide field of view.
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It is also simple and inexpensive in comparison with confocal microscopes.

However, in order to obtain complete coverage of the object with good signal

strength, one must calculate the root mean square (RMS) of a large number of

images—up to 100 or more. Therefore, in fluorescence, DSI is most suitable for

thick specimens that are not highly susceptible to photobleaching.

17.2 Linear SIM Instrumentation

Figure 17.2 shows a schematic of a typical microscope setup for linearly sinus-

oidal SIM. A light-emitting diode (LED) illuminates a mask (GRID), which

adds structure to the beam. The structured light passes through a beam splitter

(BS) and is focused by a microscope objective (MO) on a plane conjugate to the

mask at the object or sample (S). Light scattered by the object passes back

through the microscope objective and beam splitter to be imaged on the camera,

often a charge coupled device (CCD), which is also in a plane conjugate to the

object. The camera is connected to a personal computer (PC), where image

processing is performed.

In other arrangements, the LED can be replaced by a different incoherent

source or by a coherent light source. In the latter case, a diffraction grating

generates a linear sinusoidal pattern with high light efficiency. This is significant

since the linear sinusoid is the most common structure used in SIM. The same

structure may be added under incoherent illumination by using a sinusoidal

mask in place of the GRID. The addition of structured illumination to fluores-

cence microscopes is another variation that has shown excellent results [8].

PC
CCD

GRID
L

LED

MO

S

BS

F IGURE 17.2 A sample structured illumination microscope setup.
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17.2.1 Spat ia l L ight Modula tor

A particularly versatile type of mask is the spatial light modulator (SLM). This

is an array of pixels that allows modulation of the phase or intensity of the light

over specific microscopic regions. Spatial light modulators are available in both

transmittance and reflectance modes. They are based on a variety of technolo-

gies, including microarrays of liquid crystals, mirror arrays, and light-emitting

diodes. For example, a micro-pixel array of light-emitting diodes has demon-

strated effectiveness for structured illumination [9]. For our purposes the

important feature is that generating a mask with the SLM is no more difficult

than displaying a bitmap image on a computer monitor. The flexibility and

precise pixelwise control provided by the SLM have contributed to its wide-

spread use in optical systems. Spatial light modulators vary widely in quality

and cost, but they provide a solid-state alternative to mechanical moving parts

such as the Nipkow disk (see Chapter 14).

Another use is to correct for an uneven, but stable, illumination pattern [4].

If the result of image processing is directed back through a feedback loop to the

SLM, the light structure can be adapted in an iterative process until it becomes

flat. To do so it is only necessary to measure the intensity from a planar mirror

object and then to use its inverted pattern to control the SLM. Minor

adjustments are required to maximize total light throughput.

17.3 The Process of Structured
I l lumination Imaging

Perhaps the most common use of structured illumination is in optical sectioning

microscopy. While the conventional light microscope is an invaluable tool in the

physical and life sciences, it is limited when viewing thick objects because

light from out-of-focus regions pollutes the image from the focal plane. This

problem occurs especially when a high-NA objective is used to obtain good

lateral resolution, per Eqs. 17.1 and 17.2, and so is most problematic at high

magnification, where the DOF may well be thinner than the specimen.

Toward the end of the 20th century, a number of instruments capable of

rejecting defocused light were developed to overcome this limitation. The con-

focal scanning microscope (CSM) is the best-known example. However, it

requires time-consuming scanning in both lateral and axial directions, and the

CSM device is more complicated and expensive than a conventional microscope

[10]. Linearly sinusoidal SIM is a fast optical sectioning tool that requires only

simple modification to the conventional light microscope (see Fig. 17.2), fol-

lowed by a bit of image processing [11]. A mechanical actuator attached to

a linear sinusoidal grating is used in place of the grid, along with a coherent
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light source. This yields an illumination pattern of fringes Si(y) having the

approximate form

Si(y) ¼ 1þm cos
2py

T
þ fi

� �
(17:3)

The spatial period of the grid that illuminates the object is given by

T ¼ T0

b
(17:4)

where T0 is the spatial period of the grid mask itself, f is the phase offset of the

grid pattern, and b is the magnification from the specimen plane to the grid

plane. The amplitude factor m is the modulation depth. It depends on how well

the optical transfer function (OTF) of the microscope transmits the frequency of

the grid.

Images having intensity Ii(x, y) are captured for three different phase offsets,

f1 ¼ 0, f2 ¼ 2p=3, and f3 ¼ 4p=3. These are obtained by physically sliding the

grid with the actuator. Figure 17.3 shows an ideal (computer-simulated) struc-

ture imposed on the illumination under these conditions. If an in-focus planar

mirror were to be used for the object, the CCD would capture images similar to

Fig. 17.3, only slightly blurred, due to the point spread function (psf ) of the

microscope (Chapter 2). The frequency shown is chosen for illustration, since an

actual grid would use as high a frequency as possible. It is shown later that the

axial resolution improves with increasing spatial frequency, n ¼ T�1.

After the three images Ii(x, y) have been obtained, image processing is used

to extract the optical section. Mathematically the processing, at each pixel

position (x, y), is expressed as

Isectioned ¼ I1 � I2ð Þ2 þ I2 � I3ð Þ2 þ I1 � I3ð Þ2
h i1=2

(17:5)

F IGURE 17.3 Linear sinusoidal light structure offset by 1/3 spatial period between each frame.
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This is simply the RMS of the three images. Although the CCD camera converts

the optical image into a digital image, we reference position in both images as

x and y, implicitly assuming real numbers in the former and integers in the latter.

To compute anM�N-pixel optical section image, Eq. 17.5 is applied on a pixel-

by-pixel basis for all positions, (x, y), with 0 # x <M and 0 # y < N.

At this stage care must be taken to avoid loss of information. The sectioned

image should be computed with high numerical precision (e.g., double-precision

floating point). Then one can apply further image processing if necessary. If so,

high precision should be used there as well. The values resulting from the

floating point calculations must be scaled to the integer range of the final output

file. For example, for 8-bit precision, the overall range would be scaled from

0 to 255. But this is not completely straightforward. Usually a series of optical

sections is gathered at regular intervals along the z-axis to cover a three-

dimensional specimen fully. The entire set of images must be considered when

scaling gray-level values, since all sections should be scaled consistently. This

can be done by finding a global Imax and Imin from the set and then scaling to the

maximum grayscale bitmap value Gmax using

I x, yð Þgray¼ Gmax= Imax � Iminð Þ½ �� I x, yð Þ � Imin½ � (17:6)

Equation 17.6 is written this way to emphasize that the constant factor

Gmax= Imax � Iminð Þ can be precalculated.

17.3.1 Extended-Depth-of -F ie ld Image

In order to view a thick object all at once, the sections can be combined into an

extended-depth-of-field (EDOF) image (see Chapter 16). The most in-focus

pixels at each (x, y) position along the entire axial range of sections are compiled

into a single composite image. Since SIM strongly suppresses defocused

light, the most in-focus pixels will likely also be the brightest. Thus the brightest

pixel along the z-axis, at each position (x, y), is selected as the most in-focus

one [11].

17.3.2 SIM for Opt i ca l Sec t ion ing

Light gathered by the objective, after passing through the object, has a focused

component and a defocused component. Structured illumination microscopy

suppresses the defocused component. It is easy to verify, by algebra or direct

substitution, that, if the three intensities in Eq. 17.5 take on the sinusoidal form

of Eq. 17.3, then the resulting Isectioned is maximized. For a planar mirror,

it would be constant (an evenly illuminated field), as one would expect. Under

defocusing, the Ii also contain a low-frequency blurred component that is
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canceled out in the computation of Isectioned. Note that any constant that is added

to all three Ii is subtracted out in Eq. 17.5.

The following simulated example illustrates the process. The image in

Fig. 17.4a is a picture of Turtox captured by conventional wide-field micros-

copy. In Fig. 17.4b the image is tilted so that it becomes increasingly out of focus

toward the bottom. This is simulated as follows. A grayscale depth map (not

shown) is created, where zero gray level at the top corresponds to the focal

plane, and it has a smooth transition to 255 at the bottom, which is most distant

from the focal plane. Thus this specifies that the top of the image is in focus and

the bottom is the most out of focus, as is apparent in Fig. 17.4b, which is

a simulation of one image from a stack of optical sections. To compute

Fig. 17.4b from Fig. 17.4a and the depth map, the weighting function

w(r) ¼ e �r=r0ð Þ (17:7)

is used as a convolution filter kernel to blur the image to simulate the defocus

that is specified by the depth map. The width of the blurring kernel, r0, is

proportional to the distance of the pixel from the focal plane, as given by the

depth map.

Once it is known how the object blurs with distance, it can be illuminated

virtually. A grid like that of Fig. 17.3 but with higher frequency was multiplied

F IGURE 17.4 Simulation of SIM to obtain an optical section. The image in (a) is tilted in (b) so that it
becomes increasingly out of focus toward the bottom, as viewed in a conventional microscope. One of the
three phase-offset illumination patterns is applied in (c). The difference from Eq. 17.5 in (d) shows how
overlapping, defocused light is removed. In (e) the conventional image of (b) has been reconstructed by
Eq. 17.8. Finally, (f ) shows the section where only the focused component of the light has been retained.
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by the focused image Fig. 17.4a for each of the three phases. Figure 17.4c shows

illumination for one phase after the blurring for depth has been simulated.

The square of the difference between two depth-blurred illuminations,

corresponding to I1 � I2ð Þ2 in Eq. 17.5, is shown in Fig. 17.4d. When three

such results are combined, as in Eq. 17.5, the optical section of Fig. 17.4f results.

It is also possible to construct the conventional image, shown in Fig. 17.4e, from

the three phase images by computing

Iconventional ¼ I1 þ I2 þ I3 (17:8)

The earlier statement about the image containing a focused component and

a defocused one can be substantiated by comparing Figs. 17.4b and 17.4f. Due

to increased blurring toward the bottom, much of the image has been elimin-

ated. What remains near the bottom is dim but better focused. Near the top, the

image is bright. Notice that if the depth map were inverted, bringing the bottom

into focus, the bottom portion of the computed image would be bright. This

suggests that the EDOF image would be composed with uniform brightness if

enough intermediate frames were processed.

17.3.3 Sec t ion ing St rength

A common way to quantify the improvement in axial resolution that is obtained

via SIM is by determining the sectioning strength of the microscope. This is

a measure of how effectively light outside the focal DOF is rejected. For SIM,

the measurement may be performed by using a planar mirror as the object and

stepping its position along the optical z-axis. When the mirror is outside the

DOF in either direction, the response should be small due to the suppression of

defocused light. At the focal plane, the response should be maximal.

As a baseline for comparison, we calculate the theoretical best response.

A good approximation for monochromatic light is [12]

I zð Þ � 2J1 gð Þ
g

����
���� (17:9)

This includes the Bessel function of the first kind, J1 gð Þ, and the parameter g
defined by

g ¼ uv̂ 1� n̂=2Þð (17:10)

Equation 17.10 is expressed in optical coordinates for convenience. The axial

coordinate is

u ¼ 8pzl�1 sin2 a=2ð Þ (17:11)
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and the dimensionless frequency is

v̂ ¼ bln sin�1 að Þ (17:12)

These make use of the grid spatial frequency n ¼ 1=T0, magnification b, from
Eq. 17.4, and a obtainable from the index of refraction n and numerical aperture

by NA ¼ n sin (a).
A plot of the theoretical response of Eq. 17.9 is shown in Fig. 17.5 for

parameters l ¼ 550 nm, b ¼ 40, NA ¼ 0:65, and T0 ¼ 100mm (n ¼ 10mm�1).

This represents the best response that can be expected when using these values.

This limit is practically attainable [11, 13] and the response curves exhibit the

correct shape, including the side lobes. When the magnification or grid spatial

frequency is high, aberrations can cause some discrepancy. The effects that

result from chromatic aberration, and their corrections, are discussed later.

It is also of interest to examine how sectioning strength changes with grid

spatial period. This is plotted in Fig. 17.6. The result is approximately linear, but

it begins to curve slightly for a fine grid of high n (low T0). If the optical transfer

function is such that little light is passed at high n, a trade-off of lower axial

resolution might be justified. If the microscope employs a spatial light modula-

tor for the grid, one can measure the modulation transfer function (MTF)

and adjust the grid period as desired. The digital nature inherent to the SLM

must be considered, though, when it is used to display high-frequency grids.

0
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F IGURE 17.5 Theoretical best axial response for l ¼ 550nm, b ¼ 40, NA ¼ 0:65, and T0 ¼ 100mm.
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Since a phase shift of 1=3 period is needed between successive frames, the

minimum T0 for an SLM is three pixels wide. Obviously, a sine wave is not

precisely represented by so few pixels. The alternatives include (1) increasing b,
since this is equivalent to narrowing T0 in terms of sectioning strength, (2) using

a fixed mechanical grid, and (3) suffering increased artifacts (see later).

17.4 Limitat ions of Optical
Sect ioning with SIM

Structured illumination is fairly easy to use, provides good optical sectioning

strength, and has a faster acquisition rate than its leading competitor, CSM, but

it has two main disadvantages. The first is that it requires three frame captures

per section, which makes it inapplicable for moving objects. However, two ways

to overcome this problem have been demonstrated. The first uses ‘‘smart pixel’’

detector arrays to allow the three phases to be applied and processed in about

a millisecond [13]. This approach is relatively expensive due to its requirement

for special hardware. The second approach to improve the speed of SIM is color

structured illumination microscopy (CSIM), which substitutes a single RGB

exposure with three colors. This approach is detailed later.
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F IGURE 17.6 Full width at half maximum (FWHM) of axial response curves versus (minified) spatial
period T, with other parameters the same as in Fig. 17.5.
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The other, more serious problem encountered with SIM occurs when rem-

nants of the illumination grid structure propagate into the final processed image,

where they appear as artifacts. To illustrate, a sample region of size 240� 180mm2

of a pigeon feather is shown in Fig. 17.7. The image on the left was taken by

a conventional microscope set so that the rightmost area is in focus. The other

image is the EDOF compilation from 11 sections separated by steps of

Dz ¼ 25:4mm. Structures in the EDOF image appear in focus, but object

structures are obscured by linear artifacts. In this case, a vertical grid was used,

resulting in vertical artifacts.

There are numerous causes for these artifacts. One often encountered is

when the light source fluctuates in intensity between frames. It is also seen in

fluorescence SIM applications when saturation or photobleaching of the fluor-

ophores occurs. Another cause is the presence of errors in the grid position due

to imprecisely timed camera triggering or to uncertainty in the mechanical

actuator. It is sometimes advantageous to use a square rather than sinusoidal

grid pattern to increase light efficiency, but the higher harmonics present in this

pattern produce high-frequency artifacts.

