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Abstract. Nonlinear regression program DCMINOPT is introduced for numeri- 
cal analysis of a set of {A, pH} data expressing a dependence of absorbance of 
a mixture of variously protonated light-absorbing species L, LH,. . . ,  LH R on pH. 
Efficiency of the program has been examined on simulated A-pH data corrupted 
with artificial (generated) errors namely for a case of closely overlapping pro- 
tonation equilibria. An accuracy and precision of parameters estimates have 
been examined and compared with those determined by another three standard 
algorithms DCFIT, DCMINUIT and PSEQUAD. Goodness-of-fit test brings 
various regression diagnostics, 3D-plots and statistical measures enabling to test 
and prove a reliability of a regression process and accuracy and precision of 
parameter estimates. 
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The analysis of an absorbance-pH curve for a protolytic acid to determine dissocia- 
tion constants and molar absorptivities is not an easy task when overlapping 
protonation equilibria are present. The programs SPOPT and DCMINUIT [1] 
have been tested and compared with DCLET I-2] and LETAGROP SPEFO [3] 
for analysis of overlapping equilibria of a triprotic acid 2-, 3- and 4-CAPAZOXS 
[4]. Two approaches of mathematical model formulation and several optimization 
algorithms were tested on absorbance-pH curve analysis of 3-CAPAZOXS and 
general rules for investigation were recommended [5]. 

Structural classification of regression programs in solution equilibria study was 
introduced in the ABLET system [6-9], adapted to A-pH curve analysis to deter- 
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mine the protonation and regression spectra analysis [10]. The content of several 
blocks may change and the resulting program structure was described previously 
[1, 15]. 

This paper examines the efficiency of the new program DCMINOPT and 
discusses the reliability of determination of two consecutive dissociation constant 
and corresponding molar absorptivities eLn, eLn2, eLH3 when concerning two closely 
overlapping protonation equilibria of 4-CAPAZOXS at low concentration of dye 
in solution in which monomers prevail. The examination of parameters conditioning 
and an accuracy of ill-conditioned parameters using 3D-graphs of the (C-U) hyper- 
paraboloid response-surface is introduced, some diagnostic tools as the last U 
contours and the correlation coefficients of parameters are estimated. Regression 
diagnostics and the regression process of new program DCMINOPT are compared 
with programs DCFIT, DCMINUIT and PSEQUAD. 

Theoretical 

a. Modus Operandi 

The structural classification of regression program enables easy formation of the 
program for an analysis of A-pH curve. Besides PSEQUAD [11], the DHFIT [12] 
is rewritten to resulting DCFIT, and the DHMINUIT  [12] to DCMINUIT and 
then an efficiency compared with the new program DCMINOPT. All these pro- 
grams contain the following common blocks structure: 

(1) Input: This block reads data {pHread, Aexp} and makes some correction of 
measured values pHread for a deviation of glass electrode cell from the Nernstian 
slope S, for any difference in temperature from 298.16 K, and for the liquid-junction 
potential Ej 

pH = ((pHr~aa - pH(st)) 59.16 T/(S 298.16)) + EJS + pn(st), (1) 

where pH(st) is pan+ for the standard buffer solution used. In regression analysis, 
the regression model y = f(x; fl) contains the independent variable pH (= x), the 
dependent variable A (=y) and the unknown parameters ill, . . . ,  tim which are 
represented by dissociation constants PKa, i and molar absorption coefficients e L, 
eLHi, i = 1 . . . . .  R. 

(2) Residual sum of squares U(fl): This block formulates the residual- sum of squares 
U(fl) which is minimized in programs DCMINOPT,  DCHT,  DCMINUIT and 
PSEQUAD. The A-pH curve for a mononuclear acid is written with the assumption 
that base L is protonated to form variously protonated ions LH1, LH2, LHa . . . . .  
LHr, . . . ,  LH R, etc. of the mononuclear acid LHR (the charges are omitted for sake 
of simplicity). The model A = f(pH; pK,.i, eL, eLH~, i = 1, . . . ,  R) is represented by an 
equation for the absorbance-pH curve at a given wavelength 2 written as 

R 
gL + Z 8LH~" 10(r'l~176 

A = d" L ~-1R , (2) 
1 + ~ 10 (r'l~176 

r=l 
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where d is the cuvette path-length, L is the total analytical concentration of LHR, 
tilt = [LH~]/([L] [HI r) and when the conventional activity pH scale is used and the 
mixed stepwise dissociation constant Ka,i = an [LH~-I]/[LHi], it will be 

r" log an + log tilt = ~ PKa,i - r ' p H .  (3) 
i=1 

The program PSEQUAD [11] also enables a determination of complex-forming 
equilibria. 

