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ABSTRACT 

Sewing process is one of the most important operations in the clothing industry. It is 

also an important part of assembling some technical textile products. Every day, millions of 

products ranging from shirts to automotive airbags are sewn. Hence, even a minor 

improvement may result in significant commercial and performance benefits. The biggest 

issue with high speed sewing is the damage caused by heating of the needle on the sewing 

thread and the fabric. Sewing thread undergoes repeated abrasion and passes through the 

needle eye resulting in a friction with the needle; on the other hand the friction between the 

needle and the fabric during its penetration through the fabric layer(s) causes an increase in 

the needle temperature. This hot needle causes damage to the thread, the fabric and finally a 

loss in productivity. This work described in this dissertation aims at understanding the various 

processes causing a heating of the needle, with the needle’s temperature measurement and 

prediction. It also explores certain methods which may possibly improve the productivity of 

the sewing operation by reducing the needle temperature without compromising the sewing 

speed. 

Chapter 3 of this work covers the experimental techniques to measure the sewing 

needle temperature. Three methods (thermal camera, inserted thermocouple and 

thermocouple touch method) are compared under different sewing conditions. It was found 

that the thermal camera got influenced by the low emissivity of the needle and it is very 

difficult to measure at speeds higher than 3000r/min. Inserted thermocouple method showed 

repeatable results with the lowest deviation. On the other hand, the thermocouple touch 

method could be used to provide an estimation of the needle temperature since the delay in 

contact between the needle and the thermocouple provides lower values of needle temperature 

as compared to the inserted thermocouple method. 

Chapter 4 presents the effect of different factors on the sewing needle temperature; it 

was observed that the sewing speed, the thread count, the sewing time, the fabric structure 

and thickness had major impact on sewing needle temperature. On the other hand, ambient 

humidity, ambient temperature, stitch density and needle parameters played a minor role in 

heating of the sewing needle. 



 

 

 

 

Chapter 5 is based on the cooling of hot needle by a vortex stream of cold air, which is 

the common method in industry to decrease the needle temperature. In this research, a 10 

second of cooling time was suggested at the time of machine stoppage or deceleration. This 

technique provides similar results as compared to the continuous vortex cooling, but 

significantly saves the energy consumption.  

Chapter 6 presents the effect of the lubricant amount on sewing needle temperature. 

Lubrication is the second most common technique in industry for decreasing the needle 

temperature after the cooling air. Results of this research show that, to decrease needle 

temperature, it’s not productive to use lubricants if the machine speed is less than 2500 r/min; 

whereas for higher machine speeds, it’s recommended to add 3-4% of lubricant to the sewing 

thread. 

In Chapter 7 the effect of the needle temperature on the tensile properties of the sewing 

threads is discussed. It was observed that the tensile properties of the used sewing threads 

decreased dramatically for machine speeds higher than 3000r/min; where about 40% loss of 

tensile strength was recorded for sewing threads at machine speed of 4000 r/min. The tensile 

properties of the sewing threads were also measured at different sections of the sewing 

machine to examine the effect of the needle temperature as well as the abrasion by the tension 

devices. 

Chapter 8 presents the methodology for evenly coating the sewing needle with a 

diamond like carbon (DLC) layer. DLC coatings are well known for decreasing the friction 

properties of heavy machine parts like engines and pistons. In this research, the sewing needle 

(a very thin metal) was coated evenly with the DLC layer. There were minor differences 

observed in the properties of stitched thread after sewing using a DLC coated needle.  

Finally, in Chapter 9 a simple analytical model was developed to calculate the needle 

temperature at its steady state from a set of parameters that includes:  friction coefficients, 

friction forces and thread tension. A linear equation was obtained for the temperature of the 

needle related to the machine speed as an independent variable. It was found that the model 



 

 

 

could predict the maximum needle temperature that can be attained during a continuous 

sewing process of more than 10 seconds with a reasonable accuracy. The important role of 

the sewing thread in contributing towards the needle temperature was also established by this 

simple theory which corroborates with the experimental observations. 

Keywords: Needle heating, sewing machine, needle cooling, needle temperature prediction, 

sewing thread, needle coating.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

ABSTRAKT 

Šicí proces je jednou z nejdůležitějších operací v oděvním průmyslu. Je také důležitou 

součástí při sestavování některých technických textilních produktů. Každý den se ušijí miliony 

produktů od košil až po airbagy. Proto i malé vylepšení může mít za následek významné 

obchodní a výkonnostní výhody. Největším problémem při vysokorychlostním šití je 

poškození způsobeno zahříváním jehly na niti a materiálu. Šicí nit podléhá opakovanému 

oděru a prochází očkem jehly, což vede k tření s jehlou; na druhé straně tření mezi jehlou a 

materiálem během pronikání přes vrstvu materiálu způsobuje nárůst teploty jehly. Tato horká 

jehla způsobuje poškození nitě, materiálu a nakonec i ztrátu produktivity. 

Tato disertační práce se zaměřuje na pochopení různých procesů způsobujících zahřívání 

jehly, s měřeními a predikcí teploty jehly. Práce také zkoumá určité metody, které by mohly 

zlepšit produktivitu šicího procesu snížením teploty jehly bez ohrožení rychlosti šití. 

Kapitola 3 zahrnuje experimentální techniky pro měření teploty šicí jehly. Tři metody (termo 

kamera, vložený termočlánek a dotyková metoda pomocí termočlánku) jsou porovnávány při 

různých podmínkách šití. Bylo zjištěno, že termo kamera byla ovlivněna nízkou emisivitou 

jehly a je velmi obtížné provádět měření při rychlosti vyšší než 3000 ot / min. Metoda s 

vloženým termočlánkem ukazuje opakovatelné výsledky s nejnižší odchylkou. Na druhé 

straně by dotyková metoda s termočlánkem mohla být použita pro poskytnutí odhadu teploty 

jehly, protože zpoždění v kontaktu mezi jehlou a termočlánkem poskytuje nižší hodnoty 

teploty jehly ve srovnání se způsobem vloženého termočlánku. 

Kapitola 4 představuje vliv různých faktorů na teplotu šicí jehly; bylo zjištěno, že rychlost šití, 

počet nití, čas šití, struktura materiálu a tloušťka měly hlavní vliv na teplotu šicí jehly. Na 

druhé straně, parametry jako okolní vlhkost, okolní teplota, hustota stehu a parametry jehly 

hrály menší roli v zahřívání šicí jehly. 

Kapitola 5 je založena na chlazení horké jehly ve vířivém proudu studeného vzduchu, což je 

běžný postup používaný v průmyslu ke snížení teploty jehly. V tomto výzkumu byla navržena 

doba chlazení 10 sekund v okamžiku zastavení stroje nebo jeho zpomalení. Tato technika 

poskytuje podobné výsledky při porovnávání s kontinuálním vírovým chlazením, ale výrazně 

šetří spotřebu energie. 



 

 

 

Kapitola 6 prezentuje vliv množství maziva na teplotu šicí jehly. Mazání je druhou nejčastější 

technikou v průmyslu pro snížení teploty jehly po chlazení vzduchem. Výsledky tohoto 

výzkumu ukazují, že ke snížení teploty jehly není produktivní používat lubrikanty, pokud je 

rychlost stroje nižší než 2500 ot / min vzhledem k tomu, že pro vyšší rychlosti stroje je 

doporučeno přidat 3-4% maziva do šicích nití. 

Kapitola 7 pojednává o vlivu teploty jehly na tahové vlastnosti těchto šicích nití. Bylo 

pozorováno, že tahové vlastnosti použitých šicích nití se dramaticky snížily při rychlostech 

stroje vyšších než 3000 ot / min; kde asi 40% ztráta pevnosti v tahu pro šicí nitě byla 

zaznamenána při otáčkách stroje 4000 ot / min. Tahové vlastnosti šicích nití byly také měřeny 

v různých částech šicího stroje kvůli zkoumání vlivu teploty jehly, jakož i oděru pomocí 

napínacích zařízení. 

Kapitola 8 představuje metodiku pro rovnoměrné potažení šicí jehly s tzv. "Diamond like 

carbon" (DLC) vrstvou. DLC povlaky jsou dobře známé pro snížení třecích vlastností různých 

částí těžkých strojů, jako jsou motory a písty. V tomto výzkumu, šicí jehla (velmi tenký kov) 

byla potažena rovnoměrně DLC vrstvou. Byly pozorovány drobné rozdíly ve vlastnostech nití 

v stehu, po šití s jehlou s DLC povlakem. 

Na závěr byl v kapitole 9 vyvinut jednoduchý analytický model pro výpočet teploty jehly ve 

svém ustáleném stavu ze souboru parametrů, který obsahuje koeficienty tření, třecí síly a 

napětí nitě. Lineární rovnice byla získána pro teplotu jehly vztahující se k rychlosti stroje jako 

nezávislá proměnná. Bylo zjištěno, že model by mohl predikovat maximální teplotu jehly, 

která může být dosažena v průběhu kontinuálního procesu šití při více než 10 vteřinách s 

dostatečnou přesností. Pomocí této jednoduché teorie byla prokázána důležitá role nitě v 

přispívání k teplotě jehly, což potvrzuje experimentální pozorování. 

 

Klíčová slova:  Zahřívání jehly, šicí stroj, chlazení jehly, predikce teploty jehly, šicí     

nit, povlak jehly 
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Introduction 

Industrial sewing is one of the most common operations in the manufacturing of garments, 

shoes, upholstery and technical fabrics for automobiles. Every day, millions of products 

ranging from shirts to automotive airbags are sewn using industrial sewing machines. Heavy 

industrial sewing, such as that used in the manufacture of automobile seat cushions, backs and 

airbags, requires not only high production but also high sewing quality (i.e. better appearance 

and seam strength). Typically, the material being sewn includes single and multiple plies of 

fabric or leather, sometimes backed with plastics, and needle heat-up is a major problem on 

the sewing floor. In recent years, in order to increase production, high-speed sewing has been 

extensively used. Currently, sewing speeds range from 1000-6000r/min. In heavy industrial 

sewing, typical sewing speeds range from 1000-3000r/min.  

Depending on the sewing conditions, maximum needle temperatures range from 

100°C∼300°C [1]. This high temperature weakens the thread, since thread tensile strength is a 

function of temperature, resulting in decreased production [2]. In addition, the final stitched 

thread has 30–40% less strength than the parent threads [3]. Very high temperature of the 

needle can also damage the materials such as some synthetic fabrics or plastics which come in 

direct contact with the needle during sewing process. Since generally an increase in the 

machine speed is accompanied by an increase in the needle temperature, an optimization is 

often required. Therefore, it is important to understand the causes of the heating of needle in a 

sewing machine and to be able to predict the maximum needle temperature from the various 

parameters of the machine, process and material.  

However, the temperature of the needle of a sewing machine during its operation is a difficult 

thing to measure since the needle moves at a very high speed and its size is generally not very 

big [4]. Nevertheless various methods for measuring needle temperature, such as infrared 

pyrometer, thermocouple and temperature sensitive waxes, have been used. Sondhelm [5] 

used a lacquer painted in the needle groove to observe a change of colour with temperature. 

Laughlin [6] tried to measure needle temperature through infrared measurement from the 

needle using a lead-sulphide photocell. Recently Yukseloglu et al [7] have observed the 

needle temperature by thermal camera for polyester blend fabrics for sewing speed of 
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3000r/min using chromium needle and the emissivity was considered as 0.07. For infrared 

temperature measurement, there is a problem in calibration because the amount of radiation 

emitted at higher temperature depends on the surface characteristics [8]. The emissivity of 

each needle must be determined individually and, indeed, the emissivity might change during 

high speed sewing process. Another technique using thermocouples was later developed by 

Dorkin and Chamberlain [9]. There are few theoretical models available to predict sewing 

needle temperature [4, 8, 10, 11]. Trung et al [10] used Finite Element Analysis (FEA) model, 

Q. Li et al and Howard [4,11] have used analytical as well as FEA models and reported that 

the FEA approach gives much better accuracy compared to their analytical models which had 

an average error of 25%. As a result of such variety of measuring methods used by various 

researchers, it is sometimes difficult to compare the results reported in literature. Nevertheless, 

as a result of improved understanding of the causes of sewing damage, many technical 

developments such as improved needle design [12,13] fabric finishes [14], thread lubrication 

and needle coolers [15,16] have taken place over the years.  
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1 Chapter 1. Literature review 

A sewing machine is one of the most common machine of any clothing, automobile, footwear 

or home textile products. Sewing machines were invented during the first Industrial 

Revolution to decrease the amount of manual sewing work performed in clothing companies. 

Thomas Saint in 1790 is considered as the inventor of first working sewing machine [17]. 

Lockstitch sewing machines due to strong stitch and easy use are the major sewing machine 

used in any clothing industry. 

Lockstitch is a stitch performed in most household and industrial sewing machines (single 

needle). Lockstitch is formed by interlacement of upper thread and lower thread [18] .The 

upper thread runs from a spool near the machine, through guides, tension devices, take-up 

arm, and finally runs through the needle eye. Meanwhile the lower thread is wound on the 

bobbin, which is inserted in the bobbin assembly located under material in lower case of the 

machine [19].To make one stitch, the machine moves downwards the threaded needle through 

the material and into the bobbin assembly, where a rotating hook catches the upper thread just 

after it passes near the needle. The hook assembly carries the upper thread entirely around the 

bobbin case, so that it has made one wrap of bobbin thread .Then the take-up arm pulls the 

excess upper thread to tighten the stitch. Finally the feed-dogs move the fabric along one 

stitch length, and the cycle is repeated similarly. 

Ideally, the lockstitch is formed in the center of the thickness of the material. The thread 

tension mechanisms, one for the upper thread and one for the lower thread, prevent either 

thread from pulling the entwine point from out of the middle of the material. A small length of 

the needle thread (depending on stitches /cm) is consumed in the stitch formation and excess 

is pulled back. Therefore the needle thread passes nearly 20-25 times through the guides, 

tension regulator, take-up lever, needle and the fabric before becoming incorporated with the 

seam [20]. 

1.1 Basic thermal mechanism of needle heating 

The actual sewing needle heating is rather a complicated process. Needle temperature rises as 

the sewing starts and continues to rise till the steady state is attained. During the complete 
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process, the needle temperature varies minor at the needle penetration and withdrawal from 

fabric. [21] 

The heat is generated from the following sources: 

 Heat flux generated between fabric and needle outer surface. It is dependent on needle 

penetration force, withdrawing and frictional forces acting on needle by the fabric. 

 Heat flow from the friction between sewing thread and needle eye. It is dependent on 

type of sewing thread and thermal conductivity of thread, needle and friction 

coefficient between yarn and needle can influence the needle temperature. The sewing 

needle heating thermal heating mechanism is shown in figure 1. 

 

Figure 1 Sewing needle heating thermal system 

On the other hand, the heat leaves the needle by: [1] 

 Convection of the outer surface of the needle to the environment. Heat loss by 

convection is considered as the major source in cooling the needle. The convective 

heat flow equation can be expressed by Newton's Law of Cooling as, 

q = hc A dT         (1.1) 

Where 

q = heat transferred per unit time (W) 

A = heat transfer area of the surface (m2) 

hc= convective heat transfer coefficient of the process (W/(m2K) or W/(m2oC)) 

http://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html
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hc - is dependent on the type of media, gas or liquid, the flow properties such as 

velocity, viscosity and other flow and temperature dependent properties. 

dT = temperature difference between the surface and the bulk fluid (K or oC) 

 The heat conduction in the needle from higher point to lower temperature points, also 

the heat loss to the needle holder. The conductive heat flow can be expressed by 

Fourier's Law as 

q = k A dT / s         (1.2) 

Where 

q = heat transfer (W, J/s, Btu/s) 

A = heat transfer area (m2, ft2) 

k = thermal conductivity of the material (W/m K or W/m oC, Btu/(hr oF ft2/ft)) 

dT = temperature difference across the material (K or oC, oF) 

s = material thickness (m, ft) 

 The heat of conduction from the needle to sewing thread and fabric, the needle and 

textile materials have great difference of thermal conductivity but still at the time of 

machine stoppage the ultimate contact with needle-thread and needle–fabric causes 

local heating and damages the textile material. 

