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Abstract 

The globally accepted strategy for the management and treatment of high level and long-lived 

radioactive waste is to dispose the waste in a deep and stable geological formation. The 

physicochemical aspects have been carefully studied to ensure the long-term safety of the 

repository, while the influence of microorganisms was until recently rather underestimated, 

although it is well known that microorganisms can survive and propagate under environmental 

conditions expected in nuclear waste repositories. Anaerobic microorganisms with diverse types 

of metabolism present in the groundwater or buffer material may influence and compromise the 

long-term safety performance of the repository. This thesis, therefore, intends to improve the 

knowledge about the influence of microbial processes on radioactive waste disposal. Particularly 

microbial activity and survivability under different repository relevant conditions were studied 

with a focus on the effect of variable doses of irradiation on the microorganisms, the evolution of 

anaerobic microbial ecosystem with and without added nutrients, and microbial interactions with 

cementitious material. Moreover, microbially influenced corrosion of carbon steel was studied 

under anaerobic conditions. All the experiments except the radiation one were carried out under 

a strictly anaerobic atmosphere in an argon-purged glove box with gaseous oxygen concentration 

lower than 1 ppm. The results were obtained employing a multidisciplinary approach combining 

advanced microscopy methods such as electron microscopy or electrochemical impedance 

spectroscopy analysis with molecular biology-based methods such as NGS and qPCR. Chemical 

analyses were performed using ion-chromatography or spectroscopy methods. Anaerobic 

microorganisms including sulfate, iron, and nitrate-reducing bacteria were mostly detected in the 

samples. Application of 19,656 Gy total absorbed dose of Gama radiation at the constant dose 

rate of 13 Gy/hr did not completely eradicate bacteria present in bentonite. Bacteria also strongly 

influenced the corrosion rate of carbon steel comparing to samples in sterile conditions. 

Particularly, abundance of Methyloversatilis population positively correlated with corrosion 

rates. The presence of mackinawite, a corrosion product usually attributed to the activity of 

sulfate-reducing bacteria, was confirmed by Raman spectroscopy. Furthermore, the presence of 

concrete, although rich in specific indigenous microflora, strongly reduced the relative 

abundance of bentonite bacteria in studied samples and especially the growth of SRB was limited 

in the concrete environment. All these effects might have a negative impact on repository safety 

and should be further studied in following laboratory experiments and in-situ conditions in 

underground research laboratories. 

Keywords: Microbial activity, Microbially influenced corrosion, Radioactive waste, Geological 

repository, Groundwater, Bentonite, Concrete 
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Abstrakt 

V současnosti je všeobecně přijímaná strategie managementu a ukládání radioaktivního odpadu v 

úložišti hluboko v geologickém masivu. Zatímco fyzikálně-chemické aspekty úložiště jsou již 

desetiletí pečlivě studované s cílem zajistit jeho dlouhodobou bezpečnost, vliv mikroorganizmů 

byl ještě nedávno podceňovaný, i když je známo, že mikroorganizmy dokáží přežít a 

rozmnožovat se i v podmínkách úložiště. Metabolicky různorodé anaerobní mikroorganizmy, 

které jsou přítomné v podzemní vodě i bentonitech, mohou negativně ovlivňovat dlouhodobou 

bezpečnost úložiště. Tato disertace je proto zaměřená na studium vlivu mikrobiálních procesů 

v úložišti radioaktivních odpadů. Konkrétně je zaměřená na mikrobiální aktivitu a 

životaschopnost v simulovaných podmínkám, které mohou nastat v úložišti. Byl studován vliv 

různých dávek radioaktivního záření, vývoj mikrobiálního společenstva při různých 

koncentracích živin a interakce mikroorganizmů s bentonitem a betonem. Dále byla studovaná 

mikrobiálně ovlivněná koroze uhlíkové oceli v anaerobních podmínkách. Všechny experimenty, 

s výjimkou ozařovacího, byly provedené v anaerobním boxu s koncentrací plynného kyslíku do 1 

ppm. Výsledky byly získány pomocí multidisciplinárního přístupu kombinujícího elektronovou 

mikroskopii, elektrochemickou impedanční spektroskopii s molekulárně biologickými metodami 

NGS sekvenování a kvantitativní PCR. Chemické analýzy byly provedené pomocí iontové 

chromatografie a spektroskopie. Nejčastěji byly detekovány anaerobní mikroorganizmy 

zahrnující sírany, železo a dusičnany redukující bakterie. Gama záření o celkové dávce 19656 

Gy a konstantním dávkovém příkonu 13 Gy/h, nedokázalo úplně zničit bakterie v bentonitu. 

Bakterie také značně ovlivnily rychlost koroze uhlíkové oceli v porovnání se vzorky, které byly 

inkubované ve sterilních podmínkách. Například hustota populace bakterie rodu 

Methyloversatilis pozitivně korelovala s rychlostí koroze. Byla také potvrzena přítomnost 

mackinawitu, pravděpodobného produktu koroze indukované síran redukujícími bakteriemi. 

Dále bylo ukázáno, že přítomnost betonu, ačkoli obsahuje bohatou přirozenou mikroflóru, 

významným způsobem snižovala celkové početnosti přirozených bentonitových bakterií ve 

studovaných vzorcích a obzvláště potlačovala růst síran redukujících bakterií. Všechny tyto jevy 

mohou mít negativní efekt na bezpečnost úložiště a měly by proto být dále studovány in-situ 

v podzemních výzkumných laboratořích. 

 

Klíčová slova: mikrobiální aktivita, mikrobiálně ovlivněná koroze, radioaktivní odpad, 

geologické úložiště, podzemní voda, bentonit, beton 
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Thesis structure 

This thesis is divided into three main parts: Literature overview (introduction and background of 

the study), Experimental part (microbial activities and their community structure in relation to 

repository relevant condition), and Conclusions. 

The literature overview is divided into four subchapters (Nuclear energy and spent fuel 

deposition, Deep subsurface ecosystem, Effect of microbial processes on deep geological 

repository and Effect of deep geological repository conditions on microbial processes). The first 

one is a brief introduction into nuclear power plants and radioactive waste disposal concepts in 

Europe including Czech Republic. The second subchapter is an overview of microorganisms in a 

deep geological environment. Likewise, the third subchapter is about the possible effect of 

microbial processes on deep geological repository while the fourth subchapter explains the effect 

of deep geological repository conditions on microbial processes.  

The experimental part is the key part of the thesis and is based primarily on published articles 

or manuscripts under preparation. This part is divided into four chapters and comprises both a 

methodical description of the experiments and results with comments.  

The first chapter focuses on the characterization of microbial communities present in 

groundwater and bentonite sources in the Czech Republic by molecular biological tools. 

Different water sources were analyzed to choose the most relevant to the deep geological 

repository to be used as inoculum for further studies. Differences in microbial community 

structure between raw and commercial homogenized bentonite were also determined. The 

outcomes of this study were published in (Shrestha et al., 2016).  

The second chapter explores the survival of indigenous microorganisms in bentonite subjected 

to ionizing radiation (total absorbed dose was 19,656 Gy). Moreover, an effect of added nutrients 

on microbial metabolism and microbial community in bentonite is described under anaerobic 

conditions. This chapter is partially based on the Euratom/Horizon2020 MIND project 

deliverable report 2.10. 

The third chapter focuses on the corrosion of carbon steel (a candidate canister material) 

influenced by microorganisms present in groundwater. This chapter is further divided into two 
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parts: The first one is corrosion in groundwater and the second one is corrosion in 

synthetic bentonite pore water inoculated by groundwater. Corrosion in groundwater was 

performed for eight months while the corrosion in synthetic water determined the microbial 

corrosion run for twenty-six months. The part on corrosion in groundwater is based on our 

published article (Černoušek et al., 2019) and a book chapter (Černoušek et al., 2020) while the 

corrosion in synthetic water is partially based on our MIND deliverable 2.13 and a manuscript 

(Shrestha et al. 2020) in preparation. 

The fourth chapter describes the effect of aged cementitious material in suspension on the 

development of microbial communities under repository relevant conditions. The experiment 

was performed with concrete from EU 7
th

 FP DOPAS project on plugs and seals for geological 

disposal facilities. A manuscript (Shrestha et al., 2020) is submitted to Environmental 

Microbiology journal. 

The last part, Conclusions, summarizes the most important findings of my thesis. 
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Thesis Aims 

The overarching aim of this thesis was to improve and develop safety case knowledge about the 

influence of microbial processes on radioactive waste disposal with the implication for the safe 

performance of the waste disposal system.  

The first objective was to characterize the microbial communities present in different 

groundwater sources and bentonite from the Czech Republic and to select a suitable source that 

represents the typical environment and microbial community pertinent to the waste repository. 

The second objective was to investigate the microbial activities and its community structure in 

relation to repository relevant conditions including survivability of microorganisms subjected to 

different levels of radiation, the effect of concrete on microbial propagation, microbially 

influenced corrosion of metal and effect of radionuclides on the anaerobic microbial community. 
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1 Nuclear energy and spent fuel deposition 

The availability of sustainable, reliable, and affordable sources of energy is important for 

economic growth and stability. Over the past 50 years, nuclear reactors have been established as 

reliable and secure sources for generating clean and economical electrical energy (Zinkle and 

Was, 2013). The energy comes from the fission of atoms in a reactor to heat the water into steam 

to turn a turbine and produce electricity in the nuclear power plant (NPP, Figure 1). Radioactive 

metals such as uranium-235 and plutonium-239 are used as a nuclear fuel in NPP to produce 

energy. More than 441 nuclear reactors are in operation worldwide, currently providing 10.5% of 

electrical power generating 390 GWe of electricity (“Reactor Database Global Dashboard - 

World Nuclear Association,” n.d.). Nuclear energy is alternative energy to fossil fuels so it helps 

to reduce greenhouse gas emissions and therefore, is viewed as an attempt to deal with global 

warming (Menyah and Wolde-Rufael, 2010). Beside affordable electricity, nuclear energy assists 

in many medical applications including nuclear magnetic resonance imaging technology 

(Ruppert et al., 2004) and nuclear medicine (Jankowski et al., 2003). 

 

Figure 1: Diagram of Nuclear energy power plant. 

(https://glossary.periodni.com/glossary.php?en=nuklearni+reaktor) 

https://glossary.periodni.com/glossary.php?en=nuklearni+reaktor
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In the European Union, 13 out of 27 member states run NPPs contributing 28% to the 

European electricity mix by operating 128 nuclear reactors (“Nuclear energy statistics - Statistics 

Explained,” n.d.), Figure 2. Nevertheless, the shares of nuclear energy among the member states 

vary widely. France is the largest nuclear power generating country as it has 58 nuclear reactors 

that contribute 71.7% to the national electricity while the Netherlands has only one nuclear 

reactor contributing 3% as in the year 2018 (“Nuclear shares of electricity generation - World 

Nuclear Association,” n.d.). It has been reported that many NPPs in Europe have increased their 

energy generating capacity, e.g. in Belgium, Sweden, Switzerland, Finland, and Spain. The 

construction of new NPPs is ongoing in the member states including Finland, France, and 

Slovakia. As indicated by the World Nuclear Association, expansion in energy generating 

capacity to existing NPPs has been proposed or planned in Bulgaria, the Czech Republic, 

Finland, France, Hungary, Lithuania, Poland, and the United Kingdom by the end of 2030. 

However, according to The International Atomic Energy Agency (IAEA) the net nuclear 

capacity in Europe has been declining since 2000 as the priority has been given to more 

renewable energy (Welle (www.dw.com), n.d.).  

On 26
th

 April 1986, a disaster occurred in reactor number four in Chernobyl NPP near the 

city of Pripyat in the north of Ukraine. This catastrophe was the turning point for nuclear power 

in Europe along with the whole world, with only about 40 nuclear reactors built ever since 

(“Nuclear Power Today | Nuclear Energy - World Nuclear Association,” n.d.). On 11th March 

2011, an accident occurred at the Fukushima Daiichi NPP in Ōkuma, Fukushima Prefecture, 

Japan. This accident convinced many nations around the globe to phase-out nuclear power. 

Furthermore, the social attitude to nuclear energy production has been changed in the entire 

world by this incident. As an impact of these accidents, countries like Germany have decided not 

to build new reactors. Germany puts out of operation 8 of its 17 reactors permanently and is 

determined to phase-out its remaining nuclear reactors by 2022 (Rehner and McCauley, 2016). A 

year after the tragic incident of Chernobyl, Italy commenced nuclear phase-out after a 

referendum. Belgium and Spain faced public pressure to close the existing NPPs though these 

countries had the long-term nuclear phase-out policy. In contrast, countries like France and the 

UK decided to continue the production of nuclear energy (Kiyar and Wittneben, 2012). In the 

Czech Republic, in March 2009 about 70% of Czech citizens expressed their support for building 

a new nuclear reactor in the country (Polanecký et al., 2010).  
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Figure 2: NucleNuclear capacity and number of the nuclear reactor in Europe (Welle (www.dw.com), 

n.d.) 

As a result of nuclear energy generation, a highly radioactive waste known as spent 

nuclear fuel (SNF) is produced. Radioactive waste should be managed securely and responsibly 

to ensure safety to the public, protection to the environment, and security from any accidental 

event to avoid contamination in the biosphere. Apart from NPPs, other sources of radioactive 

waste are medicine and hospitals, scientific research work, industry, and defense military work. 

IEAE has categorized the radioactive waste depending on levels of exclusion and exemption for 

every single radionuclide. The generally referred categories of radioactive waste are: (i) Low-

level waste (LLW) with a limited sum of long-lived radionuclides include items that have 

become contaminated with radioactive material or have become radioactive through exposure to 

neutron radiation. but are above exclusion level, (ii) Intermediate-level waste (ILW) with higher 

activity level than LLW  and life span and (iii) High-level waste (HLW) containing the most 

concentrated radioactive material with higher quantities of long-lived radionuclides and the 

highest level of activity (Freiesleben, 2013), as depicted in Figure 3. HLW represents only about 

3% of the total volume of radioactive waste is SNF but contains 95% of radioactivity (“What is 

nuclear waste and what do we do with it? - World Nuclear Association,” n.d.). The waste can be 

either in solid, liquid, or in gas form. To ensure safe disposal of the waste, liquid, and gas waste 
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undergoes treatment processes of solidification (vitrification into glassy slags) (Tzeng et al., 

1998). 

Figure 3: Types of radioactive waste, their intermediate storage, and disposal (Grimsel 2020). 

High and long-lived waste (HLLW) has a finite radiotoxic lifetime and it decays 

progressively in a natural way. Consequently, it should be disposed of in such a way that it does 

not further require any continued institutional control. Many countries around the globe have 

accepted the strategy of disposal of ILW and HLW in deep stable geological formations. This 

thesis is focused on the situation in European countries with special attention paid to the planned 

deep geological repository (DGR) in the Czech Republic. Briefly, a multi-barrier system 

including engineered barriers (metal, concrete), clay minerals, and natural barrier (host rock) 

work together to ensure the long-term confinement of ILW and HLW (Schütz et al., 2015). The 

major purpose of DGR is to separate the SNF or radioactive waste material to avert 

environmental contamination. This strategy implicates the waste material enclosed in a metal 

container surrounded by highly compacted bentonite buffer embedded in stable host rock at the 

depth of about 500 m, (Masurat et al., 2010), as illustrated in Figure 4. Bentonite, a clay mineral, 

is planned to be used by many countries as a part of an engineered barrier system for the disposal 

of HLW in deep geological formation (Stroes-Gascoyne et al., 2010). Bentonite provides 

mechanical protection to the waste container (reduced the effect in the case of rock 
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displacement) (Masurat et al., 2010) and serves as a natural barrier for the migration of 

radionuclides to the environment. Moreover, saturated bentonite limits microbial activity due to 

swelling pressure and limited nutrient availability (Pedersen et al., 2000). Crushed rock, concrete 

and bentonite pellets are used for the backfill and sealing of the HLW repository. Additionally, a 

waste management strategy for LLW and ILW is either the sub-surface repository or DGR, 

where the waste will be encapsulated in the metallic or concrete container (maybe reinforced) 

and where the gap between the waste package and the surrounding host rock will be filled by a 

backfill material such as unreinforced concrete and compacted bentonite (Koťátková et al., 

2017). Clay formations play an important role in disposal systems as natural barriers in countries 

like Belgium, France and Switzerland (Delage et al., 2010) while the granite has been selected as 

host rock by countries like Sweden, Finland (Pettersson and Loennerberg, 2008) and the Czech 

Republic. 

Figure 4: The KBS-3 concept for disposal of spent nuclear fuel by Svensk Kärnbränslehantering AB 

(SKB) (AB, 2011). 

In terms of geological disposal plans for SNF, Sweden and Finland are considered to be 

the most advanced countries worldwide. Svensk Kärnbränslehantering AB known as SKB, a 

Swedish Nuclear Fuel and Waste Management Company, has introduced principles for the 

design of waste repository known as the KBS-3 concept, illustrated in Figure 4 (AB, 2011). In 

brief, SNF should be protected by engineered and natural barriers, where the primary function is 

to hold the fuel within the container and in the case of breaching the barrier, the secondary 
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barrier should retard possible release of radionuclides. Furthermore, the principle suggests 

isolating the waste in a way that it is out of human intervention and not affected by any long-

term climatic changes or any societal changes (AB, 2011). Furthermore, SKB together with 

POSIVA, Finnish Nuclear Waste Management Company, is investigating the concept of canister 

disposal in the vertical or horizontal position, generally named as KBS-3V or KBS-3H disposal 

concept, respectively. The disposal concept of KBS-3V was commenced in around 1980, while 

the KBS-3H concept started only around 2001. However, ongoing research work aims to bring 

the KBS-3H concept to the same maturity as KBS-3V (Pettersson and Loennerberg, 2008). Each 

barrier in the disposal system has a specific role to ensure the safety of the disposal system (see 

Table 1). 

Table 1: Materials in the multi-barrier system and their role played in the repository. Adapted 

from (West et al., 2002). 

Barrier system Roles 

Geological structure 

(Host rock/ Clays) 

Ensure the stability of the repository and provides a natural sealing 

after closure to the repository. 

Buffer material/ backfilling 

(Bentonite and Concrete) 

Provides physical, chemical, and hydrological protection to the 

waste container and helps to limit the migration of radionuclides. 

Container/ over pack 

(Steel/ Copper/ Iron) 

Delivers physical isolation and shields waste matrix. 

Waste matrix 

(Radioactive material) 

Contains radioactive material (immobilized radionuclide) in a solid 

form 

Site selection for DGR is a long-term process requiring comprehensive research on 

geological and technical aspects. Finland has selected the site for the repository construction at 

Eurajoki near Olkiluoto, approved by Parliament in 2001 and a construction license was issued 

in 2015. The operation of the DGR is expected to begin in 2023. POSIVA plans to apply for the 

operating license in 2020. In 2009, Sweden chose its disposal facility site at Söderviken close to 

the Forsmark NPP, north of Stockholm. SKB plans to start its construction work in early 2020 

and commence operational work in 2030 (Litmanen et al., 2017). Sweden and Finland are 

followed by France. National Agency for Radioactive Waste Management, ANDRA is 

responsible for the construction of the geological repository in France. The Industrial Centre for 
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Geological Disposal (CIGEO) is located near the Bure village. Its license work is in progress 

with an expectation of commencing repository in 2025 (Labalette et al., 2013). In contrast, the 

waste disposal plan in Germany is based on the deep borehole disposal concept where the SNF 

will be disposed in extremely deep boreholes rather than in DGR. The site selection process 

seems to be a topic of political debate in Germany for decades though a site selection process 

was restarted by the Site Selection Act in 2017 and is expected to finalize site by 2031. The 

selection process has to be open to all potential host rocks like rock salt, crystalline rock, and 

claystone (Bracke et al., 2019). 

In the Czech Republic, the general concept of DGR is based on the Swedish KBS-3 

concept with certain modifications. Czech repository will be constructed in crystalline host rock 

using a steel-based disposal container (contrary to the copper-based canister in KBS-3 concept) 

and bentonite as a buffer material (Pospiskova et al., 2017). The waste container should be 

composed of two layers - carbon steel outer layer and stainless steel inner layer. The 

hermetically-sealed waste container will be disposed of horizontally in long boreholes as shown 

in Figure 5. Radioactive Waste Repository Authority, known as SÚRAO is the responsible state 

organization for the safe treatment and management of radioactive waste and SNF in the Czech 

Republic. 

Figure 5: Concept of geological disposal of High level and long-lived waste (Left) and a super container 

in a disposal borehole where number 1 represents a container, 2– pre-cast bentonite elements, 3- external 

basket from perforated steel sheet and 4– host rock (Right) (SÚRAO 2016). 
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Currently, the Czech Republic operates two power plants in two different locations, 

Temelín and Dukovany with 6 nuclear reactors in total, where the SNF is cooled and stored until 

the repository is built (Figure 6). SÚRAO has initiated the implementation of DGR after approval 

from the Czech government in 2002. Four sites have been considered for the construction of 

DGR. The candidate sites are Březový Potok, Hrádek, Horka, and Janoch. It is expected to select 

one site as final by 2025. These sites are subjected to continual investigation and survey. The full 

operation of DGR should start in 2065 (SÚRAO 2019). LLW and ILW are disposed of in the 

near-surface repositories in Dukovany, in old mines Richard and Bratrství and in Hostím which 

is now closed. The concrete structure is used as a barrier or for the backfilling of these 

repositories (“Radioactive wastes and radioactive waste handling,” 2009). 

Figure 6: location of facilities and nuclear installations in the Czech Republic (OECD and Nuclear 

Energy Agency, 2006). 

The disposal system is required to be safe for at least 100,000 years (Pedersen, 2010). 

However, various thermal, hydraulic, and mechanical aspects have a direct impact on the safety 

performance of host rock and may influence the long-term geo-disposal system (Rutqvist et al., 

2005). Similarly, abiotic alterations in the physical and chemical properties of bentonite may 

take place during the expected life of the repository. Besides these abiotic factors, biotic 

processes can play a crucial role in the deterioration of this barrier system. Microbial activities in 
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bentonite buffers and groundwater can result in the compromising of the barrier system 

performance by the means of their metabolic processes and products (Mulligan et al., 2009). 

Bentonite is not a sterile material; it comprises diverse microbial communities including spore-

forming microorganisms. In the same way, porous rock such as granite, limestone, and gravel 

present deep down in the ground possess innumerable small spaces that can hold water and host-

microbial consortia. Additionally, groundwater which naturally comprises microbial consortia 

also regularly supplies energy and nutrients required for the growth of bacteria that may come in 

contact with bentonite buffers through a rock fracture (Pedersen, 2010) and thus alter the 

environment of the DGR. 

Corrosion of SNF/HLW container has been a primary concern for the safe repository 

establishment of Metal containers with radioactive waste is expected to remain intact for tens of 

thousands of years to prevent the direct release of radionuclides into the repository.  However, 

metal containers are susceptible to corrosion. Corrosion is a direct result of electrochemical 

reactions on the metal surface that results in the deterioration of the metal. It can be influenced 

by different physicochemical conditions, such as pH, temperature, ionic strength, oxygen 

concentration, redox potential, and conductivity, or by microbial activity in the vicinity of a 

given metal’s surface. Microbially influenced corrosion (MIC) can take place, where conditions 

are suitable for the microbial growth, including the presence of water and essential nutrients, and 

will depend on the particular metal and structure of microbial consortia. Most often is the 

corrosion rate accelerated in the presence of microorganisms. 

Microorganisms deep down the ground level belong to small viable communities that 

mostly exist in the inactive (dormant) state due to very limited availability of water and space. 

However, construction and excavation work of the repository may assist the proliferation of 

microbial communities in different ways mainly, (i) growth of indigenous microorganism from 

the host rock due to the rock disturbances that offered favorable space, water, and nutrient which 

allow the microorganism to resuscitate from dormant form, (ii) introduction of non-indigenous 

microorganism by anthropogenic activities during excavation and operation of DGR. Some 

natural analogs study has demonstrated that microorganisms can be active in high alkaline 

conditions (pH up to 12-13) and anaerobic geochemical environments that are expected to be 

similar in DGR (Bertron, 2014). 
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2 Deep subsurface ecosystem 

A deep geological environment is dark and anaerobic. It has been calculated that oxygen will 

disappear within the first 300 years of repository closure of the repository (Wersin et al., 1994). 

In such environment, microorganisms employ an anaerobic respiratory process that uses nitrate, 

manganese, iron, and sulfate as terminal electron acceptors instead of oxygen for energy 

generation (Figure 7). Furthermore, autotrophs like methanogens and acetogens can also actively 

perform their metabolic activity in this environment by reducing carbon dioxide. The electrons 

necessary for the reduction of electron acceptors in respiratory pathways are taken from oxidized 

substances known as electron donors. Various organic substances or molecular hydrogen are the 

two most important electron donors in deep subsurface anaerobic ecosystems (Madigan et al., 

2015). 

Figure 7: Distribution of major terminal electron accepting process in deep aquifers (Lovley and 

Chapelle, 1995). 

Deep biosphere is a well-developed ecosystem containing various electron acceptors and 

donors that differs in redox potential. Hence, deep biosphere harbors active microorganisms 

(Anderson et al., 2011). The energy available by redox reactions of terminal electron acceptors 

can be described by a redox ladder, where the system changes from oxidizing to reducing 

condition with a decrease in redox potential (Figure 8). A decrease in redox potential 

subsequently changes the anaerobic respirations to low energy-yielding processes. The type of 
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terminal electron acceptors present in an environment defines the ecological niches for specific 

microorganisms (Sikora et al., 2017). 

 

Figure 8: Redox potential with the strongest energy electron acceptors at the bottom and lowest at the top 

(Madigan et al., 2015). 

Although the availability of electron acceptors determines the community composition, 

their usage is limited by the availability of suitable electron donors. Reduced organic substances 

represent energetically most favorable electron donors and organics can be also used as a 

substrate for non-respiratory fermentation processes. Organic compounds can be present both in 

groundwater as well as in the host rock. Although microorganisms generally prefer using small 

organic molecules as electron donors, even macromolecular organic matter present in small 

quantities could potentially break down into smaller bioavailable compounds that favor the 

growth of microorganisms. In addition to low molecular weight compounds like acetate, 

microorganisms can also use complex forms of organic compounds like aromatic substances or 
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aliphatic chains. Depending on the oxidative ability of organic compounds, microorganisms can 

be divided into two kinds, Figure 9. Some genera of microorganism are capable to completely 

oxidize organic carbon source to carbon dioxide whereas other do not possess the mechanism of 

acetyl-CoA oxidation hence, could perform only incomplete oxidation of organic carbon which 

result in the production of hydrogen (Muyzer and Stams, 2008). 

Figure 9: Degradation of the complex organic compound under anoxic environments by sulfate reducing 

microbes (Muyzer and Stams, 2008). 

Besides hydrogen and organic compounds, methane produced from abiotic or biotic 

processes also serves as an electron donor (Costa et al., 2000). Because available organics as a 

preferred electron donor is rapidly consumed by the microorganisms in the deep subsurface, the 

main reason for the existence of active microbial life in deep intra-terrestrial ecosystems is the 

accessibility of hydrogen produced from diverse geological sources such as minerals reaction, 

radiolysis, volcanic activities or anaerobic chemical metal corrosion which serves as the source 

of energy and electron donor sustaining the growth of autotrophic microorganisms over the time 

even when the organic substances became unavailable (Pedersen, 1999).  
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3 Effect of microbial processes on the deep geological repository 

Microorganisms could cause the failure of an effective disposal system leading to the release and 

transportation of radionuclides to the environment. Microbial processes might result in numerous 

problems such as dissolution, mineralization, microbially influenced corrosion (MIC) of waste 

container, alteration of bentonite, gas production, pressure change, and sorption, and migration 

of radionuclides (see Figure 10) (Mulligan et al., 2009; Stroes-Gascoyne, 2010). Although the 

primary function of the bentonite layer in the repository is to seal the canister from the 

environment and protect both the canister and the environment, compacted bentonite cannot fully 

protect the system from microbial activities. Bentonite itself is rich in indigenous microflora well 

adapted to this environment and colonization by bacteria was observed up to a density of 

approximately 2000 kg/m
3 

on interaction with groundwater containing indigenous 

microorganisms after 5 years (Fru and Athar, 2008).  

 

Figure 10: Microbial processes in the DGR environment presented with a summary of electron donors 

and acceptors (Meleshyn, 2014). 
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3.1 Dissolution and mineralization of bentonite buffer 

The structure of the bentonite buffer comprises two basic building blocks: aluminum octahedral 

sheets and silica tetrahedral sheets. A single unit of bentonite cell is made up of one aluminum 

hydroxide octahedral sheet sandwiched between two silica tetrahedral sheets. The silica layers 

have a slightly negative charge which is compensated by exchangeable cations (Na
+
, Mg

2+,
 or 

Ca
2+

 ions) in the intermediate layers (Ross and Shannon, 1926). Furthermore, at the intermediate 

layer between two successive units, the water molecules are present where other polar molecules 

can enter. Bentonite clays mostly comprise of the mineral called montmorillonite. The 

montmorillonite clays consist of silica and aluminum sheets that are not tightly bound (Figure 

11). Therefore, water can enter, causing the clay to swell which is an important feature for the 

radioactive waste repository. In contrast, illite clays are similar to montmorillonite, but the space 

between the sheets is occupied by poorly hydrated potassium cations that are responsible for the 

absence of swelling (Ehrlich et al., 2015). 

Figure 11: Schematic presentation of Montmorillonite and Illite (Grim, 1962). 

