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Abstract

The article is concerned with the dynamic analysis of the mechanism of the needle transfer,
which has been carried out by means of Lagrange equations of the second kind, with the
purpose to determine kinematic magnitudes of the individual elements. There have been
established geometrical and physical properties of the individual elements, and the initial
conditions have been determined. Furthermore, there have been compiled motion equations,
and they have been complemented with the boundary conditions providing for the proper
function of the mechanism. A program for the solution of the proper motion equations has
been generated in the environment of Matlab Simulink, including the boundary and initial
conditions. The results of the dynamic analysis have been processed graphically.

Introduction

The present trend in the development of sewing machines is to shorten the sewing times in the
sewing process and to increase the productivity. The endeavour to increase the productivity of
these machines requires a thorough understanding of all processes related to the operation of
sewing machines. The object of this study is to perform an identification of the needle transfer
mechanism, which will lead to the determination of kinematic magnitudes of the individual
elements of this mechanism. The identification of the mechanism of the needle transfer will
be carried out by the analytic method of Lagrange equations of the second kind, which allow
formulating the laws of motion by means of scalar quantities. The proper solution of the
motion equations obtained by Lagrange method will be carried out by means of the software
Matlab Simulink.

1 Description of the needle transfer mechanism

The needle transfer mechanism performs a rectilinear reverse movement that has been
realised by a cam mechanism in the existing machine [2]. The newly proposed functional
model of the machine consists of a crank mechanism with servo-drive converting rotary
swinging motion into the rectilinear reverse movement. The needle transfer mechanism
(Fig. I) forms a part of the system that allows imitating the hand stitch. Its task consists in
providing for the transfer of the floating needle between two needle bars operating above the
work table of the machine and below it. The floating needle is clamped by collets (Fig. 1,
item 12) in the needle bar, owing to the pressing force of the springs, items 11 and 15. The



unlocking of the collets is actuated during the movement of the needle bar by the impact of its
controlling element (items 1, 6, 11, 3, 10, 17, 16) upon the machine frame before the dead
centre of the needle transfer, where the impact is damped by a rubber pad (item 10). The stop
block can be seen in Fig. 2.

The jacket of the needle bar (Fig. /, item 2) goes on moving to the bottom dead centre and
completes the process of the needle transfer.
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Fig. 1  Sectional view of the needle Fig. 2 Newly proposed crank
transfer mechanism mechanism

There has been carried out experimental measuring of the force response of the springs (see
Fig. I, items 11 and 15) in order to establish the stiffness of these springs [1], and there has
been taken a record by a high-speed camera, leading to determine the values of their intrinsic
damping [1]. The results of these measurements are shown in 7ab. I. Another flexible
element is the rubber pad (Fig. 2) mentioned previously. As for this pad, there has been
carried out experimental measuring in order to establish the force required for the
compression of the rubber pad. The resulting diagram of this force response is shown in the
Fig. 3. In the record there can be seen the expected non-linear behaviour of the rubber pad
during its compression. The course of the acting force has been approximated by a
polynomial of the third degree (1) where x stands for the deformation of the rubber pad [1].
The equation of the dissipative force of the rubber pad is given by the relation (2). The
coefficient of the linear damping figuring in the equation (2) is determined from the real
behaviour of the system of the needle mechanism [1]. The mechanism of the needle bar and
its proper function are provided by the system of the stop blocks. The coefficient of the
restitution of these stops has been adjusted to such a value that the behaviour of the
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mathematical model would be as close as possible to the behaviour of the real mechanism

which has been examined by means of the high-speed camera.