Conductivity factor λ [W/(mºC)] cab be expressed by following equation: 

λ = QL/At (T1-T2) (1.3) 

Where Q is heat flow, L is textile material thickness, t is time interval and T1-T2 is 

temperature difference. 

 Radiation heat between the needle outer surface and the environment. According to the 

Howard radiation play minor role in needle cooling, due to thin size and very low 

emissivity [11]. The equation can be expressed by the Stefan-Boltzmann law as: 

P = εσA(T4-Ts
4)  (1.4) 

P is net radiated power 

ε is Emissivity of material  

A is radiation area 

σ is Stefan’s constant 5.67*10-8w/m2K4 

http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
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T is temperature of radiator 

Ts is temperature of surrounding 

1.2 Experimental techniques of measurement 

There are multiple efforts in the past to experimentally observe the sewing needle heating. The 

experimental techniques to measure sewing needle temperature can be classifies as; 

 

Figure 2 Classification of Sewing needle temperature measurement 

1.2.1 Contact-less measurement  

1.2.1.1 Thermal Radiation Principles 

The intensity of the emitted energy from an object varies with temperature and radiation 

wavelength. In addition to emitting radiation, an object reacts to incident radiation from its 

surroundings by absorbing and reflecting a portion of it, or allowing some of it to pass through 

(as through a lens). From this physical principle, the Total Radiation Law is derived, Total 

radiation (Wt) can be stated with the following formula: 

Wt = aW + rW + tW  (1.5) 
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Which can be simplified to: 

1 = a + r + t. 

The coefficients a, r, and t describe the object’s incident energy absorption (a), reflection (r), 

and transmission. 

1.2.1.1.1 Emissivity 

The radiation properties of objects are usually described in relation to a perfect blackbody (the 

perfect emitter). If the emitted energy from a blackbody is denoted as Wbb, and that of a 

normal object at the same temperature as Wobj, then the ratio between these two values 

describes the emissivity (ε) of the object, 

ε = Wobj / Wbb   (1.6) 

Thus, emissivity is a number between 0 and 1. The better the radiation properties of the object, 

the higher its emissivity.  

1.2.1.2 Temperature measurement 

An object that has the same emissivity ε for all wavelengths is called a grey body. 

Consequently, for a grey body, Stefan Boltzmann’s law takes the form 

W = εσT4   (1.7) 

Where 

ε is Emissivity of material  

σ is Stefan’s constant 5.67*10-8w/m2K4 

T is temperature of radiator 

The radiation that impinges on the IR camera lens comes from three different sources. The 

camera receives radiation from the target object, plus radiation from its surroundings that has 

been reflected onto the object’s surface. Both of these radiation components become 
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attenuated when they pass through the atmosphere. Since the atmosphere absorbs part of the 

radiation, it will also radiate some itself (Kirchhoff’s law). The total radiation power (Wtot ) 

received by the camera can be written as 

Wtot = (1 – t) · Wobj + (1 – ε) · t · Wamb + (1 – t) · Watm  (1.8) 

Where ε is the object emissivity, t is the transmission through the atmosphere, Tamb is the 

(effective) temperature of the object’s surroundings, or the reflected ambient (background) 

temperature, and Tatm is the temperature of the atmosphere. 

1.2.1.3 Needle temperature measurement by contact-less method 

This technique is very effective for the temperature measurement of stationary object with 

higher emissivity. This technique includes devices like pyrometers and thermal camera which 

works on the IR radiation and measures the temperature based on emissivity of the surface. In 

case of sewing needle the small size of nearly 0.1-0.2cm, emissivity of sewing needle nearly 

0.06[21] and high speed of sewing makes it complicated to measure the sewing needle 

temperature. Most of the researchers [8, 16, 22, 23] have used the contact less method to 

measure the sewing needle temperature. The major limitation of this measurement for thin 

metal is the emissivity of each needle must be measured individually, and, indeed, the 

emissivity can change during the sewing process, so there must a continuous calibration 

during the measurement.  

1.2.2 Contact method measurement  

This technique of needle temperature measuring includes thermocouples and temperature 

sensitive materials. 

1.2.2.1 Principle of thermocouple 

A thermocouple is a device made by two different wires joined at one end, called junction end 

or measuring end. The two wires are called thermoelements or legs of the thermocouple: the 

two thermoelements are distinguished as positive and negative ones. In 1821, Thomas 

Seebeck discovered if metals of two different materials were joined at both ends and one end 

was at a different temperature than the other, a current was created. This phenomenon is 
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known as the Seebeck effect and is the basis for all thermocouples. 

ΔeAB = a.ΔT  (1.9) 

Where: 

eAB = Seebeck voltage 

ΔT = temperature change at the thermocouple junction 

a = Seebeck constant 

1.2.2.2 Needle temperature measurement by contact method 

Measurement by thermocouple is done by touching the thermocouple to the needle surface 

after the sewing process is stopped. The major problem with this technique is the delay and 

exact position in the placing the thermocouple on the needle. Dorkin and Chamberlain [9] 

used thermocouples to measure sewing needle temperature. Another technique of inserting 

thermocouple inside needle groove patent by Hes [24] still remains a novel approach to 

practically measure the sewing needle temperature, the techniques is not practically much 

used in past ,due to slow response time of thermocouples and bigger size of thermocouples 

available in the past. 

Another way of measuring the needle temperature is to stick the temperature sensitive 

material, such as waxes, lacquers and melting-point crayons in the needle groove. The 

material melts or change colour when they reach a specific temperature. This method is surely 

a hit or miss method. If a wax on the needle does not melt then it must be replaced by other 

wax with lower melting temperature. If the wax melts, it must be replaced by higher melting 

temperature wax. In this way, it is possible to indicate the maximum temperature needle can 

reach under specific conditions. Sondheim [5] used a lacquer painted in the needle groove to 

observe a change of colour with temperature. The placement of heat sensitive material on 

needle and the material not to be removed by the thread or fabric interaction is always a great 

issue in this methodology. 
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Figure 3 Sliding contact model [1] 

1.3 Theoretical models 

1.3.1 Sliding and Lumped Model by Li [1] 

Due to complexity and shortcomings of the experimental methods, an analytical simulation of 

needle heating is much desired. Theoretical models like Lumped variable, sliding contact and 

finite element analysis are proposed by different researchers. Howard [11] and Hersh [25] 

examined important factors that influence needle heating. In Howard work a model was 

established considering conduction, convection and radiation from the needle at the 

equilibrium state, He matched his theoretical results with the infrared measurement technique. 

Whereas Hersh considered the needle fabric interaction and measured the heating of needle by 

the penetration force of needle and fabric. 

Li [1] used the sliding contact and lumped variable model to predict the needle temperature in 

these models, the needle geometry is assumed as an infinite cylinder and the heating by thread 

is ignored. The sliding contact model is based on the theory of moving heat source and 

temperature at a sliding contact [16].The basic model for sliding contact model is shown in 

figure 3. 

 

 

 

 

 

 

Using principle of Sliding contact model Li [1] made two equations, firstly showing needle 

heating by needle and fabric friction and secondly representing the cooling of needle by 

convection. 

T=T01 + (1.064 * γq/K)*(α.l /v) 1/2 by Li [1] (1.10) 

Where 
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T is heat gained by needle 

T01 is initial temperature of the needle 

γq is friction heat absorbed by the needle 

K is thermal conductivity of needle 

α is material diffusivity 

l is contact length with fabric 

v is relative velocity of the needle 

Cooling of needle by convection in Sliding Contact model is given by Li[1] as below 

T=T∞ + (Ti –T∞) exp (- hc.F/ƿ.c.Vol)   (1.11) 

Where 

T∞ is ambient temperature 

Ti is initial temperature when cooling begins 

hc is convection coefficient 

F is cooling area 

Vol is volume to cool down 

ƿ is density of needle 

c is specific heat of needle 

The heat generation equation and cooling equation for the Sliding Contact Model were 

simulated for continuous strokes of sewing process to examine the heat gain by fabric friction 

and loss by convection during the sewing process. 

While the lumped model shown in figure 4 is based in the basic heat transfer principles, these 

simplifies models are examined for needle heating phenomena in one stitch between needle 

and fabric, formulated heating and cooling equation. Then computer software is used to carry 

the calculation for the needle temperature build-up in the whole sewing process. 
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Figure 4 Lumped variable model [1] 

 Both the models (Sliding Contact and Lumped Model) can be used for low speed of sewing, 

thickness of fabric less than 8mm and heating by thread is ignored. The author (Li. [1]) 

concludes that their model has 20-25% error. 

1.3.2 Finite Element Analysis 

Finite element analysis (FEA) demands much more complex computation to predict the 

needle temperature. Researchers [7, 10] have reported that FEA shows better accuracy as 

compared to other models to predict the needle temperature. Due to complex computation 

cannot be easily used at sewing floor and the models are experimentally compared with the 

infrared temperature measurement technique. 

The heat flux generated by the friction power was shown by the equation below 

qflux = f * v / A   (1.12) 

Where  

qflux is heat flux generated by friction force 

f * v is product of friction force of needle-fabric and velocity of needle (f*v) 

A is area of contact 

The friction force for the flat needle part going through the fabric is given by 

f =2π r.th.p.u   (1.13) 
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 The heat generation when needle flat surface goes through the fabric the heat flux was 

expressed as 

 qflux-flat = p.u.spd   (1.14) 

Where p is unit normal force that fabric act on the needle 

r is needle radius 

th is fabric thickness 

µ is friction coefficient 

spd is needle penetration force 

The friction heat generated by the thread and needle interaction was given as 

Qt = µt.T.cos𝞱.Vt  (1.15) 

µt is coefficient of friction between needle and thread 

T is tension of sewing thread with the needle 

𝞱 is thread angle of contact 

Vt is thread velocity 

The heat loss was from the needle was determined by the Newton’s law of cooling for 

convection loss and Fourier’s law of conduction. 

1.3.3 Regression Analysis 

Regression analysis is also performed by some research [7, 23, 27] based on their 

experimental measurement by IR-camera and pyrometers. The factors like machine speed, 

time of sewing and fabric thickness are considered in this analysis, but the use of IR-camera 

for measuring needle temperature thin fast needle moving is always questionable.  

Muge [7] measured the needle temperature polyester upholstery fabric using thermal camera 

and shows following regression equation. 

y = –24.8 + 10.8 x1 + 0.616 x2 + 0.0658 x3   (1.16) 
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r2 = 93.8% 

Where y- needle temperature, °C; 

x1 – fabric thickness, (mm); 

x2 – thread count, (tex) 

x3 – machine speed. r/min 

All the previous efforts in experiment and theoretical analysis shows very important 

information, which gives a valid start for measuring the sewing needle temperature 

experimentally using different techniques and compare different methods of measurement and 

also to theoretically analyse the sewing needle heat up. From the previous researchers results 

it can be concluded that. 

 Sewing speed is the most important factor in needle heating, but has minor effect on 

needle penetration force. 

 Radiation plays a minor role in needle heat dissipation. 

 Needle characteristics (like needle structure, needle finish, needle point shape, the 

needle finish) are the only factors that affect the equilibrium temperature of the needle. 

 Fabric properties (including fabric finish and fabric composition) plays a big role in 

needle temperature. The needle temperature is function of needle to fabric friction 

properties which depends on surface finish and fabric tightness. 

 Properly installed cooling system has obvious results in decreasing needle temperature. 

1.4 Effectiveness of the cooling techniques to decrease needle temperature 

The three industrial methods to decrease needle temperature are: 

 Vortex/forced air cooling 

 Thread lubricant 

 Surface coating 

There are few more methods like fabric finishes [14, 15, 28, 29] and increasing throat plate 

needle hole size [12], but are not used on industrial scale as the change fabric finishes is never 

acceptable by the customer and this process is always an extra addition in terms of money and 
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time to the complete sewing process, whereas changing in throat plate needle hole causes 

more air go with the needle penetration but it causes the loose or faulty stitches. Coating the 

needle with low fiction coefficient can also be used to decrease needle temperature by 

decreasing the friction heat between needle and textile material.  

1.4.1 Vortex / forced air cooling 

The Ranque-Hilsch vortex tube [30, 31] has been used for many years in various engineering 

applications like cooling suits, refrigerators, airplanes, etc. Other practical applications include 

cooling of laboratory equipment and sewing machines. Because of its compact design and 

little maintenance requirements the vortex tube is increasing its industrial use day by day. 

Compressed air is sent through the inlet nozzle (Figure 5). Swirl generators at the inlet plane 

create the vortex motion inside the tube. As the vortex moves along the tube, a temperature 

separation is formed. Hot air moves along the tube periphery, and cold air is in motion in the 

inner core. The hot air is then allowed to pass through the cone valve at the far end of the tube, 

while the cold air exits from the other side near the air inlet [32]. 

 

Figure 5 Vortex tube [33] 

It is considered that the vortex tube or forced air is an effective way of cooling the hot sewing 

needle [34], but still there is no research available which shows the difference in needle 

temperature by the use of vortex tube. In our research we have measured the effect of vortex 

cooling on sewing needle and also shown the impact on tensile strength of sewing thread. The 

vortex cooling time is also optimised in our research to save energy consumption.  
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1.4.2 Thread lubrication 

In the sewing process, the sewing thread undergoes friction between fabric, guides, tension 

devices on machine, bobbin thread and the sewing needle. The performance of sewing thread 

in apparel industry has become extremely important. Lubricants causes the decrease in friction 

coefficient of sewing threads and are commonly used in sewing industries [35]. The lubricant 

improves the surface finish which causes the decrease of friction between yarn and the metal 

object. Most lubrication is intended to decrease yarn to metal friction. In recent publication, it 

was reported that the amount of lubricant used have a profound effect on friction [36].Sewing 

thread lubricant always contains silicon, because silicon provides the heat protection and 

friction reduction in sewing threads. It is accepted that silicones are poor conductor of heat but 

good release agent and causes reduction in friction [37].The application of paraffin wax 

reduce the value of friction coefficient by approximately 50%, however at higher needle 

temperature it begins to soften due to local heat, caused by the friction, then forms an 

undesirable grease film and actually leads to an increase in friction. [35] 

Due to high strength and durability of PET-PET core-spun thread, it is the most common 

sewing thread used in apparel industry. High amount of lubricant are applied for PET sewing 

threads to decrease friction and needle temperature [38-41].The Eytelwein’s law should be 

used for the calculating the friction for threads sliding over a cylindrical guide, which is 

derived from the column law, where F1 is the incoming force, F2 is the leaving force, µ is the 

coefficient of friction and α is the angle of contact. 

F2/F1 = e µα    (1.17) 

µ=1/α. ln (F2/F1)   (1.18) 

The effect of lubricant surely decreases the friction coefficient of threads but still there is no 

research concerning the effect on needle temperature and amount suitable for sewing threads. 

Till now the sewing thread  are lubricated by a small bucket places above the sewing machine 

from which the sewing thread passes and get laminated by the sewing lubricant (lubricant 

holder),This method applies lubricant unevenly based on the machine speed and thread type. 

The contact time of lubricant and thread is very small at high speed of sewing whereas at 

machine stoppage the thread part remains immersed inside the lubricant .The effect of 
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different mount of lubricant on needle heating and tensile properties of sewing thread is 

discussed in our work. 

1.4.3 Surface coatings 

Sewing needles are commonly made from steel, there are different variety of needle finishes 

like polishing, chrome coating, titanium nitride coating, Nickel plating, Teflon coating and 

ceramic coatings.  

Polishing is simplest surface finish by rubbing the surface with the polishing medium, 

Chromium and Nickel plating provides high abrasion resistance and increase the life time of 

needle by abrasion protection, Titanium nitride layer on to the sewing machine needle surface 

provides homogenous, hard and smooth surface. Nowadays most the needles are coated with 

chromium finish to reduce the surface friction. The special design Titanium nitride coated 

needles are also popular in sewing of technical textile due to their hardness, better design and 

surface finish. 

 

1.5 Effect of Needle heat on the tensile properties of sewing thread  

Sewing threads plays a vital role in determining the seam strength, its durability and 

appearance. The mechanical properties of this thread are very important for its performance 

and durability. Machine stoppage due to thread breakage, rework due to poor sewing thread 

can greatly increase the production cost. Since very high strain are imposed on the thread 

during the high-speed sewing on modern machines, sewing thread requires high elasticity and 

for satisfactory performance [42]. To achieve good sewing performance, sewing thread, 

sewing thread must possess required mechanical and physical properties governed by its size 

and type chosen according to the fabric characteristic and end-use of the material. 

