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number of the complete bipartite graph Kp,q .
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Here we shall study two numerical invariants of graphs concerning domination,

namely the signed domination number and the minus domination number [1].

If f is a function which maps the vertex set V of a graph G into some set of

numbers and S ⊆ V , then f(S) =
∑

x∈S

f(x).

Let f : V → {−1, 1}. If for the closed neighbourhood N [V ] of any vertex v ∈ V

we have f(N [v]) > 1, then f is called a signed dominating function (SDF) of G.

The value f(V ) is called the weight w(f) of f . The minimum of w(f) taken over

all SDF’s is called the signed domination number σsg(G) of G.

If in this definition we replace the set {−1, 1} by {−1, 0, 1} we obtain the definition

of the minus dominating function (MDF) and of the minus domination number σ−(G)

of G.

We shall study σsg(Kp,q) and σ−(Kp,q) for the complete bipartite graph Kp,q. We

suppose always that q 6 p.

We start with the signed domination number. If a SDF f on Kp,q is given, we use

the following notation:

The bipartition classes of Kp,q are P , Q with |P | = p, |Q| = q. We define

V + = {v ∈ V : f(v) = 1}, V − = {v ∈ V : f(v) = −1}. Further P + = V + ∩ P ,
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P− = V − ∩P , Q+ = V + ∩Q, Q− = V − ∩Q and p+ = |P+|, p− = |P−|, q+ = |Q+|,

q− = |Q−|. Therefore w(f) = p+ + q+ − p− − q−.

Now we express a theorem.

Theorem 1. Let Kp,q be a complete bipartite graph with the bipartition

classes P , Q such that |P | = p, |Q| = q, q 6 p. Let σsg(Kp,q) be the signed

domination number of Kp,q. Then

(i) for q = 1 there is σsg(Kp,q) = p + 1;

(ii) for 2 6 q 6 3 there is σsg(Kp,q) = q for p even and σsg(Kp,q) = q + 1 for p odd;

(iii) for q > 4 there is σsg(Kp,q) = 4 for both p and q even, σsg(Kp,q) = 6 at both p,

q odd and σsg(Kp,q) = 5 for one of the numbers p, q even and the other odd.

���������
. First we prove (i). Let q = 1. Then Kp,q is either K2, or a star with

p edges. For the first case the assertion is evident. Thus let Kp,q be a star. Then

Q = {c}, where c is the central vertex and P is the set of vertices of degree 1. Let

x ∈ P . Then N [x] = {x, c} and f(N [x]) = f(x) + f(c) > 2 for any SDF f . This

implies f(x) = f(c) = 1. As x was chosen arbitrarily, Kp,q has the unique SDF f

which has the value 1 in all vertices. Thus w(f) = p + 1 and also σsg(Kp,q) = p + 1.

The continuation of the proof will consist from a series of claims.

Claim 1. Let Q− = ∅. Then if f is a SDF, then w(f) > q for p even and

w(f) > q + 1 for p odd.

���������
. Let f be a SDF and Q− = ∅. Then Q = Q+ and f(Q) = q. Let

x ∈ Q. Then N [x] = {x}∪P and f(N [x]) = f(x)+f(P ) = 1+f(P ). The inequality

f(N [x]) > 1 holds only if f(P ) > 0. We have f(P ) = p+ − p−, p = p+ + p− and

this implies f(P ) = 2p+ − p. If f(P ) > 0 and p is even, then p+ > 1
2
p, p− 6 1

2
p,

f(P ) > 0. If p is odd, then p+ > 1
2
(p+1), p− 6 1

2
(p−1) and f(P ) > 1. This implies

the assertion. �

Claim 2. Let P− = ∅. Then if f is a SDF, then w(f) > p for q even and

w(f) > p + 1 for q odd.

���������
. The proof of this claim is analogous to that of Claim 1. Note that q 6 p

and thus such a lower bound is greater than of equal to the bound from Claim 1. �
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Claim 3. Let Q 6= ∅. Then f(P ) > 2 for p even and f(P ) > 3 for p odd.