Tab. 1 Values of stiffness and intrinsic damping of the springs

Stiffness k; [N/m]

Intrinsic damping b; [N.s/m]

Spring item 11 (index 1) 900 13.16
Spring item 15 (index 2) 690 3.32
Rubber pad item 10 (index 3) - 28.5
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Fig. 3 Force necessary for compression of the rubber pad

Fs(x) = 1573,9x° - 2" x? + 445,17x
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2 Description of the mathematical model

(D
)

The mechanism of the needle transfer has been simplified to three elements 1, 2 and 3 only, of
the masses m;, m, and m; (see Fig. 5). The element 1 represents the jacket of the needle bar
mechanism, the element 2 represents the controlling element of the mechanism and the
element 3 represents the collets with the cage gripping the needle. The individual elements of
the mechanism are represented by the perfectly rigid bodies and they are interconnected by
springs and dampers. The element 1 is excited kinetically. The course of the excitement is
shown in the following Fig. 4 and it matches the machine speed at 250 cpm. Moreover, the
element 2 is influenced by the forces F; and F,. The force F; arises from the effect of the
rubber pad (see Fig. 1. and Fig. 2) and the force F is the dissipative force. These two forces
bear upon the body only in the moment when the position of the element 2 reaches the

position of the stop (see Fig. 2).



The analysis of the needle transfer mechanism has been carried out for two variants. The first
variant has been the model of the original concept, and the other one the model of the
optimised concept with a modified inner cylinder. Tab. 2 presents the initial conditions for the
simplified mathematical model. 7Tab. 3 resumes geometrical values of the model including
other parameters necessary for the description of the system.
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Fig. 4 The course of acceleration of the element 1 during the movement from the
upper position to the lower one
Tab. 2 Initial conditions for the needle bar mechanisms of original and optimised
designs
Mech. of needle bar — orig. design | Element | Element 2 Element 3
1
Initial position [m] 0 0.0719 0.0929
Initial value of velocity [m/s] 0 0 0
Initial value of acceleration [m/s’] 0 0 0
Mech. of needle bar — opt. design | Element 1 | Element2 | Element 3
Initial position [m] 0 0.0669 0.0929
Initial value of velocity [m/s] 0 0 0
Initial value of acceleration [m/s’] 0 0 0
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Fig. 5

Tab. 3

-

x1(D)

-

x2

x3

Scheme of simplified mode of needle bar mechanism

Geometrical and mass magnitudes of system elements

Mass m; of element 1[kg] 0.1196
Mass m, of element 2 [kg] 0.0426
Mass mj3 of element 3 [kg] 0.0051

Unmount.length of spring lyp; [m] 0.089

Unmount.length of spring lp, [m] | 0.0292

Value A [m] 0.0268

Value D [m] 0.0547

Value E [m] 0.0081

Length of spring after mounting | 0.0718
lp1 [m] in original design

Length of spring after mounting | 0.0129
l,» [m] in original design

Length of spring after mounting | 0.0668

1y [m] in optimised design
Length of spring after mounting | 0.0179

lp> [m] in original design




3 Compilation of motion equations

In order to obtain the motion equations, there has been employed the analytic method of
Lagrange equations of the second kind for the homonomous couplings. The equation (3) has
the usual form of Lagrange equations of the second kind (LEIID) for the system with
potential, dissipative and operating forces, where g; stands for the generalised coordinate, Ej
for the kinetic energy of the system, E, for the potential energy of the system, Ry for the
dissipative energy and Q; for the operating force [4]. In our case, the generalised coordinates
are x, and x3. The values of the intrinsic damping b; and the stiffness of the springs k; have
been taken from 7ab. 1. This mathematical model does not include the force of gravity.

d <6EK> 0Ex JEp ORy 3)
First of all, for the chosen analytic method LEIID the kinetic energy of the whole system (4)
has been determined.

