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Abstract

Iterative methods for solving variational inequalitiesimfinite dimensional Hilbert spaces as
a rule require some discretization. This leads to variatiorequalities over families of spaces.
In the present paper this problem is addressed by an itenadthod with only a finite number
of steps at each discretization level. First, abstract odsthare studied and later an optimal
control problem with elliptic state equations and some looamthe controls is considered. The
discretization technique rests upon a nested family ofguigse lineaC®-elements conforming
finite element discretizations.
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I ntroduction

The solution of variational inequalities in function spacdten requires discretizations as well
as iteration methods for solving the obtained finite dimenai problems. Similarly, the practi-

cal application of iteration methods in function spaces adeaneeds some finite dimensional
approximation of the iteration procedure. Both processes discretization and iteration, are
not finite. The aim of our paper is to provide a sketch of thesdéeveloped in [3] for a new

iteration-discretization method for variational ineqtyaproblems over the fixed point set of
a quasi-nonexpansive operator which bases on appropxitgeseons to families of problems

and mappings. We give partially an overview over the proldetting and illustrate underlying

analytical results. The related proofs can be found in [3].

1 Variational Inequalities over Sets of Fixed Points

Let .7 denote a real Hilbert space with the inner prodiict and the related norm- || and
T : 2 — 2 be a quasi-nonexpansive operator, i.e. an operator with FxX) and

|ITu—2|| < |ju—Z] forallue .7, forallze FixT,

where
FiXT :={ve #Z : Tv=Vv}.



Further, let a mapping : 77 — ¢ be given which i-Lipschitz continuous ang-strongly
monotone ovep?’, i.e. with somek > n > 0 holds

|7 (u) — Z (V)| < K|lu—V| forallu,ve 7 (1)

and (F(UW)—ZF(V),u—V)>nllu—v||? foralluve 7. (2)

We consider the problem, call&édP(.%# ,FixT),
Find u € FixT with
(Z(u),u—uy >0foralluecFixT. (3)

Since FixXT is non-empty, closed and convex there exists a unique eolutof the problem
VIP(.Z ,FixT). Problems of this type are considered in e.g. [1], [5], [8Hl ahe book [2]
provides a comprehensive discussion of them.

Having infinite-dimensional Hilbert space®” in mind, the numerical treatment of
VIP(.Z FixT) requires an appropriate discretization. L& C 27 denote a family of nested
closed subspaces afd : 77 — 7 a family of quasi-nonexpansive operators that satisfy
Fix Ty C FixT and ) Fix T # 0. Further, let{ .7}y o with % . 7 — J; be a sequence of

k=0
operators which are-Lipschitz continuous ang-strongly monotone over#;. Now, instead

of VIP(.Z,FixT) we will consider the following sequence of probleMi&(.%, Fix Ty)
Find ¢ € Fix Ty with
(F(TF),u—UF) > 0for all u € FixTy. (4)

The corresponding conditions for the approximation willdgpesented in the further part of the
paper (see Theorem 1). As foilP(.%,FixT) the made assumption guarantees that each of
the problemsVIP(.%, Fix T) possess a unique solutiof. However, we will not solve each
problemVIP(.Z, FixTy), but propose and analyze an iteration-discretization guore that
approximate the solution ofIP(.#,FixT) by simultaneously performing iteration steps and
refining the discretization.

2 Iteration Methods Based upon Families of Operators

With u € (O,i—’}) and {Ax}e o C (O,u] we consider the following iteration for solving
VIP(Z,FixT):
U = (1 = A Zi) T, (5)

wherel denotes the identity operator anie .77 is arbitrarily chosen. An alternative recursion
is defined by
U = Tie (1= A Fi U, (6)

which we study later under the additional assumption thatojeratordy are projections on
closed convex sets. Both iterations can be seen equivatentr@insformations. Despite the fact
that the sequences generated either by (5) or by (6) do notidei we use the same notation
since in the sequel we clearly distinguish which of the iiere is applied. First, we analyze
the iteration (5). Denote

S= (I = AF) T (7)



Iteration (5) can be shortly written in the form
Ul = sk,

Letp € (0,%’}), define

T::l—\/1+u2K2—2un. (8)
Sincen < k, consequentlyr is well defined and we havee (0, 1].
Lemmal Letu € (07 %72) Then the operators (G= | — u.% satisfy
1Gx—=Gyyll < (1—T1)lIx—y|| ~ forall x,ye .
From the lemma above with (7) we obtain
Corollary 1 Letu € (O,i—’%) andAy € [0, u]. Then
AT

|Scu—Sv|| < (1— T) || Tku— TiV|| forall u,ve ..