���������
. Let x ∈ Q−. Then f(N [x]) = f(P ) − f(x) = f(P ) − 1. Further

considerations are analogous to those from the proof of Claim 1. We obtain here

2p+ − p > 2 and p+ > 1
2
p + 1, p− 6 1

2
p − 1 for p even and p+ > 1

2
(p + 3),

p− 6 1
2
(p − 3) for p odd. In the case of p even we have f(P ) = p+ − p− > 2, in the

case of p odd we have f(P ) > 3. �

Claim 4. Let P 6= ∅. Then f(Q) > 2 for q even and f(Q) > 3 for q odd.

���������
. The proof of this claim is quite analogous to that of Claim 3. �

Claim 5. If P− 6= ∅ and Q 6= ∅, then for every SDF f we have w(f) > 4 for

both p, q even, w(f) > 6 for both p, q odd and w(f) > 5 for one of the numbers p,

q even and the other odd.

���������
. This follows from Claim 3 and Claim 4, noting that w(f) = f(P )+f(Q).

�

� �
	��� � ������	������������������������� !���"�
�#�"$ %
. For q = 1 the proof is

ready. For q > 6 evidently the lower bound for w(f) from Claim 5 is less than

that from Claim 1 and Claim 2. Evidently also for 2 6 q 6 3 the converse is true.

By considering particular cases we see that for 4 6 q 6 5 both bounds coincide.

Therefore it remains to construct a SDF f for which the equality occurs. For 2 6

q 6 3 we put f(x) = 1 for each x ∈ Q and for 1
2
p vertices of P for p even or 1

2
(p + 1)

vertices x of P for p odd. For q > 4 we assign the value 1 to 1
2
p + 1 vertices of P for

p even or 1
2
(p + 3) vertices of P for p odd and analogously to 1

2
q + 1 vertices of Q

for q even of 1
2
(q + 3) vertices of Q for q odd. This implies the assertion. �

In the sequel we shall study the minus domination number. We still use the

notation F , Q, p, q and a MDF will be denoted by g.

Theorem 2. Let Kp,q be a complete bipartite graph with the bipartition

classes P , Q such that |P | = p, |Q| = q, q 6 p. Let σ−(Kp,q) be the minus

domination number of Kp,q. Then

(i) for q = 1 there is σ−(Kp,q) = 1;

(ii) for 2 6 q 6 p there is σ−(Kp,q) = 2.

���������
. First we prove (i). Let q = 1. Then Kp,q is either K2, or a star

with p edges. For the first case the assertion is evident. Thus let Kp,q be a star.

Then Q = {c}, where c is the central vertex and P is the set of vertices of degree 1.

Let x ∈ P , and let g be a MDF ofKp,q. ThenN [x] = {x, c} and g(N [x]) = g(x)+g(c).
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This is possible only if one of the vertices x, c has the value 1 and the other 0 or 1.

Therefore w(g) > 1. We construct MDF g with w(g) = 1. It suffices to put f(c) = 1

and f(x) = 0 for each x ∈ P . This implies the assertion.

Now we prove (ii). Let 2 6 q 6 p. Suppose that there exists a MDF g with

w(g) 6 1. We have w(g) = g(P ) + g(Q); this implies that at least one of these

values, say g(Q) 6 0. Let x ∈ P . We have g(N [x]) = g(x) + g(Q) 6 1 + 0 = 1.

This is possible only if g(x) = 1 and g(Q) = 0. As x was chosen arbitrarily, we have

g(x) = 1 for each x ∈ P and g(P ) = p. Then w(g) = p > 2, which is a contradiction.

Therefore w(g) > 2 for each MDF g. A MDF g with w(g) = 2 can be obtained by

choosing u ∈ P , v ∈ Q and putting g(u) = g(v) = 1, f(x) = 0 for any x ∈ V −{u, v}.

This implies the assertion. �
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