17.4.1 Art i fac t Reduc t ion v ia Image
Process ing

When artifacts cannot be avoided by improving the microscope setup, it is

necessary to reduce them with image processing. Some of these techniques are

reviewed here.

17.4 .1 .1 In ten s i t y No rma l i za t i on

The simplest artifact reduction approach is uniform intensity normalization (UIN)

[14]. It compensates for fluctuations in lighting between image acquisitions.

F IGURE 17.7 Pigeon feather in field size 240� 180mm2. The conventional image on the left has
a DOF too narrow to focus the entire three-dimensional surface. The SIM EDOF image on the right succeeds in
focusing over the axial range of 279mm but exhibits serious vertical linear artifacts.
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The simulation of SIM with the Turtox sample, introduced earlier, is now

extended, as shown in Fig. 17.8. In Fig. 17.8a, the intensities I2 and I3 were

multiplied by factors of 0.9 and 0.8, respectively, before the sectionwas computed

according to Eq. 17.5. Since such a uniform intensity change can be completely

reversed by UIN, the problem is fully corrected, as shown in Fig. 17.8b. To

perform UIN, first the sums of pixel intensities for each frame are computed:

Itotal,i ¼
XN�1

y¼1

XM�1

x¼1

Ii x, yð Þ (17:13)

Next, the maximum of the three sums, Itotal,max ¼ max Itotal,1, Itotal,2, Itotal,3
� �

, is

determined. The scale factor for each frame is then

ki ¼ Itotal,max=Itotal,i (17:14)

Replacing all Ii x, yð Þ with kiIi x, yð Þ implements the UIN procedure. The most

intense image of the three will have ki ¼ 1, and it does not need to be scaled.

Saturation of fluorophores is a similar intensity adjustment, leading to the

artifacts in Fig. 17.8c, where I2 and I3 are multiplied by factors 1.2 and 1.4,

F IGURE 17.8 Simulated artifacts and correction by uniform intensity normalization. (a) I2 and I3 were
decreased by factors of 0.9 and 0.8, respectively. The normalization applied in (b) fully corrects this. When
I2 and I3 are saturated in (c) by factors 1.2 and 1.4, respectively, uniform normalization is only partially
effective (d).
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respectively. This clips the sine profile, making it more like a square wave, and

higher harmonics are then seen in the artifacts. Uniform intensity normalization

does improve on this, as shown in Fig. 17.8d, but residual structure is still visible.

The effectiveness of UIN is reduced when the object contains the same frequency

as the projected grid [15]. This is because UIN assumes that the structure is

evenly distributed over the three illumination patterns and that any fluctuations

in overall intensity are due to source variations, which will not hold if one of the

frames happens to align with object structure having the same frequency. This is

a rare occurrence that can be avoided by rotating either the object or the grid.

If the source intensity varies nonuniformly over the field between frames,

further steps must be taken to correct artifacts. An error-minimization proced-

ure is discussed later in Section 17.4.1.4. Some fluctuations can be corrected by

modifying UIN to operate over subdivided images. The initialM�N images are

partitioned into M=Mdð Þ � N=Ndð Þ cells of size Md �Nd in which UIN is

applied individually. Then, pixelwise intensity scale factors are interpolated

from the resulting lattice of scale factors. The size of the cells along the grid

direction should be at least as large as TCCD, the period in pixels at the camera.

If this condition is not met, the subdivided UIN technique does not correct

the artifacts.

17.4 .1 .2 Gr id Pos i t i on E r ro r

Artifacts resulting from grid misalignment are shown in Fig. 17.9. In the left half

of this figure, the first and third grids are positioned correctly at f1 ¼ 0 and

f3 ¼ 4p=3, but the second grid is offset from its correct position by 2% of the

grid period, or 0:04p. The section created using Eq. 17.5 results in minor but

noticeable artifacts. Two grid positions are perturbed in the right half of

Fig. 17.9, and the artifacts are more obvious. Here the grid positions used

F IGURE 17.9 Simulated grid position errors. On the left, the second grid was offset by a position error
of 2% of the grid period. On the right, the second and third grids were offset by 2% in opposite directions.
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were f1 ¼ 0, f2 ¼ 2p=3þ df, and f3 ¼ 4p=3� df, again with df ¼ 0:04p
radians.

It is clear that a small amount of grid position error can lead to significant

artifacts. A general result for predicting the sectioning strength reduction due to

grid position errors is straightforward to obtain. If we use a pristine grid such as

the one shown in Fig. 17.3, the section resulting from application of Eq. 17.5 has

maximum intensity. If grid position errors are introduced between the three

frames, a lower intensity results. We define the fractional grid position error as

«f ¼ 1

3

X
i 6¼j

fi � fj � 2p=3

2p=3

����
���� (17:15)

and the fractional intensity error as

«I ¼
P
i

Imax � �Iið Þ
3Imax

(17:16)

A plot of «I versus «f is shown in Fig. 17.10, where it can be seen that

a breakdown occurs when the grid position errors exceed 20%. Normally one

would not expect such large grid position fluctuations in a microscope, but the

graph does indicate how critical these errors are, even when they are small.

Note also that the simulation used here does not include any blurring. Even so,

these results should be more accurate than those of Fig. 17.4.

Dete c t i on Fortunately, the problem of grid position error is not difficult

to detect and correct with image processing. The key to correcting grid

0
0 0.2 0.4 0.6

Fractional Phase Error

SIM Error vs. Phase Error
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1

F IGURE 17.10 Fractional intensity error in SIM versus average fractional grid position error between
frames. Notice that a large error produces heavy artifacts.
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misalignment error is first to determine the amount of error present. To do so,

we compute the Fourier transform (FT) =(Ii) of each frame. Normally the

strong periodic pattern of the grid will dominate the FT at its frequency,

making it simple to find the phase difference between each pair of frames.

Consider the example here, in which the grid is in the y direction. The size of

the image along the grid direction is N pixels, and the spatial period of the grid,

measured directly from the image, is Tgrid pixels. Then the frequency component

of the grid in the FT is ngrid ¼ N=Tgrid. So if the FT is represented by an array of

complex numbers as zFT(kx, ky), where kx and ky are integer grid positions in the

Fourier domain, the value associated with the grid period is zFT(0, ngrid). From
this complex number, the phase of the grid is simply f ¼ tan�1 Im zð Þ=Re zð Þ½ �.
This technique is generally useful, but it is subject to error if the object

has a strong component at the grid frequency. Under this circumstance, the

phase error can still be estimated and optimized, as described later in Section

17.4.1.4.

Co r re c t i on After fi is found for each frame i, there are two approaches

for correcting the phases. One is simply to note that a phase shift is equivalent

to sliding the image along the direction of the grid. Shifting the image by an

amount Dy changes the phase by Df ¼ 2p Dy=Tgrid. So if, for example, f1 ¼ 0

and f2 ¼ 2p=3þ d, a downward shift of pixels in I2 of Dy ¼ d=2pð ÞTgrid would

correct the error in grid position between the first two images. Similarly, the

third image would be shifted to minimize the overall phase error and allow

Eq. 17.5 to be used. Note that the images might need to be scaled to a larger size

to increase the pixel resolution or interpolation used for noninteger pixel shift.

Another way to compensate for grid position error is to use a more general

expression than Eq. 17.5. A knowledge of the phase differences between frames

allows the sectioned image to be calculated [14] from Isectioned ¼ IS0j j, where

IS0 ¼ I3 � I1ð Þ þ j
I1 � I2

tan
f1 � f2

2

� �þ I2 � I3

tan
f2 � f3

2

� �
2
4

3
5 (17:17)

Equation 17.17 is readily applied, but the tangent and division operations

increase computation time. Thus, the choice of whether to correct grid position

error by image shifting or by use of Eq. 17.17 is a matter of preference.

17.4 .1 .3 Statistical Waveform Compensation

We now address the saturation-induced artifacts illustrated in Fig. 17.8c. The

profile of one period of the intensity waveform I yð Þ for the most saturated of

the three frames is shown by the dashed line in Fig. 17.11. The approach is to use
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a nonlinear grayscale transformation to restore the shape of the grid profile. The

goal is to find a compensation function § yð Þ such that § yð ÞI yð Þ ¼ S yð Þ is

sinusoidal, where S yð Þ is from Eq. 17.3. In this case S yð Þ and I yð Þ are known,
so § yð Þ may be calculated. It is plotted as the solid curve in Fig. 17.11.

The waveform I yð Þ can be observed directly if a mirror is used for the object.

When a nontrivial object is illuminated, however, its image is likely to be so

complicated that the grid profile of the illumination pattern is not obvious. Yet if

a substantial fraction of the field of view is in focus, one can obtain the pattern

by averaging individual grid lines together.

In experimental data, obstacles commonly encountered include a grid not

aligned with a lateral axis and insufficiently large focused areas. An image can be

rotated so that a grid that is oriented at an arbitrary angle aligns with the x- or

y-axis. If there is too little focused area, waveform compensation will fail

because the grid profile waveform is not estimated accurately.

17.4 .1 .4 Parame te r Op t im i za t i on

The final artifact correction procedure to be discussed is that of parameter

optimization [15]. If the source illumination fluctuates or if there is imprecise

grid alignment between frames, the projected light structure of Eq. 17.3 is more

properly modeled by

2

1

0

F IGURE 17.11 Waveform compensation. The improper waveform of the dashed line will become
sinusoidal when multiplied by the compensation curve of the solid line.
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Si yð Þ ¼ ki 1þm cos
2py

T
þ fi þ dfi

� �	 

(17:18)

The factor ki accounts for intensity fluctuations, and dfi accounts for the phase

errors. When the section is constructed, artifacts result for nonzero ki and dfi.

The values of these parameters can be adjusted in the sectioning calculation to

minimize artifacts. Therefore, after the section is calculated it is evaluated by

a merit function that rewards a lack of artifacts.

The two parameters can be determined iteratively as follows. For grid

frequency n0 ¼ 1=T , the artifacts are most prominent at frequencies n0 and

2n0 in the FT. Accordingly, these components are to be minimized in the

reconstructed image (Eq. 17.5). The optical section is first computed for some

ki and dfi. A Fourier transform of the section is computed, and its values at the

artifact frequencies are input into an appropriate merit function [15]. This

process is repeated by varying ki and dfi until the merit function is minimized.

Parameter optimization shows improved quality in both simulated and

experimental data. Its merit function can be tailored to specific cases. On the

negative side, it is computationally intensive, so a fast search routine for

parameter space is needed.

17.5 Color Structured I l lumination

While optical sectioning by SIM is a relatively fast technique for wide-field

microscopy, it may still be too slow in live-cell imaging applications. Specifically,

assuming that a fractional phase error between frames of h is acceptable, the

maximum velocity of a moving object in the direction of the grid is nobj:

nobj ¼ hT

tframe

(17:19)

As an example, for a grid period (at the specimen) of T ¼ 20mm, a 10% phase

error (h ¼ 0:1), and frame time of tframe ¼ 0:01 s, the object velocity must not

exceed 200mm=s. Living specimens could exceed this limit, producing motion

blur and reducing sectioning strength. The frame time tframe can be divided into

the exposure time texp and the recovery time trest. Typically texp is much smaller

than the recovery time needed for the hardware to transfer the charge out of the

CCD pixel wells. Therefore if all three phases can be recorded in a single

exposure, structured illumination would allow optical sectioning of more rap-

idly moving objects. Even for static objects, the time required to obtain a section

would be reduced by at least a factor of 3.

A color CCD camera has three channels: red (R), green (G), and blue (B).

The separate subimages I1, I2, and I3 can be collected in a single exposure as
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IR, IG, and IB [16]. The experimental setup for this is the same as that in Fig. 17.2.

The grid is polychromatic, and the illumination source must have strong

components at the RGB wavelengths. Alternatively, three monochromatic

sources projecting sinusoidal interference patterns might be used.

Figure 17.12 shows the construction of the polychromatic color grid. The

first three columns show adjacent grids offset by T=3. The combination color

grid in the rightmost column is the addition of these three subgrids. This

assumes that R þ B ¼ magenta (M), R þ G ¼ yellow (Y), and G þ B ¼ cyan

(C). The final color grid has the same period as the original and takes the form of

a repeated MRYGCB stripe pattern. A square, rather than sinusoidal, grid is

used for increased light efficiency and because it is much easier to manufacture.

The higher-frequency components included in this pattern lead to minor

artifacts [14].

17.5.1 Process ing Techn ique

In CSIM the image processing and grid fabrication are intertwined because

different CCD cameras vary in their response to any particular grid. To find

the relationship, test grids or other patterns can be made and adjusted to

optimize the result. It is much simpler to calibrate the system when spectral

information is available. Given the camera sensitivity S lð Þ, the fractional emis-

sivity of the lamp E lð Þ, and the transmissivity of a grid stripe T lð Þ, the expected
net measured intensity is

I lð Þ ¼ ETS (17:20)

In this expression we neglect the reflectivity of the object, which will be

accounted for with postprocessing, as in the artifact corrections already dis-

cussed. Figure 17.13 illustrates a spectrum measured by a CCD camera when

light from a white fluorescent lamp passes though a red thin-film filter.

The total response in each RGB channel in Fig. 17.13 is the area under the

respective curve. Although the R channel is dominant, the G and B components
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F IGURE 17.12 Combination of red (R), green (G), and blue (B) grids to make a magenta (M), R, yellow
(Y), G, cyan (C), and B grid. The MRYGCB stripes are one-third as large as those of R, G, or B.
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are too large to be ignored. The main image processing that CSIM adds to SIM

is to apply a first-order correction to this color blending. For measured I0R, I
0
G,

and I0B, the corrected IR, IG, and IB are computed using decoupling parameters

aXY $ 0:

IR ¼ þaRRI
0
R � aRGI

0
G � aRBI

0
B

IG ¼ �aGRI
0
R þ aGGI

0
G � aGBI

0
B

IB ¼ �aBRI
0
R � aBGI

0
G þ aBBI

0
B

(17:21)

The aXY are found from the ratio the areas of the response curves. For example,

aRG ¼
Ð
I Rð ÞÐ
G Rð Þ (17:22)

17.5.2 Chromat i c Aberrat ion

After Eq. 17.21 has been applied, the remaining image processing proceeds as

with three-phase SIM, but with one difference. Because polychromatic light is

used, there might be side effects due to chromatic aberration. Specifically,

longitudinal chromatic aberration (LCA) may cause the R, G, and B light to

focus at different positions along the optical axis. In order to check whether or
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F IGURE 17.13 Calculated response of a CCD camera to a broadband spectrum passed through a red
dielectric thin-film filter.
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not this is a problem for any given microscope configuration, the sectioning

strength is measured as usual by stepping a planar mirror through focus. This

was done for a setup using 35-mm slides for a grid with period T0 ¼ 254:4mm,

magnification b ¼ 15:5, and NA ¼ 0:25. The result is plotted in Fig. 17.14 along

with the theoretically ideal response for monochromatic light.

