
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gmcl19

Download by: [Technicka Universita V Liberec] Date: 24 February 2017, At: 04:50

Molecular Crystals and Liquid Crystals Science and
Technology. Section A. Molecular Crystals and Liquid
Crystals

ISSN: 1058-725X (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/gmcl19

Ultimate Mechanical Properties of Thermally
Exposed Basalt Filament Yarns

Jiří Militký & Vladimír Kovařiř

To cite this article: Jiří Militký & Vladimír Kovařiř (2000) Ultimate Mechanical Properties of
Thermally Exposed Basalt Filament Yarns, Molecular Crystals and Liquid Crystals Science
and Technology. Section A. Molecular Crystals and Liquid Crystals, 354:1, 55-62, DOI:
10.1080/10587250008023602

To link to this article:  http://dx.doi.org/10.1080/10587250008023602

Published online: 24 Sep 2006.

Submit your article to this journal 

Article views: 32

View related articles 

Citing articles: 2 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=gmcl19
http://www.tandfonline.com/loi/gmcl19
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10587250008023602
http://dx.doi.org/10.1080/10587250008023602
http://www.tandfonline.com/action/authorSubmission?journalCode=gmcl19&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gmcl19&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10587250008023602
http://www.tandfonline.com/doi/mlt/10.1080/10587250008023602
http://www.tandfonline.com/doi/citedby/10.1080/10587250008023602#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/10587250008023602#tabModule


M d  O?.v lindLiq Cryt., 2000, Vol. 354. pp 55-62 
Reprints available directly from the pubhsher 
Photocopying permitted by license only 

0 2wO OPA (Overseas Publishers Association) N.V 
Published by license under the 

Gordon and Breach Science Publishers imprint. 
Printed in Malaysia 

Ultimate Mechanical Properties of Thermally 
Exposed Basalt Filament Yarns 

JIki MILITKY and VLADIMfR KOVAEI? 

Depurtment of Textile Materials, Techrzicul University of Liberec, 461 I7 Liberec, 
Czech Republic 

Fresh basalt fibers are practically amorphous. Due to high temperature action these fibers 
have ability to partially crystallize. This form of basalt fibers can be more brittle and their 
strength can be too low. In this contribution the strength of basalt filament yams is investi- 
gated at room temperature and after tempering to the 50, 100, 200, 300, 400 and 500°C. 
Structural changes of fibers are identified by scanning electron microscopy. The strength 
drop of basalt filaments afte: long term temperature exposition is described by the linear 
spline nonparametric model. 
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1. INTRODUCTION 

Basalt fibers as well as glass fibers can be used for production of high 

temperature resistant and chemically inactive products. Main problems of 

basalt fibers preparation are due to gradual crystallization of some structural 

parts (plagioclase, magnetite, pyroxene) and due to non-homogeneity of melt. 

Basalt is therefore still used mainly for molded products (flag stones, pipes) 

with increased abrasion resistance, temperature resistance and chemical 

resistance. Basalt is also used in a form of short fibers for insulation purposes 

(basalt wool). Basalt yams are still used only rarely. 

Utilization of the technology of continuous spinning overcomes the 

problems with unevenness and final filament yams are applicable in the textile 

branch. It is possible to use these yams for production of planar or 3D textile 

structures for composites, special knitted fabrics and also as the sewing 

threads. Especially an application of basalt yams as the sewing threads is very 
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5646443 Jlki MILITKY and VLADIMIR KOVAkIc 

attractive. It is possible to use these threads for joining of filtering bags for hot 

media, filtering bags for very aggressive chemical environment, etc. 

The fresh basalt fibers are practically amorphous. Due to high temperature 

action these fibers have ability to partially crystallize. This modified form of 

basalt fibers can be more brittle and their strength can be too low. 

In this contribution the changes of selected properties of basalt fibers 

after thermal exposition are presented. These properties are investigated at 

room temperature and after tempering to the 50, 100, 200, 300, 400 and 

500°C. The ultimate strength, deformation at break and sound wave spread 

velocity are measured. 

2. BASALT FIBERS 

Basalt is a generic name for solidified lava which poured out of the 

volcanoes [ 1, 2, 5 ,  61. Basaltoid rocks are melted approximately within the 

range 1500 - 17OO0C. When the melt is quickly quenched, it solidificates to 

glass-like amorphous solid. Slow cooling leads to more or less complete 

crystallization, to an assembly of minerals. Two essential minerals plagiocene 

and pyroxene make up perhaps 80% of lots of  basalts. Classification of 

basaltoid rocks based on the contents of main basic minerals is described in the 

book [ 5 ] .  