For the further analysis we make the assumption:

There exist € (] Fix T and some € R such thaf|.Zz| < ¢ (9)
k=0

for all k > 0. Thek-Lipschitz continuity of % for anyr > 0 yields the boundedness [pf#u||
foranyue B(zr) :={ve 4 |v—2z|| <r}.

Lemma?2 Let P’ € 2 be arbitrary and{u"}@":0 be generated by (5). Then the sequences
(U)o, { ATUR g and {Teuk — Prixt UK} are bounded, wheregRt denotes the metric
projection ontoFixT.

Define )
kT
ay = —— (10)
H
and
W K2 k 0K 7 0K
By = ak7<|]<§4’ku 12+ 2(FATu" — 40", Fu >) (11)

It is clear thatay € (0, 1].
Lemma3 Let 1 be given by (5) and € Fix Ty be the unique solution of V[BZ, Fix Ty).

Then
Ut — )12 < (12— ag) U — OF)12 + awBye (12)

Before we turn to the convergence theorem we provide thevollp auxiliary result.



Lemma4 Let{ac},’ , C R, be a sequence satisfying the inequality
A1 < (1—ak)ak+ akBy+ Vi (13)
where {ay}e o C [0,1], {Brteoo C Ryy {Vitkeo: C Ry. If S g0k = oo, limsup B, <0

andyp oV < +othen
lim ax = 0.

k— o0

Theorem 1 Let U € FixT be the unique solution of V(B ,FixT) and letd® be the unique
solution of VIR.%, Fix Tx). Suppose that. # ¥}y is bounded and that

S N~ < +eo. (14)
k=0

Let{Ak}x_o C (O, 1] be a sequence with
;!i_r]l,)\k =0 and kZO)\ k = +oo. (15)
Then for any 8 € J# the sequencégu"}‘fzo generated by (5) converges stronglyuto

3 Iterations by a Sequence of Contraction Mappings

Now, we study the convergence behavior of the alternatemtion process (6), i.e. the case
Where{u"}[f:0 is generated by the iteration

Ukle = VkUk =Ty (| —A kﬁ\k) Uk. (16)

For this type of iteration we apply metric-projections agi@orsT,. These operators are non-
expansive. Unlike in the preceeding section here the pdeasiy have not to tend to zero.
For the operatorsy = T (I — Ax%k) with Lemma 1 forA := 1 we obtain

IIVku—Wev|| < alfjlu—v|| forall u,ve 4, (17)
whereo :=1—1 < 1. Further, the may :=T(l —A.%) is assumed to satisfy

IVu=VyV|| < allu—v| forall u,ve 7. (18)
As a consequence the operatgrgndV possess unique fixed pointsandu, respectively, i.e.,

K=V, k=0,1,2.. and u=V0Q (19)

Theorem 2 Let the conditions (17), (18) be satisfied anddeandu® denote the unique fixed
points of the operator V and\Vrespectively. Assume that the approximation property

S i < +oo (20)
k=0

holds. Then for any Ue % the sequencééu"}°k°:o generated by (16) converges to the fixed
pointu of V.



Proof With the fixed point property of“for the operato¥ holds
U — T = | = || < o] |u = ¥
With the triangle inequality this yields
UL — T < (Ut — O (|0 - 0P| < o= O O - T
and we obtain
Ut — Y| < ol — O || 0F — O] 4 (0Tt —all, k> 0. (21)
Let defineay := ||uk— UK||, ax:=1— 0o, B, :=0and
Vie:= ([0 = + o — .
Then (21) can be expressed by (13). Triviaﬁgy ok = 4o and limsup B, < 0. The made as-

sumption (20) yleldsz Yi < +o0. Now, we can apply Lemma 4 and obtaln Ilmk k|| =
With (20) this completes the proom

4 An Optimal Control Model Problem

Next, we apply the iteration method introduced above to seanational inequality problem
that arises from the optimality criterion of an optimal aahfproblem with bounds upon the
controls.

Let Q ¢ R? be some open convex polyhedron dndts boundary. Consider the optimal
control problem

y,u) 2/y d / — min! (22a)

s.t.—Ay=uinQ, y+%:0 onl, ueQ:={u:u<b a.e. inQ} (22b)

with givena > 0, d € L»(Q) andb € R. The state equation is understood as weak formulation.
Let Y := H(Q) be the Sobolev space of functions orthat possess the first order weak
derivatives inL(Q). Further, we le = L»(Q). Definea(-,-) : Y xY — R by

a(u,v) ::/Du-Dv+/uv forallu,veYy.

