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Foreword

Brian H. Mayall

Microscope image processing dates back a half century when it was realized that
some of the techniques of image capture and manipulation, first developed for
television, could also be applied to images captured through the microscope.
Initial approaches were dependent on the application: automatic screening for
cancerous cells in Papanicolaou smears; automatic classification of crystal size
in metal alloys; automation of white cell differential count; measurement of
DNA content in tumor cells; analysis of chromosomes; etc. In each case, the
solution lay in the development of hardware (often analog) and algorithms
highly specific to the needs of the application. General purpose digital comput-
ing was still in its infancy. Available computers were slow, extremely expensive,
and highly limited in capacity (I still remember having to squeeze a full analysis
system into less than 10 kilobytes of programmable memory!). Thus, there
existed an unbridgeable gap between the theory of how microscope images
could be processed and what was practically attainable.

One of the earliest systematic approaches to the processing of microscopic
images was the CYDAC (CYtophotometric DAta Conversion) project [1],
which I worked on under the leadership of Mort Mendelsohn at the University
of Pennsylvania. Images were scanned and digitized directly through the micro-
scope. Much effort went into characterizing the system in terms of geometric
and photometric sources of error. The theoretical and measured system transfer
functions were compared. Filtering techniques were used both to sharpen the
image and to reduce noise, while still maintaining the photometric integrity of
the image. A focusing algorithm was developed and implemented as an analog
assist device. But progress was agonizingly slow. Analysis was done off-line,
programs were transcribed to cards, and initially we had access to a computer
only once a week for a couple of hours in the middle of the night!

The modern programmable digital computer has removed all the old con-
straints—incredible processing power, speed, memory and storage come with
any consumer computer. My ten-year-old grandson, with his digital camera
and access to a lap-top computer with processing programs such as i-Photo and
Adobe Photoshop, can command more image processing resources than were
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Foreword

available in leading research laboratories less than two decades ago. The chal-
lenge lies not in processing images, but in processing them correctly and effect-
ively. Microscope Image Processing provides the tools to meet this challenge.

In this volume, the editors have drawn on the expertise of leaders in process-
ing microscope images to introduce the reader to underlying theory, relevant
algorithms, guiding principles, and practical applications. It explains not only
what to do, but also which pitfalls to avoid and why. Analytic results can only be
as reliable as the processes used to obtain them. Spurious results can be avoided
when users understand the limitations imposed by diffraction optics, empty
magnification, noise, sampling errors, etc. The book not only covers the funda-
mentals of microscopy and image processing, but also describes the use of the
techniques as applied to fluorescence microscopy, spectral imaging, three-
dimensional microscopy, structured illumination and time-lapse microscopy.
Relatively advanced techniques such as wavelet and morphological image pro-
cessing and automated microscopy are described in intuitive and comprehensive
manner that will appeal to readers, whether technically oriented or not. The
summary list at the end of each chapter is a particularly useful feature enabling
the reader to access the essentials without necessarily mastering all the details of
the underlying theory.

Microscope Image Processing should become a required textbook for any
course on image processing, not just microscopic. It will be an invaluable
resource for all who process microscope images and who use the microscope
as a quantitative tool in their research. My congratulations go to the editors and
authors for the scope and depth of their contributions to this informative and
timely volume.

Reference
1. ML Mendelsohn, BH Mayall, JMS Prewitt, RC Bostrum, WG Holcomb. “Digital Trans-

formation and Computer Analysis of Microscopic Images,” Advances in Optical and
Electron Microscopy, 2:77-150, 1968.
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Preface

The digital revolution has touched most aspects of modern life, including
entertainment, communication, and scientific research. Nowhere has the change
been more fundamental than in the field of microscopy. Researchers who use the
microscope in their investigations have been among the pioneers who applied
digital processing techniques to images. Many of the important digital image
processing techniques that are now in widespread usage were first implemented
for applications in microscopy. At this point in time, digital image processing is
an integral part of microscopy, and only rarely will one see a microscope used
with only visual observation or photography.

The purpose of this book is to bring together the techniques that have proved
to be widely useful in digital microscopy. This is quite a multidisciplinary field,
and the basis of processing techniques spans several areas of technology. We
attempt to lay the required groundwork for a basic understanding of the
algorithms that are involved, in the hope that this will prepare the reader to
press the development even further.

This is a book about techniques for processing microscope images. As such it
has little content devoted to the theory and practice of microscopy or even to
basic digital image processing, except where needed as background. Neither
does it focus on the latest techniques to be proposed. The focus is on those
techniques that routinely prove useful to research investigations involving
microscope images and upon which more advanced techniques are built.

A very large and talented cast of investigators has made microscope image
processing what it is today. We lack the paper and ink required to do justice to
the fascinating story of this development. Instead we put forward the tech-
niques, principally devoid of their history. The contributors to this volume
have shouldered their share of their creation, but many others who have pressed
forward the development do not appear.
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Kenneth R. Castleman and lan T. Young

1.1 The Microscope and Image
Processing

Invented over 400 years ago, the optical microscope has seen steady improve-
ment and increasing use in biomedical research and clinical medicine as well as
in many other fields [1]. Today many variations of the basic microscope instru-
ment are used with great success, allowing us to peer into spaces much too small
to be seen with the unaided eye. More often than not, in this day and age, the
images produced by a microscope are converted into digital form for storage,
analysis, or processing prior to display and interpretation [2-4]. Digital image
processing greatly enhances the process of extracting information about the
specimen from a microscope image. For that reason, digital imaging is steadily
becoming an integral part of microscopy. Digital processing can be used to
extract quantitative information about the specimen from a microscope image,
and it can transform an image so that a displayed version is much more
informative than it would otherwise be [5, 6].

1.2 Scope of This Book

This book discusses the methods, techniques, and algorithms that have proven
useful in the processing and analysis of digital microscope images. We do not
attempt to describe the workings of the microscope, except as necessary to
outline its limitations and the reasons for certain processes. Neither do we spend
Microscope Image Processing

Copyright © 2008, Elsevier Inc. All rights reserved.
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1 Introduction

time on the proper use of the instrument. These topics are well beyond our
scope, and they are well covered in other works. We focus instead on processing
microscope images in a computer.

Microscope imaging and image processing are of increasing interest to
the scientific and engineering communities. Recent developments in cellular-,
molecular-, and nanometer-level technologies have led to rapid discoveries and
have greatly advanced the frontiers of human knowledge in biology, medicine,
chemistry, pharmacology, and many related fields. The successful completion
of the human genome sequencing project, for example, has unveiled a new
world of information and laid the groundwork for knowledge discovery at an
unprecedented pace.

Microscopes have long been used to capture, observe, measure, and analyze
the images of various living organisms and structures at scales far below normal
human visual perception. With the advent of affordable, high-performance
computer and image sensor technologies, digital imaging has come into prom-
inence and is replacing traditional film-based photomicrography as the most
widely used method for microscope image acquisition and storage. Digital
image processing is not only a natural extension but is proving to be essential
to the success of subsequent data analysis and interpretation of the new gener-
ation of microscope images. There are microscope imaging modalities where an
image suitable for viewing is only available after digital image processing.
Digital processing of microscope images has opened up new realms of medical
research and brought about the possibility of advanced clinical diagnostic
procedures.

The approach used in this book is to present image processing algorithms
that have proved useful in microscope image processing and to illustrate their
application with specific examples. Useful mathematical results are presented
without derivation or proof, although with references to the earlier work. We
have relied on a collection of chapter contributions from leading experts in the
field to present detailed descriptions of state-of-the-art methods and algorithms
that have been developed to solve specific problems in microscope image
processing. Each chapter provides a summary, an in-depth analysis of the
methods, and specific examples to illustrate application. While the solution to
every problem cannot be included, the insight gained from these examples of
successful application should guide the reader in developing his or her own
applications.

Although a number of monographs and edited volumes exist on the topic
of computer-assisted microscopy, most of these books focus on the basic
concepts and technicalities of microscope illumination, optics, hardware
design, and digital camera setups. They do not discuss in detail the practical
issues that arise in microscope image processing or the development of
specialized algorithms for digital microscopy. This book is intended to
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1.3 Our Approach

complement existing works by focusing on the computational and algorithmic
aspects of microscope image processing. It should serve the users of digital
microscopy as a reference for the basic algorithmic techniques that routinely
prove useful in microscope image processing. The intended audience for this
book includes scientists, engineers, clinicians, and graduate students working
in the fields of biology, medicine, chemistry, pharmacology, and other related
disciplines. It is intended for those who use microscopes and commercial
image processing software in their work and would like to understand the
methodologies and capabilities of the latest digital image processing tech-
niques. It is also for those who desire to develop their own image processing
software and algorithms for specific applications that are not covered by
existing commercial software products.

In summary, the purpose of this book is to present a discussion of algorithms
and processing methods that complements the existing array of books on
microscopy and digital image processing.

1.3 Ovur Approach

A few basic considerations govern our approach to discussing microscope image
processing algorithms. These are based on years of experience using and teach-
ing digital image processing. They are intended to prevent many of the common
misunderstandings that crop up to impair communication and confuse one
seeking to understand how to use this technology productively. We have
found that a detailed grasp of a few fundamental concepts does much to
facilitate learning this topic, to prevent misunderstandings, and to foster suc-
cessful application. We cannot claim that our approach is “standard” or ““com-
monly used.” We only claim that it makes the job easier for the reader and the
authors.

1.3.1 The Four Types of Images

To the question “Is the image analog or digital?”’ the answer is “Both.” In fact,
at any one time, we may be dealing with four separate images, each of which is
a representation of the specimen that lies beneath the objective lens of the
microscope. This is a central issue because, whether we are looking at the
pages of this book, at a computer display, or through the eyepieces of
a microscope, we can see only images and not the original object. It is only
with a clear appreciation of these four images and the relationships among them
that we can move smoothly through the design of effective microscope image
processing algorithms. We have endeavored to use this formalism consistently
throughout this book to solidify the foundation of the reader’s understanding.

3
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1.3.1.1 Opticallmage

The optical components of the microscope act to create an optical image of the
specimen on the image sensor, which, these days, is most commonly a charge-
coupled device (CCD) array. The optical image is a continuous distribution of
light intensity across a two-dimensional surface. It contains some information
about the specimen, but it is not a complete representation of the specimen. It is,
in the common case, a two-dimensional projection of a three-dimensional
object, and it is limited in resolution and is subject to distortion and noise
introduced by the imaging process. Though an imperfect representation, it is
what we have to work with if we seek to view, analyze, interpret, and understand
the specimen.

1.3.1.2 ContinvousImage

We can assume that the optical image corresponds to, and is represented by,
a continuous function of two spatial variables. That is, the coordinate positions
(x, y) are real numbers, and the light intensity at a given spatial position is
a nonnegative real number. This mathematical representation we call the con-
tinuous image. More specifically, it is a real-valued analytic function of two real
variables. This affords us considerable opportunity to use well-developed math-
ematical theory in the analysis of algorithms. We are fortunate that the imaging
process allows us to assume analyticity, since analytic functions are much more
well behaved than those that are merely continuous (see Section 1.3.2.1).

1.3.1.3 Digitallmage

The digital image is produced by the process of digitization. The continuous
optical image is sampled, commonly on a rectangular grid, and those sample
values are quantized to produce a rectangular array of integers. That is, the
coordinate positions (n, m) are integers, and the light intensity at a given integer
spatial position is represented by a nonnegative integer. Further, random noise
is introduced into the resulting data. Such treatment of the optical image is
brutal in the extreme. Improperly done, the digitization process can severely
damage an image or even render it useless for analytical or interpretation
purposes. More formally, the digital image may not be a faithful representation
of the optical image and, therefore, of the specimen. Vital information can be
lost in the digitization process, and more than one project has failed for this
reason alone. Properly done, image digitization yields a numerical representa-
tion of the specimen that is faithful to the original spatial distribution of light
that emanated from the specimen.

What we actually process or analyze in the computer, of course, is the digital
image. This array of sample values (pixels) taken from the optical image,
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however, is only a relative of the specimen, and a rather distant one at that. It is
the responsibility of the user to ensure that the relevant information about the
specimen that is conveyed by the optical image is preserved in the digital image
as well. This does not mean that a// such information must be preserved. This is
an impractical (actually impossible) task. It means that the information required
to solve the problem at hand must not be lost in either the imaging process or the
digitization process.

We have mentioned that digitization (sampling and quantization) is the
process that generates a corresponding digital image from an existing optical
image. To go the other way, from discrete to continuous, we use the process of
interpolation. By interpolating a digital image, we can generate an approxima-
tion to the continuous image (analytic function) that corresponds to the original
optical image. If all goes well, the continuous function that results from inter-
polation will be a faithful representation of the optical image.

1.3.1.4 DisplayedImage

Finally, before we can visualize our specimen again, we must display the digital
image. Human eyes cannot view or interpret an image that exists in digital form.
A digital image must be converted back into optical form before it can be seen.
The process of displaying an image on a screen is also an interpolation action,
this time implemented in hardware. The display spot, as it is controlled by the
digital image, acts as the interpolation function that creates a continuous visible
image on the screen. The display hardware must be able to interpolate the digital
image in such a way as to preserve the information of interest.

1.3.2 The Result

We see that each image with which we work is actually four images. Each optical
image corresponds to both the continuous image that describes it and the digital
image that would be obtained by digitizing it (assuming some particular set of
digitizing parameters). Further, each digital image corresponds to the continu-
ous function that would be generated by interpolating it (assuming a particular
interpolation method). Moreover, the digital image also corresponds to the
displayed image that would appear on a particular display screen. Finally, we
assume that the continuous image is a faithful representation of the specimen
and that it contains all of the relevant information required to solve the problem
at hand. In this book we refer to these as the optical image, the continuous
image, the digital image, and the displayed image. Their schematic relationship
is shown in Fig. 1.1.

This leaves us with an option as we go through the process of designing or
analyzing an image processing algorithm. We can treat it as a digital image
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FIGURE 1.1 The four images of digital microscopy. The microscope forms an optical image of the
specimen. This is digitized to produce the digital image, which can be displayed and interpolated to form the
continuous image.

(which it is), or we can analyze the corresponding continuous image. Both of
these represent the optical image, which, in turn, represents the specimen. In
some cases we have a choice and can make life easy on ourselves. Since we are
actually working with an array of integers, it is tempting to couch our analysis
strictly in the realm of discrete mathematics. In many cases this can be a useful
approach. But we cannot ignore the underlying analytic function to which that
array of numerical data corresponds. To be safe, an algorithm must be true to
both the digital image and the continuous image. Thus we must pay close
attention to both the continuous and the discrete aspects of the image.
To focus on one and ignore the other can lead a project to disaster.

In the best of all worlds, we could go about our business, merrily flipping
back and forth between corresponding continuous and digital images as needed.
The implementations of digitization and interpolation, however, do introduce
distortion, and caution must be exercised at every turn. Throughout this book
we strive to point out the resulting pitfalls.

1.3.2.1 Analytic Functions

The continuous image that corresponds to a particular optical image is more
than merely continuous. It is a real-valued analytic function of two real vari-
ables. An analytic function is a continuous function that is severely restricted in
how “wiggly” it can be. Specifically, it possesses all of its derivatives at every
point. This restriction is so severe, in fact, that if you know the value of an
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analytic function and all of its (infinitely many) derivatives at a single point, then
that function is unique, and you know it everywhere. In other words, only one
analytic function can pass through that point with those particular values for its
derivatives. To be dealing with functions so nicely restricted relieves us from
many of the worries that keep pure mathematicians entertained.

As an example, assume that an analytic function of one variable passes
through the origin where its first derivative is equal to 2, and all other derivatives
are zero. The analytic function y = 2x uniquely satisfies that condition and is
thus that function. Of all the analytic functions that pass through the origin,
only this one meets the stated requirements.

Thus when we work with a monochrome image, we can think of it as an
analytic function of two dimensions. A multispectral image can be viewed as
a collection of such functions, one for each spectral band. The restrictions
implied by the analyticity property make life much easier for us than it might
otherwise be. Working with such a restricted class of functions allows us
considerable latitude in the mathematical analysis that surrounds image pro-
cessing algorithm design. We can make the types of assumptions that are
common to engineering disciplines and actually get away with them.

The continuous and digital images are actually even more restricted than
previously stated. The continuous image is an analytic function that is band-
limited as well. The digital image is a band-limited, sampled function. The
effects created by all of these sometimes conflicting restrictions are discussed
in later chapters. For present purposes it suffices to say only that, by following
a relatively simple set of rules, we can analyze the digital image as if it were the
specimen itself.

1.3.3 The Sampling Theorem

The theoretical results that provide us with the most guidance as to what we can
get away with when digitizing and interpolating images are the Nyquist sam-
pling theorem (1928) and the Shannon sampling theorem (1949). They specify
the conditions under which an analytic function can be reconstructed, without
error, from its samples. Although this ideal situation is never quite attainable in
practice, the sampling theorems nevertheless provide us with means to keep the
damage to a minimum and to understand the causes and consequences of
failure, when that occurs. We cannot digitize and interpolate without the intro-
duction of noise and distortion. We can, however, preserve sufficient fidelity to
the specimen so that we can solve the problem at hand. The sampling theorem is
our map through that dangerous territory. This topic is covered in detail in later
chapters. By following a relatively simple set of rules, we can produce usable
results with digital microscopy.
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1.4 The Challenge

At this point we are left with the following situation. The object of interest is the
specimen that is placed under the microscope. The instrument forms an optical
image that represents that specimen. We assume that the optical image is well
represented by a continuous image (which is an analytic function), and we strive,
through the choices available in microscopy, to make this be the case. Further,
the optical image is sampled and quantized in such a way that the information
relevant to the problem at hand has been retained in the digital image. We can
interpolate the digital image to produce an approximation to the continuous
image or to make it visible for interpretation. We must now process the digital
image, either to extract quantitative data from it or to prepare it for display and
interpretation by a human observer. In subsequent chapters the model we use is that
the continuous image is an analytic function that represents the specimen and that
the digital image is a quantized array of discrete samples taken from the continuous
image. Although we actually process only the digital image, interpolation gives
us access to the continuous image whenever it is needed.

Our approach, then, dictates that we constantly keep in mind that we are
always dealing with a set of images that are representations of the optical image
produced by the microscope, and this, in turn, represents a projection of the
specimen. When analyzing an algorithm we can employ either continuous
or discrete mathematics, as long as the relationship between these images is
understood and preserved. In particular, any processing step performed upon
the digital image must be legitimate in terms of what it does to the underlying
continuous image.

Digital microscopy consists of theory and techniques collected from several fields
of endeavor. As a result, the descriptive terms used therein represent a collection
of specialized definitions. Often, ordinary words are pressed into service and given
specific meanings. We have included a glossary to help the reader navigate
a pathway through the jargon, and we encourage its use. If a concept becomes
confusing or difficult to understand, it may well be the result of one of these
specialized words. As soon as that is cleared up, the path opens again.

1.6 Summary of Important Points

1. A microscope forms an optical image that represents the specimen.

2. The continuous image represents the optical image and is a real-valued
analytic function of two real variables.
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Fundamentals of Microscopy

Kenneth R. Castleman and lan T. Young

2.1 Origins of the Microscope

During the 1st century AD, the Romans were experimenting with different
shapes of clear glass. They discovered that by holding over an object a piece
of clear glass that was thicker in the middle than at the edges, they could make
that object appear larger. They also used lenses to focus the rays of the sun and
start a fire. By the end of the 13th century, spectacle makers were producing
lenses to be worn as eyeglasses to correct for deficiencies in vision. The word lens
derives from the Latin word lentil, because these magnifying chunks of glass
were similar in shape to a lentil bean. In 1590, two Dutch spectacle makers,
Zaccharias Janssen and his father, Hans, started experimenting with lenses.
They mounted several lenses in a tube, producing considerably more magnifi-
cation than was possible with a single lens. This work led to the invention of
both the compound microscope and the telescope [1].

In 1665, Robert Hooke, the English physicist who is sometimes called “the
father of English microscopy,” was the first person to see cells. He made his
discovery while examining a sliver of cork. In 1674 Anton van Leeuwenhoek,
while working in a dry goods store in Holland, became so interested in magnifying
lenses that he learned how to make his own. By carefully grinding and polishing,
he was able to make small lenses with high curvature, producing magnifications of
up to 270 times. He used his simple microscope to examine blood, semen, yeast,
insects, and the tiny animals swimming in a drop of water. Leeuwenhoek became
quite involved in science and was the first person to describe cells and bacteria.

Microscope Image Processing
Copyright © 2008, Elsevier Inc. All rights reserved.
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Because he neglected his dry goods business in favor of science and because many
of his pronouncements ran counter to the beliefs of the day, he was ridiculed by
the local townspeople. From the great many discoveries documented in his
research papers, Anton van Leeuwenhoek (1632-1723) has come to be known
as “the father of microscopy.” He constructed a total of 400 microscopes during
his lifetime. In 1759 John Dolland built an improved microscope using lenses
made of flint glass, greatly improving resolution.

Since the time of these pioneers, the basic technology of the microscope has
developed in many ways. The modern microscope is used in many different
imaging modalities and has become an invaluable tool in fields as diverse as
materials science, forensic science, clinical medicine, and biomedical and biological
research.

2.2 Opticalimaging

2.2.1 Image Formation by alens

In this section we introduce the basic concept of an image-forming lens system
[1-7]. Figure 2.1 shows an optical system consisting of a single lens. In the
simplest case the lens is a thin, double-convex piece of glass with spherical
surfaces. Light rays inside the glass have a lower velocity of propagation than
light rays in air or vacuum. Because the distance the rays must travel varies from
the thickest to the thinnest parts of the lens, the light rays are bent toward the
optical axis of the lens by the process known as refraction.

Aperture
Focal v Image
Plane Plane
3 Peint spread
Point function
source
. »
le d. - d - »

FIGURE 2.1 An opfical system consisting of a single lens. A point source at the origin of the focal plane
emits a diverging spherical wave that is intercepted by the aperture. The lens converts this into a spherical
wave that converges to a spot (i.e., the point spread function, psf) in the image plane. If dr and d} satisfy
Eqg. 2.1, the system is in focus, and the psf takes on its smallest possible dimension.
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2.2 Optical Imaging

2.2.1.1 Imaging a Point Sovurce

A diverging spherical wave of light radiating from a point source at the origin of
the focal plane is refracted by a convex lens to produce a converging spherical
exit wave. The light converges to produce a small spot at the origin of the image
plane. The shape of that spot is called the point spread function (psf).

The Focus Equation The point spread function will take on its
smallest possible size if the system is in focus, that is, if

1 1 1

@—FEZE (2.1)

where fis the focal length of the lens. Equation 2.1 is called the lens equation.

2.2.1.2 Focallength

Focal length is an intrinsic property of any particular lens. It is the distance from
the lens to the image plane when a point source located at infinity is imaged in
focus. That is,

df:OO = d; :f
and by symmetry
di=00 = dr=f

The power of a lens, P, is given by P = 1/f; if fis given in meters, then P is in
diopters. By definition, the focal plane is that plane in object space where a point
source will form an in-focus image on the image plane, given a particular d;.
Though sometimes called the object plane or the specimen plane, it is more
appropriately called the focal plane because it is the locus of all points that the
optical system can image in focus.

Magnification If the point source moves away from the origin to
a position (x,, y,), then the spot image moves to a new position, (x;, y;), given by

X; = —MX(, yVi= —My(, (22)
where
d;
M=— 2.3
5 23)

is the magnification of the system.
Often the objective lens forms an image directly on the image sensor, and the
pixel spacing scales down from sensor to specimen by a factor approximately equal
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2 Fundamentals of Microscopy

to the objective magnification. If, for example, M = 100 and the pixel spacing of
the image sensor is 6.8 wm, then at the specimen or focal plane the spacing is
6.8 um/100 = 68 nm. In other cases, additional magnification is introduced
by intermediate lenses located between the objective and the image sensor.
The microscope eyepieces, which figure into conventional computations of “mag-
nification,” have no effect on pixel spacing. It is usually advantageous to measure,
rather than calculate, pixel spacing in a digital microscope. For our purposes, pixel
spacing at the specimen is a more useful parameter than magnification.

Equations 2.1 and 2.3 can be manipulated to form a set of formulas that are
useful in the analysis of optical systems [8]. In particular,

_dd, 4, M

f_di+df_M+1_dfM+1 (24)
Jdy

d; = =f(M+1 2.5
47 S ) (2.5)

and
_fdi M+
df—di_f—f i (2.6)

Although it is composed of multiple lens elements, the objective lens of an
optical microscope behaves as in Fig. 2.1, to a good approximation. In contem-
porary light microscopes, d; is fixed by the optical tube length of the microscope.
The mechanical tube length, the distance from the objective lens mounting flange
to the image plane, is commonly 160 mm. The optical tube length, however, varies
between 190 and 210 mm, depending upon the manufacturer. In any case, d; > dy
and, M > 1, except when a low-power objective lens (less than 10x ) is used.

2.2.1.3 Numerical Aperture

It is customary to specify a microscope objective, not by its focal length
and aperture diameter, but by its magnification (Eq. 2.3) and its numerical
aperture, NA. Microscope manufacturers commonly engrave the magnification
power and numerical aperture on their objective lenses, and the actual focal
length and aperture diameter are rarely used. The NA is given by

NA = nsin(a) ~ n(a/2d;) ~ n(a/2f) (2.7)

where # is the refractive index of the medium (air, immersion oil, etc.) located
between the specimen and the lens and a = arctan(a/2dy) is the angle between
the optical axis and a marginal ray from the origin of the focal plane to the edge
of the aperture, as illustrated in Fig. 2.1. The approximations in Eq. 2.7 assume
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2.3 Diffraction-Limited Optical Systems

small aperture and high magnification, respectively. These approximations
begin to break down at low power and high NA, which normally do not occur
together. One can compute and compare f and a, or the angles arctan(o/2dy)
and arcsine(NA/n) to quantify the degree of approximation.

2.2.1.4 Lens Shape

For a thin, double-convex lens having a diameter that is small compared to its
focal length, the surfaces of the lens must be spherical in order to convert
a diverging spherical entrance wave into a converging spherical exit wave by
the process of diffraction. Furthermore, the focal length, £, of such a lens is given

by the lensmaker’s equation,
1 1 1
—=m-1)—+— 2.8
F=o-0(z47) 28

where 7 is the refractive index of the glass and R; and R, are the radii of the front
and rear spherical surfaces of the lens [4]. For larger-diameter lenses, the
required shape is aspherical.

2.3 Diffraction-Limited Optical
Systems

In Fig. 2.1, the lens is thicker near the axis than near the edges, and axial rays are
refracted more than peripheral rays. In the ideal case, the variation in thickness
is just right to convert the incoming expanding spherical wave into a spherical
exit wave converging toward the image point. Any deviation of the exit wave
from spherical form is, by definition, due to aberration and makes the psf larger.

For lens diameters that are not small in comparison to f, spherical lens
surfaces are not adequate to produce a spherical exit wave. Such lenses do not
converge peripheral rays to the same point on the z-axis as they do near-axial
rays. This phenomenon is called spherical aberration, since it results from the
(inappropriate) spherical shape of the lens surfaces. High-quality optical sys-
tems employ aspherical surfaces and multiple lens elements to reduce spherical
aberration. Normally the objective lens is the main optical component in
a microscope that determines overall image quality.

A diffraction-limited optical system is one that does produce a converging
spherical exit wave in response to the diverging spherical entrance wave from
a point source. It is so called because its resolution is limited only by diffraction,
an effect related directly to the wave nature of light. One should understand that
a diffraction-limited optical system is an idealized system and that real optical
systems can only approach this ideal.
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2 Fundamentals of Microscopy

2.3.1 Linear System Analysis

It should be clear that increasing the intensity of the point source in Figure 2.1
causes a proportional increase in the intensity of the spot image. It follows that
two point sources would produce an image in which the two spots combine by
addition. This means that the lens is a two-dimensional linear system [8]. For
reasonably small off-axis distances in well-designed optical systems, the shape of
the spot image undergoes essentially no change as it moves away from the
origin. Thus the system can be assumed to be shift invariant (ignoring magnifi-
cation effects), or, in optics terminology, isoplanatic, as well as linear. The psf is
then the impulse response of a shift-invariant, linear system. This implies that the
imaging properties of the system can be specified by either its psf or its transfer
function [4, 8]. The optical transfer function is the Fourier transform of the psf.
The field of linear system analysis is quite well developed, and it provides us
with very useful tools to analyze the performance of optical systems. This is
developed in more detail in later chapters.

2.4 Incoherentlillumination

Incoherent illumination may be viewed as a distribution of point sources, each
having a random phase that is statistically independent of the other point
sources [2, 5-7]. Under incoherent illumination, an optical system is linear in
light intensity. The light intensity is the square of the amplitude of the electro-
magnetic waves associated with the light [2]. In the following, we assume
narrow-band light sources. In general, light is a collection of different wave-
lengths, and modern microscopy makes extensive use of wavelengths between
350 nm (ultraviolet) and 1100 nm (near infrared). The term narrow-band implies
using only a small range of wavelengths, perhaps 30 nm wide around some
center wavelength.

2.4.1 The Point Spread Function

The spot in the image plane produced by a point source in the focal plane is the
psf. For a lens with a circular aperture of diameter a in narrow-band, incoherent
light having center wavelength A, the psf has circular symmetry (Fig. 2.2) and is
given by

2
()
psf(r) = h(r) = |2— 1535 29)
{z
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2.4 Incoherent lllumination

FIGURE 2.2 The incoherent point spread function. A focused diffraction-limited system produces this psf
in narrow-band incoherent light.

where Ji(x) is the first-order Bessel function of the first kind [4]. The intensity
distribution associated with this psfis called the Airy disk pattern, after G.B. Airy
[9, 10], and is shown in Fig. 2.2. The constant, r,, a dimensional scale factor, is
_Ad
a

(2.10)

Fo

and r is radial distance measured from the origin of the image plane, that is,
r= /347 (2.11)

2.4.2 The Optical Transfer Function

Since the imaging system in Fig. 2.1 is a shift-invariant linear system, it can be
specified either by its impulse response (i.e., the psf) or by the Fourier transform
of its psf, which is called the optical transfer function (OTF). For a lens with
a circular aperture of diameter ¢ in narrow-band incoherent light having center
wavelength A, the OTF (Fig. 2.3) is given by [4]

2 114 . 1( 4 -
OTF(q) = F{h(r)} = H(q) = w—z{m 1 H_m[ws 1(?)]} 1=/
0 q=fe
2.12)

where ¢ is the spatial frequency variable, measured radially in two-dimensional
frequency space. It is given by

qg=\Vu*+1? (2.13)
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2 Fundamentals of Microscopy

FIGURE 2.3 The incoherent OTF. This is the frequency response of a focused diffraction-limited system in
narrow-band incoherent light.

where # and v are spatial frequencies in the x and y directions, respectively.
The parameter f., called the optical cutoff frequency, is given by

fim— = (2.14)

2.5 Coherentlillumination

Some microscopy applications require the use of coherent light for illumination.
Lasers, for example, supply coherent illumination at high power. Coherent illu-
mination can be thought of as a distribution of point sources whose amplitudes
maintain fixed phase relationships among themselves. Diffraction works some-
what differently under coherent illumination, and the psf and OTF take
on different forms. Under coherent illumination, an optical system is linear in
complex amplitude as opposed to linear in light intensity, as in the incoherent case.

2.5.1 The Coherent Point Spread
Function

For a lens with a circular aperture of diameter @ in coherent light of
wavelength A, the psf has circular symmetry (Fig. 2.4) and is given by

Jilm(r/ro)]
7(r/ro)

where r, is from Eq. 2.10 and r is from Eq. 2.11.

h(r) =2 (2.15)



2.5 Coherent lllumination

FIGURE 2.4 The coherent point spread function. A focused diffraction-limited system produces this psf
in coherent light.

2.5.2 The Coherent Optical Transfer
Function

For a lens with a circular aperture of diameter a in coherent light of
wavelength A, the OTF (Fig. 2.5) is given by [4]

Ad;
H(q) = H(q;) (2.16)
where ¢ is from Eq. 2.13 and
1
1 lq] < 5
Il(q) = ] (2.17)
0 Z
lal > 3
7.4
v
> u
a
22d;
-a
224,

FIGURE 2.5 The coherent OTF. This is the frequency response of a focused diffraction-limited system
in coherent light.
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FIGURE 2.6 The incoherent point spread function and transfer function. This shows how the psf and OTF
depend on wavelength and aperture diameter for a diffraction-limited optical system with a circular aperture.

Notice that, under coherent illumination, the OTF is flat out to the cutoff
frequency, while under incoherent illumination it monotonically decreases. Notice
also that the cutoff frequency in incoherent light is twice that of the coherent case.
Fig. 2.6 illustrates the relationships between the incoherent point spread function
and transfer function of diffraction-limited optical systems with circular exit pupils.

2.6 Resolution

One of the most important parameters of a microscope is its resolution, that is,
its ability to reproduce in the image small structures that exist in the specimen.
The optical definition of resolution is the minimum distance by which two point
sources must be separated in order for them to be recognized as separate. There
is no unique way to establish this distance. The psfs overlap gradually as the
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2.6 Resolution

points get closer together, and one must specify how much contrast is required if
the two objects are to be recognized as distinct. There are, however, two
commonly used criteria for comparing the resolving power of optical systems.

2.6.1 Abbe Distance

To a good approximation, the half-amplitude diameter of the central peak of the
image plane psf is given by the Abbe distance (after Ernst Abbe [11]),

1 didp A A
rAbbe_MAZ_)\sz_o'5<—> (218)

2.6.2 RayleighDistance

For a lens with a circular aperture, the first zero of the image plane psf occurs at
a radius

A

Fairy = 1.22r, = 0.61 (ﬂ) (2.19)

which is called the radius of the Airy disk. According to the Rayleigh criterion of
resolution (after Lord Rayleigh [12]), two point sources can be just resolved if
they are separated, in the image, by the distance § = rajry. (See Fig. 2.7.) In the
terminology of optics, the Rayleigh distance defines circular resolution cells in
the image, since two point sources can be resolved if they do not fall within the
same resolution cell.

2.6.3 Size Calculations

In microscopy it is convenient to perform size calculations in the focal plane,
rather than in the image plane as previously, since that is where the objects of

Distance —»

FIGURE 2.7 The Rayleigh criterion of resolution. Two point sources can be just resolved if they are
separated, in the image, by the Airy distance.
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2 Fundamentals of Microscopy

interest actually reside. The projection implemented by the lens involves a 180°
rotation and a scaling by the factor M (Eq. 2.3). The pixel spacing and reso-
lution can then be specified in units of micrometers at the specimen. Spatial
frequencies can be specified in cycles per micrometer in the focal plane.

Since dy ~ f for high-magnification lenses (Eq. 2.6), the resolution parameters
are more meaningful if we scale them to the focal (specimen) plane rather than
working in the image plane. For a microscope objective, the incoherent optical
cutoff frequency in the focal plane coordinate system is

_ Ma a _2NA

fc_)\d,-_)\_df_ 3 (2.20)
the Abbe distance is
F'Abbe Z%A%Z/\%%ﬁ:05<ﬁ> (2.21)
and the Rayleigh distance (resolution cell diameter) is
ORayleigh = 1.22r, = 0.61 <L> (2.22)
NA

For A = 0.5um (green light) and an NA of 1.4 (high-quality, oil-immersion
lens), we have f. = 5.6 cycles/um, rappe = 0.179 wm, and Sgrayieigh = 0.218 um.

The foregoing approximations begin to break down at low power and high
NA, which normally do not occur together. Again, one can compute and
compare f and a, or the angles arctan(a/2dy) and arcsine(NA/n), to quantify
the degree of approximation.

2.7 Aberration

Real lenses are never actually diffraction limited, but suffer from aberrations
that make the psf broader, and the OTF narrower, than they would otherwise be
[2, 6, 7]. An example is spherical aberration, mentioned earlier. Aberrations in
an optical system can never increase the magnitude of the optical transfer
function, but they can drive it negative.

2.8 Calibration

Making physical size measurements from images is very often required in the
analysis of microscope specimens. This can be done with accuracy only if the
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2.8 Calibration

pixel spacing at the focal plane is known. Making brightness measurements in
the image is also useful, and it requires knowledge of the relationship between
specimen brightness and gray levels in the digital image.

2.8.1 Spatial Calibration

The pixel spacing can be either calculated or measured. Calculation requires
knowledge of the pixel spacing at the image sensor and the overall magnification
of the optics (recall Eq. 2.3). Often it can be calculated from

B Ax
N M()Ma

Sx (2.23)

where 6x and Ax are the pixel spacing values at the specimen and at the image
sensor, respectively, and M, is the magnification of the objective. M, is the
magnification imposed by other optical elements in the system, such as the
camera adapter. Usually this is quoted in the operator’s manual for the micro-
scope or the accessory attachment. The image sensor pixel spacing is quoted in
the camera manual.

Too often, however, the numbers are not available for all the components in
the system. Pixel spacing must then be measured with the aid of a calibrated
target slide, sometimes called a stage micrometer. This requires a computer
program that can read out the (x, y) coordinates of a pixel in the digital
image. One digitizes an image of the calibration target and locates two pixels
that are a known distance apart on the target. Then

ox = D (2.24)

\/(Xz —x1)" + (02— )’

where dx is the pixel spacing, D is the known distance on the calibration target,
and (x1, y1) and (x,, y») are the locations of the two pixels in a recorded image.
For precision in the estimate of éx, the two points should be as far apart as
possible in the microscope field of view.

2.8.2 Photometric Calibration

Photometric properties that can be measured from a microscope image include
transmittance, optical density, reflectance, and fluorescence intensity. Optical
density calibration, as well as that for reflectance, requires a calibration target.
The procedure is similar to that for spatial calibration [8]. Fluorescence
intensity calibration techniques are covered in Chapter 12.
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2.9 Summaryof important Points
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1.

10.

11.

12.

13.

Lenses and other optical imaging systems can, in most cases, be treated
as two-dimensional, shift-invariant, linear systems.

The assumptions involved in the use of linear analysis of optical systems
begin to break down as one moves far off the optical axis, particularly
for wide-aperture, low-magnification systems.

. Under coherent illumination, an optical system is linear in complex

amplitude.

Under incoherent illumination, an optical system is linear in intensity
(amplitude squared).

An optical system having no aberrations is called diffraction-limited
because its resolution is limited only by the wave nature of light
(diffraction effects). This is an ideal situation that real systems can
only approach.

. A diffraction-limited optical system transforms a diverging spherical

entrance wave into a converging spherical exit wave.

. The point spread function of an optical system has a nonzero extent

because of two effects: the wave nature of light (diffraction) and
aberrations in the optical system.

The optical transfer function is the Fourier transform of the point
spread function.

. The point spread function is the inverse Fourier transform of the optical

transfer function.

For a circularly symmetric lens, the incoherent point spread function is
given by Eq. 2.9.

For a circularly symmetric lens, the incoherent optical transfer function
is given by Eq. 2.12.

For a circularly symmetric lens, the coherent point spread function is
given by Eq. 2.15.

For a circularly symmetric lens, the coherent transfer function is given
by Eq. 2.16.
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Image Digitization

Kenneth R. Castleman

3.1 Introduction

As mentioned in Chapter 1, digitization is the process that generates a digital
image, using the optical image as a guide. If this is done properly, then the
digital image can be interpolated (again, if done properly) to produce a con-
tinuous image that is a faithful representation of the optical image, at least for
the content of interest. In this chapter we address the factors that must be
considered in order to make this faithful representation happen.

In this day and age, many high-quality commercial image digitizing com-
ponents are available. It is no longer necessary to build an image digitizing
system from scratch. The design of a digital microscope system thus mainly
entails selecting a compatible set of components that are within budget and
adequate for the work to be done. A properly designed system, then, is well
balanced and geared to the tasks at hand. That is, no component unduly restricts
image quality, and none is wastefully overdesigned.

The various components of the imaging system (optics, image sensor, ana-
log-to-digital converter, etc.) act as links in a chain. Not only is the chain no
stronger than its weakest link, but the sum is actually less than any of its parts
(Section 3.8.1). In this chapter we seek to establish guidelines that will lead to the
design of well-balanced systems.

The primary factors that can degrade an image in the digitizing process are
(1) loss of detail, (2) noise, (3) aliasing, (4) shading, (5) photometric nonlinearity,
and (6) geometric distortion. If the level of each of these is kept low enough,
then the digital images obtained from the microscope will be usable for their
Microscope Image Processing
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3 Image Digitization

intended purpose. Different applications, however, require different levels of
accuracy. Some are intrinsically more prone to noise and distortion than others.
Thus the design of a system must begin with a list of the planned applications
and their requirements in these five areas. In this chapter we discuss these five
topics individually before addressing them collectively.

This chapter addresses the various sources of degradation and how to quantify
them and the system design factors that affect overall performance. Other
chapters present image processing techniques that can be used to correct these
degradations. The principal goals are to preserve a suitably high level of detail and
signal-to-noise ratio while avoiding aliasing and to do so with acceptably low
levels of shading, photometric nonlinearity, and geometric distortion.

3.2 Resolution

The term resolution is perhaps the most abused word in all of digital microscopy.
It is sometimes used to describe pixel spacing (e.g., 0.25 microns between
adjacent pixel centers), digital image size (e.g., 1024 x 1024 pixels), test target
size (e.g., 1-micron bars), and grayscale depth (e.g., 8 bits, or 256 gray levels).
One must pay careful attention to context in order to know which definition is in
use. Otherwise considerable confusion will result.

In this book we adhere to the definition from the field of optics. Resolution is
a property of an imaging system. Specifically, it refers to the ability of the system
to reproduce the contrast of objects of different size. Notice that an object
necessarily must reside on a background. It is visible because it differs in bright-
ness from that background; that difference in brightness is its contrast. Smaller
objects normally are reproduced with lower contrast than larger objects. Below
some limiting size, objects are imaged totally without contrast, and they disap-
pear. Resolution refers to the smallest size an object can have and still be resolved
(seen to be separate from other objects in the image). This loss of contrast with
decreasing size, however, is a gradual phenomenon, so it is impossible to specify
uniquely the size of the smallest objects that can be imaged. Instead we must
adopt some criterion of visibility to specify the smallest resolvable object size.

At high magnification, in a well-designed system, it is normally the optical
components (principally the objective lens) that determine overall system reso-
lution. At low magnification, however, other components, such as the image
sensor array, may set the limit of resolution.

The optical transfer function (OTF) is a plot of the reproduced contrast of an
imaged object versus object size [1]. Here object size is specified as the frequency
of a pattern of bars with sinusoidal profile. In Fig. 3.1 we see such a test pattern
and note that the contrast of the imaged bars decreases with increasing
frequency. A plot showing this decrease is the OTF.
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Optical Transfer Function
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FIGURE 3.1 The optical transfer function (OTF). The OTF specifies how the contrast of sinusoidal
structures of different frequencies is reduced by the imaging process.

Much to our good fortune, the OTF is the Fourier transform of the point
spread function (psf), which is discussed in Chapter 2. Thus having either of
these functions makes available the other, and either one is sufficient to specify
the resolution of the system or of one of its components. Here we are making the
assumption that the imaging components under consideration can be modeled
as shift-invariant linear systems [1, 2].

While the OTF and, equivalently, the psf are complete specifications of the
system’s imaging capability, they are curves, and it is often desirable to have
a single number as a specification of resolution. Several of these are used, such as
the frequency at which the OTF drops to 10% of its zero-frequency value. More
common is the Rayleigh resolution criterion [1, 3]. It states that two point
objects can be just resolved if they are separated by a distance equal to the
radius of the first minimum of the psf, commonly called the Airy disk.

3.3 Sampling

The digitization process samples the optical image to form an array of sample
points. These are most commonly arranged on a rectangular sampling grid. The
image intensity is averaged over a small local area at each sample point. This
process can be modeled as convolution with the psf of the system. Further, the
image intensity is quantized at each sample point to produce an integer. This
rather brutal treatment is necessary to produce image data that can be processed
in a computer. If it is done properly, however, the important components of the
image will pass through undamaged.
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3 Image Digitization

The Shannon sampling theorem [1, 4, 5] states that a continuous function
can be reconstructed, without error, from evenly spaced sample points, provided
that two criteria are met. First the function must be band-limited. That means
that its Fourier spectrum is zero for all frequencies above some cutoff frequency,
which we call /.. This means the function can have no sinusoidal components of
frequency greater than f.. Second, the sample spacing must be no larger than
Ax = 1/2f,. This means there will be at least two sample points per cycle of the
highest-frequency sinusoidal component of the function. If these two criteria are
met, the function can be recovered from its samples by the process of interpol-
ation, if that is properly done.

If Ax < 1/2f., then we have a smaller sample spacing than necessary, and the
function is said to be oversampled. The major drawbacks of oversampling are
increased file size and increased equipment cost, but reconstruction without error
is still possible. If Ax = 1/2f. we have critical sampling, also known as sampling at
the Nyquist rate [1]. If Ax > 1/2f,, then we have a larger sample spacing than that
required by the sampling theorem, and the function is said to be undersampled.
In this case interpolation cannot reconstruct the function without error if it
contains sinusoidal components of frequency up to f. (see Section 3.3.2).