Basaltoid rocks, which are suitable for creation of fibers, contain in 

most cases two minerals: 

Olivine ( Z(MgFe).O.SiOz ) 

Nepheline ( Na~O.Al~03.2SiO2 ). 

From the point of view of basalts chemical composition the silica oxide 

SiOl (optimal range 43.3 - 47%) dominates and A12 0 3  (optimal range 11 - 
13%)is next in the abundance. Content of CaO (optimal range 10 - 12%) and 

MgO (optimal range 8 - 1 I?&) is nearly similar Other oxides are almost always 
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below 5% level. According to the Si02 content basalt rocks are divided into 

the three main groups: 

Alkaline basalt 

Mildly acid basalt 

up to 42% of s i 0 2  

from 43% to the 46% of Si02 

Acid basalt over 46% of SiO2 

Basalt color vary from brown to dully green in dependence on the ferrous 

oxides content. 

Basalts are more stable in strong alkalis that glass. Stability in strong 

acids is slightly lower. Basalt products can be used from very low temperatures 

(about -2000 C) up to the comparatively high temperatures 700 - 800° C. At 

higher temperatures the structural changes occur. 

Basalt rocks for the fibers preparation have to follow these 

requirements: 

(i) Si02content over 46% (acid type) with constant composition 

(ii) ability to melt without solid rests 

(iii) optimal melt viscosity for fibers formation 

(iv) ability to solidificate into the glassy state (without marked crystallinity) 

In the manufacturing of fibers, the basic technological criterion is 

provided by the acidity coefficient 

Value of Mk should be in the range from 1.1 to 3.0. Ideal technological 

conditions for fiber creation are represented by the Mk = 1.65 [ 6 ] .  More 

precise criteria which take into account the effect of individual oxides on 

viscosity of melt are given in [6]. 

In practice the suitability of basaltoid rocks for fibers preparation is 

based on their chemical and mineralogical composition. Attention should also 

be paid to the textural characteristic of the respective rocks [7]. 

Basalt rocks from VESTANY hill was used as a raw material in this 

work. Based on the DTA measurements the crystallization temperatures T, of 
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individual minerals are evaluated. For Magnetite is T, = 720 "C for Pyroxene 

T, = 830 "C and for Plagioclase T, = 1010 "C. 

Basalt fibers as well as glass ones are prepared from melt (melting 

temperature is about 1500°C) on the same type of apparatus. Comparison of 

chemical composition of glass and basalt fibers is given in Table I. 

TABLE 1. Chemical Composition of Glass and Basalt Fibers (in weight %) 

E-glass S-glass C-glass Basalt 
Si02 52-56 65 64 - 68 51.56 

12-16 25 3 - 5  18.24 
16 - 25 11 - 15 5.15 
0 - 5  10 2 - 4  1.3 
5-10 4 - 6  
0.8 0.3 7- 10 6.36 
0.8 0.3 7- 10 4.5 

1.23 
4.02 
2.14 
0.28 
0.26 

Filament yams contained 280 single filaments were used. Mean fineness of 

yam was 45 tex.. The basic physical properties of basalt fibers are presented in 

Table 11. 

TABLE 11. Basic Physical Properties of Glass and Basalt Fibers 

Property E - g I a s s Basalt 
Diameter [ pn] 9 - 1 3  8.63 
Density [kgm"] 2540 2733 
Softening temperature ["C] 840 960 

3. STATISTICAL ANALYSIS OF FIBERS STRENGTH 

The fracture of fibers can be generally described by the 

micromechanical models or on the base of pure probabilistic ideas [8]. The 

probabilistic approach is based on these assumptions: 

(i) - fiber breaks at specific place with critical defect (catastrophic flaw), 
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(ii) - defects are distributed randomly along the length of fiber (model of 

Poisson marked process), 

(iii) - fracture probabilities at individual places are mutually independent. 

The cumulative probability of fracture F(V, a) depends on the tensile 

stress level and fiber volume V. The simple derivation of the stress at break 

distribution described for example by Kittl and Diaz [9] leads to the general 

form 

F(V, a) = 1 - exp(- R(a)) 

The R( a) is known as the specific risk function. For famous Weibull 

distribution has function R( ) the form [ 141 

R(a) = [(a - A)/B] 

where A is lower strength limit, B is scale parameter and C is shape 

parameter (model WE1 3). For brittle materials it is often assumed A = 0 

(model WE1 2). 

The individual basalt filaments removed from yam were tested. The 

loads at break were measured under standard conditions at sample length 10 

mm. Load at break data were transformed to the stress at break a [GPa]. The 

sample of 50 stress at break values was used for evaluation of the R(.) 

functions and estimation of their parameters. 