The sectioning strength of this experiment is clearly inferior to the expected

value. It is straightforward to model LCA by extending the use of Eq. 17.9 over

a range of wavelengths and summing the individual terms to predict a broad-

band sectioning strength. One only needs additional data of chromatic

aberration for the microscope objective versus wavelength to calculate a best-

case outcome (ignoring aberration due to other components). This way, LCA is

found to account for the observed reduction in sectioning strength.

The best way to eliminate the complications arising from LCA is to use

a plan-apochromat microscope objective, stopped down (reduced NA) if neces-

sary. Alternatively, if a set of images is taken in many steps along the optical axis

to form the EDOF image, the R, G, and B image subsets can be taken from

different positions along the z-axis, relative to one another to best compensate

for the difference in focal positions due to LCA. The step size Dzmust be smaller

than these differences in order for this approach to succeed, and this is only

practical for static objects.

0
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0.5

0.75

1

70 140

Axial Position (µm)

F IGURE 17.14 Measured sectioning strength of a CSIM setup exhibiting longitudinal chromatic
aberration (solid lines). The theoretical monochromatic response of Eq. 17.9 is shown for comparison
(dashed lines).
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17.5.3 SIM Example

We now illustrate optical sectioning by structured illumination as a three-

dimensional imaging tool. Figure 17.15 shows Spanish moss images acquired

with a color structured illumination microscope. The conventional view in

Fig. 17.15a is well focused at the starting z position, but the more distant region

is completely out of focus. After collecting sections from six steps along the

z-axis, the EDOF image is compiled in Fig. 17.15b. Although the entire field is

now in focus, it is difficult to discern any depth information. A depth map has

been constructed in Fig. 17.15c. This is a by-product of the EDOF image; since

the brightest pixels from all sections are chosen, the depth for each such pixel is

given by the z position of its section. This is stored as a grayscale image having as

many levels as there are steps along the z-axis. Visualization software can be

used to combine Figs. 17.15b and 17.15c into a surface image appearing truly

three-dimensional. However, due to noise in the depth map, particularly in low-

brightness regions, the three-dimensional view may contain discontinuities. Use

of a low-pass filter is one way to diminish this effect, as shown in the relatively

smooth version Fig. 17.15d.

F IGURE 17.15 Spanish moss in a field width of 240mm. (a) Single conventional image of the foremost
structure with completely defocused background area; (b) the EDOF image is composed of six frames
separated by Dz ¼ 25:4mm and shows the entire field in focus but lacks depth information; (c) the depth
map, which provides the information along the optical axis, but is noisy in regions of low light level; and
(d) a smoother depth map obtained by applying a low-pass filter to (c).
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17.6 Lateral Superresolut ion

When the lateral resolution of a light microscope exceeds the diffraction limit of

Eq. 17.1, it is said to exhibit superresolution. Several forms of light microscopy

are able to surpass the Rayleigh limit and achieve superresolution. Some of

them utilize structured illumination [1, 17, 18], while others do not [19]. This

section follows the linear sinusoidal SIM approach and achieves a factor of 2

improvement in lateral resolution [2, 3].

17.6.1 Bypass ing the Opt i ca l T rans fer
Func t ion

Optical systems pass a limited range of frequencies (see Chapter 2), as defined by

the optical transfer function (OTF). The highest frequency that is not com-

pletely attenuated is known as the cutoff frequency. Because finer details of the

object are encoded in higher-frequency components, higher resolution could be

attained if the cutoff frequency were increased. The leftmost strip in Fig. 17.16 is

a linear sinusoidal pattern having a period of Tleft ¼ 20 units. The rightmost

strip is inclined relative to the left by 108 and has a period of 18 units. The center

strip results frommultiplying these two, and it shows distinctiveMoiré fringes of

period measured to be about 96 units. Suppose that the OTF allows the leftmost

pattern to be transmitted but not the right, which falls above the cutoff fre-

quency. The rightmost strip, then, represents structure that would normally be

F IGURE 17.16 The Moiré fringes of the center strip show the low-frequency pattern resulting from
multiplication of two patterns having higher frequencies and different directions (left and right).

491

17.6 Lateral Superresolution



attenuated completely. The much lower frequency of the Moiré fringes is easily

within the passband, and that component carries information about the pattern

on the right that is unobservable directly. What is needed is a way to extract this

information, which can be done by shifting the phase of the illumination grid

over a few frame captures and solving a set of algebraic equations. This is the

basis of using SIM to extend lateral resolution.

17.6.2 Mathemat i ca l Foundat ion

A deeper understanding of this method follows from its mathematical analysis,

which relies on Fourier theory [20]. By the convolution theorem, the FT of the

convolution of two functions g x, yð Þ and h x, yð Þ in real space is equal to the

pointwise product of their FTs in frequency space, and vice-versa; that is,

= g� h½ � ¼ =[g] �=[h] and =[g� h] ¼ =[g]� =[h] (17:23)

where� denotes the convolution operator,= denotes the FT, and� is pointwise

multiplication. Also recall, from the shift theorem,

= eik0� r� � ¼ d k� k0ð Þ (17:24)

In two dimensions, the vectors are r ¼ x, yð Þ and k ¼ (kx, ky). The exponential

representation of the cosine is

cos k� rð Þ ¼ eik� r þ e�ik� r� �
2

(17:25)

and the final preliminary expression we will need is

f kð Þ � d k� k0ð Þ ¼ f k� k0ð Þ (17:26)

17.6 .2 .1 Sh i f t i ng F requen cy Spa ce

Assume the source illumination projects a cosine grid pattern at orientation

kg and phase fm:

Sm rð Þ ¼ 1þ A cos kg� rþ fm

� �
and m ¼ 1, . . . , 3 (17:27)

A series of frames for some grid orientation kg ¼ 2p=Tð Þ cos ugrid, sin ugrid
� �

are

taken with several different phases fm. This is equivalent to Eq. 17.3 when

kg ¼ 0, 2p=Tð Þ. Given that the fluorophores have a distribution over the object

plane of R rð Þ ¼ R x, yð Þ, then the light measured at the detector is

Im rð Þ ¼ R rð ÞSm rð Þð Þ � P (17:28)
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The convolution by P in Eq. 17.28 is the effect of the psf of the microscope.

Taking the FT of Eq. 17.28 and applying the convolution theorem results in

= Im½ � ¼ ~Im ¼ = RSmð Þ � P½ � ¼ = RSmð Þ � = Pð Þ (17:29)

We use the tilde over a variable to denote its FT. The FT of the psf, ~P, is the
optical transfer function (OTF) and is referred to as ~P 	 O kx, ky

� �
. Observe

that = RSmð Þ can be simplified further by once again applying the convolution

theorem

= RSm½ � ¼ ~R� ~Sm (17:30)

along with Eq. 17.25 to obtain

~Sm ¼ = 1þ A cos kg� rþ fm

� �� � ¼ = 1þ A ei(kg� rþfm) þ e�i(kg� rþfm)
� �

2

	 


¼ = ei0 þ Aeifm

2
eikg � r þ Ae�ifm

2
e�ikg� r

	 
 (17:31)

Finally, after using Eq. 17.24, the expression for = Sm½ � reduces to

~Sm ¼ d kð Þ þ Aeifm

2
d k� kg
� �þ Ae�ifm

2
d kþ kg
� �

(17:32)

By substituting Eq. 17.32 into Eq. 17.30 and applying Eq. 17.26, we find that

= RSm½ � ¼ ~R kð Þ þ Aeifm

2
~R k� kg
� �þ Ae�ifm

2
~R kþ kg
� �

(17:33)

Thus, from Eq. 17.29, when the FT of the CCD image is computed, it will be

equal to

~Im ¼ ~R kð Þ þ Aeifm

2
~R k� kg
� �þ Ae�ifm

2
~R kþ kg
� �	 


�O kð Þ (17:34)

The two terms that are shifted by 
kg contain information that is inaccessible

under full-field illumination. With Eq. 17.34 and some image processing,

enhanced lateral resolution will result.

17.6 .2 .2 Ex t ra c t i ng the Enhan ced Image

To make use of Eq. 17.34, one must identify the known quantities and solve for

the unknowns. Assuming we know the grid direction and its spatial period T , kg
is known. The modulation amplitude, A, can be estimated from image data. It is

also possible to fit kg, A, and the initial phase, f1, more precisely via parameter
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optimization (Section 17.4.1.4 earlier). The remaining fm ¼ f1 þ m� 1ð Þ � Df
are known because the phase steps Df are determined by the hardware. The

OTF and CCD image Im are measured. Thus the three ~R terms are the only

unknowns in the system, so only three linearly independent equations are

needed to solve for them. These can be obtained by capturing three images

(m ¼ 1, 2, 3) that are offset from each other in phase by Df ¼ 2p=3.
By rewriting Eq. 17.34 as

Zm ¼ ~R0 þ Cm
~R� þDm

~Rþ (17:35)

where Zm ¼ ~ImO
�1, ~R0 ¼ ~R kð Þ, ~R� ¼ ~R k� kg

� �
, ~Rþ ¼ ~R kþ kg

� �
,

Cm ¼ Aeifm

2
, and Dm ¼ Ae�ifm

2
, we find the complex solution

~R� ¼ Z3 � Z1ð Þ D2 �D1ð Þ � Z2 � Z1ð Þ D3 �D1ð Þ
C3 � C1ð Þ D2 �D1ð Þ � C2 � C1ð Þ D3 �D1ð Þ (17:36)

~Rþ ¼ Z3 � Z1 � ~R� C3 � C1ð Þ
D3 �D1

(17:37)

~R0 ¼ Z1 � C1
~R� �D1

~Rþ (17:38)

Each grid orientation and accompanying set of three images expands

the sampling of frequency space in the grid direction, as shown in Fig. 17.17.

The number of grid orientations used depends on how fully one wishes to span

the available space. If n denotes the number of grid orientations, then

the minimum number of frame captures is 3þ 2 n� 1ð Þ, though it might be

procedurally simpler to capture n three-phase sets, for a total of 3n images.

F IGURE 17.17 Extending frequency space. The dark, center circle encloses the area conventionally
passed by the OTF. Additional circular regions centered at 0,
 ky

� �
are sampled by applying structured

illumination with a pattern having k1 ¼ 0, ky
� �

as in (a). In (b), another set of three phase-offset images is taken
with k2 ¼ kx , 0

� �
. Three directions at relative rotations of 1208 provide good coverage in seven to nine frame

captures, effectively expanding the lateral resolution by a factor of 2.
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17.6.3 Latera l Reso lu t ion Enhancement
S imulat ion

The following simulation shows this method in use. The ‘‘object’’ was the

focused two-dimensional image of Turtox from Fig. 17.4a. The effect of the

microscope OTF was modeled by a low-pass filter. Next, a set of three phase-

offset grids having period of 32 units was made for both the x and y directions to

expand the resolution, as in Fig. 17.17b. These grids were multiplied by the

unfiltered object and then operated on by the low-pass filter. This models the

structured light fluorescing from the object and then being filtered by the OTF of

the microscope. The Zm in Eqs. 17.36 through 17.38 resulted from the FT of

these images.

Since this is a simulation, A and f1 were known a priori, and solving for
~R0, ~R�, and ~Rþ is direct. The Fourier transforms of these for the y-shifted set

are shown in Fig. 17.18. The middle frame is what the conventional microscope

would pass. Some of this information is repeated in the left and right frames, but

shifted up and down, respectively. This can be matched to the middle frame to

find A and f1, if they are not already known. The amount of shifting necessary

to align them determines kg. The extra information in the left and right frames is

the high-frequency information that has been shifted into the observable region.

Equations 17.36 through 17.38 were solved for both directions. The R̃ values

were combined by first shifting them to their proper positions in frequency space

and then forming a composite image by collecting the brightest pixels from each

at any given kx, ky
� �

. The inverse FT of this composite image, shown in the right

side of Fig. 17.19, exhibits the desired resolution enhancement. On careful

inspection of the end product in Fig. 17.19, one can see a faint grid pattern

due to ‘‘ringing’’ introduced by the low-pass filter.

F IGURE 17.18 Frequency space views ~R�, ~R0, and ~Rþ for the k1 ¼ 0, ky
� �

grid direction. The bright
regions in the left and right frames must be shifted to align with that in the middle frame to move them to their
position of origination. The inverse FT of the combined image gives resolution improvement in one dimension.
By adding kg in other directions, resolution is enhanced in two dimensions.
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17.7 Summary of Important Points

1. In structured illumination, a pattern is imposed on the incident light via

a mask, such as a Ronchi ruling, or interference of one or more coherent

sources.

2. In most cases the entire field is not illuminated, making several camera

acquisitions necessary per axial position.

3. Optical sectioning is a nondestructive way to obtain a 3-D image of

a specimen.

4. Using three image acquisitions, SIM is capable of matching the axial

resolution of the confocal microscope.

5. All forms of SIM are dependent on computer processing to compose

a final image from several separate acquired images.

6. Remnants of the illumination grid structure often persist as artifacts in

the image, and additional processing may be necessary to minimize these.

7. The spatial light modulator is a flexible type of pattern generator that is

convenient for SIM, and it makes real-time adaptive illumination possible.

8. The various forms of structured illumination microscopy are more com-

plex and expensive than conventional light microscopy. SIM nevertheless

has applications in such fields as medicine and the biosciences.
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18
Image Data and Workflow

Management

Tomasz Macura and Ilya Goldberg

18.1 Introduct ion

Proteomics, genetics, and pharmaceutical therapeutic agent screens are spear-

heading a new approach to biomedical microscopy that is based on high-content

cellular screens (HCS). A cellular screen refers to any assay involving living

cells. In HCS, changes in staining or fluorescence markers are monitored to

observe how compounds or genetic manipulations affect cellular activities or

morphology. These are high-throughput screens because whole classes of com-

pounds (�150,000 chemicals) or genes (up to 20,000) need to be investigated

exhaustively in a systematic manner. The dataset size further increases when

additional experimental variables are examined, such as varying concentration

levels and different imaging markers.

Robots are used in HCS for sample preparation, fluid handling, and image

acquisition. The rate-limiting factor in high-throughput microscopy experi-

ments is the qualitative, manual image analysis performed after data collection

[1]. To alleviate this bottleneck, image informatics platforms are being devel-

oped to enable image analysis to be performed using quantitative, automated

computer vision algorithms.

A microscopy image informatics platform is software that interacts with a

database to store images, structuredmeta-data, descriptor annotations, numerical

analysis outputs, and provenance information. Platforms enable researchers to

organize, annotate, browse, search, and analyze their datasets manually and

Microscope Image Processing
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algorithmically. Informatics solutions benefit microscopy projects of all scales,

frommodest projects involving only dozens of images to high-throughput screens

with multiple experiments and collaborators.

