SIGNED AND MINUS DOMINATION IN BIPARTITE GRAPHS

Bohdan Zelinka, Liberec

(Received October 31, 2003)

Abstract

The paper studies the signed domination number and the minus domination number of the complete bipartite graph $K_{p, q}$.

Keywords: signed domination number, minus domination number, complete bipartite graph

MSC 2000: 05C69

Here we shall study two numerical invariants of graphs concerning domination, namely the signed domination number and the minus domination number [1].
If f is a function which maps the vertex set V of a graph G into some set of numbers and $S \subseteq V$, then $f(S)=\sum_{x \in S} f(x)$.

Let $f: V \rightarrow\{-1,1\}$. If for the closed neighbourhood $N[V]$ of any vertex $v \in V$ we have $f(N[v]) \geqslant 1$, then f is called a signed dominating function (SDF) of G. The value $f(V)$ is called the weight $w(f)$ of f. The minimum of $w(f)$ taken over all SDF's is called the signed domination number $\sigma_{\mathrm{sg}}(G)$ of G.
If in this definition we replace the set $\{-1,1\}$ by $\{-1,0,1\}$ we obtain the definition of the minus dominating function (MDF) and of the minus domination number $\sigma^{-}(G)$ of G.

We shall study $\sigma_{\mathrm{sg}}\left(K_{p, q}\right)$ and $\sigma^{-}\left(K_{p, q}\right)$ for the complete bipartite graph $K_{p, q}$. We suppose always that $q \leqslant p$.

We start with the signed domination number. If a SDF f on $K_{p, q}$ is given, we use the following notation:

The bipartition classes of $K_{p, q}$ are P, Q with $|P|=p,|Q|=q$. We define $V^{+}=\{v \in V: f(v)=1\}, V^{-}=\{v \in V: f(v)=-1\}$. Further $P^{+}=V^{+} \cap P$,

[^0]$P^{-}=V^{-} \cap P, Q^{+}=V^{+} \cap Q, Q^{-}=V^{-} \cap Q$ and $p^{+}=\left|P^{+}\right|, p^{-}=\left|P^{-}\right|, q^{+}=\left|Q^{+}\right|$, $q^{-}=\left|Q^{-}\right|$. Therefore $w(f)=p^{+}+q^{+}-p^{-}-q^{-}$.

Now we express a theorem.

Theorem 1. Let $K_{p, q}$ be a complete bipartite graph with the bipartition classes P, Q such that $|P|=p,|Q|=q, q \leqslant p$. Let $\sigma_{\mathrm{sg}}\left(K_{p, q}\right)$ be the signed domination number of $K_{p, q}$. Then
(i) for $q=1$ there is $\sigma_{\mathrm{sg}}\left(K_{p, q}\right)=p+1$;
(ii) for $2 \leqslant q \leqslant 3$ there is $\sigma_{\mathrm{sg}}\left(K_{p, q}\right)=q$ for p even and $\sigma_{\mathrm{sg}}\left(K_{p, q}\right)=q+1$ for p odd;
(iii) for $q \geqslant 4$ there is $\sigma_{\mathrm{sg}}\left(K_{p, q}\right)=4$ for both p and q even, $\sigma_{\mathrm{sg}}\left(K_{p, q}\right)=6$ at both p, q odd and $\sigma_{\mathrm{sg}}\left(K_{p, q}\right)=5$ for one of the numbers p, q even and the other odd.

Proof. First we prove (i). Let $q=1$. Then $K_{p, q}$ is either K_{2}, or a star with p edges. For the first case the assertion is evident. Thus let $K_{p, q}$ be a star. Then $Q=\{c\}$, where c is the central vertex and P is the set of vertices of degree 1. Let $x \in P$. Then $N[x]=\{x, c\}$ and $f(N[x])=f(x)+f(c) \geqslant 2$ for any SDF f. This implies $f(x)=f(c)=1$. As x was chosen arbitrarily, $K_{p, q}$ has the unique SDF f which has the value 1 in all vertices. Thus $w(f)=p+1$ and also $\sigma_{\mathrm{sg}}\left(K_{p, q}\right)=p+1$.

The continuation of the proof will consist from a series of claims.

Claim 1. Let $Q^{-}=\emptyset$. Then if f is a SDF, then $w(f) \geqslant q$ for p even and $w(f) \geqslant q+1$ for p odd.

Proof. Let f be a SDF and $Q^{-}=\emptyset$. Then $Q=Q^{+}$and $f(Q)=q$. Let $x \in Q$. Then $N[x]=\{x\} \cup P$ and $f(N[x])=f(x)+f(P)=1+f(P)$. The inequality $f(N[x]) \geqslant 1$ holds only if $f(P) \geqslant 0$. We have $f(P)=p^{+}-p^{-}, p=p^{+}+p^{-}$and this implies $f(P)=2 p^{+}-p$. If $f(P) \geqslant 0$ and p is even, then $p^{+} \geqslant \frac{1}{2} p, p^{-} \leqslant \frac{1}{2} p$, $f(P) \geqslant 0$. If p is odd, then $p^{+} \geqslant \frac{1}{2}(p+1), p^{-} \leqslant \frac{1}{2}(p-1)$ and $f(P) \geqslant 1$. This implies the assertion.