Dissolution of montmorillonite results in the formation of illite. Dissolution can occur by 

the reduction of structural Fe³⁺ to Fe²⁺ and subsequent irreversible conversion of montmorillonite 

to illite, Figure 11. In absence of microbial activity, the process of conversion may take longer, 

but in the presence of microorganisms, especially iron reducing bacteria (IRB), the process might 
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be accelerated (Meleshyn, 2014). Microorganisms enhanced the dissolution of bentonite by 

reducing structural Fe³⁺ in a period of 2 weeks at room temperature with pressure 101 kPa. This 

process would otherwise need temperature from 300 to 350 °C with a pressure of 100 MPa and a 

period of 4 to 5 months without microbial activity (Kim et al., 2004). Similarly, an experimental 

interaction between bentonites (MX-80 and nontronite, dry density of 1300 kg/m
3
) and the 

facultative anaerobic bacteria (Shewanella putrefaciens) under anaerobic condition revealed that 

the presence of bacteria in MX-80 bentonite had noticeably increased water content and 

available pore space while the dissolution of minerals was noticed in nontronite owing to the 

bacterial activity (Julia N. Perdrial et al., 2009). The process of illitization has a great impact on 

the porosity of the buffer by altering the buffer’s properties in terms of hydraulic conductivity 

(Mulligan et al., 2009). Mineral - bacterial interactions was studied to understand the formation 

and dissolution of minerals in bentonite by Dai et al. (2014). In this study, gram-negative 

Bacillus strain isolated from soil was subjected to interaction with bentonite buffer of different 

content. In the presence of bacteria, the release of Ca
2+

 and Mg
2+

 was detected and the tendency 

of dissolution of these cations was elevated with the increase of bentonite content. As a result of 

active microbial metabolism, the interlayer space of bentonite was found to be increased 

approximately by 0.283 – 0.534 nm corresponding to the decrease of mineral content. Beside 

this, accumulation of mixture constituent of nanoparticles was also successfully detected that 

may be defined by the release of Si
4+

 and Al
3+

 from the buffer material (Dai et al., 2014). 

Generally, mineralization of the bentonite buffer in DGR can be affected by physical, 

chemical, and biological factors, specifically activities of microorganisms present in it. Microbial 

interaction with minerals can affect biogeochemical processes and thus, support the formation or 

dissolution of minerals (Dai et al., 2014). Alteration of minerals caused by microbial activities is 

a process of biomineralization, Figure 12. Biomineralization may result in increased permeability 

owing to decreased solid content or in coagulation of pores owing to precipitation. For instance, 

the size of the pores of the buffer material may increase under anaerobic environment by the 

reduction of Mn and Fe oxides. Alike, carbonate that is one of the constituents of commercial 

bentonite can be either dissolved or precipitated as a function of microbial process compromising 

the properties of bentonite for long-term geological disposal concept (Mulligan et al., 2009). 
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Figure 12: Biomineralization of clay buffer (Mulligan et al., 2009). 

3.2 Formation of biofilms 

Microorganisms have an ability to assemble and attach on a surface by the production of 

extracellular polymeric substance (EPS) forming a biological film known as a biofilm. Biofilm 

accumulation is the net result of cell attachment, growth, and detachment. The major role in 

biofilm formation, maturation, and maintenance is played by EPS that is composed of 

polysaccharides, nucleic acids, and proteins. The process of biofilm formation follows a 

sequence of steps that are initiated by the adsorption of macromolecules (e.g. polysaccharides, 

nucleic acids) and micromolecules (fatty acids, lipids) onto solid surfaces. A film is formed from 

the adsorbed molecules that can change the physiochemical condition of the environment 

including hydrophobicity and electrical charge. Diffusive transport owing to the Brownian 

motion, convective transport due to liquid flow, and active movement of motile bacteria near the 

interface are the reasons behind transport and attachment of microorganisms to an interface 

(Little and Lee, 2007). After attachment, EPS is produced by microorganisms that provide the 

matrix to hold bacteria together allowing the formation of microcolonies and eventually, the 

formation of a mature biofilm. Dispersion is the final step of biofilm formation, where the 

microorganisms are detached and dispersed by the process of sloughing (rapid and massive 

removal of the biofilm), erosion (continuous removal of small portions of the biofilm) and 

abrasion detachment due to collision of particles from the bulk fluid with the biofilm) (Donlan, 

2002). Hence, motile microorganisms are dispersed while some remain as sessile (Figure 13). 
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Biofilm formation under repository conditions leads to the poor performance of the 

disposal system because the film provides good protection and shelter to the microbes against 

harsh environmental conditions including physical, chemical, and biological stresses and further 

supports their survival under such unfavorable conditions (Meleshyn, 2014). Moreover, the 

formation of biofilm can influence the cation and anion sorption capacities of the underlying 

mineral surface; however, it depends upon the nature of the component in the environment. It has 

been reported that a decrease in adsorption capacity of Co (II), Th (IV) and Np (V) and an 

increase in adsorption capacity or no significant change on Pm (III) and Am (III) on the granitic 

rock surface has been observed by the formation of biofilm (Anderson et al., 2007; Meleshyn, 

2014). Likewise, it can also affect the chemical condition of the bulk solution. Biofilm formation 

was found to be responsible for the reduction of pH in the confined pore space within two weeks 

of the experiment (Barker et al., 1998; Meleshyn, 2014). Subsequently, it can enhance the 

phenomenon of reduction and dissolution of clay minerals (Meleshyn, 2014).  

Figure 13: Formation of biofilm.  Stage 1 is an initial reversible attachment of bacterial cells to the 

surface. Stage 2 is an irreversible attachment of the cells facilitated mainly by exopolymeric substances 

where they lose flagella-driven motility. At stage 3, the proliferation of cells starts where the first 

maturation phase is reached. The second maturation phase is reached at stage 4 with a fully mature 

biofilm (complex biofilm architecture). Eventually, stage 5 is the dispersion stage where single motile 

cells (dark cells in the figure) disperse from the microcolonies while some remain as sessile (Stoodley et 

al., 2002). 

In contrast, biofilm can affect the mass transport and hydrodynamics of buffer material 

by reducing the porosity and permeability of the adjacent pore space. The availability of pore 
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space is an essential factor for the growth of microorganisms (Meleshyn, 2014). A report about 

the crushed granitic rock from Äspö Hard Rock Laboratory confirmed that the packed column of 

crushed rock became impermeable due to the formation of biofilm by Fe (III) reducing bacteria 

within 2 days (Meleshyn, 2014; Tuck et al., 2006). Similarly, biofilm formation of SRB on a 

container surface or intensive growth in bentonite close to the container is considered the worst 

scenario for the disposal system as it can highly influence and boost up the process of corrosion 

(Masurat et al., 2010b). Nonetheless, biofilm may also have a passivation effect initially against 

corrosion and radionuclide transportation forming a protective layer and by sorption of 

radionuclide, respectively, however, by the time goes, biofilm get porous, loose, weak and easy 

to break down (Paula et al., 2016). The formation of biofilm under DGR environment has thus 

much more adverse impact on safety-relevant processes than lack of biofilm formation because 

of their bulk effect. 

3.3 Microbially influenced corrosion of the waste container 

The absolute barrier of radionuclides transportation in the designed disposal system is only an 

intact metal waste container because both the bentonite buffer and host rock are water-

conducting (Masurat et al., 2010b). Corrosion is the result of electrochemical reactions on the 

surface of the metal caused by the physiochemical condition. Additionally, corrosion can be 

accelerated by the activity of microorganisms and hence, referred to as MIC (Zhou, 2012). MIC 

may occur either by indirect utilization of hydrogen or organic compounds or even by direct 

uptake of electrons from the metal surface. Any local or general corrosion in the metal container 

could lead to the migration of radionuclide and subsequently, results in the failure of the disposal 

system. 

3.3.1 Microorganism involved in MIC  

The formation of biofilm on the surface of a metal container is the initial step of MIC. In both 

natural and engineered environments, microorganisms often exist as a biofilm, a central factor 

for the occurrence of biodegradation of barrier systems (Beech and Sunner, 2004; Dall’Agnol et 

al., 2014). Microorganisms can cause pitting corrosion, general, and localized corrosion (Rajala 

et al., 2015). Generally speaking, oxygen introduced into a repository during its excavation and 

operational phases creates an oxidizing environment for the first few hundred years and 
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gradually disappears establishing a reducing environment after the closure of a repository 

(Pedersen, 2013). Under such conditions, diverse groups of microorganisms are able to promote 

MIC on metal containers (see Table 2). Biofilms on metal surfaces may be formed by bacteria, 

archaea, and eukaryotes, although bacteria tend to be most responsible for MIC. 

Table 2: Examples of bacteria involved in MIC and their effects. 

Microorganisms Characteristics Effects References 

Sulfate-reducing 

prokaryotes 

Desulfobacterium corrodens 

Desulfovibrio alkalitolerans 

Desulfovibrio  ferrophilus 

Desulfomonas spp. 

Desulfonatronovibrio 

hydrogenovorans 

Thermodesulfovibrio 

Thermodesulfobacterium 

Anaerobic;  

Use H2 to reduce SO4
2-

, SO3
2-

, and S2O3
2- 

to 

S
2-

; iron may serve as 

an electron donor 

under organic carbon 

limitation 

(Fe → Fe
2+

 + 2e
−
) 

Cathodic 

depolarization by 

hydrogen uptake; 

anodic depolarization 

by corrosive iron 

sulfides; precipitation 

of H2S and FeS 

(Dinh et al., 2004; 

Enning et al., 2012; 

Gittel et al., 2008; 

Rabus, 2006; Rao et 

al., 2000; Venzlaff et 

al., 2013; Wikieł et al., 

2014)  

 

    

Metal-oxidizing bacteria 

Gallionella spp. 

Leptothrix spp. 

Mariprofundus spp. 

Methanococcus maripaludis 

Sulfobacillus 

thermosulfidooxidans 

Sulfobacillus acidophilus 

Acidithiobacillus 

ferrooxidans 

Aerobic and 

anaerobic; oxidize Fe
2+

 

to Fe
3+

 and Mn
2+

 to 

Mn
3+

 

Deposition of 

cathodically reactive 

ferric and manganic 

oxides 

(Lee et al., 2013; 

Linhardt, 2010; Norris 

et al., 1996; Rao et al., 

2000; Uchiyama et al., 

2010; Wang et al., 

2014) 

    

Metal-reducing bacteria 

Carboxydothermus 

ferrireducens 

Carboxydothermus 

hydrogenoformans 

Desulfitobacterium hafniense 

Geobacter metallireducens 

Geobacter sulfurreducens 

Geothermobacter spp. 

Shewanella spp. 

Thermincola potens 

Aerobic and 

anaerobic; reduce Fe
3+

 

to Fe
2+

 

Reduction of iron and 

manganese oxides 

(Finneran et al., 2002; 

Lee et al., 2013; Nevin 

and Lovley, 2000; Rao 

et al., 2000) 

    

Acid-producing bacteria 

Acetobacter spp. 

Acidithiobacillus caldus 

 

 Acids corrode metal, 

dissolve iron, and 

chelate copper, zinc 

and iron 

(Dong et al., 2018; Xu 

et al., 2016) 
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Nitrate-reducing bacteria 

Bacillus licheniformis 

Pseudomonas aeruginosa 

Anaerobic; reduce 

NO3
-
 to N2 or NH4

+
; 

iron may serve as an 

electron donor  

Iron oxidation, 

formation of iron 

nitride 

(Jia et al., 2017a; Xu 

et al., 2013) 

Prokaryotes involved in MIC are usually categorized into a few main groups consisting 

of taxonomically diverse organisms varying considerably in their metabolic capabilities. Sulfate-

reducing prokaryotes (SRP), metal-oxidizing bacteria, metal-reducing bacteria, methanogens, 

acid-producing bacteria, nitrate-reducing bacteria (NRB), nitrite-oxidizing bacteria (NOB), and 

fermentative hydrogen sulfide producing bacteria are the typical culprits involved in corrosion, 

Table 2.  These organisms typically coexist in naturally occurring biofilms and form complex 

consortia on corroding metal surfaces (Chapman et al., 1987). Under anaerobic environmental 

conditions, MIC is mainly influenced by the activities of Sulfate-reducing bacteria (SRB) though 

other microbial populations may play a significant role in the complex corrosion processes, 

depending on local physicochemical conditions. The most severe deterioration of metal was 

reported when the biofilm is composed of different species due to the interaction between 

multispecies (Kip and van Veen, 2015). Besides SRB, iron-oxidizing bacteria (IOB) are also 

responsible for the deterioration of metal containers by the anaerobic oxidation of metal (Liu et 

al., 2015). 

3.3.2 Sulfate-reducing microorganisms  

Sulfate-reducing microorganisms are highly specialized and can use sulfite, thiosulfate, and 

sulfur as a terminal electron acceptor for their energy metabolism. The sulfide produced is a 

potentially corrosive element that can affect the integrity of metal containers in deep repositories. 

Generally speaking, dissimilatory sulfate reducers are considered more important in MIC than 

assimilatory reducers. Of all the SRB genera, Desulfovibrio spp., Desulfotomaculum sp., and 

Desulfomicrobium sp. are often identified as the main culprits responsible for corrosion (Chang 

et al., 2014; Lee and Characklis, 1993; Vigneron et al., 2016; Xu and Gu, 2014), while several 

extremely thermophilic sulfate-reducing archaea, e.g., Archaeoglobus fulgidus, Archaeoglobus 

profundus, Methanococcus maripaludis and Ferroglobus placidus have been described as 

possible agents accelerating corrosion of ferrous metal pipelines in an anaerobic environment 

(Hafenbradl et al., 1996; Slobodkin, 2005; Uchiyama et al., 2010). To date, most studies on 

anaerobic corrosion have focused on corrosion by SRB. 
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Phylogenetically and metabolically, SRB are the most diverse bacterial group and are 

considered unique due to their role in the biogeochemistry of the environments they inhabit 

(Rabus et al., 2015). SRB are widely distributed in terrestrial, sub-terrestrial, and marine 

ecosystems and are capable of producing sulfide under a wide range of environmental 

conditions. In general, most SRB are heterotrophic prokaryotes that require anaerobic conditions 

for growth. However, recent studies have shown that a few SRB species are capable of carrying 

out micro-aerobic respiration and may also be autotrophic and lithoautotrophic. Low molecular 

weight organic compounds, such as lactate, acetate, propionate, and amino acids, act as the main 

sources of carbon and electron donors, while hydrogen gas may serve as both a source of energy 

and as an electron donor for SRB metabolism (Barton and Fauque, 2009). Consumption of 

hydrogen gas by SRB, leading to decrease in undesired pressure expected in the deep geological 

repository, could be beneficial if the bacteria will be mostly present far from the container, e.g., 

within the engineered higher-permeability zone between host rock and compacted bentonite 

(Bagnoud et al., 2016). Some of the best-known SRB isolated from extreme environments 

include Desulfotomaculum, Desulfovibrio, and Desulfomicrobium. Desulfotomaculum is an 

endospore-forming thermophilic species that can exist in a dormant phase for many years while 

awaiting favorable conditions (Aullo et al., 2013). This genus was also reported from a long-term 

corrosion study on carbon steel in compacted bentonite in the Mont Terri Underground Research 

Laboratory, along with two other SRB Desulfurispora and Desulfosporosinus that dominated 

natural Opalinus Clay pore water (Smart et al., 2017). Notably, SRB numbers were higher in the 

internal sections of the compacted bentonite implying that SRB originated mostly from the 

bentonite and minor part came from natural pore water. Several other studies have also reported 

activity of SRB in bentonite buffers and groundwater in relation to deep geological repositories 

for radioactive waste (Bengtsson and Pedersen, 2016; Masurat et al., 2010; Pedersen, 2013; 

Pedersen et al., 2017; Stroes-Gascoyne et al., 2010). Microbial analysis of groundwater showed a 

higher number of SRB and biofilm formation on the surface of the copper container (Hallbeck et 

al., 2012). The occurrence of microbes was proved on copper and titanium rod embedded in 

compacted bentonite buffer incubated with underground water for 9 weeks to densities in 

between 1750 to 2000 kg/m
3
 in the increment of 50 kg/m

3
 (Persson et al., 2011). Several species 

of microorganisms including the genus Desulfosporosinus (anaerobic endospore-forming sulfate 

reducers), Pseudomonas stutzeri (denitrifying bacteria), and Clostridiisalibacter paucivorans 
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(halophilic bacteria) were accumulated on the metal rods embedded on a bentonite buffer. 

Amazingly, it was also noted that SRB could maintain viability on embedded copper rods despite 

water saturation and high compaction processes. 

3.3.3 Mechanism of MIC by SRB 

The most important mechanisms resulting in MIC are: 

Cathodic Depolarization (CDP) Theory 

The corrosion of metal by SRB was initially proposed in 1934 by Von Wolzogen Kuehr and Van 

der Vlugt (von Wolzogen Kühr and Van der Vlugt, 1964). A simplified version of this theory is 

presented in Table 3. This mechanism follows a theory of cathodic depolarization where 

corrosion by SRB is induced due to depolarization by the oxidation of cathodic hydrogen. A 

metal becomes polarized when it reacts with water resulting in an anodic reaction by losing 

positive metal ions. In the absence of oxygen, the free electron reduces the proton of water to 

produce hydrogen following a cathodic reaction. This hydrogen is expected to be consumed by 

SRB as a good source of energy and electron using hydrogenase enzymes.  

Table 3: Cathodic depolarization theory by SRB on the metal corrosion mechanism. 

Anodic reaction (1)                           4 Fe → 4Fe
2+

 + 8e
-
 

 

Water dissociation (2)                        8H2O → 8H
+
 + 8OH

-
 

Cathodic reaction (3)                         8H
+
 +8e

-
 → 8H + 4H2 

Hydrogen oxidation (4)                     SO4
2-

 + 4H2 → H2S + 2H2O +2OH
-
 

Precipitation (5)                                 Fe
2+

 + H2S → Fes + 2H
+
 

Precipitation (6)                                 3Fe
2+

 + 6OH
- 
→ 3Fe(OH)2 

Total Reaction:                                   4Fe+SO4
2-

 + 4H2O → FeS + 3Fe(OH)2 + 2OH
-
 

 

Cathodic depolarization is achieved through the metabolic oxidation of hydrogen from 

the metal surface by (though not necessarily exclusively) SRB (Figure 14). Other bacterial 

populations that might influence cathodic depolarization are listed in Table 2. The mechanism of 

cathodic depolarization accelerates the anodic reaction resulting in anodic metal dissolution and 

subsequently, the formation of corrosion products such as FeS and Fe(OH)2 (Kakooei et al., 
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2012). Today, it is widely accepted that this mechanism is not the only mechanism that plays a 

role in local corrosion of iron. 

Figure 14: Scheme of iron surface corrosion induced by SRB based on the process postulated by the 

cathodic depolarization theory following 5 major steps starting with the dissolution of iron (I), 

dissociation of water(II), proton reduction(III), sulfate reduction (IV) and finally, sulfide precipitation (V)  

(Mori et al., 2010). 

Iron sulfides (King’s Mechanism) 

In 1971 King and Miller suggested that solid FeS formed on the surface of the metal acts as an 

absorber of molecular hydrogen and then induces in the reproduction of iron sulfide. Here, part 

of the iron below the biofilm becomes anode and the other part covered by iron sulfide behaves 

as cathode. Thus, the rate of corrosion will remain high. Schematic illustration of this mechanism 

has been presented in Figure 15 where no film of sulfide are formed after the formation of plenty  

of FeS for commencing a galvanic cell between FeS and Fe while a high corrosion was recorded 

due to galvanic corrosion  (Kakooei et al., 2012).  

Figure 15: Corrosion of metal by SRB proposed by King’S Mechanism (King and Miller, 1971). 
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Fe- Binding exopolymers 

Microorganisms are capable of producing EPS, resulting in the formation of biofilm and the 

major purpose of biofilm is protection and shelters to microorganisms. The EPS produced by 

SRB has a unique ability to bind with metal ions and speed up the process of corrosion. SRB 

with different composition of EPS was observed to have different rates of corrosion (Kakooei et 

al., 2012). Furthermore, Chan et al., (2002) showed that EPS alone can be a metal corrosion 

agent. They studied the metal corrosion in two test solutions, one with 1% EPS and other without 

any EPS and the result demonstrated that EPS enhanced corrosion rates (Chan et al., 2002).  

Biocatalytic cathodic sulfate reduction (BCSR) 

The BCRS theory proposes that oxidation of insoluble iron occurs outside the SRB cells, while 

the sulfate reduction occurs within cells. The electrons released through elemental iron oxidation 

are transferred from outside the cells into the cytoplasm, where sulfate reduction then takes 

place. When organic carbon sources, such as lactate, are available, oxidation occurs within the 

SRB cytoplasm. As such, the electrons released do not need to be transported across the SRB cell 

wall. If the environment has insufficient electron donors due to the biofilm barrier, the sessile 

SRB may attack the iron to obtain electrons for BCSR (Gu and Xu, 2010) resulting in electrical 

MIC. The electron transfer into the sessile cells could be direct, through conductive pili or using 

endogenous mediators excreted by the cells themselves (Zhang et al., 2015).  

According to the theory, electrons released by the dissolution of iron at the anode are 

used to reduce sulfate at the cathode, resulting in MIC with the help of SRB that is attracted to 

the metal surface. Owing to the presence of biocatalysis, the following reactions occur on the 

surface of the iron:  

𝑎𝑛𝑜𝑑𝑖𝑐: 4𝐹𝑒 → 4𝐹𝑒2+ + 8𝑒− (𝐼𝑟𝑜𝑛 𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 

𝑐𝑎𝑡ℎ𝑜𝑑𝑖𝑐: 𝑆𝑂4
2− + 8𝐻+ + 8𝑒−  → 6𝐻𝑆− + 𝑂𝐻− + 3𝐻2𝑂 

MIC of the candidate metal to use as a SNF container has been demonstrated in the chapter III of 

the experimental part under different condition. 
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3.4 Gas production and pressure change 

Gas production by microorganisms is the result of their respiration. Under anoxic conditions, 

gases like dinitrogen, hydrogen sulfide, carbon dioxide, and methane are produced by nitrate-

reducing bacteria, SRB, and methanogens. Additionally, hydrogen gas can be generated in a 

deep biosphere at repository conditions by processes such as water radiolysis and chemical 

corrosion besides the fermentation. Gas production is strongly possible in buffer and backfill 

material and would depend on the geochemical and redox condition of the environment (Stroes-

Gascoyne, 2010). As a consequence, gas pressure could be built up due to disparity occurring 

between the gas diffusion and gas production which can lead to crack or fracture of the host rock. 

However, as discussed earlier, hydrogen gas can be oxidized as an electron donor by bacterial 

hydrogenase reducing the risk of overpressure (Meleshyn, 2014).  

Gas production could have an adverse effect on hydro-mechanical properties of the 

bentonite buffer as it can increase the permeability of buffer materials by disrupting the 

mechanical structure of the buffer (Mulligan et al., 2009). Production of carbon dioxide by the 

degradation of organic waste can also play a vital role in increasing solubility of radionuclide 

and consequently their transportation. Moreover, it can influence the solubility by persuading 

chemical gradients in addition to micro-environmental nutrients (Hersman, 1997; Mulligan et al., 

2009). 

3.5 Microbial interactions with radionuclides 

In the case of release of radionuclide from the waste repository by container failure, 

microorganisms existing in the groundwater will play a significant role in sorption and migration 

of radionuclides (Francis, 1990; Pedersen, 1999). Presence of microorganisms in deep 

groundwater can affect the migration of radionuclides from the repository in various ways. 

Interestingly, freely moving microbes with a mobile suspended particle possess a higher capacity 

of radionuclide sorption in comparison to the microbes surrounded by the buffer or host rock 

(Pedersen, 1999; Pedersen and Albinsson, 1991). They are believed to enhance and speed up the 

process of migration of escaped radionuclides (Pedersen, 1999). Moreover, the active metabolic 

function of various microbes can greatly influence radionuclides and their mobility. Depending 
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upon microbial activities and their state, immobilization or mobilization of radionuclides may 

take place under DGR as illustrated in Figure 16 (Pedersen, 2005). 

Figure 16: Schematic view of microbial interaction with their surroundings and their effect on 

radionuclide mobility from geological HLW repositories (Pedersen, 2005). 

3.5.1 Biosorption of radionuclides 

Among all microbial processes, biosorption is the process which does not necessarily need any 

active energy-driven function (Pedersen, 2005). It is the result of electrostatic attraction between 

the negatively charged cell surface and the nuclide cations. Biosorption can take place directly 

through the interaction of anionic cell wall and nuclide cation or indirectly by either EPS, S-

layer, or by capsule (Shukla et al., 2017). Hence, radionuclide sorption on cells is the 

metabolism-independent sorption of radionuclides onto microbial cells. The sorption could be 

intracellular or extracellular and both the living and dead biomass have the capability of bio-

sorption (Lloyd and Macaskie, 2002; Pedersen, 1999). 

3.5.2 Bioaccumulation, biotransformation and biomineralization of radionuclides 

Bioaccumulation is the metabolic process where the microorganisms have developed an energy-

dependent uptake system for the physiologically important metal. The size and charge of the 

element may influence the bioaccumulation mechanism (Pedersen, 2005). As for an example, 

radionuclides like Cs
+
 can be taken up by microorganisms through incorporation via the K

+
 

transport system due to its chemical similarity to K
+
 (Kato et al., 2016). 



 

28 
 

The metabolic process includes an electron donor and an acceptor which combine in 

redox couples to generate energy for microorganism. Redox reaction has a strong ability to alter 

the solubility of the radionuclide as their mobility relies on their oxidation state (Pedersen, 2005). 

The reduction of U
6+ 

from a toxic and soluble form to insoluble and less toxic U
4+

 is suggested 

mechanism for avoidance of migration of this radionuclide through groundwater (Merroun and 

Selenska-Pobell, 2008). The microbial metabolic processes lead to the formation of oxides, 

coprecipitates, ionic, organic, or inorganic complexes of radionuclide through transformation and 

mineralization. Microorganisms can consume oxides in the form of radionuclides and metals 

such as Tc, Cr as a terminal electron acceptor (Francis and Dodge, 2009; Shukla et al., 2017)  

The capability of SRB and IRB to utilize uranium as a substitute for sulfate (Lovley and 

Phillips, 1992; Pedersen, 2005) and ferric iron (Lovley, 2000; Pedersen, 2005), respectively as 

terminal electron acceptors have been widely studied to understand this process in relation to 

DGR. However, it is still not fully understood if this process has any significant importance. 

Normally, the concentration of sulfate and ferric iron will be much higher than the possible 

occurrence of U
6+

 hence; escaping of radionuclide from repository and biotransformation may 

not be significant. However, it has to be verified under in situ conditions (Pedersen, 2005; Shukla 

et al., 2017). Moreover, microorganisms with the generation of ligands such as phosphate, 

carbonate, or sulfide are capable of precipitating radionuclides.  In the access of ligands, the 

radionuclide of metal ions should be removed from the solution. Iron oxidizers such as 

Gallionella spp oxidize ferrous to ferric iron and these biological iron oxides may have a 

retardation effect on radionuclide due to their stalks and sheaths which increases the volume of 

the iron oxides and helps to trace the radionuclide (Pedersen, 2005). 

3.5.3 Formation of chelating agent  

Like multicellular organisms, microorganisms also need metal for their metabolism. To access 

the required element, various kinds of chelating agents are produced by microorganisms. 

Nevertheless, the produced ligands may not always be specific and may potentially mobilize 

elements such as heavy metals and radionuclides to the environment (Pedersen, 2005). 
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4 Effect of deep geological repository conditions on microbial processes 

The environmental condition of DGR is extreme in terms of temperature, pressure, density, 

radiation or salinity, and pH. Microorganisms are selected according to their metabolic abilities 

and only those who possess the ability to survive will survive (see Table 4 for extremophiles). 

Organic or inorganic compounds serve as a source of energy as described in (2 Deep subsurface 

ecosystem) whereas the source of carbon is fulfilled either by organic carbon (in case of 

heterotrophs) or by carbon dioxide (autotrophs). Numerous studies have investigated microbial 

activity under the DGR relevant conditions (Bengtsson and Pedersen, 2017; Fru and Athar, 2008; 

Masurat et al., 2010b; Pedersen, 2010). These studies demonstrate the response of 

microorganisms to relatively high radiation, heat, pressure, and redox conditions.  

Table 4: Examples of microorganisms living under extreme conditions. 

Conditions Microorganism Growth 

limit 

Presence Reference 

High temperature Bacillus 

stearothennophilus 

155 °C Soil, hot springs, 

ocean sediment 

(David and Merson, 1990) 

Low temperature Psychromonas 

ingrahamii 

-12 °C Sea ice (Riley et al., 2008) 

High pH Bacillus 

pseudofirmus 

11.4 Soil/alkaline soda 

lake 

(Janto et al., 2011) 

Low pH Picrophilus torridus 0 Solfataric 

locations 

(Schleper et al., 1995) 

Radiation Deinococcus 

radiodurans 

60 Gy/ hr Marine, lakes, and 

deserts 

(Daly, 2006) 

Salinity Haloarcula 

marismortui 

5 M NaCl Sea (Müller-Santos et al., 2009) 

Pressure Colwellia 

marinimaniae 

140 MPa Challenger deep (Kusube et al., 2017) 

Water activity Lactobacillus 

plantarum 

(Vegetative cells) 

0.2 Gastrointestinal 

tracts and food 

product 

(Laroche et al., 2005) 
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Interestingly, some microorganisms were always able to adapt and survive (Libert et al., 

2014), partially because some microbes are capable of forming spores. Bacterial endospores have 

the unique ability to survive under adverse conditions of high desiccation, low water content, 

heat, and radiation. These spores can exist in a dormant state for long periods resisting 

unfavorable environmental conditions and have the capacity to revive back to active life when 

the conditions change. For example, a bacterial spore of 10
5
 years old was recovered from an 

environmental sample (Ratto and Itavaara, 2012). 

