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ABSTRACT

In the paper, a two-level classification scheme applicable to
practical discrete-utterance recognition systems is presented. Both
the fast and fine match employ CDHMM whole-word models.
The fast match is based on total data reduction, which includes
both the minimalization of the acoustic data flow (the numbers of
speech frames and features) and the reduction of the basic HMM
parameters (the numbers of states and mixtures). The optimal
choice of the fast match parameters is a subject of the procedure
that aims at minimizing the total classification time while
preserving the maximum available recognition accuracy. On a
medium-size vocabulary task (121 city names) the fast match
reduced recognition time to approx. 20% (compared with the
original one-level system) with a negligible loss of accuracy. The
time savings were even more considerable in case of a system
with multi-mixture HMMs.

1. INTRODUCTION

Continuous density hidden Markov models (CDHMM) have
become a widely used technique that is recently employed not
only in laboratory prototypes but also in many practically oriented
speech recognition systems. It is prefered mainly due to its ability
to capture from many points of view complex and highly variable
speech signals in a relatively simple parametric form that can be
used for modelling both discrete and continuous speech.

The well-known drawback of the CDHMM recognition systems is
the high computational load of the classification algorithms. In a
standard classification scheme, the number of word-to-model
matches and score evaluations increases proportionally with the
volume of the vocabulary. When the vocabulary size exceeds a
certain critical value it may be difficult or even impossible to
perform recognition in real time.

In order to overcome this problem, many practical systems adopt a
two-level classification scheme. On the first level, a fast match
(FM) makes a preselection of the most likely candidates that
proceed to the second, computation more expensive, accurate
match (AM). In literature, many different approaches applied in
the fast match design can be found; for example, a fast match
employing a phoneme based {1,2] or acoustic information based
[3] search, vector quantization [4] or rough HMMs [5]. The
architecture proposed in [6] utilizes even three hierarchically
structured decision stages.

In this paper we present a two-level classification scheme that is
applicable in the design of discrete-utterance recognition systems
operating with medium-size vocabularies. Both the high accuracy
and minimum response time are taken into account.. To achieve
high recognition rates we prefer to use whole-word continuous
density HMMs. Unlike many other multi-level techniques, our
scheme employs the CDHMM s also on the first, fast match, level.

We build our approach up on the results of our previous studies
on speech feature selection methods [7,8] and variable frame rate
analysis [10]. Both of them have proved the extremely good
modelling ability of the CDHMMs, that remains high even if the
number of model and speech parameters is dramatically reduced.
This is demonstrated in Table 1, where results of several
recognition tests conducted on the BUS database are shown (for
details see section 5). Though the recognition rate itself, i.e. the
Top 1 score, falls down in the case of a low-parameter speech
representation, the probability of the correct candidate being on
the Top 5 or Top 10 lists is still quite high.

The concept of the proposed fast match scheme is a subject of the
next section. In sections 3 and 4 we describe the techniques used
for data reduction and the procedure for the fast match
optimalization. Experimental results are discussed in section 5.

Table 1. Classification results from a 12]-utterance test task to
compare recognition scores and times for different speech and
model parameters. The Top N score indicates the probability of
the correct model being among the first N candidates. The last
column values are relative recognition times in comparison with
the baseline experiment.

Modetl and speech parameters Classification scom?PT]m
Features | States | Mixtures | Frames| Top I | Top 5 Top 10] [%])
18 14 1 all 97.41 | 99.43 | 99.76 {100.0
18 14 2 all 97.75 | 99.51 | 99.78 [248.3
10 8 1 all 95.08 | 99.06 | 99.50 | 37.4
6 8 1 1:2 93.02 | 98.22 | 99.09 { 13.5
5 1 1:3 87.65 [ 96.96 | 98.11 | 6.4