18.1.1 Open Microscopy Envi ronment

The open microscopy environment (OME) is a publicly available, open-source

informatics platform for scientific images [2]. It has been in release since 2001

[3, 4] and is the most high-profile and full-featured system of its kind. We cite

OME throughout this chapter as an example for illustrating concepts.

18.1.2 Image Management in
Other F ie lds

Image management software is being developed for applications besides micros-

copy. For example, Apple and Google market, respectively, the iPhoto and

Picassa programs for organizing and editing photographs from consumer digital

cameras. In hospitals, radiology departments are storing patient diagnostic images

digitally in picture archiving and communication systems (PACS) [5]. The remote-

sensing community has been making aerial, satellite, and topographic images

available to the pubic through programs such as NASA WorldWind, Google

Earth, and Microsoft TerraServer [6]. Finally, astronomy has the most extreme

high-throughput, high-content imaging requirements of all. The planned Large

Synoptic Surgery Telescope (LSST) will be robotically aimed and will image the

whole sky daily with a 3.8-gigapixel camera. When LSST becomes operational in

2013, it is projected to produce up to 30 terabytes of image data per day [7].

18.1.3 Requi rements for Mic roscopy
Image Management Sys tems

A single high-throughput experiment can produce tens of thousands of images,

where each image can potentially be over 100MB, with multiple focal planes,

channels, and time points. Microscopy platforms must support hundreds of

thousands of such images comprising terabytes of disk space.

Microscopy has many different modes (light, fluorescence, phase contrast) as

well as many different types of staining and markers. There are 20–30 common

microscopy formats [8]. Software has to be designed to accommodate in a single

system all of the vastly different microscopy images.

Organizational containers, whether albums (iPhoto and Picassa), patients

(PACS), or datasets (microscopy), are applicable to all types of image manage-

ment. Free-text descriptions, numerical measurements, ontological references,
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and other annotations are absolutely crucial to scientific and medical images,

where the content, unlike that in consumer photographs, cannot be gleaned

from cursory inspection.

One feature that sets apart research microscopy from other kinds of image

management is that the structure of information is not known a priori. Rather,

when the system is used in a discovery process, the process leads to new infor-

mation that needs to be stored in the same system. Predefined annotations and

hierarchies are inadequate for all experiments. This motivates the development

of a specification language for defining new information and an extensible

platform architecture that will be able dynamically to support the new data types.

The second distinct feature in microscopy is the tight coupling between large

datasets and automated quantitative image analysis via computer vision algo-

rithms. The systematic computer-based quantitative analysis of high-throughput

microscopy experiments involves thousands of images and a handful of algo-

rithms, with parameters, that produce thousands of analysis results along with

execution logs. It is advantageous to store information about algorithm

execution within the informatics platform.

18.2 Architecture of Microscopy
Image/Data/Workf low Systems

For an informatics platform to support microscopy experiments effectively, it

must manage not only images, but also related data and image analysis work-

flows. Thus the platform needs a unified system architecture, based on an

extensible data model (see Fig. 18.1).

18.2.1 C l ient –Server Arch i tec ture

Scientific image informatics platforms follow the standard client–server archi-

tecture, in which a single instance functions as a shared resource for a commu-

nity of users. In microscopy, that community is often an entire laboratory

or department.

System administrators install and maintain the platform, while users connect

to it with either a web browser or dedicated thick clients (e.g., Java programs).

The centralized design confers several advantages. Dedicated hardware and

hosting provide large-capacity redundant storage and guaranteed up-time.

Administrators handle system install, update, and maintenance. Users only

need to point their browser or download a simple client. A web-based interface

can be accessed from any computer; on the other hand, thick remote clients

(a thick or fat client is capable of processing data, which it then passes on to the

501

18.2 Architecture of Microscopy Image/Data/Workflow Systems



server for communications and/or storage) need to be installed separately on

each client computer, but they provide more advanced visualization and

interaction than a browser.

Web interfaces and thick remote clients are complementary, so most plat-

forms, including OME, support both. Command-line interfaces are handy

because they can be used with shell scripting to automate tasks, e.g., to perform

scheduled backups or import images without user intervention directly from the

microscope. Documented application programming interface’s (APIs) give the

most flexibility by permitting users to develop their own views on managed data,

and they are available with most scientific image management software.

18.2.2 Image and Data Servers

Relational databases are built for storing structured collections of data that will

be queried in a random fashion. Thus databases are the logical location where

informatics platforms record annotations and other meta-information. On

the other hand, pixels and other large files (binary large objects, BLOBs) are

sequentially accessed in whole blocks, e.g., per image plane, making it more

efficient to store BLOBs on the file system [9].

Presentation and Interface

Image Data Workflow Management

Pixels Repository Data Repository

OS
File System
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Extensible Data
Model

Spreadsheet
Importer

Algorithm
Modeling

Workflow
Composition

Workflow
Execution

Image
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Image
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Client Machines

Java Client Web Client

Command-
Line

Interface

Web
Server

Java
Remoting

F IGURE 18.1 Schematic illustrating a unified image, data, and workflow management system based
on an extensible data model.
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The OME image server (OMEIS) is an http interface to the OME repository

where image pixels and original image files are stored on the file system using

dynamically generated, balanced directory trees. Files and pixels are accessed

using 64-bit integer identifiers (IDs) that OMEIS can decode into file paths. The

OME meta-information database stores the Uniform Resource Locator (URL)

to the OMEIS repository and the OMEIS IDs as foreign keys for each file or

image pixels.

Images’ pixels data is typically orders of magnitude larger than their meta-

data. Separating the pixels data from meta-data gives more options for systems

administration. OMEIS can be run from high-capacity drives separate from the

database’s fast-access drives or on a different computer all together. OMEIS has

been designed to work directly off the file system in a way that is compatible with

general system-administration utilities for file compression and archiving.

18.2.3 Users , Ownersh ip , Permiss ions

Platforms need user accounts to support multiple people adding or editing data.

Programs for organizing digital photographs don’t use accounts because they are

single-user applications running on personal computers; and aerial photography

and astronomy programs typically display only data, so every user is a ‘‘guest.’’

A user account has a username and password for authentication along with

identification details: the person’s name, titles, and email address. Many IT

departments are already using Lightweight Directory Access Protocol (LDAP)

to store address book information and manage email/computer accounts. To

manage passwords and other user details centrally, OME can use LDAP for

authentication and lookup. User accounts are also handy for storing user-state

and customization parameters such as layout.

Importantly, user accounts enable the platform to link each image and

annotation to the user that imported or created it. This turns out to be very

useful if questions arise about a particular piece of data: There is always a data

owner to ask for explanations. OME places users into groups. Users in a group

are considered collaborators, and one user in a group is marked as group leader.

Usually groups are set up to mimic departmental organizational structure.

Permissions are layered on top of the data-ownership framework. In OME,

data that is visible is data owned by the user, data owned by groups to which the

user belongs, data owned by groups led by the user, or data owned by members

of the groups led by the user. A consequence of permissions is that there needs to

be at least one superuser or administrator account that has unconstrained

access. OME’s permissions are implemented by injecting Structured Query

Language (SQL) at the lowest layer, so higher layers, including presentation

code, do not have to worry about permissions because data that the user is not

permitted to view is not retrieved from the database.

503

18.2 Architecture of Microscopy Image/Data/Workflow Systems



Most people spend the majority of their time analyzing their own data. OME

utilizes ownership information to provide default views where only a user’s or

user collaborators’ data is presented. By limiting what data is presented, own-

ership and permissions perform an important role in maintaining performance

on large-scale deployments.

18.3 Microscopy Image Management

18.3.1 XYZCT F ive-Dimens iona l Imaging
Model

The ‘‘image’’ internal representation is a key component of image management

software. Images produced with consumer cameras are clearly two-dimensional

(2-D) RGB pixel lattices. However, representing microscopy images is more

complex, due to the numerous types of optical light microscopy, including

brightfield, differential interference contrast, and phase contrast, fluorescent

microscopy, and confocal microscopy.

The XYZCT 5-D imaging model [4] was designed to encompass all types of

microscopy images.XY denotes the spatial extents, same as in real-world images

(2-D). Z denotes the focal planes, cross-cutting the sample at regularly spaced

intervals. C denotes the channels; these can be a single channel in the case of

phase contrast, the three red, green, blue channels in stained pathology images,

or multiple fluorescence emission wavelengths. T denotes the elapsed-time

points that are relevant for live-cell imaging.

18.3.2 Image Viewers

The challenge with viewing five-dimensional microscopy images is that monitors

are physically limited to displaying only two dimensions. Volume rendering can

produce 2-D projections that users can rotate, pan, and manipulate to mimic

a three-dimensional (3-D, i.e., XYZ) pixels stack. The VisBio Java client [10]

(see Fig. 18.2) produces such visualizations. When the rendering can be per-

formed in nearly real time, a movie of the 3-D pixels stack can be generated to

show time-elapsed changes (T dimension). An alternative to volume rendering

that is utilized by thin clients (perform no processing activities, but only convey

input and output between the user and the remote server), such as OME’s SVG

web image viewer, is to give users controls to iterate over the Z and T dimen-

sions. The OME viewer can iterate over the dimensions automatically—to

‘‘play’’ Z and T fly-throughs.

Displaying multiple-channel images is tricky. Microscopy images, e.g., of

histochemically stained slides, that were acquired with a color camera are
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recorded as red, green, blue channels so that they can be displayed as color

photographs. Other types of microscopy images can also be multichannel, but

with each channel totally independent from the others. In fluorescence micro-

scopy, each channel represents a different emission wavelength. Each channel

can be viewed separately, or multiple channels can be viewed together using

pseudo-color. In pseudo-color, each channel is arbitrarily assigned a color (e.g.,

red, green, or blue) and displayed pixels are combinations of coloring with

channel intensity.

The digital cameras mounted on microscopes often sample photons at 10- to

12-bit quantization (1024–4048 levels), while monitors can only display 256

color intensities. Transfer functions resample the original pixel intensities into

the 256 shades that will be displayed. There are many different ways to define

such transfer functions, but all transfer functions share the property that they

filter out data. Different images have different noise and signal characteristics

and also are used for different purposes. It is important for users to be able to

adjust the display transfer function for individual images. OME uses a simple

uniform transfer function (marked on Fig. 18.2) that displays all pixels between

the minimum and maximum thresholds.

Multiple parameters are involved with displaying images, which can be

collectively referred as display settings. Selecting the proper display settings

can be quite laborious and tedious to repeat every time the image is viewed.

If consumer photographs are edited, e.g., contrast is improved with image

management software, then the file is typically overwritten with the new pixel

intensities. This is not appropriate for scientific image management. Instead,

OME stores the raw pixel intensities from the image files and also stores the

F IGURE 18.2 Image viewers for XYZCT 5-D images. Left: OME SVG web interface. Right: VisBio Java
client. Both viewers are displaying the same (postprocessed) image of H&E-stained mouse skeletal muscle
acquired at 40�.

505

18.3 Microscopy Image Management



display settings. The display views are regenerated every time by applying

the display settings to the raw pixels. In OME, display settings are assigned an

owner and thereby tied to individual users so that different users can have

different display settings for the same image.

18.3.3 Image Hierarch ies

Users have amuch easier time navigating andmaintaining large image datasets if

they can put their images into groups. Much like files in folders on a file system,

such groupings can be hierarchical. Images in a single group share some contextual

information implicitly that can be made explicit by annotating the group.

18.3 .3 .1 P rede f i ned Con ta ine r s

Nearly all image management software provides such predefined hierarchies.

Software for digital camera photographs organizes images into albums or events

that can be titled, labeled, or sorted. These groupings typically revolve around

a particular time point, e.g., birthday party, or a particular activity, e.g., sailing.

PACS, since they are geared toward a diagnostic workflow, organize images by

patients. Patients are further subdivided into modalities and date of study. This

organizational structure gives radiologists easy access to a patient’s previous

studies that may impact the current diagnosis.

Since OME is tailored to scientific experiments it provides a project, dataset,

and image object hierarchy. Projects represent large, long-term investigations,

usually by a single investigator or a small group of investigators. Each project

contains a number of datasets, and each dataset contains a number of images.

There is a many-to-many relationship between projects, datasets, and images:

Images can belong to multiple datasets, and datasets can belong to multiple

projects. Objects in the image object hierarchy carry very little state themselves,

except for a name and textual description.

The Atlas of Gene Expression in Mouse Aging Project (AGEMAP) is

a study by the National Institutes of Health, National Institute on Aging,

involving 48 male and female mice, of four ages, on ad libidum or caloric-

restriction diets. AGEMAP is investigating biomarkers of aging and diet in

multiple organs by analyzing Hematoxylin & Eosin (H&E) stained tissue sec-

tions with quantitative pattern analysis algorithms. For each mouse, 50 images

per organ were collected from liver, kidney, and skeletal muscle. As AGEMAP

progresses, additional organs are going to be imaged, including brain, lungs,

pancreas, thymus, and heart. Images from this project are managed and ana-

lyzed within OME.

AGEMAP (see Fig. 18.3 for a schematic) is organized as a single project that

is divided into datasets by mouse organ. All people collecting images, such as
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Jose, who was a summer intern, have their images linked to their own projects.

As can be seen in Fig. 18.4, organizing images into projects and datasets gives an

overview of 5000 images that is much clearer that just randomly selected

thumbnails.

18.3 .3 .2 Use r -De f i ned Con ta ine r s

AGEMAP is similar to many other microscopy experiments, in that large

groups of images are collected along multiple crosscutting axes of investigation,

Projects AGEMAP

Liver
Eosin

Liver
Hematoxylin

Skeletal Muscles
(Males)

1
2

3 5 7
864

... ... ... ...

Skeletal Muscles

Jose
Internship

Data sets

Images

F IGURE 18.3 Example project/dataset/images hierarchy.

F IGURE 18.4 Screenshot showing 5000 images organized by projects and datasets.
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where each axis could be the organizational hierarchy. The project/dataset/

images hierarchy is effective in grouping AGEMAP images by organ, but

other groupings, based on individual mouse, age, sex, and diet (see Fig. 18.5),

can also be organized. There is significant value in the other groupings. Viewing

images by individual mice can help elucidate if there are staining variations in

slides or any per-mouse outliers. Analyzing images in age-, sex-, and diet-

matched groups makes it possible to look for structural biomarkers of age,

sex, and diet, which is a key objective of AGEMAP.

OME provides a parallel structure to projects/datasets/images called classi-

fications, based on the category groups/categories/images hierarchy. Category

groups and cateogries are user-defined containers. Each category belongs to

a single category group. An image cannot belong to two categories of the same

category group but may belong to two categories of different category groups.