The residual sum of squares U(fl), is then formulated by 

U(b) = ~ wi[Aexp,  i --  f(pH; PKa,i, eL, ~LU,, i = 1, . . . ,  R ) ]  2 
i=1 

: ~ wi(Aexp, i - -  Acale,i) 2 : m i n i m u m ,  (4) 
i=l 

where Aexp, i is the measured absorbance at a given wavelength, Aealc,i is calculated 
according to Eq. (2) and wi is the statistical weight usually taken unity. The equation 
U(fl) (4) contains dependent variable A, independent variable pH (= - l o g  an) and 
parameters estimated pKa,i, eL, eLn~, i = 1 . . . .  , R. 

(3) Minimization: The algorithm FIT [13] (in the program DCFIT), the algorithm 
MINUIT [14] (in the program DCMINUIT),  DCMINOPT employs the algorithm 
MINOPT [15] and the program PSEQUAD [11] were described elsewhere. 

(4) Statistical (error) analysis: This block calculates confidence intervals of parame- 
ters and correlation coefficients a description may be found in previous contribution 
of this series [12, 15]. PSEQUAD [11] evaluates the standard deviation of a 
dependent variable, s(A) = x~-/(n - m) where n is a number of points of A-pH 
curve and m is a number of parameters estimated; the standard deviations of 
parameters estimated s(fllr) and S(elr), and the paired qj, total Pi~ and multiple Ri 
correlation coefficients. 

(5) Goodness-of-fit test: This block contains the examination of fitness achieved by 
the statistical analysis of residuals. The residuals are defined as the differences 

ei = Aexp,i- Acalc,i, i = 1, . . . ,  n, (5) 

where Aexp, i is the i-th observation and Aca~c,i is the i-th prediction (2). As certain 
underlying assumptions have been outlined for the regression analysis, such as the 
independence of random errors e, their constant variance (homoscedasticity), and 
'normal (Gaussian) distribution for e, the residuals should possess characteristics 
that agree with, or at least do not refute, the basic assumptions: this the residuals 
should be randomly distributed about the prediction Ar Systematic departures 
from randomness indicate that the model is not satisfactory. The goodness-of-fit 
test (which is also called the fitness test) analyses the residual set and examines 
following statistical characteristics (detailed description is in previous part [12] or 
ref. [ 16-]): 

(1) The arithmetic mean of residuals known as the residual bias, E(~), and the 
robust measure of location, the median 6o. 5, should be equal to zero. 
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(2) The mean of absolute values of residuals, E I~ [, and the mean of absolute values 
of relative residuals 100 E]~rr in percents, with the square-root of the residual 
variance s2(~) known as the estimate of the residual standard deviation, s(~), and the 
robust measure of scale, the standard deviation of median s (eo. 5). Obviously, it is also 
S(e) ~ Sinst(A ) where Sinst(A ) is instrumental error of absorbance. 

(3) The residual skewness, gl(e), should be for normal distribution of residuals 
equal to zero; 

(4) The residual curtosis, g2(~), should be for normal distribution equal to 3. 
(5) The residual variance s2(a) is calculated from the residual sum of squares. 
(6) The determination coefficient D 2 is computed from the relation 

0 2 = 1 - U(b) , (6) 

(Aexo,i - Aex0,i) 2 
i=l 

where Aexp = 1 / n ~ = l  Aexp, i. The determination coefficient is for linear models 
equal to square of the multiple correlation coefficient. 

(7) When determination coefficient is multiplied by 100%, we receive so called 
regression rabat, D 2. 100 [%]. 

(8) In chemometrics the Hamilton R-factor of relative fitness is often used being 
expressed by 

~/  U(b) 
R =  ; z �9 (7) 

Aexp, i 
1 

(9) To distinguish between models the Akaike information criterion AIC is more 
suitable to apply which is defined by relation 

AIC = - 2L(b) + 2. m. (8) 

The "best" model is considered to be a model for which this criterion reaches a 
minimal value. Using the least-squares and models which do not belong into the 
same class the AIC criterion may be expressed 

A I C =  n ' l n  [ ~ b ) l  + 2 .m .  (9) 

The influential points may be easily identified on base of an one-step approxima- 
tion of the Jackknife residuals aJi calculated by 

eji -- ' (10) 
S(i) N/1 --  Pii 

where Pii are elements of a projection matrix, P = j ( jVj ) -qT  and ~il is residual 
standard deviation calculated independently on the ith point, cf. ref. [16]. 