Now, the weak formulation of (22b) is given by
yey: a(y,v) = (u,v) forallveY. (23)

The Lax-Milgram Lemma (cf. [4]) guarantees that for ang U the equation (23) possesses
a unique solution. This defines a linear oper&otJ — Y by

SueY: a(suv) = (u,v) forallveyY (24)



and with the ellipticity constant > 0 this satisfies
ISuls < lulo (25)
Using the operatoBwe obtain the reduced form of (22)
J(u) := %(Su— d,Su—d) + %(u, uy— min! st ueQ. (26)

This problem has a unique solutiare Q and this solution can be characterized by a variational
inequality that satisfies the general assumptions madeedboithe abstract problem (cf. [4],

[7D.

Theorem 3 The problem (26) possesses a unique solutienQ. Thereu € U forms the solu-
tion of (26) if and only if
(J(@,u—0) >0 forallue Q (27)

holds.

The structure od(-) yields
J(u) =S (Su-d)+au, (28)

whereS" denotes the adjoint & given by
a(zw) = (zv) VzeY and S'vi=w

Now, we can show that (27) is of the considered abstract tfmest, the Hilbert space? is
just the spac&) = L»(Q). The setQ C U is closed and convex. Thus, the metric-projection
Po:U — Qis well defined by

PoucQ: |Pou—ullo < [[v—u]jo forallve Q,

and we have
ueQ <= ucFixPRy.

FromQ # 0 and from the nonexpansivity 8% we obtain thall := Pq is a quasi-nonexpansive
operator. Further, the operatér : U — U is defined by

ZFu:=S(Su—d)+au.
Trivially, it is Lipschitz continuous because df— H?(Q) this yields
| Fu—Zv|| < (IS IS+ a) |[u—V| forallu,ve U
and with (25) we obtain
1
| Fu—Zv| < (?qta) |lu—v|| forallu,veU. (29)
Further, we have

(Fu—Zv,u—v) > allu—v||?> forallu,veU.

This proves that the problem (27) satisfies all assumptioadenfior the general problem. As
a consequence some parameter 0 can be found such that the iteration

U =Tk —A2d), k>o. (30)

for any u® € U converges to the optimal solutian€ Q of the considered control problem.
However, the iteration (30) is in the function spatand requires an appropriate discretization.



5 Familiesof Conforming Discretizations

Let Uy C U, Yk C Y we apply a piecewise line&®-discretization over nested famili€sZ}
of uniformly regular triangulations (see [4]). Witix we denote the maximal diameter of the
triangles in{ %}. We denote the related grid points By := {xkvl}'j\'il. We have

Q€ Qui1, k>0 (31)

Let ¢ j € C(Q2) be piecewise linear overi with

kai(Xk’j)=5ij, i,j=1,...,N,, k>0.

g

This means we assunj@, ; } to form a Lagrangian basis b as well as ofYy, where

Uk =Y = spaﬂ{ P }']\Iil

With (31) this implies UgCUg1 C---CU, Yk CYa1 C---CY.
For givenu € U the conforming discretization of the state equations hagddrm:
Yk € Yk ! a(yk,Vv) = (u,v) for all v e Y. (32)

Again, the Lax-Milgram Lemma implies that for amyc U problem (32) possesses a unique
solution. Thussu := y defines linear mapping& :U — Yy C Y. Let

Qu:={ueUy: u<b}.

This yields the following discrete problems
1 a .
J(u) = E<S4<u—d,5‘ku—d> + E(u,u> — min!  s.t. ue Q. (33)

Problem (33) has a unique solutiop € Q. Analogously to the continuous case we define
kU — Y¢ by
Fui=S(Su—d)+au forallue U

andTy := Pq,, the metric-projection ontQy. Then
Ujr1 = Te(uj — AFyj), j=>0. (34)

forms an iteration technique on the discretization ldwelFor sufficiently smallAy > 0 the
sequence generated by (34) converges to the unique solfftifrthe discrete control problem
(33). As mentioned in Section 3, there are two different sypkiterations. Instead of (34) we
may also apply iteration-discretization method

Ukr1 = Tk(Uk — AFuk), k=>0. (35)

with appropriate parameteds, > 0. This recursion differs from (34) by acting on a family of
discrete problems, where on each discretization level amhaximal number of iteration steps
Is performed. In particular, if the discretization changesach step then (35) means that only
one iteration step is performed per discretization.