During sewing at high speed, the needle thread is subjected to repeated tensile stresses, 

bending, pressure torsion, wearing and heat. These forces act on the sewing thread repeatedly 

and the thread has to pass through needle eye, fabric and the bobbin case mechanism 50-80 

times before becoming part of the seam [43].the rubbing at the top of needle eye can cause 

local abrasion and cutting of the thread [44].In early research work Crow [45] reported 60% 
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reduction in thread strength after sewing. Later a number of researcher observed that there can 

be 30-40% strength reduction in the cotton thread after sewing [46-49].In a recent research on 

the tensile properties of mercerized cotton thread, nearly 30% strength reduction is reported 

[50].further more closer estimation of the seam strength was also possible after considering 

the loss in sewing thread strength [51, 52].A number of researcher also studies the dynamic 

loading of the sewing thread during high speed sewing process [53-57]. The mechanical 

performance of threads is governed by the properties of constituent fibres and their 

arrangement. In the course of tensile loading the tension induced by applied strain is 

transferred to the fibres through the interfacial shear stress, which leads to substantial changes 

in the yarn structure and fibre mechanical properties [58]. The friction, bending, and 

compression during the sewing process cause damage/pull-out of surface fibres resulting in a 

loss in mechanical properties. Heating of the needle cause synthetic fibres to soften or melt, 

leaving a weakened thread after sewing. The majority of these loadings are cyclic by nature 

and therefore cause the fibre fatigue [59, 60]. 

In our research rather than just measuring the seam strength or the thread strength in the seam, 

we sectioned the sewing thread in 4 section after sewing and measured the tensile properties 

of each section, each section gets different amount of abrasion and from thread cone till 

becoming part of the seam, whereas the last 2 section gets abrasion through guides and also 

acquire the needle heat. 
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1.6 Present State of Problem 

1.6.1 The role of sewing thread  

There are two different school of thoughts for the cause of sewing needle heating. Some 

researcher [2, 9, 25] believe sewing thread as a heat sink taking heat away from the hot 

needle. It is reported that needle decreases when sewing thread is used, friction between 

needle and fabric is considered as the major source of the needle heating.  

On the other hand the researchers [7,8,21] report the increase in needle temperature when 

sewing thread is used, showing the sewing thread as heat source and applies the friction heat 

to the needle. It is reported that the needle temperature rises before the needle punctures the 

fabric. 

Therefore, it’s necessary to examine the role of sewing thread in needle heating. 

1.6.2 Experimental techniques 

 The experimental verification by most of the researchers is done by the infrared or pyrometer 

method, which get influenced by the low emissivity of needle, changing emissivity of needle 

during the process and bigger measurement spot of the infrared heat measurement devices. 

First of all, it’s necessary to experimentally verify the needle temperature using different 

techniques and observe the major factors that cause the increase of needle temperature.  

Therefore, emissivity with contactless and discontinuity of measurement with the contact 

method is an unavoidable limitation. 

1.6.3 Effectiveness of cooling techniques  

The effect of forced air cooling on needle temperature needs more investigation in terms of 

the required temperature of air and the time of exposure. Similarly, the amount of lubricant to 

decrease the needle temperature should be studied as this amount might affect the tensile 

properties of the sewing thread.  

Therefore, the effect of cooling by air and lubrication needs more investigation. 
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2 Chapter 2. Objectives  

 Develop an experimental technique to measure the sewing needle temperature. 

 Determine the factors affecting the needle temperature. 

 Evaluate the effectiveness of common methods used for industrial needle 

cooling.  

 Examine the effects of needle heat on sewing thread.  

 Analyze theoretically the sewing needle temperature. 

 

2.1 Develop an experimental technique to measure the sewing needle 

temperature 

 Apply the three described measuring methods (thermal camera, inserted 

thermocouple method and thermocouple touch method). 

 Study the effectiveness of each method. 

 Compare mentioned methods at different conditions. 

 Recommend the optimum and limiting operating conditions for each method. 

2.2 Determine the factors affecting the needle temperature. 

 Select affecting parameters based on the available literature and the practical 

experience. 

 Design experimental procedure for studying the effect of each parameter.  

 Analyze the significance effect of each factor and the interaction between them. 

 

2.3 Evaluate the effectiveness of common methods used for industrial 

needle cooling. 
 Applying the cooling methods. 

 Measuring the dynamic needle’s temperature as well as the tensile properties of 

the sewing thread. 

 Optimize the operating cooling conditions. 
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2.4 Examine the effects of needle heat on sewing thread. 

 Study the factors affecting the tensile properties of sewing thread (heat and 

abrasion). 

 Evaluate the tensile properties at different sections of the sewing machine. 

 Examine the indirect effect of the machine speed on the tensile properties. 

2.5 Analysing theoretically the sewing needle temperature 

 Develop an analytical model for predicting the needle temperature. 

 Conduct experimental verification for the model. 

 Compare the model’s results with literature values. 
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3 Chapter 3. Experimental techniques to measure the sewing needle 

temperature 

In our research we measured needle temperature at high speed sewing by three methods 

(thermal camera, inserted thermocouple method and thermocouple touch method). Conditions 

for all experiments were kept constant at 26oC and 65% RH. The devices used for the 

experiments are listed below: 

 Lockstitch machine (Brother Company, DD7100-905). 

 Thermal camera P60 and X6450 from the FLIR Company. 

 Thermocouple by Omega (K type 5SC-TT-(K)-36-(36)) for the inserted method. 

 Thermocouple by Omega (5SC-GG-(K)-30-36) for the touch method. 

 Thermocouple by Omega -wireless device and receiver (MWTC-D-K-868). 

 Needles (Groz-Becker 100/16) R- type. 

 Relevant parameters of the sewing thread are shown in Table 1. 

 Relevant parameters of the denim fabric are shown in Table 2. 

 

 
Table 1 Sewing thread used for the experiments 

Thread type 
Company 

name 

Fineness 

(Tex) 

Twist 

(t/m) 

Twist direction 

(ply/single) 

Coefficient 

of friction 

µ 

Polyester–polyester 

core spun 

AMANN-

Saba C-80 
20*2 660 Z/S 0.13 

 

 

 
Table 2 Fabric used for the experiments 

Fabric type Weave Weight Ends/cm Picks/cm Fabric thickness 

100%cotton Denim 2/1 Twill 257 g/m2 25 20 0.035cm 

 

 

All methods were tested 20 times each and the results were statistically analysed. Maximum 

sewing time was 60 seconds for all techniques. The stitch density was kept constant at 5 

stitches/cm and the sewing process was done both with and without thread to determine the 

temperature difference caused by the sewing thread. All three methods are compared to 

determine the suitable method of needle temperature measurement. 
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3.1 Thermal camera 

The FLIR P60 is a manual thermal camera that measure temperature as triggered by the 

operator, whereas the FLIR X6450 is a continuous filming camera. Therefore, the FLIR P60 

was used for the emissivity measurement for the sewing process. All thermal cameras work on 

the principal of emissivity of the object. For this test, the emissivity of the needle was 

calculated by ASTM standard E 1933 – 99a [61] by painting a portion of needle with known 

emissivity as shown in figure 6, and determined to be 0.08 for a chromium polished needle at 

37oC. As the needle is thin and shiny, it is complicated to determine the exact emissivity, and 

most researchers adopt the emissivity of the needle as that for polished chromium, which is 

0.06 [7]. Even with knowing the emissivity of the needle, measurement is extremely difficult, 

as the sewing process is fast and the needle moves at a rate of 1000-6000r/min. Another 

problem is that the emission of the needle changes during the sewing process, as the surface 

characteristics change [8]. Therefore, the FLIR P60 was used for the emissivity measurement 

for the sewing process, and the X6450 was used for measuring the needle temperature during 

the sewing process.  

 

Figure 6 Needle temperature/emissivity measurement 

The first experiment was conducted without thread at speeds of 1000-3000r/min; the standard 

deviation increased sharply at 3000r/min. It is not possible to use the camera at speeds higher 

than that as the needle is moving more than 3500r/min, which makes it impossible to focus the 

camera on the needle. When the experiment was performed with thread even at 2,000 r/m, it 

was difficult to measure the needle temperature, as the thread, which has an emissivity of 

nearly 0.95 [62], significantly affects the needle measurement, which has extremely low 

emissivity, as shown in Figure 7. 
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Figure 8 Thermal camera FLIR P60 with Lockstitch 

machine 

Figure 9 shows the needle temperature measured by the thermal camera with an increase of 

sewing speed. The maximum machine speed used was 3000 r/min, as after this speed, it was 

not possible to focus on the needle. Even at 3000 r/min the standard deviation was much 

higher than at slower speeds. It can be seen that after 15 seconds of sewing, there was not 

much difference in the needle temperature as the process stabilizes with the surroundings. The 

needle temperature was higher compared to that measured when sewing without thread. The 

mean needle temperature reached 135oC at speed of 3000 r/min, with thread after 60 seconds 

of sewing. 

 

Figure 9 Needle temperature measured by thermal camera 

The thermal camera was placed at position B, as shown in Figure 10. Even changing the 

position from A or C caused a significant change in the recorded needle temperature; this 

Figure 7 Needle eye temperature   measured by 

camera 
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might be attributed to the surrounding energy sources, which receive reflection from the shiny 

needle. These energy sources are quiet hard to omit, and performing the sewing process under 

an enclosed black box is not suitable for determining the exact needle temperature as the 

surrounding conditions will not be same as those on the sewing floor. In our research we 

covered the surrounding with black fabric to minimise the energy sources from other object to 

get reflected from sewing needle. 

 

Figure 10 Placement of thermal camera 

3.2 Thermocouple touch method  

In this method, a thermocouple by Omega (5SC-GG-(K)-30-36) was used to measure the 

sewing needle temperature. The sewing process was done for 10-, 20-, 30- and 60-second time 

periods, and the thermocouple was manually touched to the eye of the needle to measure its 

temperature. This method involved a degree of human error, as the thermocouple was applied 

to the needle just after the sewing process finished. Being quick when applying the 

thermocouple and taking multiple observations for each time period reduces the percentage of 

error, however, the needle temperature results were still much lower when compared with the 

other methods, as the needle dropped heat very quickly. Figure 11 shows the thermocouple 

and the placement of the thermocouple after each sewing process interval. 
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Figure 11 Thermocouple placement for thermocouple touch method 

Figure 12 shows the needle temperature at the different sewing speeds; the maximum machine 

speed was 4000 r/min, which shows a mean temperature of 98oC after 60 seconds of sewing 

without thread, whereas the needle temperature of 122oC is recorded for sewing with thread 

under same conditions. It is observed that the needle temperature rises with higher sewing 

speed and sewing time .The needle temperature with thread is higher as compared to dry 

sewing (without thread). 

 

 

Figure 12 Needle temperature measured by the thermocouple touch method 
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3.3 Inserted thermocouple method 

In this method for measuring sewing needle temperature, a thermocouple by Omega (K type 

5SC-TT-(K)-36-(36)) was inserted into the groove of the sewing needle and soldered. The 

thermocouple was located near the eye of the needle to measure the exact needle temperature, 

and the temperature was measured at different sewing speeds. This method proved to be very 

efficient as it provided continuous changes in needle temperature every second and it had a 

low standard deviation. Figures 13 show the placement of the thermocouple inside the needle 

groove. The thermocouple remained inside the needle groove during the sewing process and 

measurements were recorded wirelessly on a computer through a wireless end device 

(MWTC-D-K-868).The Figure 14 shows the inserted thermocouple measurement method 

during the sewing process the legend 1 is thermocouple wire, 2 is needle groove ,3 is sewing 

thread and 4 is the needle eye. 

 

 

Figure 15 shows the needle temperature measured by the inserted thermocouple at sewing 

machine speed 1000-4000 r/min for both sewing with and without thread. This method proved 

to be efficient for the different machine speeds and had a lower standard deviation as 

compared to the other methods of measurement.   

Figure 14 Sewing needle with thermocouple Figure 13 Placement of the thermocouple 
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Figure 15 Needle temperature measured by the inserted thermocouple method 

Figure 16 shows the needle temperature (with thread) comparison for the different methods of 

measurement at a machine speed of 3000 r/min. The inserted thermocouple method shows the 

highest needle temperature after 60 seconds of sewing with the lowest standard deviation, 

followed by the thermal camera measurement, which had the highest standard deviation. The 

thermocouple touch method shows the lowest temperature of the three methods of 

measurement. It was impossible to measure the needle temperature with the thermal camera at 

speeds higher than 3000 r/min; therefore, the thermocouple touch method and the inserted 

thermocouple method were used to measure needle temperatures at sewing speeds of 4000 

r/min, both with and without thread. The inserted thermocouple method shows significant 

temperature differences between the tests performed with and without thread. Each 

experiment was repeated for 30 times. 
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Figure 16 Comparison of the needle (with thread) temperature measurement methods 

3.4 Summary 

Thermal camera was not a suitable method for measurement of sewing needle temperature. 

The emissivity of the needle posed a major problem and changed the surface properties [8]; 

during the normal sewing process, surrounding energy sources reflected off the needle 

surface. Keeping the same emissivity caused a large standard deviation in the needle 

temperature measurement, and it was even higher when sewing was done with thread. The 

thermal camera works on emissivity, and a needle with low emissivity and thread with high 

emissivity are too close differentiate by the thermal camera. All three methods of needle 

temperature measurement shows that the needle temperature was higher when sewing with 

thread as compared to dry sewing. 

The thermocouple touch method resulted in the lowest measured needle temperature, which 

was most likely due to measurement time delays. 

The inserted thermocouple appeared to be an efficient method of measurement. Wireless data 

transfer makes it possible to record needle temperatures each second at all sewing speeds. 

All three methods of needle temperature measurement shows that the needle temperature was 

higher when sewing with thread as compared to dry sewing. 
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4 Chapter 4. Factors affecting needle temperature 

As shown in last chapter, the inserted thermocouple method showed repeatable results with 

minimum deviation, so this method is used to examine the effect of different factors on 

sewing needle temperature. Some of the factors are also reported by previous researchers [4, 

7, 8, 23], but there are many factors which influences the needle temperature and not been 

discussed before. In this research some very common industrial sewing thread as shown in 

table 3 were tested under different sewing conditions to observe the effects of different factors 

on sewing needle temperature. 

Table 3 Common industrial sewing threads used for the experiment 

Thread Name Composition 

Thread 
count 

tex 

Coef. of 
friction 

µ 

Merciful 24/2 long-staple mercerised cotton 70 0.40 

Mercifil 40 long-staple mercerised cotton 50 0.20 

Mercifil  50 long-staple mercerised cotton 40 0.14 

Rasant 35 Polyester-cotton corespun 80 0.30 

Rasant 50 Polyester-cotton corespun 60 0.18 

Rasant 75 Polyester-cotton corespun 40 0.14 

Saba C35 Polyester-Polyester corespun thread 80 0.30 

Saba C50 Polyester-Polyester corespun thread 60 0.17 

Sabab C80 Polyester-Polyester corespun thread 40 0.13 

Ctech 80 polyester filament +Carbon  35 0.11 

 

Figure 17 shows that needle temperature rises with longer time of sewing but the increase is 

dramatic till 10 s of sewing, as after this time the needle system get stabilize with the 

environment temperature. The needle temperature also rises with the increase of sewing 

speed. The maximum needle temperature was recorded for the sewing threads made from 

cotton, as cotton has higher hairiness to cause more friction at the needle eye, which causes 

higher frictional heat. This needle heat is dissipated to surrounding through conduction to 

needle holder and also by convection through airflow (surrounding airflow and air forced at 

the needle eye with the sewing thread), whereas the heat dissipation through radiation might 

be very low as needle is thin and shiny with emissivity of less than 0.08 [8].  
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Figure 17 Needle temperature under different sewing conditions 

The SEM images of each type of sewing thread after 4700r/min of sewing is shown in Figure 

18.The broken and protruding fibers are visible on each thread, the melting of the fibers can 

be observed for the polyester based threads.  