4.1 Host rock  

Clay formations, granite, or crystalline rock serve as the host rock in the disposal system. For the 

safety assessment of DGR, understanding far-field geochemistry and hydrology is equally 

important as the near-field from a geomicrobiological point of view as well. Depending upon a 

rock type, a wide range of groundwater chemistry (dissolved inorganic and organic minerals) has 

been documented. In crystalline rock, at depth of about 500 m down the ground, the 

concentration of sulfate and chlorine increases while the concentration of bicarbonate decreases 

due to precipitation of minerals (calcite). Moreover, alteration in rock-water interaction increases 

pH and decrease of redox potential (Frape et al., 2003). Nevertheless, the salinity of the 

surrounding environment can influence microbial processes. Candidate host rocks such as granite 

and claystone tend to elevate the salinity of the surrounding (Stroes-Gascoyne et al., 2011). The 

salinity of host rock in the countries located near the coastal area is higher compared to the 

country that lies far from the cost. It can especially favor sulfur-reducing halophiles such as 

Desulfohalobium, Desulfohalobiaceae, and Desulfobacteraceae (Kjeldsen et al., 2007). 

4.2 Bentonite buffer 

Bentonite consists predominantly of smectite minerals, typically montmorillonite. Commercial 

high-quality bentonite contains over 80% of montmorillonite. It is selected as a part of the 

engineered barrier system because of its distinctive properties like low permeability, low 

hydraulic conductivity, high swelling pressure and high adsorption capacity (Perdrial et al., 

2009). Moreover, the buffer material is expected to sorb accidentally released radionuclides 

through its porous matrix and thus retard the mobility of radionuclide from DGR. However, the 

process of retardation can be adversely affected if the permeability of the surrounding buffer is 
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increased and if sorption of radionuclides by the microorganisms is higher than that of buffer and 

host rock (Pedersen, 1999; Pedersen and Albinsson, 1991). 

The chemical composition and structure of bentonite was described in 3.1 Dissolution 

and mineralization of bentonite buffer of this chapter. Various kinds of bentonite differing in 

their respective dominant element are expected to be used by different countries as a buffer 

material. Besides the primary elemental composition, the amount of other accessory minerals 

such as calcite, cristobalite, feldspars, gypsum, pyrite, and quartz also vary in different 

bentonites. Different exchangeable interlayer cations in clay buffers resulted in variation in 

different bacterial populations (Perdrial et al., 2009). S. putrefaciens showed better growth in 

nontronite than in MX-80 clay and the reason behind this was the presence of Ca cation of 

nontronite interlayers. Ca serves as an ionic bridge between negatively charged bacteria and 

negatively charged clay particles. Divalent cations are known to ease bacterial adhesion which 

further helps to access nutrients for the bacteria at the mineral surface (Perdrial et al., 2009; 

Simoni et al., 2000). On the other hand, montmorillonite of MX-80 comprises more Na than Ca 

in the interlayers and thus, the degree of divalent bridging is decreased. On the same hand, high 

osmotic swelling pressure of MX-80 generally creates a limitation for the bacterial access of 

minerals that can reduce the growth of bacteria. It is by the formation of gel because of extensive 

hydration of monovalent Na that prevents the survivability and mobility of bacteria while the 

bentonite containing Ca as the dominant element at the interlayer do not form a gel (Perdrial et 

al., 2009).  

Normally, the condition in the repository is expected to inhibit the microbial processes 

because of insufficient nutrient, water, and restricted pore space (Pedersen, 2000; Pedersen et al., 

2000; Perdrial et al., 2009) however; a certain group of microorganisms with a developed 

metabolic ability are anticipated to survive. Especially, spore former are likely to exist over the 

period in the repository (Fru and Athar, 2008; Perdrial et al., 2009). Bacteria are present to the 

pore spaces and attached to the mineral surfaces especially during the early stages of hydration. 

Accessory minerals like calcite and pyrite are also present in the aggregates. The micro-pores get 

closed and the pressure increases due to swelling but to survive this environment, as a protection 

mechanism bacteria produces EPS. Simultaneously, new pore space is provided by the pyrite 

oxidation and calcite hydrolysis. After the death of bacteria due to compaction and dissolution of 
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calcite, additional pore space is created where extra swelling can take place and at the same time, 

remaining EPS is also bound to aggregates. It is suggested that in the vicinity of EPS, aggregates 

serves as nucleation sites (Perdrial et al., 2009). Männik et al. (2009) have reported bacterial 

growth and motility in sub-micron constrictions. It has been demonstrated that E. coli and B. 

subtilis are motile in microfabricated channels with an only marginal difference in the width of 

the channel being surpass than their diameter. At the smaller width of the channel (<0.8 µm), the 

mobility disappeared but E. coli still managed to penetrate the channel with a width smaller than 

its diameter by a factor of approximately 2 by growth and division. Under such constriction, 

bacteria are significantly squeezed but still possess the ability to grow and divide. Unexpectedly, 

after leaving the channel, a variety of anomalous cell shapes was acquired by E. coli. However, 

B. subtilis was not observed passing through a channel with a smaller width than its diameter. 

This result show that sub-micron size pores and cavities are surprisingly prolific where bacteria 

can still be present and undergoes morphological adaptations (Männik et al., 2009). The pore 

size of the bentonite buffer is usually 100 to 1000 times smaller than the average size of most 

microbes which inhibits the migration of microbes inside the buffer. Yet, likelihood of microbial 

transportation is still there as some natural microbes are more tolerant (Mulligan et al., 2009; 

Pedersen et al., 2000) and could adapt to small size by starvation (Ratto and Itavaara, 2012). 

Moreover, fracture and faults in bentonite enables reactivation of indigenous bentonite 

microorganisms as well as introduction of groundwater bacteria to the barrier system. The viable 

microbial biomass in Fennoscandian shield groundwater from the depth up to 1000 m has been 

determined. This work showed that microorganisms in deep groundwater could vary 

expressively in size and metabolic responses are a function of the prevailing condition of the 

environment (Eydal and Pedersen, 2007). Masurat et al, (2010b) investigated sulfide production 

in bentonite supplied with groundwater from the borehole of Äspö Hard Rock Laboratory. SRB 

from both, groundwater and bentonite was concluded to be responsible for sulfide production 

(Masurat et al., 2010b). This study showed that the groundwater has an ability to migrate within 

the buffer material. 

4.2.1 Swelling pressure and water activity 

Bentonite clays have high water affinity and swell when they come in contact with the 

groundwater. The swelling pressure of bentonite is related to its density if the swelling is space-
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restricted because of a mechanical hindrance (Masurat et al., 2010b). Furthermore, the 

compaction of bentonite and finite volume in the rock determines the amount of water that 

bentonite will take for being saturated (Karnland, 1997). Conversely, an increase in swelling 

pressure corresponds to the decrease in water activity (aw). Therefore, aw can be a limiting factor 

for the microbial processes (Masurat et al., 2010b; Motamedi et al., 1996). Normally, aw above 

0.6 to 0.7 is required for the microbes to maintain their life. If not, they can survive as spores in a 

dormant phase (McCabe, 1990). However, (Laroche et al., 2005) has demonstrated that 

thermophilic Lactobacillus plantarum vegetative cells can still survive at aw of 0.2. 

The effect of the physical properties of highly compacted bentonite on the culturability of 

indigenous microorganisms was studied by (Stroes-Gascoyne et al., 2010). Wyoming MX-80, 

commercially available bentonite, was compacted to different dry densities ranging from 800 to 

2000 kg/m
3
. Bentonite plugs were saturated with the distilled deionized water comprising 0 to 

200 g/l of NaCl in incremental of 50 and with granitic water with some dissolved solids (0.7 g/l 

from 240 m level and 89 g/l from 420 m level) from Atomic Energy of Canada Limited‘s 

Underground Research Laboratory (URL) for 40-90 days. It was concluded that aw less than 0.96 

and swelling pressure more than 2 MPa could suppress microbial culturability below the 

background level. Yet, to achieve this condition under actual repository situations, dry density 

must not be below 1600 kg/m
3
. Additionally, it was also claimed that high salinity of porewater, 

>100 g/l could be a major cause to keep water activity <0.96 and culturability of aerobic 

microbes under background level. Nevertheless, under such tough environmental conditions 

microorganisms have a strong ability to survive as inactive spores. 

4.2.2 Density of compacted bentonite 

High compaction of bentonite does not favor microbial activities as it results in high swelling 

pressure, low porosity, and low water viability. It has been confirmed that high compaction of 

bentonite can suppress the growth of microorganisms only if the dry density of bentonite is ≥ 

1600 kg/m
3
 because higher compaction only deactivates microorganism to a significant level but 

not necessarily eliminate or kill them (Masurat et al., 2010b; Stroes-Gascoyne et al., 2011). 

Masurat et al., (2010b) conducted a study under repository relevant conditions to measure the 

microbial sulfide generation in compacted bentonite at densities of 1500, 1800, and 2000 kg/m
3
. 

The results disclosed that the bentonite density negatively correlated with the sulfide production 
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rate and the sulfide production rate at 2000 kg/m
3
 was a hundred to thousand times lower than 

the rate needed to corrode copper material over 100000 years (Masurat et al., 2010b). Likewise, 

(Stroes-Gascoyne et al., 2011) experimentally reduced dry density of compacted bentonite from 

1600 kg/m
3
 to 1000 kg/m

3
 and the result showed the recovery of cultivability of microorganisms. 

It was concluded that a reduction in dry density stimulated the growth and cultivability of 

indigenous microorganisms. In a repository, reduction of bentonite dry density should be 

effectively minimized by implication of well-designed highly compacted bentonite.  

4.2.3 Thermo-hydro mechanical effect of bentonite on microorganism 

Understanding the effects of thermo-hydro-mechanical (T-H-M) behavior of bentonite buffer on 

the survivability of microorganisms is principally important for the assessment of engineered 

barrier systems development and related estimation of the safety performance of DGR (Aoki et 

al., 2010). Encapsulated waste is a considerable source of higher thermal energy which induces 

heat convection forming a complex hydrologic system and thermal stress altering the mechanical 

properties of the buffer. Coupled T-H-M phenomenon results in change in hydraulic 

conductivity, alternation in permeability and porosity of bentonite buffer, the occurrence of 

fissure or fracture of buffer or host rock, and change in water pressure (Hudson et al., 2001). All 

these factors have a strong potential to influence the microbial process in the DGR. 

Many studies (Collin et al., 2002; Hudson et al., 2001; Plötze et al., 2007; Tsang et al., 

2012; Villar and Lloret, 2004) have been focused on coupled T-H-M phenomenon though a very 

few studies were published on microbial analysis in association with T-H-M. Aoki et al., (2010) 

has investigated the activity of microorganisms in compacted (1653 kg/m
3
) OT-9607 bentonite 

as an impact of T-H-M phenomenon at the Kamaishi Mine, northeast Japan. Deep groundwater 

from host rock containing heterotrophic bacteria including viable SRB, NRB, and denitrifying 

bacteria was used for the experiment. The T-H-M experiment was conducted with a heater up to 

a temperature of 100 °C for 260 days and gradually cooled to room temperature for 180 days. 

Also, water content and dry density of the plugs were 15% and 1656 kg/m
3
, respectively. After 

the termination of the experiment, bentonite samples were analyzed for the detection of survival 

of naturally occurring microorganisms. The result disclosed the existence of viable aerobic 

heterotrophic bacteria in the bentonite samples. Nonetheless, they were reduced in bentonite 

samples bearing low water content (<12%). At the same time, the water content of the buffer 
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increased with decreasing temperature owing to the distance from the heater. The water content 

in the buffer material is the crucial factor for the survival and activity of a viable microbial 

population in bentonite. This study suggests that because of compaction, heat, desiccation, and 

lower water content, microbial processes are strictly limited near the waste container, until the 

conditions remain undisturbed (Aoki et al., 2010). 

4.3 Temperature  

Radioactive waste can generate radiation and heat even after the fission process has stopped. 

Consequently, the temperature of buffer material is higher due to radioactive decay heat released 

from the container (Ye et al., 2014). Ideally, the amount of SNF in the container and the distance 

between containers in the DGR is selected in such a way that the surrounding temperature will 

reach around 80 °C at the warmest location (Pedersen, 1999). However, in some concepts, the 

temperature is expected to be about 90-100 °C. The high heat emissions from the container 

together with the resulting desiccation of the surrounding bentonite buffer are two major factors 

that should avoid microbial activity (Bennett and Gens, 2008). In agreement with this, (Pedersen 

et al., 2000) presented a report where the spore-forming SRB was the only surviving bacteria at 

80 °C after a 28-week experiment in compacted MX-80 bentonite. Nevertheless, other research 

has shown a lower effect of heat on microbes. Sulfide producing activity of SRB was detected in 

bentonite that was heated to 120 °C for 15 hours though the rate of sulfide production was lower 

by 1.3 to 16 times than in control-treated at 25 °C (Masurat et al., 2010b). Similarly, heat 

treatment of the MX-80 bentonite at 110°C for 170 hours failed to eradicate sulfate producing 

bacteria (SPB). Instead, intensive sulfide-producing activity and large numbers of cultivable SPB 

were observed (Bengtsson and Pedersen, 2017). Greater resistance to wet heat treatment appears 

to be a distinctive character of spores that can withstand harsh exposure of temperatures higher 

than 100°C for long periods (Setlow, 2006). It has been reported that mechanisms involved in 

killing of spores are different for wet and dry heat. Wet heat damages the core proteins of the 

spores, whereas dry heat is responsible for the damaging of the DNA (Setlow, 2014). 
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4.4 Radiation 

The alpha decay of actinides like 
235

U, 
237

Np, 
239

Pu, 
241

Am, and 
244

Cm and the beta decay of 

fission products like 
90

Sr and 
137

Cs are the main sources of radiation in HLW repository (Ewing 

et al., 1995). During the first 500 years of DGR, the beta decay of fission products will 

dominates the radiation flux because of a shorter lifetime, and then the alpha decay of actinides 

will be the dominant source, because of their much longer half-lives. After 10
3
 years, the total 

absorbed dose of beta or gamma radiation is estimated to be 600 MGy that gives an average dose 

rate of 68.5 Gy per hour and for alpha radiation, it would be 90 MGy giving an average dose rate 

of 10 Gy per hour radiation. Further, after 10
6
 years, the total dose absorbed of beta or gamma 

radiation is predicted to be 1 GGy with an average dose rate of 0.11 Gy per hour while it is 

estimated to be 800 MGy with an average dose rate of 0.09 Gy per hour for alpha radiation. 

(Brown, 2014) These values only give an  indication of doses in the vitrified waste-forms 

themselves; alpha radiation will be absorbed by the waste and its container whereas gamma 

doses away from the container surface will decrease significantly with distance (Brown et al., 

2017). 

Research on radiation dose in a simulated HLW container carried in Boom clay 

demonstrated that the dose rate can be as high as 400 Gy per hour at the interface between the 

container and clay, in decreasing order to 25 Gy per hour at 20 cm distance (Noynaert et al., 

1998). A different dose rate of radiation at the outer surface of SNF container is expected by 

different countries. To illustrate, Finland expected to have a dose rate of around 0.33 Gy/hr while 

the expected dose rate for Sweden and Switzerland is less than 0.1 Gy/hr (Bennett and Gens, 

2008). It is suggested that the dose rate at the waste container surface should not exceed 1 Gy/hr 

to prevent the effect of radiolysis of water in saturated bentonite or to limit the occurrence of 

humid air before water saturation (Werme, 1998). Radiation in the form of alpha, beta, and 

gamma rays from the decay of radioactive material is defined as ionizing radiation. Ionizing 

radiation induces various changes in cells directly or indirectly leading to cell death (Benetti, 

2015) as presented in Figure 17. 
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Figure 17: Effect of ionizing radiation on cells (Benetti, 2015). 

Decimal reduction dose (D10) is widely used to determine the microbial resistance to the 

radiation, which is stated as the dose of radiation (kGy) needed to decrease the number of 

microorganisms by one log. This means the dose should be enough to reduce 90% of the total 

number of microorganisms (van GERWEN et al., 1999). The radiation sensitivity of indigenous 

microorganisms in different bentonites was studied by (Stroes-Gascoyne et al., 1994). Depending 

upon the type of bentonite, the D10 dose was between 0.65 and 1.68 kGy at a dose rate of 100 Gy 

per minute for naturally occurring microorganisms. Survivability of microorganisms decreased 

with increasing total radiation dose.  

Despite exposure to high radiation, some bacteria can still survive and are resistant to 

radiation. The bacterium that can grow under high chronic Gamma radiation (60 Gy per hour) or 

recover from acute doses greater than 15,000 Gy is Deinococcus radiodurans which is a non-

spore-forming bacteria (Daly, 2006). The average D10 dose for this species is 10,4 kGy (van 

GERWEN et al., 1999). Resistance to desiccation and oxidative/hypertonic stress of 

Deinococcus radiodurans is also relatively high. The radiation resistance phenomena of this 

bacterium are probably connected to its high tolerance for desiccation as both effects cause very 

similar cellular damage (V Mattimore and Battista, 1996) are driven by two major mechanisms. 
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The first is the efficient repair of damaged DNA and the second is efficient cellular mechanisms, 

see Figure 18 (Jin et al., 2019). The effect of irradiation on indigenous microorganisms from 

bentonite and groundwater is presented in chapter II of the experimental part.  

Figure 18: Radiation resistance mechanism of Deinococcus spp. (Jin et al., 2019). 

4.5 Concrete barrier and high pH 

Concrete, a cementitious material, plays a major role in engineered barrier systems. Concrete is 

used not only as a structural element in the waste repository for encapsulation of LLW or ILW 

but also for the backfilling and sealing as a plug of the repository. The cementitious material 

with high gypsum and soluble alkalic content causes an increase in pH in the surrounding 

environment (Williams et al., 2017). Therefore, pH values in the vicinity of concrete are expected 

to be as high as 13.5 (Bertron et al., 2013); moreover, the pH of bentonite is alkaline (Ye et al., 

2014). The high alkaline pH of the concrete creates a relatively non-hostile environment for the 

microbial activity. Microbial communities at the interfaces between the cementitious material, 

bentonite buffer, and host rock can be severely affected by the presence of concrete. However, 

there are many alkaliphilic microorganisms capable of surviving in high pH environments. The 
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detail on alkaliphilic microorganisms has been provided in the chapter IV of this thesis along 

with the effect of concrete on indigenous microorganisms of bentonite and groundwater. 

Alkaliphilus transvaalensis, an endospore forming SRB was isolated from a deep gold 

mine in South Africa. It can withstand a pH ranged from 8.5 to 12.5 and temperature from 20 to 

50°C (Takai et al., 2001a). Similarly, a moderate thermophilic Desulfotomaculum alkaliphilum 

was found to reduce sulfate to sulfide under the condition with pH 8 to 9.15 and temperature 30 

to 58 °C (Pikuta et al., 2000). Usually, high pH is favored by nitrate-reducing bacteria (NRB) 

because they are metabolically very active in alkaline conditions (Bertron, 2014). Nitrate 

reducers are responsible for creating a more reduced environment within the repository that 

favors the propagation of other anaerobic microorganisms (Bertron et al., 2013). Moreover, the 

metabolic products of nitrate and sulfate reducers (such as organic acids, mineral acids, or sulfur 

compounds) are chemically aggressive to cementitious material which results in a decrease in pH 

and then mineralogical and microstructural changes in cementitious surface (Bertron, 2014).
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I. Characterization of microbial communities 

present in groundwater sources and 

bentonite in the Czech Republic by 

molecular biological tools. 
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1  Background 

Microbial activities at DGR can compromise the safety of the buffer barrier. It is, therefore, very 

important to understand the possible influence of microorganisms before radioactive waste 

storing. To know the possible microbial effect, the characterization of the microbial community 

in both groundwater and bentonite is essential. Deep underground and bentonite represent a large 

and heterogenic (phylogenetically and metabolically) pool of microorganisms. Additionally, the 

diversity of microorganisms in long-term stored bentonite barriers is not driven by whether 

particular microbes will get there but depends on prevailing environmental conditions that will 

establish after the closure of the repository.  

Microbial communities present in groundwater sources and bentonite in the Czech 

Republic have been poorly characterized. Moreover, microbial metabolic processes and effects 

related to Czech bentonite were not investigated before this study. In the Czech Republic, 

different types of bentonite are available such as BaM, BCV, B75, and S65. The elemental 

composition of particular montmorillonites varies a lot among different bentonites and there is 

also a variable amount of other accessory minerals in bentonites such as feldspars, quartz, 

cristobalite, gypsum, calcite, and pyrite (Karnland et al., 2006). BaM bentonite was proposed to 

be used in Czech research projects as candidate bentonite to be used in DGR. Different countries 

have proposed different clay as a barrier material. For instance, France has chosen clay of 

Callovo-Oxfordian age and has performed an intensive study on it. Similarly, Spain is 

performing a study on FEBEX bentonite in context to their repository. We cannot depend upon 

the results produced by other countries simply because each buffer type behaves differently. 

Therefore, it is important to study Czech bentonite for a better understanding of the nature of the 

material. Other reasons behind abiding by Czech sources are the availability of materials and 

lower cost.  

The widely used method for the study of microbial diversity in bentonite is the 

determination of cultivable bacteria (Lopez-Fernandez et al., 2015; Persson et al., 2011). 

However, this technique can detect only a small proportion of bacterial populations present 

(Figure 19). The other approach is to use molecular biology tools, such as qPCR and sequencing. 

However, extraction of DNA from bentonite is very difficult, because DNA is absorbed onto 

bentonite and is protected against chemical or enzymatic degradation of the cell (Perdrial et al., 
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2009). Investigation on the interrelation between DNA and clay has concluded that the 

interaction is influenced by several factors such as ionic strength, mineralogy of the sorbent, 

length of DNA and pH of the medium (Paget et al., 1992). Moreover, DNA could be 

immobilized in soil with higher clay contents and adsorption of DNA by the clay provides a 

good means for DNA to be protected against nuclease activity. The electrostatic interaction 

between the absorbed cations and phosphate anion is connected to the higher affinity of DNA to 

the surface in the case of a divalent cation charged montmorillonite. The phosphate anion has a 

strong binding with Ca
2+

 than Mg
2+

 (Paget et al., 1992). The presence of Ca
2+

 in the bentonite 

establishes an ionic bond between bentonite and negatively charged bacteria. Such divalent 

cation provides adhesion to bacteria and access to nutrients on the mineral surface (Julia N 

Perdrial et al., 2009). Thus, it makes the extraction process more difficult and complicated. 

Another reason for the poor DNA yield could also be because of low biomass present in the 

bentonite. Some researchers have isolated DNA from bentonite using detergent followed by the 

thermal lysis process (Lopez-Fernandez et al., 2015; Selenska-Pobell et al., 2001) while some 

researchers preferred commercial DNA isolation kit (Engel et al., 2019). 

Figure 19: Image illustrating the microorganisms’ content in groundwater or bentonites detectable by 

cultivation or DNA sequencing method.  Circles represent viable cells. Filled and empty circles represent 

the cultivable (active) and uncultivable (dormant) cells respectively. The cross shows dead cells and the 

DNA molecule represents free DNA. Using cultivation methods only a few to less than one percent of 

viable cells can be analyzed. Using DNA sequencing information about cultivable, uncultivable microbes, 

dead cells and free DNA can be gained. (Ševců et al., 2018). 
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The first objective of this study was to characterize the microbial community present in 

deep groundwater and biofilm samples from two deep groundwater sources in the Czech 

Republic and select the most suitable groundwater source(s) to carry further experiments. The 

second objective was to analyze the microbial communities present in the homogenized and raw 

Czech bentonite from Černý vrch and describe their diversity using molecular biology tools. 

2  Materials and method  

2.1 Groundwater  

For the study of microbial activities in an environment similar to DGR in a laboratory, natural 

groundwater has been used as a source of microorganism. In this study, two deep groundwater 

sources 1) Bukov Underground research facility (Bukov URF) and 2) Josef Underground 

research Centre (Josef URC) in the Czech Republic (Figure 20) were studied. 

Figure 20:  Map representing the location of underground sources. Josef URC spotted by orange color 

and Bukov URF spotted by green color. 

Bukov underground facility is located near the village of Bukov, in the Žďár nad Sázavou 

district of the Vysočina region which lies in the south part of Rožná uranium mine. It is situated 

at the crystalline rock at approximately 520 m down the ground surface. To be precise, the 

geochemistry of this groundwater is of Ca–HCO3 type, mostly presenting a low kind of 

mineralization (up to 0.3 g/l ) (Havlová et al., 2015). From Bukov URF, water was collected 

from seven different sources together with two biofilm samples.  
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Figure 21: Images representing Bukov URF. A) Water source from BK06 B) Biofilm near-source BK23 

C) Collection of water sample flowing from ceiling and D) Measurement of pH from BK18 Source. 

Likewise, the Josef URC is located at Psí Hory gold-bearing district. The Josef gallery 

passes through Veselý hill across the rock and connects two gold-bearing deposits – Čelina 

deposit and Mokrsko deposit that is named after villages situated in their neighborhood 

(Pacovská et al., 2012).  

Figure 22: Images representing Josef URC. A) Entrance to Josef URC B) Underground tunnel C) Main 

tap of source VITA water under 2.5 bar and D) Transport of VITA water in the Josef URC tunnel. 

This underground research center is located in granitic rock beds at approximately 125 m down 

the geological surface, however; the overburden height varies from 30 m (Čelina-West) to 180 m 

A B 

C 
D 
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(Mokrsko) (Pacovská et al., 2012). From Josef URC water was sampled at two sites: VITA and 

HV1 located relatively close to each other. 

2.2 Czech Bentonite  

BaM bentonite from Černý vrch (north-western region of the Czech Republic) was obtained 

from Keramost a. s. (the product is called Bentonite a montmorillonite “BaM’’) to study 

microbial diversity. Two types of bentonites were analyzed 1) homogenized bentonite and 2) raw 

unhomogenized bentonite (Figure 23). It consists of 78.2% of montmorillonite and its natural 

water content is up to 8% by weight. BaM bentonite includes 7.59% of Fe, 2.48% of K, 2.46% of 

Mg, and 1.22% of Ca by weight (Matal et al., 2018).   

Figure 23: Homogenized bentonite on the left and raw (unhomogenized) bentonite on the right. 

2.3 Molecular biology analysis 

2.3.1 Water sampling and filtration 

Clean plastic water bottles were used for sampling after the exposure of empty bottles for 5 min 

under UV light. Bukov URF has a different form of water sources like flowing water, water 

falling from rock fractures, and even a tap fitted on a pipe and hence, were sampled simply by 

filling the bottles without the use of pressure pump. Conversely, for the Josef URC a pressure 

pump was used for sampling the water from the well. A water sample collected from 

underground sources was processed by filtration to concentrate the biomass underflow hood 

maintaining the sterile environment. Water samples were filtered using a metal filter apparatus, 

Figure 24. To avoid any kind of contamination, the filter apparatus was autoclaved for 1 hour at 
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170 °C.  On the same hand, 0.22 µm GV Durapore® filter membrane (Germany) with a 47 mm 

diameter was used to filter the water samples. The membrane filter containing bacterial biomass 

after filtration was stored under -80 °C until the DNA extraction.  

 

Figure 24: Filter apparatus for filtration of water (left), 0.22 µm GV Durapore® filter membrane (right). 

2.3.2 Extraction of DNA from water samples 

Bacterial DNA from water sample and biofilm were isolated according to the manufacturer's 

instruction using a commercial kit, PowerWater® DNA Isolation Kit, catalog number: 14900-

50-NF from MO BIO (Carlsbad, CA, USA). The procedure involves chemical lysis of cells 

followed by mechanical lysis and precipitation of DNA using ethanol. 

2.3.3 Extraction of DNA from Bentonite 

To study the microbial diversity in the two Czech bentonites, DNA was extracted from 10 g of 

each bentonite. SDS was used to lyse the cells. Furthermore, lysis was combined with 

precipitation of extracted DNA with polyethylene glycol followed by the purification step using 

AXG-100 cartridges. This extraction technique followed a protocol used by (Lopez-Fernandez et 

al., 2015; Selenska-Pobell et al., 2001).  
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2.3.4 Quantification of genomic DNA 

Quantification of extracted genomic DNA was performed using a Qubit 2.0 fluorometer (Life 

Technologies, MA, USA). The Qubit is a small fluorometer instrument used for quantification of 

DNA, RNA, and protein. It uses fluorescent dyes to determine the concentration of nucleic acids. 

2.3.5 Library preparation and next-generation sequencing (NGS) 

Library preparation is an initial step for the sequencing of genomic DNA. Primers 530F and 

802R as shown in Table 5 were used for amplification of variable V4 region of 16S rDNA gene 

for sequencing of amplicons. The size of the amplicon was kept below 400 bp to cover as much 

microbial diversity as possible by performing In silico analysis of primers (Němeček et al., 

2017).  

Two consecutive Polymerase chain reaction (PCR) reactions per sample were performed 

during library preparation. Primers 530F and 802R were used in the first PCR reaction and the 

PCR conditions were as follows: 95°C for 3 min; 15 cycles at 98°C for 20 s, 50°C for 15 s and 

72°C for 45 s; and a final extension at 72°C for 1 min. Subsequently, we performed a second 

PCR reaction with tagged barcode fusion primers. We used 21 differently tagged bar code fusion 

primers in one library preparation which enabled us to sequence up to 20 samples (plus mockup) 

in one run. The second PCR was performed as follows: 95°C for 3 min; 35 cycles at 98°C for 20 

s, 55°C for 15 s and 72°C for 45 s; with a final extension at 72°C for 1 min. The quality of the 

library product was checked by gel-electrophoresis technology. The PCR products were purified 

using the Agencourt Ampure XP system (Beckman Coulter, Brea, USA), and the concentration 

of the purified PCR products was measured with a Qubit 2.0 fluorometer (Life Technologies, 

USA).  

Table 5: Primers for amplicon sequencing of the 16S rRNA gene. 