Nonlinear measure of an influence of the i-th point on the parameter estimates 
is represented by the likelihood distance 

LD~ = 2[ln L(b) - In L(b~i))]. (11) 

In case of the least-squares the likelihood distance is expressed by 

, [ -U (b(i))q 
LD i = n mL b7 j. (12) 
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In both Eqs. (11) and (12) the estimates b~i ) calculated by nonlinear regression when 
the i-th point was left out or the one-step approximation b~]) of the parameter 
estimates may be used. When LD i > Z2_~(2) is valid the i-th point is strongly 
influential. The significance level a is usually optioned to be equal to 0.05 then 
X2.95(2) = 5.992. 

(6) Data simulation: This block serves for debugging a program or for an examina- 
tion of reliability of parameters estimation. For optional values of parameters, the 
"theoretical points" along the exact curve A = f(pH; pK,, i, ~L, eLHi, i = 1 . . . .  , R) are 
calculated. Each theoretical point is then transformed into an "experimental" one 
by an addition of a random error (having obviously a normal distribution) obtained 
with the aid of a random-number generator. All resulting "experimental points" are 
thus corrupted with a random error. The error set can be then tested statistically 
for Gaussian distribution, independence and homogeneity. Statistical measures 
mentioned in residual analysis, E(~), E[~[, s(~), gl(~), g2(e) are tested. 

Corrupting the curve points with high random error may, however, decrease the 
accuracy and precision of the parameters estimated. When several parameters are 
to be refined or ill-conditioned parameters are to be adjusted, data with a low 
precision may result in erroneous values of the parameter estimates if a reliable 
minimization method is applied. In cases when a corruption is small the parameters 
minimizing the least-squares criterion are near the same as optioned values but for 
very ill-conditioned models the differences can be high. 

(7) Free concentration: This block concerns PSEQUAD only. The calculation of 
unknown free concentrations [L], [LH], . . . ,  [LHr] is made using a standard 
Newton-Raphson procedure with Choleski's algorithm to solve linear equations. 
The free concentrations are calculated on a logarithmic scale so no negative concen- 
trations may occur in the course of iterations. 

(8) Additional: This block contains the visualization tools of ill-conditioning: the 
response-surface of the U(fl) hyperparaboloid being the 3D-graph of selected pa- 
rameters in the neighborhood of the "pit", Umi n, gives a visual representation of 
the influence of each parameter on U(fl). For two parameters optioned in the input, 
the paraboloid response-surface (C-U(fl)) in 3D graph is plotted by DIGIGRAPH 
equipment [17] where C is a numerical constant. A regular paraboloid shape proves 
that both parameters are well-conditioned in a model and may lead to accurate and 
precise estimates whereas a "saucer" shape indicates ill-conditioned parameters 
which lead to rather uncertain estimates. 

Residual sum of squares contours may also be plotted in the space of any two 
variables at a time by DCMINUIT.  This gives a detailed description of the shape 
of the U function but only when the number of variables is very few, otherwise a 
calculation fails. The program D C M I N U I T  traces contours of constant value of U 
as a function of the two variable when all others being fixed at their value at that time. 

b. Regression Procedure 

Regression analysis and an examination of adequacy of the nonlinear model pro- 
posed with data is performed using following criteria [16]: 
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( I )  The quality of parameter estimates: The quality of found parameter estimates 
is considered according to their confidence intervals or according to their variances 
D(bj). Often in solution equilibria the empirical rule is used: the parameter is 
considered to be significantly differing from zero when its estimate is greater than 
its 3 standard deviations, 3 ~ < I b~l. High values of parameters variance is 
often caused by termination of minimization process before reaching a minimum. 

(2) The quality of achieved curve fitting: The adequacy of a proposed model with 
experimental data is examined by the goodness-of-fit test based on the statistical 
analysis of classical residuals. Following statistical characteristics for a set of classi- 
cal residuals are calculated: from the residual sum of squares U(b)min reached at a 
minimum the estimate of residual variance s 2 (~) and estimates of the determination 
coefficient D 2, the regression rabat 100 D 2 in [%], the arithmetic mean of residuals 
E(~), the robust median eo.5, the mean of absolute values of residuals E I~], the mean 
of absolute values of relative residuals in percents 100 E[erel[, the residual standard 
deviation s(~), the robust standard deviation of median s(~0.5), the residual skewness 
gl(~), the residual curtosis g2(~), Hamilton R-factor of relative fitness in percents 
and Akaike Information Criterion AIC are calculated. 