 

Figure 18 SEM images of the threads after sewing (machine speed 4700r/min) 
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4.1 Factors affecting needle temperature 

The effect of different factors effecting needle temperature included in our research are 

discusses as below: 

4.1.1 Effect of sewing speed 

In our research the machine speed of 1000-4700r/min is tested for different threads and it is 

concluded that the needle temperature rises linearly with the increase of sewing speed. The 

higher the speed, the more heat goes to the needle during the unit time, hence resulting in an 

early high peak temperature. The more heat is taken by the needle within unit time, the faster 

it reaches it stability temperature, because the heat absorption rate decreases when the 

machine speed is going higher. The important reason for this needle temperature rise is also 

due to the higher thermal conductivity of the needle as compared to the textile material and 

more friction heat goes in to the needle during each cycle with higher sewing speed. 

4.1.2 Effect of fabric thickness 

In this research work, it is observed that the fabric thickness plays an important role in the 

needle heating, with the thinner fabrics or low number of layers the peak temperature is 

decreased greatly. With each new layer of fabric the temperature is increased by nearly 8oC. 

One reason is obvious that that there will be low friction generated by thin fabrics. The other 

reasons are that the needle takes in much more friction heat in the same time period and make 

bigger temperature difference for different fabric thickness. This allows the operator to do the 

sewing for longer time for thin or low number of layers of fabric as the peak temperature is 

less and temperature stability is reached much earlier as compared to heavy or multi-layered 

fabrics. 

4.1.3 Effect of Material  

Both needle and textile material affect the peak temperature of needle, the parameters which 

greatly influence in terms of material property are friction coefficient and thermal 

conductivity and any change in these two property will dramatically influence the needle 

temperature. 
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With the increase of thermal conductivity of textile material the needle temperature will 

decrease to some degrees, which is due to the heat conduction of needle to the textile material 

and friction heat partition ratio is dependent on the thermal conductivity, fabric density and 

specific heat of the material. 

4.1.4 Effect of needle geometry 

An industrial sewing needle is defined by nearly 15 parameters. There are number of 

parameters that determine the behaviour of needle heating, the parameters include: The needle 

eye position, size, length of needle groove, needle diameter needle punching length. 

In this research, different diameter of needles (90 to 120Nm), which are universal needles for 

denim fabric sewing were used. The friction heat increases with needle diameter increase, but 

the convection heat also will increase with the increase in the needle surface area. Therefore 

the net effect is almost negligible. 

4.1.5 Thread properties 

Three most common industrial threads with three different counts of 40, 60 and 80 tex were 

tested. It is observed that there is an increase in needle temperature with the increase of thread 

count. The higher count possesses larger contact area with the needle eye and causes the 

needle temperature to rise. It was also seen that the cotton threads has higher coefficient of 

friction and provide highest needle temperature to sewing needle as compared to other tested 

threads. 

4.1.6 Stitch density 

In this research all sewing threads shown in table 3 are tested for the stitch density of 3-6 

stitches/cm with various machine speed (1000-4700 r/min) and multiple fabric layers; it is 

found that there is a negligible change of needle temperature with the change of stitch density. 

It is due to that the number of insertion per unit time depends on the speed of the machine not 

on the displacement between these insertions (i.e. stitch density), therefore the generated heat 

due to friction will remain the same. 
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4.1.7 Vortex cooling 

Vortex cooling/forced air cooling is one of the most common industrial techniques to decrease 

the needle temperature. From our experimental analysis, for all sewing threads the needle 

temperature is decrease by nearly 60-100oC depending on machine speed and parameters of 

the vortex tube air. The method is very effective to decrease the needle temperature but this 

must be taken into account that most of the clothing industries do not prefer to use this method 

because of the additional cost of continuous compressed air supply. 

4.1.8 Ambient humidity and temperature 

The ambient temperature affect the needle temperature and almost 5 oC temperature rise of 

needle was noted when ambient temperature is increased from 26 to 36 oC, whereas the 

ambient humidity has negligible impact on needle temperature for the polymer sewing 

threads, but the cotton spun sewing thread shows a minor decrease in needle temperature with 

respect to the increase of ambient humidity. This might be due to the moisture regain of 

natural thread which causes change in their thermal conductivity. 

4.1.9 Thread Lubrication 

Thread lubrication is the second most common method to decrease the needle temperature at 

any sewing companies. The lubricant decrease the coefficient of metal to yarn friction and 

causes the needle temperature to decrease .It is also concluded from our research that the 

needle temperature is decreased by nearly 30% for sewing thread with lubricant (silicon 

lubricant). 

4.1.10 Time of sewing 

Sewing time is also a very important factor that influence the needle temperature, it is 

observed that the needle temperature reached to stability within 10-15 seconds of a continuous 

sewing, Needle gains the temperature through thread and fabric friction whereas the major 

heat loss is by conduction to needle holder and convection through the needle surface. There 

is a rapid increase in needle temperature till 10sec of sewing after that there is a minor 

increase in needle temperature and peak temperature is mostly observed at 15 to 20seconds of 

sewing. The cooling time should also be considered at the sewing floor, needle takes nearly 

30-45 seconds to cool down to room temperature.  
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4.2 Preliminary investigation 

The denim fabric and polyester core-spun thread is a widely used thread in the clothing 

industry and most of the previous researchers have used this this thread for their research, 

which makes the PET corespun thread the main subject of our study. Three-level four factorial 

Box–Behnken experimental design (constructed using Minitab 16) was used to evaluate the 

effects of the selected independent variables on the response. The number of experiments 

required to investigate the previously noted four factors at three levels would be 81. However, 

this was reduced to 27 by using a Box–Behnken experimental design. The results from this 

limited number of experiments provided a statistical model, which can help to find the 

optimum experimental conditions and the relationships between experimental results and 

parameters. The table 4 shows the thread properties used for the experiment, properties of 

denim fabric used for the experiment is shown in table 2. 

Table 4 Thread used for the experiment 

Thread type 
Company 

name/product 
Thread 

Count (tex) 
Twist 
(t/m) 

Twist direction 
(ply/single) 

Coefficient 
of friction 

µ 

Polyester/polyester core 
spun 

AMANN/Saba C-80 20*2 660 Z/S 0.13 

 

The significant variables like stitch, speed of sewing, layer of fabric, and the time were chosen 

as the critical variables and designated the symbols as X1, X2, X3, and X4, respectively. The 

low, middle, and high levels of each variable were designated as −1, 0, and +1, respectively, 

as shown in Table 5-6. 

Table 5 Factors and factor levels studied in Box-Behnken experimental design 

 

Levels 

Factors -1 0 1 

X1=number of stitches /2.54cm 10 12 14 

X2=Speed of Sewing (stitches/60 s) 1000 2000 3000 

X3=Number of Denim fabric layers 2 3 4 

X4=Time of Sewing (s) 10 20 30 
 

Table 6 The design of the experiment 

Trial No. X1 X2 X3 X4 
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1 -1 -1 0 0 

2 -1 1 0 0 

3 1 -1 0 0 

4 1 1 0 0 

5 0 0 -1 -1 

6 0 0 -1 1 

7 0 0 1 -1 

8 0 0 1 1 

9 -1 0 0 -1 

10 -1 0 0 1 

11 1 0 0 -1 

12 1 0 0 1 

13 0 -1 -1 0 

14 0 -1 1 0 

15 0 1 -1 0 

16 0 1 1 0 

17 -1 0 -1 0 

18 -1 0 1 0 

19 1 0 -1 0 

20 1 0 1 0 

21 0 -1 0 -1 

22 0 -1 0 1 

23 0 1 0 -1 

24 0 1 0 1 

25 0 0 0 0 

26 0 0 0 0 

27 0 0 0 0 

 

In a system involving four significant independent variables X1, X2, X3, and X4 the 

mathematical relationship of the response on these variables can be approximated by the 

quadratic polynomial equation: 

0 1 1 2 2 3 3 4 4 12 1 2 13 1 3 14 1 4

2 2 2 2

23 2 3 24 2 4 34 3 4 11 1 22 2 33 3 44 4

5 1 2 3 6 1 2 4 7 1 3 4 8 2 3 4 9 1 2 3 4

Y x x x a x x x x x x x

x x x x x x x x x x

a x x x a x x x a x x x a x x x a x x x x

      

      

       

      

    

 

(4.1) 

    Where, 
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 Y is estimate response, 0 is constant, 1, 2, 3, and 4 are coefficients of linear variables, 

12, 13, and 23 are interaction coefficients between the three factors, 11, 22, and 33 are 

coefficients of quadratic factors. 

    In this model given in equation (4.1), interactions higher than second-order have been 

neglected based on their significance value. A multiple regression analysis is done to obtain 

the coefficients and the derived equation (4.2) can be used to predict the response.  

Y = -26+1.375X1-0.0262X1
2+1.2*10-5x2

2+0.2134X3X4+0.00123X2X4            (4.2) 

Where, 

Y=needle temperature (°C) 

Adjusted R2 = 0.994 and P-value = 1.24*10-24 ≈ 0 

In order to gain a better understanding of the interaction effects of variables on needle 

temperature, selective three dimensional surface plots for the measured responses were 

studied. 

Figure 19 shows the 3D-surface plot for impact of number of layers and stitch density on 

needle temperature, it was observed that needle temperature is highly impacted by number of 

layers of fabrics, because with the increase of fabric thickness, higher friction occurs between 

needle and the fabric. Whereas the stitch density causes a minor increase in needle 

temperature. It is due to reason that with change of stitch density the number of insertion per 

unit time remains the same and so is the friction heat. 

Figure 20 shows that the needle temperature rises substantially with the increase of the sewing 

speed. There is more stitches made at higher speeds, which makes higher needle-yarn and 

needle-fabric friction. The more gain in temperature for higher speed than 50 r/s (3000r/min) 

can be due to higher dynamic loading of thread at higher speed and this increase in thread 

tension causes the higher frictional heat between needle and thread. 
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Figure 20 Effect of Sewing speed and sewing time on needle's 

temperature 

Figure 21 shows the comparison of needle temperature at different speed of sewing by 

experiment, and the predicted values by the model developed. It is visible that needle 

temperature rises linearly with the increase of sewing speed. There is nearly 15oC rise in 

needle temperature with each 10r/s increase in sewing speed. 

 

Figure 21 Comparison of Experimental and predicted Needle temperature for different speeds of sewing 

Figure 22 shows the comparison of needle temperature measured by experiment and by 

regression analysis. The needle temperature is shown for sewing speed of 50r/sec (3000r/min) 

at sewing time of 10, 20 and 30 seconds for 2,3 and 4 layer of denim fabric. The secondary y-

axis on the right side of graph shows the average percentage difference between the predicted 

and the experimental results. Results confirm that the model has error percent of less than 

10% for all factors. 

Figure 19 Effect of number of fabric layer and stitch 

density on needle's temperature 
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Figure 22 Prediction of model at 50 r/sec (3000r/min) of sewing 

 

4.3 Summary 

This research work presents a discussion on the effect of different factors on the sewing 

needle temperature; it was observed that the sewing speed, the thread count, the sewing time, 

the fabric thickness had major impact on sewing needle temperature. On the other hand, 

ambient humidity, ambient temperature, stitch density and needle parameters played a minor 

role in heating of the sewing needle.Needle temperature for denim fabric is also measured at 

different speeds of sewing, sewing time, stitch density and number of fabric layers. A multiple 

regression analysis is done to obtain the coefficients, and the derived equation was used to 

predict the needle temperature.  
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5 Chapter 5. Effect of vortex cooling on sewing needle 

temperature 

Cooling needle by cold air is one of the most common method in cooling the hot needle. In 

this chapter the effect of Cold air by vortex tube is examined under different sewing 

conditions. 

5.1 Experimental method 

5.1.1 Materials and devices 

For this research, sewing was performed for 30 sec with two common industrial polyester 

threads, and the needle temperature was measured using the inserted thermocouple method for 

the different speeds of sewing, ranging from 1000 to 4000 r/min. Finally, the tensile 

properties, like the initial modulus, breaking elongation and the tenacity of the thread, were 

measured at the different speeds and cooling times. The conditions for all of the experiments 

were kept constant at 26°C and 65% RH. The devices used for the experiments are listed 

below: 

 Lockstitch machine (Brother Company, DD7100-905). 

 Needles (Groz-Becker 100/16) R-type. 

 Sewing thread properties are shown in Table 7. 

 Properties of denim fabric used for the experiment is shown in table 2 

 Forced air cooling device (Properties shown in Table 8). 

Table 7 Properties of the sewing thread 

Thread type 
Producer/ 

product name  

Yarn 

Count 

(tex) 

Twist 

(t/m) 

Twist 

direction 

(ply/single) 

Tenacity 

(cN/tex) 

Elongation 

at break 

Initial 

modulus 

(N/tex) 

Coefficient 

of friction, 

µ (-) (%) 

PES–PES 

core spun 

AMANN/Saba 

C-35 
40 ×2 534 Z/S 50 18 4.4 0.30 

PES–PES 

core spun 

AMANN/Saba 

C-80 
20 ×2 660 Z/S 45 21 3.26 0.13 
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Table 8 Vortex tube efficiency 

Company  Input air pressure (kPa) Output air temperature (°C) 

Festo 500 7 

 

The sewing process was performed for 30 sec of continuous stitching on 2 layers of fabric 

with needle cooling, without needle cooling and with the optimised cooling time. Each thread 

was observed 20 times at each of the different speeds of sewing. The stitch length was kept 

constant at 5 stitches/cm. 

5.1.2 Needle cooling setup 

Figure 23 shows the placement of the cooling tube near the sewing machine; the distance 

between the needle and the cold air tube is 4 cm. The cooling setup is shown in figure 23.  

 

 

Figure 23 Sewing machine with needle cooling setup. 

Point 1- vortex tube, Point 2- air inlet from compressor, Point 3- cold air outlet, Point 4- sewing needle 

 

5.1.3 Tensile properties measurement 

After each 30 sec of the sewing cycle, the thread was cut from the needle guide point and a 

sufficient amount of seam thread was pulled out precisely by cutting the bobbin thread. 

Twenty observations were performed for each speed of the machine under three conditions; 

with cooling, without cooling and with the optimised cooling time, respectively. Tensile 
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testing of the sewing thread was conducted on an Instron tensile tester as per ASTM standard 

D2256, with a gauge length of 250 mm. 

 The change (%) in the tensile properties with respect to the parent thread was calculated by 

the following expression: 

 

𝑪𝒉𝒂𝒏𝒈𝒆 (%) =  
𝑻𝒏−𝑻

𝑻
∗ 𝟏𝟎𝟎                        (5.1) 

 

Where Tn is the tensile property of the thread pulled out from the seam, with n = 1, 2, and 3 

corresponding to sewing without cooling, with cooling and with the optimized cooling time, 

respectively. T is the tensile property of the parent thread. A negative sign (–) indicates a loss 

in tensile property. 

 

5.1.4 Cooling time of the needle 

First, the sewing process was performed without cooling, and all of the observations of 

the needle temperature and the tensile properties of the final seam thread were recorded at the 

different speeds of sewing. Next, the sewing process was performed with continuous cooling, 

and the cooling of the needle was begun a few seconds before the beginning of the sewing 

process. Finally, the sewing process was performed with a partial cooling time of only 5 sec 

before and 5 sec after the stoppage of the sewing process. In total, 10 sec of cold air was 

pumped manually at the sewing needle beginning at 25 sec of stitching and finishing 5 sec 

after the stoppage of the sewing. The reason for choosing this timing was mainly to protect the 

thread from damage at the time of the machine stoppage, where the contact time between the 

thread and the hot needle was much higher when compared to sewing at high speeds.  

5.2 Results and discussion 

5.2.1 Needle temperature (without cooling) 

Sewing needle temperature is measured by the inserted thermocouple method for a continuous 

sewing process of 30 seconds, after the sewing process the needle is allowed to cool down 

without any forced air flow. Figures 24-25 shows the needle temperature for both threads at 

the different speeds of sewing, without the air cooling. The needle temperature is higher for 
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the higher count thread, thread Saba C-35 shows a nearly 20°C higher temperature than the 

Saba C-80. 