Owing to their special structure the parameters of Weibull type 

distributions can be estimated by using of the maximum likelihood method. 

This method is very interesting because of  its good statistical properties 

(asymptotic efficiency, consistency and asymptotic normality of estimators) 

[lo]. 

In the case at i=1, ... N are independent random variables with the same 

probability density function f(o) = F’(ai, a)  the logarithm of likelihood 

function has the form 
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In L = C In f ( ( q  a) 

where a are parameters of corresponding risk function. 

The MLE estimators a* can be obtained by the maximization of the In L(a). 

This task can be simply converted into solving of the set of nonlinear 

equations (see[lO]). Estimates a* obtained in such a way for three and two 

parameter Weibull distribution are given in Table 111. 

TABLE 111. Parameters of Weibull models calculated by MLE 

Model A B C In L(a*) 

WE13 0.0641 0.230 1.370 33,SO 
WE12 - 0.301 1.829 29.164 

[GPa] [GPa] [-I 

The SEM micrograph of typical broken basalt fiber (magnification 10 

000) shows the occurrence of brittle fracture. The SEM of longitudinal portion 

of basalt fiber (magnification 10 000) shows that surface is very smooth 

without flaws or crazes. Based on these findings we can postulate that fracture 

occurs due to nonhomogenities in fiber volume (probably near the small 

crystallites of minerals). 

5. THE PROPERTIES OF BASALT AFTER THERMAL EXPOSITION 

Behavior of basalt filament yams after long - term thermal exposition 

was simulated by tempering of fibers at the temperatures 50. 100, 200, 300°C. 

The time of exposition was 60 min. After tempering the following properties 

was measured: 

tensile strength [N.tex"] 

deformation at break ["?I 
dynamic acoustic modulus [Pa] (dynamic acoustic modulus was determined 

from sound wave spread velocity in the material). 

The changes of properties of basalt after tempering are investigated by 

the analysis of variance. It was determined that only 300'C tempering led to 
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the statistically significant drop of strength and dynamic acoustical modulus. 

Probably, the changes of these properties are based on the changes of the 

crystalline structure of fibers. 

In the second set of experiments the strength distribution of basalt 

filament yams was measured on the samples tempered in the oven at 

temperatures TT. = 20, 50, 100, 200, 300, 400 and 500'C in selected time 

intervals tT = 1, 15,and 60 min. 

For strength evaluation the TIRATEST 2300 machine was used. The 

50 samples of strength Pi are collected. These values were recalculated to 

stress at break values C T ~  [GPa]. 

The strength distribution of tempered filament yams was nearly 

Gaussian with parameters: mean value op and variance cr2. 

These parameters are estimated by the sample arithmetic mean and sample 

variance. Results are given in the table IV. 

TABLE IV .Parameters of Tempered Filament Yam Strength 

tT. (min] 1 15 60 

T-r["CJ o,[GPa] cr2[GPa2J o,[GPaJ cr2(GPa2] cr,[GPa] cr2[GPa2J 

20 1.01 ,0075 1.01 .0075 1.01 .0075 
50 ,997 ,0110 1.05 .0110 1.07 .0150 
100 1.03 .0095 ,991 .0140 1.01 .0100 
200 ,986 .0091 1.01 .0083 1.09 .0110 
300 .893 ,0140 ,743 .0150 ,424 ,0100 
400 ,743 .0061 ,701 .0091 .112 .00150 
500 .254 .0048 ,348 .0026 .094 .00300 

The dependence of the filament yarns strength on the temperature has 

two nearly linear regions. One at low temperature to the 180°C with nearly 

constant strength and one up to the 340'C with very fast strength drop 

For description of this dependence the linear spline model was used 

[ I  11. By the linear least squares the strength (TI for temperature T,=18O0C and 

~2 for temperature T2 =34OoC were computed. These values and the rate of 

strength drop 

D = (sI-s~)/ 160 [GPa deg"] 
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are given in table V. 

TABLE V. Thermal Dependence of Filament Yarns Strength 

tT [min] o,[GPal oz[GPal D[GPa deg-'I 

1 1.0074 ,756 .OO 16 
15 1.1070 ,343 ,0048 
30 1.1750 ,158 ,0064 

It is clear that increasing of the time of tempering leads to the acceleration of 
structural changes and drop of strength fastening (increasing D). 

6. CONCLUSION 

From thermal dependence of the filament yarns strength is evident that 

long term exposition at temperatures above 200°C leads to the drop of 

mechanical properties probably due to the gradual crystallization. This 

hypothesis was verified by the electron microscopy of fibers break zone. 
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