(3) The quality of experimental data: For examination of a quality of data the 
identification of influential points by regression diagnostics is used. The most 
suitable diagnostics are the likelihood distances LD and Jackknife residuals ~j. 

Software 

DCMINOPT having been applied from CHEMSTAT package [18] (Trilobyte, 
Pardubice) on IBM PC AT while other computations (DCFIT, DCMINUIT,  
PSEQUAD) were performed on the EC1033 computer at the Computing Centre of 
the University of Chemical Technology, Pardubice, Czech Republic. 

Results and Discussion 

As an analysis of the absorbance-pH curve namely concerning close overlapping 
protonation of a ligand related from a protolytic acid LH R is not straightforward 
procedure resulting always at the true values of dissociation constants and molar 
absorptivities, some useful diagnostic tools of regression process were proposed. For 
demonstration of efficiency of this process, an example, simulated data of the A-pH 
curve of 4-CAPAZOXS were analyzed by DCMINOPT and results compared with 
those determined by three another regression programs, DCFIT, DCMINUIT and 
PSEQUAD. 

Pre-selected ("true") values of seven parameters,/31, -..,/37, were chosen to be 
close to parameters for sulphoazoxine 4-CAPAZOXS: pKal = 2.8 (=/31), PKa2 = 
3.0 (=f12), PKa3 = 7.5 (=/33),  8L = 12000 (=/~4), sen = 9800 (=/38), 8LH2 = 9000 
(=/36), ecK3 = 6000 (=/37). The instrumental error of absorbance expressing a noise 
of spectrophotometer, si,st(A ), was chosen 0.003. For set of 35 values pH, absorbance 
values were calculated precisely, then corrupted with random errors. A set of 
random errors should ideally exhibit a normal distribution with the mean E(~) equal 



Computer Estimation of Dissociation Constants. Part VI 161 

zero, the mean error EI~I equal to 0.003 as well as the error standard deviation s(~) 
0.003, the skewness gl(~) should be 0 and the curtosis g2(~) 3. However, due to small 
sample size and properties of pseudo-random variable generation procedure the real 
errors are obviously not exactly normal and therefore a minimum of the least- 
squares is not reached at optioned parameters values. 

In regression analysis of a A-pH curve, the reliability of regression process and 
estimates found can be classified according to a precision of parameters estimated 
and also on the base of a goodness-of-fit achieved. To test when the regression 
algorithm has found the best estimates of parameters, the residuals should be 
randomly distributed about the predicted regression curve as the systematic depar- 
tures from randomness indicate that the parametric estimates are not satisfactory. 
To analyze residuals, their statistics are compared with the statistics of imposed 
random errors; it is checked whether both distributions are Gaussian in nature 
and/or sign. Even the degree-of-fit achieved by all regression methods is good 
enough and the minimization process was assumed to have terminated successfully 
there are some differences in estimates pKal , pKa2 and •LH 2 from the true values. 

The purpose of this paper is to demonstrate the procedure of investigation of 
a reliability of parameter estimation and how much minimization methods affects 
the precision and accuracy of the parameter estimates when other things being equal. 
The systematic deviation and the relative systematic deviation of the parameter 
estimates from its pre-selected value fli called also the bias and the relative bias of 
parameter, e(bi) = fii - bi and erol(bi) = 100 e(bi)/b i [in per cents], are used to clas- 
sify an accuracy (or a bias) of the parameter estimates caused by inaccuracy of data. 
Parameters precision is considered from the standard deviation of estimates. 

For pre-selected values of parameters, pK1 . . . . .  %H3, the corresponding sum of 
squares reaches the value U(b0) = 2.870.10 -4. The program D C M I N O P T  termi- 
nates at a minimum U(b0) = 2.512- 10 -4 with the point estimates which do not quite 
agree with pre-selected values fl (Table la). Standard deviation of each parameter 
s(bj) except S(%H2) reaches small value. Bias of each parameter e(bj) are not too 
high. For all seven parameters the interval estimate bj +_ A s contains a pre-selected 
value of flj. Statistical test says that all parameters except eLH2 are significantly 
different from zero. 