Primer Sequence 5´- 3´                  Coverage Reference 

Archaea Bacteria Eukaryotes 

530F GTGCCAGCMGCNGCGG 54.9 96.9 94.0 (Dowd et al., 

2008) 

802R TACNVGGGTATCTAATCC 91.8 92.5 0.9 (Claesson et 

al., 2009) 
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Following this step, the barcode-tagged amplicons from different samples were mixed in 

equimolar concentrations. Sequencing of the amplicons was performed on an Ion Torrent PGM 

(Thermo Fisher Scientific, USA) using the Ion PGM Hi-Q Sequencing Kit with the Ion 314 Chip 

following the manufacturer's instructions (Thermo Fisher Scientific). 

2.3.6 NGS data processing 

Sequence data were analyzed by the pipeline SEED v. 1.2.3 (Větrovský and Baldrian, 2013). 

Sequences of insufficient quality or mismatches in tags were removed from the dataset. All 

sequences with minimal read length 275 bp were clustered into operational taxonomic units 

(OTUs) and chimeric sequences were removed using UPARSE implementation in USEARCH 

7.0.1090 (Edgar, 2013) with a 97% similarity threshold. The consensus from each OTU was 

constructed from a MAFFT alignment (Katoh et al., 2009) based on the most abundant 

nucleotide at each position. The OTUs were identified and their environmental requirements 

were assessed by the mega BLAST and BLASTn algorithms against GenBank nt/nr database. 

3 Results and Discussion 

Two deep groundwater sources 1) Bukov Underground research facility (Bukov URF) and 2) 

Josef Underground research center (Josef URC) in the Czech Republic were analyzed for the 

microbial characterization to select the most suitable water source(s) for further experiments. 

The results of the microbial characterization of the different water sources sites are shown in 

Table 6. In Bukov URF, the most important factor determining microbial diversity was the 

opportunity to oxidize reduced sulfur- and iron-containing compounds. BK23 was influenced by 

a higher concentration of iron which is in agreement with the biofilm composition at the BK23 

source. The biofilm contained Gallionella and more iron-oxidizing autotrophs, Ferriphaselus. 

Heterotrophic bacteria detected in BK23 were different from those detected in all other sources 

and is most probably closely connected with biotic processes in thick biofilm. Overall, BK23 

was very poor in terms of microbial abundance as well as of its diversity. Microbial diversity of 

other sources, especially BK6, 6B, 7, 15, and the ceiling, was homogenous, probably due to the 

anthropogenic impact. In BK18, anaerobic bacteria such as Desulfobulbus and ferric iron-

reducing Ferribacterium were found to dominate. Some members of oxidizing bacteria and other 
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autotrophs were present as a probable sign of anthropogenic activity. Overall, the low abundance 

of microorganisms is most probably caused by the scarcity of energy sources. The relatively high 

diversity in this nutrient-limited environment was rather unexpected. 

The water sources from Josef URC, VITA, and HV1 were closely located to each other, 

and despite this closeness, the microbial community composition was significantly different. The 

main reason for this is that VITA is anoxic whereas HV1 has the same water source but also has 

a free surface water level. The microbial diversity in the VITA sample was low due to the high 

selective pressure of the environmental conditions with typical SRB representatives such as 

Desulfobulbaceae, Desulfomicrobium, Desulfovibrio and Desulfovibrio which can accelerate 

corrosion of waste container and fermenting anaerobic bacteria like Spirochaeta. Sulfate 

reduction and oxidation of various organic compounds were the main metabolic processes 

detected in VITA. The microbial community in HV1 was poor and limited mainly by the scarcity 

of electron acceptors.  

The microbial community structures of groundwater sources collected at Bukov URF and 

Josef URC were very different. A strong anthropogenic impact was observed in most of the 

water samples along with biofilm samples collected from Bukov URF. Surprisingly, only two 

water sources (VITA at Josef UCR and BK18 at Bukov URF) contained bacteria representing a 

typical anaerobic environmental condition. By the investigation of the microbial community 

present in these two groundwater sources, the source VITA from Josef URC was selected to be 

used as an inoculum for further experiments because it was mostly dominated by anaerobic 

microorganism including high number SRB than any other source of Bukov URF and was 

available in sufficient quantities.  
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Table 6: Results of the 16S rRNA amplicon analysis of groundwater sources: only selected 

(most common) OTUs with marked abundances are shown. The intensity of color represents 

the number of OTUs where dark red color indicates a higher number and green being less. 

Locality Bukov URF Josef URC 

Determination  
Sample 

type water water water water biofilm water water water biofilm water water 

OTU BK06 BK6B BK07 BK15 
BK15 - 

biofilm 
CEILING BK18 BK23 

BK23 - 

biofilm 
VITA HV1 

1 16 15 1387 2378 390 1753 23 55 48 3 0 Thiobacillus  

2 312 297 2404 867 261 677 102 46 1 1 0 Sulfuritalea  

3 846 775 199 617 130 1272 22 96 4 1 0 Nitrospiraceae 

4 915 733 12 6 2 12 49 180 10 1850 0 Desulfobulbaceae 

5 844 776 720 148 25 148 20 31 0 1 0 Planktophila  

6 327 450 60 1384 612 763 7 161 3 0 0 
Sulfiricella 

denitrificans 

7 635 690 106 126 419 205 5 156 48 1 0 Gallionella 

8 0 0 0 0 0 0 1 0 1 0 3405 
unclass.  

Alphaproteobacterium 

10 328 194 268 98 726 136 15 9 0 162 0 
Sulfuritalea 

hydrogenivorans 

11 32 3 6 2 1 15 52 108 0 0 53 Hydrogenophaga  

16 138 98 42 23 1 287 1 414 3 1 0 
unclass. 

Gammaproteobacterium 

17 15 92 0 5 39 1171 0 0 8 0 0 
unclass. 

Deltaproteobacterium 

19 0 5 0 0 0 4 212 1 0 0 0 Acinetobacter  

20 0 0 0 0 0 0 0 0 0 1282 0 Desulfomicrobium 

21 0 0 0 0 0 0 1166 0 0 0 0 Ferribacterium  

22 0 1 0 2 0 0 80 16 1 0 0 Chromatiales 

23 0 262 0 0 0 500 102 0 0 0 1 Massilia  

26 9 2 9 6 0 2 289 113 3 0 1 Rhodobacteraceae 

28 0 124 0 0 0 0 0 0 0 0 0 Arthrobacter  

30 203 46 3 28 40 5 410 0 1 0 0 Chlorobi 

32 195 1 4 27 175 0 48 1 1 0 0 Sphingomonas  

35 12 15 4 14 8 12 311 0 1 6 4 Ralstonia  

38 0 3 4 0 0 0 71 3 0 0 0 Novosphingobium  

47 1 0 0 2 0 0 105 10 0 450 23 Desulfovibrio  

51 31 2 19 20 64 0 27 104 90 0 0 Hyphomicrobium  

52 8 1 97 3 35 0 16 46 0 15 74 Brevundimonas  

53 0 0 0 0 0 0 0 0 0 0 491 Desulfobulbaceae 

54 105 118 1 0 0 1 1 10 3 138 0 Desulfovibrio  

60 3 0 1 2 0 0 9 2 0 1 403 
Sulfurospirillum 

multivorans 

65 22 30 149 0 0 42 7 22 0 1 0 Lysobacter  

66 0 4 0 1 7 0 0 216 149 0 0 Ferriphaselus  
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The homogenized bentonite (BaM) and the raw bentonite samples from Černý vrch were 

more similar than expected in terms of the microbial community structure based on the results 

from the operational taxonomical unit (OTU) analysis which is presented in Table 7. Most OTUs 

were shared between the two samples. Out of 126 shared OTUs with a frequency higher than 10, 

only 18 of them had a very asymmetric distribution (the ratio between the two samples 1:10 or 

10:1). Beta- and Alphaproteobacteria dominated in both bentonites. 

Table 7: Result of the 16S rRNA amplicon analysis of bentonites showing only selected OTUs. 

OTU BaM" homogenized bentonite Raw bentonite Determination 

1 454 98 Thiobacillus  

7 19 68 Gallionella  

11 143 200 Hydrogenophaga  

26 88 47 Rhodobacteraceae 

28 112 57 Arthrobacter  

32 87 12 Sphingomonas  

34 1 772 Phreatobacter  

35 59 252 Ralstonia  

37 29 165 Novosphingobium  

38 64 144 Novosphingobium  

40 280 96 Bradyrhizobium  

44 5 211 Aquabacterium  

45 398 47 Xanthomonadaceae 

52 115 42 Brevundimonas  

62 288 36 Arenimonas  

63 81 227 Nitrosomonas  

65 71 10 Lysobacter  

67 395 1 Beijerinckiaceae 

68 315 44 Lysobacter  

81 135 82 Microbacteriaceae 

89 67 71 Comamonadaceae 

95 23 72 Acidobacteria 

98 62 13 unclassified 

102 68 11 unclassified 

105 142 16 Luteimonas  

114 58 58 Nocardioides  

122 1 211 unclassified 

135 5 190 Methylophilaceae 

157 67 10 Bacteroidetes 

161 87 32 Micrococcineae 

201 5 70 Porphyrobacter  

203 66 38 Curvibacter  

214 75 3 Bradyrhizobiaceae 
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 Chemolithotrophic bacteria with a possible corrosion capability were present, though in 

lower abundances. Typical soil bacteria like Bradyrhizobium, Lysobacter, Methylocapsa, 

Microbacteriacea, and Acidobacteria, were present. These bacterial taxa are also known to 

inhabit oligotrophic environments. Interestingly, chemolithotrophs that could utilize Ammonia, 

Manganese, Ferrous, and sulfide as electron donors were present in relatively high abundances in 

both bentonite samples. Invariable are Thiobacillus, Gallionella, Rhodobacteraceae, and 

Nitrosomonas. Moreover, species of genus like Rhodobacteraceae, Brevundimonas, and 

Novosphingobium are capable of utilizing nitrate as a terminal electron acceptor. This could be 

explained by slow and long-term adsorption of reduced compounds onto bentonite from the 

upper layers of soil in the Černý vrch mine and the consequent establishment of oxidative 

conditions during mining. The species of nitrate
-
reducing genera can result in the formation of 

gas as a part of their metabolic activity. As a consequence, gas pressure could be built up due 

torast disparity occurred between the gas diffusion and gas production which can lead to crack or 

fracture of the host rock (Mulligan et al., 2009). 

4 Summary 

Microbial characterization of two different groundwater sources (Bukov URF and Josef URC) 

and Czech bentonites were performed using molecular biology. This study intended to 

investigate the microbial community present in different groundwater sources in the Czech 

Republic and select the best source that reciprocates the microbial community present in a 

repository type environment for further study. In addition to groundwater, biofilms near water 

sources were also studied. This study also aimed to assess the microbial diversity naturally 

occurring in the Czech bentonite samples and to study differences in the microbial consortia 

between raw and homogenized bentonite to understand how the process of homogenization 

influences the structure of the microbial community. 

Water from Bukov URF was collected from seven different sources together with two 

biofilms despite which the result demonstrated a strong anthropogenic impact in almost all of the 

sources. Nonetheless, only two sources were analyzed from Josef URC where one of the water 

source named VITA was dominated by anaerobic microorganisms especially SRB such as 

Desulfobulbaceae, Desulfomicrobium, Desulfovibrio and Desulfovibrio, that is expected to exist 



 

54 
 

typically in the environments similar to DGR and may accelerate corrosion of the metal 

container. Therefore, VITA groundwater source was selected to be used as an inoculum for ex-

situ study of microbial processes in DGR stimulated conditions.  

The microbial communities present in homogenized and raw (unhomogenized) bentonite 

samples from Černý vrch were very similar in terms of their OTU compositions, but the detected 

OTUs varied in quantity. The similarity of the microbial communities obtained from two 

bentonite samples suggests that the structure of the bacterial community was not much affected 

by the homogenization process. Microorganisms such as Thiobacillus, Gallionella, 

Acidobcateria, and Nitrosomonas capable of utilizing sulfur, iron, and nitrite as electron donors 

and Rhodobacteraceae, Brevundimonas and Novosphingobium capable of utilizing nitrate as 

electron acceptor were present in both bentonite samples. The species of these genera can 

enhance gas production as a part of their metabolic activity resulting in pressure generation and 

eventually, crack or fracture of the host rock. These results suggested that the mixing of 

groundwater and bentonite may influence the development of different microbial communities. 
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II. Survival of indigenous microorganisms in 

bentonite subjected to radiation and effect 

of anaerobic condition on the evolution of 

microbial community in bentonite 
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1 Background 

The repository conditions in the near-field following high radioactive waste deposition generally 

evolve from initially warm and oxidizing to cool and anoxic in the long term and consists of four 

phases summarized by King et al. (King et al., 2017): (i)  immediate post-placement, when the 

environment will be aerobic and the radiation dose rate will be at its highest level. The second 

stage is (ii) dry-out, whose duration will depend on the initial compacted bentonite moisture 

content. At the third stage, (iii) container re-wetting and saturation of buffer at the near-field 

environment takes place. The last stage (iv) is the long-term anoxic phase, which begins once the 

near-field reaches full saturation. It is the period of the continued cooling and anoxic conditions. 

Because of these extreme conditions, most early analyses considered repository to be either a 

completely sterile environment, or at least not seriously threatened by bacterial activity (Stroes-

Gascoyne and West, 1997). Nevertheless, many microorganisms show extreme adaptability to 

various unpleasant environmental conditions. For this reason, the conditions in the early stages 

post-deposition do not need to have so devastating effect on microbial survivability as previously 

expected. One of the most important factors responsible for creating an extreme environment in 

the repository is ionizing radiation. Many studies (Bengtsson and Pedersen, 2017; Masurat et al., 

2010b; Pedersen et al., 2000; Stroes-Gascoyne et al., 2010) have evaluated the effect of bentonite 

compaction, level of desiccation, and temperature on the bacterial survival in the bentonite under 

repository conditions. Nevertheless, these studies were performed without radiation. According 

to the Swedish KBS-3 HLW repository concept, the expected maximum dose outside the canister 

is less than 0.5 Gy/hr (Svensk Kärnbränslehantering AB, 2006). On the other hand, the Canadian 

HLW concept predicts the maximum dose rate of 52 Gy/hr at the surface of a Titan waste 

canister or dose rate 15 Gy/hr for the surface of the copper canister (Stroes-Gascoyne et al., 

1995). 

In the dry environment, microorganisms generally possess tolerance to higher radiation 

due to adaptation to desiccation, which causes similar kinds of cell damage as radiation 

(Mattimore and Battista, 1996). Conversely, spores’ resistance to radiation was observed to rise 

with an increase in the moisture content of the environment. The dose of 25 kGy was required 

for the inactivation of Bacillus atropheus spores dry powder, while 35 kGy was required for the 

inactivation of Bacillus atropheus spores in liquid suspension (Hilsen et al., 2005). Cytoplasmic 
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water radiolysis resulting in the production of reactive oxygen species (ROS) - hydroxyl radical 

(HOo), ionized water (H2O
+
), hydrogen radical (Ho), and hydrated electrons (e

-
) is the most 

significant change in cells caused by radiation. A successive chemical reaction produces another 

molecule which damage DNA (by destroying the bases or breaking double strands) or other vital 

biomolecules like RNA, proteins or lipids eventually resulting in the cell death (Azzam et al., 

2012; Reisz et al., 2014; Riley, 1994).  

This study aims to develop knowledge about the effect of Gama radiation on the 

indigenous microbial community in bentonite and study the evolution of microbial community 

under anaerobic conditions. Bentonite suspension was exposed to the constant dose rate of 13 

Gy/hr up to 19,656 Gy total absorbed doses. Irradiation of samples in completely anaerobic 

conditions was not possible due to the aerobic installation of the irradiation chamber, but we 

attempted to minimize the oxygen concentration in the experimental system to achieve as much 

the repository relevant condition as possible. However, the presence of oxygen could not be fully 

controlled. Completely anaerobic non-irradiated samples were used to study the evolution of 

microbial community under anaerobic conditions. 

2 Materials and Method 

2.1 Bentonite and VITA water 

Czech BaM bentonite produced commercially by the Keramost company, Obrnice plant, and 

natural groundwater (VITA) collected at the Josef URC, Czech Republic a day before 

performing of each experiment were used to study the effect of different level of radiation on 

indigenous microorganisms in bentonite and VITA water. The pH of the VITA water was ≈ 7.8. 

During the collection, the anaerobic VITA water was poured into sterile bottles and the contact 

time with the air was minimized during the handling. The VITA water was transported to the 

laboratory in Centrum výzkumu Řež s. r. o. (Research Centre Řež, RCR) and kept under 

anaerobic conditions inside the argon-purged anaerobic glove box (gaseous oxygen 

concentration < 1 ppm volume) (Jacomex GP, France) until the experiment began.  
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2.2 Sample preparation and Experimental design 

The next day after VITA water collection, 64 samples in glass reagent bottles were prepared, 

each containing 60 g of deoxygenized BaM bentonite and 200 ml 1:1 mixture of VITA water and 

deoxygenized filter-sterilized tap water. The glass reagent bottles were used because they are 

fully resistant to radiation. All the preparations were performed in an anaerobic box (Figure 25). 

From these samples, 20 were used for irradiation, 22 as anaerobic samples, and the last 22 

samples were used as anaerobic with additional nutrients (2.46 mM sulfate and 0.29 mM nitrate 

final concentration), Table 8. The glass reagent bottles were tightly sealed with several layers of 

parafilm membrane that was able to keep the oxygen level in the bottle below 0.4% in the oxic 

environment (measured by the oxygen sensor in an anaerobic box).   

Figure 25: Preparation of samples for irradiation experiments in anaerobic box. 

In the collaboration with RCR, the prepared anaerobic samples were kept in the argon-

purged anaerobic glove box during the whole course of the experiment. The samples for 

irradiation were placed in the irradiation chamber Prazdroj situated in ÚJV Řež, a.s. Irradiation 

was conducted with a rod source 
60

Co ϒ (cobalt 60), nominal activity 500 TBq. Samples were 

situated regularly in the circle around the cobalt source and Alanine/EPR spectroscopy (electron 

paramagnetic resonance) was used to measure the actual doses, Figure 26. 
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Table 8: Sampling schedule of irradiated and anaerobic samples and cumulative doses of 

Gama radiation. C_ana is anaerobic control and C_ana_nr is anaerobic control with nutrient. 

Sampling time Cumulative 

dose (KGy) 

Irradiated     

samples (IR) 

Anaerobic samples 

   C_ana C_ana_nr 

0  day 0 0 2 2 

1 week 2.184 2 2 2 

2 week 4.368 2 2 2 

3 week 6.552 2 2 2 

4 week 8.736 2 2 2 

5 week 10.92 2 2 2 

7 week 15.288 2 2 2 

9 week 19.656 2 2 2 

13.5 week not* 2 2 2 

18 week not* 2 2 2 

22 week not* 2 2 2 

Number of 

samples 

 20 22 22 

*Irradiation stopped at 19.656 Gy 

The samples in the irradiation chamber were irradiated up to 9 weeks by the dose rates of 13 

Gy/hr resulting in the maximum total absorbed dose of 19,656 Gy. After reaching this dose, the 

remaining samples were stored up to three months to detect the microbial recovery after the 

irradiation. The experiment was sampled each week in duplicates based on the schedule in Table 

8. 

Figure 26: Samples inside the irradiation chamber, diameter about 100 cm. 
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2.3 Sample processing 

To detect the microbial composition of VITA water, defined amounts (500-1000 ml) of VITA 

water samples were filtered through sterile 0.22 μm GV Durapore® filter membrane, and the 

filters were stored in a deep freezer and subsequently used for DNA extraction as described 

below.  

At each sampling time, approximately 50 ml of each bentonite suspension sample was 

centrifuged at 11500 × g for 15 minutes. The supernatant (40 ml) was used for chemical analysis, 

the remaining pellet was used for DNA extraction. The supernatant and pellet were stored in a 

deep freezer (-80°C) until further processing. 

2.4 Molecular biological analysis 

2.4.1 DNA Extraction and measurement 

The VITA water was filtered and the DNA was extracted as described in chapter I, section 2.3.1 

and 2.3.2, respectively. For the extraction of DNA from bentonite pellets, DNeasy® 

PowerMax® Soil Kit from QIAGEN was used according to the manufacturer’s protocol. 

Approximately 15 g of the bentonite pellet was used for the extraction from each sample. 

Concentration and purification of isolated DNA from bentonite was performed by Zymo 

Research kit following the manufacturer’s protocol. The concentration of genomic DNA was 

subsequently measured by Qubit® 2.0 Fluorometer (Invitrogen, Life Technologies, USA) 

according to the manufacturer’s protocol. 

2.4.2 Quantitative PCR (qPCR) 

Quantitative PCR was used to describe relative changes in selected bacterial groups in the 

bentonite samples. Because obtaining standards fully reliable to our environmental samples is 

very difficult and absolute quantification without a standardized calibration curve is not possible, 

we used relative quantification (RQ) using ΔCq (crossing point) calculation method. It estimates 

the magnitude of difference in Cq values between the sample zero state at the beginning of the 

experiment and the sample after treatment (or in time in no treatment samples) using the formula 

RQ = effectivity
 (-ΔCq)

. PCR effectivity for each marker was estimated beforehand by measuring 

the slope of curves constructed from a serial dilution of template DNA from five internal 
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environmental standards. The measured Cq values were normalized by the sample volume used 

for DNA extraction before calculations.  

Specific markers for various bacterial groups (such as total Eubacteria, sulfate-reducing 

bacteria, nitrate-reducing bacteria, and Geobacteraceae) were used. These markers were 

amplified using primers described in Table 9 on a LightCycler ® 480 Instrument (Roche 

Biochemicals, USA).  

Table 9: qPCR primers. SRB – sulfur-reducing bacteria, NRB – nitrate-reducing bacteria, 

IRB – iron-reducing bacteria. 

Primer Sequence 5´- 3´ Specificity Description Reference Annealing 

temp. 

16SqPCR-F 

16SqPCR-R 

TCCTACGGGAGGCAGCAGT 

GGACTACCAGGGTATCTAATCCTGTT 

All bacteria  

 

 

Gen for 16S 

rRNA 

 

(Clifford et al., 2012) 60°C 

RH1-aps-F  

RH2-aps-R 

CGCGAAGACCTKATCTTCGAC 

ATCATGATCTGCCAgCGgCCGGA 

SRB Functional 

bio-marker 

gene apsA 

 

(Ben-Dov et al., 2007) 60°C 

RH1-dsr-F  

RH3-dsr-R 

 GCCGTTACTGTGACCAGCC 

gGTGGAGCCGTGCATGTT 

SRB functional 

bio-marker 

gene dsrA 

 

nirK 1F 

nirK 5R 

GGMATGGTKCCSTGGCA 

GCCTCGATCAGRTTRTGGTT 

NRB 

(denitrifying 

bacteria) 

 

nirK gene for 

nitrite 

reductase 

(Geets et al., 2007) 60°C 

nirS cd3AF 

nirS R3cd 

GTSAACGTSAAGGARACSGG 

GASTTCGGRTGSGTCTTGA 

NRB 

(denitrifying 

bacteria) 

 

nirS  gene for 

nitrite 

reductase 

nosZ-F 

nosZ 1622R 

CGYTGTTCMTCGACAGCCAG 

CGSACCTTSTTGCCSTYGCG 

Nitrous oxide 

reductase 

bacteria 

(NORB) 

 

NosZ  gene 

for N2O 

reductase 

Geo494F 

Geo825R 

AGGAAGCACCGGCTAACTCC 

TACCCGCRACACCTAGT 

Geobacteraceae 

(IRB) 

Amplifying 

specific 

region of 16S 

rRNA 

(Wei and Finneran, 

2011) 

55°C 

Reaction mixtures were prepared in 10 μl of reaction volume. The mixture contained 1 μl of 

DNA template, 5 μl KAPA SYBER FAST qPCR kit (Kapa Biosystems. Inc., MA, USA), 0.4 μl 

of μM forward and reverse primer mixtures (Generi Biotech, Czech Republic, IDT, US) and 2.6 

μl ultra-pure water (Bioline, UK). For each DNA sample, qPCR reaction was performed in 

duplicate along with negative control where DNA template was replaced by nuclease-free water. 
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Reaction conditions consisted of initial 5 min incubation at 95°C, followed by 45 cycles of 

denaturation at 95°C for 10 s, annealing at 60°C for all primer except for Geobacteraceae which 

was 55°C for 15 s and extension 72 °C for 20 s with a final extension at 72°C for 3 min. Finally, 

a melting curve was set for 5 s at 95°C, 1 min at 65°C and final ranging from 60 to 98°C, with a 

temperature gradient of 4°C per 10 s. The purity of the amplified fragment was determined 

through observation of a single melting peak. Crossing point values were obtained using the 

‘second derivative maximum’ method included in the LightCycler® 480 Software.  

2.4.3 Library preparation and next-generation sequencing  

The procedure of library preparation and sequencing followed the same method as described in 

section 2.3.5 of chapter I. 

 2.4.4 NGS data processing 

Raw reads were split into particular samples by Mothur software (Schloss et al., 2009).  The split 

samples were subsequently processed by the DADA2 software package (Callahan et al., 2016). 

Low quality and short reads were removed as well as chimeric sequences.  Taxonomy 

classification by the DADA2 package used SILVA database (version 13, www.arb-silva.de). The 

accuracy of classification was verified and evaluated against a predefined artificial MOCK 

community sample containing 4 bacterial strains (Klebsiella pneumonia, Bacillus subtilis, 

Staphylococcus aureus and Enterococcus faecalis) and yeast (Saccharomyces cerevisiae). 

DADA2 output was transformed to a Phyloseq object in R and subsequent bioinformatics 

analyses were performed in the R software using the Phyloseq library (McMurdie and Holmes, 

2013). Rarefaction curves were created using the Phyloseq and vegan packages in the R 

software. The relative frequency of OTUs was visualized by a heat-map showing only OTUs 

with the mean of relative frequency higher than 1%.  

Differential expression analysis on OTU table was done using Deseq2 library (Love et al., 

2014). Deseq2 was used to determine taxa being mostly influenced by irradiation and anaerobic 

condition. We did use no filtering on taxa and padj < 0.05. Deseq2 library estimates variance-

mean dependence in count data from sequencing assays and test for differential expression based 

on a model using the negative binomial distribution. Furthermore, in subsequent metabolic 

profile analysis, 50 most abundant OTUs were selected for each sample and from these most 
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frequent OTUs only OTUs successfully determined to particular genera were used for metabolic 

characterization of the microbial community within the samples. On average 84% of OTUs were 

used in the final metabolic analysis. For each OTU successfully determined to particularly 

known genus, we searched through the literature and listed the information about Gram stain, 

spore-forming, trophy, used electron acceptors, donors and oxygen requirement in this genus and 

we used these categories to characterize the bacterial community and compare it with prevailing 

Physico-chemical condition within the samples.  

2.5 Chemical analysis 

We measured pH by SenTix 980 combined IDS electrode with liquid electrolyte (WTW, Czech 

Republic). For chemical analysis, the supernatant of each sample was analyzed by ion 

spectroscopy to detect the concentrations of nitrate and sulfate in the samples. The anion 

concentration was determined using a Dionex ICS 90 chromatograph (ThermoFisher Scientific, 

USA) with 8 mM K2CO3 a 1 mM KHCO3 as the mobile phase in a Dionex IonPac AS14A 

column. The flow rate of the mobile phase was 1ml/min and 10 µl of the sample was always 

injected. 

3 Results and Discussion 

We aimed to estimate the effect of irradiation on the indigenous microbial community in 

bentonite under anaerobic conditions, which would best resemble the conditions expected in the 

DGR post-closure. However, as we will demonstrate further, the parafilm lining of the bottles 

had strongly degraded during the irradiation and the residual oxygen in the irradiation chamber 

influenced the results. We are thus not able to precisely distinguish the effect of irradiation from 

the effect of oxygen presence. For the same reason, the completely anaerobic samples kept in the 

anaerobic glove box for the whole time are not fully comparable to the irradiated samples. 

Nevertheless, the anaerobic samples can still be very useful to see the evolution of bentonite 

microcosm under anaerobic conditions and to detect microorganisms (or the whole microbial 

communities), that can be important for the long-term safety of DGR.  
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3.1 Molecular biological analysis 

3.1.1 Microbial abundance in the bentonite suspensions 

The microbial abundances were estimated relatively (i.e. compared to the zero sample microbial 

abundances) by the qPCR (Figure 27). Only the gene which has a change in relative abundance is 

shown in the figure. In the irradiated samples, the total biomass (estimated by 16S rRNA gene) 

was clearly lower than in both types of anaerobic samples during the whole experiment. 

Microbial biomass gradually decreased after the fourth week of irradiation in these samples. The 

observed decrease can have two possible explanations. It can be caused by the effect of radiation 

or/and by the presence of oxygen and resulting limitation by the available electron donors. At the 

end of the fourth week, the applied radiation dose reached approximately 8,736 KGy. The 

applied dose of 7.0 KGy was reported to have a lethal effect on E. coli (Hieke and Pillai, 2018). 

Similarly, about 99% of fungal spores were eliminated in a silt loam soil irradiated at 10 kGy 

(Johnson and Osborne, 1964). Alternatively, the decrease in the microbial abundance can be 

explained by the limitation in available electron donors in the closed reaction system.  

Generally, microorganisms preferentially couple both aerobic and anaerobic respiration 

with the oxidation of various organic substrates that are energetically most favorable electron 

donors (Madigan et al., 2018). As a result, microorganisms in the closed microcosms can be very 

limited by the available electron donors (Matschiavelli et al., 2019) (i.e. the level of available 

organic substances), especially in aerobic conditions, where they cannot switch to another 

favored electron donor such as molecular hydrogen, that often occurs anaerobically (see below). 