Now, we derive that (35) fulfills the assumptions made in ®ac3. For the proofs we refer
again to [3].



Lemma5 Let Uy # 0 thenFix Ty # 0, k > 0 holds. Further, we have
Fix Ty C Fix Ty 1 C FiXT k> 0.

Lemma6 The continuous optimal control problem (26) has a uniqueitsmh u and for any
k > 0 the discrete control problem (33) possesses a unique salUfic Q. Further, there is
a constant ¢ O with

|7 <c, k=>0.

Theorem 4 LetU € Qy denote the solution of the discrete problem (33) ameiQ the solution
the original continuous problem (26). Then there existsm@stant c> 0 such that

|o*— 0 < che. (36)
In principle, the estimate given in Theorem 4 could be refiiwed
ok~ @] < chy’?

if the technique proposed in [6] is applied to the discretraof the elliptic control problem

under consideration. In our application, however, the bldi@6) is already sufficient to ensure
the convergence for simple refinement strategies. Indéed is generated by subdivisions
of all triangles using the midpoints of all edges then we iobiig, ; = hx/2 and consequently

Y hg <+ holds. Thus, the proposed iteration-discretization tepiemconverges.
=0

Conclusion

The present paper provides some theoretical approach smtloétaneous refinement of the dis-
cretzation of function spaces and iterations for solvingateonal inequality problems over the

fixed point set of a quasi-nonexpansive operator in Hilbgaices. This approach forms some
basis for implementable algorithms because it avoids dasfaite processes. The increase
the efficiency of the discussed methods further improveseng. preconditioning, have to be
investigated in the future.
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ITERACNE—DISKRETIZACNI METODY PROVARIACNI NEROVNOST

Iterami metodyproteSeri variamich nerovnositv Hilbertovich prostorecmekonéoedimenze
vyZzaduj diskretizaci.To vedek feSeri posloupnostvariamich nerovnositv prostorectkoneme
dimenze.Tato prace sevénuje iteramim metodan, kterevyzaduj pouzekonemy pocet krokl
na kazde diskretizaoi Grovni. Nejprve je studovaa abstraktin Gloha a naslednekonkréni
Uloha optimalniho fizeri s eliptickou stavovourovnici a s omezeimi na fidici proménnou.
Diskretizacge provedengomod posloupnostdo sebevnofenich po Castech linearnich, spo-
jity ch, konformrich konemch prvkl

EIN ITERATIONS-DISKRETISIERUNGS-VERFAHREN FUR EINE
VARIAT IONSUNGLEICHUNG

Iterationsverfahrezur Behandlungvon Variationsungleichungeim undendlichdimensionalen
Hilbert-Raumen erfordernin der Regeleine Diskretisierung.Dieseflihrt auf Variationsungle-
ichungeribereinerFamilievonRaimen.In dervorliegenderArbeit wird diesedProblen durch
einlterationsverfahremit einernur endlichenZahlvon Schrittenje Diskretisierungsniveale-
handelt.Zun&hstwerdenabstrakteMethodenuntersuchund spaer aufein Problen deropti-
malenSteuerungnit elliptischenZustandsgleichungennd SteuerrestriktioneangewandtDie
Diskretisierungerfolgt durcheinesichverfeinerndeamilie stickweiselinearer,konformerC®
finiter Elemente.

METODA ITERACYJNO-DYSKRETYZACYJNA DLA NIEROWNOSCI
WARIACYJINEJ

Metodyiteracyjnedlanierbwnaosad wariacyjnyd w nieskorczenie-wymiarowyclprzestrzeniach
Hilbertazazwyczawymagajadyskretyzacji.Ta z kolei prowadzido nierownosci wariacyjnych
okreslonychnarodzinieprzestrzai. W niniejszejpracydla tegoproblemustosujemymetode
iteracyjnaw ktorej nakazdym poziomiedyskretyzaj przeprowadzanycjestskorczeniewiele
krokow. Najpierwbadamymetodyabstrakcyjnektore nastgnie stosujemydo problemustero-
waniaoptymalnegaz eliptycznymrownaniemstanui z ograniczeniamna sterowanie. Przy
dyskretyzacjistosujemyrodzinezageszczajaych sie elementav skorczonych,ktére sakawat-
kamiliniowe, ciagte i konforemne.