A graphical representation of elliptic hyperparaboloid being simplified for two 
chosen parameters i.e. for two parametric coordinates, m = 2, in (m + 1)-dimen- 
sional space may be applied. In Fig. la a well-developed maximum (1 - U(fl)) shows 
that both parameters e L and eLH are well-conditioned in model while the shape of a 
hyperparaboloid for the ill-conditioned parameters is cylindrical or flat-bottomed 
saucer. The cylindrical shape in Fig. lb  indicates that the parameter PKa~ is strongly 
ill-conditioned as the dependence of (1 - U(fi)) on pKa2 is weak and nearly con- 
stant. When a dependence of (1 - U(fl)) on parameters, pK,~ and eLH 2 in Fig. lc, is 
weak and an obvious maximum does not exist we say that both parameters are 
ill-conditioned in model. The shape of such hyperparaboloid cannot be improved 
and the pit also cannot be reached by any minimization method. A search for true 
estimates of the parameters then cannot give a certain answer, and no method is 
able safely to find a pit in U. Careful choice of a minimization algorithm and also 
of a minimization strategy is necessary because some algorithms easily fail or 
diverge. The hyperparaboloid response surface shows that three parameters, PKal, 
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Table 1. Regression analysis of simulated 35 points of A-pH curve for 4 -CAPAZOXS calculated for 

pre-selected parameters pKal = 2.8, pKa2 = 3.0, pKa3 = 7.5, e L = 12000, eLn = 9800, eLn 2 = 9000, 

eLn3 = 6000 and corrupted with random errors generated for sinst(A)= 0.003. Conditions: L = 
3.65- 10 -5, d = 1.000 cm, S = 59.16 mV/pH, 298.16 K, pH(st) = 7.010. 

(a) Point and interval estimates of parameters with their statistical characteristics calculated by 

D C M I N O P T .  Accuracy is expressed by the bias of each parameter e(b0 

Half-length of 

Parameter Point estimate Standard confidence interval Bias of 

flj bj deviation s(bj) Aj AR,j parameter e(bj) 

pKa3 7.4678 0.0543 + 0.1346 __ 0.2209 0.0322 

pKa2 2.8375 0.2565 __ 0.9784 4- 1.0425 0.1625 

pKal 2.8380 0.0878 __0.2338 4-0.3569 -0 .0380 

eLH 3 6013.5 105.10 4-301.44 4-427.10 - 1 3 . 5  

elf h 8742.4 114.30 4- 4645.1 + 4645.2 257.6 

eLf t 9791.9 37.56 4- 119.28 4- 152.64 8.1 

e L 12009.0 72.13 4- 245.65 4- 293,11 -- 9.0 

(b) Matrix of paired correlation coefficient of parameters, rij, calculated by D C M I N O P T  

pKa3 pK~2 pK.1 eLn3 eLH 2 eLH e L 

pKa3 1.000 -0 .180  -0 .324  0.113 --0.293 0.575 0.799 

pKa2 1.000 0.220 - 0.823 0.938 - 0.315 - 0.088 

pKax 1.000 0.137 0.524 -0 .565  -0 .158  

eLH 3 1.000 --0.703 0.197 0.055 

eLH 2 1.000 -0 .512  -0 .143  

eLH 1.000 0.282 

e L 1.000 

(c) Analysis of random errors with classical residuals and identification of influential points by 

D C M I N O P T  

Independ. Depend. Random Classical Jackknife Likelihood 

i variable pH variable A~xp error g residual ~ residual ~j distance LD 

1 1.650 0.2232 -0 .0034 - 2 . 8 7 8 7 E - 0 3  - 1.4158E+00 2 .8354E-02  

2 1.790 0.2294 0.0000 7 .7375E-04  8 .5502E-01 4 .0363E-03  

3 1.930 0.2336 0.0004 1 .4463E-03 1.1072E+00 7 .0172E-03  

4 2.070 0.2410 0.0027 3 .9933E-03  1.7521E+00 5 .1190E-02  

5 2.210 0.2419 -0.0031 - 1 .6943E-03 - 1.0525E +00  1 .1430E-02 

6 2.350 0.2519 -0 .0018 - 4 . 2 0 8 7 E - 0 4  - 4 . 6 1 8 1 E - 0 1  3 .0701E-03  

7 2.490 0.2614 -0 .0030  - 2 .0252E-03  - 1.1623E +00  1 .6926E-  02 

8 2.630 0.2741 -0 .0029 - 2 . 6 3 1 7 E - 0 3  - 1.3369E + 00 2 .2450E-  02 

9 2.770 0.2941 0.0034 2 .6616E-03  1.4440E +00  1 .9853E-02 

10 2.910 0,3083 0.0036 2 .1141E-03  1.2976E+00 9 .4042E-03  



Table 1 (continued) 