3.3.1 Interpolation

As a further requirement for perfect reconstruction of a sampled function, the
interpolating function must also be band-limited [6]. By the similarity theorem
of the Fourier transform [1, 2, 7, 8], a narrow function has a broad spectrum,
and vice versa. This means that any suitable interpolating function (such as
sin(x)/x) will extend to infinity in both positive and negative x and y. Clearly we
cannot implement that digitally, so we are constrained to work with truncated
interpolation functions. This means that perfect reconstruction remains beyond
our grasp, no matter how finely we sample. However, we can usually get close
enough, and oversampling is a key to that.

Figure 3.2 shows the results of interpolating a sampled cosine function with
the often-used Gaussian interpolation function, shown at the upper left. Even
though the sampling theorem is satisfied (i.e., Ax < 1/2f") in all seven cases, the
inappropriate interpolation function creates considerable reconstruction error.
As the sampling becomes finer, the results of interpolation, while still imperfect,
are seen to improve. The lesson is that, even though we are constrained to use
inappropriate interpolation functions, judicious oversampling can compensate
for much of that inadequacy.

Figure 3.3 shows interpolation with a truncated version of the sinc function.
Here the interpolation process is more complicated than with the Gaussian, but
good results are obtained, all the way up to the sampling limit of Ax = 1/2f.
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FIGURE 3.2 Interpolation with a Gaussian function. Here, sampled cosine functions of different frequen-
cies are inferpolated by convolution with the commonly used Gaussian function shown at the upper left.
In each case, the original function appears as a dashed line and the reconstructed function as a solid line.
The sample points appear as diamonds. Notice that the inappropriate shape of the interpolation function gives
rise to considerable reconstruction error and that the amount and nature of that error varies with frequency.
In general, however, the amount of interpolation error decreases as the sample spacing becomes smaller in
relation to the period of the cosine. This phenomenon argues that oversampling tends to compensate for our

having fo use a fruncated interpolation function.
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FIGURE 3.3 Interpolation with a truncated sinc function. Sampled cosine functions of different frequen-
cies are interpolated by convolution with the truncated sinc function, shown in the upper left. In each case, the
original function is shown as a dashed line and the reconstructed function as a solid line. The sample points
appear as diamonds. Notice that the more appropriate shape of the interpolation function gives rise to
considerably less reconstruction error than that apparent in Fig. 3.2.

This means that the continuous image is truly available to us if we implement
digital interpolation using a decent approximation to the sinc function.

3.3.2 Aliasing

Aliasing is the phenomenon that occurs when an image is sampled too coarsely,
that is, when the pixels are too far apart in relation to the size of the detail
present in the image [1, 5, 6, 9]. It introduces a very troublesome type of low-
frequency noise. Aliasing can be a significant source of error when images
contain a strong high-frequency pattern, but it can be, and should be, avoided
by proper system design.

If the sample spacing, Ax, is too large (i.e., Ax > 1/2f), then a sinusoid of
frequency fis undersampled and cannot be reconstructed without error. When it
isinterpolated, even with an appropriate interpolation function, the phenomenon
of aliasing introduces noise that resembles a Moiré pattern. Aliasing poses
a particular problem in images that contain a high-contrast, high-frequency
parallel-line pattern. Most images have little contrast at the highest frequencies,
so there is less of a visible effect.

Figure 3.4 illustrates aliasing. In the upper left, the cosine is oversampled and
is reconstructed exactly by interpolation with the sinc function. In the other
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FIGURE 3.4 Aliasing. Here cosine functions of different frequencies are sampled and then interpolated
by convolution with the (untruncated) sinc function. In each case, the original function is shown as a dashed
line and the reconstructed function as a solid line. The sample points appear as diamonds. Notice that
violation of the sampling theorem (i.e., Ax > 1/2f) gives rise to a peculiar form of reconstruction error. In
each case a cosine of unit magnitude is reconstructed, so amplitude and waveshape are preserved but
frequency is not. The reconstructed cosines are reduced in frequency. This phenomenon affects all sinusoidal
components having frequency greater than half the sampling frequency. Notice that the reconstructed
function, although of the wrong frequency, still passes through all of the sample points.

three panels, the cosine is undersampled, and, though a cosine is reconstructed,
it has the wrong frequency. Aliasing reduces the frequency of sinusoidal com-
ponents in an image. This can be quite troublesome and should be avoided by
maintaining Ax < 1/2f,.

We mentioned in Chapter 2 that the OTF of a microscope objective lens
(Eq. 2.12) goes to zero for all frequencies above the optical cutoff frequency
f. = A/2NA (Eq. 2.14). Thus the optics provide a built-in antialiasing filter, and
we can be content simply to design for Ax < 1/2f,, at least as far as aliasing is
concerned. However, since we cannot interpolate with the sinc function, as
contemplated by the sampling theorem, we must compensate for this shortcom-
ing by oversampling. Thus it is good practice to set the sample spacing well
below the aliasing limit.

3.4 Noise

The term noise is generally taken to mean an undesired additive component of
an image. It can be random or periodic. The most common noise component is
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3 Image Digitization

the random noise generated by the amplifier circuitry in the camera. Periodic
noise can result from stray periodic signals finding their way into the camera
circuits. Quantization noise results from conversion of the continuous bright-
ness values into integers. As a rule of thumb, the overall noise level will be the
root sum square of the various noise source amplitudes. One can control
quantization noise by using enough bits per pixel. Generally quantization
noise can be, and should be, kept below the other noise sources in amplitude.
Eight-bit digitizers are quite common, and this puts the quantization noise level
(1/256) below 0.5 percent of the total dynamic range. Some applications,
however, require the more expensive 10-bit or 12-bit digitizers.

3.5 Shading

Ideally the contrast of an object would not change as it moved around within the
image. Neither would the gray level of the background area where no objects
reside. This is never the case. An empty field will usually show considerable
variation in brightness, typically as a slowly varying pattern that becomes
darker toward the periphery of the field of view. This is called additive shading
because brightness is added to (or subtracted from) the true brightness of the
object at different locations in the image. Careful adjustment of the microscope
(e.g., lamp centering, condenser focusing) can minimize, but not remove, this
effect. More subtle but equally important is multiplicative shading. Here the
contrast of the object (brightness difference from background) varies with
position. The gray level is multiplied by a factor that varies with position.
Fortunately, both additive and multiplicative shading usually remain con-
stant from one image to the next, until the microscope configuration (e.g.,
objective power) is changed. Thus one can usually record the shading pattern
at the beginning of a digitizing session and remove it from each captured image
by subsequent digital processing (see Chapter 12). Nevertheless, steps taken in
the design phase to reduce inherent shading will reap generous rewards later.

3.6 Photometry

Ideally the gray levels should be linearly related to some photometric property of
the specimen, just as the pixel position (row and column) in the digital image is
related to (x, y) position in the specimen. Then the recorded digital image
describes the specimen and not the system that imaged it. The photometric
property can be transmittance, optical density, reflectance, fluorescence intensity,
etc. If the image sensor array is not linear in the desired photometric property,
then a grayscale transformation (Chapter 6) may be required to bring about the
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desired linear relationship. Special calibration targets containing objects of known
brightness are commonly used to determine the relationship. Step wedge targets
and fluorescent beads of known size and brightness are often useful.

3.7 Geometric Distortion

Geometric distortion is an unwanted “warping” of the image that distorts the
spatial relationship among the objects in the image. It can change the apparent
size and shape of objects and the spacing between them. Geometric distortion
can undermine the accuracy of spatial measurements, such as length, area,
perimeter, shape, and spacing.

Most modern microscope imaging systems use solid-state image sensor
arrays. The pixel geometry is carefully controlled in the manufacturing process,
and geometric distortion from this source is negligible. Other components,
however, can disturb the geometrical relationships. The imaging optics, for
example, can introduce geometric distortion.

One can reduce the effects of geometric distortion by first measuring and
characterizing it and then correcting it in software after the images have been
digitized. Measurement requires a suitable test target of known geometry, such
as a rectangular grid pattern. Correction requires a suitably defined geometric
operation (see Chapter 5).

To a first-order approximation, geometric distortion is invariant from one
image to the next. This means we can measure it once and for all and correct
the images as a batch process. Changing the microscope configuration (e.g., the
objective lens), of course, will change the distortion pattern, and separate
correction is required for each different setup.

3.8 Complete System Design

No one component single-handedly determines the quality of the images
obtained from a digital microscope. It is the interaction of all components that
establishes image quality.

3.8.1 Cumvulative Resolution

Each component in the imaging chain (objective, relay lens, camera, etc.)
contributes to the overall resolution of the system. If each of these is a
shift-invariant linear system, then their cumulative effect can be summarized as
the system psf. The overall system psf is simply the convolution of all of the
component psfs. The problem with this is that each convolution broadens the psf.
Thus the system psf will be broader than any of the component psfs. Looking at
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3 Image Digitization

the problem in the frequency domain, the overall system transfer function (TF) is
the product of the transfer functions of all of the components. Since they all
typically decay with increasing frequency, the system TF will be narrower than
any component TF. The result of all this is that we might assemble a system with
components, each of which has adequate resolution, only to find that the system
itself does not. Searching for a single offending component will be futile, since this
chain is weaker than any of its links. Thus we must select components based on
overall, not individual, performance requirements.

3.8.2 Design Rules of Thumb

Here we discuss some principles that can be used to guide the design of a system,
even when this consists mainly of component selection.

3.8.2.1 PixelSpacing

The cutoff frequency of the objective lens OTF sets the maximum sample
spacing, but one is always wise to oversample generously. One should select the
pixel spacing not only to avoid aliasing for any configuration (objective power,
etc.), but also to make subsequent processing more reliable. Low-magnification
configurations deserve special consideration since the objective lens may not
provide an antialiasing filter, and aliasing becomes more likely.

3.8.2.2 Resolution

Although each component contributes, the numerical aperture (NA) of the
objective lens generally establishes the resolution of the system. For high-quality
lenses, one can assume the diffraction-limited form of the OTF (Eq. 2.12).
A measured OTF is better, however, especially for lower-quality optics, which
may not live up to their full potential. The objective lens OTF should pass the
highest frequencies expected to be present in the specimens of interest. Stated
another way, the psf (Eq. 2.9) should be less than half the size of the smallest
objects of interest to be imaged.

3.8.2.3 Noise

The overall noise level is approximately the square root of the sum of squares of
the individual noise sources in the system. Quantization noise should be less
than half the root mean square (RMS) noise level due to all other noise sources.

3.8.2.4 Photometry

One can measure the photometric linearity of a particular microscope configur-
ation using a suitable calibration target (step wedge, fluorescent beads, etc.).
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If there is significant nonlinearity, it can be corrected with a suitable grayscale
transformation (Chapter 6). This can be done as a batch job after the digitizing
session is finished.

3.8.2.5 Distortion

The degree of geometric distortion in a particular microscope configuration can
be measured with a calibration grid target. If it is significant, one can use
a geometric transformation to correct it in each digitized image (Chapter 5).
This can be done as a batch job after the digitizing session is complete.

3.9 Summary of Important Points

1. Aliasing results when the sample spacing is greater than one-half the
period of a sinusoidal component.

2. Aliasing reduces the frequency of sinusoidal components.

3. The system OTF sets an upper limit on the frequencies that can be present
in an image.

4. The system OTF can act as an antialiasing filter.

5. One can set the sampling frequency to be at least twice the OTF cutoff
frequency to avoid aliasing.

6. A band-limited interpolation function is required for recovery without
error of a sampled function.

7. A truncated sinc function is better for interpolation than a nonnegative
pulse.

8. Oversampling tends to compensate for the use of a truncated interpol-
ation function.

9. Oversampling tends to make subsequent quantitative image analysis
more accurate.
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Image Display

Kenneth R. Castleman

4.1 Introduction

In some cases a digitized microscope image may be analyzed quantitatively, and
the resulting numerical data is all that is required for the project. In many other
cases, however, a processed image must be displayed for interpretation. Indeed,
more actual scientific discovery is based on viewing images than on observing
data. Even in clinical applications, one usually wishes to see the specimen, if only
to understand and confirm the accompanying numerical data.

Image display is the opposite of digitization. It converts a digital image back
into visible form. It does so by an interpolation process that is implemented in
hardware. Just as image digitization must be done with attention to the elements
that affect image quality, high-quality image displays do not happen by accident
either. In this chapter we discuss processing steps that can help ensure that
a display system presents an image in its truest or most interpretable form.
Image display technologies fall outside our scope and are covered elsewhere
[1-7]. Here we focus on how to prepare digital image data for display.

The primary job of a display system is to recreate, through interpolation, the
continuous image that corresponds to the digital image that is to be displayed.
Recall from Chapter 1 that any digital image is a sampled function that corres-
ponds uniquely to a particular analytic function. The task of the display system
is to produce that analytic function as a pattern of light on a screen, a pattern of
ink on a page, or an image on film. We wish that presentation to be as accurate
as possible or at least good enough to serve the needs of the project.

Microscope Image Processing
Copyright © 2008, Elsevier Inc. All rights reserved.
ISBN: 978-0-12-372578-3



4 Image Display

Normally a display system produces an analog image in the form of
a rectangular array of display pixels. The brightness of each display pixel is
controlled by the gray level of the corresponding pixel in the digital image.
However, the primary function of the display is to allow the human observer to
understand and interpret the image content. This introduces a subjective elem-
ent, and it is helpful to match the display process to the characteristics of the
human eye. For example, the human eye has considerable acuity in discrimin-
ating fine detail (high-spatial-frequency information), but is not particularly
sensitive to low-frequency (slowly varying) image information [8]. Some images
may be more easily understood if they are displayed indirectly, using contour
lines, shading, color, or some other representation. Examples of such displays
appear throughout this book.

4.2 Display Characteristics

In this section we discuss those characteristics that, taken together, determine
the quality of a digital image display system and its suitability for particular
applications. The primary characteristics of interest are the image size, the
photometric and spatial resolution, the low-frequency response, and the noise
characteristics of the display.

4.2.1 DisplayedImage Size

The image size capability of a display system has two components. First is the
physical size of the display itself, which should be large enough to permit
convenient examination and interpretation of the displayed images. For ex-
ample, a larger screen is required for group viewing. The second characteristic
is the size of the largest digital image that the display system can handle. The
native displayed image size must be adequate for the number of rows and
columns in the largest image to be displayed. The trend is toward processing
larger images, and inadequate display size can reduce the effectiveness of an
image processing system.

4.2.2 Aspect Ratio

Ideally the vertical and horizontal pixel spacings will be equal in the image
digitizing camera and in the display device. This situation is referred to as square
pixels. In many cases, however, the vertical and horizontal pixel spacings will be
different, most likely in the display. An example of the effect of this is readily
seen when a standard 4:3 video image is displayed on a high-definition 16:9
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4.2 Display Characteristics

television screen. The image becomes stretched, in this case, horizontally. Round
objects become oval. While this may not be of critical importance in the
entertainment industry, it can be problematical in science, where quantification
is more important.

Modern image display devices are often capable of operating in several
different aspect ratio modes, and one can often select a mode that minimizes
distortion. Software is readily available that can stretch an image horizontally or
vertically by a specified amount (see Chapter 5). A simple test is to generate
a digital image that contains a square object and measure the height and width
of its displayed image.

4.2.3 Photometric Resolution

For display systems, photometric resolution refers to the accuracy with which the
system can produce the correct brightness value at each pixel position. Of
particular interest is the number of discrete gray levels that the system can
produce. This is partially dependent on the number of bits used to control the
brightness of each pixel.

Some older displays were capable of handling only 4-bit data, therefore
producing only 16 distinct shades of gray, while modern units commonly
handle 8-bit data, for 256 gray levels. However, it is one thing to design
a display that can accept 8-bit data and quite another to produce a system
that can reliably display 256 distinct shades of gray. The effective number of
gray levels is never more than the number of gray levels in the digital data, but
it may well be less.

If electronic noise generated within the display system occupies more than
one gray level, then the effective number of gray levels is reduced. As a rule of
thumb, the RMS noise level represents a practical lower limit for grayscale
resolution. For example, if the RMS noise level is 1% of the total display range
from black to white, then the display can be assumed to have a photometric
resolution of 100 shades of gray. If the display system accepts 8-bit data, it still
has only 100 effective gray levels. If it is a 6-bit display system, then it has 64 gray
levels. The RMS noise level is a convenient measure to use. If the noise can be
assumed to have a normal distribution, then it will stay within +1 standard
deviation about 68% of the time.

A useful tool for determining the grayscale capability of a display system is
the step target (Fig. 4.1). This is a rectangular arrangement of squares of each
different gray level. If all of the boundaries between steps can be seen clearly,
then the display is doing its job well. One often finds that the darkest few steps
and the lightest few are indistinguishable, indicating saturation at the black and/or
white end of the grayscale.
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4 Image Display

FIGURE 4.1 A gray-level step target.

4.2.4 Grayscale Linearity

Another important display characteristic is the /inearity of the grayscale. By this
we mean the degree to which the displayed brightness is proportional to input
gray level. Any display device has a transfer curve of input gray level to output
brightness. For proper operation, this curve should be reasonably linear and
constant from one use to the next.

Fortunately perhaps, the human eye is not a very accurate photometer [§].
Slight nonlinearities in the transfer curve, as well as 10-20% intensity shading
across the image, are hardly noticed. If the transfer curve has a definite shoulder
or toe at one end or the other, however, information may be lost or degraded in
the light or dark areas.

4.2.5 Low-Frequency Response

In this section, we consider the ability of a display system to reproduce large
areas of constant gray level (““flat fields”). Since our goal is to minimize the
visible effects of digital processing, we prefer flat fields to be displayed with
uniform intensity.

4.2.5.1 Pixel Polarity

A flat field can, of course, be displayed at any shade of gray between black and
white. On a monitor display, for example, a high-intensity pixel is displayed as
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a bright spot on an otherwise dark screen. Zero-intensity pixels leave the screen
in its intrinsic dark state. In a printer or film recorder, a high-intensity pixel
leaves a black spot on otherwise white paper or transparent film. Zero-intensity
pixels leave the paper white or the film transparent. Thus any display system
has a characteristic pixel polarity. No matter what the display polarity, zero-
intensity flat fields are displayed uniformly flat. Thus flat-field performance
becomes an issue only at intermediate and high gray levels, and these may be
either black or white, depending on the display system polarity.

4.2.5.2 Pixellnteraction

Flat-field performance depends primarily on how well the pixels ‘““fit together.”
Flat panel displays, such as liquid crystal display (LCD) or thin-film transistor
(TFT) units, use rectangular arrays of rectangular pixels [6, 7]. Their flat-field
performance is affected by the size of the gaps between pixels. Cathode ray tube
(CRT) devices, which are becoming less common for digital image display, use
a rectangular array of circular spots [9-20]. For either type of display device,
close inspection will reveal pixelization (the appearance of pixels) in bright, flat
areas of the displayed image.

4.2.6 High-Frequency Response

How well a display system can reproduce fine detail again depends on display
spot shape and spacing. The ideal sin(x)/x spot shape is unattainable, so
compromise is unavoidable. Processing steps that can improve the rendering
of detail in displayed images are discussed in Section 4.4.

4.2.7 The Spot-Spacing Compromise

The goals of field flatness and high-frequency response place conflicting con-
straints on the selection of spot spacing. The best compromise depends on the
relative importance of high- and low-frequency information in each individual
image. While spot spacing can be considered a display variable that must be
tailored to the image processing application, it is usually left to the manufacturer
of the display equipment.

4.2.8 Noise Considerations

Random noise in the intensity channel can produce a salt-and-pepper effect that
is particularly visible in flat fields. The previously stated rule of thumb indicates
that the effective quantizing level is roughly equal to the RMS noise amplitude.
If the noise is periodic and of reasonably high intensity, it can produce a
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herringbone pattern superimposed on the displayed image. If the noise is peri-
odic and synchronized with the horizontal or vertical deflection signals, it can
produce a pattern of bars. The general display quality is adequate if all noise,
random and periodic, is kept at or below one gray level in amplitude. In many
systems, it is actually somewhat worse than that. Preprocessing is not effective at
eliminating noise introduced by the display system. Only repair or replacement
will improve the situation.

4.3 Volatile Displays

The most common types of volatile display are the LCD and the TFT flat panel
monitor [6, 7], although CRT monitors are still common [10-15]. Plasma
displays are made by sandwiching a fine mesh between two sheets of glass,
leaving a rectangular array of cells containing an ionizable gas [21]. By means
of coincident horizontal and vertical addressing techniques, the cells can be
made to glow under the influence of a permanent sustaining electrical potential.

The monitor is usually driven by a display card in the computer that transfers
the image data to the monitor in the proper format. Monitors come with various
native image sizes and aspect ratios, and the physical aspect ratio often does
not match the pixel ratio. These “nonsquare pixel”” displays introduce geometric
distortion by stretching the digital image vertically or horizontally to fill the
screen. The 4:3 aspect ratio is a holdover from television broadcast technology
and is still quite common for digital image display monitors. The more modern
16:9 aspect ratio is becoming popular as well. Note that a 4:3 image displayed
on a 16:9 monitor will be distorted. Table 4.1 shows some commonly used 4:3
image display formats.

TABLE 4.1 Display formats

Format Image Size
VGA 640 x 480
SVGA 800 x 600
XGA 1024 x 768
XGA 1152 x 864
XGA 1280 x 960
XGA 1400 x 1050
XGA 1600 x 1200
XGA 1856 x 1392
XGA 1920 x 1440
XGA 2048 x 1536
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Displayed grayscale formats range from 8-bit monochrome to 16-bit
(64 thousand colors) and 24-bit color (16.7 million colors). The contrast ratio
is the ratio of the intensity of the brightest white to pure black, under ambient
illumination. Values of 500 to 5,000 are typical. Refresh rates vary from 30 to
120 Hz. The display can be either progressive, which scans line by line, or
interlaced. Interlaced scanning is a holdover from early television design [10—
18]. In order to reduce perceived flicker, the odd-numbered lines and even-
numbered lines are scanned alternately. Usually a high-refresh-rate progressive
scan is preferred.

The past decade has seen remarkable developments in image display
technology. High-quality display equipment is now available at reasonable
cost. The trend is toward physically larger displays with more pixels.

4.4 Sampling for Display Purposes

We have mentioned that displaying a digital image is actually a process of
interpolation, in that it reconstructs a continuous image from a set of discrete
samples. We also know, from the sampling theorem, that the proper interpol-
ation function (i.e., display spot shape) has the form sinc(ax) = sin(ax)/ax,
which is, in fact, quite different from the shape of most display pixels.

The solid line in Fig. 4.2 shows, in one dimension, the example of a cosine
function that is sampled at a rate of 3.3 sample points per cycle. That is, the
sample spacing is 30% of the period of the cosine. This sample spacing is small
enough to preserve the cosine, and proper interpolation will reconstruct it from
its samples without error. When this sampled function is interpolated with

FIGURE 4.2 |Interpolation with a Gaussian function. The original cosine is shown as a dashed line, the
sample points as squares, and the interpolated function as a solid line. In this case the sample spacing is 30%
of the period of the cosine. The distortion of the reconstructed function results from the inappropriate shape of
the inferpolation function.
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a Gaussian display pixel, however, the distorted waveform (solid line) in Fig. 4.2
results. This illustrates that the display process itself can degrade an image, even
one that has survived digitization and processing without damage.

The difficulties encountered in the foregoing sections illustrate that image
display using a physical display spot is a suboptimal process. While it is imprac-
tical to implement display devices with sin(ax)/ax—shaped display spots, there
are things that can be done to improve the situation.

4.4.1 Oversampling

The inappropriate shape of the display spot has less effect when there are more
sample points per cycle of the cosine. Thus one can improve the situation by
arranging to have many pixels that are small in relation to the detail in the
image. This is called “oversampling” and is discussed in Chapter 3. It requires
more expensive cameras and produces more image data than other system
design considerations would dictate.

4.4.2 Resampling

Another way to improve the appearance of a displayed image is by resampling.
This is the process of increasing the size of the image via digitally implemented
interpolation done prior to display. For example, a 512 x 512 image might be
interpolated up to 1024 x 1024 prior to being displayed. If the interpolation is
done properly, the result will be more satisfactory. Note that this interpolation
adds no new information to the image, but it does help overcome inadequacies
in the display process.

Figure 4.3 shows what happens when two extra sample points are inserted
between each pair in Fig. 4.2. The value at each new sample point is determined
by placing a sin(ax)/ax function at each of the original sample points and
summing their values at each new sample position. Here @ = /7, where 7 is
the original sample spacing. This is digitally implemented interpolation using
the correct interpolation function. Fig. 4.3 shows that when the new (three times
larger) sampled function is interpolated with a Gaussian display spot, the result
is more satisfactory.

Resampling a digital image by a factor of 2 or 3 increases its size by a factor of
4 or 9, respectively, and this requires a display device that can accommodate the
resulting larger image size. It only needs to be done as the last step prior to display,
however, so the burden is not felt until that stage. If the digital image size is smaller
than the inherent size of the display, most modern display systems use built-in
resampling. Since this algorithm is implemented in hardware, it often lacks sophis-
tication. A more satisfactory result can often be obtained by first resampling the
image up to a size that matches the native pixel resolution of the display device.
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FIGURE 4.3 Interpolation after resampling. The sample points in Fig. 4.2 were interpolated to place two
new points between each existing pair. The sinc(x] function was used in that digitally implemented interpol-
ation process. The resulting (more dense) sample points were then interpolated, as in Fig. 4.2, with a Gaussian
function. The result is a better reconstruction of the original cosine. Again the original cosine is a dashed line,
the sample points are squares, and the interpolated function is a solid line.

4.5 Display Calibration

On both display monitors and hard-copy printers, the transfer curve depends, in
part, on the brightness and contrast settings. Sometimes these also include
a “gamma’ setting that affects the shape of the nonlinear transfer curve. Thus
it is possible for the user to alter the transfer curve to suit a particular image or
personal taste. In most cases, however, it is most satisfactory to allow the image
processing to be done by the software and not the display system, which should
merely present the digital image to the operator without additional “‘enhance-
ment.”

A simple calibration procedure can ensure that the display renders the digital
image properly. A grayscale test target, such as that in Fig. 4.1, is displayed on
the monitor or sent to the image printer. Then the various adjustments are set so
that the full range of brightness is visible, with no loss of gray levels at either end.
When an image processing system is in proper calibration, a print from the
hard-copy recorder looks just like the image displayed on the screen, and this in
turn is an accurate rendering of the digital image data.

4.6 Summary of Important Points

1. Image display is a process of interpolation done in hardware.

2. The ideal display spot for interpolation without error has the form
sin(x)/x.
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Image Display

3. Physical display spots differ significantly from the ideal.
4. Display quality can be improved by resampling the image prior to
display.

5. The horizontal and vertical pixel spacing should be equal, and the aspect
ratio of the display should match that of the image, in order to avoid
distortion.

6. Simple image processing software can be used to prepare an image for
display so as to avoid distortion.
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Geometric Transformations

Kenneth R. Castleman

Geometric operations are those that distort an image spatially and change the
physical relationships among the objects in an image [1-10]. This includes simple
operations like translation, rotation, and scaling (magnification and shrinking)
as well as more generalized actions that warp the image and move things around
within it. In general, a geometric operation is simply an image copying process,
because the gray-level values of pixels are not changed as they move from input
image to output image. The difference is that the gray levels are copied into
different pixel locations. The general definition of a geometric operation is

g(x,y) :f[a(xay)sb(xay)] (5.1

where f(x, y) is the input image and g(x, y) is the output image. The spatial trans-
formation functions a(x, y) and b(x, y) specify the physical relationship between
points in the input image and corresponding points in the output image. This,
in turn, determines the effect the operation will have on the image. For example, if

g(x,y) = flx + xo0,y + o (5.2)

then g(x, y) will be a translated version of f(x, y). The pixel at (xo, y9) moves to
the origin, and everything in the image moves down and to the left by the

amount 4 /xé + y%. Thus it is the spatial mapping functions, a(x, y) and b(x, y)
that define a particular geometric operation.
Microscope Image Processing
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5 Geometric Transformations

The implementation of a geometric operation requires two separate algo-
rithms. One is the algorithm that defines the spatial transformation itself, that is,
a(x, y) and b(x, y). This specifies the “motion’ as each pixel “moves” from its
original position in the input image to its final position in the output image. The
pixels in a digital image reside on a rectangular grid with integer coordinates, but
the spatial transformation generates noninteger pixel locations. Recall from
Chapter 1 that the continuous image, an analytic function that corresponds to
the digital image, can be generated by interpolation. This problem, then, is
solved by a gray-level interpolation algorithm.

5.2 Implementation

The output image is generated pixel by pixel, line by line. For each output pixel
g(x, y), the spatial transformation functions a(x, y) and b(x, y) point to a
corresponding location in the input image. In general, this location falls between
four adjacent pixels (Fig. 5.1). The gray level that maps into the output pixel at
(x, y) is uniquely determined by interpolation among these four input pixels.
Some output pixels may map to locations that fall outside the borders of the
input image. In this case a gray level of zero is usually stored.

5.3 Gray-Levelilnterpolation

There is a trade-off between simplicity of implementation and quality of results
when selecting a technique for gray-level interpolation.

=, I %

Input Image Output Image

FIGURE 5.1 Pixel mapping. The gray level for a particular output pixel is determined by interpolating
among four adjacent input pixels. The geometric mapping specifies where in the input image the point (x, y)
falls. Normally x and y take on noninteger values.
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5.3 Gray-Level Interpolation

5.3.1 Nearest-Neighborinterpolation

The simplest way to fill the output pixel is just to use the gray level of the input
pixel that falls closest to the mapped position, (x, y). However, this technique is
seldom used because it creates a ragged effect in areas of the image containing
detail such as lines and edges.

5.3.2 BilineariInterpolation

In many cases bilinear interpolation offers the best compromise between pro-
cessing speed and image quality. It is a direct 2-D generalization of linear
interpolation in one dimension. Figure 5.2 shows four adjacent pixels and
a fractional location, (x, y), among them. We first use linear interpolation
horizontally to find the values of the continuous image at (x, 0) and (x, 1). We
then interpolate vertically between those two points to find its value at (x, ).

Bilinear interpolation actually approximates the continuous image by fitting
a hyperbolic paraboloid through the four points. The hyperbolic paraboloid
surface is given by

f,y)=ax+by+cxy+d (5.3)

where a, b, ¢, and d are parameters determined by the interpolation process.
In particular,

0
1) +7(0,0) =f(0,1) = f(1,0)]xy +/(0,0) (54

f1.4)

FIGURE 5.2 Bilinear interpolation. We use linear interpolation first to find f(x, 0) and f(x, 1) and then
between those points to find f(x, y).
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5 Geometric Transformations

Bilinear interpolation can be implemented with only three multiplication and
six add/subtract operations per pixel and thus is only slightly more computa-
tionally expensive than nearest-neighbor interpolation [1]. It guarantees that the
interpolated function will be continuous at the boundaries between pixels, but it
does not avoid slope discontinuities. In many cases this is not a serious flaw.

5.3.3 BicubiclIlnterpolation

With bicubic interpolation, the interpolated surface not only matches at the
boundaries between pixels, but has continuous first derivatives there as well. The
formula for the interpolated surface is

3 3

plxy) =) ayx'y’ (5.5)

i=0 j=0

The 16 coefficients a; are chosen to make the function and its derivatives
continuous at the corners of the four-pixel square that contains the point (x, ).
This is done by solving 16 equations in the 16 unknown coefficients at each point.
The equations are derived by setting the function and its three derivatives to their
known values at the four corners. Since estimating the derivatives at a pixel
requires at least a 2 x 2 pixel neighborhood, bicubic interpolation is done over
a4 x 4 or larger neighborhood surrounding the point (x, y).

5.3.4 Higher-Order Interpolation

In addition to slope discontinuities at pixel boundaries, bilinear interpolation
has a slight smoothing effect on the image, and this becomes particularly visible
if the geometric operation involves magnification. Stated differently, bilinear
interpolation does not precisely reconstruct the continuous image that corre-
sponds to the digital image. Bicubic interpolation does a better job, and so it is
becoming the standard for image processing software packages and high-end
digital cameras. But even this is still imperfect. We know from the sampling
theorem that the proper form for the interpolating function is sinc(ax) =
sin(ax)/(ax). Thus an interpolation technique that better approximates that
function will yield better results.

Higher-order interpolation uses a neighborhood that is larger than 4 x 4 to
determine the gray-level value at a fractional pixel position. An interpolation
function that approximates a truncated sinc(x) function is fitted through the
larger neighborhood. The additional complexity is justified by improved
performance in some applications, particularly if the geometric operation has
the effect of magnifying the image.
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5.4 Spatial Transformation

Notice that the hyperbolic paraboloid has four parameters and can be made
to fit through all four points in the neighborhood of Fig. 5.2. Similarly, the
bicubic function has 16 parameters and can fit all 16 points in a 4 x 4 neigh-
borhood. If a higher-order interpolating function has the same number of
coefficients as the neighborhood has points, then the interpolating surface can
likewise be made to fit at every point. However, if there are more points in the
neighborhood than there are coefficients, then the surface cannot fit all the
points, and a curve-fitting or error-minimization procedure must be used.
Higher-order interpolating functions that are widely used include cubic splines,
Legendre centered functions, and the truncated sinc(x) function itself.

5.4 Spatial Transformation

Equation 5.2 specifies the translation operation. Using
g(X,y) :f[X/Mx,y/My] (56)

will scale (magnify or shrink) the image by the factor M in the x direction and M,
in the y direction. Rigid rotation about the origin through an angle 6 is given by

g(x,y) =f[x-cos(f) — y-sin(), x- sin(0) + y- cos(0)] (5.7

To rotate about another point, one would first translate that point to the
origin, then rotate the image about the origin, and finally translate back to its
original position. Translation, rotation, and scaling can be combined into
a single operation [1].

5.4.1 Control-Grid Mapping

For warpings too complex to be defined by an equation, it is convenient to
specify the operation using a set of control points [1]. This is a list of certain pixels
whose positions in the input and output images are specified. The displacement
values for the remaining unspecified pixels are determined by interpolation
among those that have been specified. Figure 5.3 shows how four control points
that form a quadrilateral in the input image map to the vertices of a rectangle in
the output image. Displacement values for points inside the rectangle can be
determined with bilinear interpolation. A set of contiguous quadrilaterals that
span the input image (a control grid) can be mapped into a set of contiguous
rectangles in the output image. The specification of the transformation,
then, consists of the coordinates of the rectangle vertices, along with the x, y
displacement (to the corresponding control-grid vertex) of each.
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5 Geometric Transformations

Input Image Qutput Image

FIGURE 5.3 Control point mapping. The four corners of an arbitrarily shaped quadrilateral in the input
image map to the four corners of a rectangle in the output image. The mapping of the corners is specified, and
the mapping of interior points is determined by interpolation.

5.5 Applications

Geometric operations are useful in microscopy in several ways. A few of those
are mentioned here.

5.5.1 Distortion Removal

Microscope images are sometimes affected by geometric distortion due to the
optics or due to the specimen preparation. Optical distortion is usually constant
from image to image and can be removed with batch processing. Physical
distortion of specimens, such as that induced by slicing on a microtome, must
be corrected on an image-by-image basis.

5.5.2 Image Registration

It is often necessary to align multiple images of the same specimen, as in optical
sectioning (Chapter 14) and time-lapse microscopy (Chapter 15). Geometric
operations are useful for these tasks [11]. Cross-correlation (see Chapter 14) is
useful for determining the translation required for alignment.

5.5.3 Stitching

Often it is impossible to get an entire specimen to fit within a single field of view.
Here multiple images of the specimen can be combined into a mosaic image
by the process called stitching. Geometric operations are usually necessary to
make the images match in their regions of overlap. Cross-correlation can be
used in the local region of a control point to determine the displacement values
for a control grid [12]. In areas where images overlap it is useful to blend them
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together to smooth out the transition from one to the next [13]. Blending can be
done using a weighted average in the overlapping areas, where the weights taper
off to zero at the image borders [14]. This produces a more seamless appearance
and makes the images easier to interpret. Geometric and radiometric corrections
applied to the input images make automatic mosaicing possible [15].

5.6 Summaryof Important Points

1.

Geometric operations warp an image, changing the positions of the
objects within.

. Geometric operations include translation, rotation, and scaling as well as
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. A geometric transformation can be specified by a formula or by a control

grid.

Geometric operations are implemented by mapping output pixel posi-
tions back into the input image.

. Since output pixels map to noninteger positions in the input image, gray-
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Image Enhancement

Yu-Ping Wang, Qiang Wu, and Kenneth R. Castleman

6.1 Introduction

Images that come from a variety of microscope technologies provide a wealth of
information. The limited capacity of optical imaging instruments and the noise
inherent in optical imaging make image enhancement desirable for many micro-
scopic image processing applications. Image enhancement is the process of
enhancing the appearance of an image or a subset of the image for better
contrast or visualization of certain features and to facilitate subsequently more
accurate image analysis. With image enhancement, the visibility of selected
features in an image can be improved, but the inherent information content
cannot be increased. The design of a good image enhancement algorithm should
consider the specific features of interest in the microscopic image and the
imaging process itself. In microscopic imaging, the images are often acquired
at different focal planes, at different time intervals, and in different spectral
channels. The design of an enhancement algorithm should therefore take full
advantage of this multidimensional and multispectral information.

A variety of image enhancement algorithms have previously been developed
and utilized for microscopy applications. These algorithms can be classified into
two categories: spatial domain methods and transform domain methods. The
spatial domain methods include operations carried out on a whole image or on
a local region selected on the basis of image statistics. Techniques that belong to
this category include histogram equalization, image averaging, sharpening of
important features such as edges or contours, and nonlinear filtering. The
transform domain enhancement methods manipulate image information in

Microscope Image Processing
Copyright © 2008, Elsevier Inc. All rights reserved.
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6 Image Enhancement

transform domains, such as Fourier and wavelet transforms. Often, interesting
image information cannot be separated out in the spatial domain but can be
isolated in the transform domain. For example, one can amplify certain coeffi-
cients in the Fourier domain and then recover the image in the spatial domain to
highlight interesting image content. The wavelet transform is another powerful
tool that has been developed in recent years and used for image enhancement.

In the following discussion we focus on the enhancement of two-dimensional
(2-D) gray-level and color microscope images. Processing of multispectral and
three-dimensional (3-D) microscope images is discussed in other chapters of the
book (Chapters 13 and 14).

6.2 Spatial Domain Methods

Given a gray-level image with the intensity range [0, L], a global operation on the
image refers to an image transform, 7, that maps the image, /, to a new image,
g, according to the following equation:

g=T(I) 6.1)

There are many examples of this type of image transform, such as contrast
stretching, clipping, thresholding, grayscale reversal, and gray-level window
slicing [1]. If the operation results in fractional (noninteger) values, they must
be rounded to integers for the output image.

6.2.1 Contrast Stretching

Display devices commonly have a limited range of gray levels over which the image
features are most visible. One can use global methods to adjust all the pixels in the
image so as to ensure that the features of interest fall into the visible range of the
display. This technique is also called contrast stretching [2]. For example, if I; and I,
define the intensity range of interest, a scaling transformation can be introduced to
map the image intensity / to the image g with the range of I, to Inax as

(I-1)

g = L—1, (Imax - Imin) + Inin (62)

This mapping is a liner stretch. A number of nonlinear monotonic pixel oper-
ations exist [2, 3]. For example, the following transform maps the gray level of
the image according to a nonlinear curve

I—1\"*
&= 1 (Imax - Imin) ~+ Inin O<a< o (6.3)
L -1
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6.2 Spatial Domain Methods

where « is an adjustable parameter. This image intensity scaling is usually used
for contrast stretching, clipping, display calibration, etc.

6.2.2 Clipping and Thresholding

Image clipping is a special case of contrast stretching that is useful in noise
reduction when the input image, f, is known to liec in the range of 0 to L.
The transform is defined in the equation

0 0=f<a
g=< ol a=f<b (6.4)
L f=b

where a and b are usually obtained from the histogram of the image and they
specify the valley between the peaks of the histogram (see Fig. 6.1). When a = b,
the transform is called thresholding, and the output is a binary image.

6.2.3 Image Subtraction and Averaging

When more than one image of a stationary object is available, averaging over N
images is a simple way to improve the signal-to-noise ratio by y/N. In micro-
scopic imaging, multiple images are often obtained. For microscopic video
imaging, frames from the same scene are acquired sequentially. These multiple
images, if properly registered, can then be averaged to reduce noise. Registration
may be required if the images are not already aligned.

Image subtraction is usually performed when two images of the same object
are obtained under different conditions [3]. The image subtraction will highlight
whatever has changed between the two images. Another application is back-
ground correction. In microscopic imaging the image is often affected by a slowly
varying background shading pattern. One can move the microscope stage to an

14 186

FIGURE 6.1 Image enhancement using a confrast strefch. The image in (c) is obtained from (a) through
a mapping defined in (b).
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6 Image Enhancement

empty field and acquire an image of the background. When the background
image is subtracted from the image containing the specimen, it removes the
shading (see Chapter 12).

6.2.4 Histogram Equalization

The gray-level histogram of an image is the probability of occurrence of each gray
level in the image. The goal of histogram equalization is to remap the image
gray levels so as to obtain a uniform (flat) histogram [2]. If no prior information
is available about the gray-level distribution, it is often useful to distribute the
intensity information uniformly over the available intensity levels. Also it is easier
to compare two images taken under different conditions if their histograms match.
Mathematically, the normalized histogram /(r;) can be expressed as
h(r;) = n;/n, where r; is the ith gray level in an image having a total of L values,
n; is the number of occurrences of gray level r; in the image, and 7 is the total
number of pixels in the image. We can use the transformation 7(r) to map the
original gray levels r; of the input image into new gray levels s;, such that, for the

output image,

l
si=Tr) =S hr)=S"%  i=01,...,L—1 (6.5)
@ Z () =25

l
i=
where the transformation 7 is the cumulative distribution function of the image
gray levels, which is always monotonically increasing. The resulting image will
have a histogram that is ““flat” in a local sense, since there is only a finite number
of gray levels available (see Fig. 6.2).

Local histogram equalization is a variant of the histogram equalization oper-
ation described earlier. It applies histogram equalization to small, overlapping
areas of the image [4] that contain local features. This nonlinear operation can
significantly increase the visibility of subtle features in the image. However,
because histogram equalization is carried out in local areas, it is computationally
intensive, and the complexity increases with the size of the local area used in the
operation. There is also a number of other variations in image histogram trans-
formations that take into account local image properties, such as the local standard
deviation [5].

6.2.5 Histogram Specification

More generally, histogram specification allows us to modify an image so that its
histogram takes on a specific shape. Assume that f(x, y) is the input image
having histogram /;(r;) and that g(x, y) is the output image with the target
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Count: 333465 Min: 0

Mean: 25.834 Max: 255

StdDev: 41.143 Mode: 7 (86151)
(b)
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StdDev: 55.866 Mode: 22 (86151)
(d)

FIGURE 6.2 The image in (c] is obtained from the image in (a) by histogram equalization.
The histograms of the images in (a) and (c) are shown in (b) and (d), respectively.

histogram /;(z;). The input image can be modified according to the equalization
transformation, 7, given in Eq. 6.5, to produce a flat histogram. Further,
the transformation, V, will give the target image a flat distribution if

V(Zl') = ihz(zj') and T(}"l‘) = ihl(}’j) = O, 1, ey L—-1 (66)
j=0 j=0

Then the output image, g(x, y), can be computed from the input image, 1 (x, »),
using the following cascaded transformation:

g(x. ) = VT (f(x. )] 6.7)
This transformation enables us to obtain an output image with the desired
gray-level distribution, /;(z;).
6.2.6 Spatial Filtering

Spatial filtering involves the convolution of an image with a specific kernel
operator. The gray level of each pixel is replaced with a new value that is the
weighted average of neighboring pixels that fall within the window of the kernel.
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6 Image Enhancement

In the continuous form, the output image g(x, y) is obtained as the convolution
of the image f(x, y) with the filter kernel w(x, y) as follows:

g(x, y) =1 (x, p) x wlx, y) (6.8)

where the convolution is performed over all values of (x, y) in the defined region
of operation in the image.

In the discrete form, convolution becomes g;, ; = f;, ; * w;, ;, and the spatial
filter w;, ; takes the form of a weight mask. Table 6.1 shows several commonly
used discrete filters.

In general, an image can be enhanced by the following sharpening operation:

g(xa y) :f<xa y) +)\e(x’ y) (69)

where A > 0 and e(x, y) is a high-pass filtered version of the image, which usually
corresponds to some form of the derivative of an image. The operation can be
accomplished, for example, by adding gradient information to the image.
A well-known gradient filter is the Sobel! filter pair that can be used to compute
an estimate of the gradient in both the x and the y directions. Other commonly
used derivative filters include the Laplacian filter [1], which is defined as
) ? &
el ) = T (5,3) = (G + ) 009 (6.10)

In the discrete form, the operation can be implemented as

V= [fien, ;= 26 fio, ) + [, o = 28 + 1y 1] (6.11)

The kernel mask used in the foregoing discrete Laplacian filtering is shown in
Table 6.1.