 

Figure 24 Needle temperature (Saba c-80) without cooling. 

 

 

Figure 25 Needle temperature (Saba c-35) without cooling. 

The needle temperature at 1000 and 2000 r/min was less than 150°C after 30 sec of 

continuous sewing; therefore, 3000 and 4000 r/min was selected for the comparison of the 

needle temperature with cooling, without cooling and at the optimised cooling time. 

 

5.2.2 Comparison of needle temperature  

Figures 26–29 show the comparison of the needle temperatures for the sewing thread at 

different speeds of sewing for all 3 cooling times. The legends for Figures 26-29 are described 

in Table 9. 
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Table 9 Description of legends used in Figures 23-26 

Legends Description 

A Needle temperature with continuous cooling 

B Needle temperature with partial cooling (cooling starts at 25 sec and ends at 35 sec) 

C Needle temperature without cooling 

D Dotted line at 30 sec indicates the end of sewing process 

 

 

Figure 26 shows a nearly 40°C difference between sewing with air cooling and sewing 

without cooling for Sewing thread (Saba C-80). The optimised cooling time of 10 sec, 

beginning at 25 sec of the sewing process, causes the needle temperature to decrease 

dramatically, and in just 10 sec of cooling the needle temperature is decreased by nearly 30°C. 

 

Figure 26 Influence of cooling time on temperature of sewing needle 

 

Figure 27 shows the needle temperature at 4000 r/min of sewing speed with different 

cooling times for Sewing thread (Saba C-80). The optimised cooling time shows a nearly 

50°C decrease in temperature with only 10 sec of cooling. The needle takes almost 60 sec to 
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reach room temperature for sewing without cooling, whereas it takes just 20 sec of continuous 

cooling to cool the needle and 30 sec with the optimised cooling time. 

 

 

Figure 27 Influence of cooling time on sewing needle temperature (Saba C-80) at 4000 r/min. 

Figures 28-29 show the needle temperature for the (Saba C-35) thread at different sewing 

speeds and with different cooling times. 

Figure 28 shows the needle temperature (Saba C-35) at 3000 r/min with different cooling 

times. The optimised cooling time shows a nearly 60°C decrease in temperature. The needle 

takes almost 40 sec to reach room temperature for sewing without cooling, whereas it takes 

just 20 sec of continuous cooling to cool the needle and 25 sec using the optimised cooling 

time. 

 

Figure 28 Influence of cooling time on sewing needle temperature (Saba C-35) at 3000 r/min. 
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Figure 29 shows the needle temperature (Saba C-35) at 4000 r/min with different cooling 

times. The optimised cooling time shows nearly 90°C of decrease in temperature. The needle 

takes almost 50 sec to reach room temperature for sewing without cooling, whereas it takes 

just 20 sec by continuous cooling to cool the needle and 35 sec with the optimised cooling 

time. 

 

Figure 29 Influence of cooling time on sewing needle temperature (Saba C-35) at 4000 r/min. 

5.2.3 Influence of cooling time on tensile properties of thread 

Hot needle greatly influences the tensile properties of sewing thread. To measure the 

impact the needle thread is pulled out of the seam by precisely cutting the bobbin thread. 

Tensile properties like tenacity, initial modulus and breaking elongation of the thread were 

tested 20 times each to observe the effect of the cooling time on the thread strength. It was 

seen that sewing without cooling showed the weakest thread, where the tenacity was 

decreased to 26% at 4700 r/min for the sewing thread (Saba C-80); however, the sewing with 

continuous cooling and partial cooling (10 sec) showed almost the same tenacity of the seam 

thread. Figure 30 shows the tenacity of the thread for the Saba c-80 at different speeds and 

cooling times. The effect of the needle heat is quite visible at speeds higher than 3000 r/min.  
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Figure 30 Tenacity of thread (Saba C-80) at different speeds and cooling times. 

Figure 31 shows the tenacity of the thread (Sabac-35), sewing without cooling shows the 

weakest thread, where the tenacity of the thread is decreased to 30% at 4700 r/min, which is 

4% higher than the thread Saba C-80; however, sewing with continuous cooling and partial 

cooling (10 sec) shows a minor difference in tenacity of the seam thread. The effect of the 

needle heat is quite visible for 3000 r/min and higher.  

 

 

Figure 31 Tenacity of thread (Saba c-35) at different speeds and cooling times. 
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Table 10 shows the tensile properties of the thread, like tenacity, initial modulus and 

breaking elongation, of the Saba C-35 and Saba C-80 sewing thread. The percentage change 

in the property is also calculated according to equation 5.1. It shows that the thread tenacity, 

initial modulus and breaking elongation are more decreased for Saba C-35, when compared to 

Saba C-80, which is due to a higher needle temperature during the sewing process for Saba C-

35. 

The tensile properties of the thread are greatly decreased at 3000 r/min and higher. At 

4700 r/min, for the Saba C-35, the initial modulus of the thread compared to the parent thread 

was 26% less for sewing without cooling, followed by 22% with the optimised cooling time 

and 21% using continuous cooling. For Saba C-80, the initial modulus decreases by 22% for 

sewing without cooling, followed by 20% with the optimised cooling time and 19% using 

continuous cooling. 

Breaking elongation of the seam thread for 4700 r/min for Saba C-35 was 21% less for 

sewing without cooling, followed by 16.7% with the optimised cooling time and continuous 

cooling. For the Saba C-80, the breaking elongation decreased by 20% for sewing without 

cooling, followed by 16% with an optimised cooling time and continuous cooling. 

 

 

Table 10 Tensile properties of threads at different speeds of sewing. 

      Sabac-35   Sabac-80 

Property     speed of machine   speed of machine 

      

100

0 

rp

m 

2000 

rpm 

3000 

rpm 

4000 

rpm 

4700 

rpm 
  

1000 

rpm 

2000 

rpm 

3000 

rpm 

4000 

rpm 

4700 

rpm 

Tenacity 

[cN/tex] 

  
Parent 

thread 
50 50 50 50 50   45 45 45 45 45 

Sewing 

without 

cooling 

T1 49 47 42* 39* 35*   43 42* 40* 36* 33* 

X -2 -6 -16 -22 -30   -4.4 -6.7 -11.1 -20.0 -26.7 

Sewing 

with 

continuou

s cooling 

T2 49 48 46* 44* 43*   43 42* 41.2* 38* 37* 

X -2 -4 -8 -12 -14   -4.4 -6.7 -8.4 -15.6 -17.8 

Sewing T3 49 47.5 45* 44* 42*   43 42* 41* 37* 36* 
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with 

optimized 

cooling 

time 

X -2 -5 -10 -12 -16   -4.4 -6.7 -8.9 -17.8 -20.0 

Breaking 

elongatio

n [%] 

  
Parent 

thread 
18 18 18 18 18   21 21 21 21 21 

Sewing 

without 

cooling 

B1 
17.

6 
16.2* 15.6* 14.6* 14.2*   19.6 19* 18.2* 17.3* 16.8* 

X -2.2 -10.0 -13.3 -18.9 -21.1   -6.7 -9.5 -13.3 -17.6 -20.0 

Sewing 

with 

continuou

s cooling 

B2 
17.

7 
16* 16.4* 15.4* 15*   19.7 19.2* 18.8* 18* 17.6* 

X -1.7 -11.1 -8.9 -14.4 -16.7   -6.2 -8.6 -10.5 -14.3 -16.2 

Sewing 

with 

optimized 

cooling 

time 

B3 
17.

6 
16.1* 15.9* 15.5* 15*   19.6 19.2* 18.6* 17.8* 17.6* 

X -2.2 -10.6 -11.7 -13.9 -16.7   -6.7 -8.6 -11.4 -15.2 -16.2 

Initial 

Modulus 

[N/tex] 

  
Parent 

thread 
4.5 4.5 4.5 4.5 4.5   3.2 3.2 3.2 3.2 3.2 

Sewing 

without 

cooling 

I1 4.4 4.4 4.1* 3.6* 3.3*   3.1 3.1 3* 2.8 2.5 

X -2.2 -2.2 -8.9 -20.0 -26.7   -3.1 -3.1 -6.3 -12.5 -21.9 

Sewing 

with 

continuou

s cooling 

I2 4.5 4.3 4.1* 4* 3.6*   3.1 3.1 3.1* 2.7* 2.6* 

X 0.0 -4.4 -8.9 -11.1 -20.0   -3.1 -3.1 -3.1 -15.6 -18.8 

Sewing 

with 

optimized 

cooling 

time 

I3 4.4 4.3 4.2* 3.95* 3.5*   3.1 3.05 3* 2.8* 2.55* 

X -2.2 -4.4 -6.7 -12.2 -22.2   -3.1 -4.7 -6.3 -12.5 -20.3 

Where: 

 X=percentage change with respect to parent thread property [%].(calculated according to Equation 1.) 

 T1, T2 and T3 show the tenacity [cN/tex] of the threads without cooling, with continuous cooling and with an 

optimized cooling time, respectively. 

 B1, B2 and B3 show the breaking elongation [%] of threads without cooling, with continuous cooling and with an 

optimized cooling time, respectively. 

 I1, I2 and I3 show the initial modulus [N/tex] of the threads without cooling, with continuous cooling and with an 

optimized cooling time, respectively. 

 * shows the  significant difference of means at a 95% confidence interval from parent thread. 
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5.3 Summary 

The major outcomes from this part are highlighted below: 

 Air cooling (Vortex) is an effective way of decreasing needle temperature, and the 

continuous cooling method decreases the needle temperature by nearly 100°C at 

4000 r/min and 4700 r/min; whereas the 10 sec cooling at the time of machine 

stoppage decreases the needle temperature by 92°C at 4000 r/min and 4700 r/min. 

 At high speed sewing, the contact time between the thread and needle is very low, 

but as the machine comes to a complete stop, the contact time of the thread and 

needle is relatively higher, which causes damage to the sewing thread. The results 

represents that cooling at the time of machine stoppage and continuous cooling 

show the same results in terms of thread tensile properties. 

 Cooling only at the time of machine stoppage can also cause decrease in energy 

consumption at sewing industry due to low usage of compressed air. 

 Industrial sewing machine producers must operate the air cooling device with the 

machine speed pedal, which operates at 3000r/min and higher, and at the time of 

machine deceleration. 

 Cooling only at time of machine stoppage can be used for sewing operations like 

on bed sheets, curtain or long length stitches, where a straight long time sewing is 

made and cooling at time of machine stoppage can save energy consumption. 
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6 Chapter 6. Effect of lubricant on sewing needle temperature 

Lubricants cause the decrease in friction coefficient of sewing threads and are commonly used 

in sewing industries [9]. The lubricant improves the surface finish which causes the decrease 

of friction between yarn and the metal object and most lubrication is intended to decrease yarn 

to metal friction. In recent publication, it was reported that the amount of lubricant used have 

a profound effect on friction, and lubricants linearly decreases the coefficient of friction in 

sewing threads [63-65]. Sewing thread lubricant always contains silicon, because silicon 

provides the heat protection and friction reduction in sewing threads. It is accepted that 

silicones are poor conductor of heat but good release agent and causes reduction in coefficient 

of friction for sewing threads [38]. 

Due to high strength and durability of polyester-polyester (PET-PET) core-spun thread, it is 

the most common sewing thread used in apparel industry. High amount of lubricant are 

applied to decrease friction and needle temperature [37]. In our research we measured the 

effect of different amount of lubricant on needle temperature, coefficient of friction and 

breaking tenacity of PET-PET core-spun thread. 

6.1 Experimental method 

In this research, PET-PET core-spun thread with three different count and nine lubricant 

amounts (0-7%) are used for the experiment. Silicone lubricated threads are obtained from 

company AMANN .The properties of sewing thread are shows in Table 11 and the properties 

of fabric used for the sewing process are shown in Table 2. 

Table 11 Sewing thread used for the experiments 

Thread type 
Company name/product 

name 

Fineness 

[tex] 
Twist (t/m) 

Twist direction 

(ply/single) 

Polyester–polyester 

core spun 
AMANN/Saba C-80 40(20*2) 660 Z/S 

Polyester–polyester 

core spun 
AMANN/Saba C-50 60(30*2) 640 Z/S 

Polyester–polyester 

core spun 
AMANN/Saba C-35 80(40*2) 534 Z/S 
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6.1.1 Sewing thread friction testing 

All sewing thread friction properties are tested before the sewing process. Thread to metal 

coefficient of friction is measured for all threads with instrument CTT-LH401 (Company 

Lawson-Hemphill) according to standard ASTM D-3108 for 100m/min and contact angle of 

180o.The measured friction characteristics of sewing thread are shown in Table 12. 

Table 12 Thread to metal coefficient of friction 

Product name AMANN/Saba C-35 AMANN/Saba C-50 AMANN/Saba C-80 

Thread count 80tex 60tex 40tex 

Lubrication 

amount[%] 
µ µ µ 

0 0.29 0.19 0.14 

1.6 0.26 0.17 0.12 

2 0.25 0.16 0.12 

3 0.21 0.16 0.11 

3.5 0.21 0.15 0.11 

4 0.2 0.15 0.11 

4.5 0.2 0.15 0.11 

5 0.19 0.14 0.10 

7 0.16 0.13 0.10 

 

6.1.2 Needle temperature measurement 

The inserted thermocouple method is used for measuring the needle temperature during the 

sewing process. Lockstitch machine (Brother Company, DD7100-905).Needles (Groz-Becker 

100Nm for Saba C-80 and C-60, 110Nm for Saba C-40) are used for the sewing. Needle 

temperature is measured 5 times each for each threads and the results are statistically 

analysed. Maximum sewing time was 15 seconds for different speeds of sewing process. The 

stitch length was kept constant at 5 stitches/cm. 
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6.1.3 Tensile properties measurement 

The breaking tenacity and elongation values of the sewing thread are measured using 

INSTRON Tensile strength tester according to standard ASTM 2256 [66]. All sewing threads 

with different amount of lubricant are tested before sewing and after sewing process, the 

sewing thread is carefully removed from the seam by cutting the bobbin thread. Each thread is 

measured 10 times each for all speeds of sewing. 

6.1.4 Experimental design 

A Box–Behnken experimental design (constructed using Minitab 16) was used to evaluate 

the effects of the selected independent variables on the response. The number of experiments 

required to investigate the previously noted three factors at three levels would be 27. 

However, this was reduced to 15 by using a Box–Behnken experimental design as shown in 

table 14. The results from this limited number of experiments provided a statistical model, 

which can help to find the optimum experimental conditions and the relationships between 

experimental results and parameters. The significant variables like stitch, speed of sewing, 

layer of fabric, and the time were chosen as the critical variables and designated as X1, X2 and 

X3, respectively. The low, middle, and high levels of each variable were designated as −1, 0, 

and +1, respectively, as shown in Table 13-14. 

Table 13 Factors and factor levels studied in Box-Behnken experimental design 

Factors Levels 

  -1 0 1 

X1=Sewing speed [r/min] 2000 3000 4000 

X2= Lubricant amount [%] 0 3.5 7 

X3=Thread count [tex] 40 60 80 
 

Table 14 The design of the experiment 

Trial No. X1 X2 X3 

1 -1 -1 0 

2 -1 1 0 

3 1 -1 0 

4 1 1 0 

5 -1 0 -1 



A study on the needle heating of industrial Lockstitch sewing machine 

75 
Adnan Ahmed Mazari  TU Liberec, 2015 

6 -1 0 1 

7 1 0 -1 

8 1 0 1 

9 0 -1 -1 

10 0 -1 1 

11 0 1 -1 

12 0 1 1 

13 0 0 0 

14 0 0 0 

15 0 0 0 
 

6.2 Results 

6.2.1 Effect of lubricant amount on Coefficient of friction 

The yarn /metal friction is tested on instrument CTT-LH401 (Company Lawson-Hemphill) 

according to standard ASTM D-3108 for 100m/min and contact angle of 180o.It is observed 

that coefficient of friction decreases with the increase in lubricant amount. There is nearly 

35% decrease in coefficient of friction when the lubricant amount is 7%. The lubricant 

improves the surface finish which causes the decrease of friction between yarn and the metal 

object. Lubrication is intended to decrease yarn to metal friction. In recent publication, it was 

reported that the amount of lubricant used have a profound effect on friction properties [37, 

38, 63, 64]. Sewing thread lubricant always contains silicon, because silicon provides the heat 

protection and friction reduction in sewing threads. It is accepted that silicones are poor 

conductor of heat but good release agent and causes reduction in friction [37]. Figure 32 

shows the effect of lubricant amount on the friction coefficient of sewing threads. The 

increase in the lubricant amount causes decrease in metal to yarn coefficient of friction, this 

effect is already known and these results are further used to examine the effect of decrease on 

in coefficient of friction on the needle temperature. 
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Figure 32 Effect of lubricant amount on coefficient of friction 

6.2.2 Effect of lubricant amount on sewing needle temperature 

The lubricant causes the reduction in yarn to metal friction (as shown in Figure 32).This 

reduction in friction causes needle temperature to decrease. Figures 33-35 shows the needle 

temperature at different speeds of sewing from 1000 r/min to 4000 r/min, Continuous stitching 

is performed for 15seconds with all sewing thread for 5 times respectively. 