Claim 2. Let $P^{-}=\emptyset$. Then if f is a SDF, then $w(f) \geqslant p$ for q even and $w(f) \geqslant p+1$ for q odd.

Proof. The proof of this claim is analogous to that of Claim 1. Note that $q \leqslant p$ and thus such a lower bound is greater than of equal to the bound from Claim 1.

Claim 3. Let $Q \neq \emptyset$. Then $f(P) \geqslant 2$ for p even and $f(P) \geqslant 3$ for p odd.
Proof. Let $x \in Q^{-}$. Then $f(N[x])=f(P)-f(x)=f(P)-1$. Further considerations are analogous to those from the proof of Claim 1. We obtain here $2 p^{+}-p \geqslant 2$ and $p^{+} \geqslant \frac{1}{2} p+1, p^{-} \leqslant \frac{1}{2} p-1$ for p even and $p^{+} \geqslant \frac{1}{2}(p+3)$, $p^{-} \leqslant \frac{1}{2}(p-3)$ for p odd. In the case of p even we have $f(P)=p^{+}-p^{-} \geqslant 2$, in the case of p odd we have $f(P) \geqslant 3$.

Claim 4. Let $P \neq \emptyset$. Then $f(Q) \geqslant 2$ for q even and $f(Q) \geqslant 3$ for q odd.
Proof. The proof of this claim is quite analogous to that of Claim 3.

Claim 5. If $P^{-} \neq \emptyset$ and $Q \neq \emptyset$, then for every $\operatorname{SDF} f$ we have $w(f) \geqslant 4$ for both p, q even, $w(f) \geqslant 6$ for both p, q odd and $w(f) \geqslant 5$ for one of the numbers p, q even and the other odd.

Proof. This follows from Claim 3 and Claim 4, noting that $w(f)=f(P)+f(Q)$.

Conclusion of the proof of Theorem 1 . For $q=1$ the proof is ready. For $q \geqslant 6$ evidently the lower bound for $w(f)$ from Claim 5 is less than that from Claim 1 and Claim 2. Evidently also for $2 \leqslant q \leqslant 3$ the converse is true. By considering particular cases we see that for $4 \leqslant q \leqslant 5$ both bounds coincide. Therefore it remains to construct a SDF f for which the equality occurs. For $2 \leqslant$ $q \leqslant 3$ we put $f(x)=1$ for each $x \in Q$ and for $\frac{1}{2} p$ vertices of P for p even or $\frac{1}{2}(p+1)$ vertices x of P for p odd. For $q \geqslant 4$ we assign the value 1 to $\frac{1}{2} p+1$ vertices of P for p even or $\frac{1}{2}(p+3)$ vertices of P for p odd and analogously to $\frac{1}{2} q+1$ vertices of Q for q even of $\frac{1}{2}(q+3)$ vertices of Q for q odd. This implies the assertion.

In the sequel we shall study the minus domination number. We still use the notation F, Q, p, q and a MDF will be denoted by g.

Theorem 2. Let $K_{p, q}$ be a complete bipartite graph with the bipartition classes P, Q such that $|P|=p,|Q|=q, q \leqslant p$. Let $\sigma^{-}\left(K_{p, q}\right)$ be the minus domination number of $K_{p, q}$. Then
(i) for $q=1$ there is $\sigma^{-}\left(K_{p, q}\right)=1$;
(ii) for $2 \leqslant q \leqslant p$ there is $\sigma^{-}\left(K_{p, q}\right)=2$.

Proof. First we prove (i). Let $q=1$. Then $K_{p, q}$ is either K_{2}, or a star with p edges. For the first case the assertion is evident. Thus let $K_{p, q}$ be a star. Then $Q=\{c\}$, where c is the central vertex and P is the set of vertices of degree 1 . Let $x \in P$, and let g be a MDF of $K_{p, q}$. Then $N[x]=\{x, c\}$ and $g(N[x])=g(x)+g(c)$.

This is possible only if one of the vertices x, c has the value 1 and the other 0 or 1 . Therefore $w(g) \geqslant 1$. We construct MDF g with $w(g)=1$. It suffices to put $f(c)=1$ and $f(x)=0$ for each $x \in P$. This implies the assertion.

Now we prove (ii). Let $2 \leqslant q \leqslant p$. Suppose that there exists a MDF g with $w(g) \leqslant 1$. We have $w(g)=g(P)+g(Q)$; this implies that at least one of these values, say $g(Q) \leqslant 0$. Let $x \in P$. We have $g(N[x])=g(x)+g(Q) \leqslant 1+0=1$. This is possible only if $g(x)=1$ and $g(Q)=0$. As x was chosen arbitrarily, we have $g(x)=1$ for each $x \in P$ and $g(P)=p$. Then $w(g)=p \geqslant 2$, which is a contradiction. Therefore $w(g) \geqslant 2$ for each MDF g. A MDF g with $w(g)=2$ can be obtained by choosing $u \in P, v \in Q$ and putting $g(u)=g(v)=1, f(x)=0$ for any $x \in V-\{u, v\}$. This implies the assertion.

References

[1] W. T. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs. Marcel Dekker, New York-Basel-Hong Kong, 1998.

Zbl 0890.05002
Author's address: Department of Applied Mathematics, Technical University of Liberec, Voroněžská 13, 46117 Liberec, Czech Republic.

[^0]: Bohdan Zelinka passed away on February 2005.