To sharpen a noisy image, a Laplacian of Gaussian (LoG) filter is useful. The
LoG filter first smoothes the image with a Gaussian low-pass filtering, followed
by the high-pass Laplacian filtering. The LoG filter is defined as

2 2
V2G(x, y) = (% + 8a—y2> Gy(x, y) (6.12)

TABLE 6.1 Examples of discrete kernel masks for spatial filtering

Low-Pass Filter High-Pass Filter Laplacian Filter
R -1 -1 -1 0 10
M)i’jzﬁ 1 2 1 M}i’j: —1 9 _1 M}l',j: 1 _4 1
1 1 1 -1 -1 -1 0 10
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FIGURE 6.3 Theimage in (b) is obtained by sharpening the image in (a) using a Laplacian of Gaussian
operation.

where

Ga(xay):mo_exp<_ 202 )

is the Gaussian function with variance o, which determines the size of the filter.
A larger size of the filter results in more smoothing of the noise. A discrete form
of the LoG filter is given in [2]. Figure 6.3 shows the result of sharpening an
image using a LoG operation. More examples of medical image enhancement
using local derivative filtering can be found in [6-8)].

Image filtering operations are most commonly done globally, that is, over the
entire image. However, because image properties may vary throughout the image,
it is often useful to perform spatial filtering operations in local neighborhoods.

6.2.7 DirectionalandSteerableFiltering

Many images contain edge features in various orientations. Directional filters,
such as the steerable filters [9], are used to enhance image features that lie in
a particular direction. The filtering effect in regard to orientation can be evalu-
ated by computing an orientation map, which is the squared filter response as
a function of filter orientation [1, 6, 10, 11]. The concept of steerable filters [12] is
based on an oriented filter, which is constructed from a linear combination of
a set of directionally oriented basis filters. Here the weighting factors determine
the directionality of the filter. Basis filters can be derived from directional
derivatives of Gaussians and used to compute local orientation maps.

The simplest example of a steerable filter is the partial derivative of
a two-dimensional Gaussian. In polar coordinates, the horizontal and vertical
derivatives are written as
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GO(r, 9) = cos (0)(—;’6_’2/2) (6.13)
and
G (r, §) = sin(6) (—re_rz/z) (6.14)

where the subscript denotes the order of derivative and the superscript denotes
the direction of the derivative. Gi(r, 6), at any orientation 6, can be synthesized

Gl(ﬂ'/2)

by taking a linear combination of Gl(o) and as follows:

G (r, 0) = cos(0)G™(r, 6) + sin(6)G?(r, 6) (6.15)

This equation implies the steerability of these functions. The directional deriva-
tive, G, can be generated at any arbitrary orientation using a linear combin-
ation of the basis filters G(IO) and G(fr/ % with coefficients cos(f) and sin(6) as the
weighting functions, also known as the interpolation functions. Therefore filtering
an image with an arbitrarily oriented filter can be accomplished using a proper
linear combination of the image convolved with the two basis filters.
Steerability can be extended to the higher-order derivatives. The general
steerability condition, for functions that are polar separable, is expressed as

N
f(r, &) = h(d —a)g(r) = > kn(@)h(¢p — ay)g(r) (6.16)

n=1

where /i(¢) is the angular portion of the steerable filter, g(r) is the radial portion,
ky(a) are interpolation functions, and «, are a fixed set of N orientations. This
equation can be satisfied by all functions with angular components that are
band-limited to contain no more than N/2 harmonic terms [12]. Examples of
steerable filter sets consisting of higher-order directional derivatives of
a Gaussian, along with steerable approximations to their Hilbert transforms,
can be found in [12]. Orientation maps can be computed as the sum of squared
responses of these filters.

Steerable filters have been used to generate multiscale, self-inverting pyramid
decompositions of images [12] that have the desirable properties of shift and
rotation invariance. By analyzing and selectively processing the transform
coefficients, image feature detection and enhancement can be achieved with
designed flexibility in scale, orientation, and degree of enhancement [9].

Traditional techniques based on conventional convolution filtering and
contrast stretching are limited in what they can do. By decomposing the image
into several differently oriented bases at multiple scales using the steerable
pyramid transform, it becomes easier selectively to detect and enhance certain
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FIGURE 6.4 (a) Animage of five human chromosomes in upright orientation. (b) The steerable pyramid
transform of the image in (a). Three levels of decomposition are performed. A, B, and C show the three
bandpassfiltered images at decomposition level 2, while D, E, and F show them at decomposition level 3,
respectively. Inage G shows the down-sampled low-pass image at decomposition level 3. (c) The result of
image enhancement.

image features that correspond to important object structures at a particular
scale, location, and orientation. Figure 6.4 shows the result of chromosome
image enhancement based on a steerable pyramid transform and selective
processing of the transform coefficients [9].

6.2.8 Median Filtering

The median filter is a commonly used nonlinear operator that replaces the
original gray level of a pixel by the median of the gray levels of the pixels in
a specified neighborhood. The median filter is a type of ranking filter [3], because
it is based on the statistics derived from rank-ordering the elements of a set. This
filter is often useful because it can reduce noise without blurring edges in the
image [1]. The noise-reducing effect of the median filter depends on two factors:
(1) the spatial extent of its neighborhood and (2) the number of pixels involved
in the median calculation. Figure 6.5 shows an example of salt-and-pepper noise
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FIGURE 6.5 Asshown inimage (b), saltand-pepper noise in image (a) is removed by a 4 x 4 median
filter.
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6 Image Enhancement

removal using median filtering. This type of noise otherwise cannot be removed
by conventional convolution filtering.

6.3 Fourier Transform Methods

In many cases, frequency domain filtering is more effective than its spatial
domain counterpart because noise can be more easily separated from the objects
in the frequency domain. When an image is transformed into the frequency
domain, low-frequency components correspond to smooth regions or large
structures in the image; medium-frequency components correspond to image
features; and high-frequency components are dominated by noise. Hence one
can design filters, using the knowledge of the frequency components, to sharpen
the image while suppressing noise [13, 14]. A noise-reducing enhancement filter,
for example, seeks to boost the amplitude of mid-frequency components and to
attenuate the high frequencies at the same time.

6.3.1 Wiener Filtering and Wiener
Deconvolution

The Wiener filter is known to be optimal, in the minimum mean square error
(MSE) sense, for recovering a signal that is embedded in noise [1, 3, 14]. The
observed image, g(x, y), is assumed to be resulting from the sum of the original
image, f(x, y), and stationary noise, n(x, y); that is,

g(x, y) =f(x, y) +n(x, y) (6.17)

where the noise is spectrally white, with zero mean and variance . The transfer
function of the Wiener filter is given by [2]
Pr(u, v)

H(u, v) = W (6.18)

where Py(u, v) is the power spectrum of the signal. The conventional Wiener
filter has certain limitations. For instance, the minimum MSE criterion often
provides more smoothing than the human eye would like. The Wiener filter is
often outperformed by nonlinear estimators [3].

A number of variants of the Wiener filter consider the spatially variant
characteristics of signals and noise [2]. One approach to making the filter
spatially variant is to allow the noise parameter o, to vary spatially, and to
change the filter from one pixel to the next. Another variant is the noise-adaptive
Wiener filter [15], which models the signal as a locally stationary process. Image
recovery using noise-adaptive Wiener filtering is given by
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o7 (x, ¥)
o7 (x, y) + a2(x, )

flx, y) =my(x, p) + (g(x. ») —my(x, y)) (6.19)

where m; is the local mean of the signal fand o2 is the local signal variance.

Another limitation of the Wiener filter is that it only accounts for the second-
order statistics of an input image. However, by incorporating nonlinearity into
the processing, this limitation can be overcome. A modified adaptive filter can be
constructed as a linear combination of the stationary Wiener filter H and an
identity operation [16]:

Hy=H+(1-a)(1-H) (6.20)

The modified adaptive filter equals the Wiener filter when o« = 1, whereas when
o = 0 it becomes the identity (null) transformation. Based on a study of human

vision system, an anisotropic component was introduced to improve the preceding
filter [17]:

Hyy=H+(1—a)(y+ (1 —7v)cos*(¢—0))(1 — H) (6.21)

where the parameter y controls the degree of anisotropy, ¢ is the angular
direction of the filter, and 6 defines the orientation of the local image structure.
In this way, the more dominant the local orientation is, the smaller the y value
and the more anisotropic the filter. The local direction and level of anisotropy
can be estimated using three oriented Hilbert transform pairs. The weighting
function cos® (¢ — 6) was imposed by its ideal interpolation properties. The
directed anisotropy filter can also be implemented as a steerable filter [12].

Figure 6.6 shows an example of image deblurring using conventional Wiener
deconvolution.
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FIGURE 6.6 Deblurring of the image in (a) to obtain the image in (b) by applying the conventional
Wiener deconvolution.
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6.3.2 Deconvolution Using aleast-
Squares Approach

The observed image, g, can be expressed in a matrix form as
g=Hf+n (6.22)

where g, f, and n are N2 x 1 column vectors, H is an N> x N2 matrix, f is the
original image, n is the noise, and H stands for blurring. When the blurring is
shift-invariant, the matrix H becomes a block-circulant matrix. If n = 0, we can
find the approximate solution by minimizing the mean square error

o) = g — HE|P? = (g—Hf>t<g—Hf> (6.23)

by setting the derivative of e<f > in respect to f to zero:

8;# — W <g — Hf) —0 (6.24)

The solution for f becomes

A

f=(HH) 'Hg=H"g (6.25)

If n is nonzero, the problem can be formulated as one of constrained
optimization:

e(f) = IQF (1> + A (lls — HEI? — |In|?) (6.26)

where the first term is a regularization term, such that the solution is smooth,
and the matrix Q is usually taken to be the first or second difference operation
onf Aisa constant called the Lagrange multiplier. Similarly, we can set the
derivative of ¢(f) in respect to f to zero, as follows,

8;@ ~2QQf - 2AH(g - Hf) =0 (6.27)

and find the solution for f:
. 1 -1
f= <H’H + 3 Q’Q) H'g (6.28)

It turns out this solution is the general form of solution for the deconvolution
problem.
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6.3 Fourier Transform Methods

6.3.3 Low-Pass Filtering in the
Fourier Domain

Since a low-pass filter can suppress noise in an image, an alternative to spatial
domain filtering is to implement the low-pass filtering in the Fourier domain.
To accomplish this, a 2-D low-pass filter transfer function H(u, v) is multiplied
by the Fourier transform G(u, v) of the image

A

F(u,v)=H(u, v)G(u, v) (6.29)

where F(u, v) is the Fourier transform of the filtered image f(x, y) that we wish to
recover. f(x, y) can be obtained by taking the inverse Fourier transform.
An ideal low-pass filter is designed by assigning a frequency cutoff value

_J1 if D(u, v) = Dy
H = .
(1 7) { 0 otherwise (6.30)

where D(u, v) is the distance of a point from the origin in the Fourier domain.
However, since the rectangular pass-band in the ideal low-pass filter causes
ringing artifacts in the spatial domain, usually filters with smoother roll-off
characteristics are used instead. For example, the following Butterworth
low-pass filter of nth order is often used for this purpose:

1

Huv) =17 [D(w, v)/ Dol

(6.31)

When the order, n, increases, the roll-off characteristics of the bandpass filter
become more prominent. Hence a first-order Butterworth filter provides the
least amount of ringing artifacts in the filtered image.

6.3.4 High-Pass Filtering in the
Fourier Domain

Whereas a low-pass filter can suppress noise and smooth an image, a high-pass
filter can accentuate edge information and sharpen the image. An ideal high-
pass filter with cutoff frequency D is given by

1 if D@, v) = Dy
H = ’ 6.32
(1 7) { 0 otherwise (6.32)

Similar to the ideal low-pass filter discussed earlier, the sharp cutoff charac-
teristics of a rectangular window function in the frequency domain can cause the
ringing artifacts in the filtered image. Therefore, we can also make use of a filter
with smoother roll-off characteristics, such as
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1
14 [Do/D(u,v)]"

H(u, v) (6.33)

which represents a Butterworth high-pass filter of nth order. Note that Eq. 6.33
has the same form as Eq. 6.31, except the terms Dy and D(u, v) in the denom-
inator are interchanged.

6.4 Wavelet Transform Methods

Human visual perception is known to function at multiple scales. Wavelet
transforms were developed for the analysis of multiscale image structures [18].
Unlike traditional transform domain methods, such as the Fourier transform,
wavelet-based methods not only dissect signals into their component frequencies
but also enable the analysis of the component frequencies across different scales.
As a result these methods are more suitable for such applications as image data
compression, noise reduction, and edge detection.

6.4.1 Wavelet Thresholding

The application of wavelet-based methods to image enhancement has been
studied extensively. A widely used technique known as wavelet thresholding per-
forms enhancement through the manipulation of wavelet transform coefficients
so that object signals are boosted while noise is suppressed. Wavelet transform
coefficients are modified using a nonlinear mapping. Hard-thresholding and
soft-thresholding functions [12] are representative of such nonlinear mapping
functions. For example, the soft-thresholding function is given by

x—T ifx>T
O0x)=¢ x+T if x<-T (6.34)
0 if |x] =T

Small coefficients (below threshold 7 or above —7) normally correspond to
noise and are reduced to a value near zero. Usually, the thresholding operation
of Eq. 6.34 is performed in the orthogonal or biothorgonoal wavelet transform
domain (see Chapter 7). A translation-invariant wavelet transform may be more
appropriate in some cases [19]. Enhancement schemes based on nonorthogonal
wavelet transforms are also used [10, 20, 22]. Nonlinear mapping functions can
be used in these schemes to accomplish multiscale image sharpening.
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6.4 Wavelet Transform Methods

6.4.2 Differential Wavelet Transform
and Multiscale Pointwise Product

Since edge sharpening is an essential part of image enhancement and edges can
be detected and characterized by differential operators, a particular family
of differential wavelets has been used for this purpose [11, 22]. In this case the
approximation and detail coefficients of the differential wavelet transform of an
image f are defined as S,;f and W,;f, and the wavelet transform is computed
using the following equations:

{ Sz;f = Szj—]f * hsz—l

1l=j=J 6.35
Waf = Soif * grot” J (6.35)

where /& and g are the low-pass and high-pass filters, respectively, and 12/~! is the
up-sampling operation by putting 2/~' — 1 zeros between each pair of adjacent
samples in the filter [11]. This differential wavelet transform facilitates
a desirable image representation for the extraction of edges at multiple scales.
Since edge patterns are correlated spatially across multiple scales, one can take
advantage of this property during the identification of the edges and subsequent
enhancement. A multiscale pointwise product (MPP) can be employed to meas-
ure the cross-scale correlation of the differential wavelet transform coefficients
[22]. The MPP is defined as

k
Pi(n) = [ Waif (n) (6.36)
j=1

where {I,;f} are the detail coefficients defined in Eq. 6.35. Because the maxima
of W,,f (n) represent edges in the signal and tend to propagate across scales
whereas the maxima of W,,f(n) caused by noise do not, Py(n) reinforces the
responses from edges rather than from noise. Experimental observation of edge
patterns shows that the MPP has a built-in ability to suppress isolated and
narrow impulses while preserving edge responses across different scales [22].
Based on the foregoing consideration, the following nonlinear mapping func-
tion 6(x) can modify the wavelet coefficient x subject to the MPP criterion [22]:

_ ) Ax if |Pr(n)|=p
0(x) = 6.37
(x) { 0 otherwise (6.37)

where A is an adjustable constant associated with the degree of enhancement

desired. The threshold parameter, w, can be empirically determined. A larger
value of w results in a higher denoising effect, and vice versa. The choice of u
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FIGURE 6.7 Enhancement of chromosomal banding patterns in the left image based on the differential
wavelet transform and applying the MPP criterion. The enhanced image is shown on the right.

also depends on the noise level in the image [22]. Figure 6.7 shows an example of
chromosomal banding pattern enhancement using this approach.

6.5 Colorimage Enhancement

Color image processing in microscopy applications usually deals with the
tricolor images acquired with modern color imaging devices. This topic is
discussed in more detail in Chapter 13, which addresses the more general subject
of multispectral image processing. Among many color coordinate systems, the
RGB and HSI are two commonly used formats. The RGB format is most
straightforward because it deals directly with the red, green, and blue images
that are closely associated with the human visual system. The HSI (hue, satur-
ation, intensity) format [21] is a system popularly used among artists. Hue and
saturation can best be described by the use of a color circle [8]. The hue of a color
refers to the spectral wavelength that it most closely matches. The saturation is
the radius of the point from the origin of the color circle and represents
the purity of the color. The RGB and HSI formats can be easily converted
from one to the other [8]. One can also convert a color image to a monochrome
image by averaging the RGB components together, which discards all
chrominance information during the conversion.

When processing the components of a color image, one must exercise caution
to avoid changing the color balance improperly. Essentially all of the image
enhancement techniques discussed previously can be applied to the intensity
component of an image in HSI format, since this component encodes contrast
and edge information. The color information, on the other hand, is encoded in
the hue and saturation components of the image. Enhancement of these color
components should be approached with great caution because they are likely to
upset the color balance.
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6.5 Color Image Enhancement

6.5.1 Pseuvdo-Color Transformations

A pseudo-color image transformation involves a mapping from a single-channel
(monochrome) image to a three-channel (color) image. It is used primarily as a
display technique to aid human visualization and interpretation of grayscale
images, since humans can discern the combinations of hue, saturation, and
intensity much better than shades of gray alone. The technique of intensity slicing
and color coding is a simple example of pseudo-color image processing. If an image
is interpreted as a 3-D terrain model, this method can be viewed as one of
painting each elevation with a different color. Pseudo-color techniques are useful
for projecting multispectral image data down to three channels for display
purposes.

6.5.2 Colorimage Smoothing

The difference between color and gray-level image smoothing is that for color
processing the smoothing is performed in each of the three RGB channels using
conventional grayscale neighborhood processing [17], as shown in Eq. 6.38,
where Sy, denotes the neighborhood of a pixel at (x, y). Equivalently, if the
HSI color format is used, one need apply the smoothing operation only to the
intensity image:

Z fR(X, y) ]

(X, y)esxy

> falx ) (6.38)

(x, ) €Sy

Z fB<x’ y)

(X, }') S Sxy

Je(x, y) =

z|— = =~

6.5.3 Colorimage Sharpening

Similar to the gray-level counterpart, color image sharpening is accomplished by
extracting and accentuating edge information of an image. The Laplacian
operator provides an example. For a three-component color vector f.(x, y) =
(fr(x, ), fo(x, ), f3(x, »)"), the Laplacian of a vector is defined as a vector
whose components are equal to the Laplacian of each of the individual scalar
components of the input vector. Specifically, the Laplacian of the vector f.(x, y)
is given by

), vsz(X, y)
Vife(x, ») = | Vife(x, y) (6.39)
v2fB<X, y)
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FIGURE 6.8 The right image is the result of applying color image sharpening to the left image.
This figure may be seen in color in the four-color insert.

which means that one can compute the Laplacian of an RGB color image by
simply computing the Laplacian of each component image separately [17].
Likewise, applying the Laplacian operator only to the intensity component of
the image under the HSI format accomplishes the same objective. Figure 6.8
shows an example of applying a Sobel edge enhancement operator to the RGB
channels of a color image for sharpening.

6.6 Summaryof Important Points

1.

76

Image enhancement is the process of enhancing the appearance of an
image or a subset of the image for better contrast or visualization of
image features and to facilitate more accurate subsequent image analysis.

Image enhancement can be achieved using computational methods either
in the spatial domain or in the transform domain.

. The spatial domain methods accomplish image enhancement using

either global operations on the whole image or local operations on
a neighborhood region of each pixel.

The operations used to increase contrast in the image include contrast
stretching, clipping and thresholding, image subtraction and averaging,
and histogram equalization and specification.

The operations used to sharpen image features and reduce noise include
spatial bandpass filtering, directional and steerable filtering, and median
filtering.

If image noise is a random stationary process, variants of the Wiener
filter can be used to reduce the noise effectively.
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Wavelet Image Processing

Hyohoon Choi and Alan C. Bovik

7.1 Introduction

Multiresolution image representations using wavelet transforms have become
quite popular in recent years, owing to their effectiveness in a very broad array
of applications [1]. In essence, wavelets made it possible to formalize the general
concept of multiresolution processing that was being used, for example, in the
computer vision field to enable to detection, analysis, and recognition of image
features and objects over varying ranges of scales. Such important image pro-
cessing tasks as segmentation require that the image be analyzed over neighbor-
hoods of varying sizes in order to capture salient image features and properties
that occur at different scales.

The concept of multiresolution wavelets first emerged about two decades ago
in the signal processing subfield known as filter bank or sub-band filter theory.
At about the same time came the introduction and development of the continu-
ous wavelet transform (CWT) in applied mathematics. Discrete signal transforms
that derive from a unification of these approaches have collectively become
known as discrete wavelet transforms (DWTs). Today, in an amazing variety
of image processing applications, the discrete wavelet transform has become
the indispensable formal mathematical tool for creating and manipulating
multiresolution representations [2].

This chapter introduces the basic concepts and properties of wavelet trans-
forms. It begins with a review of the basic tools of linear transformations and the
classical Fourier transform. This is followed by a discussion of the important
relationships between the CWT, DWT, multiresolution processing, and filter
Microscope Image Processing
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7 Wavelet Image Processing

banks. We also discuss a number of topics, such as compactly supported wavelets,
biorthogonal wavelets, and wavelet lifting schemes, because they are useful in
applications. The concepts are first introduced in the context of one-dimensional
(1-D) signals and then extended to two-dimensional (2-D) signals and images.

Z.1.1 Linear Transformations

Linear system theory plays an important role in wavelet theory. A signal or
function f(x) can often be better described, analyzed, or compressed if it is
transformed into another domain using a linear transform such as the Fourier
transform or a wavelet transform [3]. A signal f(x) can be expressed as a linear
combination of a set of basis functions:

J) =" cith(x) (7.1)

J

where j is an integer index, ¢; are expansion coefficients, and {i;(x)} form a basis
if the coefficients are unique for every signal. If the basis functions are ortho-
normal

(O 0) = [ oo = { 0 (7.2)

then the coefficients are expressed as inner products of the signal with the
corresponding basis function,

¢ = (S0, ¥(x)) = Jf () (x)dx (7.3)

Thus, in orthonormal linear transformations, signals are decomposed, as in
Eq. 7.3, and reconstructed, as in Eq. 7.1, using the same set of basis functions.

If there exists a set of functions i, (x) that are linearly independent and not
orthonormal but are orthonormal with respect to another set of basis functions

lr,/j(x)
(%), P(x)) = 8(j — k) (7.4)

then these two sets of functions form the basis for a biorthogonal transformation.
In biorthogonal transformations, one set of functions is used for the decomposition
and the other for reconstruction.

Linear transformations of discrete signals can be expressed in linear alge-
braic forms, where the signals are considered as vectors and the transformations
as matrix—vector multiplications. The sampled signal, f(x), can be written as
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an N x 1 column vector, f. The discrete linear transformation of f can be
expressed as

N-1
¢ = Efklﬂj,k or c=\"f (7.5)
k=0

where ¥ i1s an N x N kernel matrix and ¢ is an N x 1 vector of transform
coefficients. Each row of the kernel matrix is a basis vector, and the rows are
orthonormal:

P = | (7.6)

where ¢ indicates the transpose. The vector f is reconstructed using the same set
of basis functions by

f=We (7.7)

that is, by summing the basis functions, which are weighted in amplitude by the
coefficients.

There are many useful linear transformations that map an N x 1 vector to
another N x 1 vector using N x N kernel matrices. The Fourier transform is
a classic example of such a linear transformation, where the orthonormal basis is
composed of sinusoidal functions.

7.1.2 Shori-Time Fourier Transform
and Wavelet Transform

The Fourier series representation of a 27r-periodic function is defined as

f) =) ce™ (7.8)

n=—oo

where i = v/ —1 and the Fourier coefficients ¢, are given by
1 .
Cp=—=— Jf(x)e_’”xdx (7.9)
2

A Fourier series decomposes a periodic signal into sinusoidal components by
using a complex sinusoidal basis. It is useful to observe that the frequency
components in Eq. 7.9 are generated by scaling, that is, by expanding or
shrinking, the same basis function along the x-axis. This is a theme that is
explored later in the context of the wavelet transform. The Fourier series and
Fourier transform are the cornerstones of classic linear system theory, and they
remain as powerful tools for signal and image analysis. Yet it has long been
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recognized that classical Fourier theory has limited utility as a tool for analyzing
local, transient, and time-varying signal properties.

Conceptually, each coefficient of a linear transformation can be regarded as
a measure of the degree of similarity between the input signal and that particular
basis function [5]. Thus, if a signal is composed of a few sinusoids, then all but
a few the Fourier coefficients will be zero. Therefore the signal can be compactly
represented by a few nonzero coefficients. In this way a highly efficient (highly
compressed) representation is achieved. However, digital images, such as those
taken through a microscope, contain a great diversity of structures that exhibit,
for example, sharp localization (e.g., abrupt edges and lines), spatial transience
(noise or artifacts), and nonstationarity (many textures). The classical Fourier
basis functions resemble such components poorly and thus are not effective in
compressing and analyzing signals and images containing such components.

Moreover, the Fourier bases are eternally oscillating functions, and hence
they are difficult to adapt for analyzing local temporal or spatial phenomena
in signals or images. One solution to this problem is to employ a window.
The local frequency components of that portion of the signal located around
b, as isolated by a window function g(x —b), are analyzed. The window is
translated by b to enable localized Fourier analysis over all of space or time.
This approach, called the short-time Fourier transform (STFT), was first devel-
oped by Gabor [6], who used Gaussian functions as windows. The STFT yields
a two-dimensional (time—frequency) or four-dimensional (space—frequency) rep-
resentation of one-dimensional temporal signals or two-dimensional spatial
signals, respectively.

The choice of window size in the STFT determines the time—frequency
resolutions that are obtained. Using a small window yields good time resolution
but poor frequency resolution, and vice versa. For analyzing slowly varying
components, such as low-frequency components or large image structures,
a large window should be used, while a small window is better suited for
analyzing short-duration transient components. A limitation of the STFT is
that it uses a fixed-size window for a given signal. The ability to use multiple
windows with variable sizes or scales is the basic conceptualization of
multiresolution (or multiscale) signal and image analysis.

In order optimally to represent and analyze signals and images containing
transient and time-varying components, new classes of basis functions have been
developed that are localized simultaneously in time (or space) and frequency.
Many of these have the appearance of short-duration waves or tapered sinu-
soids, hence the term wavelets. Wavelets that satisfy certain admissibility
conditions may be used to define wavelet transforms, as will be shown shortly.
The basis functions of wavelet transforms have an infinite variety of shapes,
unlike those of the Fourier transform, which take a specific form. Figure 7.1
depicts examples of wavelet basis functions.
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N

FIGURE 7.1 Examples of wavelets.

7.2 Wavelet Transforms

First we define some notation that is used in this chapter. Let R and Z denote
the set of integers and real numbers, respectively. Further, let L?>(R) denote the
vector space of all real one-dimensional square-integrable functions having
finite energy; e.g., ' € L? means

“ f(x)‘zdx < +oo

7.2.1 Continvuous Wavelet Transform

The one-dimensional continuous wavelet transform (CWT), also called integral
wavelet transform, was introduced by Grossman and Morlet [7]. The CWT maps
a function of a single continuous variable to a function of two continuous
variables using wavelets (x). If {(x) satisfies the admissibility condition

00 2
- [ e

o o]

do < 0 (7.10)

then y«(x) is called a basic wavelet (also called mother wavelet), where W(w) is the
Fourier transform of ¢«(x). Note that C,, is finite only if ¥(0) = 0, that is,

JOO P(x)dx =0 (7.11)

The so-called first-generation wavelet basis functions are generated by scaling
and translating the basic wavelet:

1 x—>b
=— 7.12
st = J(*57) (1.12)
where ¢ > 0 and b are real numbers. The factor 1/y/a is used to maintain
the norm. The variables a and b specify scaling and translation, respectively.

For small a, i, ,(x) is narrow (high frequency); for large a, ¢, ,(x) is broad
(low frequency). Then the CWT of f(x) is [8]
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Wy b)= | 1 (.13)

This representation provides the time—frequency localization, but the representa-
tion is highly redundant or overcomplete. Note that as the wavelet becomes
broader, the time resolution becomes worse while the frequency resolution im-
proves. Conversely, as the wavelet becomes narrower, the time resolution improves
but the results of frequency analysis become less certain. Discretization of a, b
and special choices of (x) lead to wavelet orthonormal bases, or wavelet series
expansions.

7.2.2 Wavelet Series Expansion

The wavelet series expansion is analogous to the Fourier series, in that both
methods represent continuous-time signals with a series of discrete coefficients.
A set of basis functions is formed by scaling and translating the basic wavelet,
(x), but the scaling and translation takes only discrete values.

A set of wavelet basis functions that constitute an orthonormal basis for
L*(R) is given by

Pp(x)=2Pp2x—k), jkeZ (7.14)

Observe that (2x — k) is obtained from a basic wavelet (x) by a binary
dilation by a factor 2/, that is, by shrinking it by factor that is a power of 2,
and a dyadic translation by k/2/. The dyadic translation is a shift by the amount
of the width of the wavelet, which is proportional to 2. Thus, high-frequency
wavelets are translated by small steps, whereas low-frequency wavelets translate
by larger steps [2].

In order for ¢; ;(x) to be an orthonormal basis, it must satisfy

(W10, 1,,,(x)) = 8(J — Dk — m) (7.15)

where 8(-) is the Kronecker delta function. Any function f € L*(R) can then be
expressed

S = D ) (7.16)

Jok =—00

where ¢; i are the wavelet coefficients and are computed by

= (S U40) = | Fna0 (7.17)
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1 4,J

FIGURE 7.2 Haar wavelets ¢; i(x). The oldest orthonormal wavelet basis. Index j is the scale and kis the
translation.

Equations 7.17 and 7.16 are called the analysis and synthesis formulae,
respectively. These terms are used because the forward expansion coefficients
are useful for analyzing the signal or image in some tasks, while the reverse
formula synthesizes the signal from the coefficients.

7.2.3 Haar Wavelet Functions

The oldest example of an orthonormal wavelet basis is the Haar function,

1
1 0 =x< 7
= 1 7.18
L S=x<l (7-18)
0 otherwise

The Haar function can constitute an orthonormal basis for L>(R) by iteratively
dilating (or narrowing) and translating the basis function. Note that it has
compact support in time but 1/w decay in frequency, and thus it has good
time localization but poor frequency localization. Figure 7.2 shows the Haar
wavelets, ¢; ;(x). As defined in Eq. 7.14, the basic wavelet is narrowed iteratively
by a factor of 2 and translated by its width at any given scale j. It is easy to see
from the figure that the basis functions are orthogonal to each other, since there
is no nonzero overlap among them.

7.3 Multiresolution Analysis

The preceding section developed the basic idea of wavelets. This section
discusses how multiresolution fits into the wavelet framework. Multiresolution
analysis is a powerful tool that enables improved performance in a variety of
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computer vision and image processing applications, such as image segmenta-
tion, object recognition, compression, and noise reduction. The concept of
multiresolution also provides a solid mathematical framework for forming
interpretations of wavelet bases.

7.3.1 Multiresolution and Scaling
Function

In a multiresolution analysis, a signal /() is decomposed into an “approximation”
and “residual details™ at a given resolution. The approximation is further decom-
posed into another approximation and residual details at a smaller resolution
[1] (see Fig. 7.3). This process is iterated toward successively finer resolutions.

The vector space that contains the set of all possible approximations of f(x),
at the resolution j, is denoted as ¥, which is a subspace of L*(R), or V; C L*(R).
At different resolutions, the spaces are nested as V; C Vj; forallj € Z,

.cVacVycvicVyC---CL? (7.19)

with V., = L*(R) and V_., = {0}. If an approximation function ¢(x) is in V;,
then the scaled approximation function, ¢(2x), is in V4, and, by Eq. 7.19,
¢(x) € Vjy1. This means that all lower-resolution spaces are scaled versions of
a higher-resolution space and can be derived from it.

The approximation function ¢(x) is called a scaling function, and the set of
scaling functions obtained by binary dilations and dyadic translations is an
orthonormal basis for the subspace:

b1 (x) = 2Pp(2x — k) (7.20)

is an orthonormal basis of V.
The differences between the spaces V; and V. are denoted as W, [3]. Thus
the space V. is composed of V; (approximations) and W; (details):

Vin=V,eWw, el (7.21)

FIGURE 7.3 Multiresolution representation of the vector space (after [3]).
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Figure 7.3 illustrates the nesting space of L?>. While the set of scaling
functions ¢; ,(x) is the basis for V;, the set of wavelet functions i; ;(x) discussed
earlier is the basis for ;. The subspaces V'; and W; are orthogonal to each other,
and the intersection of the subspaces V; is the null space {0}. Thus the basis
functions in both spaces should be orthogonal,

<¢j,k(x),¢k,l<x>>=J¢>_,~,k(x)¢k,z(x)dx=o, ikleZ (122

The entire space can be written as

P=ViaWoaW eW, & (7.23)
or it can be written without the scaling space at j = —oo
L=--aoWooW  eWoW oW o (7.24)

which is the expansion using the wavelet basis as in Eq. 7.17.

7.3.2 Scaling Functions and Wavelets

Using the multiresolution structure, a scaling function ¢(x) in ¥}, which is also
in V7, can be expressed in terms of the basis in V:

$(x) = Z ho(m)y,,(x) (7.25)
where
) = (G)f1,(0) and 3 [ha(o =1 (7.26)
Equation 7.25 can be rewritten
d(x) =V2 ze; ho(n)p(2x — n) (7.27)

where the coefficients /y(n) are the scaling function coefficients.
The same idea can be applied to the wavelet function (x) € Wy C Wy,
where ¢/(x) can also be expressed in terms of the basis in V;:

W) =D hin)d ,(x) (7.28)
which can be rewritten as
Px) = V2 hmb(2x —n) (7.29)
nez
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Equations 7.27 and 7.29 suggest that one can construct all of the scaling
functions and wavelets starting from only one scaling function.

A scaling function is an approximation function, which means that the
scaling functions are useful for analyzing general trends in the signal, whereas
the details in the signal are analyzed using the wavelets. Thus, any low-pass filter
that satisfies certain conditions can become a scaling function. The simplest
scaling function is the Haar scaling function,

)1 fo<x<l
) = { 0 otherwise

whose filter coefficients are ho(n) = [1/ V2,1 / V2], which is an average filter.
Due to the orthogonality between the wavelet and the scaling functions, /;(#)
and hg(n) are related as

hi(n) = (=1)"ho(1 — n) (7.30)

The wavelet satisfying conditions Eq. 7.29 and Eq. 7.30, using the Haar scaling
function, is the Haar wavelet shown in Eq. 7.18 and Fig. 7.2, whose filter

coefficients are /1;(n) = [1/v/2, — 1/+/2], which is a differential (differencing)
filter. While the Haar scaling filter is a low-pass filter, the Haar wavelet filter is
a high-pass filter. For a finite even-length /(n), hy(n) = (—1)"ho(N — n), where
N is an odd number; i.c., the high-pass filter /2, is found by reversing the order
and alternating the signs of the low-pass filter /.

7.4 Discrete Wavelet Transform

This section examines how this multiresolution analysis structure can be used to
formulate the discrete wavelet transform (DWT).

7.4.1 Decomposition

At resolution j, Eq. 7.27 can be written

2x — k)= ho(m)V2p(2 " x = 2k — n) (7.31)

After a change of variables m = 2k + n, Eq. 7.31 becomes
¢2x — k) =" ho(m — 2)V2$(2 x — m) (7.32)

m
Similarly, Eq. 7.29 can be expressed at resolution j as
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W@x—k) =Y h(m - 2k)V2$(2 x — m) (7.33)

Using the multiresolution space defined in Eq. 7.23, a function, f(x), can be
expressed

F0) =3 @b — )+ 3 Y d2y@x — k) (134)
k k

=0

where ¢(k) are the approximation coefficients at resolution j = 0 and d;(k) are
the details at resolution j = 0. That is, any signal in L? can be constructed,
starting from its coarse approximation, by progressively adding the finer details.

Itis also convenient to represent the signal f(x) starting from a high resolution,
say, j+ 1, as

S =) 2022  x — k) (7.35)
k

At one-scale-lower resolution, using Eq. 7.21, ¢j;1(k) is decomposed into an
approximation and detail as

J) =2 @ x — k) + > di(k)2 (2 x — k) (7.36)
k

k

and ¢;j(k) can be further iteratively decomposed. The approximation coefficient
¢; s expressed by the inner product,

¢j(k) = ( f(x).; () = Jf(x)?/ (2 x — k)dx (7.37)
By taking the inner products of f(x) with both sides of Eq. 7.32, we obtain
(f(x).) 4 (%)) = Em: ho(m — 2k)(f (x),;1(x)) (7.38)
which is
ci(k) =Y ho(m — 2k)c;i1(m) (7.39)

Similarly, d; can be written as

dik) = 3" hi(m — 2Kk)¢; 1 (m) (7.40)

Equations 7.39 and 7.40 tell us that it is not necessary to know the scaling
functions and wavelets in order to compute the approximations and details,
provided that /y(n) and /;(n) are given.
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Now denote x(n) as the output of a convolution between a filter A(n) and
civ1(n):

x(n) = 3 hom = me 1 0m)
Then the down-sampled (by a factor of 2) version of x(n) is
x(2n) =Y h(m — 2n)c;41(m).

Equations 7.39 and 7.40 mean that the scaling and wavelet coefficients are
computed by the convolution with finite-length discrete filters or finite-impulse
response (FIR) filters, Ay(n) and hy(n), and followed by down-sampling by
a factor of 2 (retaining only the even-indexed samples).

Figure 7.4 shows the decomposition (or analysis) procedure, or the forward
discrete wavelet transform. The low-pass filtered and down-sampled signal, ¢;, is
further decomposed into an approximation and a detail. This process repeats on
the approximation coefficients, producing one coarse approximation and details
at each decomposition level. For example, ¢;;| can be represented by ¢;_», d;j_»,
d;_1, and d; when a three-level decomposition is performed.

It is interesting to observe how the multiresolution analysis divides the
frequency domain. The frequency responses of the analysis filters /y(n) and
hi(n) can be computed using the discrete-time Fourier transform (DTFT),
given by

H(w)= Y he ™" (7.41)
where i = v/—1 and n € Z. This transforms a discrete function A(n) to the 27-
periodic continuous representation H(w). The frequency responses of the an-
alysis filters are shown in Fig. 7.5. The convolution processes in Eqs. 7.39 and
7.40 imply products between the frequency components of ¢ and Ho(w) and
Hi(w), which divides ¢;j;; into low- and high-frequency components, or fre-
quency bands. The low-frequency component, ¢;, is further decomposed into
low-low- (V;_1) and low-high- (W;_) frequency components, where the low-low
component is computed by convolving ¢;y; twice with /h(n) and the low-
high component is convolved with /() and then once with /;(n). Thus the

Cj+1(N) ho(-n) v2 > gn) ho(-n) v2 > ciyn) -

hy(-n) V2 — dn) hy(-n) v2 > d )

FIGURE 7.4 Forward discrete wavelet transform.
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A |Ho(@)| |Hi@)]

0 /4 /2 T

FIGURE 7.5 Frequency responses of the analysis filters, and spectrum division by multiresolution
analysis.

details (high-frequency components) are computed by convolving ¢;, 1 with /ip(n)
multiple times and then once with /;(n). Since large structures are composed of
low-frequency components, dividing the spectrum into subbands actually sep-
arates different scaling components in the signal. The concept of spectrum
division greatly facilitates understanding of filter banks.

In practice, signals and images are recorded in discrete and finite form.
At each decomposition, the number of coefficients in ¢;(n) becomes half the
number of samples in ¢;;1(n). Thus, the decomposition can repeat until only one
approximation coefficient is left. The maximum number of decomposition is
J when the number of samples in ¢;;1(n) is N = 27. Obviously, the decompo-
sition begins at the finest level. Starting from the coarsest approximation, we can
iteratively add finer details. But there also is a limit beyond which no more fine
detail is available using the discrete representation. The computational com-
plexity of the DWT is O(N) for a signal of length N, given that the filter length is
negligible.

7.4.2 Reconstruction

The reconstruction of ¢;41 can be done by reversing the decomposition process.
By taking inner products on both sides of Eq. 7.36 with ¢, ;, we get

(L)1) = D Db p) T D AW echjir 1) (7.42)

m

which can be rewritten after using Eq. 7.32 and Eq. 7.33,

1) =" cim)ho(k — 2m) + > dim)hi(k — 2m) (7.43)

Equation 7.43 implies that ¢; and d; are first up-sampled by a factor of 2
(inserting zeros at every odd index) and then filtered with Ay(n) and /;(n), and
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egy(n) —> 42 > Go(n) ¢ —>42 > 9on) Cj+1(n)

dica(n) —» 42 > 091(n) di(n)—> 42 > )

FIGURE 7.6 Inverse discrete wavelet transform.

the results are then added to reconstruct c;;. Figure 7.6 illustrates this recon-
struction (synthesis) procedure, or the inverse DWT.

As is seen from Eq. 7.43, the same digital filters used in the analysis are used
for the synthesis, since we have defined orthonormal scaling and wavelet func-
tions. This type of transformation is known as an orthogonal (or, more specif-
ically, orthonormal) discrete wavelet transform. If the analysis and synthesis
filters are different but the transform is invertible, then the transform is known
as a biorthogonal wavelet transform, as explained later in this chapter. Due
to this orthonormality, go(n) = hy(—n) and g(n) = h;(—n), and h;(n) can be
expressed in terms of /y(n), as shown in Eq. 7.30. Thus, a carefully designed
low-pass filter, /(n), is what is needed to compute the orthogonal discrete
wavelet transform [5]. The computational procedure defined in this section
and shown in Figs. 7.5 and 7.6 is known as Mallat’s algorithm [1].

7.4.3 Filter Banks

The structure of multiresolution analysis is closely related to filter bank theory
and subband coding [4, 9, 10, 11, 19]. In subband coding, the input signal f(#n),
a sequence of samples, is decomposed into M subbands by convolving the signal
with a set of M bandpass filters, followed by down-sampling each result by
a factor of M. The down-sampled subband signals represent the input data
without redundancy, which means that the total number of coefficients in the
transform domain is equal to the number of input samples. Each subband
contains different frequency components or, equivalently, different scale com-
ponents [12]. To reconstruct the original signal, the subband signals are up-
sampled and convolved with a set of filters, and the resulting signals are then
added together. The analysis and synthesis filters are specifically designed to
recover the original signal without error.

7.4.3.1 Two-Channel Subband Coding

In a two-channel subband coding scheme, the signal is filtered by one low-pass
and one high-pass filter and down-sampled by a factor of 2, which is identical to
the one-level decomposition in the DWT. Figure 7.7 is a schematic diagram of
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f(n) ho(n) V2 > cn)— t2 9o(n) f(n)

hy(n) v 2 > don) —> *2 9,(n)

FIGURE 7.7 Two<channelfilter bank. The analysis filters, ho(n) and h (n), are the low-pass and high-pass
filters, respectively.

a two-channel filter bank. The DWT is achieved by repeating the decomposition
on the low-pass filtered result using a two-channel filter bank.

Subband coding was originally developed for compressing digital audio
signals [9, 10]. Using a set of bandpass filters, an audio signal would be decom-
posed into multiple spectral bands. If the filters were designed to resemble
important features in the signal, then the coefficients in the subbands would
have a compact representation, resulting in effective coding. Furthermore, those
frequency bands to which the human ear is more sensitive can be coded with
more bits, while less salient bands could be discarded.

If we want the transform to be invertible using two channels, then ideally
the spectrum might be split at the mid-frequency point, without a gap. However,
the ideal ““brick wall”’ low-pass and high-pass filters yield poor time localization,
since their impulse responses are of infinite extent. To achieve good temporal
localization, the frequency responses of the filters must be smooth if the filter
impulse responses are to be of finite extent. This introduces spectral overlap
between the filters, or subband aliasing. This aliasing can be canceled during the
reconstruction stage, as discussed next.

7.4.3.2 Orthogonal Filter Design

To find the conditions on these filters for alias canceling and perfect reconstruc-
tion, z-notation is convenient. The z-transform of a sequence x(#) is defined as
X(z) =Y, x(n)z™", where z = ™.
When a sequence x(n) is down-sampled by a factor of 2, the z-transform of
v(n) = x(2n) is written as [13]
V() = LX)+ X2 (7.44)

If v(n) is up-sampled by a factor of 2, u(n) = v(2n) has a z-transform

U(z) = %[X(Z) + X(—2)] (7.45)
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Thus, the decomposition results cy(n) and dy(n) in Fig. 7.7 can be rewritten

Co2) = [HoPYFG) + Ho(—2)F(—2/2)]
% (7.46)
mwzgﬂmﬂww%+meﬂwvﬂw

The reconstruction process should return the original signal perfectly up to
a delay: f(n) = f(n — [) or F(z) = z~'F(2). The reconstructed signal () is

F(z) = Co(z9)Go(2) + Do(zH)Gi(2) (7.47)
which can be expanded as
FE) = [HGGo(2) + FiGEIFE) + - [Ho(—2)Gof)
+ Hi(~2)G1(2)]F(z)

(7.48)

Perfect reconstruction using a two-channel filter bank is obtained when the
filters satisfy

Ho(2)Go(2) + Hi(2)Gi(2) = 227 (7.49)
Hy(—2)Go(2) + Hi(—2)G1(2) = 0 (7.50)

Since F(—z) is the aliased version of the input signal, Eq. 7.50 is the necessary
condition for removing the aliasing. One solution to remove aliasing, proposed
by Esteban and Galand [16] is

H\(2) = Ho(—2),
Go(2) = Ho(2), (7.51)
Gi(z) = —H\(2) = —Ho(-2).