Although we have not tested this hypothesis for BaM bentonite, we have observed a strong effect 

of electron donor availability in both aerobic and anaerobic microcosms without additional 

electron donors in subsequent microcosm experiments with another Czech bentonite BCV 

(unpublished results). We thus assume that both factors could simultaneously affect the 

microbial community abundance in irradiated samples and further experiments would be needed 

to reliably estimate the single effect of both.  

Although the massive proliferation of sulfate (SRB) and iron reducers (IRB) in both types 

of anaerobic samples (see below) was observed, these microbial groups were almost not detected 

in irradiated samples. It is not very surprising because the IRB and SRB are obligatory anaerobes 
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or at least microaerophiles (Bergey et al., 2015). The absence of these microbial metabolic 

groups in the irradiated samples was probably caused by a prevailing aerobic condition in the 

samples rather than the effect of irradiation, because (Brown et al., 2015) showed, that both iron 

and sulfate reducers were able to survive in the irradiated bentonite microcosms and the iron 

reduction was even stimulated at the 0.5 Gy/hr radiation dose. The density of facultatively 

anaerobic nitrate reducers was rather similar to the densities detected in anaerobic suspensions. It 

was highest at the beginning of the experiment and subsequently gradually declined in time.  

 

Figure 27: Relative quantification of changes in microbial abundance in irradiated and 

anaerobic samples. IR- Irradiated samples, C_ana – Anaerobic sample without nutrients, C_ana_nr – 

Anaerobic sample with nutrients and w – week. 

Though the quantity of the total biomass in irradiated samples at the end of the experiment 

(19,656 Gy cumulative absorbed doses) was reduced and was only two to three times higher than 

detected in zero samples at the beginning of the experiment, the applied dose was not sufficient 

to completely eradicate all bacteria in the bentonite-VITA suspension. Moreover, a big 

proportion of the detected effect could be also caused by the nutrient limitation as described 
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above. Interestingly, we have not detected any sign of microbial recovery past irradiation in none 

of the studied markers. This result is contradictory to the postulation made by (Pitonzo et al., 

1999a, 1999b) where they stated that irradiated bacteria (up to 9.34 kGy total dose) might be 

resuscitated to the completely cultivable state with time when environmental conditions become 

more favorable. However, it is highly probable that the recovery might not be possible due to 

nutrient limitation that was described above. In both types of anaerobic samples, a gradual 

increase in the overall microbial abundance was detected from the first week of the experiment 

until the approximately 14
th

 week, when the density started to slowly decline. The microbial 

abundance in the samples with added nutrients was approximately two to three times higher than 

in samples without nutrients. This nicely demonstrates the positive effect of additional electron 

donors. 

The use of specific qPCR markers helped us to distinguish between different microbial 

communities. The abundance of nitrate reducers (NRB) was generally rather low and highly 

variable during the experiment. The highest peak in their relative abundance was observed in 

around the fifth week in both types of anaerobic samples. The iron reducers (Geobacteraceae) 

proliferated gradually since the beginning of the experiment and had the highest abundance in 

the fourth week in case of anaerobic samples without nutrients and in approximately 7
th

 week in 

case of anaerobic suspensions with nutrients. The addition of nutrients thus seems to have some 

effect on the evolution in the microbial ecosystem in studies suspension. Subsequently, the iron 

reducers seem to be partially replaced by another microbial population. We observed a rapid 

increase in the SRBs relative abundance in both types of anaerobic samples at the end of the 

experiment, although their density was slightly increasing also before. Such a result well 

corresponds to the detected rapid decline of sulfate concentration in these samples (see below). 

Similar shifts in microbial community composition in closed microcosms under anaerobic 

conditions were also described by (Brown et al., 2015) or (Matschiavelli et al., 2018, 2017). 

3.1.2 Microbial composition  

Generally, the composition of VITA water was very different from the composition of BaM 

bentonite with only a few genera being present in both environments, such as Pseudomonas and 

Massilia (Figure 28). Based on the detected microbial profiles, we can generally state that most 

of the bacterial genera unique to VITA water (not present in BAM) were not able to adapt to the 
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new environment of bentonite suspension. The indigenous bacteria from BaM thus formed a 

crucial part of the microbial community in bentonite suspensions. High variability in microbial 

composition was also found in the first sampling points (1-3) of irradiated and anaerobic 

samples. We ascribe this stochastic pattern on one hand to the generally low DNA concentration 

of the zero point samples and on the other hand also to the rapid changes during this awaking 

phase. Subsequently, a gradual change in microbial community composition was observed in all 

the studied samples with clear difference between irradiated and anaerobic samples. 

 

Figure 28: Relative abundance of the genera in VITA, BaM, and their suspension samples throughout the 

experiment. IR- Irradiated samples, C_ana – Anaerobic sample without nutrients, C_ana_nr – Anaerobic 

sample with nutrients and w – week. 

The irradiated samples were dominated by a few genera such as Massilia, Pseudomonas, 

Noviherbaspirillum, Paenibacillus, and Bacillus most of the time. All these genera belong to 

facultative anaerobes that use organic material (or H2 in the case of Noviherbaspirillum) as 

electron donors. On the other hand, the abundance of other facultatively anaerobic genera 
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Janthinobacterium and Azohydromonas common at the beginning declined noticeably in the 

irradiated sample in time and no sign of their recovery was detected in the later phases of the 

irradiation experiment. A similar trend was followed by two other genera, Lysobacter and 

Acidovorax. Both of these genera are heterotrophic facultative anaerobes and were detected only 

after 18 weeks though Lysobacter was observed profoundly. In general, we have not observed 

any sign of possible recovery of either the microbial community or any particular genus after the 

irradiation phase finished. However, all the genera dominating the irradiated samples can be 

considered as high radiation tolerant with the ability to survive at least 20 kGy total absorbed 

dose of Gama radiation. McNamara et al. showed that majority of soil bacteria need about 20 

kGy doses of ionizing radiation to be eliminated, but a dose higher than 70 kGy may be required 

to kill certain radio-resistant bacteria, which is in accordance with the result of our experiment 

(McNamara et al., 2003). 

The microbial composition of anaerobic samples was clearly different than in irradiated 

samples except for the few facultatively anaerobic genera such as Paenibacillus, 

Noviherbaspirillum, or Bacillus, that were common both in irradiated and also anaerobic 

samples. Anaerobic samples were clearly dominated by the anaerobic IRB genus Thermincola 

proliferating since the third week of the experiment and its presence well agrees with the qPCR 

detected peak of Geobacteraceae. Other most frequent genera are auto/heterotrophic 

facultatively anaerobic Noviherbaspirillum, facultatively anaerobic Paenibacillus, and aerobic 

heterotrophic Lacunisphaera. As the anaerobic samples were strictly anaerobic, we assume, that 

detected representative of the genus Lacunisphaera species must either be capable of anaerobic 

respiration or fermentation, which is an unknown feature of this new genus (Rast et al., 2017), or 

it can represent a contaminant species from lab environment or the DNA extraction kit (Salter et 

al., 2014). We have detected an increase in the abundance of SRB genera such as Desulfovibrio, 

Desulfurivibrio, and Desulfomicrobium in anaerobic samples which well agrees with the results 

of qPCR.  

Based on the sequencing results, Deseq2 analysis was performed comparing the genera in 

irradiated and anaerobic samples (see Figure 29). Genera specifically enriched in the irradiated 

sample have positive value falling above zero levels in the analysis while the genera distinct to 

anaerobic condition fall below the zero levels with a negative value. The irradiated samples were 
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enriched especially in genera Herpetosiphon and Azohydromonas. Generally, most of the 

bacteria specifically enriched in irradiated samples belonged to the phylum Proteobacteria. 

Although we cannot distinguish between the effect of irradiation and oxygen presence, when we 

compare the irradiated samples with anaerobic ones, the genera enriched in the irradiated sample 

can be definitely considered as radiation tolerant as they could withstand irradiation dose of 

approximately 20 KGy. On the other hand, anaerobic samples were specifically enriched in 

many genera with the biggest effect visible for Geoalkalibacter, Anaerosporomusa, Caenimonas, 

or Desulfurispora. 

Figure 29: Deseq2 analysis comparing genera in irradiated samples (IR) and anaerobic samples (C-ana) 

based on the sequencing result. 

3.1.3 Microbial metabolic profiles 

Based on the known information from the literature, the dominant species detected in the 

samples in their metabolic requirements and the ability to form the spores were thoroughly 

characterized. Such analysis helped us to reveal microbial processes ongoing in the studied 

samples. The metabolic profile analysis of genera detected by NGS agreed well with the 

conclusion we have driven from the qPCR data analysis. A large difference between the 

anaerobic samples and irradiated samples was found (Figure 30), which we ascribe mostly to the 
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presence of aerobic conditions in irradiated samples. When the metabolic features of 

microorganisms detected in VITA water or BaM powder were analyzed, it was found that about 

a half of the detected genera in VITA water are autotrophic, heterotrophic or mixotrophic genera 

that use organic compounds, molecular hydrogen or reduced sulfur compounds as electron 

donors. On the other hand, in BaM powder, we detected mostly heterotrophs using organic 

compounds. Similarly to BaM, all the suspensions from the beginning of the experiment 

contained mostly heterotrophic aerobic or facultatively anaerobic species. However, within three 

weeks, irradiated samples started to be very different from both anaerobic ones. They were 

dominated by facultative anaerobes that preferentially respire oxygen, but can switch to nitrate 

reduction or fermentation in the absence of oxygen. In the constant presence of oxygen, which 

we assume in these samples, we cannot expect any changes in the preferred electron acceptors as 

oxygen represents the most energetically favorable electron acceptor.  

On the other hand, in both types of anaerobic samples, the samples were first dominated 

by heterotrophic facultatively anaerobic nitrate reducers, but within three weeks obligatory 

anaerobic chemolithotrophic (using molecular hydrogen as electron donor) or organotrophic iron 

reducers dominated the community. Biological reduction of nitrate or iron has an adverse impact 

on the safety of the waste disposal system. Nitrate reduction can possibly influence the 

mobilization of radionuclide like uranium by reoxidation under the repository condition 

(Merroun and Selenska-Pobell, 2008). BaM bentonite is rich in iron (Matal et al., 2018) and IRB 

can thrive on this substrate for several weeks as was also shown in the similar microcosm 

experiment with bentonite B36, where (Matschiavelli et al., 2017) detected massive ferric ion 

reduction in the samples during 14 weeks with the highest peak in the sixth week. Microbial 

reduction of iron can results in illitization of bentonite buffer due to which the bentonite buffers 

can lose its swelling properties reducing its sealing effect (Meleshyn, 2014; Mulligan et al., 

2009). 

Towards the end of the experiment, these metabolic groups started to be replaced by the 

sulfur and sulfate-reducing microorganisms oxidizing organics or molecular hydrogen. There 

was a slight decrease in the proportion of IRB at the last sampling points in anaerobic samples 

and a similar decline of Geobacteraceae in the second half of the experiment was detected also 

by qPCR (Figure 27). At the same time, faster growth of the SRB was detected since the fifth 
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week by qPCR. These results might indicate the decrease in available Fe
3+

 in the old suspension 

causing the gradual shift in microbial composition from IRB to SRB. Bentonite suspension is 

naturally rich in sulfate (see below), which would become preferred electron acceptor when the 

ferric ions are unavailable. The existence of such a process was implied both by the qPCR and 

also by the chemical analyses (see below) and was also experimentally proven by (Matschiavelli 

et al., 2018) in a one-year bentonite microcosm experiment. 

Both VITA water and BaM powder were clearly dominated by Gram-negative non-

sporulating microorganisms at the beginning of the experiment. The low proportion of spore-

forming genera detected in the bentonite powder is surprising as bentonite is known to contain 

predominantly spore formers (Fru and Athar, 2008). This result can thus mean that the extraction 

efficiency of DNA from the spores is actually low and we should focus on these problems further 

in the future. Nevertheless, the proportion of Gram-negative non-sporulating microorganisms in 

most aerobic irradiated samples remained high in the whole experiment, very surprising, because 

spores generally exhibit five times higher radiation tolerance than vegetative cells (van Gerwen 

et al., 1999) and we have expected to see the increase of spore formers due to irradiation in our 

samples. On the other hand, both types of anaerobic samples were rather dominated by Gram-

positive spore-formers. 
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Figure 30: Composition of microbial ecosystems in the original sample (VITA and BaM) at zero time, irradiated and anaerobic samples of 

bentonite suspension categorized by oxygen requirement, preferred electron donors and acceptors, and spore-forming ability of detected 

microorganisms. IR- Irradiated samples, C_ana – Anaerobic sample without nutrients, C_ana_nr – Anaerobic sample with nutrients and w – week.
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3.2 Chemical analysis 

The pH values were generally higher in irradiated samples than in anaerobic samples (Figure 31). 

The pH of the irradiated sample remained rather constant throughout the experiment (around 

8.5). Anaerobic samples with nutrients have an average pH value of 7.5 while anaerobic samples 

without nutrients have 7.7. The reason behind the higher pH values in irradiated samples than in 

anaerobic samples can be attributed to the detected higher population density in anaerobic 

samples together with different microbial composition and their activity or by different chemical 

processes ongoing under aerobic and anaerobic conditions. 

The concentration of sulfate was highest in anaerobic samples with nutrients which can 

be attributed to the addition of sulfate at the beginning. The sulfate concentration remained more 

or less stable (ranging from 285 to 516 mg/l) throughout the whole course of the experiment 

except for the final sampling point (22.5 w), where its concentration was below the detection 

limit. In irradiated and anaerobic samples without nutrients, the sulfate concentration ranged 

from 100 to 130 mg/l. By the end of the experiment, the concentration of sulfate in anaerobic 

samples without nutrients dropped below the detection similarly to the samples with nutrients. 

The nitrate concentration was below the detection limit just after the first week in all the samples 

including the anaerobic samples with added nitrate (figure not shown). 

 

Figure 31: Changes in pH during the experiment and sulfate during the irradiation experiment. For each 

sampling point were IR- Irradiated samples, C_ana – Anaerobic sample without nutrients, C_ana_nr – 

Anaerobic sample with nutrients and w – week. 
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The purpose of adding nitrate and sulfate was to enhance the growth of NRB and SRB, 

respectively. However, the added concentration of nitrate was too low and was consumed within 

the first week of the experiment in all samples with no significant effect on the growth of NRB. 

On the other hand, both natural and added concentrations of sulfate were probably sufficient to 

promote bacterial growth, but this energetically less favorable electron acceptor was not 

exploited in the presence of oxygen in aerobic irradiated samples and in the presence of ferric ion 

in anaerobic samples as discussed above. Massive decrease in sulfate concentration was detected 

after 22.5 weeks in anaerobic samples which suggests that a longer time frame is required to 

observe higher microbial sulfate consumption and increase. The rapid increase in the quantity of 

SRB detected by qPCR in anaerobic samples at the end of the experiment together with the 

detected decrease of available sulfate indicates the possible transition from the IRB community 

to the SRB community.  

4 Summary 

After the closure of the repository, harsh and extreme environment will start to evolve. High 

compaction, desiccation, temperature, and radiation are expected to prevail in the DGR. 

However, some microorganisms show extreme adaptability to various unpleasant environmental 

conditions, and the conditions in the early stages post-deposition thus do not need to have so 

devastating effect on microbial survivability as previously expected. Ionizing radiation has a 

significant effect on microorganisms as it induces various changes in cells directly or indirectly. 

This study intended to improve the knowledge about the effect of Gama radiation on the 

indigenous microbial community in bentonite under conditions similar to the repository and the 

evolution of the microbial ecosystem in bentonite under anaerobic conditions. To stimulate the 

condition which is expected in the repository in reasonably long experimental time, the radiation 

of 19,656 Gy absorbed dose at the constant dose rate of 13 Gy/hr was used. Contrary to 

expectation, we were unable to maintain the anaerobic atmosphere during the irradiation and the 

irradiated samples were influenced by the presence of oxygen. Nevertheless, the application of 

19,656 Gy absorbed dose of Gama radiation at the constant dose rate 13 Gy/hr did not manage to 

completely eradicate present bacteria, but it caused the decline in total microbial biomass in time 

and caused slight changes in the microbial community structure. However, both of these effects 
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could be also caused by the presence of oxygen and resulting limitation by the available electron 

donors. Anaerobic conditions enhanced the microbial activity of indigenous microorganisms in 

BaM bentonite. Gradual changes in microbial community composition and their metabolic 

profile were observed mirroring the prevailing conditions in the samples. Anaerobic indigenous 

microbial community in bentonite generally evolved from nitrate reducers through iron reducers 

to the sulfate reducers. No effect of added nutrients on microbial composition within studied 

samples was observed, but the overall microbial abundance was higher in samples with nutrients. 

The results further showed that iron and sulfate reduction are important processes under 

anaerobic conditions which can possibly affect performance and safety of the repository causing 

illitization of bentonite buffer and corrosion of waste metal containers. Interestingly, gram-

negative non-spore-forming microorganisms dominated the aerobic irradiated samples although 

spore-formers are generally supposed to be more radiation-resistant whereas anaerobic samples 

were dominated by Gram-positive spore-forming bacteria generally more resistant to radiation. 

For a better understanding of the effect of irradiation on microbial community in 

bentonite under repository relevant conditions, irradiation experiments performed under a strictly 

anaerobic condition with even higher total absorbed dose are needed. 
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III. Microbially influenced corrosion of 

carbon steel under repository relevant 

conditions 
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1 Background 

The metal container containing waste is the first and the most important barrier that should 

prevent direct release of radionuclides into the environment for tens of thousands years. Carbon 

steel is considered as a candidate container material in the Czech Republic as well as in several 

other European countries. The safe performance of carbon steel containers may be, however, 

influenced by corrosion accelerated by the microorganisms.  

MIC is a synergistic interaction between the metal surface, abiotic corrosion products, 

and bacterial cells and their metabolites (Beech and Sunner, 2004). MIC can reduce container 

longevity through two mechanisms, i.e., through direct uptake of electrons from the metal 

surface by microbial cells or by the production of corrosive metabolites (Černoušek et al., 2020). 

The former mechanism, involving extracellular electron transfer during microbial metabolism, is 

termed electrical MIC (E-MIC). Electrogenic microbes, such as SRB, NRB, and acetogenic 

bacteria, cause E-MIC if there is a local shortage of organic carbon, causing the metal itself to 

serve as an electron donor. Effective uptake of electrons from the metal can trigger a cathodic 

reaction, and thus corrosion. The latter mechanism is driven by metabolites secreted by the 

microbes and hence is termed metabolite MIC (M-MIC). Corrosive metabolites are oxidants, 

such as protons, organic acids, and sulfides that can attack metal and stimulate cathodic reactions 

(Pedersen, 2013). Examples of M-MIC reactions include corrosion of steel by acids excreted by 

acetogenic bacteria in biofilms or copper corrosion by hydrogen sulfide excreted by SRB. In the 

absence of external oxidants, microbes can perform anaerobic fermentation, which often 

produces organic acids. Of the two, E-MIC is considered most dangerous for deep geological 

repositories. 

Unlike planktonic community, a biofilm represents fundamentally different conditions for 

microbial growth, providing better protection against physical, chemical, and biological stresses 

(Li et al., 2008). Consequently, microbes organized as a biofilm can survive highly irradiated 

environments. The effects of biofilm formation on a metal surface may range from the 

acceleration of corrosion to complete inhibition of corrosion. Microorganisms may accelerate or 

slow down corrosion by changing the nature or kinetics of rate-controlling reactions or 

processes. They may be directly involved in electron transfer processes in electrochemical cells 
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(E-MIC) or be less directly involved through the excretion of metabolites (M-MIC). During each 

phase, a biofilm may affect the corrosion process in different ways, e.g., corrosion acceleration 

has been observed in a biofilm isolated from a drinking water system during the first seven-day 

incubation, but a protecting effect was observed after 30-days incubation (Jin and Guan, 2014). 

Later-stage biofilms may act as a barrier, therefore, by coating the metal surface and protecting it 

from further corrosion. It is also possible, however, that such late-stage biofilms may become 

weak, porous, and fragile, negating their protective effect (Rabus, 2006). This barrier effect may 

also have less desirable consequences, however, as it may slow down the diffusion of organic 

carbon sources, resulting in lowered availability of carbon to sessile cells in the bottom layer. 

Carbon limitation leads to starvation of sessile cells living close to or directly on a metal surface. 

Owing to the deprivation of an electron donor (carbon source), starved SRB cells switch to 

consuming elemental iron for generation of energy, leading to severe E-MIC (Xu and Gu, 2014). 

Many studies (Libert et al., 2014; Paula et al., 2016; Pedersen, 2010; Rajala et al., 2017, 2015) 

have demonstrated MIC in natural or synthetic water and bentonite associated with high 

corrosion rates under repository relevant condition though these study typically focused only on 

the microbial aspect. In-situ MIC experiment was carried in Mot Terri Rock Laboratory 

(Switzerland) which showed corrosion rates in the range of 2 µm/year higher than in absence of 

microorganisms after 20 months of exposure in bentonite of different densities (Necib et al., 

2018). Similarly, another in-situ MIC study was performed with the MiniCan test series of 

miniaturized copper-cast iron containers in the Aspo Hard Rock Laboratory (Sweden) with 

bentonite of two different dry densities (1300 kg/m
3
 installed for 5 years and 1600 kg/m

3
 

installed for 10 years) and copper-cast iron container only with water without bentonite for 10 

years. Extensive corrosion of cast iron specimens caused by SRB was observed in all conditions 

with local attacks corresponding to the loss of hundreds of µm/yr (Johansson et al., 2017). 

Higher corrosion rates can result in the premature failure of the metal container compromising its 

structural integrity (Flemming, 1996). Since the bentonite buffer, clay, or host rock are water-

conducting, the integrity of the barrier system will be maintained by only undamaged metal 

containers and the MIC has to be suppressed to lowest rates possible. 

The main aim of this study was to determine and understand the contribution of biocorrosion 

to overall corrosion and to investigate the microbial community composition and identify the 

bacteria responsible for corrosion and biofilm formation. Two distinct experiments were 
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conducted to study MIC on carbon steel. The first experiment studied MIC of carbon steel in the 

presence of anaerobic SRB present naturally in VITA water from Josef URC carried for 240 

days (8 months) in both non-sterile (groundwater containing SRB) and sterile anaerobic 

conditions where the corrosion was determined by electrochemical impedance spectroscopy. 

Hereafter, this experiment is referred to as corrosion in groundwater. Likewise, the second 

experiment with the carbon steel comprised synthetic bentonite pore water (SBPOW) inoculated 

with VITA water from Josef URC in a 9:1 ratio and run for 26 months,  the corrosion rate was 

estimated by weight loss method  SBPOW simulates the real environment of a container 

surrounded by the bentonite. The second experiment is referred to as corrosion in synthetic water 

hereafter. Microbial community was analyzed using qPCR and next generation sequencing. The 

experimental work was carried in collaboration with Centrum výzkumu Řež s. r. o. (Research 

Centre Řež) in Prague. Section 2 Corrosion of carbon steel in natural groundwater is fully based 

on our published research work (Černoušek et al., 2020). 

2  Corrosion of carbon steel in natural groundwater 

2.1  Materials and methods 

2.1.1  Material and groundwater samples 

Circular test plates, measuring 15 mm in diameter and 3 mm thick, were constructed of 

commercial C15E low carbon steel (wt. %, 0.15 C, 0.58 Mn, 0,256 Si, 0.029 S, 0.06 P, and Fe 

balance, microphotograph shown in Figure 32). For the corrosion experiment, the plate surface 

was mechanically polished with P500 silicon carbide grinding paper in an Argon-purged glove 

box, following which the plates were cleaned with de-aerated ethanol. Natural groundwater was 

collected from the VITA source at the Josef URC, 

Czech Republic. The chemical composition of the 

groundwater is provided in Table 10. Conductivity of 

the groundwater was 61.1 mS·cm
-1 and pH 7.2. A sterile 

abiotic control was obtained through sterile filtration of 

the same groundwater through a membrane filter with a 

pore size of 0.22 µm (Madigan et al., 2015). 

Figure 32: Microphotograph of the carbon steel sample. 
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Table 10: Chemical composition of the natural groundwater (VITA source, Josef URC). 

Analyte Concentration 

[mg/l] 

Detection limit 

[mg/l] 

Mg
2+

 12.6 < 0.1 

Ca
2+

 60 < 0.1 

Na
+
 54.7 < 1 

K
+
 1.79 < 0.1 

Fe
2+

 1.01 < 0.02 

Mn
2+

 0.11 < 0.005 

Cr
3+

 < 0.005 < 0.005 

TOC 97.0 < 1 

NH4
+
 < 0.05 < 0.05 

Cl
-
 16.6 < 2 

NO2
-
 < 0.05 < 0.05 

NO3
-
 < 2 < 2 

SO4
2-

 56.4 < 10 

PO4
3-

 1.0 < 0.05 

F
-
 < 0.05 < 0.05 

H2S 0.08 < 0.01 

2.1.2  Electrochemical measurement 

The corrosion experiment was carried out in an Argon-purged glove box (gaseous oxygen 

concentration < 1 ppm volume) at approximately 25°C for 240 days. Open circuit potential (OCP 

or corrosion potential) measurement and electrochemical impedance spectroscopy (EIS) was 

undertaken weekly using a Gamry Reference 600 potentiostat/galvanostat/ZRA (GAMRY, 

USA), to characterize the corrosion process over the 240-day exposure period. Electrochemical 

measurements were performed with a three-electrode system, using a saturated calomel electrode 

as a reference and two graphite rods as auxiliary electrodes, Figure 33.  

Figure 33: Experimental corrosion cell. 
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The working electrode had an exposed metal surface area of 1 cm
2
. The EIS tests were 

performed with a sinusoidal signal of 10 mV amplitude over a frequency range of 100 kHz – 5 

mHz at the corrosion potential. Later measurements, performed in order to gain information on 

polarisation resistance under non-sterile conditions, had an increased frequency range from 100 

kHz to 10 µHz. Corrosion potential was highly stable and allowed EIS measurement at lower 

frequencies. Analysis of impedance spectra was performed using Gamry Echem Analyst 6.24 

and ZSimpWin 3.50 software. 

2.1.3  Surface and cross-section analysis 

The steel specimen surface was examined using a LYRA3 scanning electron microscope (SEM) 

from Tescan, Czech Republic. Changes in surface morphology were observed with secondary 

electron detectors (SE and In-beam SE mode) and back-scattered electrons (In-beam BSE mode) 

at 5 kV accelerating voltage. Energy dispersive X-ray spectroscopy (EDS) was used to determine 

local chemical composition using unprepared samples. Subsequently, the samples were modified 

by pouring into polyacrylic resin followed by cutting and polishing, after which they were 

carbon sputtered to a thickness of 10 nm to provide charging reduction. Cross-section analysis 

was then performed at 20 kV accelerating voltage.  

Cross-section analysis of corrosion penetration was carried out using an Olympus PME3 

metallographic microscope equipped with AxioVision software. Micro-Raman analysis was then 

performed using a Thermo Scientific DXR2xi spectrometer with a 532 nm laser line coupled 

with an optical microscope using a 10x magnification objective lens. Laser power was set at 0.5 

mW to minimize the possible phase transition of corrosion products. 

2.1.4  Molecular biological analysis 

Molecular biological analysis of water samples from the experiment followed the same method 

that has been described in section 2.4 in chapter II. Isolation of DNA was performed from both 

water and biofilm samples formed on the surface of the carbon steel. Biofilm samples from the 

metal surface were collected using sterile swabs sticks, FLOQSwabs (COPAN Diagnostics Inc, 

USA). Same Power Water DNA Isolation Kit (was used for isolation of DNA from the biofilms 

as well. qPCR analysis was performed by using a functional marker for bacteria and SRB only. 

http://www.thermoscientific.com/en/about-us/promotions/about-the-dxrxi.html
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2.2  Results and Discussion 

2.2.1  Electrochemical Impedance Spectroscopy 

Time evolution of impedance spectra, measured under both sterile and non-sterile conditions, is 

provided as Bode representations in Figure 34 and Figure 35, respectively at a frequency range of 

100 kHz to 1 kHz appear to be artifacts caused by a parasitic capacitance originating from the 

electrochemical cell. Consequently, this part of the spectra was disregarded during further 

analysis. Spectra measured under sterile conditions are characterized by a single capacitive time 

constant over the whole measurement period, indicating uniform corrosion of the carbon steel. 

This corrosion stage is modeled in the circuit description code by the equivalent circuit R1 

(R2Q1), where R1 is the solution resistance, R2 is the polarisation resistance and Q1 is the 

dispersive double-layer capacitance characterized by the constant phase element. The Table 11 

shows selected results for EIS measurements performed under sterile conditions. The three 

equivalent circuits (Figure 36) were used sequentially for data fitting under non-sterile 

conditions, representing three corrosion stages. The first corrosion stage is characterized by one 

capacitive time constant, equivalent to the sterile environment, where R1 is the solution 

resistance, R2 is the polarisation resistance and Q1 is the dispersive double-layer capacitance. 

 

Figure 34: Bode plots of electrochemical impedance spectra time evolution for carbon steel under sterile 

conditions. 
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Figure 35: Bode plot of electrochemical impedance spectra time evolution for carbon steel under non-

sterile conditions. 