Figure 18.5 shows how AGEMAP images are placed in category groups/

categories/images. The OME web interface can display images based on their

classifications. This style of image annotation is very similar to image ‘‘tagging’’

in iPhoto, Picassa, etc.

Classifications are a powerful organizational tool because they enable images

across multiple datasets to be assembled in a crosscutting fashion into user-

defined groupings according to similar image content.

18.3.4 Browsing and Search

In consumer photography it is usually trivial to look at a small thumbnail and

tell who is present in the picture and what is happening (e.g., cutting cake at

a birthday party). For this reason, iPhoto and Picassa interfaces are based on

browsing pages full of thumbnails. The only commonly used meta-data is the

image acquisition time stamp.

This is diametrically opposite to scientific imaging, where image content is

rarely obvious, and often misleading, without proper context. In AGEMAP it is

Images
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Category Group:
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F IGURE 18.5 Schematic illustrating how images are grouped into three independent category groups:
age, sex, and diet.

508

18 Image Data and Workflow Management



relatively easy to look at a thumbnail and know what organ was imaged, but not

the mouse’s age, sex, or diet. This all-crucial context can be recorded in a variety

of ways: image name, description, dataset, or classifications. Users can

exploit this context information using keyword matching to carve out image

subsets in which they are interested. OME provides interfaces (Fig. 18.6) to

search by image free-text annotations, structured meta-data, datasets, or

classifications.

As the volume of managed images grows, the number of images that can

be displayed becomes an even smaller fraction of all images stored. This is

partially due to the computational overhead involved in presenting images

and partially due to finite screen area, but the ultimate constraint is that people

can concurrently process only a limited number of images. By allowing users to

specify constraints as to what they are looking for, search interfaces can show

only the most pertinent images.

In browsing interfaces, paging is important for maintaining stable perfor-

mance as the volume of managed images scales up. The idea behind paging is

that a user can analyze only a single page of information at once, so only a single

page of images or data will be presented to the user, and therefore only that data

will be retrieved from the database. A count of how many ‘‘pages’’ of data are

available is also returned, so a user can go to the ‘‘next page’’ to continue

browsing data.

18.3.5 Microscopy Image F i le Formats
and OME-XML

After images have been captured by the microscope and written to the file

system, they need to be imported before they can be manipulated with image

management software. During import, the file format is detected, meta-data is

extracted, and pixels are converted into the system’s internal representation.

In OME, the pixels are stored as a 5-D stack on the OME image server

(OMEIS), a thumbnail is precomputed and cached by OMEIS, and information

about the image is recorded in the OME database. It’s an open question what to

do with the original image file after the pixels and meta-data were extracted for

it. OME stores the original file in OMEIS and links it to the image pixels,

making it available to users on request.

Radiology has standardized on the Digital Imaging and Communications in

Medicine (DICOM) image-file format [11]. Thus scanners made by different

manufacturers for different radiological imaging modalities, e.g., computed

tomography, magnetic resonance imaging, and ultrasound, all write images in

the same file format. This made it possible to store, retrieve, and present

radiological images of all types in a single system and was critical to the success

of picture archiving and communication systems (PACS).
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F IGURE 18.6 OME users utilize meta-data to retrieve relevant images. Top: Users search by image
name, description, date, and experimenter. Bottom: Users find images based on image categorizations.
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OME supports DICOM and was also designed to allow users to store all

types of multidimensional microscopy and medical images in a single system.

In microscopy, unfortunately, there are 20–30 common proprietary image-file

formats [8]. Programming libraries, such as Bio-Formats , which is written in

Java and is capable of reading and writing microscopy files in over 50 image

formats, are bridging this fragmentation [12]. OME uses Bio-Formats to import

images.

Before Bio-Formats was developed in 2005, most software for processing

microscopy images would support only a select few image formats. In this

environment TIFF became the de facto standard for sharing microcopy images.

The TIFF standard allows for storing multiple two-dimensional image planes in

a single file and has a mechanism of name–value pairs called custom tags

for adding meta-data. In principle, TIFF can be used effectively for storing

multidimensional microscopy images. In practice, microscope software

encoded pixels and meta-data in TIFFs indiscriminately, thereby undermining

interoperability.

Some software exported a single image as a whole directory of TIFFs, one

file for each 2-D image plane. Splitting single images into multiple files is both

a strength and a weakness: It requires lower overhead during processing than

a single large file, but it also makes it easier for part of the image to get lost.

Without detailed meta-data, stitching the files back into a single image becomes

a matter of parsing filenames, which is far from robust since there was no

convention on filenames. Others images were written as a single TIFF file with

multiple 2-D planes without specifying explicitly whether the planes are focal

sections, channels, or time points. Storing meta-data was an even bigger prob-

lem. If software wrote meta-data at all, it was often included in a separate file,

with proprietary, binary, syntax. Or the meta-data was loaded into the TIFFs as

custom tags, with no convention on tag names and structure. Either way, the

meta-data was lost or ignored because it could not be understood. A great

feature of Bio-Formats is that it extracts not only pixels from image formats,

but also as much of the meta-data as possible.

18.3 .5 .1 OME-XML Image Acqu i s i t i on
On to logy

Converters for microscopy file formats such as Bio-Formats are only an interim

solution. What is needed is agreement on meta-data, its structure, and how it

will be stored along with the pixels.

OME-XML [13] is the ontology for describing microscopy images. It has

components for specifying image dimensions; the hardware configuration used

to acquire image planes, e.g., lenses, filters; settings used with the hardware

(physical size of image planes in microns, channel configuration); and who
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performed the image acquisition. The OME-XML Schema was released in

January 2004, accepted by the European Light Microscopy Initiative as

a standards recommendation in 2005, and is natively supported by several

microscope manufacturers and software vendors.

OME-XML is not a new file format; it is a new set of meta-data. This meta-

data is written in Extensible Markup Language (XML) using a format

specified in XML Schema—a standard format-description language for XML

documents.

XML is a powerful format for interchanging images because XML is not

binary, but readable, plain text; the structure of XML documents is inherently

open, so it is possible to understand a new XML format even without the

governing schema; XML Schema provides an unambiguous description of the

document’s structure, which allows for validation with third-party tools; lastly,

there is wide support for software for parsing XML for many computing

languages and platforms. OME-XML files follow the meta-data specification

in the OME Schema. Binary pixel data is encoded in base 64 in order to preserve

the ‘‘plain text’’ characteristic of XML documents. Base-64 encoding stores

a binary stream as a text series of 64 characters (52 uppercase and lowercase

letters, 10 digits, and two punctuation characters).

OME-TIFF is a variant of OME-XML that maximizes the respective

strengths of OME-XML and TIFF, taking advantage of the rich meta-data

defined in OME-XML while retaining the pixels in the TIFF format for greater

compatibility. A complete OME-XML meta-data block without the base64–

encoded pixels is embedded in the TIFF file header using the ‘‘Description’’ tag.

Thus OME-XML–compliant software can open the TIFF file, parse the OME-

XML in the Description tag, and read the pixels using the standard TIFF

encoding. Generic TIFF readers can still open OME-TIFF file, except they

would ignore the OME-XML block and the meta-data it contains.

18.4 Data Management

In informatics platforms, image and data management is intertwined: Data

associated with each image is the all-critical context for interpreting its pixels.

This context is heavily utilized when searching for and organizing images. It also

serves as historical documentation that makes the images more interpretable by

colleagues. We have already discussed several ways of recording context infor-

mation, such as by giving images names and descriptions, placing them into

predefined hierarchies (e.g., datasets and categories), and recording their

acquisition meta-data.

Predefined organizational hierarchies and free-text descriptions, however,

are not suitable for describing all experiments. Instead, ontologies can be used
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for creating hierarchies and structured meta-data specialized to new information

types. Ontologies imbue data with a defined semantic meaning and a comput-

able logical model that can later be used to visualize, query, and collate [14] the

structured data in a way that is impossible with plain text.

18.4.1 Biomedica l Onto logies

Ontologies have been applied to organizing facts and observations since the 17th

century. An ontology can be defined simply as a controlled vocabulary. In the

present day, the use of ontologies in biology and medicine has become so

prevalent that it could be considered mainstream [15]. An ontology can describe

how empirical data was generated. For example, the MIAME standard defines

a minimal set of information about microarray experiments [16], similar to

OME-XML’s light-microscopy image acquisition parameters. Other ontologies

represent knowledge objects and relationships from a given domain in a com-

putable format. The Gene Ontology (GO) [17, 18] models relationships between

gene product and function and is, to date, the most highly successful [19]

example of an ontology in biology.

A particular ontology first needs to be adopted by the scientific community

before it can serve as a unifying terminology for data and service interoperability.

In an effort to build consensus, institutions and consortiums, such as NIH’s

National Cancer for Biomedical Ontology and the European Center for Onto-

logical Research, are increasingly guiding ontology development. In a similar

vein, there now exist common ontology descriptive languages (XML, RDF,

OWL) and cross-discipline ontology editors, e.g., Protégé [20]. The current

trend in ontologies is toward increased logical rigor and formalism [21].

Medicine is a discipline heavily dependent on specialized terminology. Sys-

tematized Nomenclature of Medicine—Clinical Terms (SNOMED-CT) and its

predecessors have been in development since 1965 in an effort to systemize

medical terminology in an electronic multiaxial, hierarchical classification sys-

tem. SNOMED has 269,864 classes, named with 407,510 terms and subdivided

into 18 top-level classes (e.g., body structure, environment, organism, pharma-

ceutical/biologic product) [22]. Creating andmaintaining SNOMED is amassive

undertaking involving a whole community of doctors and informaticians.

DICOM Structured Reporting (DICOM SR) [23] is leveraging the

SNOMED ontology in an attempt to formalize, with coded or numerical

content grouped in lists and hierarchical relationships, the patient information

and diagnostic reports stored in radiology PACS. Patient information is data such

as age, gender, weight, lifestyle (e.g., smoker), and past medical history. Reports

are dictated and written by radiologists to specify study details, findings,

interpretations, and differential diagnosis.
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In microscopy, the visual content of images varies greatly, depending on the

experiment, and experiments vary greatly between preceptors and laboratories.

Thus there cannot exist a single complete ontology, such as SNOMED, for

describing all information that can be extracted from a microscopy image.

Instead, a standardized data model can exist that will allow researchers to define

their own ontologies specific to an individual experiment or analysis. The image

management software would parse the ontology definitions and adapt to the

new information types. This is the approach undertaken with the OME

‘‘SemanticType’’ Data Model and OME platform [4].

18.4.2 Bui ld ing Onto log ies wi th OME
Semant i cTypes

OME SemanticTypes are an XML-based specification language for constructing

ontological terms to define the meaning and structure of data. Instances of

SemanticTypes, the actual data, are called attributes. A SemanticType’s meaning

comes from its name, description, and granularity. Names and descriptions are

human interpretable and convey the common traits shared by attributes of that

SemanticType. A SemanticType’s granularity can either be ‘‘image,’’ ‘‘dataset,’’

or ‘‘global’’ and specifies whether the SemanticType is a property applicable to

a specific image, e.g., cell count, a property applicable to a group of images, e.g.,

average number of cells per image, or a global fact, e.g., name of a cell line. The

SemanticType’s structure is specified with a list of named fields called Semantic-

Elements. Each SemanticElement can be a simple data type, such as an integer,

string, or floating-point number, or can be a reference to another SemanticType.

The property that SemanticTypes can reference other SemanticTypes is used

for modeling has-a relationships. Is-a relationships can also be modeled:

The SemanticType definition has an optional element to refer to the Semantic-

Type of which it is a specialization. These has-a and is-a relationships are

the mechanism by which SemanticType object definitions can be combined,

like a network, into ontologies.

The OME-XML image acquisition ontology is defined by its Schema defin-

ition, but it is also completely modeled with SemanticTypes. Figure 18.7 shows

two elements from this ontology. An ‘‘Instrument’’ is a global granularity

SemanticType that describes a microscope. Its SemanticElements are ‘‘Manu-

facturer,’’ ‘‘Model,’’ ‘‘SerialNumber,’’ and ‘‘Orientation’’—all strings. Similarly

‘‘LightSource’’ is a global granularity SemanticType with string Semantic-

Elements ‘‘Manufacturer,’’ ‘‘Model,’’ and ‘‘Serial Number.’’ ‘‘LightSource’’

has one additional SemanticElement that is a reference to an ‘‘Instrument.’’

It is conceptually clear that an instrument is made up of (has-a) a light-

source, detector, objective, and filter wheel with an optical transfer function

(OTF). Conceivably an instrument could be modeled as a single SemanticType,
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with SemanticElements defining all the attributes for objectives, filters, etc.

Or another possibility is that the objective, filters, etc. are separate Semantic-

Types that are referenced by the ‘‘Instrument’’ SemanticType. Both hypothet-

ical modeling approaches are severely limited. First, a single microscope

typically has multiple objectives with different magnifications; but referencing

objectives in the instrument definition requires making assumptions as to how

many objectives a microscope can have. Second, instruments are often regularly

upgraded with new objectives or cameras. Hardware changes would require the

creation of a new instrument, duplicating much of the old instrument’s defin-

ition. These limitations can be avoided if the has-a relationship between the

instrument and, e.g., objective is modeled with the objective’s SemanticElement

referencing the instrument SemanticType. Then there are no limits on how

many, e.g., objectives an instrument has—when a new objective is purchased,

a new objective SemanticType attribute is made referencing the old instrument.

Modeling OME-XML with SemanticTypes makes the ontology locally

extensible. For example, some microscopes are placed on air tables for vibration

abatement, but OME-XML lacks the meta-data to describe such air tables. It is

easy to extend OME-XML by defining an ‘‘AirTable’’ SemanticType, with

SemanticElements listing the air table’s properties and a SemanticElement ref-

erencing the ‘‘Instrument’’ SemanticType. Such ontology extensions can be

produced independently and immediately put to use in the lab. Subsequently

they can be forwarded to the OME-XML standards committee, incorporated

into the official Schema, and released.

A key element in the OME-XML ontology is the Pixels SemanticType.

Although pixels are mathematically represented as a 5-D matrix, they are

treated markedly different than a lattice of numbers: They are displayed raster-

ized on the screen rather than as a table of numerals. Some pixels are directly

from a microscope, while others, the processed pixels, are by-products of image

analysis such as segmentation. Computational pixels are stored and displayed in
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F IGURE 18.7 Instrument and Objective’s schematic representations.
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a similar manner as raw pixels but have different semantic meanings. Utilizing

SemanticTypes’ support of specialization, each new type of computational

pixels can be defined as its own new SemanticType that also ‘‘is-a’’ Pixels.