This solution obviously satisfies Eq. 7.50, and substituting the solution into
Eq. 7.49 gives

Hi(z) — Hi(—z) = 227! (7.52)

Since H|(z) is the mirrored version of Hy(z) with respect to w = 7r/2 and both
filters are squared, the filters satisfying Eq. 7.51 are called quadrature mirror
filters (QMFs). There exist no FIR filters that satisfy condition Eq. 7.52 exactly
except for the Haar filter. However, there are many ways to design QMFs that
make the reconstructed signal approximate the input closely [2].
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Another solution, known as conjugate quadrature filters (CQFs) [10], is
Hi(z) =z 'Ho(—z ")
Go(z) = Ho(=™") (7.53)
Gi(z) = Hi(z"") = zHo(~2)

which implements the orthogonal FIR filters. Again, using Eq. 7.53, the alias
term, Eq. 7.50, becomes zero, and the distortion term, Eq. 7.49, becomes

Hy(2)Ho(z™") + Hy(—2)Hy(—z"") = 227/ (7.54)

Since the filters have real values, using H(e/®) = H(e™/®), Eq. 7.54 can be
written as

|Ho(e)|” + |Ho(—e™)'= |Ho()|” + |Ho(w +m)['=2  (7.55)

In this case, there do exist filters /y(n) that satisfy Eq. 7.55, and thus perfect
reconstruction can be realized using two-channel filter banks. It is apparent
from Eq. 7.53 that hy(n) = (—1)"ho(1 — n), since H(z~') implies time reversal
h(—n), while H(—z) implies sign alternation (—1)"i(n). The orthogonal wavelet
transform is achieved using these orthogonal FIR filters. Therefore, the orthog-
onal wavelet transform only requires the design of the scaling vector, /y(n),
having compact support (a small number of nonzero coefficients), and all other
filters are then derived from it. For example, if ho(n) =|[a, b, ¢, d], then
hi(n)=1d, —c, b, —a], go(n) =1[d, ¢, b, a], and g\(n) = [—a, b, —c¢, d].

7.4.4 Compact Support

A function has compact support if it is nonzero over only a small region of its
range. Representing an image or a signal with a small number of large coeffi-
cients is important not only for data compression but also for noise removal [14].
At certain locations, such as singularities in a signal or lines or edges in an image,
using widely supported wavelet filters will generate many coefficients of various
magnitudes. In order to achieve a local representation of the signal, using an
efficient, small number of large-magnitude coefficients, the support size (non-
zero portion) of the basis functions should be small. Thus, compact support is
important for achieving efficient representations while providing time or space
localization and faster computation.

Daubechies constructed orthonormal wavelets having a minimum support
size given the number of vanishing moments [15]. A wavelet function s(x) has M
vanishing moments if

J *fy(x)dx =0, forO=k<M (7.56)

—0oQ
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The orthonormal wavelets, s, are constructed starting with the 2m-periodic
function H(w), which is the frequency response of

h(n) = V2 Jqs(x)qs(zx — n)dx (7.57)

If ¢ has compact support, then /(n) has a finite number of nonzero moments. By
Egs. 7.29 and 7.30, ¢ also has compact support. The orthogonality of A(n)
implies that H(w) should satisfy Eq. 7.55.

The number of vanishing moments is related to the regularity, which de-
scribes the smoothness of ¢» and . The regularity is defined by the factorization
of H(w) as a trigonometric polynomial,

N
H(w) = V2 (1 +Zej ) R(w) (7.58)

which means that H(w) has M zeros at w = 7. By the orthogonality of ¢ and ¢,
it also follows that G(w) has M zeros at w = 0. It was proved [2] that given M
vanishing moments, /(n) has at least N nonzero coefficients, where N = 2M.
Daubechies’ orthonormal wavelet filters have the minimum support size of 2M
[2, 15]. Interestingly, when M = 1, the Haar wavelet is the solution for the
Daubechies wavelet system.

The smoothness of the wavelet function greatly affects the visual quality of
a reconstructed image. When the wavelet coefficients are processed in some
manner that produces loss or error of coefficients, such as thresholding or
quantization, then the reconstructed image will differ from the original image.
The differences are usually less noticeable when the images are processed with
continuously differentiable wavelets rather than with discontinuous wavelets,
such as Haar wavelets [14].

Table 7.1 shows the Daubechies scaling function coefficients for M =2, 3, 5,
and 9. Their corresponding scaling and wavelet functions are shown in Fig. 7.8.
Notice that the regularity increases as the support size increases.

7.4.5 Biorthogonal Wavelet Transforms

For orthonormal wavelets, the analysis filters and synthesis filters are basically
the same, except they are time-reversed versions of each other. Requiring
orthogonality greatly limits the degrees of freedom, often resulting in compli-
cated design equations and preventing linear phase analysis [3]. Except for Haar
wavelets, linear phase (or even complete symmetry) is not achievable using
compactly supported orthonormal wavelets. However, by using two different
wavelet basis sets, i; ;(x) and &j,k(x), satisfying
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TABLE 7.1 Coefficients of Daubechies scaling function hy(n) for M= 2, 3, 5 and 9

n M=2 M=3 M=5 M=9
0 0.48296 0.33267 0.16010 0.03808
1 0.83652 0.80689 0.60383 0.24383
2 0.22414 0.45988 0.72431 0.60482
3 —0.12941 —0.13501 0.13843 0.65729
4 —0.08544 —0.24229 0.13320
5 0.03523 —0.03224 —0.29327
6 0.07757 —0.09684
7 —0.00624 0.14854
8 —0.01258 0.03073
9 0.00333 —0.06763
10 0.00025
11 0.02236
12 —0.00472
13 —0.00428
14 0.00185
15 0.00023
16 —0.00025
17 0.00004
(W k(X)) = 8(j — DOk — m) (7.59)

it is possible to obtain symmetrical wavelet representations or linear phase with
compact support [17]. These wavelets are called biorthogonal wavelets.
Biorthogonal expansions can be expressed as

S = W10, SN () = D (0, £ (X)) (%) (7.60)

Jk€EZ Jk€EZ

Thus, either wavelet can be used for the decomposition, given that the other is
used for the reconstruction.

7.4.5.1 Biorthogonal Filter Banks

The two-channel filter banks shown in Fig. 7.7 also implement the biorthogonal
wavelet transform. In this case, we need to choose a pair of low-pass filters, /y(n)
and go(n), and derive high-pass filters from them. Using the multiresolution
definition of the scaling functions, an infinite cascade of low-pass filters
generates two scaling functions,

¢()=V2) hmdQx—n)  and  (x)=V2) gomd2x —n) (7.61)
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FIGURE 7.8 Daubechies’ compactly supported orthonormal scaling functions y(x) and wavelets pp(x)
for vanishing moments M = 2, 3, 5, and 9 [2].
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whose Fourier transforms are

@mzémw%wi%ﬁmwm
and
B(20) = Go(w)P(w) = = ][ Goloo/2H
V2 V2
Perfect reconstruction using analysis and synthesis low-pass filters should satisfy
Go(w)Ho(o) + Go(w + m)Ho(w + ) = 2 (7.62)
where

Go(m) = Ho(m) = 0
Go(0) = > go(m) = V2

Hy(0) =) ho(n) = V2

While the filter lengths must be even in orthogonal systems (or frequency
information is lost at mid-frequencies), the lengths of the low-pass filters can
be either both even or both odd in biorthogonal systems. The high-pass filters
are generated from the low-pass filters as

hi(n) = (=1)"ho(1 —n) ~ and  gi(n) = (=1)"go(1 —n) (7.63)
The wavelets are then defined by

W) = V2> mdQ2x —n) = V2> (=1)"ho(1 — n)p(2x — n)

and

P(x) = V2 gimb2x —n) = V2> (=1)'go(1 — m$(2x — n).

7.4.5.2 Examples of Biorthogonal Wavelets

Designing biorthogonal wavelets requires developing appropriate Ay(7) and go(n)
that have compact support. There are many methods for the design of bior-
thogonal wavelets [11, 17, 18]. Cohen, Daubechies, and Feauveau [17] used
splines as scaling functions to construct biorthogonal wavelets. Their family of
biorthogonal wavelets is probably the most widely used biorthogonal wavelets[3].
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TABLE 7.2 Cohen-Daubechies—Feauveau 9/7 wavelets

n ho(n) go(n)
0 0.852698679 0.788485616
1,—1 0.377402855 0.418092273
2,-2 —0.110624404 —0.040689417
3,-3 —0.023849465 —0.064538882
4,—4 0.037828845
15 : : : 15
1 il |
05 05 ]
0 0

-1 \ |

-2 -1 0 1 2 3 4

-3
(d)
FIGURE 7.9 Scaling functions and wavelets of Cohen-Daubechies—Feauveau 9/7 biorthogonal wave-

lets. (a) and (c) are analysis scaling function and wavelet, and (b) and (d) are synthesis scaling function and
wavelet, respectively.

For example, one family of biorthogonal wavelets, known as the Cohen—
Daubechies—Feauveau 9/7 wavelets, is used in the FBI fingerprint compression
standard and in the JPEG 2000 image compression standard as well. Table 7.2
shows their coefficients and Fig. 7.9 shows their scaling functions and wavelets.
7.4.6 Lifting Schemes

7.4.6.1 Biorthogonal Wavelet Design

There is another method of designing biorthogonal wavelets, called /ifting
schemes [18, 20]. Using lifting, new sets of compactly supported biorthogonal
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wavelets are constructed from a set of biorthogonal wavelets. Unlike traditional
methods, where wavelets are constructed in the frequency domain with the help
of Fourier transform, lifting schemes can build wavelets and scaling functions in
the spatial domain [18]. Lifting also yields a faster implementation of the DWT.

Given an initial set of finite biorthogonal dual filters (/o, /11, go, g1), @ new set
of finite biorthogonal filters (o, /1, go, 1) are constructed with [20]

Hy(w) = Ho(®) + Hi(0)S" 2w) (7.64)
Gi(@) = Gi(®) — Go(@)S(2w) (7.65)

where S(w) is a trigonometric polynomial and * indicates the complex conju-
gate. These equations allow the formulation of the lifting scheme. Given an
initial set of biorthogonal scaling functions and wavelets (¢, ¥, ¢, i) associated
with the filters (Ko, /1, go, g1), @ new set of biorthogonal scaling functions and
wavelets (¢, ¢/, ¢, ') can be found [18]:

P =VI Y hmdx-mt S s (7.6

V) = V3 (! —n) (767
P =)= > s(md(x —n) (7.68)

where s(n) is a finite sequence. These equations allow for the custom design of
biorthogonal wavelets. The number of vanishing moments or the shape of the
wavelets, for example, can be determined by the choice of s(#).

7.4.6.2 Wavelet Transform Using Lifting

Lifting schemes also implement the DWT with less computation than the
standard filter bank implementation. Figure 7.10 shows the forward wavelet
transform using lifting. First the signal is split into even and odd samples (also
called polyphase components) by the lazy wavelet transform. Then the odd
samples are predicted using even samples. This step is called dual lifting. If the
signal is slowly varying, then the even and odd samples are highly correlated;
thus, given one set, predicting the other is reasonably accurate. In dual lifting,
a filter is applied to the even samples and the result is subtracted from the odd
samples. Finally the update stage, called /ifting, ensures that the coarser signal
has the same average value as the original signal.

Figure 7.11 shows the inverse wavelet transform using lifting. First the even
samples are recovered by undoing the update, then the prediction is added to the
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FIGURE 7.10 The forward wavelet transform using lifting. The first step is to split the signal into even and
odd samples by lazy wavelet transform. Then the odd samples are predicted using even samples. Finally the
update stage ensures that the coarser signals have the same average value as the original signal.

Cj—1,2k _ 2
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FIGURE 7.11 The inverse wavelet transform using lifting. First, undoing the update recovers the even
samples, then the prediction is added fo the even samples to recover the odd samples, and finally the original
signal is recovered by merging them.

even samples to recover the odd samples, and finally the original signal is
recovered by merging them.

Lifting provides many benefits. Lifting steps can be calculated in place,
which means prediction and update results at one stage can be replaced with
the results at the next stage, which can be important for memory-limited
systems. Lifting also permits an integer transform by rounding off the result
of the filter (P or U) right before adding or subtracting [21], and the system
remains invertible.

Another method of invertible integer wavelet transform uses modular arith-
metic to fix the dynamic range [22]. For example, if the input is an 8-bit image,
then all the wavelet coefficients are 8 bits as well. However, due to the modular
arithmetic, this method causes the large coefficients to become small, which
complicates analysis of the coefficients.

7.5 Two-Dimensional Discrete
Wavelet Transform
7.5.1 Two-Dimensional Wavelet Bases

The notion of multiresolution with orthogonal subspaces for one-dimensional
signals can be extended easily to two-dimensional signals [14]. The approximation
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subspace for an image at resolution j is denoted V].Z, which is in L*(R?),
and its orthogonal complement subspace is denoted W?>. As with one-dimensional
multiresolution spaces, the sum of the subspaces V2 and W2 forms the

finer approximation space V. f + 15 that 1s,

Vii=View (7.69)

To construct two-dimensional wavelet bases, we first consider the separable
basis, which is obtained by applying the same filters developed for one-
dimensional signals to each dimension separately. In vector spaces, the separable
two-dimensional multiresolution space is defined by the tensor product of
one-dimensional multiresolution spaces,

V:i=Vv,®V; (7.70)
Thus the separable two-dimensional scaling function can be written as

P(x, y) = P(x)b(y) (7.71)

which means that one can compute the two-dimensional approximation coeffi-
cients by convolving the one-dimensional scaling filter /(7) along each dimension
of the image separately.

Using Egs. 7.69 and 7.70, the detail space can be written as

W= Wye W, V) e (W, W) (7.72)

which shows that three wavelets form the orthonormal basis of sz. Thus the
separable two-dimensional orthonormal wavelets are

Pl x, 1) = dP0), P ) =PEW),  P(x, p) = () (7.73)

The family of wavelets in Eq. 7.73 forms the orthonormal basis of W? and thus
of L*(R?). Again, the detail coefficients are computed by convolving /(n) and
h1(n) in each dimension separately.

7.5.2 Forward Transform

The forward transform procedure is shown in Fig. 7.12. At each decomposition,
the approximation coefficients ¢;,i(n, m) are decomposed into one set of ap-
proximation c;(n, m) and three sets of detail coefficients, d (n m), dz(n m), and
d3(n m). In order to compute ¢;(n, m), for example, as shown in Flg 7.12, the
rows of ¢j1(n, m) are convolved with /y(—n) and column-wise down-sampled
(retain every even-numbered column). Then the output is convolved column-
wise with the same filter and down-sampled row-wise. Since the filtering is
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FIGURE 7.12 The decomposition procedure for the two-dimensional DWT. The one-dimensional

analysis filters are used to convolve rows and columns of an image. ¢; is the coarse approximation and
dﬂ, df, and dl3 are the details of ¢, 1.
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FIGURE 7.13 (o) The decomposition of the frequency domain by the two-dimensional discrete wavelet
transform. (b) A typical arrangement of the wavelet coefficients when a three-level decomposition is
performed.

performed horizontally and vertically, the wavelet decomposition emphasizes
oriented frequency components. That is, d]l , a_’/z, and df contain horizontal edge
(vertical high frequencies), vertical edge (horizontal high frequencies), and
diagonal edge information, respectively. Figure 7.13a shows how the frequency
information of ¢; is split by the decomposition. Due to the orthogonality, the
total number of wavelet coefficients is the same as the number of pixels in the
input image. This is called a complete representation. Figure 7.13b shows
a typical arrangement of the wavelet coefficients.
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7.5 Two-Dimensional Discrete Wavelet Transform

FIGURE 7.14 The two-dimensional discrete wavelet transform of an image. The left image is decom-
posed up to two levels.

Figure 7.14 shows an example of the two-dimensional DWT of an image.
Since the sum of all of the coefficients in each detail set is zero, the average value
(which is zero) is adjusted to 128 (medium gray), and the dynamic range is
adjusted to fit the 8-bit grayscale, for ease of visualization. Notice that the detail
coefficients (high-frequency subbands) have large magnitudes near edges and
details in the image and small magnitudes at locations where no prominent high-
frequency features reside. This sparse representation, also known as energy com-
paction, is quite useful for many applications, especially image compression.
Notice also that the edges at different orientations take large values in each
subband. As the image is decomposed, only major, large-scale structures remain.
This multiresolution representation makes it possible to analyze structures that
appear at different scales in a natural way.

7.5.3 Inverse Transform

Reconstruction of the input image is achieved by reversing the decomposition
process. As shown in Fig. 7.15, at each decomposition level the wavelet coeffi-
cients are first up-sampled in columns. Then the rows are convolved with gy or
g1, which are /y(m) and hi(m) in the orthogonal case. The four convolution
outputs are added together in pairs. Then the two resulting outputs are up-
sampled in rows and then the columns are convolved with gy or g;. The sum of
the two outputs yields the finer approximation. By repeating this process for the
number of decomposition levels, the input image ¢;,((n, m) is reconstructed.

7.5.4 Two-Dimensional Biorthogonal
Wavelets

The forward and inverse two-dimensional wavelet transforms using orthogonal
wavelets are easily extended to biorthogonal wavelets. Again, we consider the
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FIGURE 7.15 Reconstruction from the two-dimensional DWT.

separable case. For the forward transform, the biorthogonal wavelets are given
by Eq. 7.73. The dual wavelets for the inverse transform are

Pl =GP, ) =P0S0) ) = PP

7.5.5 Overcomplete Transforms

One of the few drawbacks of the DWT is that the transformation is not invariant
to shifts of position in the input signals or images. That is, the DWT coefficients
of a signal and a shifted version of that signal are different and do not have
a simple relationship between them. Thus, if the coefficients are processed (e.g.,
thresholded for denoising), then different signals are reconstructed for different
amounts of shift. The shift variance of the DWT sometimes causes unwanted
visual artifacts in the neighborhood of discontinuities [23]. A solution to this
problem is the use of an undecimated wavelet transform (UDWT) filter bank or
a redundant DWT [23, 24]. For denoising, all translations of a signal are
estimated, and the resulting signals of the inverse transform after thresholding
are averaged [23]. The forward and inverse DWT filter banks can be modified by
removing the down-sampling and up-sampling operators to achieve UDWT.
Since the number of coefficients computed by UDWT is larger than the size of
the input image, the overcomplete representation is not useful for compression.
However, it has been shown that the UDWT produces superior results for
denoising, as compared to the orthogonal DWT. The benefit comes at the
price of increased computational complexity, which is O(N log, N) for a signal
of length N and is the same as the FFT’s complexity. For an N x M image, the
computational complexity of an overcomplete expansion is O(NM log, (NM)),
while it is only O(NM) for DWT.
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7.6 Examples

Wavelets have been used in countless applications, including many in the field of
biomedical image processing [27]. Using compactly supported wavelets that best
approximate the signal, the DWT provides a high-energy compaction relative to
other, traditional transform-based methods. Along with the energy compaction
property, the statistical properties of wavelet coefficients between scales or
within each subband [1, 28] provide objectively and visually superior results in
many applications, such as image compression, denoising, and image fusion.

7.6.1 Image Compression

Image compression is one of the most successful applications of the DWT. The
operation of a transform-based coder can be summarized in three steps. First an
image is transformed to have a compact representation, then the coefficients are
quantized, and finally the quantization result is entropy coded. The decompo-
sition of an image using the DWT produces three orientation components in
multiple resolutions. Because of the compact representation of the DWT, the
histograms of these detail coefficients have a unique shape, which has a narrow
peak centered at zero and long tails away from zero. When the coefficients are
quantized, many of the small coefficients will be set to zero value, leaving only
a small number of nonzero coefficients to be encoded. This is one of the main
reasons that the wavelet transform is effective for image compression.
Wavelet-compressed images have been decisively shown to produce fewer
visual artifacts at the same bit rate relative to other coding methods. As the
regularity of the wavelets increases, the visible artifacts are reduced, but the
support size increases, which, in turn, reduces compression. It has been shown
that the 9/7 biorthogonal wavelets yield an excellent trade-off between support
size and regularity, and they deliver the best compression performance [14].

7.6.2 Image Enhancement

The quality of images often degrades when, for example, transmitted through
a band-limited channel, compressed, or obtained through a system that has
various types of noise [29]. The compact representation of the wavelet transform
is also useful for denoising. Wavelet shrinkage [25, 26] is a technique for denois-
ing in which detail coefficients smaller than a threshold are set to zero while large
coefficients are unchanged. This nonlinear process is far more effective than
methods based on frequency filtering. Since the large coefficients correspond to
edges, using wavelet shrinkage preserves the sharp edges, while the noise is
reduced. However, thresholding wavelet coefficients often produces undesirable
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artifacts on the reconstructed images. This drawback can be alleviated using
a shift-invariant wavelet transform, such as the undecimated DWT [23].

7.6.3 Extended Depth-of-Field by
Wavelet Image Fusion

Wavelet image fusion is a technique of combining, in the wavelet domain,
information from multiple registered images to form a single image. Image
fusion techniques have been particularly popular in medical imaging, where
different modalities are used to capture different information, and in multi-
spectral imaging for remote sensing. When imaging a specimen that is thicker
than the depth-of-field (DOF) of a microscope, only a portion of the specimen is
in focus at any one time, while other areas are blurred because of the point
spread function. To image the whole specimen, a series of images (optical
sections) are often acquired at different depths. However, since analyzing
a stack of images is difficult, a system with extended DOF is desired. What is
needed is one image that shows the entire specimen in focus. The extended DOF
can be achieved by fusing a stack of images in the wavelet domain.

Large wavelet coefficients correspond to the salient objects in the image.
By taking the maximum-amplitude coefficients at each pixel from multiple
transformed images, the resulting composite image will contain all of the salient
objects collected from all of the images. Another interesting observation is that
the coefficients corresponding to the true signal are highly correlated across
scale, whereas the coefficients corresponding to the noise are less correlated
across scale. An overcomplete representation is best suited for observing this
effect. Based on these ideas, the extended DOF for microscope images is
achieved by wavelet image fusion [30]. An example of this process is shown in
Fig. 7.16. Detailed discussion about extended DOF techniques for microscope
imaging can be found in Chapter 16.

7.7 Summary of Important Points
1. Wavelets are short-duration waves whose spectrum resembles the trans-
fer function of a bandpass filter.

2. A basic wavelet 1s dilated and translated to form a set of basis functions
for the wavelet transform.

3. While the Fourier transform has only sinusoids as basis functions, many
different wavelets can be used as the basic wavelet to form different bases
for the wavelet transform.
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FIGURE 7.16 Extended depth-offield is achieved through a wavelet image fusion technique. Images (a),
(b), and (c) are optical sections taken at different depths, and (d) is the fusion result. Images (a), (b), and (c) have
been deblurred (Chapter 14) prior to the image fusion [30]. This figure may be seen in color in the four-color insert.

4.

10.

The continuous wavelet transform provides time-scale analysis for
a signal. Images are represented as a function of three variables: two
for spatial locations and one for scale.

. Transient components such as lines, edges, or discontinuities are better

represented using wavelets than waves. Thus, in general, the wavelet
transform yields a compact representation or energy compaction of
signals or images.

. The DWT can be computed by iterating two-channel filter banks or by

using lifting schemes.

. The Haar wavelet is the oldest and simplest of orthonormal wavelets.

. Wavelets that are more regular are smoother but have larger support

size than less regular wavelets.

. The two-dimensional DWT can be implemented using two-channel

filter banks with separable filters.

Biorthogonal wavelets yield invertible transforms and perfect recon-
struction.
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11. Nonlinear operations, such as rounding, can be used in lifting, and the
system remains invertible. Lifting also provides a way of constructing
biorthogonal wavelets.
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This chapter presents the main concepts of morphological processing (MP) for
the microscope image analyst. Morphological processing has applications in
such diverse areas of image processing as filtering, segmentation, and pattern
recognition, to both binary and grayscale images. One of the advantages of MP
is its being well suited for discrete image processing, because its operators can be
implemented in digital computers with complete fidelity to their mathematical
definitions. Another advantage of MP is its inherent building block structure,
where complex operators can be created by the composition of a few primitive
operators. Further, each of these primitive operators has an intuitive physical
analogy that greatly aids understanding the effects it can produce in an image.

Although MP is based on strong mathematical concepts, there are only a few
references that describe the MP operators with stress on intuitive concepts or
implementation, presumably because of the risk of weakening the mathematical
formalism. This chapter introduces the most commonly used concepts as they
are applied to real situations in microscopy imaging, with explanations that
appeal to one’s intuition whenever possible. Despite the lack of full details, this
chapter remains true to the underlying mathematical theory. The motivated
reader can investigate the many texts where these details and formalisms are
treated in depth [1-2]. This chapter gives the main mathematical equations and
several algorithms, even though they are not necessarily the ones that produce

Microscope Image Processing
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8 Morphological Image Processing

the most efficient implementations. Source codes of implementations of these
equations are available on the Internet site of the SDC Morphology Toolbox [3].

Despite the power and general applicability of MP operators, few existing
software packages implement a wide range of operators, such as the grayscale
operators that are based on morphological reconstruction. This chapter
illustrates how to solve image analysis problems using a combination of the
primitive MP operators that are implemented. Morphological image processing
is based on probing an image with a structuring element and either filtering or
quantifying the image according to the manner in which the structuring element
fits (or does not fit) within the image. A binary image is made up of foreground
and background pixels, and connected sets of foreground pixels make up the
objects in the image. In Fig. 8.1 we see a binary image and a circular structuring
element (probe) that is placed in two different positions. In one location it fits
within the object, but in the other it does not. By marking those locations at
which the structuring element does fit within the object, we derive structural
information about that image. This information depends on both the size and
shape of the structuring element. Although this concept is rather simple, it is the
basis of the majority of the operations presented in this chapter—erosion,
dilation, opening, closing, morphological reconstruction, etc.—as they are ap-
plied to both binary and grayscale images. Common measurements that can be
derived from this concept are the largest disk that fits inside the object and the
area of the object.

In this chapter, only symmetrical structuring elements are used. When the
structuring element is not symmetrical, care must be taken, because only some
properties are valid for a reflected structuring element. Four structuring element
types are used in the illustrations throughout this chapter: (1) the elementary cross,
a 3 x 3 structuring element with the central pixel and its direct four neighbors;
(2) the elementary box, which has the central pixel and its eight neighbors; (3) the
disk of a given radius; and (4) the linear structuring element of a given length and
orientation.

4

FIGURE 8.1 Probing an image with a structuring element.
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8.2 Binary Morphology

A binary image is one having only two gray levels, 0 and 1. We refer to pixels
with gray level 0 as “background pixels” and gray level 1 pixels as “interior
pixels.”” A connected set of interior pixels forms an “object’ in the binary image.
Some of these objects will correspond to physical structures on the microscope
slide. Others may be due to artifacts or noise. Image segmentation (Chapter 9) is
the process of delineating the actual structures in the image, and binary
morphological processing can be very useful in that endeavor.

8.2.1 Binary Erosion and Dilation

The basic fitting operation of morphology is the erosion of an image by
a structuring element. Erosion is done by scanning the image with the structur-
ing element. When the structuring element fits completely inside the object, the
probe position is marked. The erosion result consists of all scanning locations
where the structuring element fits inside the object. The eroded image is usually
a shrunken version of the image, and the shrinking effect is controlled by the
structuring element size and shape. The erosion of set 4 by set B is defined by

AOB = {x:B, C 4} (8.1)

where C denotes the subset relation and B, = {b + x: b € B} is the translation of
set B by a point x.

A binary image consists of foreground and background pixels. In morphol-
ogy, for every operator that changes the foreground in a particular way, there is
a dual operator that changes the background in the same way. The complement
of an image is formed by reversing the foreground and background pixels. The
dual of the erosion operator is the dilation operator. Dilation involves fitting
a probe into the complement of the image. Thus it represents a filtering on the
outside of the object, whereas erosion represents a filtering on the inside of the
object, as depicted in Fig. 8.2. Formally, the dilation of set 4 by B is defined by

A®B = (4°© BY (8.2)

where A¢ denotes the complement of 4 and B= {—b:b € B} is the reflection
of B, that is, a 180° rotation of B about the origin.

The foreground is usually labeled with white color, while the background is
labeled black, but the inverse convention is sometimes used.

An alternative way to compute dilation is by “stamping” the structuring
element on the location of every foreground pixel in the image. For instance,
Fig. 8.14d was obtained by stamping small arrows (the structuring element) on
the centroids of the detected spots in Fig. 8.14c.
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(@) (b)

FIGURE 8.2 Erosion and dilation. (a) Input object in black and gray and erosion in black (region where
the probe can fit). (b) Input object in black and dilation in black and gray.

Formally, the dilation can be defined by
AeB=|]B, (8.3)

acA

Dilation has the effect of expanding the object, filling small holes in and
intrusions into the object (Fig. 8.2b), while erosion has a shrinking effect,
enlarging holes and eliminating small extrusions (Fig. 8.2a).

Since dilation by a disk expands an object and erosion by a disk shrinks
an object, they can be combined to find object boundaries in binary images.
The three possibilities are: (1) the external boundary (dilation minus the image), (2)
the internal boundary (the image minus the erosion), and (3) the morphological
gradient (dilation minus erosion), which is the boundary that straddles the
actual boundary. The morphological gradient is often used as a practical way of
displaying the boundary of segmented objects, as in Fig. 8.23f.

8.2.2 Binary Opening and Closing

Besides the two primary operations of erosion and dilation, two more important
operations play key roles in morphological image processing: opening and its
dual, closing.

The opening of an image A by a structuring element B, denoted by 4 o B, is
the union of all the structuring elements that fit inside the image, as depicted in
Fig. 8.3a.

AoB=|J{B.:B,C 4} (8.4)
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Figures 8.5c through 8.5f show how the result of opening depends on the
structuring element when using different linear structuring elements to open
the same image. The opening is also defined by

AoB=(A©9B)®B (8.5)
The dual of opening is closing, which is defined by

¢ D\
AeB=(A°cB) (8.6)
AeB=(A®B)OB
Figure 8.3b shows an example of closing. Note that, whereas the position of the
origin relative to the structuring element has a role in both erosion and dilation,
it plays no role in opening or closing.

Opening and closing have two important properties [4]. First, once an image
has been opened (or closed), successive openings (or closings) using the same
structuring element produce no further effect. Second, an object in an opened
image is contained in the original object, which, in turn, is contained in the
closed image, as illustrated in Fig. §.3.

As a consequence of this property, we can consider the subtraction of the
opening from the input image, called the opening top-hat operation, and the
subtraction of the image from its closing, called closing top-hat operation,
respectively, defined by

A6B=A—(40B)

AeB=(4eB)— A4 @7

(a) (b)

FIGURE 8.3 Opening and closing. (a) Input image in black and gray and opening in black (region
where the probe fits). (b) Input image in black and closing in black and gray.
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The opening top-hat and closing top-hat results correspond to the gray parts of
Figs. 8.3a and 8.3b, respectively.

As a filter, opening can clean the boundary of an object by eliminating
small extrusions, but it does this in a much finer manner than erosion. The
net effect is that the opened image is a much better replica of the original
than the eroded image (compare Fig. 8.3a with Fig. 8.2a). Analogous remarks
apply to closing and the filling of small intrusions (compare Fig. 8.3b with
Fig. 8.2b).

Binary images can have both additive noise (extraneous foreground pixels in
the background) and subtractive noise (extraneous background pixels in the
foreground). One strategy for correcting this is to open the image to eliminate
additive noise and then to close it to fill subtractive noise.

The open—close strategy works when noise components are small, but it fails
when attempts to remove large noise components destroy too much of the
original object. In this case, a better strategy is to employ an alternating sequen-
tial filter (ASF). Here open—close (or close—open) filters are performed itera-
tively, beginning with a very small structuring element and then proceeding with
ever-larger structuring elements.

ASF” (S) = (((SeB)o B)e2B)o2B)...enB)onB (8.8)

co

ASF) (S)=((((SoB)eB)o2B)e2B)...onB)enB (8.9)

8.2.3 Binary Morphological
Reconstruction from Markers

One of the most important operations in morphological image processing is
reconstruction from markers. The basic idea is to mark certain image compon-
ents and then to reconstruct that portion of the image that contains the marked
components.

8.2.3.1 Connectivity

A region (set of pixels) is said to be connected if any two pixels in the set can be
linked by a sequence of neighbor pixels also in the set. If the region is
4-connected, the linking involves only vertically and horizontally adjacent pixels.
If the region is 8-comnected, the linking involves diagonally adjacent pixels
as well.

Every binary image can be expressed as the union of connected regions.
A region is maximally connected if it is not a proper subset of a larger connected
region in the image. The maximally connected regions are called the connected
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components of the image. A connected object has only one component. The
union of all connected components Cj recovers the input image 4 and the
intersection of any two connected components is empty:

4=Jc (8.10)
k=1

To find all the connected components of an image, one can iteratively (1) find
any foreground pixel of the image as a starting point, (2) use it to reconstruct
its connected component, (3) remove that component from the image, and
(4) iteratively repeat the same extraction until no more foreground pixels are
found in the image. This operation, called labeling, decomposes an image into its
connected components (objects). These can be numbered sequentially as they
are found. The result of the labeling operation can be conveniently stored as
a grayscale image (“‘object membership map”’) in which the gray level of each
pixel is its object number. An example of labeling can be seen in Fig. 8.6c.

8.2.3.2 Markers

The morphological reconstruction of an image A from a marker M (a subset of A)
is denoted by AAM and defined as the union of all connected components of
image A that intersect marker M. This filter is also called a component filter:

AMM = | J{Ch: Cen M # O} (8.11)

The reconstruction operation requires the input image, the marker, and
a selection of the type of connectivity. The marker specifies which component
of the input image is to be extracted. The result of the reconstruction depends on
the connectivity, E, used.

An example of reconstruction from markers using 8-connectivity is shown in
Fig. 8.4. Figure 8.4a is the input image, which is a collection of grains. Figure
8.4b is the marker image, that is, a central vertical line intersecting the grains.
Figure 8.4c shows the reconstruction from the markers, which extracts the three
central components from the original image.

There are typically three ways to select the marker placement for the
component filter: (a) a priori selection, (b) selection from the opening, and
(c) selection by means of some more complex operation.

An example of reconstruction from an a priori marker can be seen in
Fig. 8.27d, where the background component, in black, was selected by placing
a marker at the top left of the image in Fig. 8.27c. In this case, we work on the
complement of the image. This dual reconstruction has the overall effect of
filling in bounded regions.
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FIGURE 8.4 Reconstruction from markers. (a) Input image. (b) Marker image. (c) Reconstructed image.

(b) (©)

8.2.3.3 The Edge-Off Operation

The edge-off operation, particularly useful for removing objects that touch the
image border, combines reconstruction and top-hat concepts. The objects
touching the border are selected by reconstructing the image using its border
as an a priori marker. The objects not connected to the image frame are then
selected by subtracting the reconstructed image from the input image. The result
is an image containing only those objects that do not touch the border.

Figure 8.22 illustrates a variant of the edge-off operation applied to grain
boundaries. Here we want to keep only the boundaries of those grains that do
not touch the image border in Fig. 8.22f. The boundaries connected to the
border cannot simply be removed, because that would also remove the bound-
aries of the neighboring grains that do not directly touch the border. So the
strategy is first to fill in all the bounded grains that do not directly touch the
border by reconstruction of the border from the complement of the image in
Fig. 8.22f (see Fig. 8.22¢g). Then we remove the thin grain boundaries that do touch
the border by applying an opening. The final result, in Fig. 8.22h, is obtained
by intersecting the remaining inner grains and the boundaries in Fig. 8.22f.

8.2.4 Reconstruction from Opening

With marker selection by opening, the marker is found by opening the input
image with a particular structuring element. The result of the reconstruction
detects all of the connected components into which that structuring element fits.

By using the mechanism of reconstruction from the opening to detect objects
with particular geometric features, one can design more complex techniques to
find the markers from combined operators. At the last step, the reconstruction
reveals those objects that exhibit those geometric features.

The biomedical application illustrated in Fig. 8.5 detects overlapping human
chromosomes by using the intersection of four reconstructions from openings.
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Because chromosome length is highly variable, the structuring element, length,
is a critical parameter for good filter performance. A length of 30 pixels was used
in this example.

To identify overlapping chromosomes, as shown in Fig. 8.5b, only the
objects (connected components) into which all four of the linear structuring
elements can fit are chosen. This is achieved by performing four reconstructions
from opening operations and intersecting them. The four linear structuring
elements used are vertical, horizontal, and + 45° (Figs. 8.5c to 8.5f).

The top-hat concept can be applied to reconstruction by opening, producing
the reconstruction from opening top-hat operation. This is the image minus its
reconstruction. In this case the operator reveals the objects that do not exhibit
a specified fitting criterion. For instance, to detect thin objects, one can use
a disk of diameter larger than the thickest of those objects. Then only objects too
thin to contain the disk remain.

These operations are not restricted to openings. Analogous dual operations
can be developed to form sup-reconstruction from closing and sup-reconstruction
from closing top-hat respectively.

FIGURE 8.5 Defecting overlapping chromosomes. (a) Input image. (b) Infersection (in gray) of four
reconstructions from openings. (c) Opening (in gray) by horizontal line and its reconstruction. (d) Opening
(in gray) by vertical line and its reconstruction. (e} Opening (in gray) by a 45° line and its reconstruction.
(f) Opening (in gray) by —45° line and its reconstruction.
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8.2.5 AreaOpening and Closing

Another common criterion for selection of connected components is area. This
is achieved by an area opening, which removes all connected components C; with
area less than a specified value a:

Ao (@) =|J{C, area(C) = a} (8.12)

E denotes the connectivity used. Figure 8.23e shows how the area opening can
behave as a filter to remove small artifacts from the image in Fig. 8.23d and
select only the large objects (epithelial cells) having area greater than 1000 pixels.

The next demonstration targets cytogenetic images of human metaphase cells.
This is a classical application of area opening. The task is to preprocess the image
by segmenting out the chromosomes from the nuclei, stain debris, and the back-
ground. Figure 8.6 shows the input image (a), the thresholded (binary) image (b),
the labeling (c) of the identified connected components, and the result (d), with the
components classified by area. The components with area less than 100 pixels are
background noise, those with area greater than 10,000 pixels are nuclei (shown in
dark gray), and the rest are the chromosomes, shown in light gray.

The dual operation, called area closing, is also useful in many applications.

FIGURE 8.6 Preprocessing chromosome spreads using area opening. (a) Input image. (b) Thresholded
image. (c) Labeled (grayscaled) image. (d) Obijects classified by area: residues in white (area < 100 pixels),
chromosomes in light gray (area between 100 and 10,000 pixels), and nuclei in dark gray (area > 10,000
pixels).
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Figure 8.23d shows how area closing can be used to fill small aggregate holes
with area less than 200 pixels (c) that are specific to a texture, to form significant
clusters of interest. Similarly, small holes in Fig. 8.30g, having area less than 100
pixels, are closed and merged to recover the objects of interest (Fig. 8.30h).

In this section, we have introduced several component filters, their duals,
and their top-hat versions. That is, filters that do not introduce false edges
because they are able to select out (entirely) certain connected components of
the image, the selection being based on an area or shape fitting criterion.

8.2.6 Skeletonization

A standard problem in image processing is finding a thinned replica of a binary
image to use either in a recognition algorithm or for data compression.
A commonly employed thinning procedure is skeletonization, which is based
on the concept of maximal disks. In microscopy images, skeletons have been
successfully used for feature extraction for classification purposes.

Given a point interior to an object in a binary image, there exists a largest
disk having the point at its center and also lying within the object. Regarding the
largest disk at a point, there are two possibilities: Either there exists another disk
lying within the object and properly containing the given disk, or there does not
exist another disk within the object properly containing the given disk. Any disk
satisfying the second condition is called a maximal disk. The centers of all
maximal disks comprise the medial axis of the image. As an illustration, consider
the isosceles triangle in Fig. 8.7, whose skeleton is depicted in part (a) of the
figure. Part (b) shows a maximal disk D(x) situated at point x so that x lies on
the skeleton. In part (c), D(w) is the largest disk centered at w; however, it is not
maximal, since it is properly contained in Dp, which itself lies within the triangle.
Thus, w does not lie in the skeleton.

D(x)

W
2\ ()
@ (b) (c)

FIGURE 8.7 Triangle medial axis. (a) Medial axis. (b) Maximal disk D(x) for skeleton point x. (c) wis not
a skeleton point because D(w) is contained in disk D,
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As might be expected, adaptation of the skeleton to the digital setting
requires some care, since Euclidean disks are defined in a continuous space.
Efficient algorithms for the Euclidean medial axis in discrete spaces now exist,
but implementations based on discrete disks are still widely used. We begin with
some ‘“‘disklike” digital primitive, and the actual skeleton obtained depends on
the choice of that primitive. For the moment, let B denote the 3 x 3 square
structuring element, and let nB be defined by the iterated dilation of Eq. 8.13,

nB=B®B®--- ®B (8.13)

where n is any positive integer. Equation 8.13 implies that 2B = B® B,
3B = B®B®B, and so on. The notion of maximal disk is put into the digital
setting by considering “disks’ chosen from among 0B, B, 2B, 3B, ..., where 0B
is simply the origin. The discrete skeleton can be characterized morphologically.
Let S be the set of object pixels, forn =0, 1, ..., and we define the skeletal subset
Skel(S; n) to be the set of all pixels x in S such that x is the center of a maximal
disk nB. Then it is evident, from the definition of the skeleton, that the skeleton
is the union of all skeletal subsets:

Skel(S) = G Skel(S:n) (8.14)
n=0

It can be shown that the skeletal subsets are given by
Skel(S;n) = (S©nB) — [(S©nB) o B] (8.15)

Together Eqs. 8.14 and 8.15 yield Lantuejoul’s formula for the skeleton:
Skel(S) = | J(S©nB) — [(S©nB) o B] (8.16)
n=0

The drawbacks of such discrete skeletons are illustrated further, in a
comparison with Euclidean skeletons. Lantuejoul’s formula is not applicable to
Euclidean disks, but there are efficient algorithms for Euclidean skeletons avail-
able, and we can define such skeletons. We denote by d(x, y) the Euclidean
distance between points x and y. The usual definition of an n-dimensional discrete
Euclidean disk of radius R and center point x is the set DE(x, R) given by

DE(x, R)={yeZ", d(x, y) < R} (8.17)

The discrete Euclidean medial axis is thus defined by the same terms as its continu-
ous counterpart, but with discrete Euclidean disks. Similarly to the continuous
medial axis, each maximal disk that composes the discrete medial axis can be
reconstructed from its center and its radius, and the original object can be recon-
structed by the union of all such disks. However, topology preservation is no longer
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guaranteed. For instance, the discrete medial axis of a single connected set may be
composed of many disconnected subsets. This problem is solved by the combi-
nation of the discrete medial axis with a topology-preserving thinning process.

A basic topology-preserving thinning process is based on the notion of
a simple point. A simple point is a point that can be removed from the object
without changing its topology. The sequential removing of simple points from the
object, with the constraint of not removing points of the object’s medial axis,
constitutes a thinning process that preserves object topology and guarantees
object reconstruction. To preserve some characteristics of the object’s geometry,
the thinning process can be guided by a priority function based on geometric
information. Later we present the algorithm of a thinning process guided by the
Euclidean distance transform. In a binary image, the distance transform is defined
for any point in a given set as the distance from this point to the complement of
the set. In a guided thinning, when the thinned object has no simple point, the
process stops and the resulting subset is called the Euclidean skeleton.

For skeleton analysis, one may need to prune spurious branches that result
from boundary irregularities and noise. There are many thinning and pruning
algorithms described in the literature.

The following function computes the Euclidean skeleton.

Function sk = EuclSkel (£, T)

f: input image
T: threshold value for pruning the medial axis

1. Medial axis extraction and pruning
M <-discretemedial axis of £, with all disks radii
pPM<-x1inM, xis center of adiskwithR>T

2. Initialize guided thinning
DT <- distance transformof f
for all x in DT
1f DT (x) =1 then inHFQ (x, DT (x))

3. Propagation
while HFQ is not empty:
p <- OUtHFQ
for each gneighbor of p:
inHFQ (q, DT (q) )
ifpissimple andM(p) =0 (pnot in the medial axis)
then
f(p) <-0 (p is deleted)
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In this function, the hierarchical FIFO queue (HFQ) includes the following
operations: inHFQ( p,v), insert pixel p with priority »; outHFQ, remove the pixel
with the lowest priority with the FIFO policy for pixels at the same priority.

The detection of overlapping chromosomes, performed earlier by other
means, can now be done by detecting crossing points in the chromosomes’
skeletons. In the following, we illustrate the skeletons of overlapping chromo-
somes. In order to detect crossing points, a further mask-matching operation
must be performed.