 

Figure 33 Needle temperature at different speeds of sewing (40tex thread with different amount of lubricant) 
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Figure 34 .Needle temperature at different speeds of sewing (60tex thread with different amount of lubricant) 

 

Figure 35 Needle temperature at different speeds of sewing (80tex thread with different amount of lubricant) 

As shown in the Figure 33-35, the sewing needle temperature decreases with the higher 

amount of lubricant. It is also visible that the sewing needle temperature rises with the higher 

speed of sewing and higher count of sewing thread. Needle temperature decreases linearly 

with the increase of lubricant amount, there is nearly 30% reduction in needle temperature 

when lubricant amount is 7% as compared to needle temperature of sewing thread without 
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lubricant. This reduction of needle temperature is very important for heavy industry sewing 

where sewing speed is higher than 3000 r/min. The use of lubricant decreases the needle 

temperature and can increase productivity of sewing industries. 

6.2.3 Effect of lubricant amount on sewing thread breaking tenacity 

The tensile properties of sewing threads are the key parameter at sewing floor is. In our 

research we measured the breaking tenacity and elongation at break of the sewing thread using 

INSTRON Tensile strength tester according to standard ASTM 2256 [66]. All sewing threads 

with different amount of lubricant are tested before sewing and after sewing process, the 

stitched thread is carefully removed from the seam by cutting the bobbin thread for tensile 

testing. Each thread is measured 10 times each for all speeds of sewing respectively. Figure 36 

shows the effect of lubricant amount on breaking tenacity of sewing thread before sewing. 

 

Figure 36 Effect of lubricant amount on breaking tenacity of sewing thread (before sewing). 

It is visible that breaking tenacity decreases with the amount of lubricant. As the lubricant 

might penetrates inside the yarn, it might decreases the fiber to fiber friction and make it 

slippery for the fibers to hold each other. As shown in figure 36 the breaking tenacity of 

thread is decreases by nearly 4-7% when the lubricant amount is 7%.There is a linear decrease 

in breaking tenacity of thread for all thread counts with increase of lubricant amount. 
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6.2.4 Feasible (optimum) conditions of sewing 

In a system involving three significant independent variables X1, X2 and X3 the 

mathematical relationship of the response on these variables can be approximated by the 

quadratic polynomial equation: 

Y=α0+α1x1+ α2x2+ α3x3+ α11x1
2+ α22x2

2 α33x3
2+ α12x1x2 + α13x1x3+ α23x2x3 +α4x1x2x3               

(6.1) 

    Where: 

 Y is estimate response, 0 is constant, 1, 2, and 3 are linear coefficients, 12, 13, and 23 

are interaction coefficients between the three factors, 11, 22, and 33 are quadratic 

coefficients. 

    In this model given in equation (6.1), a multiple regression analysis is done for Thread 

tenacity, needle temperature and extension at break to obtain the coefficients, and the equation 

can be used to predict the response.  

Breaking tenacity  

Y = 30.54-0.002X1-0.16X2+0.118X3-0.174X2
2+0.0001X1X2+0.005 X2X3   

 (6.2) 

Where; 

Y= Breaking tenacity [cN/tex] 

X1=Sewing speed [r/min] 

X2= Lubricant amount [%] 

X3= Thread count [tex] 

Adjusted R2=0.976 and P-value=1.24*10-24 ≈ 0 

Needle temperature 

Y = =-45.1+0.049X1+14.21X2+0.48X3-0.004X1X2 -0.164X2X3                            (6.3) 

Where; 



A study on the needle heating of industrial Lockstitch sewing machine 

80 
Adnan Ahmed Mazari  TU Liberec, 2015 

Y= Needle temperature [°C] 

Adjusted R2= 0.98 and P-value≈ 0 

Extension at break 

Y=9.17-0.0009X1+0.826X2+0.3117X3-0.076X2
2-0.0017X3

2-0.015X2X3-0.0001X1X2                      

(6.4) 

Where; 

Y= Extension at break [%] 

Adjusted R2= 0.945 and P-value ≈ 0 

A contour plot is a graphical technique for representing a 3-dimensional surface by plotting 

constant z slices, called contours, on a 2-dimensional format. The effect of lubricant amount 

on needle temperature, tenacity and breaking extension of sewing thread is plotted as contour 

lines, which are laid one above each other to determine the feasible region of sewing process 

and lubricant amount.  

Figure 37-39 shows the contour plots of needle temperature, breaking tenacity and extension 

at break of stitched thread laid one above each other. This graphical representation shows the 

effect of lubricant amount and sewing speed on needle temperature, thread tenacity and 

extension at break. It is visible from the contour plots that it’s not economical to use lubricant 

if sewing speed is less than 2000r/min, whereas for sewing speed of 2500r/min and higher the 

most feasible region of sewing is for lubricant amount of 2-4%(feasible region of sewing is 

shown by purple colour lines in contour plots).The higher amount of lubricant decreases the 

needle temperature and thread tenacity. To obtain highest tensile properties and maximum 

sewing speed it is recommended to use 2-4% of lubricant amount, but if it’s necessary to 

achieve lower needle temperature due to synthetic fabrics then lubricant amount of more than 

3% can be used. The effect is same for all three counts of PET-PET cores-pun thread. 
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Figure 37 Effect of lubricant amount and sewing speed on needle temperature, tenacity and breaking extension of 

sewing thread (40 tex) 

 

 

Figure 38 Effect of lubricant amount and sewing speed on needle temperature, tenacity and breaking extension of 

sewing thread (60 tex) 
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Figure 39 Effect of lubricant amount and sewing speed on needle temperature, tenacity and breaking extension of 

sewing thread (80 tex) 

 

Figure 40-41 shows the SEM images of 80tex (Saba-C35) lubricated and non-lubricated 

thread after 4000 r/min of sewing speed. The lubricated thread fibers are more intact with the 

thread body whereas the non-lubricated thread shows broken and protruding fibers. 

 

Figure 40 Saba c-35 with 0% lubricant Figure 41 Saba c-35 with 4% lubricant 
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6.3 Summary 

 Lubricants are mainly used for reduction of coefficient of friction for sewing thread. It is true 

that the coefficient of friction of sewing threads and needle temperature decreases with the 

increase of lubricant amount, It might be possible that higher amount of lubricant decrease the 

friction between fiber to fiber inside the thread, this slippery condition between fiber to fiber 

causes the decrease of breaking tenacity of sewing thread. 

In this work, it is visible that there is minor decrease in breaking tenacity of stitched thread 

with the addition of lubricant for sewing speeds till 2500r/min. From  economical point of 

view it’s not wise to use  lubricant if sewing speed is less than 2000r/min whereas for sewing 

speed of 2500r/min and higher the most feasible condition of sewing is for lubricant amount 

of 2-4%.The needle temperature is less than 130oC at this sewing speed and has insignificant 

effect on the sewing thread. 

It is advised to use the lubricant when sewing speed is 2500r/min and higher. The higher 

amount of lubricant decreases the needle temperature and thread tenacity .To obtain highest 

tensile properties and maximum sewing speed it is recommended to use 2-4% of lubricant 

amount, but if it’s necessary to achieve lower needle temperature due to synthetic fabrics then 

lubricant amount of more than 3% can be used.  

It is observed that coefficient of friction decreases with the increase in lubricant amount. 

There is nearly 35% decrease in coefficient of friction when the lubricant amount is 7%. 

Needle temperature decreases linearly with the increase of lubricant amount, there is nearly 

30% reduction in needle temperature when lubricant amount is 7% as compared to needle 

temperature without lubricant on sewing thread. 
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7 Chapter 7. Effect of needle temperature on tensile properties of 

sewing thread 

The mechanical properties of the thread are very important for its performance and durability. 

Machine stoppage due to thread breakage, rework due to poor sewing thread can greatly 

increase the production cost. Since very high strain are imposed on the thread during the high-

speed sewing on modern machines, sewing thread requires high elasticity and for satisfactory 

performance [42]. The mechanical performance of threads is governed by the properties of 

constituent fibres and their arrangement. In the course of tensile loading the tension induced 

by applied strain is transferred to the fibres through the interfacial shear stress, which leads to 

substantial changes in the yarn structure and fibre mechanical properties [58]. The friction, 

bending, and compression during the sewing process cause damage/pull-out of surface fibres 

resulting in a loss in mechanical properties. Heating of the needle cause synthetic fibres to 

soften or melt, leaving a weakened thread after sewing. The majority of these loadings are 

cyclic by nature and therefore cause the fibre fatigue [59, 60]. 

In our research rather than just measuring the seam strength or the thread strength in the seam, 

we sectioned the sewing thread in 4 section after sewing and measured the tensile properties 

of each section, each section different amount of abrasion and from thread cone till becoming 

part of the seam, whereas the last 2 section gets abrasion through guides and also acquire the 

needle heat. 

7.1 Stages of sewing thread for tensile properties measurement 

 

The sewing thread was divided in to four sections as shown in Figure 42.For tensile testing of 

sewing thread Instron tensile tester as per ASTM standard D2256 [66] was used. Tensile 

testing of the parent thread corresponds to that of section S1. For tensile testing of thread in 

zone S2, 250 mm length of thread from mark A towards G2 is mounted in the jaws. For 

tensile testing of thread in zone S3, a length of 250 mm from mark A towards point B is 

mounted in the jaws. A sufficient length of thread was removed from the seam for gripping in 

the lower jaw. Whereas section S4 thread is pulled out precisely from the seam by cutting the 
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bobbin thread.30 samples of each section (S1, S2, S3, S4) are tested for tensile properties at 

each speed of machine respectively. Details of the figure 42 is as below 

 

S1- same as parent thread. 

G1 to G6- guides for thread. 

T1 toT3- Tension devices. 

S2 –Section of thread from A towards point G1 

S3 –Section of thread from Point A towards point B. 

PointA-12cm from needle eye. 

Point B-22cm from needle eye in the seam. 

S4 –Thread in the seam (pulled out precisely by cutting the bobbin thread) 

The change (%) of tensile properties at different stages is calculated by following expression. 

𝐶ℎ𝑎𝑛𝑔𝑒 (%) =  
𝑇𝑛−𝑇1

𝑇1
∗ 100                (7.1)        

    

Where Tn is the tensile property at different sewing stages, with n = 2, 3, and 4 corresponding 

to sewing stage S2, S3, and S4 respectively. T1 is the tensile property of the parent thread, at 

sewing stage S1. Negative (–) change (%) indicates the loss in tensile property. 

 

Figure 42 passage of sewing thread through the sewing machine 
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7.2 Effect of needle temperature at section S3 

Section S3 thread undergoes maximum needle heat after machine stoppage as thread is 

indirect contact with the hot needle. Tenacity of thread is more affected for higher count 

thread (Saba C-35) as the needle temperature is higher with higher count threads. Figure 43 

shows the needle temperature and tenacity of thread at section S3 for different speeds of 

sewing, it shows that needle temperature is causing a great damage to the sewing thread 

tensile property. For Saba C-35 the thread decreases tenacity by 78% followed by Saba C-80 

which shows 46% decrease in tenacity at 4700 rpm of sewing speed. Saba C-35 is higher 

count thread and shows higher needle temperature which might be because of higher friction 

between needle-eye and thread. The graph shows the needle temperature at primary left axis 

and secondary axis on right side of graph shows the tenacity of both threads at different speed 

of sewing. 

 

 

Figure 43 Needle temperatures and tenacity of threads at section S3 for thread Saba C-80 

7.3 Effect of sewing speed on thread tensile properties 

Table 15 shows the Tenacity, Initial modulus and breaking elongation for the both thread 

Sabac-35 and Saba c-80 at different speeds of sewing machine and different sections of 

sewing thread (S1, S2, S3 and S4). Change (%) is calculated according to Equation 7.1 and 

Table 15 shows that the maximum loss of tensile property is at section S3 where for Sabac-80 



A study on the needle heating of industrial Lockstitch sewing machine 

87 
Adnan Ahmed Mazari  TU Liberec, 2015 

thread tenacity is decreased to 46.7% and for Saba c-35 the tenacity is decreased by 78% at 

4700 rpm of machine. Thread at section S3 gets maximum needle heat after machine stoppage 

and cause the biggest change in thread tensile properties. 

Breaking elongation [%] property decreased more for Saba C-35 as compared to Saba C-80, 

but again the impact is maximum at the section S3 where breaking elongation shows 72% 

decrease for Saba c-35 and 41% for Saba C-80 at 4700 rpm of machine. 

Initial modulus of Saba C-80 decreases by 51% as compared to 40% of Saba c-35 at section 

S3 for 4700 rpm of machine. 

Table 15 Mean values of mechanical properties of sewing threads 

    Sabac-35 (80Tex)   Sabac-80 (40Tex) 

Property   speed of machine   speed of machine 

    
1000 

rpm 

2000

rpm 

3000 

rpm 

4000 

rpm 

4700  

rpm 
  

1000       

rpm 

2000 

rpm 

3000 

rpm 

4000 

rpm 

4700 

rpm 

Tenacity 

[cN/Tex] 

S1 50 50 50 50 50 
 

45 45 45 45 45 

S2 50 50 48 47* 45* 
 

45 44 43* 43* 42* 

percentage 

change 

with 

respect to 

S1[%] 

0 0 -4 -6 -10 
 

0.0 -2.2 -4.4 -4.4 -6.7 

S3 49 48 41* 32* 11* 
 

43 41 37* 31* 24 

percentage 

change 

with 

respect to 

S1[%] 

-2 -4 -18 -36 -78 
 

-4.4 -8.9 -17.8 -31.1 -46.7 

S4 49 48 44* 43* 41* 
 

43 42 40* 37* 36* 

percentage 

change 

with 

respect to 

S1[%] 

-2 -4 -12 -14 -18 
 

-4.4 -6.7 -11.1 -17.8 -20.0 

Breaking 

Elongatio

n [%] 

S1 18 18 18 18 18 
 

21 21 21 21 21 

S2 18 17.9 17.6 17.2 17* 
 

20.8 20.4 20.1 19.2* 19* 

percentage 

change 

with 

respect to 

S1[%] 

0.0 -0.6 -2.2 -4.4 -5.6 
 

-1.0 -2.9 -4.3 -8.6 -9.5 

S3 17.5 17.2* 13.6* 12.2* 5* 
 

20 19.5* 17.4* 14.5* 12.4* 
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percentage 

change 

with 

respect to 

S1[%] 

-2.8 -4.4 -24.4 -32.2 -72.2 
 

-4.8 -7.1 -17.1 -31.0 -41.0 

S4 17.6 16.2 16* 15.7* 14.3* 
 

19.6 19* 18.2* 17.3* 16.8* 

percentage 

change 

with 

respect to 

S1[%] 

-2.2 -10.0 -11.1 -12.8 -20.6 
 

-6.7 -9.5 -13.3 -17.6 -20.0 

Initial 

Modulus 

[N/tex] 

S1 4.5 4.5 4.5 4.5 4.5 
 

3.2 3.2 3.2 3.2 3.2 

S2 4.5 4.45 4.4 4.5 4.35 
 

3.2 3.15 3.183 3.1 3* 

percentage 

change 

with 

respect to 

S1[%] 

0.0 -1.1 -2.2 0.0 -3.3 
 

0.0 -1.6 -0.5 -3.1 -6.3 

S3 4.4 4.3* 4* 3.1* 2.7* 
 

3.1 3.1 2.85* 1.8* 1.4* 

percentage 

change 

with 

respect to 

S1[%] 

-2.2 -4.4 -11.1 -31.1 -40.0 
 

-3.1 -3.1 -10.9 -43.8 -56.3 

S4 4.4 4.4 4.2* 3.6* 3.3* 
 

3.1 3.1 3* 2.2* 2.1* 

percentage 

change 

with 

respect to 

S1[%] 

-2.2 -2.2 -6.7 -20.0 -26.7 
 

-3.1 -3.1 -6.3 -31.3 -34.4 

* The significant difference of means at a 95% confidence interval from stage S1 

7.4 Sewing speed, needle temperature and tenacity of sewing thread 

Figure 44 shows that there is a strong linear relation between needle temperature and speed of 

machine, experimental result also shows a strong negative linear relationship between speed 

of machine and tenacity of sewing thread, at 4700 rpm of machine the sewing thread exhibit 

nearly 50% decrease in tenacity. 
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Figure 44 Needle temperature and Tenacity of sewing thread 

Figure 45 shows the images of sewing thread (Saba c-35) after continuous sewing of 15 

seconds for different sewing speeds, the melted fibers can be easily seen In the SEM image of 

sewing speed of 4700r/min.  