Initial EIS measurements under both sterile and non-sterile conditions showed similar 

corrosion patterns characterized by the presence of a single time constant. In the non-sterile 

environment, the main differences observed were a more rapid increase in dispersive double-

layer capacitance and a rapid decrease in solution resistance over time. A second corrosion stage 

was observed after 23 days, represented by the occurrence of two-time constants due to biofilm 

formation. This corrosion stage was modelled in the circuit description code by the equivalent 

circuit R1(R2Q1)(R3Q2), where R3 represents the resistance of the biofilm and Q2 is the 

dispersive capacitance of the biofilm. Values n2 of dispersive capacitance Q2 indicating the 

influence of diffusion. The second biofilm time constant appeared in the high-frequency area.  A 

third-time constant was observed after 112 days which is usually indicative for the change of the 

corrosion state on the surface. This was confirmed by the results of SEM measurements (see 

below) revealing the presence of the second biofilm layer. The formation of the second biofilm 

layer caused a shift in Faradaic charge transfer to very low frequencies of up to tens of µHz 

linked to an increased contribution of diffusion resistance. This corrosion stage was modelled in 

the circuit description code by the equivalent circuit R1(R2Q1)(R3Q2)(R4Q3), where R4 

represents the resistance of the second biofilm and Q3 is the second biofilm’s dispersive 

capacitance. The impedance of the second biofilm layer differed from that of the first by showing 

lowered value n3 and increased capacitance. Table 12 shows selected results for EIS 

measurements under non-sterile conditions. Approximation accuracy of the experimental data by 

each equivalent circuit (χ2 - chi-square goodness of fit test) achieved similar values in sterile and 

non-sterile environments, ranging in the order of 10
-4

 to 10
-5

. 
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 EC time 

A) R(QR) 

 

t < 560 hr. 

B) R(QR)(QR) 

 

560 hr. < t > 2700 hr. 

C) R(QR)(QR)(QR) 

 

2700 hr. < t 

 

Figure 36: Equivalence circuits used for electrochemical impedance spectroscopy data fitting and time 

evolution of corrosion stages. 

Polarization resistance time dependence under sterile and non-sterile conditions was 

estimated by fitting nonlinear least squares (Figure 37). Increased polarization resistance during 

the early stages of the experiment under non-sterile conditions can be attributed to sedimentation, 

which has an inhibitory effect on the corrosion rate compared with the sterile environment 

without colloidal particles. When SRB was present, carbon steel polarization resistance 

decreased by a factor of two after 240 days, when compared with sterilized VITA groundwater. 

Figure 37: Time evolution of polarization resistance. 
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Table 11: Results of EIS measurements performed under sterile conditions. 

Element → R1 

[Ohm∙cm2] 

Q1 

[Ω-1s-ncm-2] 

n1 R2 

[Ohm∙cm2] Time (h) ↓ 

5 872 1.75E-04 0.7862 5198 

48 876.4 2.76E-04 0.7739 19430 

482 867.2 5.76E-04 0.8081 32170 

890 814.7 5.99E-04 0.8195 36710 

1295 747.5 6.10E-04 0.8243 42770 

1679 681.5 7.05E-04 0.8473 82160 

2038 640.5 7.19E-04 0.8949 127700 

2906 484.3 7.13E-04 0.9100 157300 

3818 412.4 6.79E-04 0.9191 208500 

5661 301.6 7.01E-04 0.9082 209600 

 

Table 12: Results of EIS measurements performed under non-sterile conditions. 

Element → R1 

[Ohm∙cm
2
] 

Q1 

[Ω
-1

s
-

n
cm

-2
] 

n1 R2 

[Ohm∙cm
2
] 

Q2 

[Ω
-1

s
-

n
cm

-2
] 

n2 R3 

[Ohm∙cm
2
] 

Q2 

[Ω
-1

s
-

n
cm

-2
] 

n3 R4 

[Ohm∙cm
2
] Time (h) ↓ 

6 691 9.56E-05 0.7916 43580       

47 724.8 9.71E-05 0.8411 105600       

485 496.1 0.00195 0.7933 27700       

866 308.4 0.0111 0.9356 17300 0.0144 0.4866 297.4    

1295 206.8 0.01756 0.8993 25710 0.00411 0.4387 102.2    

1537 142.6 0.02229 0.8983 30390 0.00175 0.4864 175.8    

2230 100.1 0.02785 0.8932 63370 0.0021 0.4639 298.8    

4239 80.32 0.05035 0.9358 85130 0.00356 0.5608 22.65 0.00113 0.9792 3381 

5080 82.21 0.02807 0.8554 125800 0.00374 0.5904 20.06 0.0013 0.9781 6891 
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2.2.2  Surface and cross-section analysis 

The images obtained from SEM indicated that the surface of carbon steel in the presence of 

bacteria was covered with a relatively thick layer of spherical or rod-shaped microorganisms 

with many cells visible (Figure 38). The biofilm consisted of microorganisms surrounded and 

held together by an excreted gelatinous matrix of EPS composed of high molecular weight 

compounds (Bhaskar and Bhosle 2006; Reitner 2011). The bacteria were about 2 μm long and 

had a typical cylindrical shape. The SE detector mode provided the best surface visualization, 

showing the bacteria as dark hyaline objects (Figure 39). The main disadvantage of this mode 

was the difficulty in finding bacterial cells. The use of the BSE detector improved the imaging 

contrast between bacterial cells (comprising elements of lower atomic number) and the steel’s 

surface due to the backscatter of electrons, which made areas, where bacteria were located, 

appear darker (Figure 39). The surface analysis showed a heterogeneous sample surface with 

some areas covered with biofilm and some with many flat crystals.  

 

Figure 38:  Scanning electron micrographs showing the surface of carbon steel covered by a thick layer 

of spherical or rod-shaped microorganisms (SE detector). 

Figure 39: Scanning electron micrograph of the biofilm formed on carbon steel exposed under non-sterile 

conditions after 240 days incubation – comparison of different detector modes (left SE detector, right In-

Beam BSE detector. 
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Local EDS analysis demonstrated that the corrosion products were mainly composed of 

iron, oxygen, sulfur, and carbon displayed in. This finding was supported by elemental maps of 

those areas with bacteria present Figure 40. The presence of sulfur and iron suggests iron sulfide 

minerals formation, thereby indicating bacterial activity. Additionally, black turbidity was 

observed in the experimental cell (Figure 41) and on the surface of the testing coupon under non-

sterile conditions. In contrast, no sulfur or signs of microbial activity were detected by SEM/EDS 

on the sample under sterile conditions.  

Figure 40: Energy-dispersive X-ray elemental maps of the corroded region with bacteria present (marked 

with a white line). 

Figure 41: Comparison of filters after the filtration of the water used for the experiment. Left: sterile 

negative control, right: non-sterile sample. 

The SEM analysis indicated that the covering layer was stratified into a thicker (approx. 

24.5 μm) inner layer (labeled 2 in Figure 42) and a thinner (approx. 3.7 μm) outer layer (labeled 1 

in Figure 42) representing dry film thickness. The composition of these layers differed, with the 

inner layer being dominated by iron and oxygen with a small amount of sulfur and the outer 
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layer comprising iron with oxygen with sulfur dominating for the EDS spectra (the point labeled 

3 was dominated by silicon).  

 

Figure 42: Scanning electron micrograph showing the formation of a corrosion layer. The image shows a 

sample cross-section with bacteria present (above) and the respective X-ray spectra of positions 1, 2, and 

3 (below). 
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The cross-section images given in Figure 43 show that corrosion penetration is much 

lower and thickness more homogeneous in the sterile sample, and much thicker and less 

homogeneous in the non-sterile sample (evaluation summary in Table 13). The average 

penetration for the sterile sample was 8.36 µm and 27.80 µm for the non-sterile sample, while 

maximum penetration was 14.01 µm for the sterile sample and 61.31 µm for the non-sterile 

sample. Extreme penetrations observed at the non-sterile sample surface are probably caused by 

occluded solution formation under the biofilm, with subsequent localization of the corrosion 

attack.   

Figure 43: Cross-sections of the sterile (left) and non-sterile (right) steel after exposure. 

Table 13: Evaluation of corrosion penetration on cross-cut samples at the end of the 

experiment. 

 

Environment Corrosion penetration (µm) 

average standard 

deviation 

minimum maximum 

Abiotic (sterile) 8.36 2.69 3.49 14.01 

Biotic (non-sterile) 27.80 10.74 10.46 61.31 

 

Sterile and non-sterile samples were also analyzed by micro-Raman spectroscopy, which 

detected the presence of mackinawite ((Fe1+xS) on the surface of the samples exposed to bacteria 

(characterized by peaks at 217, 280, 391, 487, 595, 653 and 1286 cm
-1

; Figure 44). Mackinawite 

and greigite (Fe3S4) are corrosion product typically reported from systems exposed to SRB and is 

therefore considered an indication of microbial activity on the surface of the material 

(Rémazeilles et al., 2010). 
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Figure 44: Raman spectra of carbon steel under non-sterile anaerobic conditions in VITA water after 293 

days (top) and mackinawite standard (bottom). 

2.2.3  Molecular biological analysis 

Results of the qPCR analysis indicated that the relative abundance of bacterial biomass (detected 

by the universal 16S rRNA marker) in the water sample increased slightly compared with the 

start of the experiment revealed in Figure 45. In contrast, the amount of SRB in the water sample 

remained more or less the same with no remarkable change in the fold. However, when 

interpreting these results, it should be taken into account that most bacteria contributing to MIC 

are expected to grow in the biofilm. No bacteria were detected by qPCR under sterile conditions. 
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Figure 45: Results of qPCR analysis of the 16S rRNA (total bacterial biomass) and apsA and dsrA genes 

(SRB), shown as a relative change compared to the start of the experiment. 

Microbial community composition of the test water and biofilm after 240 days was determined 

alongside the initial VITA groundwater source by NGS amplicon sequencing, Figure 46 . The 

initial VITA water was dominated by mesophilic and thermophilic SRB such as Desulfobacula, 

Desulfomicrobium, Desulfovibrio, and Desulfurivibrio (all Deltaproteobacteria). The genera 

Paludibacter (Bacteriodetes) and Thiobacillus (Betaproteobacteria), along with members of the 

Rhodocyclaceae and Comamonadaceae families (both Betaproteobacteria), were also common in 

VITA water. While the taxonomic composition of the microbial community present in both 

water and biofilm samples collected after 240 days changed, the communities were still 

dominated by SRB. While both Desulfobacula and Desulfurivibrio were detected at low numbers 

in the 240-day water and biofilm samples, Desulfomicrobium and Desulfovibrio spp. dominated 

in the biofilm sample. Members of these genera can utilize organic compounds or hydrogen as 

electron donors and sulfur compounds as electron acceptors (Steger et al. 2002, Dias et al. 2008) 

and, therefore they participate in MIC (Enning and Garrelfs 2014). Both genera are also able to 

promote anaerobic corrosion indirectly through the corrosive chemical agent hydrogen sulfide 

(M-MIC). In addition, the genus Desulfovibrio includes many strains that have the ability to 

corrode metals through a direct withdrawal of electrons from the metal surfaces (E-MIC) (Dinh 

et al. 2004, Venzlaff et al. 2013, Enning and Garrelfs 2014). Under nutrient limiting conditions, 

as found in the groundwater examined in this study, the concentration of organic electron donors 

is relatively low and, as a result, microbes probably attack the steel as it represents a good source 

of electrons for reduction of sulfate to sulfide (Rajala et al. 2015). 
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Figure 46:  Heat map showing the results of the 16S rRNA gene amplicon sequencing (only taxa 

with abundance over 1% visualized). 

The obligate anaerobes Anaerolinaceae, found in low numbers in the initial VITA water, 

were detected in relatively high numbers in samples collected after 240 days. Similarly, members 

of the class Halophagae (subgroup_7_ge; phylum Acidobacteria) were also found in both 240-

day water and biofilm samples in higher quantities than at the beginning of the experiment. At 

the same time, the number of other bacteria present in the initial VITA water sample declined 

significantly. Natural biofilms are composed of a wide variety of microbes, including bacteria, 

archaea, and fungi. When multiple corrosion-causing species are present they will act 

synergistically, causing severe corrosion (Kip and Van Veen 2015, Rajala et al. 2017). A recent 

study conducted on water from the Yucca Mountains (USA), for example, showed a higher rate 

of corrosion in the presence of a mixed bacterial population (iron and sulfur-reducing bacteria) 

than in the presence of single species (Pitonzo et al. 2004). 
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3  Corrosion of carbon steel in synthetic bentonite pore water inoculated by 

natural groundwater 

3.1  Materials and methods 

3.1.1  Materials and experimental set-up 

Test coupons for the study were made from commercial C15E low carbon steel (as described in 

section 2.1.1 of this chapter). The test specimens of the carbon steel were cylindrical with a 

diameter of 10 mm and a length of 50 mm. The coupon surface was mechanically polished with 

P500 silicon carbide grinding paper in an argon-purged glove box, following which surface was 

cleaned with de-aerated ethanol. The design of this experiment is illustrated in Figure 47. 

Synthetic bentonite pore water (SBPOW), which simulates the leachate of the Czech BaM 

bentonite (Červinka and Gondolli, 2015) was used as a working environment (see Table 14 for 

its chemical composition).  

Autoclaved distilled water was used for the preparation of the SBPOW. To avoid 

contamination, the SBPOW was sterilized after preparation by filtration using an autoclaved 

filter apparatus and 0.22 µm GV Durapore® (Merck, Germany) filter membrane under sterile 

conditions. The VITA water, groundwater rich in SRB was used as a microbial inoculum. The 

ratio of SBPOW and VITA water was 9:1. The VITA groundwater was collected from the VITA 

source at the Josef URC (Czech Republic) a day before the experiment under sterile conditions. 

The chemical composition of groundwater is stable and thus was similar to the previous 

experiment (see Table 10). The experiments 

were conducted in 2-L sterilized flasks in 

separate batches. The abiotic sterile version of 

the experiment was performed in parallel and 

consisted of carbon steel and SBPOW only. The 

experiment was carried out in an Argon-purged 

glove box (CO2 < 1 ppm volume) at a laboratory 

temperature of approx. 25°C. The samples were 

analyzed at the beginning and after 3, 6, 12, 18, 

and 26 months of incubation. 

Figure 47: Experimental design for corrosion in SBPOW. 

Sample for mass loss 
Sample for surface analysis 
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Table 14: Composition of synthetic bentonite pore water in 1 L of distilled water. 

 

 

 

 

 

 

3.1.2  Corrosion rate determination 

The cylindrical carbon steel samples were used to determine the corrosion rate for long-term 

immersion by weight-loss methods according to the standard ISO 8407. After exposure, 

corrosion product of samples was removed by repeated chemical etching in a Clark solution (5 g 

of tin(II) chloride and 2 g of antimony(III) oxide in 100 ml hydrochloric acid) including 

subsequently rinsing with distilled water, then in acetone and finally dried in air at room 

temperature. The weighing was repeated until a constant weight was achieved by repeated 

treatment. 

3.1.3  Surface characterization 

The SEM analysis was performed as described in section 2.1.3 of this chapter. The Raman 

spectra analysis was performed by Raman dispersion spectrometer (Thermo Scientific - model 

DXR Microscope equipped with an Olympus confocal microscope). The excitation source was a 

diode Nd: YAG laser was used as the excitation source with a wavelength of 532 nm and an 

input power of 10 mW. A grid of 900 scratches / mm was used. A multichannel 

thermoelectrically cooled CCD camera was used as a detector. Samples were measured at 50x 

magnification with a measuring track of approx. 1 µm
2
. Samples were measured through an 

aperture of 50 µm slit. To exclude the thermal degradation of the sample, measurements were 

performed at 0.05 mW, 30 sec measurement time, and 40 spectrum accumulations. 

Chemicals Unit, g/l
 

MgSO4 heptahydrate   2.727 

NaNO3                          0.816 

NaCl                               0.419 

KNO3                              0.133 

Na2SO4            0.1462 

KHCO3                           0.1066 

CaCl2               0.0388 
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3.1.4  Chemical analysis 

The concentration of chloride, sulfate, nitrate, and nitrite was measured using ion spectroscopy 

as described in the section 2.5 of the chapter II. Filtered water obtained after filtration through 

0.22 µm (GV Durapore® filter membrane, Germany) was used for the chemical analysis. 

3.1.5  Molecular biology analysis 

Biofilm from the metal surface was sampled using sterile swabs. DNA was extracted from both 

water and biofilm that was formed on the surface of the carbon steel same as in previous 

corrosion experiment (corrosion in natural in groundwater). Molecular biology analysis was done 

following the methods described in the section 2.4 of the chapter II. 

3.2   Results and Discussion 

3.2.1.  Corrosion rate  

All samples exposed to microorganisms had a higher corrosion rate compared to abiotic controls. 

This effect was observable already after three months (Figure 48). The average corrosion rate of 

carbon steel exposed to microorganisms was 3.81 μm/yr, reaching the highest values after 6 

months (i.e., 5.4 μm/yr) and the lowest values (i.e., 0.9 μm/yr) after 18 months. At the end of the 

experiment, the corrosion rate increased to 3.4 μm/yr. Additionally, in the non-sterile 

environment; the pits were initiated during the first 6 months and visible local attacks were 

observed after 12 and 26 months. The non-sterile samples analyzed after 18 months had a 

significantly lower corrosion rate without visible local attacks. A gradual decrease in corrosion 

rate was observed under sterile conditions: the initial rate was 3 μm/yr after 3 months and 

dropped to 0.36 μm/yr after 26 months. Weight loss data of carbon steel in SBPOW solution 

under sterile conditions confirmed the tendency of the corrosion rate to decrease with increasing 

exposure time under anaerobic conditions.  
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Figure 48: Average corrosion rates based on weight loss measurements for the carbon steel in a sterile 

environment (orange) and in the environment enriched with microorganisms (green). 

 Long-term corrosion of copper coupons was studied in compacted bentonite at the Äspö 

Hard Rock Laboratory (Karnland et al., 2000). The mean corrosion was calculated to be 3 µm /yr 

after 1-year exposure. In our study, corrosion in the biotic environment was always calculated to 

be higher than 3 µm /yr except for one sampling point, 18 months. In the Swedish SKB concept, 

the copper container would be 50 mm thick and expected lifetime of the waste container at least 

100,000 years (King et al., 2010). In this context, the carbon steel or copper container would not 

be safe for at least 100,000 years. However, the experiment with SBPOW and groundwater was 

held in conditions that cannot be expected in the repository for the first tens of years, where the 

saturation phase will be strongly influenced by the heat generated by the container. The 

porewater will thus reach the container after longer time period. Our experiment aimed to show 

the different impact of sterile SBPOW and SBPOW inoculated with natural microbial 

community from deep geological environment. 

3.2.2  Surface analysis 

The visual observations showed that samples exposed to microorganisms had different 

appearance compared to the sterile controls (Figure 49 and Figure 50). The surfaces of the abiotic 

specimens were homogenous and relatively smooth, with very little morphological differences 

between distinct areas. In contrast, the biotic samples were morphologically more heterogeneous. 
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The specimens from the biotic systems were covered with a layered deposit of corrosion 

products, which showed local compositional and morphological variations. 

SEM 

The SEM analysis showed a clear difference in surface characteristics between samples exposed 

to abiotic and biotic environments (see Figure 49 for surface and Figure 50 for cross section). In 

the abiotic environment, a uniform oxide layer was observed with no local attacks or pits (Figure 

49A and 50A). On the contrary, the samples exposed to the microorganisms were characterized by 

the presence of pits and in some cases even by large local attacks in the samples collected after 

12 and 26 months (Figure 49B and 50B). The surface of carbon steel in the biotic sample was 

covered with a relatively thick layer of a non-uniform biofilm with some areas showing many 

flat crystals.  

Similarly, the corrosion penetration data estimated by SEM (Table: 15) from cross-

section images (Figure 50) showed that corrosion penetration was much deeper and more 

heterogeneous in the biotic samples compared to the sterile samples. Surfaces of the samples 

exposed to the microorganisms were characterized by clearly higher penetration values (also 

with significantly higher values of standard deviation, Table: 15). Extreme penetrations observed 

at the non-sterile sample surface were probably caused by the separation of anodic and cathodic 

sites and occluded solution formation under the biofilm, with subsequent localization of the 

corrosion attack. The average penetration for the abiotic sample was 38.82 µm and 1,381.65 µm 

for the biotic sample, while the maximum penetration was 12.57 µm and 985.34 µm for the 

abiotic and the biotic sample, respectively. Additionally, under non-sterile conditions, black 

turbidity was observed in the experimental cell and on the surface of the testing coupon (Figure 

51). 
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Figure 49: SEM micrograph presenting the surface of carbon steel. A belongs to abiotic (left) and B 

belongs to biotic samples (right) where the numbers 1, 2, 3, 4, and 5  represents sampling time after 3, 6, 

12, 18, and 26 months, respectively. The scale bar used for each image was 20 µm. 
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Figure 50: SEM micrograph presenting MIC – a cross-section of the carbon steel A belongs to abiotic 

(left) and B belongs to biotic samples (right) where the numbers 1, 2, 3, 4, and 5  represents sampling 

time after 3, 6, 12, 18 and 26 months, respectively. The scale bar used for each image was 50 µm. 
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Table: 15. Corrosion penetration under abiotic and biotic conditions. 

 

 Month       

 

Sample 

Corrosion penetration (µm) 

average standard 

deviation 

minimum maximum 

3  Sterile 6.99 0.73 5.83 7.7 

Non-sterile 15.95 1.24 14.47 17.72 

6  Sterile 5.52 0.52 4.75 6.20 

Non-sterile 82.44 33.81 52.13 138.72 

12  Sterile 7.535 1.52 5.61 9.81 

Non-sterile 465.37 383.00 69.55 985.34 

18  Sterile 10.80 1.02 9.76 12.16 

Non-sterile 77.65 47.49 11.13 138.28 

26  Sterile 10.63 1.59 8.53 12.57 

Non-sterile 365.79 94.35 247.37 507.98 

 

 

Figure 51: Test specimens of the carbon steel under non-sterile and sterile conditions collected after 26 

months. Black turbidity was observed on the surface of the testing coupon. A clear sign of corrosion is 

seen on the surface of carbon steel under the biotic environment. 
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Raman spectroscopy  

Raman spectroscopy was performed on all the samples from each sampling point. The results are 

summarized in Table 16. The measured spectra were compared with standard spectra from the 

RRUFF library (Lafuente et al., 2016). 

Table 16: Summary of corrosion products. 

 

The surface of the samples under abiotic conditions was covered with homogeneous 

magnetite (Fe3O4) layer in all sampling times with the peaks at 315, 547, and 670 cm
-1

. The band 

shifts 662 -> 670 cm
-1

 and its asymmetry can be caused either by partial substitution of iron with 

other elements or by a minor presence of other corrosion products (e.g., maghemite). The 

presence of four intense bands around 153, 280, 711, and 1086 cm
-1 

in the Raman spectra of 

carbon steel was also identified after 18 months. A narrow intensive band around 1086 is typical 

for the group carbonate (CO²⁻ ₃). According to the RRUFF database, these bands are assigned to 

calcite (measured chemistry of calcite is (Ca0.99Mg0.01) CO3). Calcite could occur elsewhere in 

the sampling point but was not found. The corrosion layer was practically homogeneous on the 

sample after 26 months, the typical 5ST_1 spectrum (see Figure 52 on left), was identified as 

magnetite. The band displacement occurred at 667 -> 671 cm
-1

 and its asymmetry could be due to 

either partial substitution of iron for other elements (chromium) or minor presence of other 

corrosion products (e.g. maghemite). Bands around 1350 and 1580 cm
-1

 again indicate the 

presence of amorphous carbon. A deviation was found in only one case where silicon carbide 

(see 5ST_2 spectra on Figure 52 at left) was identified in the spectrum in addition to the common 

component which could possibly be impurity or an abrasive used. 

 

Sampling time 

Corrosion products 

Abiotic (Sterile) Biotic (Non-sterile) 

3 months Magnetite (Fe3O4) Magnetite, Mackinawite  (FeS(1-x)) 

6 months Magnetite Magnetite, Mackinawite 

12 months Magnetite Magnetite, Mackinawite 

18 months Magnetite, Calcite (Calcium carbonate) Magnetite, Mackinawite 

26 months Magnetite (partially substituted) Akaganeite (Fe
3+

O(OH,Cl)), 

Magnetite, Rozenite Fe
2+

SO4  
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Figure 52: Raman spectra of carbon steel in SBPOW under sterile anaerobic conditions after 26 months 

denoting magnetite and silicon carbide (SiC) (left) and Standard spectra from the RRUFF library (right) 

(Lafuente et al., 2016). 

Raman spectra of samples exposed to microorganisms were very different compared to 

sterile controls. Raman signature peaks at 213, 275, 384, and 583 cm
-1

 were observed in all 

sampling times and they are characteristic for mackinawite (FeS(1-x)) which suggested the 

presence of SRB. Along with mackinawite, magnetite was observed as a corrosion product. 

Interestingly, after 26 months the Raman spectrum showed two dominant phases in the biotic 

sample. The first one was the red area formed by acicular crystals, this spectrum labeled as 

10NE_1 (see Figure 53 on left) was not identified using standard libraries, however, according to 

Colomban and Chiaberge (2011), it corresponds to akaganeite (Fe
3+

O(OH, Cl)). The second one 

was the black area observed especially on the edges of the sample. This spectrum referred to as 

10NE_2 in Figure 53 (left) corresponds to magnetite. Compared to other samples it is a very 

exact agreement with the standard spectrum. Furthermore, in one place (10NE_3 in Figure 53 on 

left), ferrous sulfate (especially the 990 cm
-1

 bands) was additionally identified in the area of 

akaganeite indicating the presence of rozenite. 
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Figure 53: Raman spectra of carbon steel in SBPOW under non-sterile anaerobic conditions after 26 

months of indicating the presence of akaganeite, magnetite, and rozenite (left) and standard spectra from 

the RRUFF library (right) (Lafuente et al., 2016). 

Raman spectra under non-sterile conditions detected the presence of mackinawite (FeS1-

X) and rozenite (Fe
2+

SO4) corrosion products indicating the activity of SRB as these corrosion 

products are composed of iron and sulfur formed by the metabolism of SRB (El Mendili et al., 

2013; Smith et al., 2019). Normally, sulfate reducers are considered to be active microorganisms 

responsible for anoxic corrosion (Rajala et al., 2015). Many reports have shown the presence of 

mackinawite as a consequence of steel corrosion by SRB (de Romero, 2005; Liu et al., 2000; 

Sherar et al., 2011). Similarly, studies on the deterioration of iron have confirmed the presence of 

rozenite as a corrosion product (Smith et al., 2019; Wang, 2007).  

Mackinawite layer has also protective nature against corrosion of carbon steel however, 

the metabolites of SRB like sulfide and organic acids can damage the protective layer and 

promote corrosion (Liu et al., 2000). Akaganeite (detected only at the end of the experiment 

under non-sterile condition) is a non-magnetic ferric hydroxide and is understood as an 

intermediate phase which further transforms into the final product magnetite (Ruhl et al., 2014). 

This ferric hydroxide with chlorine is considered the main corrosion product in a typical marine 

environment (Rodrıguez et al., 2002). Likewise, magnetite (Fe3O4) was observed under sterile 

and non-sterile conditions indicating oxidation of iron. Anaerobic corrosion of carbon steel and 

cast iron in artificial groundwater caused the evolution of hydrogen gas and the formation of 

magnetite (Smart et al., 2001). Likewise, a study on the MIC of carbon steel demonstrated the 
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formation of magnetite as a corrosion product under anaerobic conditions in the presence of 

bacteria (El Hajj et al., 2013).  

3.2.3  Chemical analysis 

The concentration of chlorides, nitrates, nitrites, and sulfates were determined from every 

sampling point in both abiotic and biotic samples (see Table 17) yet, samples taken after 6 

months were not analyzed due to technical problems. In the abiotic samples, the concentration of 

all measured compounds remained more or less stable throughout the whole experiment, whereas 

in the biotic samples, only the concentration of chlorides remained similar. Furthermore, in biotic 

samples, the concentration of nitrates (that can be used as a terminal electron acceptor by NRB) 

has decreased (from 579 mg/l to 28.9 mg/l) over time with only the exception after 18 months. It 

is obvious that nitrates have been reduced to nitrites that were below detection limit (5 mg/l) at 

the beginning in biotic conditions and then increased up to 232 mg/l. Nitrites did not occur in 

sterile conditions. In comparison to nitrates, only a small amount of sulfate has been consumed 

by bacteria.  

Table 17: Chlorides, nitrates, nitrites, and sulfates concentration. 

Sampling 

time 

Sample 

type 

chlorides 

(mg/l) 

nitrates 

(mg/l) 

nitrites 

(mg/l) 

sulfates 

(mg/l) 

start 
abiotic 233.0 658.0 <5 1158.0 

biotic 228.8 579.0 <5 1011.1 

 

3 months 

 

abiotic 

 

244.5 

 

600.1 

 

<5 

 

1061.2 

biotic 221.2 455.3 26.0 918.4 

 

12 months 

 

abiotic 

 

236.7 

 

649.6 

 

<5 

 

1143.4 

biotic 217.0 176.6 191.0 980.6 

 

18 months 

 

abiotic 

 

237.5 

 

652.5 

 

<5 

 

1070.6 

biotic 213.3 517.0 15.8 963.1 

 

26 months 

 

abiotic 

 

247.1 

 

672.9 

 

<5 

 

1109.3 

biotic 222.9 28.9 232.1 996.7 

 

The high concentration of nitrates (517 mg/l) and low concentration of nitrites (15.8 

mg/l) detected after 18 months could be because the nitrates were not consumed in the same 

level as it was consumed in other sampling points. The main reason could be that different 
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microbial community established after 18 months replacing dominant Methyloversatilis (see 

below microbial analysis results). This phenomenon can also be ascribed to the formation of 

electrostatic isolation by the reduction of the proton from the metal surface and metabolic 

activity of Methyloversatilis.  

Interestingly, nitrite (oxidizing agent) has a dual nature in terms of corrosion. Generally, 

the reduction of nitrite enhances corrosion of steel but a higher concentration of nitrite behaves 

as a corrosion inhibitor. Above the critical concentration (800 mg/l), it protects the steel against 

corrosion forming a passivating film, while below the critical concentration; it can stimulate the 

pitting corrosion (Jones, 1997). Nitrite is often called an anodic inhibitor as it interferes with the 

anodic reaction (the oxidation of elemental iron to ferrous iron) (Jones, 1997). Additionally, the 

corrosion inhibitory effect of nitrite at higher concentrations could be partially because of the 

chemical formation of nitrogen oxide, which has a toxic effect on microorganisms present on the 

surface of the steel (Kielemoes et al., 2000). In our study, the reduction of nitrite may have 

enhanced the corrosion of steel as the concentration of nitrate remained lower than the critical 

concentration. 