In Fig. 8.8 we compare the Euclidean skeleton with the discrete skeleton nB.
Figure 8.8a shows the Euclidean skeleton, obtained by a topology-preserving
thinning process guided by the Euclidean distance, with the constraint of not
removing the points of the exact Euclidean medial axis. The skeleton presented
in Fig. 8.8b has been obtained by a topology-preserving thinning process guided
by the 8-neighbor distance, with the constraint of not removing the points of the
exact medial axis with nB disks. Despite the presence of many branches in
the Euclidean skeleton, the number of branches on the skeleton in Fig. 8.8b
is greater, showing how the discrete skeleton nB is more sensitive to noisy
boundaries.

The effect of skeleton pruning is shown in Fig. 8.9, where different skeletons
based on Euclidean disks are superimposed on the chromosomes. The exact
Euclidean medial axis is presented in Fig. 8.9a. In the medial axis, some isolated
points are due to the noisy chromosome boundaries and may be discarded
without affecting the quality of the resulting skeleton. In Fig. 8.9b the points
that represent centers of maximal disks with (squared) radii less than 36 are
removed from the medial axis. The filtering of small-radius disks is one of the
simplest skeleton-pruning techniques. With the constraint of not removing the
points of the pruned medial axis, we perform a topology-preserving thinning
process guided by the Euclidean distance, and we obtain the Euclidean skeleton
of Fig. 8.9c. Finally, the reverse process (reconstruction of the object) is

&

(a) (b)

FIGURE 8.8 Comparison of skeletons. Skeletons superimposed on the original chromosomes:
(a) Euclidean skeleton with topology preservation, containing the exact Euclidean medial axis; (b) discrete
skeleton with topology preservation, containing the exact medial axis by nB disks.
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(a) (b) (c) (d)

FIGURE 8.9 Skeletonization and pruning. The skelefons are superimposed on the original chromo-
somes. (a) The exact Euclidean medial axis (center of maximal discrete Euclidean disks); (b) Pruned medial
axis, disks with (squared) radius less than 36 have been removed; (c) Euclidean skeleton with topology
preservation, containing the pruned medial axis shown in (b); (d) points on the boundaries that could not be
reconstructed by the reverse process of the pruned skeleton.

performed on the pruned skeletons, and Fig. 8.9d shows the details of the
boundaries that could not be reconstructed.

8.3 Grayscale Operations

It is useful to look at a grayscale image as a surface. Figure 8.10 shows
a grayscale image made of three Gaussian-shaped peaks of different heights

(b)
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FIGURE 8.10 Graphical representations of a grayscale image. (a) Grayscale mapping: zero is dark
and 255 is bright. (b) Reverse grayscale mapping: zero is bright and 255 is dark. (c) Top-view shaded
surface. (d) Surface mesh plot.
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and widths. The image is depicted in four different graphical representations: (a)
the pixel values mapped in gray levels (low values are dark and high values are
bright gray tones); (b) the pixel values also mapped in grayscale but in a reverse
order; (c) the same image but as a top view of a shaded surface; and (d) a mesh
plot of the same surface.

8.3.1 Threshold Decomposition

The threshold sets of a grayscale image contain all the pixels of the binary
objects obtained by thresholding the image at all (e.g., 256) gray levels. Thresh-
old decomposition of a grayscale image is the process that creates the threshold
sets. A level component in a grayscale image is defined as a connected set of
pixels in a threshold set of the image at a particular gray level. A grayscale
image, then, can be thought of as a cardboard landscape model, that is, a stack
of thin, flat pieces of cardboard. The cardboard is first cut into the shape of
each binary object (level component) from the threshold sets, and then the
pieces are stacked up to form the topography. Each cardboard piece, then,
corresponds to a level component of one threshold set for that grayscale image.
The image can be characterized uniquely by its threshold sets. Recovering an
image from its threshold sets is called stack reconstruction. Note that, for stack
reconstruction to be possible, the threshold sets must satisfy the stack property.
This means that each level component at a gray level must contain the level
component above it and must be contained in the level component below.

The threshold decomposition of a grayscale image, f, is the collection of all
the threshold sets, X;(f), obtained at each gray level ¢

X(NH={zf0=1 (8.18)

The image can be characterized uniquely by its threshold decomposition.
The image can be recovered from its threshold sets by stack reconstruction:

f(x) =max{t:x € X,(f)} (8.19)

In all the grayscale morphological operations presented here, we use flat
structuring elements, that is, structuring elements that have no grayscale vari-
ation and that are the same as those used in the case of binary images. We use the
term flat structuring elements so as not to confuse them with their grayscale
analogs. This restriction greatly simplifies the definition, characterization, and
use of grayscale operators as an extension of the binary case. Care must be taken,
however, when using a non-flat grayscale structuring element, because the
erosion (dilation) is not a moving-minimum (moving-maximum) filter anymore,
the threshold decomposition property does not hold for the primitive operators,
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nor does it hold for grayscale morphological reconstruction. As mentioned
earlier, only symmetrical structuring elements are discussed in this chapter.

8.3.2 ErosionandDilation

Grayscale erosion (dilation) of an image, f, by a flat structuring element D is
equivalent to a moving-minimum (moving-maximum) filter over the window
defined by the structuring element. Thus, erosion f © D and dilation f @ D in this
case are simply special cases of order-statistic filters:

(fOD)(x) = min{f(z): z € Dy}

(f ®D)(x) = max{f(z):z € D,} (8.20)

An example of erosion by a disk on a grayscale image is shown in Fig. 8.11. The
two images on the left, input and eroded, are represented in grayscale, and the
two on the right are the same images represented as top-view surfaces. Note how
well the term erosion fits this example. The eroded surface appears to have been
created by a pantograph engraving machine equipped with a flat disk milling
cutter. The pantograph follows the original surface while shaping the eroded
surface with the flat disk milling cutter.
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FIGURE 8.11 |lllustration of grayscale erosion. (a) Input image. (b) Surface view of the input image.
(c) Erosion by a disk. (d) Surface view of the eroded image.
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The intuitive interpretation for grayscale erosion is the following: Slide the
structuring element along beneath the surface, and at each point record the
highest altitude to which the structuring element can be translated while still
fitting beneath the surface. Alternatively, one can simply compute the erosion
(dilation) of a grayscale image by computing the threshold decomposition of the
image, applying binary erosion (dilation) to the threshold sets, and following up
with stack reconstruction.

Figure 8.12 illustrates grayscale erosion by means of threshold decompo-
sition. At the right of the grayscale images (original (a) and eroded (e)) are three
threshold sets, at gray levels 80, 120, and 180, respectively. Note that the binary
images shown in (f), (g), and (h) are eroded versions of the binary images shown
in (b), (¢), and (d).

The filters that can be implemented by threshold decomposition are called
stack filters. A stack filter can be built from any binary filter as long as the stack
property is satisfied. Dilation and erosion by a flat structuring element are, in
this sense, stack filters. So, too, is the median filter. A practical characteristic of
a stack filter is that it stores all results of filtering the input thresholded images.
So when dealing with stack filters, instead of thresholding the image and then
applying the filter, it is better first to apply the filter, keeping the image in
grayscale, and to threshold the result later. That is, put the parametric operation
at the end of the procedure.

FIGURE 8.12 |llustration of grayscale erosion by means of threshold decomposition. (a) The input
image. (e) The eroded grayscale image. (b), (c), and (d) show the input image thresholded at gray levels
80, 120, and 180, respectively. (f), (g), and (h) show the eroded image thresholded at gray levels 80, 120,
and 180, respectively.
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8.3.2.1 Gradient

Observe that the morphological gradient (dilation minus erosion), previously
described for binary pictures, is extensible directly to grayscale morphology if
grayscale erosions and dilations are used. At each point the morphological
gradient yields the difference between the maximum and minimum values,
over the neighborhood, at the point determined by the flat structuring element.

The grayscale morphological gradient is often used as one step of a more
complex process, such as segmentation. For instance, Fig. 8.31b shows the
gradient of the yeast cells in Fig. 8.31a that we wish to segment. The segmenta-
tion of urology specimens in Fig. 8.30a and the chromosomes in Fig. 8.27a also
use gradient computation (Fig. 8.30b and Fig. 8.27b, respectively).

8.3.3 Opening and Closing

As an extension of the binary case, grayscale opening (closing) can be achieved
simply by threshold decomposition, followed by binary opening (closing) and
stack reconstruction. Grayscale opening and closing have the same properties as
their binary equivalents [4]. The intuitive interpretation for opening is the
following: Slide the structuring element beneath the surface and, at each point,
record the maximum altitude to which the structuring element can be translated
while still fitting beneath the surface. The position of the origin relative to the
structuring element is irrelevant. Note the slight difference between the opening
and the erosion. While in the opening, the maximum altitude is recorded for all
points of the structuring element; in the erosion, only the location of the
structuring element is recorded.

Figure 8.26b shows the grayscale opening of the input image (a) by a disk of
radius 20. Note the manner in which the white dots are removed and the image is
filtered from the bottom in accordance with the shape of the structuring element.

An intuitive interpretation of closing can be seen from the duality relation.
Opening filters the image from below the surface, whereas closing filters it from
above. By duality, closing is an opening of the negated image. Hence, to apply
closing, simply flip the image upside down (invert), filter by the opening, and
then flip it back. The filtering effect of closing is illustrated in Fig. 8.30c, which
shows the closing of image (b) by a 7 x 7 box structuring element.

8.3.3.1 Top-Hat Filtering

The top-hat concept is also valid for grayscale images. Grayscale opening top-hat
is the subtraction of the opened image from the input image, and grayscale
closing top-hat is the subtraction of the image from its closing. By choosing an
appropriately sized structuring element, one can use the top-hat transform to
mark narrow peaks while not marking wider peaks in the image. In some
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applications it is impossible to separate desirable from undesirable bright spots
simply by using an appropriately sized structuring element, but it is possible to
separate them by an appropriately chosen threshold.

The following application illustrates the use of grayscale closing and
grayscale closing top-hat (Fig. 8.13). The input is a grayscale image of
a microelectronic circuit. The relevant objects in this image are vertical metal
stripes. Irregularities in these stripes are to be detected. This procedure uses the
grayscale closing top-hat, followed by filtering (by size threshold) of the res-
idues. The top part of Fig. 8.13 shows the grayscale images, while the lower part
shows their surface views. The input image is shown in (a); its closing by
a vertical line of length 25 pixels, is shown in (b). Then the top-hat result is the
subtraction of the original from the closing (c), revealing dark defects in the
metal stripes. It shows the discrepancies of the image where the structuring
element cannot fit the surface from above. In this case, it highlights vertical
depressions longer than 25 pixels. Thresholding the top-hat image, followed by
the elimination of small objects by an area opening of 5 pixels, results in the
detected regions with irregularities, which are shaded in black in the original
image (d).

Open top-hat is very useful as a preprocessing step to correct uneven illumin-
ation (see Chapter 12) before applying a threshold, thereby implementing an
adaptive thresholding technique (see Chapter 9). The following application
illustrates this.

(a) | (b) a1 d
e ,_ J,‘..': : / 1 . a1 J';: 2
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FIGURE 8.13 |lllustration of grayscale closing and closing top-hat. (a) Input image. (b) Closing by
a vertical structuring element. (c) Closing top-hat. (d) Thresholded top-hat (black areas) overlaid on original.
(e)~(h) Surface view of the corresponding images above.
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For a real-world biological application, we consider fluorescent in situ
hybridization (FISH) imaging, which is discussed in Chapter 12. A DNA probe
labeled with a fluorophore hybridizes to a matching sequence of DNA in the cell,
and the dye fluoresces at some particular color when excited by illumination in
a microscope.

Figure 8.14 shows the open top-hat transform applied to a FISH image:
(a) the FISH image; (b) open top-hat of the FISH image by a disk of radius 4;
(c) binary image resulting from thresholding the top-hat image at a gray level of
50; and (d) final result with an arrow indicating the position of each detected
spot. Due to noise, the top-hat methodology typically yields a number of very
small extraneous spots in the thresholded top-hat image. These can be elimin-
ated by filtering image with a grayscale area opening operation of two pixels.
The arrows were overlaid automatically by a dilation of the centroids of the
detected spots with an arrow-shaped structuring element having its origin
translated slightly from the arrow tip so as not to disturb the visualization of
the original spots in the image.

An illustration of the detection of thin structures using the closing top-hat
can be seen in Figs. 8.22c—d. In (¢) we see crystals surrounded by a dark contour
and a bright oriented shade. The application of a closing top-hat by a disk with
diameter larger than the thickness of the dark contours (see Fig. 8.22c) removes
the bright shade and enhances the contours of the crystals.

To detect both peaks and valleys, one can apply the open top-hat transform,
threshold to find peak markers, apply the close top-hat transform, threshold to
find valley markers, and then form the union of the two marker images.

8.3.3.2 Alternating Sequential Filters

Grayscale opening can be employed to filter positive noise spikes from an image,
and closing can remove negative noise spikes. Typically one encounters both,
and, as long as the noise spikes are sufficiently well separated, they can be
suppressed by an opening and closing or by a closing and opening operation.
However, selection of an appropriate structuring element size is crucial. If the

FIGURE 8.14 Grayscale open top-hatexample. (a) Inputimage. (b) Opening top-hat by a disk of radius 4.
(c) Thresholded area open (by 2 pixels). (d) Dilation of centroids by arrow, for illustration, overlaid on original.
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FIGURE 8.15 Grayscale alternating sequential filtering. (a) Input image. (b) Close-open by an
elementary cross; (c) ASF close—open with three stages.

spacing between noise spikes is uneven and they are not sufficiently separated, one
can employ an alternating sequential filter (ASF). This is a sequence of alternating
opening and closing operations with increasingly larger structuring elements.

Figure 8.15 shows an example of grayscale image filtering using ASF.
A single-stage close—open filter (shown in (b)) is the result of the closing followed
by an opening using a 3 x 3 diamond-shaped structuring element. For the
second stage, another close—open operation is concatenated using a 5 x 5 dia-
mond structuring element. In (c) a three-stage ASF was applied, with the last
stage being processed by a 7 x 7 diamond structuring element.

For correction of uneven illumination, the background can be estimated by
an ASF filter. An example of this technique appears in Fig. 8.22. Part (a) is the
input image, which shows a strong, uneven illumination component; in part (b)
the background is estimated by a 10-stage close—open ASF using a family of
different-size octagonal disks.

8.3.4 Component Filters and Grayscale
Morphological Reconstruction

The concept of a connected component filter, which was introduced in Section
8.2.3, on binary morphology, can be extended to grayscale morphology. Such
a filter can be constructed from (1) reconstruction from markers operations,
(2) reconstruction from opening operations, and (3) area-opening operations.
These grayscale operators can be constructed from their corresponding binary
counterparts by using threshold decomposition, described earlier (Section
8.3.1). A grayscale component filter is an operator that removes only a few
level components (cardboard pieces) in such a way that the stack reconstruction
property is not violated. That is, a level component is removed only if all
the level components above it are also removed. One important property
of a component filter is that it never introduces a false edge, so it is one
of a family of edge-preserving smoothing filters. Recall that the definition of
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component filters requires the specification of a connectivity convention, which
can be either 4- or 8-neighbor connectivity.

8.3.4.1 Morphological Reconstruction

Morphological reconstruction is one of the most used tools for building com-
ponent filters [5-7]. As with binary reconstruction, grayscale reconstruction
proceeds from markers. As with the binary case, in the morphological recon-
struction from markers, there are mainly three ways to design the marker image:
(a) with a priori selection, (b) using selection from opening (grayscale recon-
struction from opening, see Section 8.3.4.2) [9], and (c¢) determination from more
complex processing (see Section 8.3.4.4).

The morphological reconstruction of an image from a marker can be
obtained by (1) threshold decomposition of the image and the marker, followed
by (2) binary reconstruction from markers done at each gray level and (3) stack
reconstruction of the results. This can be interpreted intuitively by using the
cardboard landscape model of the image. Imagine that the cardboard pieces are
stacked but not glued. The markers are seen as needles that pierce the model
from bottom to top. If one shakes the model while holding the needles, those
cardboard pieces not pierced by the needles will be lost. The remaining card-
board pieces constitute a new model, possibly with fewer objects, and that
corresponds to the final result of grayscale morphological reconstruction.
Note that the marker can be a grayscale image, with the pixel gray level
corresponding to the height that the needles reach as they pierce the model.
This process is also called inf-reconstruction. By duality, the sup-reconstruction
works in the same manner on the complemented image.

8.3.4.2 Alternating Sequential Component Filters

An important class of component filters is composed of those generated from
alternating reconstructions from openings and closings. These are called alter-
nating sequential component filters (ASCFs). Figure 8.16 shows two examples of
a grayscale ASCF, using, as input, the image shown in Fig. 8.15. A three-stage
close—open filter (shown in (b)) is the result of the sup-reconstruction from
closing followed by an inf-reconstruction from opening using a 3 x 3, 5 x 5,
and 7 x 7 diamond structuring element in the first, second, and last stage,
respectively. One can compare the fidelity of the edges between the results of
this component filter and the results of the ASF filters shown in Fig. 8.15.

8.3.4.3 Grayscale AreaOpening and Closing

Grayscale area opening is another type of component filter [8]. It is defined
analogously to the binary case. The size-a area opening of a grayscale image can
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FIGURE 8.16 Grayscale alternating sequential component filtering. (a) Input image. (b) Reconstructive
close-open by a 3 x 3 diamond structuring element of stage 3. (c) Area close~open with area parameter of
30 pixels.

be modeled as a stack filter in which, at each level, only level components
containing at least a pixels are retained. This operation removes all cardboard
pieces whose area is less than a. An area closing is the same operation performed
on the complement image.

In Fig. 8.16c an area close—open operation is applied using 30 pixels as the
area parameter.

8.3.4.4 Edge-Off Operator

The grayscale edge-off operator can easily be derived from the binary case, and
it is very useful in many situations. As with the binary case, the edge-off operator
is the top-hat of the reconstruction from a marker placed at the image border
(i.e., an example of the case where the marker is placed a priori). In the
cardboard landscape model (threshold decomposition), all the cardboard pieces
that touch the image border are removed, leaving only those cardboard
pieces that form domes inside the image.

The following application illustrates the use of an area close—open filter as
a preprocessing filter followed by the edge-off operator to enhance pollen grains.
It is known a priori that the pollen grains have areas ranging from 5000 to
150,000 pixels at the resolution of these images. Figure 8.17a shows the input
image containing two grains. Figure 8.17b is the area close—open ASCF result.
It was used with an area parameter of 1500 pixels, first filling holes of less than
this size and then removing level components with area less than 1500 pixels.
Note that there are deep, dark areas around the pollen grains, and these make it
useful to apply the edge-off operator, shown in Fig. 8.17c. The process of
enhancing the pollen grain images was done entirely in the grayscale domain.
Finally, a segmentation can be obtained by thresholding Fig. 8.17¢c at a gray
level of 5 (Fig. 8.17d).
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(a)

FIGURE 8.17 Segmenting pollen grains with grayscale component filters. (a) Input image. (b) Area
close-open ASCF. (c) Edge-off operation. (d) Thresholding.

8.3.4.5 h-Maximaand h-Minima Operations

The reconstruction of an image f after subtracting /# from itself is called the
h-maxima operation:

HMAX,e(f) =f Ae (f = 1) (8.21)

This is a component filter that removes any object with height less than or equal
to h, and it decreases the height of the other objects by /4. The intuitive inter-
pretation of the A-maxima operation based on the threshold decomposition
concept is that the height attribute associated with a particular level component
(cardboard piece) is one plus the maximum number of levels that exist above it
in that object. The s-maxima filter removes all the cardboard pieces with height
attribute less than or equal to 4. The dual operator of s-maxima is called
h-minima, HMIN}, g( f). It fills in any basin with depth less than / and decreases
the depth of the other basins by 4.

8.3.4.6 Regional Maxima and Minima

Considering the threshold decomposition of a grayscale image, regional maxima
are level components with height attribute equal to 1; i.e., there are no other level
components above them. These are the cardboard pieces at the top of their
respective peaks. For instance, Fig. 8.29c shows the regional maxima of the
image in Fig. 8.29b. All regional maxima can be found by subtracting the
h-maxima with & = 1 from its original image, f:

RMAXE(f) =f — HMAX, £(f) (8.22)
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By duality, a regional minimum is a flat connected region that is at the bottom of
a basin. Regional maxima and minima are generically called extrema of the
image.

RMINE(f) = HMIN, g(f) — f (8.23)

8.3.4.7 Regional Extrema as Markers

The watershed transform, described in Section 8.4, is an important morpho-
logical segmentation process. One of the crucial steps in watershed transform
segmentation is marker extraction. A marker must be placed inside every object
that needs to be extracted. The regional maxima (minima) can be used as
markers for watershed segmentation. Marker finding, using the regional max-
ima, is most effective when done on filtered images. One advantage of this
method is its independence of any grayscale thresholding values.

Typically, an image presents a large number of regional maxima because of
noise inherent in the acquisition process. If the regional maximum operator is
applied to a gradient image, then the situation is even worse. Filtering the image
can remove small regional maxima, which are likely due to noise. This is usually
accomplished using (1) opening, (2) reconstruction from opening, (3) area
opening, (4) h-maxima, or combinations thereof. The choice of filter to use is
a part of the design strategy.

Figure 8.18 shows the regional maxima of an input image following four
different filters: (a) input image; (b) regional maxima without filtering; (c) regional
maxima following opening by a disk of radius 3; (d) regional maxima following
reconstruction from opening by the same disk; (¢) regional maxima following area
opening; and (f) regional maxima following an A-maxima operation. Note how
the oversegmentation (excessive number of separate markers) produced by the
direct regional maxima in (b) is reduced by the subsequent filtering.

In the next section these markers are used to segment an image using the
watershed transform (see Fig. 8.21). Analogously, in Figs. 8.23c and 8.22¢, the
h-minima operator is used to filter minima in the images of Figs. 8.23b and
8.22d, respectively, prior to the watershed transform.

8.4 Watershed Segmentation

The watershed transform is a key building block for morphological segmenta-
tion of images [10]. The watershed segmentation method has become highly
developed to deal with numerous real-world contingencies, and a number of
algorithms have been implemented [11-12].

138



8.4 Watershed Segmentation

FIGURE 8.18 Regional maxima of a filtered image. (a) Inputimage. (b) Regional maxima. (c) Regional
maxima after opening by a disk of radius 3. (d) Regional maxima after reconstruction from opening by the
same disk. (e) Regional maxima after an area opening of 100 pixels. (f) Regional maxima after hmaxima

filtering with h = 20.

8.4.1 Classical Watershed Transform

The most intuitive description of the watershed transform is based on a flooding
simulation. Consider the input grayscale image as a topographic surface (recall
Fig. 8.10). The goal is to produce the watershed lines on this surface. To do so, holes
are punched at each regional minimum in the image. The topography is slowly
flooded from below by allowing water to rise from each regional minimum at
a uniform rate across the image. When the rising water coming from two distinct
minima is about to merge, a dam is built to prevent the merging. The flooding will
eventually reach a stage when only the tops of the dams are visible above the water
surface, and these correspond to the watershed lines. The final segmented regions
arising from the various regional minima are called catchment basins.

Figure 8.19 illustrates this flooding process on a one-dimensional signal with
four regional minima generating four catchment basins. The figure shows some
steps of the process: (a) input image, (b) holes punched at minima and initial
flooding, (c) dam created when waters from different minima are about to merge,
and (d) final flooding, yielding three watershed lines and four catchment basins.
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(@) (b) (©) (d)

FIGURE 8.19 Flooding simulation of the watershed transform. (a) Input signal. (b) Punched holes at
minima and initial flooding. (c) A dam is created when waters from different minima are about to merge.
(d) Final flooding, with three watershed lines and four catchment basins.

For image segmentation, the watershed is usually, but not always, applied to
a gradient image. Since real digitized images present many regional minima in
their gradients, this typically results in an excessive number of catchment basins,
the result being called watershed oversegmentation. We now address how to
prevent this.

8.4.2 Filtering the Minima

One solution to cope with oversegmentation is to filter the image to reduce the
number of regional minima, creating fewer catchment basins. Figure 8.20 shows
the application of the classical watershed transform. The input image (a) is a small
synthetic image with three different-size Gaussian peaks. Part (b) shows its
morphological gradient using a 3 x 3 box-structuring element. Part (c) shows
a typical watershed result with oversegmentation due to spurious regional
minima, each one generating a catchment basin. By filtering the gradient image
with the A-minima operator, with # = 9, the watershed gives the desired result,
shown in Fig. 8.20d. This kind of filtering is very subtle to the eye because the
spurious regional minima that are eliminated are quite small and difficult to see.

Figure 8.21 illustrates reducing oversegmentation of the watershed algo-
rithm by filtering the minima in the input image with several different filters.

FIGURE 8.20 Classical watershed segmentation with regional minimum filtering. (a) Small synthetic
inputimage (64 x 64). (b) Morphological gradient. (c) Watershed on the morphological gradient. (d) Watershed
on the hkminima (h = 9) filtered morphological gradient.
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FIGURE 8.21 Regional maxima of filtered image. (a) Input image. (b) Watershed of the input image.
(c) Watershed of the input image after closing with a disk of radius 3. (d) Watershed of the input image after
sup-reconstruction from closing by the same disk. () Watershed of the input image after area closing of 100
pixels. (f) Watershed of the input image after h-minima filtering with h = 20.

In (a) is the input image; (b) is the watershed of (a) without filtering; (c) is when
filtered with a closing operation with a disk of radius 3; (d) is when filtered with
sup-reconstruction from closing with the same disk; (e) is when filtered with area
closing; and (f) is when filtered with the #-minima operator. This example is
equivalent to the regional maxima simplification shown in Fig. 8.18. If we
compute the regional minima in the filtered images, we get the same results as
in that figure. Note that to filter regional minima, we use filters that operate on
the valleys, such as closings and A-minima operators. Applying filters that
operate on peaks does not reduce the number of minima or the number of
catchment basins found by the watershed algorithm.

The next application we consider deals with an electron micrograph of silver
halide T-grain crystals embedded in emulsion. Automated crystal analysis
involves segmentation of the grains for size measurement. This segmentation
problem looks simple at first, but the image has several things that make
segmentation difficult. The image has a strong illumination gradient, the interior
gray-level values for the crystal grains are the same as the background, the image
has strong white ““‘shadow’’ noise, it has a wide range of grain sizes, and there are
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overlapping and touching grains. Despite all these problems, watershed
segmentation can produce very good results. The two key points here are the
background correction and the enhancement of the dark contours using
a close top-hat operation with a disk diameter larger than the thickness of
these contours. The crystals are surrounded by dark contour lines that are
to be used for the watershed-based segmentation. The preprocessing stage is
intended to enhance only these lines.

The input image is shown in Fig. 8.22a. The illumination gradient is esti-
mated with a 10-stage alternating sequential filtering using an octagon structur-
ing element in (b). The input image is then divided by this background estimate,
normalized by its minimum value in (c). This division ensures that the dark
contours have the same depth; so in the dark regions of the image, the depths of
the dark contours are increased by this procedure. This is necessary to yield
uniform segmentation when applying the #-minima filtering later. A classical
closing top-hat filter detects the dark contours in (d). The size of the structuring

FIGURE 8.22 Silver halide T-grain crystal segmentation. (a) Input image. (b) Alternating sequential
filter applied. (c) Input image divided by (b). (d) Contour enhancement. (e) h-minima filter. (f) Watershed.
(g) Removal of grains touching the border. (h) Watershed lines not touching the border. (i) Final result.
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element must be larger than the thickness of the dark contours. Note that the
white areas of the image do not affect the detection of the dark contours.

The watershed transform detects the dividing lines between the dark regions.
In this case, it is not necessary to compute the gradient, since the contour lines
have already been enhanced. We apply an area closing followed by an A-minima
operation in (e). The choices of parameters for the filters used in this example are
crucial, and they have been found by trial and error. Application of the water-
shed on the simplified contour image gives the watershed lines shown in (f).
Grains connected to the image border are removed in (g). After that, the
intersection of the watershed lines and the grains not connected to the image
border gives the final boundaries of grains not touching the border in (h). For
display purposes, the contours are overlaid on the original image (i).

8.4.3 Texture Detection

Oversegmentation, usually seen as a drawback of the watershed transform, can
be useful to separate homogeneous from textured regions of an image. Indeed,
the watershed transform will create large catchment basins in rather homoge-
neous regions and very small catchment basins in textured regions.

The following example, illustrated in Fig. 8.23, finds the segmentation of
epithelial cells from monochrome images. Because the cells are nearly transparent,

FIGURE 8.23 Epithelial cell segmentation. (a) Original image. (b) Morphological gradient. (c) Watershed
lines (with oversegmentation) on h-minima (h = 6) filtered gradient. (d) Area closing to merge small catchment
basins. () Area opening fo select only the large objects. (f) Outline (in white) of the segmented objects.

143



8 Morphological Image Processing

the idea is to use the watershed to detect small catchment basins due to the texture
present in the interior of these cells. The catchment basins are area-closed and
then opened to remove noise. Although the oversegmentation of the watershed
algorithm is desirable, a component filtering operation is still required to detect
only those catchment basins inside the cells. An A-minima operation on the
gradient is used. In Fig. 8.24, (a) is the original image containing the almost-
transparent target cells; (b) is the morphological gradient; (c) shows the watershed
lines of the #-minima filtered gradient; (d) shows the merging of small catchment
basins by area closing; (e) is the result of the area opening to detect large objects;
and in () the contours (gradient) of segmented objects are overlaid on the input
image.

The example that follows shows an image analysis technique for detecting
anhydrous phase and aggregate in a polished concrete section, imaged by the
scanning electron microscope (SEM) in Fig. 8.24a as homogeneous white and
medium-gray grains, respectively.

The steps in this analysis are: (1) anhydrous detection by automatic thresh-
old analysis, (2) homogeneous grain detection using the watershed technique,
and (3) identification of aggregates as homogeneous grains that are not from
the anhydrous phase. The automatic threshold analysis is done using one-
dimensional morphological processing of the gray-level histogram with the
watershed algorithm.

FIGURE 8.24 Aggregate and anhydrous phase extraction from a concrete section imaged by a SEM.
(a) Inputimage. (b) Gray-level histogram. (c) Automatic threshold from histogram using watershed. (d) Contour
(in black) of the anhydrous regions from automatic thresholding. (e) Watershed lines from filtered regional
minima of the gradient. (f) Contour (in black) of the aggregate regions obtained from area open—close of the
watershed.
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The histogram in Fig. 8.24b has a small peak in the white region due to the
anhydrous phase. The threshold value is automatically determined with the 1-D
watershed technique. This is done by computing the one-dimensional watershed
on the filtered, negated histogram. The filter is based on a closing of 5 points
followed by an /-minima operation with # = 10 (see Fig. 8.24c). The threshold
parameter is taken as the position of the watershed point.

Anhydrous regions are detected by applying the automatic threshold and by
removing objects with area less than 20 pixels. Their contour, computed from
the gradient, is overlaid (in black) on the input image in Fig. 8.24d. Figure 8.24¢
shows the watershed applied on the filtered gradient of the input image.
The filter is the A-minima with 2 = 10. The larger catchment basin regions are
the aggregate and the anhydrous. These regions are filtered out using an area
opening of 300 pixels followed by an area closing of 50 pixels to eliminate small
holes. The aggregate, contoured in black in (f), is obtained by removing the
anhydrous phase already computed.

8.4.4 Watershed from Markers

The watershed from markers technique is a very effective way to reduce over-
segmentation if one can place markers within the objects to be segmented. The
watershed from markers can also be described as a flooding simulation process.
In this case, holes are punched at the marker regions. Each marker is associated
with a color. The topography is flooded from below by letting colored water rise
from the hole associated with its color, this being done for all holes at a uniform
rate across the entire image. If the water reaches a catchment basin with no
marker in it, then the water floods that catchment basin without restriction.
However, if the rising waters of distinct colors are about to merge, then a dam
is built to prevent the merging. The colored regions are the catchment basins
associated with the various markers. To differentiate these catchment basins from
the ones obtained with the classical watershed transform, we call the latter
primitive catchment basins.

Figure 8.25 illustrates the flooding of the watershed from markers in one
dimension. There are markers placed into the two rightmost primitive catch-
ment basins. Part (a) shows the two holes punched at the markers and some
initial flooding. When the water rises, a primitive catchment basin without
a marker is flooded without creating a dam, as shown in part (b). In part (c),
a dam is built to prevent the merging of waters coming from the two markers.
Finally, part (d) shows the final flooding, with only one watershed line separating
the two marked regions.

The classical watershed transform can be constructed using the watershed
from markers technique, and vice versa. If we place the markers at all regional
minima of the input image, then the watershed from markers technique gives the
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@ (b) (c) (d)

FIGURE 8.25 Flooding simulation of the watershed from markers. (a) Punched holes at markers and
initial flooding. (b) Flooding a primitive catchment basin without a marker. (c) A dam is created when waters
coming from different markers are about to merge. (d) Final flooding, only one watershed line.

classical watershed transform result. To obtain the watershed from markers
result from the standard watershed transform, we must apply the classical
watershed transform to the sup-reconstruction of the image from the markers.

8.4.5 Segmentation of Overlapped
Convex Cells

Application of the watershed transform often involves a certain spatial decom-
position. Given a set of isolated points (grains) in a binary image, its Voronoi
diagram is composed of lines that partition the plane into regions, each consisting
of the points that are closest to one particular grain. More generally, the grains
can consist of connected components of arbitrary sets, instead of isolated points.
In this case, the Voronoi regions are called influence zones, and the Voronoi
diagram is called a skeleton by influence zones (SKI1Z).

In a binary image, the distance function, or distance transform, is defined, for
any point inside an object, as the distance from that point to the nearest point
outside the object. The watershed transform is a useful method for computing
the Voronoi diagram and the SKIZ. The idea is to compute the classical
watershed transform of the distance transform of the background of the objects.
The catchment basins are the influence zones, and the watershed lines compose
the SKIZ.

This concept can address one of the earliest uses of the watershed transform,
the problem of binary-image segmentation of images with touching and over-
lapping objects. For instance, in Fig. 8.26c, seven cells appear to be overlapping
to form a single connected component. Our goal is to segment that component
in a manner consistent with the integrity of each cell. A key to this problem, and
with many segmentation problems, is to find markers for each of the objects.

In Fig. 8.26, after the input image (a) is filtered using an opening with a disk (b),
the image is thresholded in (c). Using the watershed transform to segment
the overlapped cells works in the following way. The distance transform is
computed on the binary image, and one marker is required for each cell.
In the case of rounded cells, these markers can be extracted from the regional
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FIGURE 8.26 Segmentation of overlapping convex cells. (a) Inputimage. (b) Preprocessing by opening
with a disk of radius 20. (c) Threshold of the preprocessed image. (d) Distance transform of complement image
(in gray) overlaid by marker (white) and watershed lines (white). (e) Watershed lines used to cut the binary
overlapped cells. (f) Cell boundaries overlaid on the input image.

maxima of the distance function. Depending on the difficulty of this extraction,
it may require filtering the distance function. This can be done via an opening
according to the methodology of marker extraction using regional maxima,
which is discussed in Section 8.3.4.7. In this case the distance function was
filtered by an opening with a disk of radius 15. The lines from the watershed
transform on the negated distance function from the markers are used to cut the
input binary image (e¢). The shaded distance function, displayed in part (d) of
Fig. 8.26, is overlaid with the marker (in white) and the watershed lines
(in white). In part (f), the input image is overlaid by the morphological gradient
of the binary image.

Overlapping cells may appear in complex images, such as cytogenetic speci-
mens prepared with FISH techniques. Figure 8.27 illustrates such an applica-
tion, where the task is to find and segment chromosomes, interphase cell nuclei,
and DNA-probe dots in the images. (a) is the blue channel; (b) is the morpho-
logical gradient; (c) is the watershed transform calculated on (b), after an
h-minima filtering with height 7; in (d), the objects are filled out using recon-
struction; in (e) cut nucleus cells have been filtered from reconstruction from open
by a circle; nuclei and chromosomes have been segmented in (f) and (g) respect-
ively; (h) is the red channel image; in (i), spots were detected by thresholding the
h-maxima; Note the classical binary-image segmentation problem in (e), where
the touching round nuclei are separated.

We now discuss the other operations that were performed in this application.
The sup-reconstruction of the watershed result, which selects the whole

147
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FIGURE 8.27 Fluorescence in situ hybridization image. (a) Blue channel. (b) Morphological gradient.
(c) Watershed calculated on (b), after an h-minima filtering with height 7. (d) Obsjects filled out using
reconstruction. (e) Cut nucleus cells filtered with reconstruction from open by a circle. (f) Outline (in black)
of the segmented nuclei overlaid on the blue channel. (g) Outline (in black) of the detected chromosomes
overlaid on the blue channel. (h) Red channel image. (i) Spots (in black) detected by thresholding h-maxima
and overlaid on the blue channel.

components from (d), is tricky: The marker of the sup-reconstruction is a white
image with a single black point. To detect the red dots from the original color
image, the red channel is selected, and a simple ~-maxima filter, with a high
dynamics parameter (e.g., 20), selects the red dots. The dynamic of a regional
maximum is the height we must climb down from that maximum in order to
reach another maximum of higher elevation [13]. Similarly, the dynamic of
a minimum is the minimum height we must climb from that regional minimum
in order to reach a lower regional minimum.

8.4.6 Innerand Ovuter Markers

A typical watershed-based segmentation problem is to segment cell-like objects
in a grayscale image. The general approach commonly used to solve these
problems is threefold: (1) preprocessing using a smoothing filter, (2) extraction
of object markers (inner markers) and background markers (outer markers),
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and (3) obtaining watershed lines of the morphological gradient from the
markers. Usually the most critical part is the extraction of object markers,
since an object not marked properly will be missed in the final segmentation.

Figure 8.28 shows a typical application of the watershed from markers
technique using inner and outer markers. The input image for this example is
the same one used in Fig. 8.20. Parts (a), (b), and (c) are the same images
presented in the illustration of the classical watershed in Fig. 8.20. In this
case, however, oversegmentation is avoided by using the inner and outer
markers concept applied to the watershed from markers technique. The inner
markers are detected from the regional maxima of the input image opened with
a small disk (see part (d) ). For the outer markers, we first negate the input image
(e) and then compute the watershed transform on it. In the negated input image,
the peaks become basins, and taking the watershed transform of the inner
markers yields the skeletons of the influence zones of the basins. These compose
the background (outer) marker (f). Care is required in combining both markers
because they can touch each other at some points. We first label the inner
markers with integers and then label the outer marker with 1 greater than the
maximum inner-marker label. In (g) the different markers are painted with
different colors. The final segmentation is in (h).

To illustrate watershed segmentation using inner and outer markers, we
consider the poor-quality microscopic image of a cornea tissue shown in
Fig. 8.29a. The cell markers are extracted as the regional maxima of the opening

FIGURE 8.28 Watershed from markers. (a) Small synthetic input image (64 x 64). (b) Morphological
gradient. (c) Oversegmentation using watershed on the morphological gradient. (d) Detection of inner
markers. (e) Inner markers overlaid on negated input image. (f) Outer marker as the watershed from markers.
(g) Inner and outer markers (labeled). (h) Watershed from markers applied to the morphological gradient.
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FIGURE 8.29 Segmentation of cornea cells from a noisy image. (a) Input image. (b) Filtered by an
opening operation. (c) Regional maxima of the opening (inner markers). (d) Inner and outer markers
(watershed lines of the negated input image from the inner markers). (e) Morphological gradient of the
original image. (f) Final watershed lines overlaid on the input image.

with a disk operation performed on the input image. The criterion used with
regional maxima is mainly topological. We can model each cell as a small hill,
and we want to mark the top of each hill that has a base larger than the disk used
in the opening. Parts (b) and (c) of the figure show the opened image and its
regional maxima, respectively. The inner and outer markers (d) are detected by
the same procedure as in Fig. 8.28. The regional maxima constitute the inner
markers, and the outer markers are obtained by a watershed transform on the
negated input image. After labeling the markers, the morphological gradient is
computed in (e). Although it is a very noisy gradient, the final watershed lines,
which are overlaid on the input image in (), provide a satisfactory segmentation.

The watershed transform is most often applied to a gradient image, a top-hat
image, or a distance function image, but in other cases the input image itself is
suitable for application of the watershed transform. Figure 8.30 illustrates this
on a brightfield image of a urology specimen. The task is to find the boundaries
of the low-contrast objects in the image. The idea is to segment the low-contrast
structures in (a) by a watershed from markers operation applied directly to the
input image, because the input image already has a gradient-like structure. For
this to work, it is necessary to detect the markers only on the urology specimens.
So the first step is to find a mask image roughly larger than the specimens. We
achieve this by thresholding the filtered gradient image. Part (b) shows the
gradient of the input image, and part (c) is the closing of the gradient by a box
of size 7 x 7, followed by an area opening of 120 pixels in (d). These parameters
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FIGURE 8.30 Segmentation of a urology specimen. (a) Input image. (b) Gradient. (c) Closing with a
box of size 7 x 7. (d) Area opening by 120 pixels. (e) Thresholding (presegmentation). (f) Markers given by
the regional minima of the input image, masked by the presegmentation. (g) Watershed from markers of the
input image. (h) Area closing. (i) Contour (gradient) overlaid on the input image.

were chosen based on the thickness of the objects. Part (e) is the thresholding
of the filtered image, which, after a union operation with the regional minima of
the input image, forms the markers for the watershed, as seen in (f). The result
of the watershed from markers is seen in (g). An area closing fills in the catchment
basins, as seen in (h), and the contours computed from the gradient of part (h) are
overlaid on the input image in (i).

8.4.7 Hierarchical Watershed

A hierarchical, or multiscale, watershed (MSW) transform creates a set of nested
partitions. The multiscale watershed presented here can be obtained by applying
the watershed from markers technique to a decreasing set of markers.

The watershed at scale 1 (finest partitioning) is the classical watershed, made up
of the primitive catchment basins, and perhaps with oversegmentation. As the scale
increases, fewer markers are involved, and the coarsest partition is the entire image,
obtained from a single marker at the regional minimum of largest dynamic.
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FIGURE 8.31 Multiscale watershed transform. (a) Original image. (b) Morphological gradient.
(c) Mosaic image. (d) Markers as the regional minima with dynamics above 3. (e) Markers as the regional
minima with dynamics above 8. (f) Markers as the regional minima with dynamics above 15.

Figure 8.31 illustrates the multiscale watershed transform applied to a real
image. The decreasing sets of markers are obtained by applying the A-minima
filter; that is, the dynamics of the minima are used. We show a mosaic image
where the primitive catchment basins of the gradient are displayed with gray
level proportional to the dynamics of their regional minima. Then we show three
levels in the hierarchy, with markers taken as the regional minima with dynamics
above 3, 8, and 15. In Fig. 8.31, (a) is the input image, (b) is the morphological
gradient, (¢) is the mosaic image, and (d), (e), and (f) show the results of the
watershed transform from the markers taken as the regional minima having
dynamics greater than 3, 8 and 15, respectively. Note that the highest dynamic
corresponds to the background, the second highest dynamic corresponds to the
largest circular cell, and the third highest corresponds to the elongated cell lying
above it. This observation is confirmed by the two most prominent objects on
the background in (f).

8.4.8 Watershed Transform Algorithms

There are many watershed transform algorithms in the literature, and this can be
quite confusing. Two types of algorithms are the most important. One is based
on immersion simulation and the other is based on minimum-cost paths. We
present an algorithm based on the minimum-cost path for the watershed-
from-markers transform, in which the definition and implementation are
consistent. The classical watershed transform is obtained when the markers
are the regional minima of the image.
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8.4 Watershed Segmentation

The image is modeled as a graph, and each pixel is a node. The minimum-
path cost between two pixels, p and ¢, in the graph is given by the minimal cost
of all the paths connecting p and ¢:

C*(p, 9) = min{ C(mi(p — q))}

where 7;(p — ¢) denotes a path from p to ¢. The cost of a simple connected path
from p — ¢ is given by a lexicographic cost C(p), where the first component,
C!(p), is the maximum pixel value in the path and the second component, C?( p),
is the number of times the first component cost is the same before arriving at p,:

C(p1, p2.-- ) = [C'(pn), C*(pw)]
C'(p1)=0 (8.24)
C'(pn) =max{ C'(p1), f(p2),.... f(pn)},  forn>1
C*(py) = max{j: C'(p,) = C'(payp)}, j=0,1,...,n—1

Here f'is the input image and C'( p,) is the maximum pixel value of f( p;), where
pi is in the path p; — p,,.

The catchment basin CB; associated with the marker L is defined by those
nodes p having a path cost from this marker that is less than or equal to the path
cost from any other marker; that is,

where C*(L, p) is the minimum-cost path from region L to pixel p, and this is the
minimum-cost path from any pixel of region L to p, that is,

C*(L, p) =min{C*(/, p):l € L}

A simple but efficient implementation of this watershed definition is the
following algorithm, ¢b(f, L), where f is the input image, L is a labeled image
where nonmarker pixels have the value 0, and the output of the algorithm is L,
which shows the final catchment basin regions.

FunctionL=cb(f, L)
f: input image
L: labeled image (input and output)

1. Initialization
for L(p) !=
inHFQ (p, 0)
(Continued)
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2. Propagation
while HFQ is not empty:
p <- OUtHFQ
for each non-labeled g neighbor of p:
L(g) <-L(p)
inHFQ (g, £(q))

In this function, the hierarchical FIFO queue (HFQ) has the following
operations: inHFQ( p, v)—insert pixel p with priority v; outHFQ—remove the
pixel with the lowest priority, with the FIFO policy for pixels at the same
priority. This FIFO policy implements intrinsically the second component of
the lexicographic cost of Eq. 8.24.