Next, the potential energy of the whole system (5) has been established.
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The dissipative energy of the whole system is given by the sum of the individual components
of the dissipative function (6).
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The equation (3) shows the component of the operating force. In the system of the needle
transfer mechanism there is no function of any operating force component; therefore, the
element O=0. In the next step, the derivatives of the individual energy components according
to the respective coordinates have been found. The derivative of kinetic energy according to
the individual coordinates is
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The derivative of the potential energy according to the individual coordinates (x, x;3) is
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The derivative of the dissipative energy indicated by the sign is

OR . . . . .

a_x: = by (X — %1) — by (k3 — X3) + b3X; (11)
and

OR . .

a—x:: by (%3 — %3) . (12)

Subsequently, it is possible to perform the substitutions in the equation (3) and to compile the
motion equations for the elements 2 and 3 of the system. The relation (13) constitutes the
motion equation for the element 2 and the relation (14) is the motion equation for the element
3 of the system. It is

myX, = —ky(x3 — %3 — log) + ky(x3 — x5, — Loy — E) —{1573,9(x, —

0,0949)3 — 2 x 1071%(x, — 0,0949)? + 445,17 (x, — 0,0949)} — b, (x, — (13)
X1) + by (X3 — X3) — b3,

and

M3X3 = —K(X3 — X3 — lo; — E) — by(%5 — X3) (14)

For the generation of the mathematical model there have been determined the boundary
conditions simulating the system of stop blocks and cams which provide for the proper
functioning of the needle transfer mechanism in the real model.

If x, = x1 + 1, thenX, = % (15)
If x3=x, + 1y, +E theni; = X; (16)
If x, > 0,0989 then i, # X, (17)
If x, >0,0989 then F3,F, #0 (18)
If x+ D =x3+ A theni; # X; (19)
If X+ D =x3+A and X3 = 0thenX; = X,,x3 =X, (20)

The boundary condition (15) simulates the impact of the element 2 upon the transversal of the
pin guided by the element 1. The condition (16) simulates the stop block consisting of two
balls resting on the conical surface of the element 1. The conditions (17) and (18) simulate the
impact of the rubber pad (or the element 2) on the machine frame. This impact comes up as
soon as the element 2 reaches the position 0.0989 [m]. In this moment, the forces F; and F
start to act. The conditions (19) and (20) indicate that in the moment of the contact of the
points F and G (see Fig. 3) the element 3 impacts with the element 2. The coefficient of the
restitution between the elements 2 and 3 has been set up to the value 0.6. In the moment when
the element 3 does not bounce from the element 2 anymore, the condition (20) is fulfilled. In
this moment, the kinematic magnitudes (acceleration and velocity) of the element 3 are
identical with the values of the acceleration and velocity of the element 2. The elements 2 and
3 perform a rectilinear reverse movement still, caused by the effect of the force by the rubber
pad.

The equations (13, 14) have been resolved by means of the software Matlab with Simulink
module.



4 Results of the kinematic analysis

The results of the kinematic magnitudes (position, velocity, acceleration) are shown in the
following figures. Figs 6-8 show the courses of the kinematic magnitudes of the elements 1,
2, 3 for the original concept and for the optimised concept. Fig. 9 shows the courses of the
positions of the points F and G for the original concept and for the optimised concept.
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Fig. 6  Acceleration of elements 1, 2, 3 for the mechanisms of original design (puv) and of
the optimised one (opt)
The course of velocity
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Fig. 7 Velocity of elements 1, 2, 3 for the mechanisms of original design (puv) and of the

optimised one (opt)
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The course of position
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Fig. 8  Position of elements 1, 2, 3 for the mechanisms of original design (puv) and of the
optimised one (opt)
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Fig. 9  Positions of the points F and G for the mechanisms of original design (puv)
and of the optimised one (opt)

Fig. 6 to Fig. 8 show that - in the original concept of the needle transfer mechanism - the
controlling element is disengaged from the jacket in the machine speed at 250 cpm. Owing to
this disengagement of the controlling element, the velocity of the impact of the element 2 on
the stop block increases as well — see Fig. 4. In the original concept, at the time =0.01575s
the rubber pad is compressed and the element 2 bounces from the stop block. In the optimised
concept, the rubber pad gets compressed at the time /=0.01796s. In the original design, the
maximum acceleration of the element 2 comes up at the time =0.0161s meanwhile in the
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optimised design the maximum acceleration comes up at the time t=0.01815s. At the time
t=0.01923s, the elements 3 and 2 get in mutual contact (see Fig. 9). The element 1 goes on
completing its movement up to the value 0.0326m, which is necessary for the sufficient
opening of the collets.