3.2.4  Molecular biological analysis 

qPCR analysis 

All sterile control samples remained sterile for the entire period of 26 months. The sterility of the 

abiotic controls was checked by DNA isolation and analysis in parallel (see Table 18). Based on 

the relative quantification of 16S rRNA, the total bacterial biomass increased in course of time 

reaching its highest level after 12 months (increased by 750-fold compared to the initial point) 

(Figure 54). Nevertheless, at the end of the experiment, the relative abundance of bacterial 

biomass dropped down 12-fold. Although VITA groundwater, used as a microbial inoculum, was 

originally dominated with SRB, this bacterial group did not proliferate and almost disappeared. 

In contrast, the rapid proliferation of nitrate reducers was observed with all three markers used 

for the detection of NRB.  
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Table 18: DNA yield from biotic and abiotic samples. 

  biotic   abiotic 

  
volume 

(L) 

DNA concentration 

(ng/µL) 

DNA yield 

(µg DNA/L 

water) 

  
volume 

(L) 

DNA concentration 

(ng/µL) 

DNA yield 

(µg DNA/L 

water) 

start 1,00 0.04 0.00400 
 

1.00 0 0 

3 months 1.97 12.7 0.64467 
 

1.97 0 0 

6 months 1.93 1.09 0.05648 
 

1.86 0 0 

12 months 1.88 2.19 0.11680 
 

1.90 0 0 

18 months 1.85 9.34 0.49158 
 

1.90 0 0 

26 months 1.85 0.38 0.02054   1.06 0 0 

 

The nirS gene reached its maximum abundance right after 3 months (increased by 127-

fold compared to the initial point) and then it gradually decreased to the level below the limit of 

detection from 18 months. The relative abundance of the nirK gene increased rapidly after 3 

months and then declined to the numbers that were similar to the starting point after 6 months. 

Then again, it increased and reached a maximum value of 686 after 18 months but then 

decreased by the end. Likewise, the nosZ gene, responsible for the expression of nitrous oxide 

reductase, showed the highest relative abundance after 3 and 12 months when increased 2000 

times but decreased unexpectedly after 18 months. It was the only functional marker that was 

detected even after 26 months. Geobacteraceae were not detected in any sample. NRB are 

involved in the process of denitrification - a complete reduction of nitrates to nitrogen by the 

consumption of intermediate products like nitrites, nitric oxides, and nitrous oxides 

(NO⁻3➔NO⁻2➔NO➔N2O➔N2). Hence, nitrates from synthetic water have been consumed by 

NRB to carry their metabolic activity. 
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Figure 54: Relative changes of total bacterial biomass (detected by 16S rRNA), SRB (detected by apsA 

and dsrA genes), and denitrifying bacteria (detected by nirK, nirS, and nos-Z genes) through the 

experimental period. 

The dominance of NRB was clearly caused by the chemical composition of SBPOW, 

which mimics the Czech BaM bentonite leachate, rich in nitrates, and thus offering 

thermodynamically favorable terminal electron acceptor for NRB. Like sulfate, nitrate is also 

naturally present in deep geosphere besides being a constituent of bentonite. However, sulfate is 

less thermodynamically favorable terminal electron acceptor than nitrates. Therefore, the 

reduction of sulfate and proliferation of SRB generally starts when the nitrates are consumed 

following the thermodynamic ladder. When the availability of organic donors in the environment 

is lower than required, carbon steel is used as means of the electron to produce energy by 

bacteria (Rajala et al., 2015) and hence, induce the process of corrosion. Some members of NRB 

are also sulfide oxidizers that are capable to reduce nitrate to nitrite or nitrogen oxides which can 

result in the formation of highly corrosive elemental sulfur or polysulfides (Ock Joo et al., 2015).  

16S rRNA sequencing results 

A gradual shift in the microbial community structure was observed over time. Sequencing data 

correspond to results of qPCR analysis showing similar patterns of microbial community 

development (Figure 55). VITA water, which was used as a natural microbial inoculum for the 

experiment, was dominated by members of genera Desulfomicrobium, Desulfovibrio (both SRB), 

and Lacunisphaera (NRB). Later, the structure of microbial community changed dramatically, 

SRB disappeared and were replaced by different genera of NRB, such as Methyloversatilis, 
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Brevundimonas, Pseudomonas, Phenylobacterium, Achromobacter, Devosia, Acidovorax, 

Lacunisphaera and Sphingobium. In comparison to SRB corrosion, NRB corrosion has been 

reported only occasionally in the literature. According to bioenergetics, iron oxidation coupled 

with nitrate reduction provides energy for the respiration for NRB which can lead to MIC (Xu et 

al., 2013). Regarding iron oxidation and nitrate reduction, two major phenomena have been 

proposed. The first one is the chemical reduction of nitrate with ferrous/nitrate redox couple 

(abiotic phenomena) and the second once is induced by denitrifying bacteria owning to oxidation 

of metallic or ferrous iron (biotic phenomena) (Kielemoes et al., 2000).  

Figure 55: Result of 16S rRNA sequencing of the samples taken after 3, 6 12, 18, and 26 months showing 

genera with the mean of relative abundance in %. M - months, VITA - composition of initial groundwater 

inoculum, W- water sample (SBPOW inoculated with VITA), B - is biofilm where A and B are replicates. 

Although the activity of sulfate reducers was suggested by Raman spectra under non-

sterile conditions, it was not detected by microbial community analysis. After three months, both 

water and biofilm samples were dominated with bacteria belonging to genus Pseudomonas 

followed by Methyloversatilis and Phenylobacterium. After six months, the proportion of 
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detected species differed clearly between biofilm and water samples. Similar to the previous 

sampling, Pseudomonas dominated, but Methyloversatilis was the commonest bacterium in the 

biofilm samples. The same genus, Methyloversatilis dominated in the biofilm samples after 12 

months followed by Acidovorax and Pseudomonas, whereas Brevundimonas was the most 

frequent in the water sample. It remained frequent in both water and biofilm samples after 18 and 

26 months. In the samples (both water and biofilm) collected after 18 months, unexpectedly any 

sign of Methyloversatilis was detected. In contrast, bacteria belonging to genus Achromobacter 

were detected in this sample and were not observed in any other sampling point. Hence, the 

community structure of these samples differed significantly compared to all other sampling times 

and was composed mainly of Brevundimonas, Pseudomonas, and Achromobacter. Interestingly, 

genera like Methyloversatilis (Rhodocyclacea), Brevundimonas (Alphaproteobacteria), and 

Pseudomonas (Gammaproteobacteria) were the most frequently detected genera. These 

denitrifying bacteria are chemoheterotrophic or chemoautotrophic and are mostly mesophilic in 

nature. Among these genera, Pseudomonas was previously reported as denitrifying bacteria 

responsible for MIC. (Zhou et al., 2018; Jia et al., 2017b). Apart from SRB and NRB many other 

bacteria like iron-oxidizing bacteria, manganese-oxidizing bacteria, methanogens, and fungal 

species are also linked to the acceleration of the corrosion process for deterioration of metal (Li 

et al., 2018).  

In the original natural groundwater VITA, most of the NRB genera were not detected at 

the initial point, which could have fallen below the limit of detection as we have shown the 

genus of relative mean abundance over 1% only. Nevertheless, by time with the availability of 

nutrients in water/ SBPOW and the presence of electron donors (carbon steel), they proliferated. 

The similarity in microbial structure between water and biofilms for the first 3 months and their 

difference comparing to later sampling suggests that there has been the formation of a biofilm 

layer with specific bacteria that may be different compared to the surrounding environment. 

Synergistic interaction of various microorganisms occurs in biofilm which consequences in the 

sharing of nutrients and energy among themselves causing a severe MIC (Li et al., 2018). In this 

study, biofilm formation and severe local corrosion contributed by anaerobes and facultative 

anaerobes of different species of nitrate reducers were confirmed. Under nitrate-reducing 

conditions, presence of a different type of microbial community in the biofilm can lead not only 

to uniform corrosion but also to local attacks (Miller et al., 2018) as was seen in this study since 
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the number of bacteria differed significantly between water and biofilms samples, it is more 

relevant to take biofilm sample for better understanding of corrosion behavior. Nonetheless, 

formation biofilm on the steel surface can provide protection to steel against corrosion by the 

establishment of passivation effect forming a protective layer. However; later the porous biofilm 

will not continue to form a protective layer and localized corrosion can be initiated when the 

biofilm become weak, fragile and fractured (Paula et al., 2016). Therefore, the biofilm can 

modify the chemistry of a protective layer ranging from the acceleration of corrosion to 

corrosion inhibition (Beech and Sunner, 2004).  

Interestingly, the abundance of Methyloversatilis positively correlates with the corrosion 

rates (see Figure 56). The Methyloversatilis population dominated the samples after 3, 6, 12, and 

26 months when the corrosion rates were higher, while no Methyloversatilis was detected after 

18 months when the corrosion rate was the lowest. Methyloversatilis belongs to methylotrophic 

bacteria capable of using a single carbon compound. In absence of oxygen, Methyloversatilis has 

a unique ability to utilize nitrate as the electron acceptor for the energy generation (Lu et al., 

2012) and proliferates well when hydrogen is present as the electron donor (Ontiveros-Valencia 

et al., 2013) Consequently, it suggests that the Methyloversatilis biofilm may work as the 

cathode and local bare metal within biofilm pores works as anode with much higher corrosion 

rate accelerated by bacterial metabolism resulting in E-MIC. Methyloversatilis, not detected after 

18 months, might have faced a lack of hydrogen that is produced by reduction of the proton by 

the electron from the metal surface (as explained above). This process of hydrogen generation 

can form a film that could prevent further reduction of protons leading to passivation (Valencia-

Cantero and Peña-Cabriales, 2014). Hence, it inhibited corrosion and at the same time, created a 

scarcity of electron donors in the environment, which most probably had a direct effect on the 

metabolism of Methyloversatilis.  
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Figure 56: Corrosion rate and the relative abundance of Methyloversatilis. 

On the other hand, the presence of Achromobacter only in absence of Methyloversatilis could be 

due to their similar methane utilization capacity as a sole source of carbon when present and the 

ability to consume hydrogen (Davies, 1973; Ontiveros-Valencia et al., 2013). Hence, 

Methyloversatilis most probably over competed the Achromobacter and can be considered as the 

best candidate for MIC under nitrate-rich environmental conditions in our case.  

4  Summary 

Two different studies were conducted to describe MIC of carbon steel under repository 

relevant conditions in order to determine and understand the contribution of biocorrosion to 

overall corrosion processes, and to investigate microbial community composition responsible for 

corrosion and formation of biofilm. The first 8-month experiment was about MIC of carbon steel 

in the presence of anaerobic SRB naturally present in VITA groundwater from Josef URC while 

the second 26-month experiment comprised VITA groundwater in SBPOW in 1:10 ratio.  

In both experiments, the steel corrosion rates were found higher in biotic (non-sterile) 

samples than abiotic (sterile control) samples indicating corrosion caused by microbial activity. 

Under strictly anaerobic conditions, exposure of carbon steel to natural VITA groundwater and 

with inoculation of VITA groundwater into SBPOW resulted in the formation of a biofilm and 

corrosion product layers. However, the microbial communities responsible to carry out corrosion 

of carbon steel were different. Molecular biology analysis of both water and biofilm indicated 
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the dominance of Desulfomicrobium and Desulfovibrio spp. (both SRB) in the experiment with 

only VITA water, whereas the experiment with inoculation of VITA water in SBPOW 

demonstrated the dominance of different populations of nitrate reducers such as 

Methyloversatilis, Brevundimonas, and Pseudomonas. The dominance of NRB was caused by 

the chemical composition of SBPOW which mimics the Czech BaM bentonite leachate, rich in 

nitrates that are thermodynamically favorable terminal electron acceptors to NRB. The formation 

of a biofilm on the carbon steel surface accelerated the corrosion process. Moreover, the 

presence of mackinawite, a corrosion product usually attributed to SRB activity was confirmed 

by Raman spectroscopy in both experiments. Detection of sulfur compounds by SEM/EDS in the 

first experiment provided evidence of the reduction of sulfates to sulfides by SRB metabolic 

activity. The carbon steel polarization resistance decreased by a factor of 2 after 8 months in the 

presence of SRB, indicating a higher corrosion rate when compared with the sterile sample. 

Similarly, weight loss measurement determined in the second experiment with SBPOW showed 

that the average corrosion rate of carbon steel in the sterile control sample and the sample with 

microorganisms was 1.28 µm/yr and 3.81 µm/yr, respectively. Interestingly, a high abundance of 

Methyloversatilis positively correlates well with the changes in corrosion rates.  

These results are relevant for the Czech radioactive waste disposal concept and show the 

necessity to consider NRB in addition to SRB as a potential threat for bio-corrosion of the waste 

container since the surrounding environment might contain high concentrations of nitrates due to 

presence of bentonite buffer. Future studies should concentrate on this phenomenon. 



 

113 
 

 

IV. Effect of concrete on microbial ecosystem 

under repository relevant conditions 



 

114 
 

1 Background 

Concrete, a cementitious material, will be used as an important part of DGR of radioactive waste 

(Honty et al., 2010). The concrete will be used to construct the sealing plug after the operational 

part of the repository finishes (Hanusová et al., 2016) and also as filling matrix for LLW and 

ILW. The most common material used is ordinary Portland cement, in which calcium component 

comprises the major part (Glasser and Atkins, 1994). A wide variety of indigenous microbial 

communities with specific metabolic pathways exists both in bentonite buffer and groundwater 

and therefore may be active in the bentonite layer itself and also at the interfaces between the 

cementitious material, bentonite buffer and host rock.  

Chemical compounds present in concrete generally increase the environmental pH and 

might also cause an increase in the temperature due to heat produced by the hydration of cement. 

Resulting shrinkage in the pore size and related decrease in nutrient availability may cause 

bacterial inactivation (Williams et al., 2017). Thus, the presence of concrete can severely affect 

the microbial communities that come into contact with these conditions. Recent research has 

demonstrated that many species of bacteria are capable of surviving in high alkali conditions. 

Anaerobic alkaliphilic bacteria like Thialkalivibrio denitrificans (Sorokin et al., 2001), Bacillus 

pseudofirmus (Janto et al., 2011), Alkaliphilus transvaalensis (Takai et al., 2001) and Alkalitalea 

saponilacus (Zhao and Chen, 2012) were isolated from the natural alkaline habitats. 

Nevertheless, over the period of DGR, the pH of the concrete is expected to decrease gradually 

by the carbonation and by neutralization with the microbially produced minerals or organic acids 

consequently resulting in biodegradation of concrete and also metal rebars used to reinforce the 

concrete (Wei et al., 2013). It is necessary to well understand the long-term structural integrity of 

concrete to predict its ability to contain waste over a long period because there is a constant 

possibility of microbially induced degradation of concrete structures (Turick and Berry, 2016). 

Understanding of interactions between concrete and microorganisms is thus a very important 

step toward the development of more sustainable, better quality, safer structures in DGR 

(Bertron, 2014). 

Some of the microorganisms are capable of inducing concrete deterioration by generating 

various acids such as sulfuric acid, nitric acid or organic acids as a result of their metabolism 

which has a strong capacity to degrade the components of concrete and thus, compromises the 
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reliability of concrete structure (Turick and Berry, 2016; Wei et al., 2013). Aggressive sulfur-

oxidizing bacteria like Thiobacillus thiooxidans and other Thiobacilli (Nica et al., 2000; Rogers 

et al., 2003), Acidithiobacillus (Ling et al., 2014) or Thiobacillus ferrooxidans, acidophilic iron-

oxidizing bacteria capable of sulfur oxidation (Yamanaka et al., 2002) are commonly responsible 

for microbially induced deterioration (MID) of concrete. In contrast, microorganisms can also 

possess the ability of self-healing and sealing of cracked concrete materials (Wiktor and Jonkers, 

2011). This phenomenon is attributed to microbial precipitation of calcium carbonate. 

Incorporation of calcinogenic bacteria helps in the remediation of cracks in the concrete surface 

and also improves its durability (Xu and Wang, 2018). Precipitation of calcium carbonate is 

influenced by ureolytic bacteria; such bacteria are capable of precipitating calcium carbonate by 

the production of urease enzyme. This enzyme catalyzes the hydrolysis of urea to carbondioxide 

and ammonia and subsequently, increases the pH and carbonate concentration in the 

environment (Siddique and Chahal, 2011; Stocks-Fischer et al., 1999). Urea is not a common 

compound in concrete but is mixed with concrete to promote this microbial effect (Chidara et al., 

2014) and also to enhance durability and flowability of concrete (Mwaluwinga et al., 1997). 

Ureolytic bacteria like Sporosarcina pasteurii or some species of Bacillus can enhance the 

compressive strength and reduce the porosity and permeability of the concrete. Bacteria can 

deposit a layer of calcite on the concrete surfaces and within the pores, which reduce the 

capillary water uptake and gas permeability (Achal et al., 2011; Chahal et al., 2012; Luo et al., 

2018). Microorganisms can severely affect the concrete properties and the knowledge about 

them is rather extensive. However, the effect of concrete presence on the naturally present 

microorganisms in the surrounding environment is much less understood through the 

microorganisms in the environment can represent an important source of possible concrete 

influencing microflora. This might be especially true in the case of ILW or HLW repository 

where the bentonite filling and sealing layer rich in indigenous microorganisms could eventually 

come in contact with the outer concrete layer protecting the waste package or the concrete plague 

(Koťátková et al., 2017).  

The major goal of this study is to investigate the changes in indigenous microbial 

community composition and their activity caused by the presence of concrete under the 

LLW/ILW repository relevant conditions. Indigenous Czech BaM bentonite and VITA 

groundwater’s microflora were set to react in the presence of concrete. Such information about 
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the microbial ecology in the presence of concrete can be highly relevant for the LLW/ILW DGR 

concept and its safety. 

2 Materials and methods 

2.1 BaM bentonite and VITA groundwater 

BaM bentonite and VITA water from Josef URC as described in section 2.1 of the chapter 

II were used for the study. 

2.2 Concrete 

Aged low alkaline concrete from Josef Underground Research Centre (URC), Czechia 

used in a European DOPAS project (Demonstration of Plugs and Seals, grant agreement No. 

323273) (Hanusová et al., 2016) was chosen as a material for this experiment. One of the 

required limits of this concrete was to reach the pH of leachate < 11.7, in optimal case pH ≤ 11.5. 

The obtained concrete was crushed in a jaw crusher, milled in a planetary ball mill, and sieved 

on a vibratory sieve shaker with the porosity ≈ 125 µm so that particles were of similar size to 

mix with bentonite. The concrete powder was kept in the anaerobic glove box until the start of 

the experiment to deoxygenize.  

2.3 Experimental set-up 

The experiment was performed under strictly anaerobic conditions (CO2 < 1ppm) in the 

glow box in Research Centre Řež, Prague at laboratory temperature. To avoid contamination 

during sampling, each sample was prepared in a separate reactor bottle. For samples containing 

bentonite and concrete eight reactor bottles were prepared, each one consisted of 15 g BaM 

bentonite (described in chapter I), 15 g of crushed concrete, and 100 ml of VITA water. Further, 

we prepared four control samples containing 15 g BaM and 100 ml VITA water (further called 

bentonite control), two control samples without VITA water consisting of 15 g bentonite, 15 g 

concrete, and 100 ml sterile water (BCW control) and two control samples without the concrete 

and VITA water (15 g bentonite + 100 ml sterile water), further called BW control. All these 

controls were included to distinguish between the effects of each of the reactants used. The 
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experiment run for 2 months and samples were taken in duplicates at the beginning (start), after 

one week (1 w), two weeks (2 w), one month (1 m) and after two months (2 m).   

2.4 Sample processing and performed analysis 

At each sampling time, 100 ml of suspension samples were centrifuged at 11,500 × g for 

10 min to separate the supernatant. The supernatants were used for chemical analysis, the pellets 

were used for chemical analyses, surface and porosity analysis, and DNA extraction. 

2.4.1 pH and Eh measurement  

We measured the pH and Eh of each sample. pH was measured by SenTix 980 combined 

IDS electrode with liquid electrolyte (WTW, Czech Republic). Redox potential (Eh) was 

measured by SenTix ORP-T 900 Pt – Ag/AgCl IDS redox electrode with liquid electrolyte 

(WTW, Czech Republic), and the values were recalculated and reported versus the potential of 

the standard hydrogen electrode.  

2.4.2 Chemical analysis 

Supernatants of each sample were analyzed by ion spectroscopy to determine the 

concentrations of sulfate, nitrate, and dissolved organic carbon (DOC). The concentration of 

each compound was determined using Dionex ICS 90 chromatograph (ThermoFisher Scientific, 

USA) with 8 mM K2CO3 a 1 mM KHCO3 as the mobile phase in a Dionex IonPac AS14A 

column. The flow rate of the mobile phase was 1 ml/min and 10 µl of the sample was always 

injected.  

The calcium content from the dry mass of bentonite, concrete, and their mixture was 

measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The sample 

was dissolved in nitric acid and diluted to the final volume in deionized water before the 

measurement.  

2.4.3 Molecular biological analysis 

Molecular biological analyses were performed on the sample pellets obtained from 

centrifugation and followed the same method as described in section 2.4 in chapter II. 
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2.4.4 Data analysis 

Data processing was performed as described in section 2.4.4 in chapter II. Deseq2 was used to 

determine taxa being mostly influenced by concrete and no concrete environment. Only taxa 

with relative abundance over 5% were selected for Deseq2 analysis and for indicator species 

analysis as well. Indicator species analysis was done using indispecies R library and P values 

threshold was set to 0.05. Furthermore, principal coordinates analysis (PCoA), analysis of 

similarities (ANOSIM) was conducted in Phyloseq package. 

2.4.5 Surface and porosity analysis 

Changes in the concrete surface morphology were observed by using a LYRA3 scanning 

electron microscope (Tescan, Czech Republic) with secondary electron detectors (SE and In-

beam SE mode) and back-scattered electrons (In-beam BSE mode) at 5 kV accelerating voltage. 

Energy-dispersive X-ray spectroscopy (EDS) was used to determine local chemical composition 

using unprepared samples. Subsequently, the samples were modified by gold-sputtered with a 

thickness of 30 nm to provide charging reduction. Cross-section analysis was then performed at 

20 kV accelerating voltage.  

The specific surface area was measured with the Quadrasorb EVO/SI and calculated by 

the QuadraWin software according to the DFT/BET isotherm. Porosity was determined by pure 

liquid N2 adsorption at 77 K. Before the analysis, all samples were degassed under vacuum at 

60°C for 24h. 

3 Results and Discussion 

3.1 pH and Eh measurement 

Initial pH was about 9.3 in all experimental samples with concrete (bentonite concrete sample 

and BCW control). However, by the first week, the pH in these samples increased to 10 and 

remained at this high pH value until the end of the experiment. On the other hand, in bentonite 

control samples and BW control without concrete, the pH was lower (approximately 8.9 at the 

beginning) than in concrete containing samples and the detected pH values further slightly 

decreased throughout the experiment to 8.5 by the end of the experiment (Figure 57). 
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In the beginning, redox potential (Eh) was around -115 mV in all the experimental 

samples and the Eh value gradually decreased in time due to the reduction of oxidized 

compounds by microorganisms.  Samples containing concrete (bentonite concrete samples and 

BCW control) had slightly lower Eh values than samples without concrete (bentonite controls 

and BW control), Figure 57. The lowest detected Eh value was -271 mV in bentonite concrete 

samples at the end of the experiment and -232 mV in bentonite controls. The value of Eh for 

BCW and BW changed from -112mV at the beginning to -178 mV and -65 mV, respectively at 

the end of the experiment.  

Figure 57: pH and Eh values measured in bentonite concrete (bentonite, concrete, and VITA water), 

bentonite control (bentonite and VITA water without concrete), BCW control (bentonite, concrete, and 

sterile water) and BW control (bentonite and sterile water). 

Bentonite environment is generally alkaline (Ye et al., 2014) and the pH of cementitious 

materials is even higher. The concrete we used for this experiment is low alkaline concrete with 

the pH of leachate below 11.5 in the optimal case due to gypsum and soluble alkali content 

(Hanusová et al., 2016). An increase in pH was detected in samples containing concrete 

compared to only bentonite samples as expected and the level remained stable. Constantly high 

pH levels in the concrete samples regardless of detected microbial activity, which generally 

reduces pH (see below) imply a high buffering capacity of the concrete environment. The 

portlandite (Ca(OH)2) and calcite (CaCO3) present in cementitious material establish a chemical 

restraint on the water phase composition. This chemical restraint is caused by the mineral 

transformation from one to another at the phase boundary and represents a chemical buffer in 

cementitious materials (Reardon and Fagan, 2000). Additionally, hyper alkaline matter and 
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predominance of calcium silicate hydrate (CSH) gel in cement can be attributed to higher pH 

than control samples (Savage and Benbow, 2007).  

In bentonite controls, on the other hand, a slight decrease in pH was detected in two 

months. The decrease of pH in the samples is often caused by microbes as a result of their 

respiration, because of the metabolic production of organic (acetic, lactic and succinic) and 

mineral (sulfuric, nitric) acids that decrease the pH in the environment (Bertron, 2014). 

Likewise, fermentation under anaerobic conditions produces an acid that lowers the pH. 

Although the reduction in pH can inhibit the growth of alkaline bacteria, some of these bacteria 

are resistant to fermentation acid (Russell and Diez-Gonzalez, 1997).  

The redox potential reflects the balance between oxidizing and reducing conditions in the 

environment and is influenced by the chemical species present. Resulting redox conditions in the 

environment determines the physiological type of microbes present because microbes possess 

specific metabolic functions based on redox reactions and very sensitively react to the 

environmental conditions (Turick and Berry, 2016). The detected low value of redox potential in 

our samples agrees with the anaerobic condition in which the samples were kept during the 

experiment. The detected Eh was generally lower in concrete containing samples, but this lower 

value can be attributed to the fact, that in pure aqueous solution the Eh value decreases with a 

slope of 59 mV per pH unit (Sparks, 2003). The difference thus does not have to be caused by 

the microbial activity but can be just a function of pH. 

3.2 Chemical analysis 

LLW and ILW may contain organic compounds, nitrate, iron, metal oxides, or hydrogen 

(evolved by corrosion of metal waste/ container). Such compounds are crucial for establishing a 

suitable environmental condition for the growth of microorganisms (Rizoulis et al., 2016). The 

estimation of the particular concentration of these compounds in different materials and wastes 

can thus help us to predict potential microbial activity within the repository. 

Nitrate concentration was about 4.1 to 4.6 g/l in most of the samples at the beginning of 

the experiment. However, the nitrates were rapidly consumed within the first week by nitrate 

reducers and the detected values remained below 0.5 mg/l (detection limit) in all subsequent 

samples. The small amount of detected nitrate in the samples originated probably from secondary 
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environmental contamination of bentonite and/or concrete. The concentration of sulfate in the 

samples containing concrete (bentonite concrete samples and BCW control) was about 4.5-times 

higher (mean 962.13 mg/l), than in the control samples without concrete (mean 209.66 mg/l), 

(Figure 58). The concrete thus represents a significant source of sulfate in the experimental 

system. The detected concentration of sulfate was highest after the first week in the bentonite 

concrete samples when most of the sulfate probably dissociated to the solution. Afterward, it 

gradually decreased to the nearly initial levels. Generally, microorganisms use sulfate as an 

electron acceptor when energetically more favorable compounds such as ferric ions (common in 

BCV bentonite) are very reduced by microbial activity (Bethke et al., 2011). Unfortunately, we 

were not able to measure the concentration of ferric ions in the samples as it is an analytically 

very challenging task. However, based on the genetic data, we assume the ongoing iron 

reduction in our samples (see below). The pattern of sulfate concentration, although variable, 

between the samples, indicated that sulfate was probably not used as the major electron donor in 

the microbial metabolism during the experiment yet. Because we have not detected an increase 

of SRB in concrete containing samples (see below), the detected sulfate decrease in the last 

sampling point is probably not linked with the microbial activity. In bentonite and BW controls, 

the sulfate concentration remained low and rather stable during the experiment except for the 

detected increase in the sulfate concentration in BW control at the end of the experiment. The 

reason for such an increase remains unclear and could represent measurement error. 

Microorganisms need electron donors to reduce the terminal electron acceptors like 

nitrate, iron, and sulfate. For heterotrophic microorganisms whose metabolism is based on 

organic carbon sources, DOC naturally present in bentonite, concrete, or waste itself can be the 

most probable source of carbon and energy in the system (Kirchman et al., 1991). Furthermore, 

groundwater plays a vital role in driving DOC from the terrestrial environment to the anaerobic 

underground ecosystem (Fisher and Likens, 1973). Similarly to the sulfate, the detected 

concentration of dissolved organic carbon (DOC) tends to be higher in samples containing 

concrete (bentonite concrete samples and BCW control, mean 31.71 g/kg) than in bentonite 

controls and BW control without concrete (mean 23.7 g/kg), shown in Figure 58. This result 

implies that the concrete we used might be a significant source of dissoluble organic material. 

Interestingly, the final concentration of DOC in bentonite controls was much higher than the 

DOC concentration detected in all other samples at the end of the experiment (approximately 44 
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g/kg at the end compared to 18 g/kg in the beginning). Such an increase can indicate the ongoing 

microbial acetate production, but we have not measured its concentration in our samples. The 

final concentrations of DOC in other samples except for bentonite concrete samples were also 

markedly higher than detected in these samples before. Further investigation would be needed to 

better understand the DOC concentration evolution in our experimental system.  