OME SemanticTypes are being used in other independent projects, including

the Bio-Image Semantic Query User Environment [24] and the BioSig Imaging

Bioinformatics Framework [25].

18.4.3 Data Management Sof tware wi th
P lug- in Onto logies

Informatics platforms store data with an inherent structure. This structure can

be implicit and simple; for example, in software for managing consumer photo-

graphs, the data structure is something like: albums have images and images

comprise name, pixels, and time stamp. Ontologies can be used to formalize

software’s complex data structures. In this way, SNOMED-CT is being inte-

grated into PACS systems. But since SNOMED-CT is a single ontology, this

integration can occur during software development. The challenge for micro-

scopy platforms is that the structure of information is not known a priori;

rather, the ontologies that model the scientific discovery process can be defined

only by the software users. Platforms need a language for defining these ontol-

ogies, and an infrastructure for ‘‘plugging in’’ the ontologies so that they can be

utilized for data management.

Ontologies defined as SemanticTypes in XML files can be imported into

a running OME platform. Through the import process, the OME platform gains

the capabilities to manage these new data objects. OME can support plug-in

ontologies because (1) the OME database schema was designed to expand

dynamically and (2) all of OME, from the database to the presentation layers,

treats SemanticType attributes generically. The generic treatment that’s pro-

vided by default can also be customized per SemanticType for presentation or

other purposes, e.g., Pixels have specialized rendering.

In OME, each SemanticType is stored in its own table, with columns for each

SemanticElement. This table is created when the SemanticType’s XML defi-

nition is imported into OME. The SemanticElement’s declared data type is the

column data type of the new table. Each SemanticType attribute has its own row

in the table and a key (attribute id). Tables for SemanticTypes that are of image

or dataset granularity also contain a column with foreign keys into the images or

dataset tables. This ties attributes to the container they describe. Similarly,

SemanticElements that reference a SemanticType are foreign-key references to

the referenced SemanticType’s table.

OME maintains meta-tables that map SemanticTypes to table names and

SemanticElements to columns names and data types. These meta-tables com-

pletely insulate data storage in OME. Data is accessed in terms of its ontology,
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not how it’s laid out in the database. Thus OME is not locked into maintaining

this data layout format, and it could just as well be storing attributes as key/

value pairs in a single long, skinny table. The one table per SemanticType data

layout format was selected for performance reasons because it leads to signifi-

cantly fewer rows and therefore significantly lower database overhead due to

indices and storage than if using key/value pairs.

Leveraging OME’s support for plug-in ontologies, many of OME’s essential

data structures are not hard-coded but, rather, defined using SemanticTypes and

imported during the OME install process. These are called the OME core types

and are fully compliant SemanticTypes defined in XML that are no different

than user-defined ontologies [26]. The OME-XML image acquisition ontology

and the category groups/categories/images hierarchies are built in to OME in

this way. Thus the extensibility mechanism is used to build the entire system

rather than just to extend it.

18.4.4 Stor ing Data wi th Onto logi ca l
S t ruc ture

After the ontology has been defined and integrated into the informatics plat-

form, data in the prescribed ontological structure can be loaded into the

platform. This data can come from a variety of sources: It can be extracted

from image files, entered via the web interface either individually or en masse, or

imported from spreadsheets.

18.4 .4 .1 Image Acqu i s i t i on Meta -Da ta

When images are imported into OME, as much of the meta-data as possible is

extracted from the image files and converted into structured annotations. Some

file formats (TIFF is a prominent example) store very little meta-data and so

acquisition information has to be supplied manually. OME’s web interface has

a generic page for creating new attributes of any SemanticType. This page

presents fields where users can enter values for all of a SemanticType’s

SemanticElements.

18.4 .4 .2 Mas s Anno ta t i on s

Some use cases, such as manually scoring high-content screens (HCS), call for

marking up a large number of images en masse. The aforementioned web

interfaces are effective for creating one-at-a-time SemanticType attributes that

need to be made infrequently and without viewing image content but are

cumbersome for annotating image datasets. After all, a microscope’s properties

have to be defined only once.
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OME has a specialized web interface for mass annotations. In this interface,

users first select which ontological terms they want to use for annotations and

which images they want to annotate. Ontological terms can be any Semantic-

Type or category group. Ontologies are often complex, and informatics plat-

forms manage many images; hence focusing on terms and images of interest is

important in increasing efficiency by eliminating distractions. After users have

made their selections, they are presented each image, one at a time, along with

meta-data including name, owner, and description, and other ontological terms.

Users can change the image’s annotations, click the ‘‘Save & Next’’ button, and

move on to annotating the next image. This interface was designed to entail the

least number of keystrokes and mouse movements so as to enable images to be

annotated manually at maximal speed.

18.4 .4 .3 Sp read shee t Anno ta t i on s

Many images that are managed by informatics platforms have already been

annotated externally, with the annotations recorded in spreadsheets. This makes

tools that can migrate a laboratory’s extensive spreadsheet collections into the

platform very valuable.

OME has support for converting spreadsheets in the Microsoft Excel and

tab-delimited file formats into projects/datasets groupings, category group/

category classifications, and SemanticType annotations. All the different anno-

tations that can be made with the web interface, can also be made via spread-

sheets. The spreadsheet’s column headings dictate what type of annotations will

take place.

Spreadsheets that define image annotations need to have one column named

‘‘Image.Name,’’ ‘‘Image.FilePath,’’ ‘‘Image.FileSHA1,’’ or ‘‘Image.id.’’ This

column is how OME finds the correct image to annotate. Columns named

‘‘Dataset’’ or ‘‘Project’’ specify how the images need to be grouped into the

projects/datasets/images hierarchy. Columns can also be names of category

groups, and then all of its entries are categories into which the image will be

classified. To annotate by SemanticType, the column headings should be of the

form SemanticType.SemanticElement and the entry in the column will be used

to set the SemanticElement’s value.

Spreadsheet annotations were used to link AGEMAP images to the acqui-

sition microscope’s meta-data and to classify the images by age, sex, diet, and

mouse. The AGEMAP spreadsheet was produced by a script and had thousands

of rows across half a dozen columns. The script contained a hard-coded lookup

table to map mouse identifiers to age, sex, and diet. When it scanned a directory

of images, it extracted the mouse identifier from each filename and used the

identifier to fill in the spreadsheet. Sample spreadsheet-generating scripts and

a Perl programming toolkit are included in OME.
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Many times scientists purposely group their images into directories on the

file system based on an experimental variable. In AGEMAP the images are

placed in directories based on which organ is imaged. OME ‘‘annotation wiz-

ards’’ can scan these directory structures and produce annotation spreadsheets

to convert directory hierarchies into projects/datasets/images and category

groups/categories/images hierarchies. Wizard-produced spreadsheets can be

examined for accuracy and then used to create annotations.

18.5 Workflow Management

Analogous to ontologies that represent concepts and define data’s semantic

meaning, workflows model processes in order to define data’s provenance.

Provenance information records the procedure by which data was generated.

This information is applicable to all data but is especially relevant in scientific

image analysis, where results can be produced by computer algorithms such as

in the systematic analysis of high-throughput microscopy experiments.

Workflows are data-flow descriptions; but they can also include execution

instructions that specify how a workflow’s algorithms ought to be run. The

platform follows these instructions to enact the workflow and automatically

record the algorithm results and provenance information. The platform can

optionally distribute the analysis across networked computers to take advantage

of parallelization or reuse previous results to avoid reexecuting algorithms with

the same inputs.

18.5.1 Data Provenance

When an image is imported, recorded provenance information is the link

between the original image file and the pixels and meta-data that were extracted

from it. Similarly, spreadsheets used for mass annotations need to be marked as

the sources of new classifications and attributes. Provenance information for

analysis results includes a description of the algorithm used and its input values.

Even if annotations were created spontaneously, e.g., with a web interface, it

needs to be noted that annotations were produced with ‘‘Web Annotation.’’

Provenance is essential to differentiating data that could have been created in

multiple ways. Data modeled with the same ontological terms but with different

provenance has subtly different meanings. For example, in OME, DisplaySet-

tings is the SemanticType defining the parameters used by the 5-D viewers for

rendering images. Users create the majority of DisplaySettings attributes by

manipulating the viewer’s controls. Other DisplaySettings attributes are

extracted during import from images if their file format (e.g., DICOM) includes

meta-data about how pixels should be presented.
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Data modeled with different ontological terms but with the same provenance

share common properties that explain why the data was produced together.

Formally recording provenance information enables these groupings to be

exploited. The OME web interface can display the new classifications and

attributes produced from a spreadsheet import.

Image analysis algorithms and other data creation processes, such as image

import, spreadsheet mass annotations, and web interface manual annotations,

can all be modeled as transformations that convert inputs into outputs. The

transformations are defined a priori and are used by the platform to make the

provenance links between actual input and output data values.

18.5 .1 .1 OME Ana l y s i sModu le s

Transformations in OME are called AnalysisModules and are defined in XML.

AnalysisModule definitions include the module’s name, description, inputs and

outputs. The module’s name and description is text explaining how the module’s

outputs are generated. Inputs and outputs have informal names but are formally

modeled by specifying the SemanticType and arity.Arity refers to the number of

operands and can be ‘‘one,’’ ‘‘optional,’’ ‘‘one or more,’’ or ‘‘zero or more.’’

Some AnalysisModules, such as spreadsheet importers, instead of specifying the

outputs’ SemanticTypes, have ‘‘untyped’’ outputs that can produce any

SemanticType.

OME maintains a meta-table where each AnalysisModule execution (MEX)

is associated with meta-data, including an experimenter ID, time stamp, timing

statistics, any error/warning messages, and a status flag that states if the execu-

tion was successful. An ActualInputs table maps MEXs to the attributes that

were used to satisfy the modules’ inputs. Every data attribute stored in OME is

tied to the MEX that produced it. This is implemented by adding a column to

each SemanticType table that is a not-null foreign-key reference into the MEX

meta-table (see Fig. 18.7).

18.5 .1 .2 Ed i t i ng and De le t i ng Da ta

Many data repositories are designed to be read-only. For example, PACS

systems lack functionality to delete radiological studies or edit diagnostic

reports. The images and radiologist’s opinions are a matter of record. That

they cannot be altered is an intended feature crucial to situations such as quality

assessment and investigating possible malpractice. For similar reasons, the

results of pharmaceutical experiments also often need to be preserved without

alterations. Curation is necessary and inevitable for all large scientific datasets.

Read-only repositories support curation by employing a mechanism by which

old annotations are ‘‘invalidated,’’ hidden, and replaced with new, ‘‘valid’’
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annotations. OME supports data deletion, but that is an administrative function

not available to regular users. Deletion in OME is inaccessible by the web

interface and is not intended to be performed regularly.

OME has three types of data annotations. The first type includes notes, such

as image name and description or dataset name and description, that can be

altered casually with the web interface and no record is kept that changes were

made. The second type includes image annotations and classifications that can

also be causally altered by the web interface, but where previous values are

stored in the database with an invalidated status. Finally, the third type includes

interrelated data, such as results produced as outputs of algorithms. This

data cannot be edited with the web interfaces; it can only be deleted using

administrative tools with all traces removed from the database.

Deleting and editing of interrelated data has to be performed in a manner

that maintains the provenance chain in a valid state. Issues include: Can an

algorithm’s outputs be deleted if they have also been used as inputs to other

algorithms? And is it permitted to delete some algorithm outputs while leaving

the remaining outputs?

OME deletions are performed per module execution rather than per

attribute. Deleting the MEX removes timing information and other MEX

meta-data, all the attributes produced by the MEX, and all other MEXs that

subsequently used this MEX’s output attributes as inputs. OME does not allow

cherry-picking output attributes. For example, even if only some of the anno-

tations in a spreadsheet mass annotation are wrong, the whole annotation needs

to be rolled back, the error in the spreadsheet fixed, and the spreadsheet

reimported.

18.5.2 Model ing Quant i ta t ive
Image Analys i s

High-throughput microscopy experiments are producing large volumes of data

that subsequently need to be systematically analyzed. Manual image analysis is

laborious, qualitative, and not always objective. Analyzing images with algo-

rithms is becoming popular for it offers automation and reproducibility and

often has higher sensitivity than manual observers.

As part of the AGEMAP project, we ultimately expect to collect and analyze

over 25,000 images, including all major tissues and organs, such as liver,

skeletal muscles, kidney, brain, heart, and lungs. For analysis, we are using a

multipurpose pattern analysis tool called WND-CHARM [27] that we’ve devel-

oped for comparing image morphology. WND-CHARM consists of two major

components: feature extraction (CHARM) and classification (WND-5).

CHARM stands for a Compound Hierarchy of Algorithms Representing

Morphology. During feature extraction, each image is digested into a set of
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1025 image content descriptions. The algorithms used to extract these features

include polynomial decompositions, high-contrast features, pixel statistics, and

textures. The features are computed from the raw image, transforms of the

image, and transforms of transforms of the image. WND-CHARM is a complex

workflow comprising 17 algorithms as 53 nodes with 189 links outputting 1025

numeric values modeled as 48 SemanticTypes. For a single 347 � 260 12-bit

image (175 Kb), CHARM feature computation takes 150 seconds and produces

2.5MB in intermediate pixels data due to results from the transforms and

transforms of transforms.

In large-scale projects such as AGEMAP, systematic quantitative analysis

involves thousands of images and a handful of algorithms arranged in a complex

workflow. Executing the workflow requires multiple parameters, creates

thousands of execution logs, and produces millions of analysis results. The

meta-data, structured semantics, and provenance information recorded by in-

formatics platforms are all crucial to organizing the data so that conclusions and

results can be drawn from it.

18.5 .2 .1 Coup l i ng A lgo r i t hms to I n fo rma t i c s
P la t f o rms

Microscopy image analysis algorithms are commonly implemented in a variety

of ways, including as command-line compiled programs and interpreted scripts

such as MATLABTM (The MathWorks, Inc., Natick, MA), Octave (http://www.

gnu.org/software/octave), and R (http://www.r-project.org). These implementa-

tions all have their unique requirements for specifying inputs and outputs.

Before quantitative image analysis results can be managed by an informatics

platform, the algorithms, inputs, and outputs all need to be defined using the

platform’s ontology. In OME, AnalysisModules are the algorithm representa-

tions, with the inputs and outputs modeled with SemanticTypes. After

the algorithm is modeled, the coupling between its implementation and the

informatics platform can be made.

Pu l l v s . Pu sh Pa rad igms This coupling can follow either the pull or

push paradigm. Using pull, implementations can be linked to a platform API so

that when algorithms are executed they initiate read/write transactions with the

platform. This is a common paradigm in client–server architectures. In push,

the platform is instructed a priori how to execute the algorithms, and it follows

the instructions to present inputs to the algorithm, run the algorithm, and gather

outputs. Pushing can also be implemented such that algorithm execution is

initiated by the platform but the algorithm is responsible for reading and

writing data. The key distinction is who initiates the transaction—the

algorithm or the informatics platform. User-initiated analysis follows the pull
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paradigm, but a platform that manages workflow and executions for the user

must be constructed using the push paradigm.