Independ. Depend. Random Classical 

variable pH variable Aexp error ~ residual 

Jackknife 

residual ~j 

Likelihood 

distance LD 

11 3.050 0.3224 0.0047 2.8809E - 03 

12 3.190 0.3269 -0 .0017 - 3 . 5 5 7 2 E - 0 3  

13 3.330 0.3363 -0 .0010  - 2 . 4 3 8 1 E - 0 3  

14 3.470 0.3413 -0 .0021 - 3 . 3 5 2 9 E - 0 3  

15 3.610 0.3508 0.0029 2 .0726E-03  

16 3.750 0.3527 0.0018 1 .2157E-03 

17 3.890 0.3566 0.0035 3 .2580E-03  

18 4.030 0.3573 0.0028 2 .6998E-03  

19 4.170 0.3530 -0 .0025 - 2 . 4 6 2 3 E - 0 3  

20 4.700 0.3618 0.0046 4 .8013E-03  

21 5.230 0.3542 -0 .0037 - 3 . 5 1 3 5 E - 0 3  

22 5.760 0,3598 0.0008 8 .8557E-04  

23 6.290 0,3595 - 0.0027 - 2 .9304E-  03 

24 6.475 0.3621 -0 .0024 - 2 . 7 6 4 3 E - 0 3  

25 6.600 0.3642 -0 .0035 - 2 . 8 5 9 9 E - 0 3  

26 6.845 0.3777 0.0055 4 .7239E-03  

27 7.030 0.3800 0.0021 9 .6248E-04  

28 7.215 0.3841 -0 .0010 - 2 .3098E-03  

29 7.400 0.3976 0.0045 2 .8871E-03  

30 7.585 0.4018 0.0001 - 1 .4918E-03 

31 7.770 0.4121 0.0023 6 .9906E-04  

32 7.955 0.4151 -0 .0019 - 3 .3463E-03  

33 8.140 0.4261 0.0032 1 .9672E-03 

34 8.325 0.4315 0.0041 3 .0442E-  03 

35 8.510 0.4291 -0 .0016 - 2 . 4 9 5 1 E - 0 3  

1.4993E + 00 

- 1.5668E + 00 

- 1.2815E+00 

- 1.5188E+00 

1,2949E + 00 

1.0370E + 00 

1.5963E + 00 

1.4652E + 00 

- 1.2825E + 00 

1.9137E+00 

- 1.5555E+00 

9 .1879E-  01 

- 1.4096E + 00 

- 1.3652E + 00 

- 1.3900E + 00 

1 . 9 0 1 2 E  + 00 

9 .5007E-01  

- 1.2439E + 00 

1.5037E + 00 

- 9 . 7 7 7 1 E - 0 1  

8 .5737E-01 

- 1.5139E+00 

1.2645E + 00 

1.5357E+00 

- 1.3092E + 00 

1 .6520E-  02 

4 .2023E-  02 

1 .8957E-02  

4 .8987E-02  

8 .8326E-  03 

4.0654E - 03 

1 ,9786E-02  

1.2899E - 02 

1.2234E - 02 

8 .4731E-02  

3 .9657E-02  

4 .0516E-03  

1 .9412E-02  

1 .5015E-02  

1 .5356E-02  

6 .7013E-02  

4 .0385E-03  

1.5466E - 02 

2 .6048E-  02 

7 .2642E-  03 

3 .2193E-03  

2 .9689E-  02 

1 .1547E-  02 

3 .3908E-  02 

2 .0889E-  02 

Goodness-of-fit test 

Bias, E(~) 

Median, ~o.s or eo.5 

Standard deviation of median, s(~0,5) 

Mean of absolute values of . . . .  Elal 

Mean of abs. values of relative . . . .  100L~I, [%] 

Variance, s2(~) or s2(a) �9 106 

Standard deviation, s(e) or s(a) 

Skewness, gl(~) or gl(~) 

Kurtosis, g2(e) or g2(6) 

Sum of squares, ESS. 104 or RSS. 10  4 

Regression rabat, 100- D 2, [%] 

Akaike Information Criterion, AIC 

Hamil ton R-factor, [%] 

Normali ty test, Ho: {~} or {~} have normal distribution, Z2_~(2) = 5.992 
2 . 