Figure 58: Concentration of sulfate, dissolved organic carbon (DOC) and non-soluble calcium in sample 

pellet measured in bentonite concrete sample (bentonite, concrete, and VITA water), bentonite control 

(bentonite and VITA water without concrete), BCW control (bentonite, concrete and sterile water) and 

BW control (bentonite and sterile water). 

The concentration of insoluble calcium detected from the dry mass was, similarly to the 

sulfate and DOC values, much higher in samples with the concrete (mean 45.98 g/kg in bentonite 

concrete samples and BCW control) than in the controls without concrete (mean 12.72 g/kg) 

samples (Figure 58), because the type of cement used in this aged concrete was CEM (calcium-

enriched mixture) II/B-M (Svoboda et al., 2017). Calcium is one of the major components that 

maintain the mechanical properties in concrete. However, its concentration was rather constant 

during the whole course of the experiment in all the treatments suggesting no leaching of 

calcium or calcification (i.e. the change in the Ca solubility) within the samples in two months. 

Similarly, SEM analysis did not reveal any structural or mineralogical changes in the samples, 

see below.  
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3.3 Molecular biological analysis 

3.3.1 Microbial communities characterized by qPCR 

The growth of particular bacteria during the experiment indicates the suitability of the 

environmental conditions to that specific microorganism. An increase in total microbial biomass 

(detected by 16S rRNA) was revealed by the qPCR analysis in all samples regardless of their 

composition (Figure 59). However, microbial biomass detected at the last sampling point was 

several times higher in control samples without concrete, than in samples with concrete (total 

microbial biomass increased 286 times in bentonite control samples and 867 times in BW control 

compared to the initial values but only 59 times in bentonite concrete samples and 37 times in 

BCW control). Such a result implies a strong negative effect of concrete on total microbial 

biomass compared to the bentonite samples.  

When we focus on the functional groups of microorganisms, noticeable proliferation (at 

least 5 times increase in the gene copies) was observed in sulfate, nitrate, and iron-reducing 

bacteria in bentonite control samples without concrete (Figure 59). However, in the presence of 

concrete, the growth of these bacteria was much lower. We detected only 5.8 times increase in 

IRB and 4.7 times increase of NRB in bentonite concrete samples. Interestingly, sulfate reducers 

did not increase their biomass either in the concrete samples (bentonite concrete samples and 

BCW control) or in BW control, where their level remained under detection limit during the 

whole experiment. However, a noticeable proliferation of SRB was detected in bentonite 

controls. These results imply firstly, that the growth of SRB is strongly inhibited by the presence 

of concrete, although concrete represents a large source of sulfate for microbial metabolism. 

Secondly, VITA water might be a primary source of SRB in the experimental system.  

Our qPCR results, demonstrating the microbial inhibition by concrete, well agree with 

another study that was carried on microbial fouling and corrosion of carbon steel in deep anoxic 

alkaline groundwater (Rajala et al., 2017). It showed that the number of bacteria and archaea in 

the presence of concrete was 1000-fold lower, with 620-times lower corrosion rate in comparison 

to natural groundwater without concrete. Relatively small microbial growth in the concrete 

samples might be accredited to the harsh conditions in the concrete compared to the bentonite 

environment, which itself is rather extreme. Concrete can contain additional chemical 
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compounds such as calcium formate which has an inhibitory effect especially on sulfide 

oxidizing bacteria (Turick and Berry, 2016). Similarly, calcium hydroxide may have an 

inhibition effect on microorganisms as has been reported on anaerobic bacteria (Morrier et al., 

2003). On the other hand, loss in bacterial growth or reduction in their metabolic activity can be 

minimized by the adsorption of bacterial cells into concrete pores by encapsulation which 

provides a suitable microenvironment to them and protects them in aged concrete (Xu and Wang, 

2018).  

Figure 59: Relative quantification of changes in microbial abundance. Bentonite concrete – 

bentonite, concrete and VITA water, bentonite control – bentonite and VITA water without concrete. 

BCW control - bentonite, concrete and sterile water, and BW control - bentonite and sterile water. Only 

the Cq values above the detection limit were used for the calculations. Only those genes which had a 

remarkable change in relative value are shown in the figure. Relative values are presented in the log 

scale except for the nirK gene. 

3.3.2 Microbial populations detected by next-generation sequencing 

A diverse community of bacteria was detected in all the samples and the microbial composition 

evolved in time. The exact microbial composition depended on the sample composition and 

differed a lot between concrete containing samples (bentonite concrete samples and BCW 
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control) and bentonite samples without concrete (bentonite control and BW control) as revealed 

in Figure 60. For this reason, we will further describe the changes in microbial composition in 

concrete and samples without concrete separately.  

 

Figure 60: Genera detected by 16S rRNA amplicon sequencing in different samples. 1w – sampling after 

the first week, 1m and 2m – sampling after the first (second) month. Start, 1w, 1m and 2m – bentonite 

concrete samples, C – bentonite control samples (bentonite + VITA water), BW – control samples 

(bentonite + sterile water), BCW – control samples (bentonite, concrete, sterile water), CON – concrete 

powder. Relative abundance is in %. 

Both initial samples containing concrete (BCW_start and start) had a very similar 

microbial composition and the genera composition in these samples was also very similar to the 

genera detected in concrete powder (CON1 and 2) The most frequent genera were nitrate-

reducing facultative anaerobes Pseudomonas, Pseudarthrobacter, Paeniglutamicibacter, 

Pseudonocardia, Promicromonospora, Shingobium or Nocardioides. Furthermore, aerobic genus 

Devosia and NRB genus Flavobacterium were common in concrete powder. Subsequently, we 
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observed a gradual change in microbial composition in our samples during the experiment. 

Facultatively anaerobic genus Bacillus became the most abundant within the first week of the 

experiment and remained prominent until the end of the experiment in all concrete containing 

samples. Within the second month of the experiment, obligately anaerobic chemolithotrophic 

thiosulfate reducing genus Dethiobacter became further significant in concrete containing 

samples and followed by genus Anaerosolibacter. Dethiobacter is capable of performing its 

metabolic activity by oxidation of hydrogen under high alkaline conditions (Sorokin et al., 2008). 

Dethiobacter and Anaerosolibacter can cause MIC of a metal container or MID of reinforced 

concrete containers by the production of sulfide as part of metabolism.  Iron reducing genus 

Thermincola and nitrate-reducing Noviherbaspirillum was another dominating genus especially 

in concrete containing BCW control after the second month of the experiment. Thermincola is an 

obligately anaerobic spore former responsible for the reduction of Fe³⁺ by oxidation of hydrogen 

or thiosulfate (Kunapuli et al., 2007). Iron reducing bacteria are suspicious of altering the 

mechanical properties of bentonite by the reduction of structural ferric ions to ferrous one, which 

can lead to illitization of bentonite and decrease of its swelling ability (Kim et al., 2004) 

In control samples without concrete, the microbial composition of zero-point samples in 

both controls (C_start and BW_start) was very similar. Generally, these samples showed high 

diversity – i.e. high number of genera with very low abundance. Both controls were dominated 

by facultatively anaerobic heterotrophic NRB genera Delftia. This species is a common 

laboratory contaminant detected in various commercially available kits (Salter et al., 2014). 

Because the DNA yield in zero-point samples is generally very low, the possible contaminations 

and PCR bias can play a more significant role in the detected microbial profile of such samples. 

The other detected genera in zero bentonite samples were Anaerobacillus, Bacillus, 

Ochrobactrum, or Pseudomonas, all facultatively anaerobic genera capable of nitrate reduction 

in the absence of oxygen. During the first week of the experiment the microbial composition 

changed, and several different nitrate-reducing facultatively anaerobic genera like Massilia, 

Parapusillimonas, and Pseudomonas were detected. Within one month, the microbial 

composition further changed and the samples became dominated by obligate anaerobes like 

Thermincola and Citrifermentans respiring ferric iron followed by facultative anaerobes such as 

Pseudomonas and Lacunisphaera. In two-months-old control samples without concrete 

Thermincola, Lacunisphaera and Paenibacillus were the most dominant genera in both controls. 
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In the bentonite concrete control, further genera such a genus Dechlorosoma, capable of nitrate 

and chlorate reduction (Achenbach et al., 2001), not-yet described genus Citrifermentans closely 

related to anaerobic iron-reducing genus Geobacter, or Azoarcus were also very frequent. Genus 

Lacusnisphaera is known as an aerobic alkaliphilic thermophile (Rast et al., 2017). However, 

because our experiment was run under strictly anaerobic conditions, the detected Lacunisphaera 

representative could belong to some unidentified species of this genus that may have the ability 

of facultative or fermentative respiration. Citrifermentans (Geobacter), iron-reducing bacteria is 

responsible for the reduction of Fe³⁺ by oxidation of hydrogen or organic compound (Caccavo et 

al., 1994) similar to Thermincola. The nitrogen-fixing genus Azoarcus is another common 

laboratory contaminant (Salter et al., 2014) and as it was not detected in any of the other samples 

during the experiment, we consider is as sample contamination. In BW control after two months, 

the detected microbial composition was quite similar to the one and two-month-old bentonite 

controls but was relatively more enriched in NRB genera Anaerosolibacter and Anaerobacillus 

or acetogenic genus Anaerosporomusa. 

3.3.3 Difference between concrete and without concrete samples 

As was mentioned above, the concrete containing samples differed from the bentonite ones in 

many features such as the availability of nutrients or pH in general. The increased pH due to 

dissolving of Ca(OH)2 from concrete can specifically support the growth of alkaliphilic bacteria 

(Luo et al., 2018) Unsurprisingly, the detected difference in microbial composition between 

concrete containing samples and bentonite controls was relatively high. In all the suspensions, 

we could generally detect gradual evolution in the microbial community composition from the 

facultatively anaerobic nitrate reducers toward obligatory anaerobic genera. However, the 

particular composition was strongly influenced by the presence of concrete as described above. 

When we focus on the facultative anaerobes, the concrete containing suspensions were 

dominated by the genus Bacillus, while the bentonite controls were dominated by the genera 

Lacunisphaera and Pseudomonas that are probably more tolerant to the alkaliphilic environment, 

Figure 60. As for obligatory anaerobic genera belonging to iron reducers, we detected both 

genera Thermincola and Citrifermentans in bentonite controls. Furthermore, at least some 

species of the genus Pseudomonas, common in bentonite controls, are also capable of Fe³⁺ 

reduction (Arnold et al., 1988). On the other hand, in concrete containing samples, the genus 
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Citrifermentans was not detected and genus Thermincola was abundant only in BCW control. 

Such results indicate that the genus Citrifermentans (or Geobacter in a broader sense) might be 

more sensitive to the extreme condition of concrete containing samples.  

To better understand the difference in microbial composition patterns in different 

samples, we performed principal coordinates analysis (PCoA) based on detected operational 

taxonomic units (OTUs). This method revealed spatial distribution corresponding to the 

experimental set-up (Figure 61). The first axis generally clustered the samples according to the 

presence of concrete. On the other hand, the distribution of the samples based on the second axis 

correlated rather with the time and detached the samples from the beginning and the end of the 

experiment. The BCW control samples clustered well with the other concrete containing samples 

of similar age, while BW controls clustered with bentonite controls without concrete, again with 

the time factor being important in the spatial distribution. The PCoA further showed that the 

microbial composition of the concrete powder samples was very similar to the zero points of all 

other concrete containing samples. This means, that the microbial composition of all the concrete 

containing samples was primarily determined by the indigenous concrete microflora at the 

beginning of the experiment, not by the bentonite one. This was also demonstrated by the 

analyses below. The described PCoA pattern well agrees with the detected differences in the 

microbial composition described above. The statistically significant difference between the 

concrete containing samples and the BW and bentonite controls was confirmed also by analysis 

of similarities (ANOSIM, R = 0.2471, p = 0.0299). The presence of concrete thus proves to be 

the most determining factor in detected microbial composition followed by the time factor. The 

main reason probably is the different chemical composition of concrete containing samples and 

markedly increased pH.  

 



 

129 
 

 

Figure 61: Principal coordinates analysis (PCoA) based on detected operational taxonomic units 

(OTUs). 1w – sampling after the first week, 1m and 2m – sampling after the first (second) month. Start, 

1w, 1m, and 2m – bentonite concrete samples, C – bentonite control samples (bentonite + VITA water), 

BW – control samples (bentonite + sterile water), BCW – control samples (bentonite, concrete, sterile 

water). 

To further estimate the particular effects of the concrete and bentonite environment on 

the microbial composition, the Deseq2 analysis and indicator species analyses were performed. 

For the Deseq2 analysis, we included only the genera with a relative abundance of over 5%. 

Using this analysis, we detected genera that are significantly (p ≤ 0.05) more abundant either in 

concrete containing samples or in bentonite samples. The results are presented in Figure 62. 

Genera such as Azoarcus, family Peptococcaceae, Lacunisphaera, Citrifermentans, and 

Thermincola, on the very left top, are bentonite specific while genera such as Bacillus, 

Nocardioides, Pseudarthrobacter or Promicromonospora are highly specific for the concrete 

containing samples. Particular representatives of genus Pseudomonas are enriched both in 

bentonite and concrete samples, which implies that this genus includes various species that can 

be specialized either in concrete or in bentonite environment. 
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Figure 62: Deseq2 analysis showing the genera specific for the bentonite and concrete samples. Only the 

genera with the relative abundance over 5% were included. Each dot represents a separate OTU. 

Bacteria above zero in the y-axis are specific in no-concrete samples (i.e. bentonite) while below are 

genera specifically enriched in the concrete environment.  

Further, indicator species analysis was applied to detect the indicator species in both concrete 

and non-concrete environment. This analysis revealed 11 indicator genera, 8 for concrete 

containing environment, and 3 for non-concrete (i.e. bentonite) environment, Table 19. 

Table 19: Indicator genera for concrete and no-concrete environment. 

Group concrete stat p-value significance 

Promicromonospora 1.000 0.0003 *** 

Pseudonocardia 1.000 0.0003 *** 

Pedobacter 1.000 0.0003 *** 

Paeniglutamicibacter 1.000 0.0003 *** 

Devosia 1.000 0.0003 *** 

Sphingobium 0.999 0.0003 *** 

Pseudarthrobacter 0.999 0.0003 *** 

Nocardioides 0.949 0.0017 ** 

Group no-concrete    

Paenibacillus 0.915 0.0168 * 

Massilia 0.866 0.0071 ** 

Lacunisphaera 0.789 0.0511 . 
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Except for the genus Massilia, all the indicator genera were detected as specific also in Deseq2 

analysis, which generally revealed higher diversity of species specifically enriched in both 

environments.  

We also visualized the relative frequency of the detected indicator genera in our samples to see 

their effect on the overall microbial composition, Figure 63. The indicators of the concrete 

environment dominated the zero-point concrete containing samples, but their frequency 

markedly decreased with the increasing time in the concrete containing samples. On the other 

hand, the frequency of non-concrete indicators was negligible at the beginning in bentonite 

samples, but it gradually increased with the time and the non-concrete indicator genera were 

most abundant in the end-point bentonite samples. Interestingly, the composition of non-

indicator genera in both concrete and non-concrete samples was very different. Because the zero-

point concrete samples were obviously dominated by the concrete indicator genera and the 

detected microbial diversity and abundance in zero-point bentonite samples was generally 

negligible (probably due to low DNA extraction efficiency in bentonite environment), we can 

assume, that the majority of the remaining (i.e. non-indicator) genera detected in concrete 

containing samples might actually originate from bentonite. However, the composition of these 

non-indicator genera in concrete samples is generally very different from the composition 

detected in non-concrete samples, which again implies that the evolution of indigenous bentonite 

microflora is strongly influenced by the presence of concrete. 
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Figure 63: Indicator genera frequency in studied samples. Blue hatching – indicator genera for concrete, 

red hatching – indicator genera for no-concrete controls. 1w – sampling after the first week, 1m and 2m – 

sampling after the first (second) month. Start, 1w, 1m and 2m – bentonite concrete samples, C – bentonite 

control samples (bentonite + VITA water), BW – control samples (bentonite + sterile water), BCW – 

control samples (bentonite, concrete, sterile water), CON – concrete powder. 

3.3.4 Effect of bacteria on concrete 

Metabolites (such as organic acids, mineral acids, or sulfur compounds) produced by 

microorganisms may be chemically aggressive to the cementitious material. However, the impact 

of microorganisms on the concrete structure is still not well understood in terms of biological 

deterioration mechanism (Bertron, 2014). Microorganisms can form a biofilm by assembling 

themselves, which makes them more powerful and resistant to harsh and severe environmental 

conditions (Bertron, 2014). The formation of such microbial film on the concrete surface may 

accelerate the biological deterioration. On the other hand, a biofilm on the concrete surface can 

also form a passive layer and thus also protects the concrete against further deterioration. 

However, over time the biofilm becomes porous, fragile, and weak to break down having no 

more protecting effect (Paula et al., 2016).  
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Although we primarily focused on the effect of the concrete environment on the bentonite 

microflora, we also attempted to estimate the possible effect of present microorganisms on the 

concrete. Under the anoxic condition, nitrate reducers can induce CaCO3 precipitation through 

the reduction of nitrate via dissimilatory nitrate reduction pathway, although the production of 

CaCO3 by these denitrifying bacteria is much lower than e.g. by ureolytic bacteria (Van Paassen 

et al., 2010). Bacillus, the most abundant NRB genus detected in our bentonite concrete samples, 

is a spore-forming facultatively anaerobic microorganisms that utilize nitrate in the absence of 

oxygen as an electron acceptor by oxidation of organic compound (Brenner et al., 2005). 

Interestingly, some species of Bacillus such as B. sphaericus and B. pasteurii are ureolytic 

bacteria that are capable of hydrolysis of urea and precipitate CaCO3 which is the most powerful 

agent to heal the crack concrete biologically (Luo et al., 2018). The reaction rate of enzymatic 

hydrolysis of urea to precipitate bio-CaCO3 is approximately 10
14

 times faster than the chemical 

rate (Tziviloglou et al., 2016). Although ureolytic bacteria favor pH values 8 to 9 for the 

enzymatic activity to precipitate calcite (Stocks-Fischer et al., 1999), a considerable amount of 

urease activity was still discovered even at pH 10.5 (Qiu et al., 2014).  

As genus Bacillus was common in our samples, we analyzed the samples for the possible 

biomineralization effect. Firstly, we performed scanning electron microscopy (SEM), and 

further, we measured the porosity in the studied samples.  

3.4 Surface and porosity analysis 

By the SEM analysis, we did not detect any visible morphological differences either in the 

bentonite concrete samples or in the BCW controls during the experiment (Figure 64). No 

increase in the production of visible calcite minerals was observed, which is in accordance with 

the stable level of Ca concentration detected during the whole experiment, see above. 
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Figure 64: SEM micrograph of the samples: A) bentonite concrete sample (bentonite, concrete and VITA 

water) start, B) bentonite concrete sample end (2m), C) BCW (bentonite, concrete and sterile water) start, 

D) BCW end (2m). The scale bar used for each image was 10 µm. 

We have not detected any noticeable changes in the pore size distribution in the concrete 

containing samples during the experiment (Figure 65). The analysis has been carried out in a 

range from 0.96 to 19 nm half pore diameter. The pore size distribution pattern detected in the 

concrete containing samples copied the pattern typical for bentonite itself with only a negligible 

effect of the concrete. This result indicates, that no concrete biodegradation or biomineralization 

resulting in increasing or decreasing pore size probably occurred within the material in our 

experiment, which agrees with the results of chemical analyses and SEM described above. 
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Figure 65: Pore size distribution evaluated by DFT method. On the left - comparison of the pure 

bentonite and concrete powder. On the right - comparison of the concrete containing samples at the 

beginning (start and BCW-start) and the end of the experiment (2m, BCW-end). Start and 2m – bentonite 

concrete samples, BCW – control samples (bentonite, concrete, sterile water). 

4 Summary 

Concrete (cementitious material) is used not only for the encapsulation of low and intermediate 

level waste but will be an important part of engineering barriers of different HLW concepts. In 

both cases, the concrete will come into contact both with the bentonite or other clays and the 

groundwater. The pH of the concrete is high due to high gypsum and soluble alkali content, 

which makes it a relatively unhostile environment for the microbial activity. Nevertheless, there 

are many alkaliphilic microorganisms capable of surviving in high pH environments. Moreover, 

over the period of waste disposal, the pH of the alkaline concrete is expected to decline gradually 

by the carbonation and by neutralization with the microbially produced mineral or organic acids 

consequently resulting in biodegradation of concrete. However, the microbial activity might have 

not only a detrimental effect but also a beneficial one (self-sealing and healing of crack) on 

concrete stability. Although the knowledge about the microbial effect on the concrete properties 

is relatively broad, little is known about the effect of concrete environment on the indigenous 

microorganisms in the surrounding environment although it represents a natural source for the 

future microbial activity influencing the concrete. Our study aimed to develop knowledge about 

the effect of concrete on microbial ecosystems under repository relevant conditions. 

This study was conducted under the strictly anaerobic conditions for two months using 

samples prepared from aged concrete, Czech BaM bentonite, and anaerobic VITA groundwater 

from Josef URC (Czech Republic) and including several controls.  Bentonite samples with 
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concrete had a higher pH than the bentonite samples without concrete. Chemical analysis 

revealed that available nitrate was consumed fast by the microbial metabolism in all the samples 

and sulfate, which was especially rich in concrete containing samples, has not been used as a 

preferential electron acceptor yet. The results also suggested that the growth of SRB might be 

limited in the concrete environment, although longer experimental times would be needed to 

address this particular question. Moreover, the presence of concrete has strongly reduced the 

relative abundance of bacteria detected by the qPCR compared to the bentonite control samples. 

Hence, the presence of concrete generally has a negative effect on overall microbial activity. 

Nevertheless, several bacterial genera such as Bacillus, Dethiobacter, Anaerosolibacter 

Promicromonospora, Pseudonocardia, Pedobacter, Paeniglutamicibacter, Devosia, 

Sphingobium, Pseudarthrobacter or Nocardioides were able to proliferate in the concrete 

environment and were even specialized in this environment. On the other hand, genera like 

Massilia, Citrifermentans (Geobacter), Paenobacillus, or Lacunisphaera were probably limited 

by alkaline pH and were dominant in bentonite control samples. Interestingly, some genera like 

Thermincola and Pseudomonas were found to successfully proliferate in both environmental 

conditions.  

Most of the bacteria detected in our samples might have a negative impact on repository 

safety. They can accelerate canister corrosion (thiosulfate and sulfate reducers), mineralization 

and dissolution of bentonite (iron reducers), acid production enhancing MID of concrete or they 

can generate gasses (e.g. nitrate reducers) in the repository environment which may result in the 

fracture of concrete or host rock leading to release of radionuclides in the event of waste 

container failure. Nevertheless, some species of Bacillus (nitrate reducer) are capable of 

hydrolysis of urea and precipitate CaCO3 that heals and seals the crack on the concrete 

biologically. Although this genus was common in our concrete containing samples and several 

other NRB genera should be also able to precipitate CaCO3 as the byproduct of their metabolic 

activity, we have not detected any signs of the ongoing biomineralization processes in our 

samples. Therefore, further research is necessary to estimate the possible biomineralization or 

biodegradation activity of indigenous microorganisms in cementitious materials that might be 

important for repository safety. 
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The problematics of microbial activity in the geological repositories of radioactive waste 

is a relatively new scientific topic in the Czech Republic. Institute for Nanomaterials, Advanced 

Technologies and Innovation, which is the only one dealing with this topic in the Czech 

Republic, has just started to participate on the repository research when I began my Ph.D. 

studies. The results summarized in my thesis thus demonstrate gradual knowledge development 

since that time and all of them are relevant to the Czech waste disposal concept. I have used the 

multidisciplinary approach combining most advanced molecular genetic techniques together with 

the specialized microscopic and chemical analyses to determine relative abundance and 

microbial community structure and estimate the possible microbial effects on the repository-like 

environment. The main benefits of my thesis, therefore, are in improving the knowledge 

necessary for the safety assessment of the future repository program in terms of expected 

microbial processes, which might help to establish guidelines for the long-term safety of the 

HLW repository in the future. 

Concerning microbial characterization, it was found that: 

 VITA groundwater source from Josef URC was selected to be the most suitable for the 

studies on microbial activity at repository relevant conditions, because this source was 

dominated by anaerobic microorganisms, primarily sulfate reducers such as 

Desulfobulbaceae, Desulfomicrobium, Desulfovibrio and Desulfovibrio. These genera are 

expected to exist in the reducing conditions in repository environment and may accelerate 

the corrosion of waste containers. VITA water source was also rich in available water 

quantity compared to other sources. 

 Water from Bukov URC was collected from seven different sources plus two biofilms and 

the results demonstrated a strong anthropogenic impact in almost all the sources. 

 Microbial communities present in homogenized and raw (unhomogenized) bentonite 

samples from Černý vrch were very similar in terms of their OTU compositions, but the 

detected OTUs varied in quantity. Microorganisms such as Thiobacillus, Gallionella, 

Acidobcateria, and Nitrosomonas capable of utilizing sulfur, iron, and nitrite as electron 

donors and Rhodobacteraceae, Brevundimonas and Novosphingobium capable of 

utilizing nitrate as electron acceptor were present in both bentonite samples. 
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 The similarity of the microbial communities obtained from two bentonite samples 

suggest that the structure of the bacterial community was not much affected by the 

commercial homogenization process.  

Concerning microbial activities and survivability under repository relevant conditions, it was 

found that:  

 Anaerobic condition enhanced the microbial activity of indigenous microorganisms in 

Czech BaM bentonite. Gradual change in microbial community composition of bentonite 

and VITA water determined by the prevailing conditions was observed. Indigenous 

anaerobic microbial community in bentonite generally evolved from the nitrate reducers 

through the iron reducers to the sulfate reducers. Iron and sulfate reduction are important 

processes relevant for DGR long-term stability because they can change hydraulic 

conductivity and alter permeability and porosity of bentonite (due to illitization caused by 

IRB) or they can promote corrosion of waste metal container (caused by SRB or NRB) 

which can enhance the release the radionuclides to the biosphere. 

 Aerobic application of 19,656 Gy total absorbed dose of Gama radiation at the constant 

dose rate 13 Gy/hr did not completely eradicate bacteria present in bentonite, but it caused 

the decline in total microbial biomass in time.  

 Gram-negative non-spore-forming microorganisms dominated the aerobic irradiated 

samples, although spore-formers are generally supposed to be more radiation-resistant. 

Anaerobic samples were dominated by Gram-positive spore-forming bacteria. 

Concerning the effect of microorganisms on the waste container corrosion, it was observed that: 

 Corrosion rates were found higher in biotic samples than abiotic samples signifying the 

corrosion caused by microbial activity.  

 Exposure of carbon steel with (i) only natural VITA groundwater and (ii) VITA 

groundwater in SBPOW (in 1:9 ratio) resulted in both cases in the formation of a biofilm 

and corrosion product layers indicating MIC. Biofilm on the steel surface-enhanced and 

localized the corrosion process. The dominance of SRB (Desulfomicrobium and 

Desulfovibrio spp.) in the corrosion experiment was detected only with VITA 
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groundwater and the dominance of NRBs (Methyloversatilis, Brevundimonas, and 

Pseudomonas) with inoculation of VITA water in SBPOW was observed.  

 Presence of mackinawite, a corrosion product usually attributed to SRB activity was 

confirmed by Raman spectroscopy in both experiments.  

 In the experiment run in only VITA water, the carbon steel polarization resistance 

decreased by a factor of 2 indicating a higher corrosion rate than the sterile control sample. 

Likewise, the weight loss measurement technique in SBPOW inoculated by VITA water 

(9:1) revealed that the average corrosion rate on carbon steel for the sterile control sample 

and the sample with microorganisms was 1.28 µm/yr and 3.81µm/yr, respectively.  

 In experiment with SBPOW inoculated by VITA water, a high abundance of 

Methyloversatilis positively correlated with the corrosion rates. This corrosion experiment 

confirmed that NRB in addition to SRB represent a potential threat for bio-corrosion of 

the waste container.  

Concerning the effect of concrete on the bentonite and indigenous groundwater microflora, it 

was shown:  

 The presence of concrete had a negative effect on bacterial activity and strongly reduced 

relative abundance of bacteria in all studied samples.  

 The growth of SRB might be limited in the concrete environment, although longer 

experimental times would be needed to address this phenomenon 

 Genera such as Bacillus, Dethiobacter, or Anaerosolibacter were able to proliferate in the 

concrete environment and were even specialized in this environment while the genera like 

Massilia, Citrifermentans (Geobacter) or Lacunisphaera were probably suppressed by 

concrete, but were dominant in bentonite control samples. Interestingly, some genera like 

Thermincola and Pseudomonas were found to successfully proliferate in both conditions. 

Most of these bacteria might have a negative impact on repository safety causing MIC of a 

metal container, MID of reinforced concrete containers, alteration of bentonite structure or 

gas production. 
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All my experiments revealed, that the microbes might play a very important role in the 

DGR-like environment under certain conditions, and microbiology in relation to the nuclear 

waste repository safety is thus highly relevant topic. Most of my research was conducted under 

repository-simulating laboratory conditions, which was necessary to gather basic knowledge and 

also laboratory skills with this very demanding field of expertise. Our future research should rely 

on these preliminary results and extend them in the following laboratory and in-situ projects. 

Further laboratory research is necessary to estimate the possible effect of microorganisms 

on the alteration of bentonite or biomineralization or biodegradation activity of indigenous 

microorganisms in cementitious materials that might be important for DGR stability. On the 

other hand, long-term in-situ studies are needed to better understand the fundamental 

mechanisms of MIC in deep geological environments and to offer a realistic assessment of the 

contribution of MIC to the overall corrosion of metal containers. 
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