Two points are worth mentioning in the formulation of the catchment basins
given in Eq. 8.25. First, watershed lines are not defined by this algorithm. Second,
many optimal solutions are possible. This is because the criterion for a pixel’s
belonging to a particular catchment basin is merely that its cost relative to that
basin marker be less than or equal to its cost relative to any other basin marker.
Thus watershed lines can be assigned to pixels that have the same minimal cost
relative to more than one marker. With this approach, the watershed lines can be
thick. If one wants one-pixel-thick watershed lines, a thinning can be used.

8.5 Summary of Important Points
1. Morphology processing has to do with the fitting, or not fitting, of
a structuring element inside the objects in an image.

2. Morphology processing can be directly and efficiently applied to discrete
images.

3. Morphology processing can be applied to both binary and grayscale
images.

4. Morphology algorithm design is based on a building block concept,
where complex operators are built up from sequences of simple ones.

5. Erosion and dilation are primitive operators of morphology processing,
and they are duals.

6. The erosion of an image consists of all locations where the structuring
element fits inside an object.

7. Opening and closing are created from the composition of erosion and
dilation. They are dual operations.
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8.5 Summary of Important Points

. An image contains its opening, whereas it is contained by its closing.

. The opening of an image by a structuring element is the union of all the

structuring elements that fit inside the objects. It is a way of marking
objects that have certain specified morphological properties.

An alternating sequential filter combines openings and closings with
increasing structuring element sizes to filter out iteratively both additive
and subtractive noise components.

The top-hat concept consists of subtracting the input image from the
output image of a morphological filter, or the inverse.

The labeling process decomposes an image into its connected components.

The morphological reconstruction of an image from a marker is the
union of all connected components of the image that intersect that
marker.

The area-opening operation removes all connected components with
area less than a specified value.

Skeletonization is a classic tool for image processing that shrinks an
object’s boundaries to thin lines. It has been widely used in microscopy,
primarily for segmentation and shape analysis.

Grayscale erosion (or dilation) by a flat structuring element is equivalent
to a moving-minimum (moving-maximum) filter over the window
defined by the structuring element.

The morphological gradient is defined as the subtraction of the erosion
from the dilation.

When a flat structuring element is used, grayscale erosion, dilation,
opening, closing, ASF, morphological reconstruction, alternating
sequential component filters, area opening, and closing are stack filters.
They can be implemented by operating on the threshold sets with their
binary-equivalent operator, followed by stack reconstruction.

The h-maxima operator is a component filter that removes any peaks
with height less than or equal to /# and decreases the height of the
remaining peaks by /. The A-minima operator is its dual.

A regional maximum (or minimum) is a flat connected region that is on
top of a peak (or at the bottom of a basin).

Intuitively, the watershed transform is a flood simulation, where the
watershed lines separate waters flooded in from different regional
minima of the image.
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22. Normally, the watershed is computed on the image gradient to detect
contour lines around homogeneous regions.

23. In noisy images there are normally too many minima, resulting in
a watershed oversegmentation effect.

24. Watershed oversegmentation is effectively eliminated by filtering the
image with closing, area-closing, or #-minima operators.

25. The watershed oversegmentation phenomenon can be useful to separate
homogeneous from textured regions.

26. Another way to eliminate watershed oversegmentation is by using the
watershed from markers technique, where water can flood only from
markers instead of from all regional minima.

27. The watershed-based segmentation from markers technique typically
requires inner markers for the objects and outer markers for the
background.

28. The classical watershed transform can be constructed using the
watershed from markers technique, and vice versa.

29. A multiscale watershed transform creates a set of nested partitions.
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Qiang Wu and Kenneth R. Castleman

Image segmentation is a task of fundamental importance in digital image
analysis. It is the process that partitions a digital image into disjoint (nonover-
lapping) regions, each of which typically corresponds to one object. Once
isolated, these objects can be measured and classified, as discussed in Chapters
10 and 11, respectively. Unlike human vision, where image segmentation takes
place without effort, digital processing requires that we laboriously isolate the
objects by breaking up the image into regions, one for each object [1]. Errors in
the segmentation process almost certainly lead to inaccuracies in any subsequent
analysis. Further, the exact location of object boundaries is subject to interpre-
tation, and different segmentation algorithms often produce different, though
not erroneous, results.

In this chapter we describe a number of techniques for locating and isolating
objects in a digital image. We focus the discussion on the segmentation of 2-D
gray-level images, but most of the techniques can be extended to multispectral
images (see Chapter 13) and 3-D images (see Chapter 14). Segmentation is also
treated in Chapter 8, for it is a major application of morphological image
processing.

Image segmentation is usually approached from one of two different but
complementary perspectives, by seeking to identify either the regions or the
boundaries of objects in the image [2, 3]. A region is a connected set of (adjacent)
pixels. In the region-based approach, we consider each pixel in the image and
assign it to a particular region or object. In the boundary-based approach, either

Microscope Image Processing
Copyright © 2008, Elsevier Inc. All rights reserved.
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9 Image Segmentation

we attempt to locate directly the boundaries that exist between the regions or
we seek to identify edge pixels and then link them together to establish the
required boundaries. Segmentations resulting from the two approaches may not
be exactly the same, but both approaches are useful to understanding and
solving image segmentation problems, and their combined use can lead to
improved performance [2-4]. Real-world applications in digital microscopy
often pose very challenging segmentation problems. Variations and combi-
nations of the basic techniques presented here often must be tailored to the
specific application to produce acceptable results.

9.1.1 Pixel Connectivity

Before introducing various methods for image segmentation, it is important to
understand the concept of connectivity of pixels in a digital image (see also
Chapters 8 and 14). In a set of connected pixels, all the pixels are adjacent or
touching [5]. Between any two pixels in a connected set there exists a connected
path wholly within the set. A connected path is one that always moves between
neighboring pixels. Thus, in a connected set, one can trace a connected path
between any two pixels without ever leaving the set.

There are two rules of connectivity. If only laterally adjacent pixels (up, down,
right, left) are considered to be connected, we have “4-connectivity,” and the
objects are “4-connected.”” Thus a pixel has only four neighbors to which it can
be connected. If diagonally adjacent (45° neighbor) pixels are also considered to be
connected, then we have ““8-connectivity,” the objects are “8-connected,” and each
pixel has eight neighbors to which it can be connected. Either connectivity rule can
be adopted as long as it is used consistently. Any region that is 4-connected is also
8-connected, but the converse is not necessarily true. Overall, 8-connectivity is
more commonly used, and it produces results that are closer to one’s intuition.

9.2 Region-Based Segmentation

Region segmentation methods partition an image by grouping similar pixels to-
gether into identified regions. Image content within a region should be uniform and
homogeneous with respect to certain attributes, such as intensity, rate of change in
intensity, color, and texture. Regions are important in interpreting an image
because they typically correspond to objects or parts of objects in a scene. In this
section we discuss a number of widely used techniques that fall into this category.

9.2.1 Thresholding

Thresholding is an essential region-based image segmentation technique that is
particularly useful for scenes containing solid objects resting on a contrasting
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background. It is computationally simple and never fails to define disjoint
regions with closed, connected boundaries. The operation is used to distinguish
between the objects of interest (also known as the foreground) and the
background on which they lay. The output is either the label “object” or
“background,” which can be represented as a Boolean variable. In general,
a gray-level thresholding operation can be described as

| F, if I(x,y)=T
G(x, ) = {B, it I(x, y) < T ©.1

where I(x, y) is the original image, T is the threshold, G(x, y) is the thresh-
olded image, and F corresponds to the foreground labeled with either
a designated gray-level value or the original gray level, I(x, y). Thus all pixels
at or above the threshold are assigned to the foreground and all pixels below
the threshold are assigned to the background, which is labeled B. The bound-
ary is then that set of interior points, each of which has at least one neighbor
outside the object. It should be noted that the given formulation assumes we
are interested in high gray-level objects on a low gray-level background.
For the converse, one can simply invert the image and the discussion here is
still applicable.

Thresholding works well if the objects of interest have uniform interior gray
level and rest on a background of unequal but uniform gray level. If the objects
differ from the background by some property other than gray level (color, texture,
etc.), one can first use an operation that converts that property to gray level. Then
gray-level thresholding can segment the processed image. Thresholding can also
be generalized to multivariate classification operations, in which the threshold
becomes a multidimensional discriminant function classifying pixels based on
several image properties. Readers interested in multivariate image thresholding
and clustering are referred to [6-8] for details.

9.2.1.1 Global Thresholding

In the simplest implementation of thresholding, the value of the threshold gray
level is held constant throughout the image. If the background gray level is
reasonably constant over the image and if the objects all have approximately
equal contrast above the background, then the gray-level histogram is bimodal,
and a fixed global threshold usually works well, provided that the threshold, 7,
is properly selected. In most cases the threshold is determined from the gray-
level histogram of the image to be segmented. In general, the choice of the
threshold, T, has considerable effect on the boundary position and overall size
of segmented objects. This, in turn, affects the values obtained from subsequent
object measurement. For this reason, the value of the threshold must be
determined carefully.
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9.2.1.2 Adaptive Thresholding

Due to uneven illumination and other factors, the background gray level and the
contrast between the objects and the background often vary within the image.
In such cases, global thresholding is unlikely to produce satisfactory results,
since a threshold that works well in one area of the image might work poorly in
other areas. To cope with this variation, one can use an adaptive, or variable,
threshold that is a slowly varying function of position in the image [9].

One approach to adaptive thresholding is to partition an N x N image into
nonoverlapping blocks of n x n pixels each (n < N), analyze gray-level histo-
grams of each block, and then form a thresholding surface for the entire image
by interpolating the resulting threshold values determined from the blocks. The
blocks should be of proper size so that there is a sufficient number of back-
ground pixels in each block to allow reliable estimation of the histogram and
setting of a threshold [10].

Adaptive thresholding can also be implemented as a two-pass operation
[10, 11]. Before the first pass, a threshold is computed based on the histogram
of each block by choosing, for example, the value located midway between the
background and object peaks. Blocks containing unimodal histograms can be
ignored. In the first pass, the object boundaries are defined using a gray-level
threshold that is constant within each block but differs for the various blocks.
The objects so defined are not extracted from the image, but the interior mean
gray level of each object is computed. On the second pass, each object is given
its own threshold that lies midway between its interior gray level and the
background gray level of its principal block.

Figure 9.1 shows an example of applying thresholding for segmentation of
human chromosomes in a microscope image. In this example, the background
gray level varies due to nonuniform illumination, and contrast varies from one
chromosome to the next. In Fig. 9.1a, a global threshold has been used on the

FIGURE 9.1 The results of global (a) and adaptive (b) thresholding for chromosome segmentation.
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image to isolate the chromosomes. Each isolated chromosome is displayed with
a boundary. In Fig. 9.1b, an adaptive threshold has been used instead. This
results in fewer segmentation errors, that is, cases where multiple chromosomes
are stuck together. The accuracy of the area measurement for chromosomes is
improved by adaptive thresholding as well [10, 12].

9.2.1.3 Threshold Selection

The selection of the threshold value is crucial to the success of a thresholding
operation. Unless the object in the image has very steep sides, any variation in
threshold value can significantly affect the boundary position and thus the
overall size of the extracted object. This means that subsequent object measure-
ments, particularly the area measurement, are quite sensitive to the threshold
value. While no universal methodology for threshold selection works on all
kinds of images, a wealth of techniques have been developed to facilitate the
determination of threshold values under different circumstances [13, 14].

An image containing an object on a contrasting background normally has
a bimodal gray-level histogram (Fig. 9.2). The two peaks correspond to the
relatively large numbers of pixels that belong to the object and to the back-
ground. The dip between the peaks corresponds to the relatively few pixels
around the edge of the object. When a threshold value, T, is chosen, the area
of the object is given by

T
area = J H()dl 9.2)
0

where H(I) is the gray-level histogram of the image. Notice in Fig. 9.2 that
increasing the threshold from 7'to T + AT causes only a slight change in area if
the threshold is placed at the dip in the histogram; hence the threshold chosen at
or near the dip minimizes the sensitivity of the object area measurement to small
variations in threshold value.

H(I)y

T T+AT -

FIGURE 9.2 A bimodal histogram. The shaded areas show the effect of threshold variation on the area
of the object.
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Histogram Smoothing If the region of the image containing the
object is small and noisy, the histogram itself will be noisy. Unless the dip is
unusually sharp, the noise can make its location obscure and unreliable. This
can be overcome to some extent by smoothing the histogram using either a
convolution filter or a curve-fitting procedure.

A simple yet effective smoothing operation is the convolution of the input
histogram with a moving-average filter, also known as a box filter:

(W-1)/2

Houtput(i) = W Z Hinput(i _]) 9.3)
J==(W-1)/2

where W is an odd number, typically chosen to be 3 or 5. This operation is
designed to reduce small fluctuations without shifting the peak positions. If the
two peaks are unequal in size, smoothing may tend to shift the position of the
dip in the histogram, making it difficult to locate uniquely. The peaks, how-
ever, are easy to locate and relatively stable under reasonable amounts of
smoothing. Therefore, placing the threshold at some designated position rela-
tive to the two peaks can be more reliable than trying to place it at the dip.
In this section we introduce several methods based on different threshold
selection criteria.

The Isodata Algorithm The isodata algorithm is an iterative
threshold selection technique [15]. Initially, the histogram is divided into two
parts using a starting threshold, 7?, placed midway between the maximum and
minimum gray level. Next we compute the sample mean, Mﬁé”, of the %ray-level
values associated with the foreground pixels and the sample mean, u lg), of the
gray-level values associated with the background pixels, respectively. A new
threshold value, 7D, is then obtained as the average of these two sample means.
This process is repeated using the new threshold, until the threshold value no
longer changes; that is,

(k-1 (k=1)

)
7% _ % until 70 = 76D >0 (9.4)

The Background Symmetry Algorithm The background
symmetry algorithm works under the assumption that there is a dominant
background peak in the histogram, and it is symmetrical about its maximum
[16]. Preprocessing the histogram with a smoothing operation may help improve
the performance of this algorithm. The position of the peak maximum, /.y, is
determined by searching the entire histogram. After that, the algorithm searches
on one side of the background peak that is farther away from the foreground
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to locate a certain percentile point, I,. Using the symmetry assumption, the
threshold value is then selected on the other side of the background peak at an
equal displacement from the background peak; that is,

T = Inax — (I — Imax) 9.5)

This algorithm can easily be adapted to the case where the object peak dominates
instead of the background peak and is approximately symmetrical.

The Triangle Algorithm The triangle algorithm is known to be
particularly effective when the object pixels produce a weak peak in the
histogram [17], as illustrated in Fig. 9.3, where low gray-level objects reside on
a high gray-level background. One first finds the maximum peak of the
histogram. A line is then constructed to connect the maximum peak point
[Imax> H(Imax)] to the lowest point [fiowests H(fiowest)] in the histogram. This is
followed by the computation and comparison of the distances between that line
and all the histogram points H(I), with I ranging from [ljoyest t0 Imax. The
threshold value, 7, is taken as the value of 7 where this distance is greatest.

Gradient-Based Algorithms A variant of the preceding methods
is the construction of a histogram of only those pixels having relatively high
gradient magnitude [18]. This eliminates a large number of interior and exterior
pixels from consideration, which may make the dip in the histogram easier to
locate [19]. One can also divide the histogram by the average gradient of pixels
at each gray level to enhance the dip further [18], or average the gray level of
high-gradient pixels to determine a threshold [19].

9.2.1.4 Thresholding Circular Spots

In many important cases it is necessary to find objects that are roughly circular
in shape. Suppose an image /(x, y) contains a single spot. By definition, this

I lowest Imax /

FIGURE 9.3 lllustration of the triangle algorithm.
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image contains a point (xy, yo) of maximum gray level. With polar coordinates
centered on (xy, yo), the image can be represented as /(r, #) and we have

I(r, 0) = I(r2, 0), r2>n (9.6)

for all values of 6. If equality is not allowed in Eq. 9.6, I(x, y) is a monotone spot.
An important special case occurs if all contours of a monotone spot are circles
centered on (xg, o). Such a special case is referred to as a concentric circular spot
(CCS). To a good approximation, this model can be used to represent the noise-
free images of certain types of cells in a microscope. For a CCS, the function
I(r, 6) is independent of 6, and it serves as the 1-D spot profile function. This
function is useful for threshold selection. For example, one can locate the
inflection point and select the gray-level threshold to place the boundary at
the point of maximum slope. Other unique points on the profile, such as the
maximum magnitude of the second derivative [19], can also be used. If we
threshold a monotone spot at a gray level 7, we define an object with a certain
area and perimeter. As we vary T throughout the range of gray levels, we
generate the threshold area function, 4(7T), and the perimeter function, P(T).
Both of these functions are unique for any spot. They are both continuous for
monotone spots, and either is sufficient to specify a CCS completely. If two spots
have identical perimeter functions or identical histograms, they are known as
p-equivalent or h-equivalent, respectively. It turns out that h-equivalent spots
have identical threshold area functions [19].

Analytical expressions relating the profile function to the threshold area
function and the perimeter function of a CCS can be derived to guide the
selection of threshold. The radius of the circular object obtained by thresholding
a CCS at gray level T is

1/2
HT) = {1u4(7)} — {1
w

w

T 1/2
JH@M} 9.7)
0

For a monotone spot, the histogram H(/) is nonzero between its minimum and
maximum gray levels. This means that the area function 4(7") is monotonically
increasing, and so is #(T"). Thus the inverse function of #(7") exists, and it is the
spot profile. Thus we can compute the area-derived profile of a CCS by inte-
grating the histogram to obtain the area function, followed by taking the square
root and then the inverse function. Similarly, the profile may also be obtained
from the perimeter function through the relationship

1
H(T) = 5 P(T) (9.8)

a
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9.2.1.5 Thresholding Noncircular and
Noisy Spots

For an image containing a noise-free CCS, we can easily obtain the profile
simply by taking the gray levels along the scan line that contains the peak.
Even for near-circular spots and noisy spots that analysis can still be useful. For
example, one can use the histogram of a near-circular spot to obtain the profile
of the h-equivalent CCS and select the threshold gray level that maximizes the
slope at the boundary. On the other hand, it is useful to measure the perimeter
function and determine the profile of the p-equivalent CCS. Either technique
could be used to select thresholds suitable for the image under consideration.
In some microscope images the noise level is so high that differentiating a single
scan line cannot reliably identify the inflection point on the profile. Nonetheless,
since the area-derived and perimeter-derived profiles are computed using most
or all of the edge pixels in the object, the noise is reduced inherently in the
process by averaging.

Further noise reduction can be achieved by smoothing the histogram or
perimeter function before profile computation or by smoothing the profile
function itself. The area-derived profile is easier to compute, and it has
a greater noise reduction effect. Random noise in the image usually makes the
spot boundary jagged. While this may have little effect on the area function,
it tends to make the perimeter function erroneously large. Even though the error
can be reduced by boundary smoothing built into the perimeter measurement
routine, the area-derived profile clearly has the advantage of computational
simplicity.

In the study described in [19], nine methods of threshold selection were
compared, including two based on the area-derived profile (maximum magni-
tudes of the first and second derivatives) for measuring the diameter of fluores-
cent microspheres. Generally the method based on maximum magnitude of
second derivative was found to be the most accurate of the nine for spheres of
different sizes and intensities. It also performed well for cells in culture [19, 20].
Other methods tended to underestimate object size.

Noncircular Spots For highly noncircular spots, the h-equivalent and
p-equivalent CCS profiles may no longer be acceptable for placing the gray-level
threshold. For objects of arbitrary shape, we can examine the average gradient
around the boundary as a function of the threshold gray level that defines the
boundary [10]. Suppose a noncircular monotone spot is thresholded at gray
levels of 7 and I + Al, as shown in Fig. 9.4. At some point ¢ on the outer
boundary, Ar is the perpendicular distance to the inner boundary. Since Ar is
perpendicular to a contour line, it lies in the direction of the gradient vector at
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I+ Al
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/

FIGURE 9.4 Threshold selection for a noncircular object. (After [2].)

point a. The magnitude of the gradient vector at point ¢ on the outer boundary
is given by

IVI| = lim — (9.9)

To obtain the average gradient around the boundary, we can simply average
|VI| around the outer boundary. If Ar is small compared to the perimeter, the
area between the two boundaries is approximately

A4 = P(I)Ar (9.10)

where Ar is the average perpendicular distance from the outer to the inner
boundary and P(/) is the perimeter function. To obtain the average gradient
around the boundary, we substitute Ar for Ar in Eq. 9.9 and get

AT _P()

V1] = Jim PO =

0AA ©-11)
Hence the average boundary gradient turns out to be the ratio of the perimeter
function to the histogram. This function is not difficult to compute, and it
readily identifies the threshold gray level that maximizes the slope at the bound-
ary. For noisy images, it may be beneficial to smooth the perimeter function and
the histogram before this computation.

Objects of General Shape Objects of arbitrary shape that are
nonmonotonic and relatively flat on top (without a unique peak) usually
have sides that slope uniformly down toward the background. The point
spread function of microscope optical systems forbids sides of infinite slope
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in real images. On the sides of the objects, the contour lines are closed and
generally convex curves, but they may have local concavities. We can assume
that each threshold gray level defines a single closed contour for each object.
Under these conditions we need to consider only the range of gray levels
corresponding to the sloping sides of the object, and the ways to establish
the maximum slope threshold can be summarized as follows:

1. Select T at a local minimum in the histogram. This is the easiest tech-
nique, and it minimizes the sensitivity of the area measurement to small
variations in 7.

2. Select T corresponding to the inflection point in the h-equivalent CCS
profile function. This is a simple computation, and it involves considerable
averaging for noise reduction.

3. Select T to maximize the average boundary gradient. This involves com-
puting the perimeter function but requires no approximation regarding
equivalent spot images.

4. Select T corresponding to the inflection point in the p-equivalent CCS
profile function.

For large-scale studies, one may use one of these methods to characterize the
objects under study. Then a shortcut method can be implemented for efficiency.
If a profile analysis shows, for example, that the optimal threshold gray level for
isolated cells in microscope images occurs midway between the peak and the
background gray level, then this simplified technique can be employed for
routine use.

9.2.2 Morphological Processing

After thresholding, a given image is segmented into a binary image of object
(foreground) and background. If this initial segmentation is not satisfactory,
a set of morphological operations or the procedures based on these operations
and their variants can be utilized to improve the segmentation results. The
techniques of morphological processing provide versatile and powerful tools
for image segmentation. The design of particular algorithms involves using one’s
knowledge of what effect each of the primitive operations has on an image and
combining them appropriately to obtain the desired result. For a more thorough
discussion of morphological operations, see Chapter 8.

Many of the binary morphological operations can be implemented as 3 x 3
neighborhood operations. In a binary image, any pixel, together with its
eight neighbors (assuming 8-connectivity), represents 9 bits of information.
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Thus there are only 512 possible configurations for a 3 x 3 neighborhood in
a binary image. Convolution of a binary image with the 3 x 3 kernel

1 2 4
& 16 32
64 128 256

generates a 9-bit (512-gray-level) image, in which the gray level uniquely speci-
fies the configuration of the 3 x 3 binary neighborhood centered on that pixel.
Neighborhood operations thus can be implemented with a 512-entry lookup
table with 1-bit output. Whether the operation is implemented in software or in
specially designed hardware, it is often much more efficient to use a lookup table
for fast “pipeline processing” [21-23] than other ways of implementation.

In the general case, morphological image processing operates by sliding
a structuring element over the image, manipulating a square of pixels at a time
similar to convolution (Fig. 9.5). Like the convolution kernel, the structuring
element can be of any size, and it can contain any complement of 1’s and 0’s.
At each position, a specified logical operation is performed between the struc-
turing element and the underlying binary image. The binary result of that logical
operation is stored in the output image at that pixel position. The effect created
depends on the size and content of the structuring element and on the nature of
the logical operation.

Binary erosion is the process of eliminating all the boundary points from
an object, leaving it smaller in area by one pixel all around the perimeter.
By definition, a boundary point is a pixel that is located inside the object but
that has at least one neighbor outside the object. If the object is circular, its
diameter decreases by two pixels with each erosion. If it narrows to less than
three pixels thick at any point, it will become disconnected (into two objects) at

Structuring
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FIGURE 9.5 Implementation of morphological image processing operation. (After [2].)
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that point. Objects no more than two pixels thick in any direction are eliminated.
Binary erosion is useful for removing from a thresholded image objects that are
too small to be of interest.

Conversely, binary dilation is the process of incorporating into the object all
the background points that touch the object, leaving it larger in area by that
amount. If the object is circular, its diameter increases by two pixels with each
dilation. If two objects are separated by less than three pixels at any point, they
will become connected (merged into one object) at that point.

9.2.2.1 HoleFilling

Dilation-based propagation (also known as reconstruction) can be used,
for example, to fill interior holes of segmented objects in a thresholded image.
Figure 9.6 shows an example of such a procedure. Starting from the binary
segmented image of the object shown in Fig. 9.6a, one inverts this image to create
a mask. Then the border of the image is used as the marker of a propagation
(reconstruction) inward toward the mask. This generates the image shown
in Fig. 9.6b. Inverting this propagated image produces the desired result, which
contains the object with all interior holes filled (Fig. 9.6c¢).

9.2.2.2 Border-Object Removal

Another useful procedure is the removal of border-touching objects. In quanti-
tative microscopy the objects that are connected to the image border are par-
tially obscured and usually not suitable for subsequent analysis. In such cases
one can use the procedure illustrated in Fig. 9.7 to eliminate border-touching
objects. Here the binary thresholded image (in Fig. 9.7a) is used as the mask, and
the border of the image is used as the marker. A propagation from the border
inward toward the mask generates the image shown in Fig. 9.7b. Then comput-
ing the logical exclusive OR (XOR) operation of the propagated image and the
mask image produces the image shown in Fig. 9.7c.

o

(@) (b) (©

d

FIGURE 9.6 Filling interior holes of segmented objects using binary morphological operations.
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FIGURE 9.7 Removing border objects using binary morphological operations.

9.2.2.3 Separationof Touching Objects

Binary morphological processing can also be used to separate slightly touching
objects that result from the segmentation process. As illustrated in Fig. 9.8, the
procedure works as follows. Starting from a binary segmented image (Fig. 9.8a),
compute a few erosions that are enough to separate the touching objects
(Fig. 9.8b). Invert the resulting image and compute the skeleton (Fig. 9.8c).
This is known as the exoskeleton because it is the skeleton of the background
outside the objects [16]. It is then followed by computing the logical operation
AND of the original binary image and the inverted skeleton image. The final
result is shown in Fig. 9.8d, where the touching objects are separated.

9.2.2.4 The Watershed Algorithm

Perhaps the best-known morphological processing technique for image segmen-
tation is the watershed algorithm. This topic is discussed extensively in Chapter 8.
Figure 9.9 shows a 1-D illustration of how this approach works. For this
example we assume the objects are of low gray level, on a high-gray-level
background. Figure 9.9 shows the gray levels along one scan line that cuts
through two objects lying close together. The image is initially thresholded at
a low gray level, one that segments the image into the proper number of objects.

(@) (b) (d)

FIGURE 9.8 lllustration of separating touching obijects. (a) A binary segmented image. (b) After a few
erosions and inversion. (c) The exoskeleton. (d) Separated obijects resulting from applying AND between the
images in (a) and (c).
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|~— Object 1 | Object 2 I

FIGURE 9.9 |llustration of the watershed algorithm. (After [2].)

Then the threshold is raised gradually, one gray level at a time. The object
boundaries will expand as the threshold increases. When they touch, however,
they are not allowed to merge. Thus these points of first contact become the final
boundaries between adjacent objects. The process is terminated before the
threshold reaches the gray level of the background.

Rather than simply thresholding the image at the optimum gray level, the
watershed approach begins with a threshold that is low enough to isolate the
individual objects properly. Then the threshold is gradually raised to the opti-
mum level, but merging of objects is not allowed. This can solve the problem
posed by objects that are either touching or too close together for global thresh-
olding to work. The final segmentation will be correct if and only if the segmen-
tation at the initial threshold isolates the individual objects correctly. Both the
initial and final threshold gray levels must be well chosen. If the initial threshold
is too low, objects will be oversegmented and low-contrast objects will be missed
at first and then merged with nearby objects as the threshold increases. If
the initial threshold is too high, objects will be merged from the start. The
final threshold value determines how well the final boundaries fit the objects.
The threshold selection methods discussed in this chapter can be useful in setting
these two values.

9.2.3 Region Growing

The fundamental limitation of histogram-based region segmentation methods,
such as thresholding, is that the histograms describe only the distribution of gray
levels without providing any spatial information. Region growing [4, 24-26] is an
approach that exploits spatial context by grouping adjacent pixels or small
regions together into larger regions. Homogeneity is the main criterion for
merging the regions. With this approach, one begins by dividing an image into
many small regions. These initial regions can be small neighborhoods or even
individual pixels known as the seeds. In each region one computes suitably defined
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functions of image property parameters that reflect on its membership in an
object. The parameters that distinguish different objects may include average
gray level, texture, color, etc. Thus the first step assigns to each region a set of
parameters whose values reflect the object to which it belongs. Next, all bound-
aries between adjacent regions are examined. A measure of boundary strength is
computed utilizing the differences of the parameters of the adjacent regions.
A given boundary is strong if the parameters differ significantly on either side of
that boundary, and it is weak if they do not. Strong boundaries are allowed to
stand; weak boundaries are dissolved and the adjacent regions merged. This
process is iterated by alternately recomputing the object membership parameters
for the enlarged regions and once again dissolving weak boundaries, until it
reaches a point where no boundaries are weak enough to be dissolved.

Region-growing methods often produce good segmentation results that
correspond well to the visually apparent edges of objects in the image. Observing
this procedure gives one the impression that regions in the interior of an object
are growing and merging until their boundaries reach the edge of the object.
Although region-growing algorithms are computationally more expensive than
the simpler techniques, the methods are able to utilize several image parameters
directly and simultaneously in determining the final boundary location.

Figure 9.10 shows four stages in the region-growing process for the nucleus
of a squamous epithelial cell on a microscope slide. In this example, gray-level
was the sole region membership parameter. Part (d) shows the final region. Note
that two starting regions eventually merge into one.

() (b)

(©) (d)

FIGURE 9.10 Example of region growing.
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9.2.4 Region Splitting

Opposite to the “bottom-up” approach of region growing, region splitting is
a “top-down” operation. The basic idea of region splitting is to break the image
into disjoint regions within which the pixels have similar properties. In a sense,
the morphological procedures discussed earlier, such as the exoskeleton and
watershed algorithms, can be viewed as region-splitting methods since they work
to separate touching objects. However, morphological techniques are generally
more suitable for segmenting regularly shaped objects and for those cases where
there are distinct bottleneck connections between touching objects.

Region splitting usually starts with the whole image as a single initial region.
It first examines the region to decide if all pixels contained in it satisfy certain
homogeneity criteria of image properties. Region-splitting methods generally
use homogeneity criteria similar to those that region-growing methods use, and
they differ only in the direction of application. In region splitting, if the criterion
is met, then the region is considered homogeneous and hence left unmodified in
the image. Otherwise the region is split into subregions, and each of the subre-
gions, in turn, is considered for further splitting. This recursive process continues
until no further splitting occurs.

The most commonly used region-splitting algorithms employ a pyramid
image representation known as the quadtree. Regions are square-shaped and
correspond to the nodes of the quadtree. After region splitting, the resulting
segmentation may contain neighboring regions that have identical or similar
image properties. Hence a merging process can be used after each split to
compare adjacent regions and merge them if necessary. Such combined oper-
ations lead to the methods known as region-splitting and -merging algorithms,
which exploit the advantages of both approaches [27]. Figure 9.11 illustrates the
basic idea of these methods. We use F to denote the whole image (Fig. 9.11a) and
suppose that not all the pixels in F meet the chosen criterion of homogeneity.
Thus the region is split as in Fig. 9.11b. We then assume that all pixels within
regions F1, F2, and F3 are homogeneous, respectively, but that those in F4

F1 F2 F1 F2 F1 F2

Fa1 | Fa2 Fa1 | Fa2

F3 F4 F3 F3
Fa3 | Fa4 Fa3

(a) (b) (€) (d)

FIGURE 9.11 Example of region splitting and merging. (a) Whole image. (b) First split. (c) Second split.
(d) Merge.
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are not. Hence F4 is split next, as in Fig. 9.11c. Now, if we assume that all pixels
within each resulting region are homogeneous with respect to that region and
that, after comparing all the regions, regions F41 and F42 are found to be
identical or similar. These regions are therefore merged, as in Fig. 9.11d.

9.3 Boundary-Based Segmentation

The region-based methods discussed in the previous section aim to segment an
image by partitioning the image into sets of interior and exterior pixels accord-
ing to the similarity of certain image properties. Boundary-based techniques, on
the other hand, seek to extract object boundaries directly, based on identifying
the edge pixels located at the boundaries in the image. In this section we discuss
a number of methods in this category.

9.3.1 Boundaries and Edges

In the simplest cases, for scenes containing isolated solid objects on a contrasting
background, image segmentation can be readily done by thresholding. To
obtain the boundaries of these objects, one can perform a dilation and an
erosion of the binary segmented image separately. Then subtracting the eroded
image from the dilated one will result in the object boundaries. In practice,
however, input images are less ideal, and the localization of object boundaries
requires more sophisticated gray-level computation.

In general, edges correspond to those points in an image where gray level
changes sharply. Such sharp changes or discontinuities usually occur at object
boundaries. Pixels exhibiting the characteristics of an edge can be detected and
used to establish the boundaries of the objects. One can locate these pixels by
computing the derivatives of the image. This is illustrated for the one-dimensional
case in Fig. 9.12. Theoretically, we can detect edges either by applying a high-
pass frequency filter in the Fourier domain or by convolving the image with an
appropriate derivative operator in the spatial domain. In practice, however,
edge detection is usually performed in the spatial domain, because it is
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FIGURE 9.12 An edge and its first and second derivatives. (After [2].)
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computationally less expensive and often yields better results. There are many
derivative operators designed for 2-D edge detection, most of which can be
categorized as gradient-based or Laplacian-based methods. The gradient-based
methods detect the edges by looking for the maximum in the first derivative of
the image. The Laplacian-based methods search for zero-crossings in the second
derivative of the image to find edges.

9.3.2 Boundary Tracking Based on
Maximum Gradient Magnitude

Because object or region boundaries are associated with high gradient magni-
tudes, one can track the boundaries based on the information in a gradient
magnitude image. Suppose a gradient magnitude image is computed from
a noise-free input image that contains a single object on a contrasting back-
ground. We can start the boundary tracking on this image from the highest-
gray-level pixel as the first boundary point, since it is certainly on the boundary.
If several points have the maximum gray level, then we choose arbitrarily. Next
we search the 3 x 3 neighborhood centered on the first boundary point and take
the neighbor with the maximum gray level as the second boundary point. If two
neighbors have the same maximum gray level, we choose arbitrarily. From this
point on, we begin the iterative process of finding the next boundary point, given
the current and last boundary points. Working in the 3 x 3 neighborhood
centered on the current boundary point, we examine the neighbor diametrically
opposite the last boundary point and the neighbors on either side of it
(Fig. 9.13a). The next boundary point is one of those three that has the highest
gray level. If all three or two adjacent boundary points share the highest gray

Candidate
Current boundary
direction points
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boundary  boundary for next p
point point boundary point Previous
boundary
points
(@) (b)

FIGURE 9.13 lllustration of the boundary-tracking process. (After [2].)
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level, then we choose the middle one. If the two nonadjacent points share the
highest gray level, we choose arbitrarily.

With the assumption of a noise-free image of a monotone spot, this algorithm
will trace out the maximum gradient boundary nicely. However, if noise is present,
the tracking is likely to go away from the boundary. Noise effects can be reduced
by smoothing the gradient image before tracking or by implementing a tracking
bug, which works as follows. First a rectangular averaging window, usually having
uniform weights, is defined to embody the bug (Fig. 9.13b). The last two or last few
boundary points define the current boundary direction. The rear portion of the bug
is centered on the current boundary point, with its axis oriented along the current
direction. The bug is subsequently oriented at an angle 6 to either side, looking for
direction, and the average gradient under the bug is computed for each position.
The next boundary point is then taken as one of the pixels under the front portion
of the bug when it is in the highest average gradient position.

Essentially, the tracking bug is a spatially larger implementation of the
boundary-tracking procedure described earlier. The larger size of the bug
implements smoothing of the gradient image and makes it less susceptible to
noise. It also limits how sharply the boundary can change directions. The size
and shape of the bug may be adjusted for best performance. The “inertia’ of the
bug can be increased by reducing the side-looking angle 6.

In practice, boundary tracking on gradient magnitude images is useful only
in low-noise cases. The tracking algorithms do not guarantee closed boundaries,
and they can even get lost in cases where the noise level is high.

9.3.3 Boundary Finding Based on
Gradient Image Thresholding

If we threshold a gradient image at moderate gray level, we find both object and
background below threshold and most edge points above (Fig. 9.14). Kirsch’s

|——— Object ——

Gradient

X —

FIGURE 9.14 Onedimensional illustration of gradient image thresholding using Kirsch's algorithm.
(After [2].)
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segmentation method makes use of this phenomenon [28]. In this technique, one
first thresholds the gradient at a moderately low level to identify the object and
the background, which are separated by bands of edge points that are above
threshold. Then the threshold is gradually increased. This causes both the object
and the background to grow. When they touch, they are not allowed to merge;
rather, the points of contact define the boundary. This is essentially an application
of the watershed algorithm to the gradient image.

While this method is computationally more expensive than thresholding, it
tends to produce maximum gradient boundaries, and it avoids many of the
problems of gradient tracking. For multiple object images, the segmentation
is correct if and only if it is done accurately by the initial thresholding
step. Smoothing the gradient image beforechand may help produce smoother
boundaries.

9.3.4 Boundary Finding Based on
Laplacian Image Thresholding

The Laplacian is a scalar second-derivative operator for 2-D images. It is defined as

2 2

0 0
2 _ __
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and can be implemented digitally by any of the following convolution kernels:

0 -1 0 1 -1 -1 1 -2 1
h=|-1 4 1|, bL=|-1 8 —1|, hk=|-2 4 -2
0 -1 0 1 -1 -1 1 -2 1

(9.13)

The Laplacian has the advantage that it is an isotropic measure of the second
derivative. The edge magnitude is independent of the orientation and can be
obtained by convolving the image with only one kernel. As a second-derivative
operator, the Laplacian produces an abrupt zero-crossing at an edge that is easy
to find in a noise-free image. Thresholding a Laplacian filtered image at zero
gray level may produce closed connected contours at the boundaries of objects.
The presence of noise, however, imposes a requirement for a smoothing oper-
ation prior to using the Laplacian. Usually, a Gaussian filter is chosen for this
purpose. Since convolution is associative, we can combine the Gaussian and
Laplacian into a single Laplacian of Gaussian (LoG) kernel [29, 30]:

LoG(x, y) = —V?
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This LoG filter is also known as the Mexican hat filter, since it has the shape of
a positive peak in a negative dish. It is separable in the x and y directions and
thus can be implemented efficiently. The parameter o controls the width of the
peak, which is related to the amount of smoothing. The edge positions can
be determined by the zero-crossings in the LoG-filtered image.

9.3.5 Boundary Finding Based on Edge
Detection and Linking

As discussed earlier, edges are closely associated with the boundaries of objects
in an image. Pixels exhibiting the required characteristics are known as edge
points. Edge points can be detected and used to establish the boundaries. We can
examine each of these pixels and its immediate neighborhood to determine if it
is, in fact, on the boundary of an object. Due to noise and shading effects, edge
points seldom form closed connected boundaries that are required for image
segmentation. Thus a linking process is usually required to fill in the gaps and
associate nearby edge points so as to create a closed connected boundary.

9.3.5.1 Edge Detection

The goal of edge detection is to mark the pixels in an image at which the gray
level changes sharply. The two parameters of interest are the slope and direction
of the transition. An image in which gray level reflects how strongly each pixel
meets the requirements of an edge point is called an edge map, whereas an image
that encodes the direction of the edge instead of the magnitude is known as
a directional edge map. An example pair of edge map and directional edge map is
the magnitude and direction of the gradient vector of an image. Edge detection
operators examine each pixel neighborhood and quantify the slope (and often
the direction as well) of the gray-level transition. Most of these operators
perform a 2-D spatial gradient measurement on an image /(x, ) using convo-
lution with a pair of horizontal and vertical derivative kernels, g and g,. Each
pixel in the image is convolved with both kernels, one estimating the gradient in
the x direction and the other in the y direction. These kernels are designed to
respond maximally to edges running horizontally and vertically relative to the
pixel grid. The output of these two convolutions can be combined to form the
estimated absolute magnitude of the gradient |G| and its orientation 6 at each
pixel. This gradient magnitude is computed by taking the square root of the sum
of the squares of the output from the two orthogonal kernels; that is,

Gl = /G2 + G2 (9.15)
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where G, and G, are the output of the estimated derivative function in the x and
y directions, respectively,

G, = 1(x.y) * gy, G, =1(xy) * g, (9.16)

Likewise, the gradient direction can be computed from the ratio of G, and G, by

0 = arctan <%> 9.17)

X

In practical implementations, an approximation to the gradient magnitude is
often used instead, for faster computation. It is given by

G| = |G| + |G| (9.18)

In the following, we discuss several sets of widely used derivative-based
kernels for edge detection.

The Roberts Edge Detector The Roberts operator represents one
of the earliest methods of finding edges in an image using small convolution
kernels to approximate the first derivative of the image [31]. It uses the following
2 x 2 derivative kernels:

gxz[(l) _(”, gyz[_(i (1)] (9.19)

The Sobel Edge Detector The Sobel operator is characterized by
the following pair of 3 x 3 convolution kernels [32]:

1 0 1 1 =2 -1
&=1-202|, g=|0 0 0 (9.20)
1 0 1 1 2 1

Compared with the Roberts operator, the Sobel operator is a little slower to
compute, but its larger convolution kernels smooth the image to a greater
extent, making it less sensitive to noise. It also generally produces considerably
higher output values for similar edges [32].
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The Prewitt Edge Defector The Prewitt operator is related to the
Sobel operator and uses slightly different kernels [33]:

1 0 —1 1 -1 -1
ge=1[10 1|, g=|0 0 0 (9.21)
10 -1 11 1

This operator produces results similar to those of the Sobel operator, but it is
not as isotropic in its response.

The Canny Edge Detector Generally, edge detection based on
the aforementioned derivative-based operators is sensitive to noise. This
is because computing the derivatives in the spatial domain corresponds to
high-pass filtering in the frequency domain, thereby accentuating the noise.
Furthermore, edge points determined by a simple thresholding of the edge
map (e.g., the gradient magnitude image) is error-prone, since it assumes all
the pixels above the threshold are on edges. When the threshold is low, more
edge points will be detected, and the results become increasingly susceptible to
noise. On the other hand, when the threshold is high, subtle edge points may be
missed. These problems are addressed by the Canny edge detector, which uses
an alternative way to look for and track local maxima in the edge map [34].

The Canny operator is a multistage edge-detection algorithm. The image is
first smoothed by convolving with a Gaussian kernel. Then a first-derivative
operator (usually the Sobel operator) is applied to the smoothed image to
obtain the spatial gradient measurements, and the pixels with gradient magni-
tudes that form local maxima in the gradient direction are determined. Because
local gradient maxima produce ridges in the edge map, the algorithm then
performs the so-called nonmaximum suppression by tracking along the top of
these ridges and setting to zero all pixels that are not on the ridge top. The
tracking process uses a dual-threshold mechanism, known as thresholding with
hysteresis, to determine valid edge points and eliminate noise. The process
starts at a point on a ridge higher than the upper threshold. Tracking then
proceeds in both directions out from that point until the point on the ridge falls
below the lower threshold. The underlying assumption is that important edges
are along continuous paths in the image. The dual-threshold mechanism allows
one to follow a faint section of a given edge and to discard those noisy pixels
that do not form paths but nonetheless produce large gradient magnitudes.
The result is a binary image where each pixel is labeled as either an edge point
or a nonedge point.
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9.3.5.2 Edge Linking and Boundary
Refinement

An edge map characterizes the objects in an image with edge points. If the edges are
strong enough and the noise level is low, one can threshold an edge map and thin
the resulting binary image down to single-pixel-wide closed connected boundaries.
Under less than ideal conditions, however, the edge points seldom form closed
connected boundaries required for image segmentation. Hence another step is
usually required to complete the delineation of object boundaries before object
extraction can be performed. Fdge linking is the process of associating nearby
edge points so as to create a closed connected boundary. This process fills in the
gaps in the edge map that are often caused by noise and shading in the image.

Generally, edge linking for small gaps can be accomplished by searching
a neighborhood around an endpoint for other endpoints and then filling in
boundary pixels as required to connect them. Typically this neighborhood is
a square region of 5 x 5 or larger. In complex scenes with dense edge points,
however, this can oversegment the image. To avoid oversegmentation, one can
require that the two endpoints agree in gradient magnitude and orientation to
within specified tolerances before they are allowed to be connected.