2. THE FAST MATCH CONCEPT

In a whole-word CDHMM system, both the recognition accuracy
and the classification time depend on basic signal processing
parameters, namely on the frame rate and the number of features,



and on the model parameters. While the recognition rate becomes
saturated for certain parameter values, the time increases nearly
proportionally with these parameters. This is illustrated on a
practical task (the BUS database) in_Fig.1. The plots demostrate
that in a standard one-level scheme any attempt to accelerate the
recognition significantly (by a factor greater than 2) through a
parameter reduction would be paid by a non-negligible loss of
accuracy. The only solution is a multi-level classification scheme.
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Figure 1: Recognition rates versus recognition times plotted for
varying numbers of HMM states (5 - 14), features (5 - 18) and
frames (linear frame undersampling in range 1/4 to 1/1). The
100% recognition time corresponds to 14-state, 1-mixture, 18-
feature HMMs and no frame undersampling.

In a one-level scheme, the time ¢ to classify a speech token
depends on these parameters: N - the number of models to be
matched, S and M - the numbers of model states and mixtures, P -
the feature vector size and F - the number of the token’s frames:

t=N-T=N-f(S,M,P,F) (1

where function f is determined by the implementation of the
HMM classifier.

In our scheme we consider possibilities of reducing all the above
parameters: N, S, M, P and F. That is why we speak about a tota/
data reduction. The N will be reduced by a two-level scheme, in
which models with minimized values of S and M are matched to
speech represented by a lower number of features and frames. In
such a scheme the recognition time will be a combination of two
contributions: tg =g +¢ . The first term is the time of the fast
match between a reduced token representation ( P features and
Fg frames) and N simplified models (Sg states and My
mixtures). The ¢, corresponds to the accurate match performed
with the best N candidates using the standard parameter values:

IR =N'f(SF,MF,PF,FF)+NA 'f(S,M,P,F)=NTF +NAT

2

The central point of the fast match design is the search for the

optimal values of parameters Pr, Fr.Sp, Mg and N, with

the aim to minimize the time reduction ratio 3 5 defined as:
NTF + NAT TF NA

3
t NT T N 3

3. DATA REDUCTION TECHNIQUES

The FM parameters are task dependent and must be optimized
individually for each task using the available training and testing
material. In the following text, several techniques that have been
investigated as cligible for the data reduction are described.

Model parameters. Two parameters of the FM models are to be
set, the Spand M. The latter can be always chosen equal to 1
because in practice many whole-word CDHMM systems perform
succesfully in a single-mixture mode. The choice of the Sg will
be a subject of the optimizing procedure described in section 4.
Essentially, there are two alternatives:

1. All models have the same number of states.

2. Models have different state numbers that are
related, e.g. to the average token length, to the
number of acoustic events, etc.

In our investigations the latter alternative was represented by a
scheme that assigns a model the number of states according to the
following formula:

Sp=int[k-VE] )
where k is a (control) constant and F is the average token length.

Speech features. A considerable amount of the computational
costs can be saved by minimizing the size of the feature vectors
applied in the FM. For any efficient reduction in the speech
parameter space it is necessary to order the features according to
their discriminative power. Our previous works [7,8] indicated
that the best results in the speech feature ordering task are
provided by sequential selection methods. We have also shown
that speech can be effectivelly represented, particularly for the FM
purpose, by a small number of dynamic (time derivative) features.

Speech frames. Another important source of the computational
savings is the frame flow. Traditionally, the frame rate is chosen
to meet the phonetic and acoustic characteristics of speech. (In
practice, 15-25 ms long, half overlapped frames have become
almost a standard.) However, it has been demonstrated in several
studies [9,10] that a lower or even a variable frame rate can be
used in whole-word CDHMM systems without a greater impact
on the recognition results. Hence, for the fast match we have
considered the application of either of the following techniques:

1. Linear frame undersampling.

2. Nonlinear frame selection techniques based, e.g.
on spectral variation functions (SVF).

Our study on the spectral variation functions [10] identified the
following type as an appropriate one:

P L L
SVE(f)= Z %Z 1= eh)’ (5)
=1 i=] i=1

where c}’ is the p-th cepstral coefficient in the f-th frame and L is



a constant (usually in range 2 to 4). As shown in [10], the peaks in
the SVF waveform define quasistationary segments that can be
represented by a limited (fixed or variable) number of frames.