To implement push, the platform requires significant machinery that will fire

off algorithm executions, make sure the executions are running, and determine

what algorithms need to be executed next. In pulling, all these features are

provided by the algorithm implementation itself, and all the platform does is

service read/write requests. The advantage of pushing is that the platform can

provide organized features such as distributed analysis, results reuse, and exe-

cution management.

OME supports both pushing and pulling for algorithm execution. The OME

analysis engine is the push infrastructure. Spreadsheet and image importers

are implemented using pull, but complex image analysis workflows, such as

WND-CHARM, are implemented using push—mainly to take advantage of

parallelization and execution management.

Coup l i ng Us i ng AP I s o r Exe cu t i on In s t r u c t i on s It is

typically easier and more flexible to program using APIs written in the same

language as the algorithm implementation than to write execution instructions

in a specification language such as XML. On the other hand, execution

instructions do not require editing implementation source code, which makes

them better suited for wrapping legacy algorithms or proprietary programs. The

function of APIs and execution instructions is to map the program’s inputs,

parameters, and outputs to the platform’s ontological terms. APIs enable the

algorithm to read/write the data when it needs to, while execution instructions

specify how the inputs should be presented and outputs parsed. Execution

instructions additionally need to specify how the program should be run.

APIs and execution instructions are language specific and need to accom-

modate many different types of image analysis. They can be designed in a

general way to take advantage of language bindings for the APIs and poly-

morphism in the execution instruction interpreter to make it easier to support

other programming and scripting languages. We strove to develop simple,

flexible, and expressive instructions that would enable a wide variety of

implementations to interact with OME without altering the programs’ interfaces.

OME provides Perl APIs for connecting with the platform and execution

instructions for command-line programs and MATLABTM scripts. OME execu-

tion instructions are specified in XML as part of the AnalysisModule definition.

In our experience, OME APIs and execution instructions are quite general. This

API is used to implement all the web annotations, image importers, and spread-

sheet importers. We developed the execution instructions concurrently with

WND-CHARM. The execution instructions constructions have proven to be

sufficiently general to allow us to add 11 substantially different feature extraction

algorithms to CHARM without expanding the execution instruction set.
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18.5 .2 .2 Compos ing Work f l ows

The data modeling section is the same for all AnalysisModules, regardless of the

algorithm or manual annotation they represent. This makes them an implemen-

tation-independent, modular, algorithm representation. Each algorithm is

intended to perform an atomic subset of a full image analysis. The algorithms

can be collated into multifunction libraries or toolboxes and linked together in

creative and novel ways to form complex workflows for new image analysis

applications. Parts of the workflow can be implemented in different languages or

using combinations of specialized newly developed modules and previously

defined modules. The only strict limit is that connections be allowed only

between inputs and outputs of the same SemanticType.

OME workflows, called AnalysisChains, are XML representations of com-

putational experiments. In a valid AnalysisChain, the output of a given module

can be used to feed multiple other modules, but each module’s input must come

from exactly one other module. Loops or conditionals are not supported. Also,

there is currently no provision for ordering attributes, so multiple attributes that

feed into inputs with multiple arity are treated as lists.

A module’s output can be connected to the input of another only if the two

connectors have the same SemanticType. Semantic typing ensures that connec-

tions between modules in a chain are more meaningful that just a storage-based

correspondence. Strong semantic typing also serves as a form of ‘‘syntax check-

ing,’’ making sure that algorithms are used within their designed constraints.

The ChainBuilder GUI tool allows users interactively to compose Analysis-

Chains by dragging modules from a palette onto a canvas and clicking glyphs

to form module connections (see Fig. 18.8). This enables ChainBuilder users to

focus on the image analysis workflow while remaining agnostic to the details of

algorithm implementations. Graphically composed AnalysisChains can be

exported in the form of XML to be shared with colleagues.

18.5 .2 .3 Ena c t i ng Work f lows

Workflows such as AnalysisChains are mathematically abstracted as directed

acyclic graphs. The graph’s nodes are its chain’s AnalysisModules, and the

graph’s edges are its chain’s input/output connections. Each node has in-degree

1 except for root nodes, which have in-degree zero. Nodes’ out-degree is uncon-

strained.

The OME Analysis Engine’s (AE) overarching functions are (1) to guide

AnalysisChain execution by ensuring that modules are executed in the correct

order and (2) to record provenance information for each module execution.

When presented an AnalysisChain, the Analysis Engine sorts the chain’s

graph topologically to reveal its data-dependency structure. Nodes at a particu-

lar topological level are executed only after nodes from previous levels have
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finished executing. However, nodes at the same topological level can be executed

concurrently, supporting distributed computation. Data dependency is used by

the AE to maintain an updated queue of all chain nodes that are ready for

execution. Initially, the ready-module queue is composed entirely of root nodes.

As nodes are executed, they are removed from the queue, and successor nodes

are added once predecessor nodes have all successfully executed. This cycle

continues until all the nodes in the chain have been executed or, because of

errors in predecessor nodes, no further nodes can be executed. Executors access

the AE’s module queue and distribute ready modules to Handlers for the actual

execution. As module executions finish successfully, status information is passed

back through the handler and executor to the analysis engine. The engine uses

successfully executed modules to satisfy inputs to downstreammodules and thus

to replenish the module-ready queue.

The OME analysis engine passes algorithm results through third-party APIs

in C/Perl/SQL, possibly across the network, before finally storing the results in

a database. This adds significant layers of complexity around the algorithm

execution environment (e.g., MATLABTM). It was an important step to validate

that the results of doing algorithm execution within OME, storing intermediary

results in a database and middle layers, agrees to native algorithm execution

results to seven significant figures, the precision expected with 32-bit floating-

point precision. This level of precision occasionally requires modifications to

algorithms to make them less prone to numerical noise. For example, Fourier

F IGURE 18.8 The OME ChainBuilder tool enables users to compose workflows by graphically con-
necting AnalysisModules’ inputs and outputs.
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transforms need to be thus modified to ensure that ‘‘last digit’’ imprecision does

not end up dominating results.

Algorithm models, workflow representations, and recording provenance

information introduces overhead. Using the WND-CHARM workflow as an

example, OME overhead was found to be minimal (5% increase) as compared to

the algorithm execution time when executing the algorithms entirely outside of

OME. Provenance information can improve execution time when it is used

by the platform to distribute analysis across networked computers and to

reuse previous results, thus taking advantage of parallelization and avoiding

reexecuting algorithms with the same inputs.

Di s t r i bu ted Ana l y s i s Often when quantitative analysis is applied

to datasets with multiple images, each image’s calculations can be performed

independently, making the task embarrassingly parallel. Additionally, for

complex AnalysisChains with parallel paths connecting modules, even though

individual modules are single threaded, there exists higher-level parallelization.

The analysis engine uses the recorded provenance information to exploit both

types of parallelization and to distribute computations across a network of

computers.

In a distributed analysis configuration, one running instance of OME we

term themaster node, because it hosts the database and image server. Additional

computers, called worker nodes, can be configured to run separate instances of

OME. The master node maintains a list of URLs to all worker nodes. When

executing a workflow, the master node distributes individual AnalysisModule

executions to its workers, which individually connect to the master node’s

database and image server to perform their calculations. When executing

WND-CHARMusing four dual-processor computers, one computer configured

as the master node and three as workers, we measured 4� speedup as compared

to running the WND-CHARM in a single-threadedMATLABTM environment.

Resu l t s Reuse Quantitative microscopy requires optimization steps—

commonly biologists will tweak parameters to a selected AnalysisModule

without changing the rest of the workflow. To incorporate users’ changes

efficiently, the OME analysis engine performs results reuse, and only modules

whose inputs have changed will be reexecuted.

Before executing a module, the analysis engine encodes the module’s name

and input attributes in a string called an ‘‘InputTag’’ and compares the new

InputTag to previously executed modules’ InputTags. If this check indicates

a module has been successfully executed with matching inputs, the module is not

reexecuted; rather, the analysis engine records the module execution as a virtual

module execution, with references to the original module execution’s attributes.
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Robus t Exe cu t i on Env i ronmen t It is important to verify that any

system that claims to support a workflow and execution management platform

can be successfully applied to large-volume, long-duration, highly distributed

workflows.

We’ve collected 48,000 images, each 347 � 260 with 12-bit quantization, for

which we needed to compute WND-CHARM features. Beginning with 8GB of

raw pixels, we generated 125GB of computational pixels and extracted 48

million WND-CHARM features over 2000 processor hours. OME was able to

contend with such unexpected events as hard-disk failures, running out of disk

space, unscheduled operating system upgrades triggered by update scripts, and

intermittent web server restarts.

18.6 Summary of Important Points

1. The rate-limiting factor of high-throughput microscopy experiments is

the image analysis that needs to be performed after image acquisition.

2. Image informatics software supports image analysis by providing an

infrastructure of image management that scientists use to organize,

browse, search, and view their datasets.

3. Informatics platforms are effective when based on a client–server archi-

tecture, where researchers access their data stored in a centralized

repository using a web browser or other (e.g., Java) client.

4. Meta-data is stored in a database, and pixels data is stored in

a specialized repository designed for large binary objects.

5. Users can better manage, navigate, and maintain large image datasets

by grouping images into hierarchical containers, such as projects/

datasets/images and category group/category/images.

6. Predefined organizational hierarchies and standardized meta-data are

not suitable for all microscopy experiments. It is essential that image

informatics software be based on an extensible data model.

7. Image meta-data and annotations provide crucial context necessary for

interpreting pixels. This context must be stored in image informatics

platforms alongside the original images.

8. Search interfaces exploit this context information, using keyword match-

ing, to help scientists find relevant images.

9. Image acquisition meta-data describes the microscope configuration

and settings. OME-XML is the industry standard.
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10. User-defined annotations can be either unstructured (free text) or struc-

tured (based on an ontology). Unstructured annotations are inherently

more flexible, while data modeling annotation structure confers seman-

tic interoperability.

11. Annotations can be either text summarizing human interpretations or

numeric measurements produced by computer vision algorithms.

12. SemanticTypes are an XML-based specification language for defining

new structured annotations. SemanticTypes are realized with an exten-

sible database schema.

13. Laboratories already keep extensive records in the form of notebooks

and spreadsheets. Platforms need to provide tools to migrate legacy

spreadsheets into annotations.

14. The systematic computer-based quantitative analysis of high-throughput

microscopy experiments involves thousands of images and a handful of

algorithms, with parameters, that produce thousands of analysis results

along with execution logs. It is advantageous to store information about

algorithm execution within the informatics platform’s data warehouse.

15. Defining algorithms’ inputs and outputs using the data’s ontological

terms conveys the semantics and not merely the data structure of the

data on which the algorithms operate.

16. Execution instructions describe how to present inputs, run the program

or script implementing the algorithm, and parse outputs.

17. Algorithm inputs and outputs can be connected together to create

recipes of computational experiments, called workflows. Workflows

composed of algorithms with execution instructions can be enacted by

the informatics platform.

18. Every piece of data is associated with provenance information, which

records how the data was derived, e.g., the algorithm and inputs that

produced it.

19. Provenance information can improve execution time when it is used by

the platform to distribute analysis across networked computers and to

reuse previous results, thus taking advantage of parallelization and

avoiding reexecuting algorithms with same inputs.

20. Platforms exist at the hub of an ecosystem of scientific programs. They

need to accept data in a variety of formats and they need exporters so

that they can present data in common-denominator formats to external

programs for specialized processing.
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Glossary of Microscope Image
Processing Terms

This glossary is meant to help the reader avoid confusion brought about by the

use of ordinary words given specialized meaning in this book. These definitions

conform roughly to common usage in microscope image processing but do not

constitute a standard in the field.

Algebraic operation—an image processing operation involving the pixel-by-pixel

sum, difference, product, or quotient of two images.

Aliasing—an artifact produced when the pixel spacing is too large in relation to

the detail in an image (Chapter 3).

Arc—(1) a continuous portion of a circle; (2) a connected set of pixels representing

a portion of a curve.

Background shading correction—the process of eliminating nonuniformity of

image background intensity by application of image processing.

Binary image—a digital image having only two gray levels (usually 0 and 1,

black and white).

Blur—a loss of image sharpness, introduced by defocus, low-pass filtering,

camera motion, etc.

Border—the first and last row and column of a digital image.

Boundary chain code—a sequence of directions specifying the boundary of an

object.
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Boundary pixel—an interior pixel that is adjacent to at least one background

pixel (contrast with Interior pixel, Exterior pixel ).

Boundary tracking—an image segmentation technique in which arcs are detected

by searching sequentially from one arc pixel to the next.

Brightness—the value associated with a point in an image, representing the

amount of light emanating or reflected from that point.

Change detection—an image processing technique in which the pixels of two

registered images are compared (e.g., by subtraction) to detect differences in the

objects therein.

Class—one of a set of mutually exclusive, preestablished categories to which an

object can be assigned.

Closed curve—a curve whose beginning and ending points are at the same

location.

Closing—a binary or grayscale morphological operation consisting of a dilation

followed by an erosion (Chapter 8).

Cluster—a set of points located close together in a space (e.g., in feature space).

Cluster analysis—the detection, measurement, and description of clusters in a

space.

Concave—a characteristic of an object: at least one straight-line segment be-

tween two interior points of the object is not entirely contained within the object

(contrast with Convex).

Connected—pertaining to the pixels of an object or curve: any two points within

the object can be joined by an arc made up entirely of adjacent pixels that are

also contained within the object.

Contrast—the amount of difference between the average brightness (or gray

level) of an object and that of the surrounding background.

Contrast stretch—a linear grayscale transformation.

Convex—a characteristic of an object: all straight-line segments between two

interior points of the object are entirely contained within the object (contrast

with Concave).

Convolution—amathematical process for combining two functions to produce a

third function. It models the operation of a shift-invariant linear system.

Convolution kernel—(1) the two-dimensional array of numbers used in convo-

lution filtering of a digital image; (2) the function with which a signal or image is

convolved.
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Curve—(1) a continuous path through space; (2) a connected set of pixels

representing a path (see Arc, Closed curve).

Curve fitting—the process of estimating the best set of pararmeters for a

mathematical function to approximate a curve.

Deblurring—(1) an image processing operation designed to reduce blurring and

sharpen the detail in an image; (2) removing or reducing the blur in an image,

often one step of image restoration.

Decision rule—in pattern recognition, a rule or algorithm used to assign an

object in an image to a particular class. The assignment is based on measure-

ments of its features.