 

Figure 45 SEM images of sewing thread (Saba c-35) at different machine speeds at S3 
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7.5 Summary 

This research shows that needle temperature has a dominant influence on the strength of 

sewing thread, the hot needle mainly damages the thread when the machine stops after sewing 

and needle is in direct contact with the thread. This needle-heat damaged thread eventually 

becomes part of the next seam and causes loss in seam strength. It is recommended to waste 

20 cm of the thread after one complete sewing, so that the thread damaged at the needle eye 

after machine stoppage should not be part of the next seam. 

As thread moves from cone to the seam, it undergoes various stresses and strain such as 

dynamic stress at section S2, there is a marginal decrease in tensile strength for thread at 1000 

and 2000 r/m of machine, whereas loss of tensile strength of thread is much significant from 

3000 r/m of machine and higher. 

Bobbin thread interaction and needle heat are the two main causes of reduction of tensile 

strength, breaking elongation and initial modulus of thread. The loss was greater for Saba C-

35(80 tex) polyester core spun thread followed by Saba C-80(40 tex) thread (see Table 15). 

Which can be because of higher friction between needle and thicker thread and causing needle 

temperature to increase. Needle temperature is nearly 20 oC higher for Saba C-35 for all 

observations as compared to Saba C-80. 

Thread at section S3 gets maximum needle heat after machine stoppage and cause the biggest 

change in thread tensile properties. That is why this section thread exhibit the maximum loss 

of tensile property. For Sabac-80 thread tenacity is decreased to 46.7% and for Saba C-35 the 

tenacity is decreased by 78% at 4700 rpm of machine. Breaking elongation decreased more 

for Saba C-35 as compared to Saba C-80, but again the impact is maximum at the section S3 

where breaking elongation shows 72% decrease for Saba c-35 and 41% for Saba C-80 at 4700 

rpm of machine. Initial modulus of Saba C-80 decreases by 51% as compared to 40% of Saba 

c-35 at section S3 for 4700 rpm of machine. 

Section S4 thread is the seam thread, pulled out precisely by cutting the bobbin thread. In this 

section the loss of tensile strength is mainly due to bobbin thread interaction and friction of 

guides and tension devices on machine, but due to high speed of machine the contact time 

between thread and needle is much less to impact. That is why the thread at section S4 shows 

higher tensile properties as compared to section S3. 
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8 Chapter 8. DLC coating of sewing needles 

DLC (Diamond like Carbon) coating possesses a small friction coefficient and high wear 

resistance. Therefore they have been used to improve the service characteristics of various 

metal parts [67]. In this research we coated the needles with DLC to examine the sewing 

performance which includes needle temperature and tensile properties of stitched sewing 

thread. Diamond-like carbon (DLC) coating is widely used because of its good tribological 

characteristics and aesthetic value [67]. Tribology consists of three parts, i.e., friction, wear, 

and lubrication. DLC can be used as a solid lubricant. Some parts cannot be lubricated by wet 

lubricants; therefore, DLC can be useful on specific applications, such as food processing, 

chemical pumps, biological applications, space technology and hard disks [68]. Most modern 

mechanical systems are operated under high loads, high temperature, and corrosive 

environment [69]. DLC-coated machine parts can be operated under high load, high 

temperature (close to 400oC), and under corrosive environment. DLC coating is also 

becoming commercially attractive because of some of its inherent properties, such as low 

friction, high wear resistance, and high hardness. In mechanical systems, low friction signifies 

highly efficient system, which consumes lower energy. Therefore, various studies have been 

performed in different mechanical components, such as automotive valve train application 

[70, 71], bearings, [72] gears, [73, 74] piston rings, [75, 76] piston pins, direct-injection fuel 

systems, and cutting and forming tools [77], these components can be coated with DLC. 

 

8.1 Experimental part 

In this research, Needles (100Nm) are coated with DLC layer by radio frequency plasma 

assisted chemical vapour deposition/magnetron sputtering (RF/PACVD/MS) method. The 

coated needles are further compared with the non-coated needles in terms of needle 

temperature during sewing, surface roughness and sewing performance. 

8.1.1 DLC coating of sewing needles 

During the last 20 years DLC coatings became a very attractive material in many industrial 

application. In our research we coated the needles (Grozbeckert-100Nm, R type)using 

RF/PAVCD/MS method .The system consists of a cylindrical chamber 290mm in diameter 



A study on the needle heating of industrial Lockstitch sewing machine 

92 
Adnan Ahmed Mazari  TU Liberec, 2015 

and 190mm high, with water cooled bottom electrode connected through a impedance 

matching network to the radio frequency of 13.56 MHz power generator. The magnetron 

equipped with 50mm Ti-cathode is mounted in the chamber top cover. The parameters and 

steps of sample preparation are as below. 

Sample cleaning: The specimens (needles) were ultrasonically cleaned in methanol for 20 

min before deposition. The base pressure of the reaction chamber is kept less than 10-3 Pa. 

Etching: The samples mounted on R.F electrode are etched in argon plasma for 10min at self-

bias voltage = - 500 V, pressure = 4 Pa and Argon gas flow rate of 10sccm. 

Deposition of Ti coating: Firstly the Ti layer is deposited by DC magnetron sputtering for  

5 min with pressure of 1.2 Pa, self-bias voltage of - 300 V, flow rate of Ar. was 10sccm and 

power on Ti sputtered target was 1025 W 

Deposition of DLC coating: The DLC layer synthesis is conducted by RF/PACVD process 

for 20 min with methane gas at a constant flow rate of 20sccm, pressure of 20 Pa and self-bias 

voltage of - 600 V. 

Figure 46 shows the needle after DLC coating. The needle colour changes to greyish-black 

due to DLC-layer.  

 

Figure 46 Needle after DLC coating 

8.1.2 Needle temperature measurement 

Thermal camera is used to record the needle temperature during high speed sewing. The 

emissivity of the needle was calculated by ASTM standard E 1933 – 99a and found to be 0.71 

for a DLC-coated needle at 37oC. Lockstitch machine (Brother Company, DD7100-905) is run 

at high speed of 3000 and 4000r/min and needle temperature is measured with thermal camera 

(FLIR X6450), whereas the needle temperature of non-coated needles is measured by inserted 
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thermocouple method, as its difficult to find the emissivity of shinny chromium needle. In this 

research, PET-PET core-spun thread with two different counts is used for the experiment. The 

properties of sewing thread are shows in Table 16. The properties of denim fabric used for the 

sewing process are shown in Table 2. 

Table 16 Sewing thread used for the experiments 

Thread type 

Company 

name/product 

name 

Fineness 

[tex] 
Twist (t/m) 

Twist direction 

(ply/single) 

Coefficient of 

friction 

µ 

Polyester–polyester core 

spun 

AMANN/Saba C-

80 
40(20*2) 660 Z/S 0.20 

Polyester–polyester core 

spun 

AMANN/Saba C-

50 
60(30*2) 640 Z/S 0.23 

 

8.1.3 Tensile properties measurement 

The breaking tenacity and elongation values of the sewing thread are measured using 

INSTRON Tensile strength tester according to standard ISO 2256. Tensile properties of all 

sewing threads are tested before sewing and after sewing process, the sewing thread is 

carefully removed from the seam by cutting the bobbin thread. Each thread is measured 10 

times each for all speeds of sewing respectively. This experiment is necessary to compare the 

effect of normal and DLC-coated needle on the sewing threads after sewing process. 

8.2 Results and discussion 

8.2.1 Comparison of sewing needle temperature  

The industrial lock stitch machine is run at speed of 3000 and 4000r/min for 15 seconds and 

needle temperature of DLC-coated needles is measured using thermal camera and inserted 

thermocouple method for the non-coated needles .It was observed that the needle temperature 

is 12oC higher for normal needles as compared to coated needles 40tex thread 8oC higher for 

60tex thread; this effect is insignificant (calculated at 95%confidence interval). The low 

surface roughness and friction properties of DLC-coated needles causes a decrease in the 

frictional heat between needle and the fabric but it’s impossible to determine the surface 

properties of inside part of needle’s eye, which is the major contact for the thread to the 
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needle. The diamond polish is the final step of DLC coated needles for better smooth surface, 

but in case of the needle it’s impossible to polish the inside of needle eye due to complex and 

small shape. 

8.2.2 Comparison of Tensile properties for DLC-coated and normal needles 

Tensile properties of all sewing threads are tested before sewing and after sewing process. 

Sewing process is performed for 15 seconds and sewing thread is carefully removed from the 

seam by cutting the bobbin thread. Each thread is measured 10 times each for all thread types 

respectively. This experiment is necessary to compare normal and DLC-coated needle for the 

effect of needle temperature and friction on tensile properties of sewing thread. It is visible in 

Figure 47-48 that there is a minor increase in tensile properties of sewing thread with DLC-

coated needles as compared to normal needles. This is due to low friction properties of sewing 

needle coated with DLC which reduces the frictional heat.  

 

Figure 47 Comparison of breaking tenacity of sewing threads. 

 

Figure 48 Comparison of breaking extension of sewing threads. 
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8.2.3 Surface properties of needle 

The DLC thickness was measured using Scanning Electron Microscopy (SEM) and found to 

be 960nm, whereas the Ti-gradient layer was found to be nearly 150nm. The results (Table 

17) obtained from the Atomic Force Microscopy (AFM) shows that DLC-coated needles 

exhibit less average roughness parameters as compared to normal needles. 

Table 17 Surface properties by AFM 

 Normal needle DLC-coated needle 

Average roughness 

Ra 

689.6 nm 657.7 nm 

RMS roughness Rq 802.6 nm 763.2 nm 

Peak to valley 

roughness Rt 

3.864 µm 3.837 µm 

 

Figure 49-52 shows the surface topography of normal needle and DLC-coated needle surface 

by AFM. DLC-coated needles shows better roughness property as compared to normal 

needles by AFM measurement. The heat is generated in needle due to friction of fabric to 

needle surface and secondly by the rubbing of sewing thread to the needle eye. The better 

roughness properties of needle causes decrease in the needle temperature. 

 

Figure 49 Surface image DLC coated needle (10*10 

µm) 

 

Figure 50 Surface image uncoated needle (10*10 µm) 
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Figure 51 Surface image uncoated needle (100*100 

µm) 

 

Figure 52 Surface image DLC coated needle (100*100 

µm) 

  

8.3 Summary 

DLC-coating is getting popular rapidly while its use in textile industry is still unknown. From 

our research we conclude that; 

It’s possible to cover the needle with DLC coating but the needle eye complex shape make it 

impossible to determine if the coating is evenly applied at the inside part of the needle’s eye. 

DLC-coated needles along length shows better roughness property as compared to normal 

needles by AFM measurement. Diamond polish is also important step in bringing better 

surface properties of martial but the needle eye due to complex shape was not possible to be 

diamond polished. There was a small improvement noted in terms of tensile properties and 

needle temperature for DLC coated needles. 
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9 Chapter 9. Theoretical Model 

Analytical models offer simplicity and less computational demands with reasonable accuracy, 

on the other hand, numerical simulation gives better accuracy but is complicated and time 

consuming. In this study, unlike the previous models, two sources of frictional heating have 

been considered as a general case. The two sources are one due to contact friction between the 

needle surface with fabric and the other due to the contact friction between the inner edge of 

the needle’s eye and the sewing thread. 

In this model, the following assumptions are used: 

• Needle, sewing thread and fabric are all at room temperature Ti initially before 

the sewing starts. 

• The needle has uniform material properties throughout its length and can be 

assumed as a cylinder  

• The thermal conductivity of needle material λn is much higher than the thermal 

conductivity of the sewing thread λy as well as than the thermal conductivity of the 

fabric λF. Here it is implicitly assumed that both the yarn and fabric can be 

assumed to have lumped thermal properties, i.e., each has uniform thermal 

conductivities, represented by single values.   

• Since the total needle surface area is small, radiation heat loss is neglected. 

• In this model, it is approximated that the friction heat is given as Q = F.v [1] 

where F is friction force and v is the relative velocity of the rubbing surfaces. The 

needle gains heat energy due to frictional rubbing with the fabric. The needle also 

gains heat due to frictional rubbing between the sewing thread and the needle eye. 

• In case of the heat generated due to frictional rubbing between two materials, 

part of the generated heat will go to one and the rest will go to the other material. 

Here it is assumed that there is no other way of heat loss at the points of friction. A 

partition ratio, γ is considered to calculate the heat distribution between the rubbing 
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surfaces. In this study, the partition ratio is calculated using the Charron’s relation 

[80] as 

𝜸 =
𝟏

𝟏+𝝃𝑵
  (9.0)   

Where 𝜉𝑁 =
𝑏𝑖

𝑏𝑁
, N denotes the needle and i denotes the other rubbing material in 

contact, and b is the thermal absorptivity of the respective materials the calculated 

value given as 𝑏 = √(𝜌 × 𝐶 × 𝜆), where ρ is the density of the material, C is the 

specific heat of the material and 𝜆  is the thermal conductivity. 

• The heat partition ratio between needle and fabric is 𝛾𝐹𝑁 and between needle 

and sewing thread is 𝛾𝑌𝑁. 

Heat is generated during the sewing process as a result of friction between the needle-fabric 

and needle-yarn. In this analysis, a steady-state condition is considered in which the amount of 

heat generated by friction exactly equals the amount of heat loss by the needle .The complex 

shape of needle is neglected, and it is treated as a uniform cylinder. 

 

The heat generated due to rubbing between the surface of needle and the fabric can be 

expressed as 

𝑄𝐹𝑁 = 𝛾𝐹𝑁 × 𝜇𝐹𝑁 × 𝐹𝐹𝑁 × 𝑣𝐹𝑁  (9.1) 

The heat generated due to rubbing between the sewing yarn and the needle can be expressed 

as 

𝑄𝑌𝑁 = 𝛾𝑌𝑁 × 𝜇𝑌𝑁 × 𝑇𝑦 × cos 𝜃 × 𝑣𝑌𝑁 … (9.2) 

Where 

 𝛾𝑁𝑌 = Partition ratio of heat gain between needle and yarn using Charron’s relation  

𝛾𝐹𝑁 = Partition ratio of heat gain between needle and fabric using Charron’s relation  

µ𝑌𝑁 = coefficient of friction between needle and sewing thread 
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µ𝐹𝑁= coefficient of friction between fabric yarn and sewing thread 

𝐹𝐹𝑁= needle penetration force with the fabric 

𝑇𝑦= maximum tension of sewing thread during sewing cycle 

𝜃= the angle of sewing thread with needle 

𝑣𝐹𝑁= velocity of needle with respect to fabric 

Maximum needle speed is linear function of machine speed with multiplier constant 

CFN=0.0008 

𝑣𝑌𝑁= velocity of thread with the needle  

The total heat gain by the needle is therefore, 

𝑄𝑁 = 𝑄𝐹𝑁 + 𝑄𝑌𝑁 … (9.3) 

From 1st law of thermodynamics in a closed system,  

𝑄 = 𝑚 × 𝐶𝑁 × (𝑇 − 𝑇𝑖) … (9.4) 

Where 

m = Mass of needle 

CN  = Specific heat of needle 

T =Final temperature of needle 

Ti =Initial temperature of needle 

Using equations 1, 2, 3 and 4, 

𝑚 × 𝑐𝑁 × (𝑇 − 𝑇𝑖) = 𝛾𝐹𝑁 × 𝜇𝐹𝑁 × 𝐹𝐹𝑁 × 𝑣𝐹𝑁 + 𝛾𝑌𝑁 × 𝜇𝑌𝑁 × 𝑇𝑦 × cos 𝜃 × 𝑣𝑌𝑁 … (9.5) 

The above equation, for a more precise result, should be solved by evaluating it numerically 

over time as many of the variables present in equation (9.5) are complicated functions of time. 