Z e x p  �9 

Independence test, Ho: {~} or {~} are independent, t1-,/2(35 + 1) = 2.028 

t e x p "  

Errors 

4 . 3 E - 4  

0.0003 

0.0050 

0.0026 

0.776 

8.564 

0.0029 

0.140 

1.543 

2.398 

0.81 

3.635 

0.007 

Residuals 

- 2 . 4 E - 6  

0.0007 

0.0048 

0.0025 

0.775 

8.972 

0.0030 

0.171 

1.573 

2.512 

99.805 

- 392.75 

0.71 

3.550 

0.850 
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Fig. 1. The 3D graph of the (1 - U(fl)) response surface for A-pH data from Table 1 indicates (a) that 
e L and eLn are well-conditioned in model because the surface exhibits an obvious maximum; (b) two 
ill-conditioned parameters pK,1 and ~Ln~. For both cases, (b) and (e), there is no well-developed 
obvious maximum (1 - U(fl)) 

PKa2 and  eL.~ are i l l - c o n d i t i o n e d  b e c a u s e  the  m i n i m a  are b r o a d  a n d  indef in i te  so  

that  t h e s e  p a r a m e t e r s  c a n n o t  be  d e t e r m i n e d  accura te ly .  
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The last contour (so called D-boundary in Sillen's terminology [3]) expressed 
as the supercurve U = Umi. + sa(A) serves as estimation of the standard deviation 
in each parameter b i. The statistic ARj represents the maximum difference between 
the value for bi at any point on the D-boundary, and the value for bl at the minimum. 
Because for the ill-conditioned parameters the response surface resembles a large 
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Fig. 2. Quantile-quantile (rankit) plot of the sample of (a) generated random errors, and (b) residuals 
proves that both samples come from the one common population 
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flat-bottomed saucer, the standard deviations will have significantly greater values 
than those for the well-conditioned parameters. It may be therefore concluded, the 
larger values of S(eLH;), s(pK,1) and s(pK,2) express a large amount of uncertainty 
in a location of the pit while S(eL), S(eLH), S(eLH3) and s(pKaa) concern well- 
conditioned parameters which lead to a pronounced maximum (1 - U(fl)). 
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Fig. 3. a Curve-fi t t ing for the A-pH dependence,  and  (b) scatter plot  of  residuals on the independent  

variable pH 
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The paired correlation coefficients of two parameters in Table lb indicate quite 
strong correlation of following pairs: eL -- pKa3 being 0.799, PKa2 - eLn2 being 
0.938, PKal - eLn2 being 0.524, PKa2 - eLH3 being -0.823. A high correlation may 
be elucidated as a fiat shape of the maximum (1 - U(fl)) in Fig. 1 while a small 
correlation between two parameters proves their independence and correspondence 
to a well-developed maximum (1 - U(fl)). 

Goodness-of-fit test (Table lc) analyses random errors and residuals and indi- 
cates that sufficiently close fit was achieved: the statistical measures of residuals are 
close to those of random errors. Moreover, the residual standard deviation s(0 = 
0.0030 are of same magnitude as the instrumental error sinst(A ) = 0.003 leading to 
s(~) = 0.0029. Certain underlying assumptions of regression analysis as an indepen- 
dence of random errors and residuals (tex p < t1_~/2(35 + 1)), normal distribution for 

2 2 errors and residuals (Ze2p < ZI- , ( ) ) ,  skewness gl(e) or gl(a) should be zero and 
curtosis g2(~) or gE(a) should be 3. The residuals should possess all these statistics 
that agree or at least do not refute characteristics of errors. Quantile-quantile 
(rankit) plot of random errors (Fig. 2a) and residuals (Fig. 2b) indicates some 
deviation from a normal distribution of both quantities. Due to small sample size 
the errors do not exhibit the correct straight line. The effect of "supernormality" (cf. 
ref. [16]) causes that residuals are more normal than errors. 

Hamilton R-factor of relative fitness, regression rabat D 2 and Akaike Informa- 
tion Criterion AIC in Table lc also enable to monitor the regression process. In 
minimum Umin the R-factor and AIC reach a minimal value while D z the maximal 
one. No influential points (i.e. outliers and high-leverages) were detected by aj and 
LD as no jackknife residuals ~j is higher than 3 and no points fulfilled a condition 
that LDI > Z2_~(2) = 5.992. 

Confidence interval of prediction Acalc (Fig. 3a) and the scatter plot of residuals 
in dependence on the independent variable pH (Fig. 3b) proves sufficiently close 
fitting calculated regression A-pH curve through experimental points. 

Comparing regression of simulated data by four different programs in Table 2, 
two criteria were applied: (a) the relative systematic deviation of each parameter, 
(or the relative bias) erel(bj) in [%], and (b) the goodness-of-fit test. 

The lowest bias from an pre-selected value of each parameter cannot be used for 
identification of accuracy due to non-idealities of random error corruption. This is 
evident from value U(b0) = 2.87- 10 -4 for pre-selected values of parameters which 
is greater than a minimum of sum of squares U(bo)=  2.5121.10 -4. Programs 
DCFIT,  D C M I N U I T  and PSEQUAD lead to inaccurate selection of minimum 
(Table 2). For all programs the same initial guess of parameters have been used. 