Candidate lists. The key-point in the FM design is to determine
the number of the candidates that are to proceed to the accurate
match. The right choice of the number N, is crucial both from
the recognition rate and time points of view. Since we consider
the accuracy as the primary goal, we will always adjust the N 4 so
that the accuracy of the recognition system is not degraded.

In practice we may accept a minor accuracy loss constrained by
the condition that (R—Rg)/R<e, where R and Ry arg
recognition rates of the one-level and the two-level systems,
respectively, and ¢ is the relative loss (e.g. 0.001). The optimal
value of the N, is then searched as a function of the other FM
parameters ( Pr, Fp,Sp, Mp) with the aim to achieve the
minimum value of the 3z (defined by eq. (3)) provided the
corresponding recognition rate Ry fulfills the above condition.

4. THE FAST MATCH OPTIMIZATION

The complete design of the proposed FM scheme is a subject of a
series of experiments conducted on the target task speech material.
However, the design process can be automated and run as an
unsupervised, system training and optimizing, procedure.

The procedure uses a gradient search in the space of the FM
parameters. The search is controlled by the &, factor. It can
proceed quite fast because it is limited to the FM tests only. The
results and the duration of the complete two-level classification
are estimated from the available candidate lists and from eq. (3).
The procedure consists of the following steps:

1. Split the available speech material into a training and testing
part. Find the optimal parameters (P, S and M) for the one-
level classification, and hence also for the accurate match, and
evaluate the following parameters: R (recognition rate) and
T (average time to match one model). Make a subset C of
those testing tokens that were recognised correctly.

2. Order the given feature set according the their discriminative
power (by utilizing any convenient method). Choose an
apropriate frame reduction method such that the reduction rate
can be controlled parametrically (towards increasing or
decreasing rates). Choose a method for selecting the number
of model states, controlled again by an external parameter
(e.g. the k in eq. (4)). Define the allowed recognition loss € .

3. Set the initial values of the parameters that will control the
choice of the FM parameters Pr, Fy,Sg, M. Start, for
example, with: P =P/2 Fp=F/2, Sp=8/2, Mg =1.

4. For the given parameter settings: train the FM models and test
them on set C to evaluate the overall Top n (n=1 ... N) scores

and time TF (average time to match a model). Find such

minimum N 4 so that the Top N 4 score will meet the allowed

losse . Estimate the reduction factor & 5 by applying values
N.N4.Tand T ineq. (3).

5. Do the same as in step 4 for all combinations of parameter
setting P, Py Pr . Fy . Fp,F§ Sp,Spand Sy, where
the upper indeces .- and ,,+* indicate next lower and higher
values of the parameters.

6. If the factor 3 5 approaches minimum for the combination
Pg, Fi, S and M stop the procedure, otherwise set these
parameters to the combination that achieved the lowest 5 4 in
step 5 and go to step 4.

Note: Since a lot of evaluations are common for succeeding
sweeps through steps 4 and 5, they can be eliminated by utilizing
the previously achieved and stored values.

S. EXPERIMENT RESULTS

The proposed scheme has been experimentally evaluated on
several speech databases containing either isolated words or multi-
word utterances. From all the databases, the most appropriate one,
with respect to the purpose of this study, was BUS database. It
consists of 121 items, mostly Czech city names, spoken by 48
(male and female) speakers in two repetitions. The database
belongs to a real project and includes both very short words (Ne)
and very long, multi-word, names (Hodkovice nad Mohelkou) as
well as confusable pairs (Trutnov - Turnov, Decin - Jicin, etc.).

The database has been recorded via a telephone set with average
SNR being aprox. 20 dB. The 8 kHz/16 bit signal was represented
by a vector of 18 features (8 cepstrum coefficients + 8 delta
cepstrum + delta energy + delta-delta energy) using 20 ms long
frames with 10 ms frame rate.