However, in order to simplify the calculations, the maximum value of FFN and T will be 

considered here for the prediction of maximum temperature of the needle. Similarly, the 

maximum relative speed between the sewing yarn and the needle will be used as 𝑣𝑌𝑁. As a 



A study on the needle heating of industrial Lockstitch sewing machine 

100 
Adnan Ahmed Mazari  TU Liberec, 2015 

further approximation, both 𝑣𝐹𝑁 and 𝑣𝑌𝑁  can be expressed as proportional to the machine 

speed 𝑣𝑀. If CFN and CYN are the two coefficients of these proportionalities respectively, then 

it can be obtained from equation (9.5) that 

𝑇 − 𝑇𝑖 = 𝐵 × 𝑣𝑀 … (9.6) 

Where 

𝐵 =
1

𝑚×𝑐𝑁
× {𝛾𝐹𝑁 × 𝜇𝐹𝑁 × 𝐹𝐹𝑁 × 𝐶𝐹𝑁 + 𝛾𝑌𝑁 × 𝜇𝑌𝑁 × 𝑇 × cos 𝜃 × 𝐶𝑌𝑁} … (9.7) 

Thus, equation (9.6) indicates that the maximum needle temperature is a linear function of 

machine speed. The prediction of maximum temperature of needle from the machine speed is 

possible if the parameter B can be evaluated using equation (9.7). 

9.1 Material and methods 

In order to verify the simplified model, an industrial sewing machine (Brother Company, 

DD7100-905 was used for experiments. The needle used in this machine was Groz-Becker 

100/16 R- type (134x5). The sewing thread details are given in Table 18 and cotton denim 

fabric was used to stitch during the experiments and the denim fabric details are given in 

Table 2.  

 

Table 18 Sewing thread used for the experiments 

Thread type Company name 
Fineness 

(Tex) 

Twist 

(t/m) 

Twist 

direction 

(ply/single) 

Coefficient 

of friction 

µ 

Polyester–

polyester 

core spun 

AMANN-Saba C-35 40*2 534 Z/S 0.30 

 

 

9.2 Needle temperature measurement 

Experimental needle temperature measurement with inserted thermocouple method shows 

better repeatable and reproducible results. The thermocouple is located near the eye of the 
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needle to measure the exact needle temperature at different sewing speeds. This method 

proved to be very efficient as it provides continuous changes in needle temperature with 

respect to sewing time and gives low standard deviation. The thermocouple remains inside the 

needle groove during the sewing process and measurements are recorded wirelessly on a 

computer through a wireless device.  

  

9.3 Sewing thread velocity measurement 

During the stitch formation the bobbin assembly pulls the sewing thread which makes higher 

speed of thread as compared to needle speed. The thread speed is measured experimentally by 

using a high speed camera (OLYMPUS i-speed 3) during the sewing process. The white 

thread was marked with red ink at every 5 cm of its length to see the movement of thread and 

distance travelled by the thread during high speed sewing (1000 r/min to 4700 r/min). Thread 

velocity is not constant within a stitch and is maximum when the bobbin assembly pulls the 

thread downwards for the loop formation. Figure 53 shows one frame of the stitch formation 

motion captured by high speed camera. Coloured marks on the sewing thread are made to 

follow the motion of thread and measure the thread velocity during stitch formation. 
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Figure 53 Analyzing the thread speed during sewing using software i-speed 3 

9.4 Needle penetration force 

Fabric and needle interaction is the second major cause of needle heating. To measure the 

friction forces it’s necessary to know the exact value of the normal force acting on the needle 

by fabric. The needle penetration force depends on different fabric properties like fabric 

thickness, weave style and yarn count etc. and can be measured experimentally. Some 

researchers [81,82] have used tensile tester with special attachments to experimentally 

measure the needle penetration force. Same technique was used in this research work to 

measure the penetration force. Measurement of needle penetration force is performed on a 

tensile tester (Testometric Company). In order to hold the fabric samples on the machine, a 

custom made metal frame with 3mm of hole for the needle passage was used on the lower jaw 

of the machine. The cyclic needle penetration was performed 20 times for two layers of denim 

fabrics, the needle insertion speed was adjusted at 460 mm/min .The machine setup for needle 

penetration force is schematically shown in Figure 54. 
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Figure 54 Schematic diagram of needle penetration force measurement 

Where A-Needle holder in upper jaw ,B-Needle holder,C-Needle ,D-Fabric layers and E-

fabric holder with hole at lower Jaw 

9.5 Friction measurement 

To theoretically analyse the sewing needle temperature, it’s necessary to know the coefficient 

of friction between needle and thread for sewing. Thread to metal coefficient of friction is 

measured with instrument CTT-LH401 (Lawson-Hemphill) according to standard ASTM D-

310 [91]. 

 

9.6  Results and discussions  

The maximum thread velocity with respect to needle is measured using high speed camera and 

shows a linear relation between sewing speed and maximum thread velocity as shown in 

figure 55. It can be observed from the figure 55 that maximum velocity of sewing yarn is a 

linear function of machine speed with multiplier constant CYN = 0.0246. 
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Figure 55 variation of maximum thread speed with different machine speeds 

 

The Needle penetration force is measured by many researchers [83-90] using the special 

attachments to the tensile tester. The needle is inserted in to the fabric and penetration force is 

experimentally calculated. Figure 56 shows the needle penetration force in fabric, the 

experiment is repeated at 5 different places of fabric. The peak in the graph is the needle 

penetration force and the height of the flat plateau between two peaks shows the force acting 

on the needle after the fabric is punctured and needle moves across the fabric. This needle 

penetration force measurement technique is also used by some researchers [81,82]and the 

same technique is followed here as the penetration force may depend on needle dimensions 

and fabric weave structure, so it is necessary to know the exact penetration force with the 

sewing needle and fabric that was used in this study. 
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Figure 56 Variation of force on the needle during needle insertion 

The Sewing needle temperature after 30 seconds of continuous sewing as measured by the 

thermocouple is shown in Table 19. It can be seen that the heat generated by the rubbing of 

the sewing thread and the needle eye contributes significantly to the needle temperature. 

 

Table 19 Experimental results of needle temperature measurement 

machine 

speed  

[r/min] 

Without thread 

[°C](standard 

deviation) 

With thread 

[°C] (standard 

deviation) 

1000 50(0.57) 79(1.15) 

2000 67(1.1) 143(1.55) 

3000 78(1.77) 213(1.75) 

4000 92(2.7) 255(2.83) 

4700 112(3.4) 290(2.89) 

 

9.7 Comparison of experimental and theoretical model 

The needle temperature was calculated using equations (9.6) and (9.7). Table 20 summarizes 

the values used for the various parameters for this calculation.  
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Table 20 Values of various parameters used for the theoretical prediction 

Property Symbol Value Unit 

Heat partition ratio( fabric & needle ) [80] 𝛾𝑁𝐹 0.979871 - 

Heat partition ratio (Yarn & needle)[80] 𝛾𝑁𝑌 0.969961 - 

density thread [94,95] 𝜌 y 1400 Kg/m3 

specific heat of thread[93] Cy 750 J/KgK 

thermal conductivity of thread [93] 𝜆 y 0.15 W/mK 

density fabric yarn [98] 𝜌 f 1540 Kg/m3 

specific heat fabric yarn [93] Cf 750 J/kgK 

thermal conductivity of fabric yarn[93] 𝜆 f 0.06 W/mK 

density needle [92] 𝜌 n 7850 kg/m3 

specific heat needle [92] Cn 523 J/kgK 

Thermal conductivity of needle[92] 𝜆 n 40 W/mK 

Friction coefficient needle and thread 

[experimental value] 

µ𝑌𝑁 0.3 - 

Friction coefficient needle and fabric yarn 

[experimental value] 

µ𝐹𝑁 0.45 - 

Tension thread max [96,97] 𝑇𝑦 1.1 N 

 Needle velocity [experimental value] 𝑣𝑁 2.3 m/sec 

Machine speed  Vm 1000-4700 r/min 

Needle and thread angle of contact [4] 𝜃 60 o 

 Frictional normal penetration force to needle 

from fabric [experimental  value] 

𝐹𝐹𝑁 3.3 N 

 

As can be seen from Figure 57 the simple theoretical model gives reasonably close values 

with respect to the experiment in both the cases when a sewing thread is and is not used. The 

calculated values seem slightly lower than actual values and such error could be expected 

since a number of approximations have been made to simplify the model and some of the 

values used for the calculation were not measured but obtained from literature. Nevertheless, 
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the simple theoretical model is able to indicate the fact that the presence of sewing thread 

contributes to the needle heating which has been ignored by some previous literature and it 

also gives a linear relationship between the machine speed and needle temperature as observed 

by experiments. This simple approach may be more useful for shop floor compared to the 

complicated numerical methods. 

 

Figure 57  Comparison between theoretical prediction and experimental observation for 

needle temperature against machine speed 

 

Table 21 shows the comparison of sewing needle temperature (without thread) by other 

researchers and the present analytical model. Most of the researchers have predicted needle 

temperature at low speed of sewing and without thread due to complexity in predicting the 

effect of sewing thread in needle heating. The needle penetration force is required for the 

presented model, which is obtained from literature [81, 82] according to the fabric used by the 

researchers. 
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Table 21 Needle temperature comparison with previous researcher's results 

Machine 

speed  

[r/min] 

Experimental 

Results [1,8] 

 

        [°C ] 

sliding 

contact 

model[ 1] 

 [ °C ] 

Lumped 

variable 

model[1 ] 

[ °C ] 

FEA [4 ]  

 

              

[ °C ] 

Present 

Analytical 

model   

[°C  ] 

500 77 109 110 87 69 

1000 117 145 140 127 112 

2000 170 197 195 180 198 

 

9.8 Summary 

Friction between needle and sewing thread is one of the major sources of needle heating. In 

general the needle heating is a complicated heat transfer problem. In this work a simple 

analytical model was developed to calculate the needle temperature at steady state from a set 

of parameters including friction coefficients, friction forces, thread tension and a simple linear 

equation was obtained with machine speed as the independent variable. Suitable experiments 

were carried out to measure the needle temperature using thermocouples. Some of the other 

process parameters used in the model were also measured to finally calculate the predicted 

needle temperature at a given machine speed. It was found that the model could predict the 

maximum needle temperature which needle can attain during a continuous sewing process of 

more than 10 seconds with reasonable accuracy. The important role of the sewing thread in 

contributing towards the needle temperature was also established both theoretically and 

experimentally. 

The presented analytical model does not require extensive computation. As a result, it can be 

used to estimate the needle temperature at sewing floor and provide valuable information for 

optimizing the industrial sewing operation. 
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10 Conclusion  

Needle heating is a serious issue for sewing industries and understanding the causes of heating 

and applying this knowledge for reducing needle temperature during high speed sewing can 

bring greater corporate benefits. It can be concluded from the present research that: 

 Needle temperature can be precisely measured with inserted thermocouple method 

which shows minimum standard deviation and higher repeatability as compared to 

thermal camera or Thermocouple touch method. The thermal camera works on 

emissivity, and a needle with low emissivity and thread with high emissivity are too 

close to be differentiated by the thermal camera. All three methods of needle 

temperature measurement showed that the needle temperature was higher when sewing 

with thread as compared to dry sewing (without thread). 

 Multiple factors were considered in this research to determine their impact on sewing 

needle temperature. It was observed that the sewing speed, the thread count, the 

sewing time and the fabric thickness had significant impact on sewing needle 

temperature. On the other hand, ambient humidity, ambient temperature, stitch density 

and needle parameters played a minor role in heating of the sewing needle. 

 Air cooling (Vortex) is an effective way of decreasing needle temperature, and the 

continuous cooling method decreases the needle temperature significantly. At high 

speed sewing, the contact time between the thread and needle is very low, but as the 

machine comes to a complete stop, the contact time of the thread and needle is 

relatively higher, which causes the major damage to the sewing thread. The results 

reflect this that cooling at the time of machine stoppage and continuous cooling show 

the same results in terms of thread tensile properties. Cooling only at the time of 

machine stoppage can save 60-80% on energy consumption. Industrial sewing 

machine producers must operate the air cooling device with the machine speed pedal, 

which operates at 3000r/min and higher, and at the time of machine deceleration. 

 The effect of lubricant amount on tensile properties of thread should always be 

considered for sewing process. It is advised to use the lubricant when sewing speed is 

2500r/min and higher. The higher amount of lubricant decreases the needle 
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temperature and thread tenacity. To obtain highest tensile properties and maximum 

sewing speed it is recommended to use 2-4% of lubricant amount, but if it’s necessary 

to achieve lower needle temperature due to synthetic fabrics then lubricant amount of 

more than 3% can be used.  

 

 This research shows that needle temperature has a dominant influence on the strength 

of sewing thread. Seam thread was considered as the thread with the weakest tensile 

properties as compared to the parent thread but the research shows that the hot needle 

also damages the thread when the machine stops after sewing and needle is in direct 

contact with the thread. This needle-heat damaged thread eventually becomes part of 

the next seam and causes loss in seam strength. It is recommended to waste 20 cm of 

the thread after one complete sewing, so that the thread damaged at the needle eye 

after machine stoppage should not be part of the next seam. As thread moves from 

cone to the seam, it undergoes various stresses, there is a marginal decrease in tensile 

strength for thread at 1000 and 2000 r/m of machine, whereas loss of tensile strength 

of thread is much significant from 3000 r/m of machine and higher. Bobbin thread 

interaction and needle heat are the two main causes of reduction of tensile strength, 

breaking elongation and initial modulus of thread. In this section the loss of tensile 

strength is mainly due to bobbin thread interaction and friction of guides and tension 

devices on machine, but due to high speed of machine the contact time between thread 

and needle is much less to impact. That is why the thread at seam shows higher tensile 

properties as compared to section of thread that stay in the hot needle after machine 

stoppage. 

 It’s possible to cover the needle with DLC coating but the complex shape of the needle 

eye makes it impossible to determine if the coating is evenly applied at the inside part 

of the needle’s eye. DLC-coated needles along length shows better roughness property 

as compared to normal needles by AFM measurement. Diamond polish is also 

important step in bringing better surface properties of martial but the needle eye could 

not be diamond polished due to the complex shape of the needle eye. There was a 

small improvement noted in terms of tensile properties and needle temperature for 

DLC coated needles. 
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 In this work a simple analytical model was developed to calculate the needle 

temperature at steady state from a set of parameters including friction coefficients, 

friction forces, thread tension and a linear equation was obtained for the temperature of 

the needle related to the machine speed as an independent variable. It was found that 

the model could predict the maximum needle temperature that can be attained during a 

continuous sewing process of more than 10 seconds with a reasonable accuracy. The 

important role of the sewing thread in contributing towards the needle temperature was 

also established both theoretically and experimentally. The presented analytical model 

does not require extensive computation. As a result, it can be used to estimate the 

needle temperature at sewing floor and provide valuable information for optimizing 

the industrial sewing operation. 

 

11 Future Work 

 

The inserted thermocouple method can be further tested for different sewing 

conditions in different industries such as sewing of car seat covers, airbags and smart 

textiles; where quality and durability is of key importance. The technical conductive 

sewing threads with steel and carbon fibres could be used in future to see the effect of 

conductance on sewing needle temperature. Polishing the needle eye of DLC coated 

needle may decrease the needle temperature. 
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