Conclusion

There has been generated a simplified model representing the mechanism of the needle bar,
and the geometrical and mass parameters of the system elements have been determined.
Subsequently, the motion equations have been compiled by means of Lagrange equations of
the second kind. These motion equations have been complemented with the initial and
boundary conditions. The motion equations have been solved in the environment of Matlab
Simulink and the results have been processed graphically.

It has been ascertained that during the movement from the upper position of the needle
transfer mechanism to the lower there are produced the impacts generating the high values of
the acceleration of the element 2. Moreover, there occur the mutual impacts of the elements 2
and 3. These impacts are the source of the high levels of the noise and vibration intensity
transferred upon the machine frame, which is confirmed by the experimental measuring
performed on the real machine, too [5]. This mathematical model of the needle bar
mechanism will constitute a part of the total identification of the system in the future, too,
together with the crank mechanism and the servo-drive.
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DYNAMICKA ANALYZA MECHANISMU JEHELNI TYCE
U SICICH STROJU

Clanek pojednava o dynamické analyze mechanismu piedavani jehly, ktera byla provedena
pomoci Lagrangeovych rovnic druhého druhu s cilem urcit kinematické veli¢iny jednotlivych
¢lent. Byly ur¢eny geometrické a fyzikalni vlastnosti jednotlivych ¢lenti a ureny pocatecni
podminky. Déle byly sestaveny pohybové rovnice, které byly doplnény o okrajové podminky
zajistujicimi spravnou funkci mechanismu. V prostiedi Matlab Simulink byl vytvofen
program pro feSeni vlastnich pohybovych rovnic véetné okrajovych a poc¢ate¢nich podminek.
Vysledky dynamické analyzy byly graficky zpracovany.

DYNAMISCHE ANALYSE DES MECHANISMUS
DER NADELSTANGE BEI NAHMASCHINEN

Der Artikel behandelt die dynamische Analyse des Mechanismus des Ubergebens der Nadel,
die mittels der Lagrange-Gleichungen zweiter Art mit dem Ziel erfolgte, die kinematischen
Groflen der einzelnen Glieder zu bestimmen. Es wurden die geometrischen und
physikalischen Eigenschaften der einzelnen Glieder sowie die Anfangsbedingungen
bestimmt. Ferner wurden Bewegungsgleichungen aufgestellt, die um die Randbedingungen
ergdnzt wurden, die die korrekte Funktion des Mechanismus gewihrleisten. Im Medium
Matlab Simulink wurde ein Programm fiir die Losung der eigenen Bewegungsgleichungen,
einschlieBlich der Rand- und Anfangsbedingungen, erstellt. Die Ergebnisse der dynamischen
Analyse wurden grafisch dargestellt.

ANALIZA DYNAMICZNA MECHANIZMU PROWADNICY IGLY
W MASZYNACH SZWALNICZYCH

Artykut traktuje o analizie dynamicznej mechanizmu przemieszczania igly, ktorg
przeprowadzono z pomocg rownan Lagrange‘a drugiego rzedu, w celu okreslenia wielkosci
kinematycznych poszczegdlnych elementéw. Zostaty okreslone wtasciwosci geometryczne i
fizyczne poszczegolnych elementéw oraz okreslono warunki poczatkowe. Nastepnie
zestawiono roéwnania ruchu, ktore dopetniono warunkami brzegowymi zapewniajgcymi
prawidtowe funkcjonowanie mechanizmu. W $rodowisku Matlab Simulink opracowano
program do rozwigzywania wilasciwych réwnan ruchu wraz z warunkami brzegowymi i
poczatkowymi. Wyniki analizy dynamicznej opracowano w formie graficzne;.