Hevuristic Search Forthoseboundary gapsinanedge map that are too
wide to fill accurately with a straight line, one can establish, as a quality measure,
a function that can be computed for every connected path between the two
endpoints, which we denote as A and B. This edge quality function may, for
example, be defined to be the average of the gradient magnitudes of the points,
minus some measure of their average disagreement in orientation angles [35, 36].

The search starts by evaluating the neighbors of endpoint A as the candidates
for taking the first step toward B. Normally only the neighbors that lie in the
general direction of endpoint B would be considered. The one that maximizes
the edge quality function from A to that point is selected. Then it becomes the
starting point for the next iteration. When the linking finally reaches B, the edge
quality function over the newly created path is compared to a threshold. If the
newly created edge is sufficiently strong, it is accepted. Otherwise it is discarded.

Heuristic search techniques usually perform well in relatively simple images, but
they do not necessarily converge to the globally optimal path between endpoints.
They become computationally expensive if the gaps to be traversed are numerous
and wide, in which case complicated edge quality functions must be used.

Curve Fitting So far, we have discussed edge linking using searching or
tracking methods. All of these require the existence of a continuous path of edge
points. If the edge points are so sparse that few connected or even nearby edge
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points are available, it might be desirable to fit a piecewise linear or higher-order
spline curve through them to establish a boundary suitable for object extraction.
For example, one can use a piecewise linear method called iterative endpoint
fitting [37] for this purpose. Suppose there is a group of edge points lying
scattered between two particular edge points A and B and that a subset of these
are to be selected to form the nodes of a piecewise linear path from A to B.
We start by establishing a straight line from A to B, and we continue by
computing the perpendicular distance from that line to each of the remaining
edge points. The furthermost one becomes the next node on the path, which now
has two branches. This process is repeated on each new branch of the path until
no remaining edge point lies more than a specified distance away from the nearest
branch. When this type of fitting is done all around the object, it produces
a polygonal approximation to the boundary.

Hough Transform The Hough transform [38, 39] can detect shapes and
establish object boundaries in an image by recognizing evidence in a transformed
parameter space. Because the transform requires the data points to be specified
in some parametric form, the technique is most commonly used to detect curves
of regular shape, such as lines, circles, and ellipses. It is particularly useful when
the input image is noisy and the data points are sparse.

Given an equation for a parameterized 2-D curve

fx, py, t1,...,t,) =0 where n=2 (9.22)

which defines the curve in the (x, y) plane, and ¢4, ..., ¢, are the parameters, one
can first select a candidate set of points from the image, such as those points that
have high probability of being located on object boundaries. In the n-dimensional
parameter space, a histogram is constructed to quantify the strength of evidence
with respect to different parameter values. Each edge point that satisfies Eq. 9.22
is transformed into a curve in the parameter space, and the histogram bins that
lie along this curve are incremented. In this way, each edge point in the image
votes for the parameterized curve it fits best, and the histogram distribution
characterizes the relative strength of evidence that the curves with parameter
values t1, ..., t, are detected in the image.

As an example, a straight line y = kx+ b can be expressed in polar
coordinates as [37]

p = xcos(f) + ysin(9) (9.23)

where p, 6 defines a vector from the origin to the nearest point on that line
(Fig. 9.15a). This vector will be perpendicular to the line. One can consider
a two-dimensional parameter space defined by p and 6. Any line in the x, y plane
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FIGURE 9.15 lllustration of the Hough transform. (a) A straight line and its polar coordinate. (b) Sample
edge points in x, y space. (c) The sinusoids (corresponding to the edge points) in p, 6 space. (After [2].)

corresponds to a point in the parameter space. Thus the Hough transform of
a straight line in image space is a point in the p, 6 space.

Now consider a particular point xj, y; in the x, y plane. There are many
straight lines that pass through the point x;, y;, and each of these corresponds to
a point in the p, 0 space. These points, however, must satisfy Eq. 9.23 with x; and
y1 as constants. Thus the locus of all such lines in the x, y space is a sinusoid in the
parameter space, and any point in the x, y space (Fig. 9.15b) corresponds to
a sinusoidal curve in the p, 6 space (Fig. 9.15c).

If a set of edge points x;, y; lie on a straight line with parameters p,, 6y, then
each edge point corresponds to a curve in the p, 6 space. However, all these
curves must intersect at the point p,, 6o, since this is a line they all have in
common (Fig. 9.15c).

Thus, to find the straight-line segment on which the edge points fall, one can
set up a two-dimensional histogram in the p, 6 space. For each edge point x;, y;,
all the histogram bins in the p, 0 space that lic on the sinusoid curve for that
point are incremented. When this is done for all the edge points, the bin contain-
ing p,, 0o will be a local maximum. One can then search the histogram in the p, 6
space for local maxima and obtain the parameters of linear boundary segments.

Similarly, one can detect and establish boundaries of circular objects using
the Hough transform. In this case the parametric equation is

(x—aP +@—bF =/ (9.24)

where a and b are the coordinates of the center of the circle and r is its radius.
Notice that the computational complexity begins to increase, because there are
now three variables in the parameter space, and hence a 3-D histogram must
now be constructed. In general, the computational complexity of the transform
increases substantially with the number of parameters required to represent the
curve. Hence, the Hough transform described here is practical only for curves
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for which simple analytic parameterizations exist. Nonetheless, the advantages
of the technique are the tolerance of gaps in data points and relatively robust
performance when image noise is present.

Active Contours Because the shape of many natural objects cannot be
described accurately by rigid graph representations, such as polygons and
circles, edge linking based on the techniques discussed so far often results
in only coarsely delineated object boundaries. The active contour, or snake,
is a boundary refinement technique [40]. The active-contour model allows
a simultaneous solution for both the segmentation and tracking problems and
has been applied successfully in a number of ways [41, 42]. The model uses a set
of connected points (called a snake), which can move around so as to minimize
an energy function formulated for the problem at hand. The curve formed by the
connected points delineates the active contour. Properties of the image (e.g.,
gray level, gradient) contribute to the energy of the snake, as do constraints on
the continuity and curvature of the contour itself. In this way, the snake contour
can react to the image and move in a continuous manner, ensuring continuity
and smoothness as it locates the desired object boundary. Furthermore, the
iterative nature of the algorithm allows active adjustment of the weights
employed in the energy function to affect the dynamic behavior of the active
contour. Processing time is consumed mostly by the first iteration, and subsequent
iterations require little additional computation time.

A number of different implementations of active contour have been de-
scribed in the literature. The first seminal approach was developed using vari-
ational calculus and spline models [40]. Other approaches include dynamic
programming [43], neural networks [44], and “greedy’ algorithms [45]. There
are various advantages and disadvantages to each approach. Since dynamic
programming and neural network approaches are known to be computationally
intensive, variational calculus and greedy algorithms are often preferred. Their
main advantages are relative algorithmic simplicity and computational effi-
ciency. The main disadvantage is the extremely local nature of the decision
criteria used.

The crucial part of active-contour methodology is the formulation of the
energy minimization function. Following the notation in [40], given a parametric
representation of the snake, v(s) = (x(s), y(s)), where s € [0, 1], the energy function
can be written as

1
:nake = J [E snake(V(S))]dS
i (9.25)

1
_ JO [Eint () + Eimage(v(5)) + Econst(v(5))] ds
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This is simply an integration of energy along the length of the contour, which
in the discrete greedy model would correspond to summing the energy of all
the points on the contour after one iteration of the snake. In the greedy
implementation, this integration is not actually performed. The greedy nature
of the algorithm assumes that local greedy decisions at each contour point
automatically result in a tendency toward a global minimum of this function.
The energy terms in Eq. 9.25 correspond, respectively, to (1) internal forces
between points of the contour (analogous to tension and rigidity), (2) image
forces such as gradient magnitude and gray-level magnitude, and (3) external
constraints. Note that each term in the energy function, E, once computed, must
be normalized and weighted in the following manner

B (min —¢&)

where ¢ is the energy term, w is a contribution weight, and min and max are the
minimum and maximum energy computations, respectively, in the search neigh-
borhood of a contour point. The internal energy is modeled using two terms,
a continuity term (tension) and a curvature term (rigidity); that is,

Eint = Econt + Ecurv (927)

Often, the continuity term is made proportional to the distance between the
point being examined and the previous point on the contour. This, however,
causes the snake either to contract or to expand, depending on the sign of the
contribution weight. Because the snake boundary is expected to remain close to
the original initialized boundary, the continuity term will be made proportional
to the difference between that distance and the average interpoint distance for
the snake; i.e.,

Econt = d— ||Vi - VFIH (928)

where v; denotes the coordinates of the ith contour point and d is the average
interpoint distance, calculated at the end of each snake iteration. This will not
only encourage equal spacing of points but cause the snake to contract if the
interpoint distance is larger than the average and expand if it is smaller.
The energy associated with the curvature at a point is approximated by taking
the square of the magnitude of the difference between two adjacent unit tangent
vectors,

— — 2
Uit U

el flwill

(9.29)

Ecurv = ’
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where u; = v; — v;,_; and Hg—ll is a discrete approximation to the unit tangent
at u;. This gives a quick and reasonable estimate of local curvature and, in
general, has the effect of causing the contour to straighten, thus favoring
smoother outlines. The contributing measurement for the image energy term
can be, for example, the result of a Sobel gradient operator; that is,

Eimage = \/ Gx” + G, (9.30)

Note that the normalization causes the snake to be affected by relative local
gradients, regardless of the strength of the gradient. This may be especially
effective in localizing the characteristically low contrast cell boundaries that
are often found in microscope images.

The term E,ns corresponds to external constraints that can be modeled with
prior knowledge, such as the shape of the objects. For example, one can
investigate the use of shape constraints to aid in the segmentation of cells with
indistinct overlapping boundaries. A shape bias contributing to the energy of the
snake can act as a guiding force to prevent the boundary from taking on an
impossible shape.

Figure 9.16 shows an example of applying the active contour method to the
delineation of cell boundary in a fluorescence microscope image. After 15
iterations of energy function minimization, the improvement in the accuracy
of boundary delineation is clearly noticeable.

9.3.6 Encoding Segmented Images

After image segmentation, sometimes it is not necessary to extract the objects
from the original image if only gross measurements (e.g., area) of each object are
required. In other cases, however, it may be desirable to compose a new image

FIGURE 9.16 (o) Acellimage with the boundary delineated after initial segmentation. (b) The same cell
image with improved boundary delineation after 15 iterations of active contour computation.
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showing the objects extracted or to display each object in a separate image. One
may also wish to perform further measurement or other processing on each of
the individual objects. Hence, encoding a segmented image in a convenient
format facilitates subsequent measurement and processing of the individual
objects. Usually, each object in an image is assigned a sequence number as it is
found. This object number can be used to identify and track the individual
objects in the image.

9.3.6.1 Object Label Map

From the segmented regions in an image, one can generate a separate image of
size equal to the original, to encode object membership on a pixel-by-pixel basis.
In the object label map, the gray level of each pixel encodes the sequence number
of the object to which the corresponding pixel in the original image belongs. For
instance, all pixels belonging to the 11th object in the image will have a gray level
of 11 in the label map.

The object label map is not a particularly compact approach to storing
segmentation information because it requires an additional full-size image to
encode object membership, even when the image contains only one small object.
However, images of this type of can be compressed quite significantly, since they
normally contain large areas of constant gray level. If only object size and shape
are of interest for subsequent analysis, the original image may be discarded after
segmentation. Further data reduction is possible when there is only one object
or if the objects need not be differentiated. In this case the label map becomes
a binary image.

In some cases, the computation requirements of an image segmentation
algorithm dictate that the process be carried out in several passes over the
image data. A binary or multilevel label map is often useful as an intermediate
data representation in a multiple-pass image segmentation procedure.

9.3.6.2 Boundary Chain Code

The boundary chain code (BCC) is another well-known technique often used
to encode the results of image segmentation. Compared with the object label
map, it is a more compact way to store the image segmentation information
[46]. With such an approach, only the boundary is required to define an object,
and therefore it is not necessary to store the location of interior pixels.
Furthermore, the boundary chain code exploits the fact that boundaries are
connected paths; hence, highly efficient data encoding, with little redundancy,
becomes possible.

The chain code starts by specifying an arbitrarily selected starting point with
coordinate (x, y) located on the boundary of the object. This point has eight
neighbors. At least one of these must also be a boundary point. The boundary
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FIGURE 9.17 Boundary direction codes.

chain code specifies the direction in which a step must be taken to go from the
present boundary point to the next. Figure 9.17 shows the eight directions of
the neighboring pixels. The eight possible directions can be represented by three
bits. Thus the boundary chain code consists of the coordinates of the starting
point, followed by a sequence of direction codes that specify the path around
the boundary.

With the boundary chain code, encoding the segmentation of an object
requires only one (x, y) coordinate and then three bits for each boundary
point. This is considerably less data than that required for the object label
map. When a complex scene is segmented, the program can encode each object
boundary as a single record consisting of the object number, the perimeter
(number of boundary points), and the chain code. Several size and shape
features can also be computed directly from the chain code. If needed, even
the object label map can be constructed from the boundary chain code by filling
the enclosed region with the object number using a region-filling algorithm [47].

Generation of the boundary chain code usually requires random access to
the input image because the boundary must be tracked through the image. The
operation is a natural adjunct to the boundary-tracking and -refinement pro-
cedures of image segmentation. When further processing of individual object
images is required, the chain code becomes less useful, since the interior points of
objects must be accessed and computed.

9.4 Summary of Important Points

1. Image segmentation is the process that partitions an image into disjoint
regions consisting of connected sets of pixels. These regions correspond
to either the background or the objects in the image.

2. Region-based and boundary-based methods are different but comple-
mentary approaches to image segmentation.
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9.4 Summary of Important Points

Region-based techniques partition the image into sets of interior and
exterior pixels according to similarity of image properties.

. Boundary-based techniques establish object boundaries by detecting

edge pixels that are associated with differences in image properties.

. Gray-level thresholding is a simple region-based segmentation technique.

Unless the background gray level and object contrast are relatively
constant, it is usually necessary to vary the threshold within the image.
This is adaptive thresholding.

. The selection of the threshold value is crucial and can significantly affect

the boundaries and areas of segmented objects.

. For images of simple objects on a contrasting background, placing the

threshold at the dip of the bimodal histogram minimizes the sensitivity
of object area measurement to threshold variation.

Both the profile function of a concentric circular spot and the average
gradient around a contour line can be derived from the histogram or
from the perimeter function of its image.

Morphological processing can improve the initial segmentation results
from thresholding by using procedures such as separation of touching
objects and filling of internal holes.

Unlike thresholding, region growing and splitting techniques exploit the
spatial context in complex scenes.

Region growing combines adjacent regions into larger regions, within
which the pixels have similar properties.

Region splitting partitions larger regions into smaller adjacent regions,
within which the pixels have different properties.

Edges correspond to the image points where gray level changes
abruptly, and they usually occur on object boundaries. Edge points
can be detected and used to establish the boundaries of objects.

Gradient-based methods detect edges by looking for the pixels with
large gradient magnitude.

Laplacian-based methods search for zero-crossings in the second
derivative of the image to find edges.

Object boundaries can be established by thresholding either the gradient
image or the Laplacian image if edges are strong and the noise level is low.
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18. The detected edge points seldom form closed connected boundaries
that are required for image segmentation. Therefore edge linking and
boundary refinement are usually performed to complete the object
boundary delineation process.

19. The Hough transform can fit a parameterized boundary function to
a scattered set of edge points.

20. Active contours can be used to refine boundaries that have been found
by other methods.

21. The result of image segmentation can be encoded and stored conveni-
ently either as an object label map or as a boundary chain code.
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Object Measurement

Fatima A. Merchant, Shishir K. Shah, and Kenneth R. Castleman

10.1 Introduction

Providing objectivity for any image processing task requires quantitative meas-
urement of an area of interest extracted from an image or the image as a whole.
In Chapter 9 we discussed methods for segmenting or extracting objects from an
image. In this chapter we discuss the problem of measuring each of the segmented
objects so that a quantitative measurement can be associated with the extracted
image region. Measuring object properties has been a subject of study since
the early 1970s and is considered to be the culmination of considerable
development [1-6].

The basic objectives of object measurement are application dependent. It can
be used simply to provide a measure of the object morphology or structure by
defining its properties in terms of area, perimeter, intensity, color, shape, etc.
It can also be used to discriminate between objects by measuring and comparing
their properties. In this chapter we introduce the basic concepts of object
measurement. For a more detailed treatment of the subject matter, the reader
should consult the broader image analysis literature [7-11].

An image that has undergone segmentation and perhaps morphological
postprocessing will clearly define objects from which measurements can be
computed. The extracted objects can be treated either as binary objects or as
gray-level objects. In either case, the object of interest is presented with an object
label map (Chapter 9). Binary objects are typically represented such that pixels
belonging to the object take a value of “1,”” and the remaining pixels are “0.”

Microscope Image Processing
Copyright © 2008, Elsevier Inc. All rights reserved.
ISBN: 978-0-12-372578-3



10 Object Measurement

Object measurements can be broadly classified as (1) geometric measures,
(2) ones based on the histogram of the object image, and (3) those based on the
intensity of the object. Geometric measures, including those that quantify object
structure, can be computed for both binary and grayscale objects. In contrast,
histogram- and intensity-based measures are applicable to grayscale objects.
Another category of measures, which are distance based, can be used for
computing the distance between objects or between two or more components
of objects. In the rest of this chapter we discuss some common measurements for
both binary and gray-level objects.

10.2 Measures for Binary Objects

A binary object can be described in terms of its size, shape, or distance to other
objects. Some common measures are presented in this section.
10.2.1 Size Measures

The size of an object can be defined in terms of its area and its perimeter. Area is
a convenient measure of overall size. Perimeter is particularly useful for dis-
criminating between objects with simple shapes and those with complex shapes.
Compared to irregular objects that have complex structures, a regular object
with a simple shape requires less perimeter to enclose its area. Both area and
perimeter measurements can be performed during the extraction of an object
from a segmented image.

10.2.1.1 Area

Consider the function 7,(i, j) described for an object label map of an N x N
image (i.e., the result of segmentation as described in Chapter 9):

1) = { 1 if 1(i, j) = n'™™ object number} (10.1)
e 0 otherwise

The area in pixels of the n'™ object is then given by

A, = L(i, j) (10.2)

10.2.1.2 Perimefer

The simplest measure of perimeter is obtained by counting the number of bound-
ary pixels that belong to an object. This can be obtained by counting the number
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10.2 Measures for Binary Objects

of pixels that take a value of ““1”” and that have at least one neighboring pixel with
avalue of “0.” The neighborhood of a pixel is normally defined in terms of either its
4-connectivity or 8-connectivity (Chapter 8). Due to the discrete spatial arrange-
ment of pixels, counting boundary pixels is normally biased, since small changes in
curvature of the boundary will result in a number of 45° or 90° turns. This produces
an exaggerated estimate of the perimeter. Unbiased estimators of perimeter based
on boundary pixel count using either 4-connectivity or 8-connectivity have been
formulated assuming a uniform distribution of orientation changes that occur
in the boundary [7, 12]. This is given as [12]

Na and Ny
1.273 0.900

(10.3)

where N4 and Ng are the boundary pixel counts using 4-connectivity and
8-connectivity, respectively.

Another concern in computing the perimeter is differentiating between
the internal and external perimeter of an object. It is generally understood that
the true vertex point of a boundary pixel lies at the center of that pixel. Using the
location of the boundary pixels for measuring the perimeter yields the internal
perimeter; using the boundary of the background pixels surrounding the object
yields the external perimeter. A simple solution to this is to add 7 to the internal
perimeter measurements [12]. More complicated methods resulting in better
estimates of perimeter measurement have been developed as well [13-15].

10.2.1.3 AreaandPerimeter of aPolygon

Without loss of generality, we can assume any object to be a polygon.
Mathematically, there is a simple way to compute both the area and the perimeter
of a polygon in a single traversal of its boundary [11]. The area of a polygon can
be measured as the sum of areas of all triangles formed by lines that connect the
vertices of the polygon to an arbitrary point (xg, yo). Let us assume that point to
be the origin, as shown in Fig. 10.1. Consider Fig. 10.2, which shows a single
triangle having a vertex at the origin. As seen in the figure, the region is divided
into rectangles by the horizontal and vertical lines such that some of the rectangles
have sides of the triangle as their diagonals. Thus half of each such rectangle is
outside the triangle. By inspection of Fig. 10.2 we can write [11]

1 1 1

dA = x1y2 — S22 =5V =5 (x1 = x2)(y2 —»1) (10.4)

This expression simplifies to
1
dA4 = 3 (x1y2 — x2)1) (10.5)
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y
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segment of the
polygon
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FIGURE 10.1 Computing the area of a polygon. (After [11].)
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FIGURE 10.2 Area measurement for a friangle. (After [11].)
and the total area can be written as

Np
A= % ; [Xiyic1 — Xip1Yi] (10.6)
where N, is the total number of boundary points.

Note that, if the origin falls outside the object, an area that is not within the
polygon can be included in any particular triangle. Note also that depending on
the direction in which the boundary is being traversed, the area of a particular
triangle can be either positive or negative. By the time a complete traversal
around the boundary is complete, the area that falls outside the object has been
subtracted out.

Another approach is to use Green’s theorem. This says that the area enclosed
by a closed curve in the x-, y-plane is given by the contour integral [11]
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10.2 Measures for Binary Objects

A= % J(x dy — y dx) (10.7)

where the integration is carried out around the closed curve. We can discretize
Eq. 10.7, yielding [11]

1

A=75 ilyie = 3i) = yilxen - x)] (108)
i=1

and manipulate this expression into the form of Eq. 10.6. The corresponding
perimeter is the sum of the side lengths of the polygon. Side lengths can easily be
calculated from the boundary chain code (Chapter 9). If all boundary points are
used as vertices, the perimeter will simply be the sum of lateral and diagonal
steps, written as [11]

P =N, + V2N, (10.9)

where N, is the number of even and N, the number of odd steps in the boundary
chain code.

10.2.2 Pose Measures

The pose of an object is typically defined by its location and orientation.
Measuring its centroid can indicate the location of an object. Object orientation
is normally measured by computing the angle subtended by its major axis.

10.2.2.1 Ceniroid

Following the definition of Eq. 10.1, the center of the n'™ object, (i3, jo), can be
given as

| M=l Nl
i = — il,(i, j)

A 10.10

1 N-1 N—1 (10.10)

Ay i=0 j=0

where A4, is the area of that object. Since 7 and j index the image space, the center
so computed will be relative to the image coordinate space. Thus, the location
of the object determined is within the two-dimensional image plane. The same
measurement can also be obtained using moments and is described in
Section 10.2.3.5.
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Axis of least second moment

V/‘

FIGURE 10.3 Axis of least inertia for an arbitrary shaped object. (After [18].)

10.2.2.2 Orientation

One method of measuring the orientation of an object is based on computing the
axis of the least second moment [16]. Intuitively, this defines the axis of least
inertia that can be rotated to align it with the x-axis. Consider the arbitrary
shape shown in Fig. 10.3. If we define the orientation of least inertia for this n
object as 0, it can be calculated as [11]

1 N-1
> (i, J)
0 j=0
N—-1 N—1 N—-1 N-1
Z(:) Z(:) lz[n(la.]) - Z ]zln(lvj)
i=0 j=

i=0 j=0

N
2

i

M1

tan(20,) = (10.11)

—_

10.2.3 Shape Measures

Shape measures are increasingly used as features in object-recognition and
-classification applications to distinguish objects of one class from other objects.
Shape features are generally invariant to translation, rotation, and scaling.
These features can be used independent of, or in conjunction with, area and
perimeter measurements. In this section, we consider some commonly used
shape parameters.
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10.2 Measures for Binary Objects

10.2.3.1 Thinness Rafio

Thinness is typically used to define the regularity of an object. Having computed
the area 4 and perimeter P of an object, we can define the thinness ratio as

T = 477(%) (10.12)

This measure takes a maximum value of 1 for a circle. The same measure can
also be used to quantify the roundness of an object, and it is referred to as the
compactness ratio. Objects of regular shape have a higher thinness ratio than
similar irregular ones.

10.2.3.2 Rectangvularity

The rectangularity of an object can be measured with the rectangle fit factor [11]

A

R= P (10.13)
This is simply the ratio of the object’s area to the area of its minimum enclosing
rectangle (MER), Ar. The MER for an object is defined as its bounding box
aligned such that it encloses all the points in the object with the area minimized. To
determine the MER, the object boundary is rotated through 90° in steps of ~3°.
Following each stepwise rotation, a horizontally aligned bounding box is fit
to the object boundary, and the minimum and maximum x and y values of
the rotated boundary points are recorded. At a particular angle, the area of the
bounding box is minimized, and this defines the MER.

The rectangle fit factor represents how well an object fills its minimum
enclosing rectangle. This parameter takes on a maximum value of 1 for rec-
tangular objects. It is bounded between 0 and 1, taking the value 7 /4 for circular
objects and smaller values for slender, curved objects.

Another related shape measure is the aspect ratio, computed as [17]

w
Aspect = A (10.14)

It is the ratio of the width to the length of the minimum enclosing rectangle, and
it is used to distinguish slender objects from roughly square or circular objects.

10.2.3.3 Circularity

Circularity is a shape feature, which is minimized by the circular shape. Typically
used to reflect the complexity of the object boundary, it can be written as [11]
P2

= 10.15
47 A ( )
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10 Object Measurement

which is the ratio of the perimeter squared to the area. Circular shapes yield the
minimum circularity value of 1.0, and the value increases for complex shapes.
Notice that it is the reciprocal of thinness ratio, defined earlier.

Another shape measure that is related to circularity is the boundary energy [4].
Consider an object with perimeter P. We can measure the distance around the
boundary starting at some point p. Then at any instance, the radius of the circle
tangent to the boundary at that point defines its radius of curvature, r(p),
as shown in Fig. 10.4. The curvature function, K(p), which is periodic with period
P at point p, is written as [11]

K(p)=—— (10.16)
The average energy per unit length of boundary is given by [11]

E=] PK o/ 10.17
=5 |, IK@)rar (10.17)

The circle has, for fixed area, minimum boundary energy, given by [11]

2 2
Ey— (%”) - <%> (10.18)

where R is the radius of the circle. Curvature and boundary energy can be
computed from the chain code (see Chapter 9) [4, 5]. It has been shown that
the boundary energy reflects the boundary complexity better than the circularity
measure of Eq. 10.15 [4].

K(p)=1/r(p)

Direction of traversal

FIGURE 10.4 Circularity computation and radius of curvature. (After [11].)
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10.2 Measures for Binary Objects

10.2.3.4 Evler Number

For an image, the Euler number is defined as the number of objects minus
the holes [19]. For an extracted object, the Euler number is used to represent the
completeness of that object, and it corresponds to the number of closed curves
contained within the object [20]. The determination of the number of objects and
holes in an image was described earlier, in Chapters 8 and 9.

10.2.3.5 Moments

The moments of a function, which originate from probability theory [21, 22],
can be used to define a group of shape features that have several desirable
properties [23, 24]. For a bounded function f(x,y), the set of moments of two
variables is defined by [11]

M= [ [ e vy (10.19)

—0o0 —00

where j and k take on all nonnegative integer values and they generate an infinite
set of moments. The set of moments, {M jk}, is sufficient to specify the function
f(x, y) completely and is unique for the function, such that only f(x, y) has that
particular set of moments.

If f(x, y) takes on the value 1 inside the object and 0 elsewhere, it represents
a silhouette function, which ignores internal gray-level details and reflects only
the shape of the object. This function can be used as a shape descriptor, such
that every unique shape corresponds to a unique silhouette and the correspond-
ing unique set of moments. The order of the moment is given by j + k. There is
only one zero-order moment, and it gives the area of the object as

(o.0] o0
Mo=[ | st yaray (10.20)

There are two first-order moments and correspondingly more moments of
higher orders. All the higher-order moments can be normalized to be invariant
to object size, by dividing them by M.

Central Moments The so-called central moments are computed using

the center of gravity as the origin and hence are location invariant. The
coordinates of the center of gravity of the object are given by [11]

= and = — 10.21
M10 Moo Mot Moo ( )
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10 Object Measurement

Moments of higher order, where j 4+ k > 1, are normally defined in terms of
the object’s location. This leads to a more generalized mathematical definition
for central moments, given as

pi= || w0 m) e dvdy 02

—00 J—o00
Object Dispersion The three second-order moments provide a
measure of how dispersed the pixels in an object are with respect to its
centroid. They correspond to j + k = 2 and are written as

M? M?
MzoZMzo—M—m, P«OZZMOZ—M—OI, and
A;”ﬁl 00 (10.23)
= M11 _ 104V01
Moo

These are proportional to the object’s spread over the x-axis, over the y-axis,
and in both orientations, respectively.

Rotationally Invariant Moments While central moments are
location invariant, they are not rotationally invariant. This means that, given
a change in an object’s orientation, the central moments will yield different
measures. The angle of rotation 6 that causes the second-order central moment
to vanish can be obtained from Eq. 10.11. Then, the principal axes x', y" of an
object are at an angle 6 from the x-, y-axes. If the moments are computed relative to
the principal axes or if the object is rotated through 6 before the moments are
computed, then the moments are rotation invariant. In general, it is desirable that
object measures be invariant under simple transformations such as translation,
rotation, and scale. The area-normalized central moments computed relative to the
principal axis are translation, rotation, and scale invariant. Rotationally invariant
moments, which are functions of the second-order moments [25], are given by

Moo + Moo and (20 — ko)’ +4n, (10.24)

The magnitude of the invariant moments can be used as shape features in
pattern recognition.

Zernike Moments Zernike moments are derived from a complex
polynomial that forms an orthogonal set from a unit circle as its domain [26].
The set of these polynomials {Z,,,(x, y)} are of the form [26]

Zum(X, ) = Zum(p, 0) = Ry exp(jm0) (10.25)
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where n = 0, m is an integer subject to the constraints that n — || must be even
and |m| = n, p is the length of the vector from the origin to (x, y), and 6 is the
angle between the vector p and the x-axis in the counterclockwise direction.
R, (p) in Eq. 10.25 is a radial polynomial defined as [26]

n—|m|/2 (I’l . S)'

Run(p) = ; (—1>S-S! (%‘ml_s)! <n%w _S)!p“s (10.26)

The Zernike moment of order n, with repetition m, for a continuous image
function I(x, y) that vanishes outside the unit circle is [26]

771—&—1
ox

Aum

|| 1wz e a (1027)
xX24y?=1

which is the projection of the image function onto the orthogonal basis functions
given in Eq. 10.25. Discretizing the integrals in Eq. 10.27, we have [26]

n+1
T

A = SN Ix9)Z,0.0) X4y =1 (10.28)
X y

If A4,,, represents the moments associated with an image, and 4], represents the
moments of the same image rotated by an angle ¢, then
Al = Ay exp(—jmdo) (10.29)

nm

The magnitude of the Zernike moments is therefore invariant to rotation. On
the other hand, they are not translation and scale invariant. Nonetheless,
translation invariance can be achieved by moving the origin of the image to
the centroid of the object. In typical applications requiring object shape meas-
urements, up to eight orders of Zernike moments are used. Only moments of
order 2 to 8 are relevant for discrimination purposes, since, after object normal-
ization for scale and translation invariance, moment |4gy| is constant and
moment |A41;| is zero [27]. Since the Zernike moments themselves are complex
numbers and are sensitive to rotation of the image, typically the magnitudes of
the moments (i.e., |4,,,|) are used as shape features [28].

10.2.3.6 Elongation

A measure used frequently to describe the shape of an object is elongation. One way
of calculating this measure is by taking the ratio of an object’s length to its breadth

_ length
~ breadth

(10.30)

205



10 Object Measurement

Another way of defining the same thing is based on computing the bounding
rectangle for the object and taking the ratio of the long side to the short side. An
easy away to approximate this is by scanning the object image and finding the
maximum and minimum values along the spatial indices. The ratio can then
by given by

] X ] i 1
E] —Jmex ~Jmin + 1 (10.31)

imax - imin + 1

The same measure can be calculated as the ratio of second-order moments of the
object defining its major and minor axes. Elongation in this case would be given by

Al
EFl=— 10.32
= (10.32)
where
A= sin® 6 + cos? 0 + 2, sin O cos O
1 = Moo o2 M1 (10.33)

Ay = My cOS® O + g, sin® @ — 2wy, sin @ cos O

where 6 is the angle of rotation, described in Eq. 10.11. All of the preceding
measures of elongation provide similar but not necessarily identical results.

10.2.4 Shape Descriptors

A shape descriptor is another way of describing an object’s shape. It provides
a more detailed description of shape than that offered by the single parameter
shape measures described earlier. Shape descriptors also allow a more compact
representation of shape than what is reflected by the object image itself.

10.2.4.1 Differential Chain Code

The most common shape descriptors include the boundary chain code (BCC) and
its derivative known as the differential chain code (DCC) [14, 29, 30]. As discussed
in Chapter 9, the BCC represents the boundary tangent angles as a function of
distance around the object. For a simple polygon, Fig. 10.5 shows the associated
BCC and DCC. The DCC reflects the curvature of the object’s boundary.
Convexities and concavities in the boundary show up as peaks and valleys,
respectively, in the differential chain code. Both of these functions can be analyzed
further to obtain shape measures.

10.2.4.2 Fovurier Descriptors

Fourier descriptors exploit the periodicity in the BCC representation of the
boundary [31]. The complex boundary function is defined as B(p) = x(p) +jv(p),
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FIGURE 10.5 The chain code and its derivative for an arbitrary shape. (After [11].)

where x(p) and y(p) are the coordinates of the p™ boundary point, measured from
an arbitrary starting point, and j is the imaginary unit. B(p) is a complex-valued
periodic function with period P, and thus its Fourier series can be computed [11].
Itis the low-frequency components in this Fourier series expansion that represent
the basic shape of the object. These components are inherently shift invariant, and
their complex magnitudes are rotation invariant and independent of the starting
point as well. Thus they can be used as shape descriptors.

10.2.4.3 Medial Axis Transform

Medial axis transformation (MAT) is another data reduction technique that is
used as a shape descriptor (Chapter 8) [11, 32]. The medial axis of an object is
a set of points inside the object such that each point is the center of a circle that
is tangent to the boundary at two nonadjacent points. Normally a value is
associated with each point on the medial axis, and it is the minimum distance
to the object boundary from that point.

The simplest technique to find the medial axis is by erosion (Chapter 8). By
successively removing the outer perimeter of points, one can detect the point
whose removal would disconnect the object. That point is then considered to be
on the medial axis. Its associated value is simply the number of layers removed
or the number of erosion iterations required. The MAT is a useful descriptor for
long, narrow, and curved objects. In some applications, the medial axis is used
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only as a graph, ignoring the associated values. In others, the graph is used to
derive additional shape measures, such as the number of branches and the total
length [33].

10.2.4.4 Graph Representations

Graphs have been used as a tool for translation- and rotation-invariant
representation of object shapes [34]. These are descriptors that define the structure
among a set of points located on the boundary of an object [35]. The two graphs
used most often are the minimum spanning tree (MST) and the Delaunay
triangulation (DT).

Minimum Spanning Tree Consider an arbitrary shaped object as
shown in Fig. 10.6a, with a set of points n given by P = {p1, p2,...,ps} located
on the boundary. A tree is constructed by connecting pairs of points from the set
so as to form a tree structure that “spans” the set of points. There are many ways
to draw this tree, but if the sum of branch lengths for a particular tree is less than
the sum of branch lengths for any other spanning tree, then that tree is called the
minimum spanning tree (MST), as shown in Figure 10.6b. The MST is a type
of skeleton of the object, and it can give rise to a number of shape descriptors,
such as total, average, and standard deviation of branch length, average

P2
Pa
P1
(a) Arbitrary shape with a set of points (b) Minimum spanning tree
°
°
°
(c) Voronoi diagram (d) Delaunay triangulation

FIGURE 10.6 An object represented with a set of boundary points and its associated graphs.
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branching angle, and number of nodes. These descriptors have been used in
numerous applications [36, 37].

Delavnay Triangulation Inrepresenting an object using Delaunay
triangulation (DT), edges are formed by joining pairs of points from the set
P={pi, p2,..., ps} In such a way that as many triangles as possible are
generated, but without any crossing lines. DT is a specific triangulation based
on locally equiangular triangles [38] and is normally derived from the Voronoi
partitioning of the object shape [39, 40]. The Voronoi diagram partitions the
object into disjoint regions such that each region R; is composed of a subset of
points p; and is defined as

Ri = {x:Eq(x, pi) < Eq(x, pj) } for all j # i (10.34)

where E; is the Euclidean distance (described shortly in Section 10.3.1). The
partitioning of the example object is shown in Fig. 10.6¢c. The DT is now defined
by joining two points, p; and p;, if and only if their corresponding regions share
a side. The resulting triangulation is shown in Fig. 10.6d. Once the triangulation is
defined for the object, it can be characterized by the same measures as the MST.

10.3 Distance Measures

Measures of distance provide a way to compute the separation between two
points in an image [3, 41]. These can be two points within the same object (such
as points on the major and minor axes) or points on two different objects. The
three most common ways of measuring distance are presented here.

10.3.1 Evuclidean Distance

Euclidean distance, by far the most commonly used measure of distance, is given by

Do = /(i — kP +(j 1)’ (10.35)

where the two points have spatial indices (i, j) and (k, /), respectively.

10.3.2 City-Block Distance

City-block distance is an approximation to the Euclidean measure that is
computationally faster. It is also called Manhattan distance or the absolute
value metric. It is written as [12]

Dp=l|i—kl+|j—1 (10.36)
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10.3.3 Chesshoard Distance

The chessboard distance measure is the maximum separation in either the x or y
direction between the two points. Also known as the maximum value metric, it is
written as [12]

D, =max(|i —k|,|j—1]) (10.37)

10.4 Gray-Level Object Measures

Object measurements derived as a function of the intensity distribution of the
object are called gray-level object measures. Most of the measures defined earlier
for binary objects can also be used for gray-level objects. There are three
main categories of gray-level object measurements. Intensity and histogram
measures are normally defined as first-order measures of the gray-level distri-
bution, whereas texture measures quantify second- or higher-order relationships
among gray-level values.

10.4.1 Intensity Measures

Images most often contain regions that show heterogeneous intensity distribu-
tions. Intensity-based measures can be used to quantify intensity variations across
and between objects. Some of the commonly used measures are described next.

10.4.1.1 Integrated Optical Intensity

The integrated optical density (I0D) is the sum of the gray levels of all pixels in
the object [8—11]. It reflects the “mass’ or “weight” of the object and is numer-
ically equal to the area multiplied by the mean interior gray level. Consider for
an object, if (i, j) are the spatial indices, I(, j) represents the gray level, and 4 is
the area of the object, then

10D = Y I(i. )) (10.38)
i,jed
10.4.1.2 Average Optical Intensity

The average optical density (AOD) is merely IOD divided by area [8—11]. The
total number of object pixels is the simplest measure of an object’s area. Thus,

the AOD of an M x N image can be calculated by
| MoN
AOD = — I1(i,j 10.
0 Ailj;j (i, /) (10.39)

where A = M x N is the area of the image. For an object, the summations are
taken over all pixels inside the object.
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10.4 Gray-Level Object Measures

10.4.1.3 Confrast

A measure of contrast of an object is the brightness (AOD) difference between
the object and the surrounding background.

10.4.2 Histogram Measures

The histogram of the image of an object provides a description of the distribu-
tion of intensity values within the object. When normalized by the size of the
object, the histogram is the probability density function (pdf) of the gray levels.
Thus, measures derived from the normalized histogram of the object image
provide statistical descriptors characterizing the gray-level distribution of the
object [8—11]. Common first-order measures calculated on the histogram include
mode, mean, standard deviation, skew, energy, and entropy. Second-order
measures are based on joint distribution functions and are representative of
the texture of the object [42]. Consider the gray-level probability density func-
tion given as

=
—~~
~—

P(g) = - (10.40)

where /(g) is the number of pixels with gray level g and M is the total number of
pixels in the image. Each of the first-order measures can be calculated from the pdf.

10.4.2.1 Mean Graylevel

Mean gray level provides a measure of the average intensity of the image. It can
be calculated as

g=)Y Plg)g (10.41)

where L is the number of gray levels present in the image. Note that this is the
same as AOD.

10.4.2.2 Standard Deviation of Gray Levels

Standard deviation is a measure that provides an understanding of the spread of
intensities across the image. This is also an indicator of contrast in the image.
Standard deviation is measured by

oy = (g—2)° P(g) (10.42)
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10.4.2.3 Skew

Skew measures the asymmetry in the image’s intensity distribution. We can
calculate skew by

(g—8)’ Plg) (10.43)

10.4.2.4 Enfropy

Entropy provides a measure of an image’s smoothness in terms of gray-level
values. The higher the entropy, the more gray levels are present in the image.
Entropy can be calculated by

L-1

Entropy = — Y  P(g)- log, [P(g)] (10.44)
g=0

10.4.2.5 Energy

Energy is another measure that shows how the gray-level values are distributed
within the image. It has an inverse relation to entropy, in that the energy of an
image is highest if it has only one gray-level value. The more gray levels present
in an object, the lower its energy. We can calculate energy as

~

Energy = [P(g))? (10.45)

o
Il
=

10.4.3 Texture Measures

The word texture originally referred to the appearance of fabric. A general
definition is “the arrangement or characteristics of the constituent elements of
anything, especially as regards to surface appearance or tactile qualities’ [43].
A more relevant definition for image analysis is “an attribute representing
the spatial arrangement of the gray levels of pixels in a local region” [44]. In
the current context, we are specifically concerned with the measurement of the
texture of an object in an image. Perception of texture is scale dependent. For
example, in viewing an image of a tiled floor from a distance, texture would be
perceived as the repetition observed in tile placement. By contrast, observing an
individual tile on the tiled floor may lead to perceiving the texture within that
tile. Broadly speaking, we can define texture as patterns of local variations in
image intensity that are too fine to be distinguished as separate objects at the
observed resolution [18].
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10.4 Gray-Level Object Measures

Electronic noise induced by a camera is an example of a random texture.
Here the gray-level variation exhibits no recognizable repeating pattern. Cross-
hatching, by contrast, is a pattern texture that does exhibit a visible regularity.
Statistical properties such as standard deviation of gray level (i.e., texture
amplitude) and autocorrelation width (i.e., texture size) are commonly used to
characterize random textures. Similarly, pattern textures can be characterized
by measurements that quantify the nature and directionality of the pattern, if it
has any.

A texture feature quantifies some characteristic of the gray-level variation
within an object. It is normally independent of object position, orientation, size,
shape, and average brightness. Presented here are some of the more common
methods for computing texture features.

10.4.3.1 Statistical Texture Measures

Statistical measures of intensity variation include standard deviation, variance,
and skew. These can be computed as moments of the gray-level histogram, H, of
the object. Similarly, a feature referred to as the module can be computed as [45]

N
H;— M/N
I= 10.46
; \/H[(I—H[/M)—&-M(I—I/N) ( )
N

where M is the number of pixels in the object and N is the number of gray levels in
the grayscale. Although the human eye is insensitive to textural differences of
order higher than second (i.e., the variance), texture features such as the “module”
often rely on quantifiable differences, where they exist.

Gray-Level Co-occurrence Matrix The gray-level co-occurrence matrix
(GLCM) provides a number of second-order statistics relating to the gray-level
relationships in a neighborhood around a pixel [42, 46, 47]. Computation of
GLCM features is a two-step process. The GLCM is created as the first step,
then it is used to compute a number of statistics, and those are the texture
features.

The GLCM, Py, is a 2-D histogram that specifies how often two gray levels
occur in pairs of pixels separated by a particular offset distance. First, one
must pick the offset distance and direction. Then each entry, (i, j), in P,
corresponds to the number of occurrences of the gray levels i and j, in pairs
of pixels that are separated, in the image, by the chosen distance and direction.
Once the GLCM is formed, one can compute specific statistical values from it
(see below). Selecting a different offset direction and distance gives rise to
a new GLCM.
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10 Object Measurement

Several widely used statistical and probabilistic features can be derived from
the GLCM [48, 49]. Examples include entropy, given by

H == Py(i,j) log(Pu(i, ) (10.47)
iy
inertia, which is
=D (i =) Pa(ij) (10.48)
i
energy, defined as
E =" [Py(i,j)] (10.49)

isj
maximum probability, given as
P =max; ; Py(i,j) (10.50)

inverse differential moment (IDM), defined by

IDM = P.d(l’.Jl (10.51)
niazn E=J)
and correlation, denoted by
1 . ) .
C= o Z, (i = ) (j = )P (10.52)

Some co-occurrence matrix-based texture features correspond to character-
istics that can be recognized by the eye [50], but many do not. In general one
must determine experimentally which of these features have discriminating power.