Digital image—(1) an array of integers representing an image of a scene;

(2) a sampled and quantized function of two or more dimensions, generated

from and representing a continuous function of the same dimensionality; (3) an

array generated by sampling a continuous function on a rectangular grid and

quantizing its value at the sample points.

Digital image processing—the manipulation of pictorial information by

computer.

Digitization—the process of converting an image of a scene into digital form.

Dilation—a binary or grayscale morphological operation that uniformly

increases the size of objects in relation to the background (Chapter 8).

Down-sampling—making a digital image smaller by deleting pixels in the rows

and columns. This process is also known as decimation.

Edge—(1) a region of an image in which the gray level changes significantly over

a short distance; (2) a set of pixels belonging to an arc and having the property

that pixels on opposite sides of the arc have significantly different gray levels.

Edge detection—an image segmentation technique in which edge pixels are

identified by examining neighborhoods.

Edge enhancement—an image processing technique in which edges are made to

appear sharper by increasing the contrast between pixels located on opposite

sides of the edge.

Edge image—an image in which each pixel is labeled as either an edge pixel or a

nonedge pixel.

Edge operator—a neighborhood operator that labels the edge pixels in an image.

Edge pixel—a pixel that lies on an edge.
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Emission filter—a ‘‘physical’’ filter inserted in the emission path of a microscope

to select light of a particular wavelength.

Enhance—to increase the contrast or subjective visibility of.

Erosion—a binary or grayscale morphological operation that uniformly reduces

the size of bright objects in relation to the background (Chapter 8).

Excitation filter—a ‘‘physical’’ filter inserted in the illumination path of a

microscope to select light of a particular wavelength.

Exterior pixel—a pixel that falls outside all the objects in a binary image

(contrast with Interior pixel ).

False negative—in two-class pattern recognition, a misclassification error in

which a positive object is labeled as negative.

False positive—in two-class pattern recognition, a misclassification error in

which a negative object is labeled as positive.

Feature—a characteristic of an object, something that can be measured and that

assists classification of the object (e.g., size, texture, shape).

Feature extraction—a step in the pattern recognition process in which measure-

ments of the objects are computed.

Feature selection—a step in the pattern recognition system development process

in which measurements or observations are studied to identify those that can be

used effectively to assign objects to classes.

Feature space—in pattern recognition, an n-dimensional vector space containing

all possible measurement vectors.

Fluorophore—a molecule that absorbs light of a certain wavelength, reaches an

excited, unstable electronic singlet state, and emits light at a longer wavelength.

Fourier Transform—a linear transform that decomposes an image into a set of

sinusoidal frequency component functions.

Geometric correction—an image processing technique in which a geometric

transformation is used to remove geometric distortion.

Gray level—the value associated with a pixel in a digital image, representing the

brightness of the original scene at that point, (2) a quantized measurement of

the local property of the image at a pixel location.

Grayscale—the set of all possible gray levels in a digital image.
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Grayscale transformation—the function, employed in a point operation, that

specifies the relationship between input and corresponding output gray-level

values.

Hankle transform—similar to the Fourier transform, a linear transformation

that relates the (one-dimensional) profile of a circularly symmetric function of

two dimensions to the (one-dimensional) profile of its two-dimensional

(circularly symmetric) Fourier transform.

Hermite function—a complex-valued function having an even real part and an

odd imaginary part.

High-pass filtering—an image enhancement (usually convolution) operation in

which the high-spatial-frequency components are emphasized relative to the

low-frequency components.

Histogram—a graphical representation of the number of pixels in an image at

each gray level.

Hole—in a binary image, a connected region of background points that is

completely surrounded by interior points.

Image—any representation of a physical scene or of another image.

Image coding—translating image data into another form from which it can be

recovered, as for compression.

Image compression—any process that eliminates redundancy from or approxi-

mates an image, in order to represent it in a more compact form.

Image enhancement—any process intended to improve the visual appearance of

an image.

Image matching—any process involving quantitative comparison of two images

in order to determine their degree of similarity.

Image processing operation—a series of steps that transforms an input image

into an output image.

Image reconstruction—the process of constructing or recovering an image from

data that occurs in nonimage form.

Image registration—a geometric operation intended to position one image of a

scene with respect to another image of the same scene so that the objects in the

two images coincide.

Image restoration—any process intended to return an image to its original

condition by reversing the effects of prior degradations.
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Image segmentation—(1) the process of detecting and delineating the objects of

interest in an image; (2) the process of subdividing an image into disjoint

regions. Normally these regions correspond to objects and the background on

which they lie.

Interior pixel—in a binary image, a pixel that falls inside an object (contrast with

Boundary pixel, Exterior pixel ).

Interpolation—the process of determining the value of a sampled function

between its sample points. It is normally done by convolution with an interpo-

lation function.

Kernel—(1) the two-dimensional array of numbers used in convolution filtering

of a digital image; (2) the function with which a signal or image is convolved.

Local operation—an image processing operation that assigns a gray level to each

output pixel based on the gray levels of pixels located in a neighborhood of the

corresponding input pixel. A neighborhood operation (contrast with Point

operation).

Local property—the interesting characteristic that varies with position in an

image. It may be brightness, optical density, or color for microscope images.

Lossless image compression—any image compression technique that permits

exact reconstruction of the image.

Lossy image compression—any image compression technique that inherently

involves approximation and does not permit exact reconstruction of the image.

Low-pass filter—a filter that attenuates the high-frequency detail in an image.

Measurement space—in pattern recognition, an n-dimensional vector space

containing all possible measurement vectors.

Median filter—a nonlinear spatial filter that replaces the gray value of the center

pixel with the median gray value of the input group of pixels, in order to remove

noise spikes and other single-pixel anomalies.

Misclassification—in pattern recognition, the assignment of an object to any

class other that its true class.

Minimun enclosing rectangle (MER)—for an object, its bounding box aligned

such that it encloses all the points in the object, with the area minimized.

Multispectral image—a set of images of the same scene, each formed by

radiation from a different wavelength band of the electromagnetic spectrum.

Neighborhood—a set of pixels located in close proximity.

536

Glossary of Microscope Image Processing Terms



Neighborhood operation—an image processing operation that assigns a gray

level to each output pixel based on the gray levels of pixels located in a

neighborhood of the corresponding input pixel (see Local operation, contrast

with Point operation).

Noise—irrelevant components of an image that hinder recognition and

interpretation of the data of interest.

Noise reduction—any process that reduces the undesirable effects of noise in an

image.

Object—a connected set of pixels in a binary image, usually corresponding to a

physical object in the scene.

Object label map—an image of size equal to an original image, in which the gray

level of each pixel encodes the sequence number of the object to which the

corresponding pixel in the original image belongs.

Opening—a binary or grayscale morphological operation consisting of an ero-

sion followed by a dilation (Chapter 8).

Optical image—the result of projecting light emanating from a scene onto a

surface, as with a lens.

Optical sectioning—a noninvasive method for obtaining optically (without

physical sectioning), that is, via images along the axial axis, 3-D information

about the structure of specimens.

Pattern—a meaningful regularity that members of a class express in common

and that can be measured and used to assign objects to classes.

Pattern class—one of a set of mutually exclusive, preestablished categories to

which an object can be assigned.

Pattern classification—the process of assigning objects to pattern classes.

Pattern recognition—the detection, measurement, and classification of objects in

an image by automatic or semiautomatic means.

Perimeter—the circumferential distance around the boundary of an object.

Photobleaching—a phenomenon inherent in fluorophores that causes an effect-

ive reduction in, and ultimately a complete elimination of, fluorescence emis-

sion.

Photon shot noise—noise in photodetector devices resulting from the random

nature of photon emission.

Picture element—the smallest element of a digital image. The basic unit of which

a digital image is composed.
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Pixel—contraction of Picture element.

Point operation—an image processing operation that assigns a gray level to each

output pixel based only on the gray level of the corresponding input pixel

(contrast with Neighborhood operation).

Quantitative image analysis—any process that extracts quantitative data from a

digital image.

Quantization—the process by which the local property of an image, at each

pixel, is assigned one of a finite set of gray levels.

Ratio image—an image obtained by dividing one image by another image.

Readout noise—noise generated by the electronics associated with photodetec-

tors during readout.

Region—a connected subset of an image.

Region growing—an image segmentation technique in which regions are formed

by repeatedly taking the union of subregions that are similar in gray level or

texture.

Registered—(1) the condition of being in alignment; (2) when two or more

images are in geometric alignment with each other and the objects therein

coincide.

Registered images—two or more images of the same scene that have been

positioned with respect to one another so that the objects in the scene occupy

the same positions.

Resolution—(1) in optics, the minimum separation distance between distinguish-

able point objects; (2) in image processing, the degree to which closely spaced

objects in an image can be distinguished from one another.

Sampling—the process of dividing an image into pixels (according to a sampling

grid) and measuring the local property (e.g., brightness or color) at each pixel.

Scene—a particular arrangement of physical objects.

Sharp—pertaining to the detail in an image, well defined and readily discernible.

Sharpening—any image processing technique intended to enhance the detail in

an image.

Sinusoidal—having the shape of the sine function.

Skeletonization—a binary operation that reduces the objects in an image to a

single-pixel-wide skeleton representation.
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Smoothing—any image processing technique intended to reduce the amplitude

of small detail in an image. This is often used for noise reduction.

Statistical pattern recognition—an approach to pattern recognition that uses

probability and statistical methods to assign objects to classes.

Structural element—A set of logical values (in the binary image case) or

grey-level values (in the grayscale image case) defined in the nonlinear spatial

filtering mask and used in binary and grayscale morphological operations.

Surface fitting—the process of estimating the best set of pararmeters for a

mathematical function to approximate a surface.

System—anything that accepts an input and produces an output in response.

Texture—in image processing, an attribute representing the amplitude and

spatial arrangement of the local variation of gray level in an image.

Thinning—a binary image processing technique that reduces objects to sets of

thin (one-pixel-wide) curves.

Threshold—a specified gray level used for producing a binary image.

Thresholding—the process of producing a binary image from a grayscale image

by assigning each output pixel the value 1 if the gray level of the corresponding

input pixel is at or above the specified threshold gray level and the value 0 if the

input pixel is below that threshold.

Transfer function—for a linear, shift-invariant system, the function of frequency

that specifies the factor by which the amplitude of a sinusoidal input signal is

multiplied to form the output signal.

Up-sampling—to make a digital image larger by adding pixels to the rows and

columns, usually in an interleaved fashion.

Voxel—contraction of ‘volume element’, that is, the extension of the pixel to 3-D.
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Boundary-based segmentation, 177–190

Bounding box, 201, 377

C

Calibration, 22–23, 47, 307–312

Calibration image, 258–259

Canny edge detector, 182
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Constrained least-squares method, 347–348

Continuous image, 4–9, 29, 32, 39, 45, 52–54, 57, 205

Continuous wavelet transforms, 79, 83–84, 109

Contrast ratio, 45

Contrast stretching, 60–61, 66, 76
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Cumulative distribution function, 62, 237–238

Curvature, 11, 186–188, 202, 206, 376, 380–382, 416

Curve fitting, 55, 164, 284, 442, 445, 448, 463

Cutoff frequency, 20, 22, 30, 33, 36–37, 71, 354, 491

D
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3-D volume, 265, 334, 373, 377

Directional edge map, 180

Directional filtering, 65–67

Discrete wavelet transforms, 79, 458

Dispersion, 204, 301–302, 421

Displayed Image, 5, 9, 40–41, 43–44, 46

Distance function, 146–147, 150, 426

Distance transform, 125, 146–147, 374

Distortion removal, 56

Distributed analysis, 523, 526

Dolland, 12

Donor, 277–286, 291

Dual operator, 115, 137

Dyadic translation, 84

Dynamic of a regional maxima, 148

Dynamic of a regional minima, 148

Dynamic speckle illumination microscopy, 471–472
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Edge map, 180, 182–183

Edge-based, 362, 366–367, 373–374, 391–392
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Electronic triplet state, 248, 254
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Elongation, 205–206, 215–216, 421

Emission filter, 250–251, 534

Emission, 248–252, 254–255, 262, 264–265, 275–277,

279, 281–284, 302, 305, 308, 314–315

EM-ML algorithm, 350–351

Encoding segmented images, 188

Energy minimization function, 186

Energy transfer efficiency, 281, 283, 286

Energy, 83, 105, 107, 109, 186–188, 202, 211–212

Entropy, 107, 211–212, 214, 265, 321, 352, 375, 392

Epifluorescence, 249

Ernst Abbe, 21–22, 330, 469

Euclidean disk, 124, 126–127

Euclidean distance, 124–126, 209

Euler number, 203, 217, 376–377, 392

Euler number, 2-D, 376, 392

Events, 278, 288, 430, 506, 527

Excitation filter, 250, 262, 534

Excitation, 247–248, 250–251, 254–255, 261–262,

267, 275–278, 282, 284–286, 288–290, 301, 307,

310, 331–333

Exoskeleton algorithm, 172, 175

Exponential decay function, 263

Extended depth of field, 108–109, 454, 475

Extended DOF image, 454–455, 462–465

External boundary, 116

External perimeter, 197

Extinction coefficient, 248–249, 281, 317–318

Extrema, 138

F

Feature normalization, 236, 238

Feature reduction, 240, 243

Feature selection, 240, 534

Features, 59–60, 62, 65, 67–68, 76–77, 79, 93

Fibonacci algorithm, 451–452, 463

Fine scale, 451–453

FIR filter, 90, 94–95, 359

Flat field, 42–43, 359

Flat structuring element, 128–131, 155

Fluorescence, 23, 34, 148, 188, 247, 249–250, 253–264

Fluorescence correlation spectroscopy (FCS),

289–291

Fluorescence in situ hybridization (FISH), 133,

147–148, 270–272, 291, 316, 379, 445, 449–450

Fluorescence

intensity, 23, 34, 249–250, 266–268, 281, 284,

287, 289

lifetime, 284, 291

resonance energy transfer, 267, 277

Fluorescence lifetime imaging (FLIM), 284–286, 291

Fluorescence loss in photobleaching (FLIP), 288,

291, 414

Fluorescence recovery after photobleaching (FRAP),

286–287, 291, 414, 426–427

Fluorophore, 133, 247, 249–250, 253–256,

261–262, 264–267

Fluorophore concentration, 249–250, 256, 266–267,

284, 314–315, 384

Focal length, 13–15, 250, 302

Focal plane, 12–14, 16, 21–23, 59, 278, 330, 332,

334–335, 337, 340–341, 365–366, 412, 416,

442, 455, 469, 473, 476–477, 500, 504

Focus measure, 449, 455–461

Foreground, 114–115, 118–119, 161, 164, 169, 257,

259, 370, 376, 378

Forster’s distance, 281

Fourier bases, 82

Fourier descriptors, 206
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