All the experiments were organized as speaker-independent tests
with a half of the database employed in training and the other half
involved in testing (approximatelly 6000 testing tokens). The
evaluation system used CDHMMs trained by the Baum-Welch
reestimation method and tested by the Viterbi algorithm.

In preliminary experiments we focused on determining the
optimal model parameters for the standard one-level classification
scheme. Best results have been achieved with 14-state HMMs;
97.41 % recognition rate for 1-mixture models and 97.75 % for 2-
mixture ones - see also Table 1. For the purpose of the further
comparisons, the former settings, i.e. S=14, M=1, P=18 were used
as the baseline system parameters.

In the next series of experiments we evaluated the data reduction
techniques proposed in section 3. As displayed in Fig. 1, the best
recognition rate/time ratio is provided, surprisingly, by the frame
reduction. We tested both linear and several non-linear, on the
SVF based, frame selection techniques. The results of quite an
extensive investigation showed that none of the proposed variable
frame rate methods got over the simple frame undersampling
technique. The 1:2 and 1:3 frame reduction was found optimal for
the fast match. The set of 18 features was ordered by means of the



sequential forward selection method with results nearly identical
to those published in [7]. Among the first 10 features eligible for
the fast match mostly the dynamic ones were identified. The
investigations on the number of model states showed that in the
case of the standard AM models the equal number was the optimal
choice. For speech with undersampled frames. however, different,
word-dependent, state numbers were necessary to assure the
correct Viterbi allignment both for short and long utterances.

After these preliminary experiments, we could apply the fast
match optimization procedure that was described in section 4. The
procedure was provided by the data (R , T and C) of the baseline
system and run with the parameters that controlled the linear
frame undersampling rate, the varying number of model states
according to eq. (4) and the number of features. On the given
database, the procedure found these optimal settings for the fast

match: Pr =187 Fg =F/3, S5y =8, Mg =1.

How much the FM based on these parameters influenced the total
recognition score and time is shown in Table 2. The table displays
data as a function of the loss factor ¢ (that determines the number
of the AM candidates, i.e. the N ). Compared are the results
estimated by the optimization procedure with those achieved in
the real two-level test. We can observe that the fast match helped
to reduce the computation time to less than 20% compared with
that of the standard scheme while causing a loss of accuracy that
was negligible (about 0.1 %). We may also notice a certain
difference between the estimated and real losses. It is a positive
byproduct of the fast match that may push a potentially best, but
wrong, AM candidate out of the Top N4 list.

Table 2. Recognition results of the system with a fast match
displayed for different values of the loss factor € that determines
the number of the accurate match candidates. Compared are
estimated results with those of real tests.

Estimated results Real test results
Loss e AM Time Time Score | Real test
candidates | reduction | reduction score loss
[%] Ny Spl%] | dpl%] | [%] %)
baseline system: - 97.41 -
0.1 12 229 23.1 9741 0
0.2 8 19.6 19.8 97.31 0.10
0.5 5 17.1 17.4 97.28 0.13
1.0 3 154 15.9 96.89 0.53

In order to verify the robustness of the method we repeated the
experiments on the same database but with different train/test data
splitting. In all cases the results were very similar. We have also
tested the FM scheme together with multi-mixture AM models.
The application of 2-mixture HMMs on the same database cost
2.5 times more time while the score approached 97.75%. Using
the FM we reached the same score in a time ten times shorter.

6. CONCLUSIONS

A two-level classification scheme applicable to discrete-utterance
recognition has been proposed. It offers a considerable reduction
of computational costs even if employing continuous density
HMMs at both the first and second level. It can be easily adapted
for a practical task by means of the fast match optimization
procedure described in section 4. The scheme, that is depicted in
Fig.2, is well suited, particularly, for applications with a medium-
size vocabulary that are to run on a common hardware, like a PC.
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Figure 2. Overview of the two-level classification scheme
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