10.4.3.2 Power Spectrum Features

Power spectrum features are measures of texture that are derived from
the Fourier transform of the object image. The power spectrum, defined as the
magnitude squared of the 2-D Fourier spectrum, gives rise to a set of texture
measures. These measures can be defined by averaging the power spectrum in
annular rings to produce a 1-D function that ignores directionality or by
averaging along radial lines to produce a 1-D function that shows only the
directionality. These one-dimensional functions of frequency (or angle) can be
further reduced to single measurement values that reflect salient characteristics
of the texture pattern.
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10.5 Object Measurement
Considerations

Image analysis can provide several measures of an object’s structure by defining
its characteristics in terms of area, perimeter, elongation, compactness, contrast,
and texture, as shown in Table 10.1. The table shows object measures computed
for different particle types from the urinary sediment, including, red blood cells
(RBCQ), calcium oxalate crystals (CAOX), white blood cells (WBC), bacteria
(BACT), granular casts (GRAN), cellular cast (CCST), squamous epithelial cells
(SQEP), sperm (SPRM), and hyphae yeast (HYST). It is clear that size measures
such as area and perimeter can be used to distinguish smaller particles, such as
RBC, from the larger cells types, such as SQEP. Similarly, the elongation and
compactness measures readily differentiate the circular shaped cells (e.g., RBC,
WBC, and SQEP) from the elongated cells (e.g., SPRM and HYST). Finally,
intensity-based measures such as contrast and texture measures can be used to
differentiate between low-contrast objects (e.g., SPRM, SQEP, and HYST)
and high-contrast objects, such as crystals (e.g., CAOX, RBC, and WBC) and
between objects with textured interiors (e.g., SPRM, SQEP, and HYST)
and relatively untextured objects (e.g., CAOX, RBC, and WBC).

In computing measurements of an object, it is important to keep in mind the
specific application and its requirements. A critical factor in deciding which
object measurement to use is its robustness, that is, its ability to provide
consistent results in different applications. For example, if we wish to design
a system that can differentiate between types of cells under different illumination
conditions, we may not want to use an intensity measure, such as average optical
density, as the only measurement made on the object. This would provide
inconsistent results due to lighting changes that will alter the measured AOD
of cells. Instead, we may wish to measure cell area. Another important
consideration is the invariance of the measurement under rotation, translation,
and scale. When deciding on the set of object measures to use, these considerations
should guide one in identifying a suitable choice.

10.6 Summary of Important Points

1. Object measurements are normally computed from the binary represen-
tation of a segmented object or the gray-level intensity distribution within
the object boundary.

2. Measurements of an object can be based on either its size, its shape, or its
intensity values.
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TABLE 10.1 Measurements of object structure for a variety of particle types
Object Measures

Cell Type A (um?) P (pm) Elongation Compactness Contrast Texture
RBC Q 56.16 22.8 1.123 1.142 0.4874 127.4
CAOX . 236.16 50.4 1.034 1.065 0.8083 106.5
WBC 6 390.24 63.6 1.119 1.242 0.5081 73.8
BACT — 146.88 49.2 2.429 1.17 0.1189 122.9

&%
GRAN '.;". 1121.76 145.2 2.373 1.451 0.3202 192.6

-
2

CCST 3 1882.08 205.2 3.158 1.411 0.4852 183.6

L,
SQEP {#% 5127.84 256.8 1.139 1.355 0.1422 275.2
SPRM — A 416.16 146.4 2.629 3.680 0.0275 346.0
HYST % 918.72 225.6 3.933 2.670 0.2900 344.8
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Object Classification

Kenneth R. Castleman and Qiang Wu

11.1 Introduction

Classification is the step that tells us what is in the image. Assuming the objects
in the image have been segmented and measured, classification identifies them
by assigning each of them to one of several previously established categories or
classes. There are several mathematical approaches that can be taken to address
the classification problem, and a complete coverage is beyond our scope. Here
we illustrate the process of classification with the very useful maximum-likelihood
method. This technique is widely used because it minimizes the probability of
making an incorrect assignment. More specifically, we present the minimum Bayes
risk classifier, assuming Gaussian statistics, along with several of its interesting
special cases. We also address other classification strategies.

11.2 The Classification Process

When we encounter an object in a microscopic image, we know three things
about it. First, we know the a priori probability that it belongs to each of the
classes. For example, if we are attempting to separate abnormal from normal
cells, we might know from past experience that 90% of all cells encountered are
normal. Thus the a priori probability for class 1 (normal) is 0.9, while for class 2
(abnormal) it is 0.1:

P(Cy) =09 and P(Cy) =0.1 (11.1)
Microscope Image Processing

Copyright © 2008, Elsevier Inc. All rights reserved.
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11 Obiject Classification

This knowledge applies to all of the objects. Quite a large sample size may be
required to estimate the a priori probabilities [1]. Second, we know the object’s
measured feature values. This is the quantitative data that is unique to that
particular object. Third, we know the probability density function (pdf) of those
features for each of the classes. This specifies what is known about each class.
Given these three pieces of knowledge, we seek to make an optimal assignment
of that object to a class. For the moment we take the probability of error as the
performance criterion, and we seek to minimize it.

11.2.1 Bayes’ Rule

We now consider how to combine the three things we know about an object to find
its most likely class. After an object has been measured, we should be able to use
the measurement data and the class-conditional pdfs to improve our knowledge
of the object’s most likely class membership. The a posteriori probability that
the object belongs to class i is given by Bayes’ theorem; that is,

P(Ci)p(x|Ci)

Gl = p(x)

(11.2)

where P(C;) is the a priori probability of class 7, p(x|C;) is the pdf of the feature
x for class i, and

N

p(x) = p(x|C)P(C) (11.3)

i=1

is the normalization factor that is required to make the set of a posteriori
probabilities sum to unity. Bayes’ theorem, then, allows us to combine the
a priori probabilities of class membership with the measurement data and the
class-specific pdf to compute the probability that the measured object belongs to
each class. Given this information, we can assign each object to its most likely
class.

11.3 The Single-Feature,
Two-Class Case

To illustrate the classification process, we first consider the simple case where
two types of objects must be sorted on the basis of a single measurement. For
this example, assume we are attempting to separate abnormal from normal cells
on the basis of nuclear diameter alone. This means that the cells encountered
belong either to class 1 (normal) or to class 2 (abnormal). For each cell,
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11.3 The Single-Feature, Two-Class Case

we measure one property, nuclear diameter, and this is the feature we call x.
It may be that the pdf of the diameter measurement, x, is already known for one
or both classes of cells. If not, we would have to estimate it by measuring a large
number of normal and abnormal cells and plotting histograms of their nuclear
diameters. After normalization to unit area and perhaps some smoothing, these
histograms can be taken as estimates of the corresponding pdfs. If the histogram
fits the Gaussian form, to a reasonable approximation, we can compute the
mean, u, and variance, o, and use the parametric representation for the normal
distribution

I _ew?
e 22 (11.4)

There are other standard statistical distributions for the pdf that might fit the
histograms if the Gaussian does not. If we use the Gaussian, then only the mean
and variance are required to completely specify the pdf for a class.

11.3.1 A Priori Probabilities

The a priori probabilities represent our knowledge about an object before it has
been measured. In this example, we assume that an unmeasured cell has a 9:1
chance of being normal (Eq. 11.1).

11.3.2 Conditional Probabilities

Figure 11.1 shows what the two pdfs might look like. We denote the conditional
pdf for normal cell diameter as p(x|C)), which can be read as “‘the probability

0.3

10

FIGURE 11.1 Probability density functions for a two-class problem.
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FIGURE 11.2 Probability density functions for a two-class problem, scaled by the a priori probabilities.

that diameter x will occur, given that the cell belongs to class 1.” Similarly, p(x|C»)
is the probability that diameter x will occur, given cell class 2 (abnormal).

If we scale each of the pdfs by the a priori probability of its class, as in Figure
11.2, we get a better picture of the error situation. We could establish a decision rule
by setting a threshold value, 7, on the nuclear diameter and classifying cells normal
if they fall below that and abnormal if they fall above it. The area under the dotted
curve, to the left of the threshold, is proportional to the probability of calling
an abnormal cell normal. Similarly, the area under the solid curve, to the right
of the threshold, is proportional to the probability of misclassifying a normal cell.

11.3.3 Bayes’ Theorem

Before a cell has been measured, our knowledge of it consists of only the a priori
probabilities of class membership. After measurement, however, we can use the
measurement and the conditional pdfs to improve our knowledge of the cell’s class
membership. After measurement, the a posteriori probability that the object
belongs to class i is given by Bayes’ theorem [2-5]

P(Cyp(x|C)

AR =0

(11.5)

where P(C;) is the a priori probability of class 7, p(x|C;) is the pdf of the feature x

for class i, and
N

p(x) = p(x|C)P(C) (11.6)

i=1

is a normalization factor that is required to make the set of a posteriori
probabilities sum to unity. Bayes’ theorem, then, allows us to combine the
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P(Cyl%)

0.5

FIGURE 11.3 A posteriori probabilities for the two-class problem.

a priori probabilities of class membership with the measurement and the class-
specific pdf to compute the probability that the measured object belongs to each
class. Figure 11.3 shows the a posteriori probabilities for this example. For any
nuclear diameter x, the solid curve gives the probability that a cell having that
diameter belongs to class 1. The dotted curve gives the probability that the cell
belongs to class 2.

In our cell-sorting example, we would assign the object to class 1 (i.e., call it
normal) if

P(Ci|x) > P(Cyx) (11.7)

and assign it to class 2 (abnormal) otherwise. At the decision threshold, T, where
equality holds in Eq. 11.7, we may assign arbitrarily. The classifier defined by
this decision rule is called a maximum-likelihood classifier because it maximizes
the probability of a correct assignment. Note in Fig.11.3 that cells with nuclear
diameter less than 4 micrometers can be confidently assigned to class 1, while
cells larger than 6 micrometers easily can be called abnormal. It is for cells with
nuclear diameter near 5 micrometers that one would expect misclassification
errors to occur.

11.4 The Three-Feature,
Three-Class Case

We next consider the case where there are three types of objects and three
measurements are made on each. The particular example we use here is the

classification of pixels in a color image. The three measurements made on each
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pixel are the red, green, and blue intensity values. We assume that each pixel
belongs to one of three classes: the interior of a normal cell, the interior of an
abnormal cell, or the background.

Each pixel can be considered to represent a point in three-dimensional color
space. Thus each of the different-colored objects in the image will correspond
to a “cloud” of points in color space, and segmentation becomes the task of
isolating these clusters. More specifically, we wish to define a set of decision
surfaces that carve up the space into three disjoint regions, one for each class.

11.4.1 Bayes Classifier

One straightforward and quite powerful approach is the use of the Bayes
maximum-likelihood classifier. It generates second-order surfaces that partition
the color space into disjoint regions, one for each object type (i.e., for each
color of pixel). Assuming Gaussian distributions for the clusters of points in
color space, the Bayes classifier maximizes the probability that each pixel will be
assigned correctly.

We illustrate the use of the Bayes classifier with a simple example. We assume
that a three-color RGB (red, green, blue) system is used to digitize a fluorescent
microscope image. The vector of gray levels at a single pixel location is

X1
X = [x_,-] = |x (11.8)
X3
where
1 = red
J=42 = green
3 = Dblue

We further assume that the images contain two types of objects, normal and
abnormal cells. Both types of cells bind the blue fluor, the normals also bind the
green fluor, but the abnormals pick up the red fluor instead. One would expect
a three-dimensional histogram (scatter plot) of the color space to show three
clusters of points, one each for background, normal cells, and abnormal cells.
Since the background is dark, its cluster will fall near the origin of color space.
The normal cells will give rise to a cloud of points near the cyan corner, while the
abnormals will fall near the magenta corner, as in Fig. 11.4.

11.4.1.1 Prior Probabilities

Let us assume that the area of a typical image is 90% occupied by background and
10% by cells. Further assume that, overall, only 10% of the cells are abnormal.
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FIGURE 11.4 The three-dimensional RGB color space.

Thus the vector of prior probabilities, where P; = P{pixel belongs to
class i}, is

0.90
P={0.09 (11.9)
0.01

where

2 = normal

{ 1 = background
[ =
3 = abnormal

171.4.1.2 Classifier Training

The first step is to train the classifier to recognize the three types of pixels. For
this we require a training set containing pixels that are known to fall in the
background, inside normal cells, and inside abnormal cells. It is the statistics of
these training set pixels that constitute the knowledge the classifier has about the
problem. Estimating these statistics is the process of classifier training.

11.4.1.3 The Mean Vecfor

Using the training set, we calculate, for each class i, the mean pixel brightness in
each color j. That is,

1 &
Mij:ﬁi;?@j}c (11.10)
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where N, is the number of pixels in class 7 and x;; 1s the value, in color j, of pixel &
in class 7 of the training set. The mean vector for class 7 is

Mt
w= | o (11.11)
i3

This vector, the mean vector of the training set, is an estimate of the mean of the
entire population of class i pixels. If the training set is both adequately large and
representative of the population, it will be a good estimate. Otherwise, it will be
a poor estimate, and classifier accuracy will suffer, as will our ability to predict
how well it will work.

11.4.1.4 Covariance

We calculate the covariance matrix for each class [2, 3, 6] as

1| &
! k=1

11.4.1.5 Variance and Standard Deviation

The diagonal elements of a covariance matrix are the variances of the features
for that class. The variance is the square of the standard deviation. That is,

of =Sy and oy =1/Sy (11.13)

11.4.1.6 Correlation

From the covariance matrix we can compute the correlation matrix for each
class [2, 3, 6]. For class i, this is

Cjj, = St (11.14)
01, 0j,

The elements of the correlation matrix are bounded by +1. A correlation
of 1 means the corresponding two features are proportional to each other.
A correlation of —1 means each is proportional to the negative of the other.
A correlation of zero means the two features are uncorrelated. Using highly
correlated features is not only redundant, but it can actually degrade classifier
accuracy. One can either combine highly correlated features (by averaging, for
example) or simply discard all but one of them. In this example we assume the
features are not highly correlated.
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11.4 The Three-Feature, Three-Class Case

11.4.1.7 The ProbabilityDensity Function

The probability density function for class i is

Pix) = et exp| 5 [(x — )T 8 (x — ) (11.15)

v (2m)"ISi

where x is the vector of RGB values for a pixel, as in Eq. 11.8, and n = 3 is the
number of features in use. The superscript T indicates the matrix transpose, and
S; ! is the inverse of the covariance matrix for class i. Equation 11.15 is the
multidimensional generalization of Eq. 11.4.

11.4.1.8 Classification

Each class of pixels is now characterized by its prior probability, mean vector, and
covariance matrix. The classifier has been trained. We now have enough statistical
information about the problem to begin classifying pixels. By Bayes’ rule, the
likelihood that an unknown pixel having color vector x belongs to class 7 is

pafi(x)

L= P;
p(x)

where p(x) = pdfi(X) + pdf2(x) + pdfs(x)  (11.16)

or

e P o[ s s ew| )
p(x)\/ (27)"[Si]

Thus we can compute the three likelihoods (one for each class) and assign the
pixel to the most likely (largest likelihood) class. If the pdfs are, as we have
assumed, Gaussian (normal) density functions, then no other partitioning of
color space will result in lower overall error rates [2].

171.4.1.9 Loglikelihoods

Since the logarithm is a monotonic function, we can take the log of both sides of
Eq. 11.17 and use the resulting value for classification purposes. Equation 11.17
then becomes
1 _
In(Ly) = In(P) = 5 |(x = )78, (x = )
3 | (11.18)
-3 In(27) — 3 In(|Si|) — In(p(x))
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The third and fifth terms are constants and, for classification purposes, can be
dropped, leaving

LL = In(P) — 5|(x — w)" S} (x — )| — 5 In([Si) (11.19)

The first term accounts for the prior probabilities, while the third term accounts
for the within-class scattering of the features. The larger this variation, the less
confidently one can assign the pixel to that class. The second term is the square
of the Mahalanobis distance. It represents the variance-normalized distance, in
feature space, from the unknown color to the class mean.

11.4.1.10 Mahalanobis Distance Classifier

We can simplify the Bayes classifier further by computing only the Mahalanobis
distance from an unknown pixel to each class mean,

1
D= \/5 [(x — )87 (x — )| (11.20)

and assigning each pixel to the class having the nearest mean. This results in
what is called a Mahalanobis distance classifier. It corresponds to the special
case where the prior probabilities are equal among the classes, and likewise for
the within-class variations. This distance classifier is sometimes used when the
prior probabilities are unknown and the covariance matrix cannot be estimated
accurately, due to limited training set size. Distance in feature space can be
computed in other ways as well (e.g., Euclidean), and this gives rise to other
types of distance classifiers.

171.4.1.11 Uncorrelated Features

While 30 or so pixels per class in the training set might be sufficient to estimate
the feature means and variances, considerably more might be required to
estimate the off-diagonal elements of the covariance matrix. If the training set
is necessarily small, one solution is to set the off-diagonal elements to zero. This
is equivalent to assuming that the features are uncorrelated. Under pressure of
limited training set size, this can yield a more stable and better-performing
classifier than one designed around inadequately estimated covariances. Using
a distance classifier, which automatically assumes uncorrelated features, results
in an even simpler classifier. Since there are so many pixels in an image, however,
it is possible to accumulate quite large training sets, and covariances could be
estimated quite accurately in this example.
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11.4 The Three-Feature, Three-Class Case

11.4.2 A Numerical Example

To illustrate the operation of the three-class Bayes classifier, we include
a numerical example having six pixels from each class in the training set.
While this is hopelessly inadequate for any real case, it serves to illustrate the
calculations. This example will permit readers who choose to implement a Bayes
classifier to check their implementation for numerical accuracy.

Assume the training set is

33 31 46 57 18 6 28 47 21 58| |78 115 122 76 134
42 10 24 38 56| |96 116 126 84 73 (|12 52 34 70 22| (11.21)
62 50 34 21 33| |70 82 96 117 90| [ 81 100 146 78 70

for the RGB color values of six pixels each of background, normal cells, and
abnormal cells, respectively. The mean vectors for the three classes are then

37 32 105
p= |34 m,= |99 p = | 38 (11.22)
40 91 95

The covariance matrices are

[ 2235 =79 —112.25 428.5 24 86.25
S| = =79 310 —58.5 S, =| -24 482 =79.75
| —112.25 —-58.5  257.5 86.25 —-79.75 306
[ 700  —154.5 265.75
S;= | —1545 542 21.5 (11.23)
| 265.75  21.5 934

from which the standard deviations (square roots of diagonal elements) are

15.0 20.7 26.5
o = |17.6 o= |22.0 o3 = | 233 (11.24)

16.0 17.5 30.6
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the correlation matrices (Eq. 11.14) are

1 —.300 —.468 1 —.053 238
C, = |-.300 1 —.207 C,=1|—-.053 1 —.208
| —.468 —.207 1 238 —.208 1
1 —-.251 .329
C=|-.251 1 .030 (11.25)
| .329 .030 1

and the determinants of the covariance matrices are
ISi| = 1.053 x 10" |Sy| =5.704 x 10" |S3] =2.917 x 10®  (11.26)

Suppose we have an unknown pixel having color vector

38
x= |80 (11.27)
78
The three likelihoods (from Eq. 11.17) are
0.000015
L =]0.088083 (11.28)
0.000213

and the pixel would be assigned to class 2. The log likelihoods, with constant

terms dropped (Eq. 11.19), are
-20.9
LL=|-123 (11.29)

—18.3

Again the pixel would be assigned to class 2. The Mahalanobis distances to the
class means (Eq. 11.20) are

D=

3.57
0.97 (11.30)
1.99

This pixel would be assigned to class 2 by a distance classifier as well, since it is

the closest.

11.5 Classifier Performance

Once a classifier has been designed and trained, it is necessary to test it to establish
its accuracy. This is usually done by classifying a test set of known objects and
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11.5 Classifier Performance

tabulating the number of errors. If the test set is the same as the training
set, the performance estimates will be optimistically biased. If it includes none of
the training data, they will be pessimistically biased. If the test set is large, the
effects of this bias will be slight. If the number of available preclassified objects is
small, one can use the “round robin” or “leave one out” method. Here the classifier
is trained on all but one of the objects and tested on the remaining object. This
process is repeated until every object has been used for testing. The results of
the various experiments are then averaged together to estimate the error rates.

11.5.1 The Confusion Matrix

A very handy tool for specifying the accuracy of a multiclass classifier is the
confusion matrix. This is an N x N matrix, C, where N is the number of classes.
The columns of C correspond to the classes to which objects actually belong,
while the rows of C correspond to the classes to which objects can be assigned.
Thus the element ¢; corresponds to the situation of an object that belongs to
class j being assigned to class i. That is, true class = j, assigned class = i.

One can set up the confusion matrix to summarize the results of a classifier
test in several ways. A raw confusion matrix results when the value of each
element is simply set to the number of times the corresponding situation
occurred in a particular test of the classifier. Other values, however, may be
more useful. For example, sensitivity is defined, for each class, as the probability
that an object belonging to that class will be correctly assigned. We obtain an
estimate of the sensitivity matrix by dividing the raw confusion matrix elements
by the total number of objects in the true class. Each element, then, shows what
percentage of the objects that actually belong to that class are assigned to that
class. The columns of the sensitivity matrix sum to unity.

Specificity, for a particular class, is defined as 1 minus the ratio of the number
of objects incorrectly assigned to the class to the total number of objects not in
that class. Specificity is seldom a very useful parameter because it almost always
takes on values quite close to unity. A more useful specification is positive
predictive value (PPV). This is the probability that an object assigned to a class
actually belongs to that class. The PPV matrix is estimated by dividing the
elements in each row of the raw confusion matrix by the total number of objects
assigned to that class. In this case the rows sum to unity.

When analyzing the performance of a classifier, one finds the sensitivity matrix
and the PPV matrix to be very useful. In short, the sensitivity matrix tells you
where each type of object is going, while the PPV matrix tells you what is going
into each of the classes. Studying these two matrices can yield considerable insight
into the strengths and weaknesses of a particular classifier.

As an example, consider the sensitivity matrix and PPV matrix shown
in Fig. 11.5. They correspond to the three-class pixel classifier example
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Sens True Class PPV True Class
@ 1 2 3 @ 1 2 3
< <
o 98% | 2% | 1% O | 1 [98% | 1% | 1%
S | 2 | 1% | 96% | 9% S | 2 | 2% |96% | 2%
5 5
2 1% | 2% | 90% 2 | 3 | 2% | 7% [91%

FIGURE 11.5 Confusion matrices.

mentioned earlier. We see from Fig. 11.5 that this classifier has two problems.
First, 9% of the pixels in abnormal cells are being called normal. This could lead
to abnormal cells being missed. Second, 7% of the pixels that are called abnor-
mal are actually normal. This could lead to false-positive errors. We would
conclude that this classifier needs to be improved in its ability to discriminate
between pixels in the normal and abnormal classes.

11.6 Bayes Risk

We now introduce a generalization of the maximume-likelihood Bayes classifier
that allows one to bias the classifier so as to reduce the occurrence of certain
costly types of misclassification errors, in exchange for making more of other,
less serious errors [2, 3]. Our three-class example had nine elements in the
confusion matrix. Three correspond to correct decisions, while the remaining
six represent different types of errors. Suppose that it is considered to be more
serious to confuse a pixel that falls inside an abnormal with one from a normal
cell, or to call a normal pixel abnormal, than it is to make any of the four other
possible errors. The minimum Bayes risk classifier allows us to account for this.

11.6.1 Minimum=-Risk Classifier

We begin by setting up a cost matrix. It has the same format as the confusion
matrix, except its elements represent the “cost” of that situation’s occurring.
Specifically, Cj represents the cost of assigning to class j a pixel that actually
belongs to class i. If i = j, this corresponds to a correct classification, and a cost
of zero might be assigned to those elements. If all misclassification errors are
equally unfortunate, then 1’s could be placed in all of the off-diagonal elements.
In this case a maximum-likelihood classifier results. However, larger values can
be assigned to cost matrix elements that correspond to the more serious errors.
A possible cost matrix for our three-class example is

01 1
c=|10 4 (11.31)
1 20
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11.8 The Choice of a Classifier

Here we have said that (1) correct classifications cost nothing, (2) calling an
abnormal pixel normal has a cost of 4, (3) calling a normal pixel abnormal has
a cost of 2, and (4) the four remaining errors have unit cost. Note that the actual
cost values are unitless, and their values are relevant only in relation to one another.

Given a cost matrix, we can set up the Bayes classifier to minimize its long-
term cost of operation. The Bayes risk for assignment to a particular class is the
cost of each outcome times the likelithood of that outcome, summed over all
possible assignments to that class. It can be computed, for the unknown pixel of
Eq. 11.27, as

0.0883
Ri=) Cy;L  R=]0.0009 (11.32)
=1 0.1762

In this example, the unknown pixel would be assigned to Class 2 because the risk
is lowest there.

11.7 Relationships Among
Bayes Classifiers

Note that the minimum-risk classifier is the most general Bayes classifier. The
maximum-likelihood classifier is a special case, namely when all costs are set to
be equal. Further reductions in generality result when the a priori probabilities
are assumed to be equal, or the off-diagonal covariances are assumed to be
zero. The minimum-distance classifier is a further restricted special case that
results when both the a priori probabilites and the within-class variation are
ignored. In this example, all three forms of the Bayes classifier, the minimum-
risk, maximume-likelihood, and minimum-distance classifiers, assigned the un-
known pixel to the same class. This will not be the case in general, as objects
that fall near the decision boundaries will be assigned differently by the
different classifiers. Objects that fall near the class mean will be classified
correctly by any of the classifiers.

1T1.8 The Choice of a Classifier

If a considerable amount of training data is available, one can simply
estimate the required pdfs and use those estimates in the classification
process. Such classifiers are called nonparametric. Often, however, it is diffi-
cult to obtain large numbers of preclassified objects. In that case one can
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assume a particular functional form for the pdf (the Gaussian, for example)
and use the training data only to estimate the parameters. This gives rise to
a parametric classifier. Considerably less training data is then required for
training, and one benefits from the powerful mathematics that have been
developed for those cases.

It is often useful to begin a classifier design effort with a classical Bayes
classifier, as described earlier. At the very least this establishes a baseline of
performance against which other types of classifiers can be tested and evaluated.
Further, if the underlying assumptions are met, the Bayes classifier, assuming
Gaussian statistics, may well perform as well as or better than any other
classifier.

Problems arise when the underlying pdfs do not fit the assumed form. The
classifier’s performance and one’s predictions of its accuracy are only as good as
the underlying assumptions. It is rather difficult to prove that a population of
objects actually fits, for example, a Gaussian distribution. As a rule of thumb, if
the marginal distributions (one-dimensional histograms) are unimodal and
symmetrical, one can often assume Gaussian statistics (although there are no
guarantees, and notable exceptions exist). Even if they are not unimodal and
symmetrical, one can do things to make them unimodal and symmetrical.

If the feature histograms of a class are multimodal (i.e., they have two or more
peaks), one would suspect that two or more distinct subclasses exist within the
class. By subdividing the class, one can often achieve unimodal pdfs, but with
a larger number of classes. This is a fair trade if it justifies the assumption
of Gaussian statistics. An example is shown in Fig. 11.6. This is the single-
feature, two-class example used earlier in this chapter. Here the nuclear
diameter histogram of normal cells is unimodal, but that of the abnormals is
bimodal.

If we reexamine the training set, we may find that two distinct populations of
cells exist within the abnormal class. In this case we can establish a new class
called “atypical” and assign some of the previously “abnormal’ cells to it, based
on their morphology. The result is a three-class problem where the feature
histograms are unimodal (Fig. 11.7). This is a very profitable trade if it permits
the use of the assumption of Gaussian statistics.

11.8.2 Feature Normalization

An asymmetrical or non-Gaussian pdf often can be corrected by a suitably
designed nonlinear transformation of the feature values [3]. A feature histogram
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FIGURE 11.6 A two<class problem with a bimodal pdf.
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FIGURE 11.7 The use of subclassing to eliminate a bimodal pdf. The result is a three-class problem with
unimodal pdfs.

normalized to unit area is an estimate of the pdf of that feature. The cumulative
distribution function (CDF) is the integral of the pdf; that is,

X X
P(x) = J p(w)du = L [ H(u)du (11.33)
0 Ao 0
where H(x) is the histogram, p(x) is the pdf, P(x) is the CDF, and A, is the area
under the histogram. The CDF is quite a well-behaved function, increasing
monotonically from zero to 1. If it is used to transform feature x into a new
feature, y, that is, y = P(x), then feature y will have a flat histogram (uniform
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distribution). As a special case, the CDF corresponding to a Gaussian pdf
will transform a feature with a Gaussian pdf into one with a flat histogram.
It follows that the inverse function of the Gaussian CDF will transform a feature
with a flat histogram into one with a Gaussian histogram. Thus we can trans-
form a feature so that it has a Gaussian histogram by concatenating two
nonlinear transformations:

y=Py(Pi(x)) (11.34)

where P;(x) is the CDF of the feature and P»(x) is the inverse of the CDF of
a Gaussian. P;(x) makes the pdf uniform, and P,(x) makes it Gaussian.

Note that, in a multifeature classification problem, transforming the individual
features to have Gaussian pdfs does not guarantee that the overall multivariate pdf
will be Gaussian. As a practical matter, however, such a transformation can make
the assumption of Gaussian statistics much less of an approximation. Feature
normalization works best in the commonly occurring case where the raw feature
histograms are not radically different from a Gaussian to begin with.

11.9 Nonparametric Classifiers

If the functional form of the pdfs of the classes is unknown, then the parametric
approach cannot be used. In this case one must estimate the pdfs directly
from the training data [2]. This generally requires a much larger training set.
However, the maximume-likelihood and minimum-risk formulations still apply.

The basic problem of nonparametric pdf estimation is straightforward:
Given a set of training samples, model the pdf of the data without making any
assumptions about the form of the distribution. Suppose we have N; training
samples from class j. To estimate the pdf, the L-dimensional feature space can be
partitioned into small regions that are L-dimensional hypercubes, with volume
V = h%, where I is the bin size. Let R be such a region and k; be the number of
samples from class j falling into R, with k; = N;. A straightforward estimate of
the pdf can be expressed as

pxic) =" (11.35)
This basic estimator corresponds to an L-dimensional histogram. Essentially,
the feature space is divided into a finite number of hypercube bins, and the
probability density at the center of each hypercube is estimated by the fraction
of samples in the training set that fall into that hypercube bin. The bin size,
h, and the starting position of the first bin are two “parameters’ that determine

the shape of the histogram.
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11.9 Nonparametric Classifiers

The histogram is a simple and effective form of pdf estimation, but it has
several drawbacks. The shape of the estimate is affected by both the bin size and
the starting point of the bins. The discontinuities of the estimate are not due to
the underlying probability density but are caused, rather, by the particular
choice of bin locations. A more serious problem is the curse of dimensionality,
since the number of bins grows exponentially with the number of dimensions.
In high dimensions we would require a very large number of training samples, or
else most of the bins would be empty.

A more advanced nonparametric pdf estimation method makes use of the
so-called Parzen window for a unit hypercube centered at the origin:

1
(l;(v):{l, ’Vq| 57,6121,2,...,11 (11.36)
0 otherwise

Hence ( (x — x;)/h) equals unity if x; is within the hypercube at x and is zero
elsewhere. The number of training samples that fall into this hypercube can be
written as

N,
k=" "p((x—x;)/h)
i=1
Substituting it in Eq. 11.35, we have
1 X
PG =7 D (x=x))/h) (11.37)
Ji=1

Notice that the Parzen window density estimate resembles the histogram,
except the hypercube locations are determined by the training sample points
rather than by the histogram bins. The expression in Eq. 11.37 shows that the
estimate p(x|C;) is made of an average of functions of x and the samples x;. Based
on the foregoing formulation, we can adopt two basic approaches. We can choose
a fixed value of k and determine the corresponding volume V from the training
samples. This gives rise to the so-called k nearest neighbor (kNN) approach. We
can also choose a fixed value of the volume } and determine & from the samples.
This leads to the methods commonly referred to as kernel density estimation
(KDE).

11.9.1 Nearest-Neighbor Classifiers

The kNN is a very intuitive nonparametric approach that classifies unknown
objects based on their similarity to the samples in the training set. For an
unknown object x, it finds the k “‘nearest” samples x; in the training set and assigns
x to the class that appears most frequently among the & nearest samples. A great
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advantage with the kNN approach is that no estimation of the pdf is required
because the function is only approximated locally, and all computation is deferred
until the classification stage. However, the disadvantages are the memory require-
ment to store training samples and the computational complexity required to
search for the k nearest samples during the classification of each unknown object.

On the other hand, with the KDE methods one can generalize the hypercube
Parzen window with a smooth nonnegative kernel function /(x) that satisfies the
condition [ ¢(x) dx = 1. Just as the Parzen window estimate can be considered
a sum of boxes centered at the samples, the smooth kernel estimate is a sum of
“bumps” placed at the samples, and the kernel function determines the shape of
the bumps. Usually ¢«(x) is chosen to be a radially symmetric, unimodal pdf, such
as the multivariate Gaussian. The kernel function is used essentially for interpol-
ation, and each sample contributes to the estimate according to its distance from x.

It can be shown [2] that both of these approaches converge to the true pdf as
N; — oo, that is, limy, ., p(x|C}) = p(x|C;), provided that V' shrinks with N; and
that k grows with N; properly. For applications with high-dimensional feature
space, the curse of dimensionality affects all classifiers, without exception. The
available training samples are usually inadequate to obtain an accurate estimation
in these cases. One solution to the problem is to choose independent features so
that p(x|C)) = ]_LL:  P(xi|C;j), by mapping the original features using a proper
subspace transformation such as independent component analysis (ICA) [7].
Thus the problem of estimating an L-dimensional multivariate pdf p(x|C;) is
reduced to that of estimating multiple one-dimensional univariate pdfs
p(xi|Cj), i=1,2,..., L. This way the training set size requirement becomes
much easier to meet.

Ideally one would prefer to use a rather small number of highly discriminating,
uncorrelated features. Increasing the number of features increases the dimen-
sionality and hence the volume of the feature space [8-10]. This, in turn,
increases the requirements for training set and test set size [2-4]. Adding
features that have poor discrimination or are highly correlated with the
other features can actually degrade classifier performance [2].

11.10.1 Feature Reduction

There are well-developed mathematical procedures for reducing a large number of
features down to a smaller number without severely limiting the discriminating
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power of the set. Principal component analysis (PCA) [6] and linear discriminant
analysis (LDA), also known as Fisher discriminant analysis (FDA) [11], discussed
later, are among the best-known subspace methods that can be used for this
purpose. Both generate a new set of features, each of which is a linear combination
of the original features. In both cases the new features are ranked so that one can
select only a few of the most useful ones, thereby reducing the number of features.

171.10.1.1 PrincipalComponent Analysis

In general, suppose x is an L-dimensional feature vector and W is a O x L
matrix, then

L
yi=Y wix, i=12...,0  or y=Wx (11.38)
j=1

defines a linear transformation of the vector x. The result is a Q x 1 vector vy,
which is a projection of x onto a linear subspace defined by the transform
matrix W. Each element y; is the inner product of a basis vector, which is
made up of the ith row of W, with the input vector x. Consider a set of L-
dimensional sample feature vectors X1, X, ..., X;,. Without loss of generality,
we can assume these are zero-mean vectors, since we can always redefine
X =X — p, where p is the mean vector of all these samples. Then X is an
L x M data matrix whose columns comprise the M sample vectors X, X, ...,
x)7, and S, = XX is defined as the total scatter matrix of the sample vectors. The
aim of PCA is to find the transform matrix of a subspace whose basis vectors
correspond to the maximum-scatter directions in the original L-dimensional
feature space. Therefore the PCA transform matrix, Wpca, is chosen to maximize
the determinant of the total scatter matrix of the projected samples

Wpca = argmax |S,| (11.39)
W

where S, = WS,W7'. The solution to this equation is the transformation matrix W,
constructed so that its row vectors are the eigenvectors, w;, of the scatter matrix,
S;, arranged in the order of decreasing magnitude of the corresponding eigenvalues
Aj, that is,

Swy=Nw;,  j=1,2,....,0 (11.40)

where the A; are nonzero eigenvalues associated with the eigenvectors wj,
0 denotes the rank of S;, and it cannot exceed the lesser of L and M.

Because of the maximum-scatter projection, PCA provides an optimal
transformation for representing the original data vector, x, from a lower-
dimensional subspace in terms of minimum mean square error (MSE) [2]. Let

241



11 Obiject Classification

Wpca be the R x L matrix (R < L) formed by discarding the lower L — R rows
of Wpca. Then the transformed R x 1 vector y is given by y = Wpcax. The x
vector can still be reconstructed as X = WPC AY, with approximation error given
by MSE = >r_, +1Ax. Overall, PCA uncorrelates the new features and maxi-
mizes their variance. The number of new PCA features is equal to the number of
original features, and one can decide how many of them to use.

17.10.1.2 Linear Discriminant Analysis

Unlike PCA, LDA seeks a linear subspace that best discriminates among object
classes rather than the one that represents samples with the least MSE. Specif-
ically, LDA selects the transform matrix Wypa in such a way that the ratio
of the between-class scatter and within-class scatter is maximized [11]. If we
define the between-class scatter matrix as

Sp=> M —w)(m—n)" (11.41)
i=1

and the within-class scatter matrix as

C

Z Z —n)’ (11.42)

where M; is the number of samples in class i, ¢ is the number of object classes, w,
is the mean of type i sample vectors, and p is the total mean of sample vectors of
all classes. The optimization criterion here is to maximize the determinant ratio
of between-class and within-class scatters of the projected samples

Wipa = argmax { ‘S {} (11.43)

where S, = WS,Wand S,, = WS,,W’. It has been proven [11] that if S,, is
nonsingular, the determinant ratio in Eq. 11.43 is maximized when the row
vectors of the transform matrix, W, are the generalized eigenvectors of s;lsb
corresponding to

_, bW = AW, i= sy oa M .
S,'s A 1,2 (11.44)

where A;, i =1, 2,...,m are the generalized eigenvalues and m is the number of
nonzero generalized eigenvectors, m = ¢ — 1. Notice that the dimensionality
of the LDA subspace is upper-bounded by ¢ — 1, meaning that the total number
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of LDA features is 1 less than the number of classes. This is because S, is of rank
¢ — 1 orless. Also, since the rank of S,, is at most M — ¢, M must be greater than
or equal to L + ¢ in order to ensure that S,, does not become singular.

In summary, since LDA maximizes the ability of the new features to
discriminate among the classes, it is generally considered to be more effective
than PCA for feature reduction prior to classification.

1T1.11 Nevral Networks

A completely different approach to classification is the use of artificial neural
networks (ANNs) [5]. Here a network is composed of one or more layers of
interconnected processing elements (PEs). Each PE creates its output as
a weighted sum of its inputs (see Fig. 11.8). The feature values are the inputs
to the first layer, and the output values of the final layer are used to assign the
object to a class.

The ANN is trained by adjusting the weighting factors in each of its PEs.
A large training set of preclassified objects is presented to the network repeatedly
and in random order. Each time, the weights are adjusted to bring the output

to other processing elements

FIGURE 11.8 A neural network processing layer.
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11 Obiject Classification

value toward its correct value. The training process is continued until the error
rate stops declining.
The computation performed by such a PE is a function of a dot product,

N
0=g(X*W)=g [Z xl-wi] = g(8) (11.45)
i=1

where O is the (scalar) output, X is the input vector, and W is the weight vector
associated with that processing element. The weights are adjusted during the
training process, and they remain fixed during ordinary usage.

The weighted sum is subjected to a nonlinear transformation by the activa-
tion function, g(S), which has a sigmoid (S-curve) shape. It is monotonically
increasing and differentiable, and it asymptotically approaches 0 and 1 at large
negative and positive values of its argument, respectively. An example is

1

S)=——=

(11.46)
The primary purpose of the activation function is to limit the output of the PE to
the range [0, 1]. By convention, outputs are all positive, but interconnection
weights can be either positive or negative.

One advantage of the ANN is that it is not necessary to know the statistics
(i.e., pdfs) of the features in order to develop a functioning classifier. Further,
the decision surfaces that the ANN can implement in feature space are more
complex than the second-order surfaces that the parametric Bayes classifier, for
example, generates. This can be helpful when the pdfs are multimodal.

A disadvantage of the ANN, as compared to the statistical classifiers previ-
ously discussed, is that it is a “black box,” and one is hard pressed to understand
or explain its behavior. It also lacks the rich analytical underpinning of the
classical approach that provides guidance in the design and development pro-
cess. This makes it difficult to prove optimality or to predict error rates. Further,
if the training is not done properly, on representative training sets of sufficient
size, then the net can overfit, or “memorize the training set,” that is, perform
well on the training set but not generalize to objects not previously seen.

11.12 Summary of Important Points
1. A well-trained Bayes classifier can be quite effective at multiclass,
multifeature classification, even in the presence of considerable noise.

2. One should pay particular attention to numerical precision issues since
some of the parameters in the probability calculations can become quite
large or quite small.
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3. If the marginal distributions are unimodal and symmetrical, it may be
useful to assume Gaussian statistics (multivariate normal pdfs).

4. A nonlinear transformation can make a feature’s pdf symmetrical.

5. A multimodal pdf suggests the presence of subclasses. Judicious use of
subclassing and feature transformations can often make the Gaussian
assumption work.

6. When a particular functional form for the pdf (the Gaussian, for ex-
ample) is known, less training data is required since it is used only to
estimate the parameters. This gives rise to a parametric classifier.

7. If the functional form of the pdf is not given or it is known to be non-
Gaussian, one must estimate the pdfs directly from the training data.
Such classifiers are nonparametric, and they usually require considerably
more training data.

8. When available training samples are inadequate to estimate the pdfs
accurately, one can choose independent features by mapping the
original features using a proper transformation such as independent
component analysis. With this method the problem of estimating a
multivariate pdf is simplified to that of estimating multiple univariate
pdfs, thereby considerably reducing the size requirements of training sets.

9. PCA and LDA are two well-known techniques for reducing a large
number of features down to a smaller number without losing their
discriminating power. PCA uncorrelates the new features and maxi-
mizes their variance, whereas LDA maximizes the ability of the features
to discriminate among the classes.

10. An ANN classifier has the advantages that it is not necessary to know
the statistics of the features in order to function, and the decision
surfaces it can implement in feature space are more complex than the
second-order surfaces that the parametric Bayes classifier generates.
However, its disadvantages are that it is a “black box’’ and it is difficult
to prove optimality or to predict error rates. It also lacks the rich
analytical underpinning that supports the design of statistical classifiers.
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12.1 Introduction

Fluorescence microscopy is one of the most basic tools used in biological
sciences for the visualization of cells and tissues. The popularity of fluorescence
microscopy for the examination of biological specimens, both fixed and live,
stems from its inherent ability to target fluorescent probes to molecules at low
concentrations with high selectivity and specificity (and relatively high signal-to-
noise ratios (SNRs) due to separation of the excitation light from the recorded
fluorescence image).

Modernization of imaging techniques, robotic instrumentation, develop-
ment of new fluorescent tagging proteins and synthetic fluorophores, and the
rapid growth in computer and informatics technology have only compounded
its utilization in the observation of the temporal and spatial dynamics of cellular
components and activity. The past decade has witnessed a renaissance of fluor-
escence microscopy, with digital imaging playing a pivotal role in automated
detection and analysis of molecular and cellular processes, resulting in a shift of
paradigm from qualitative to quantitative biology. The current emphasis in
biology is now on quantitative analysis of information so that observations
can be integrated and their significance understood. Digital image processing
can provide numerical data to quantify and substantiate biological processes
observed by fluorescence microscopy. This chapter covers the principles of
fluorescence and highlights problems inherent to fluorescence microscopy and
methods to correct them digitally. In subsequent sections, various fluorescence

Microscope Image Processing
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12 Fluorescence Imaging

microscopy techniques are introduced, with an emphasis on the image pro-
cessing and image analysis algorithms used for enhancing and analyzing
fluorescence images.

12.2 Basics of Fluorescence Imaging

Electrons in certain types of molecules can absorb light, reach excited higher-
energy states, and then decay back to their ground state by losing energy in the
form of heat and emitted light. If the electron’s spin is unchanged, the excited
state is called the singlet state, whereas if the spin is altered by the excitation,
the electron enters the triplet state. Decay from the singlet excited state results
in fluorescence emission, whereas decay from the triplet state is known as phos-
phorescence. The phenomenon of fluorescence occurs when certain molecules
(called fluorophores, fluorochromes, or fluorescent dyes) absorb light and reach an
excited, unstable electronic singlet state (S;). Under normal conditions, an
unexcited molecule typically resides in the stable ground state Sy, at its lowest
vibrational or rotational energy level. The absorption of a photon moves
amolecule to one of the vibrational or rotational energy levels of a higher-energy
state (S}). Internal energy conversions (time on the order of ~1 ps) then force the
molecule to relax back to the lowest-energy level of S|. From here, they transition
back to the singlet ground state (Sy), following the emission of fluorescent light at
a characteristic wavelength (time order of ~1-10 ns). Internal conversion again
relaxes the molecule back to the lowest-energy level of Sy.

Fluorescence emission always occurs due to decay from the lowest-energy level
of S| to some level of the ground state, regardless of the initial state of excitation.
Thus the energy of excitation is greater than the energy of emission, and
the emission spectrum is independent of the energy of the exciting photon. The
energy of the emitted photon is the difference between the energy levels of the
excitation and emission states, and it determines the wavelength of the emitted light
Agm as follows

)LEM = hC/EEM (121)

where Egy is the difference between the energy levels of the two states during
emission (EM) of light, /4 is Planck’s constant, and c¢ is the speed of light. The
wavelength of emission is always longer than that of excitation, and the difference
between the two is known as the Stokes shift.

The emitted fluorescence can be expressed as

IEM = IE)(-