Conclusion 

In case of closely overlapping protonation equilibria, an estimation of near consecu- 
tive dissociation constants is not straightforward and easy. Regression diagnostics 
enable to examine reliability of refined parameters even for cases of near dissociation 
constants which are always ill-conditioned in model. A bias of parameters estimates 
from pre-selected values may be considered from a deviation of each estimate from 



Table2. Regression analysis ofsimnlated A-pH curve from Table 1 using various regression algorithms 
and examination of reliability of estimated ill-conditioned parameters. Standard deviations of parame- 
ters estimates are in parentheses being expressed in last valid digits. Accuracy is expressed by the bias 
of each parameter from its given value, e(b~), in percents 

(a) Parameters estimates refined by various regression algorithms: 

Parameters are: Kept constant Refined Refined Refined Refined 
Algorithm used: MINOPT MINOPT FIT MINUIT PSEQUAD 
Found U,,~," 10 a 2,870 2.512 10.582 10.480 10.453 

Parameters given 
Relative bias, [},~] Parameters estimates 

pK,3 (=  7.500) 7.500 (60) 7.468 (54) 7.465 (110) 7.469 (110) 7.442 (109) 

er,l (PKa3) 0 -0 .43 -0 .47  -0.41 -0 .77  
pKa2 ( = 3.000) 3.000 (335) 2.837 (256) 2.920 (550) 2.766 (485) 3.079 (578) 
e~l (pKa2) 0 - 5.50 - 2.67 - 7.80 2.63 
pK,~ (=2.800) 2.800 (87) 2.838 (88) 2.849 (153) 2.816 (208) 2.862 (129) 
e~t (pK,x) 0 5.43 5.03 0.53 2.07 
e L (= 12000) 12000 (80) 12009 (72) 12011 (146) 12002 (145) 11990 (142) 

ere I (eL) 0 -- 1.28 0.09 0.02 --0.08 
eLr~ (=9800) 9800 (41) 9792 (38) 9786 (78) 9799 (74) 9769 (81) 
e~e I (eLH) 0 -- 1,43 --0.14 --0.01 --0.11 
eL~ ~ (=  9000) 9000 (1106) 8742 (1143) 9101 (1905) 8374 (2649) 9570 (1244) 

e~ l (eLH2) 0 --4.29 1,12 6.96 6.33 
eL~ ~ (=  6000) 6000 (107) 6013 (105) 5990 (200) 6031 (228) 5959 (180) 

ere I (eLn3) 0 -- 1.12 --0.17 0.52 --0,68 

(b) Goodness-of-fit test for various regression algorithms: 

Kept 
Parameters are: constant Refined Refined Refined Refined 
Algorithm used: MINOPT MINOPT FIT MINUT PSEQUAD 

Random 
errors Residuals 

80. ~ 0.0003 0.0000 0,0007 - 0.0043 - 0.0043 - 0.0046 
s(g0.5) 0.0050 0.0048 0.0048 0.0046 0.0046 0.0051 
E(~) 4 . 3 E - 4  3 .6E-4  - 2 . 4 E - 6  - 4 . 7 E - 3  - 4 . 7 E - 3  - 4 . 7 E - 3  
E]~[, 0.0026 0.0026 0.0025 0.0048 0.0048 0.0047 
100 EI~ L, [~o] 0.775 0.775 0.742 1.390 1.392 1.373 
s2(~) �9 106 8.564 10.251 8.972 37.792 37.430 37.331 
s(6) 0.0029 0.0032 0.0030 0.0061 0.0061 0.0061 
g1(8) 0.140 0.164 0.171 0.114 0.082 0.182 
g2(8) 1.543 1.553 1.573 1.735 1.736 1.758 
RSS" 104 2.398 2.870 2.512 10.582 10.480 10.453 
100" D 2, [ ~ ]  * 99.777 99.805 99.178 99.186 99.188 
Akaike AIC * - 395.90 - 392.75 - 350,23 - 350.57 - 350.66 
Normality test, Ho: {g} or {~} have normal distribution, Z~-~(2) = 5.992 
Z~xp: 3.635 3.630 3.550 2.728 2.683 
Independence test, Ho: {g} or {8} are independent, tx_~/2(35 + I) = 2.028 
t~p: 0.007 0.032 0.850 0.115 0.078 

2.762 

0.060 
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its pre-selected value while the precision from its standard deviation. A reliability 
of regression process being examined by the goodness-of-fit test seems to be best 
when DCMINOPT is applied. 
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