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Summary-Estimation of nonlinear regression quality leads to examination of quality of parameter 
estimates, a degree of fit, a prediction ability of model proposed and quality of experimental data. 
Statistical analysis serves for computation of confidence intervals of parameters and confidence bands, 
the bias of parameters and bias of residuals. Goodness-of-fit test examines classical residuals using various 
diagnostics and identifies influential points. Mentioned topics of nonlinear model building and testing 
contained in MINOPT program from CHEMSTAT package are illustrated. 

Practical applicability of regression algorithms 
and program packages for non-linear regression 
can be deduced from an ability to reach a 
minimum of a sum of squared residuals and 
from a quality and amount of statistical infor- 
mation. Structural classification of regression 
programs in blocks already introduced in 
ABLET programs of solution equilibria’v2 and 
instrumental methods of analytical and physical 
chemistry concerns blocks INPUT, RE- 
SIDUAL SUM OF SQUARES, MINIMIZ- 
ATION, STATISTICAL ANALYSIS, 
GOODNESS-OF-FIT TEST, DATA SIMU- 
LATION, etc. was also used here. 

While a previous paper3 of this series de- 
scribes RESIDUAL SUM OF SQUARES and 
MINIMIZATION blocks, this paper brings a 
description of two other blocks of MINOPT 
structure, i.e., STATISTICAL ANALYSIS 
and GOODNESS-OF-FIT TEST. Procedure of 
regression model testing4 is illustrated. 

THEORY 

Statistical analysis block 

Statistical analysis in nonlinear regression 
depends on an actual model used, measurement 
errors and a criterion function. Let us concen- 
trate here on the method of maximum likeli- 
hood when the searched estimates 6 maximize 

the logarithm of the likelihood function 
1(/I) = In L(p). If for the additive model of 
measurement (c$ Ref. 3) the independent errors 
c have the probability density function p(c) then 
likelihood function L(b) is defined as 

L(b)= fiP(Yi-f(x,;b) 
r=l 

(1) 

In construction of confidence intervals of 
parameters fi or in statistical hypotheses testing 
the linearization, Lagrange multipliers and 
likelihood ratio methods may be used.’ 

The least-squares (LS) method is the best 
case of an additive model of measurement and 
independent normally distributed measurement 
errors having constant variance. Gallant’ shows 
that the least squares estimator 6 of true value 
of parameters j? in the regression model has 
asymptotically m-dimensional normal distri- 
bution 

6 = N[B, 02(J’J)-‘1 (2) 

Here a2 is error variance ‘and J is the Jacobi 
matrix (definition, cf. ref. 3). The asymptotic 
normality of estimates 6 determined by the 
least-squares method does not require a normal- 
ity of errors L, Ref. 5. 

For real experimental data the estimates 6 
and other statistical characteristics are biased 
and therefore application of equation (2) is 
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limited. Statistical analysis of nonlinear re- 
gression models by the least-squares methods 
then depends on a magnitude of bias which 
describes a degree of nonlinearity of regression 
model. 

Covariance matrix of parameter estimates. 
From equation (2) it follows that the asymptotic 
covariance matrix of estimate 6 is expressed by 
the relation 

D(6) = 02(J=J) -’ (3) 

where s* is estimator of 0’. There exist many 
more accurate expressions,6 but for practical 
calculations the asymptotic formula [equation 
(3)] is quite acceptable. 

On the base of knowledge of a covariance 
matrix D(6) either the variance of indi~du~ 
parameters D&) or ihe cor_relation coefficients 
rii between estimates b, and bj may be estimated. 

Bias of parameter estimates. The bias is given 

by 

k =E(&-flP*) (4) 

For the sake of simplicity we use an expression 
of parameter bias in the form7 

h = (JrJ)-‘J’ d (5) 

where d is the (n x 1) vector with components 

d, = -a2 WJTJ)-‘W1 
, 2 (6) 

where tr[ - ] denotes a trace of matrix and W, 
is the matrix of second derivatives of model 
function in the i-th point. The vector d is 
an expected value of difference between the 
linear and quadratic approximation of a model 
function. 

Similarly the bias of residuals 

6?{ = y1 - f(x,; 6) (7) 

can be defined. When E(c) =O, the bias of 
residuals is equal to their mean value E(C). The 
mean value of residuals vector 

E = E(C) 

can be rewritten7 as 

(8) 

E=(E-P)d (9) 

where P = J(J’J)-‘Jr is the projection matrix 
and E is the unit matrix of order n. 

For practical calculation the relative bias of 
parameter estimates is often used 

h,=$lOO [%] 
4 

(10) 

The bias of estimates is considered significant 
if h, > 1% holds.’ For such biased estimates 
the statistical analysis based on linearization of 
regression model cannot be correctly used. 

For expressing the total bias of parameter 
estimates Box* proposed the scalar character- 
istic 

U = h r(JrJ)h 
_- (11) 
“L \ , 

The bias of paramete~ay be affected by a 
reparametrization9 

Interval estimates of parameters. Points esti- 
mates b of regression parameters /I are, in the 
statistical view, worthless as they do not men- 
tion intervals in which 5 true value p may be 
expected. The estimates b are random quantities 
estimated on base of sample, (Yi, xi>9 
i= ,...,n. 1 

In nonlinear regression models for a construc- 
tion of confidence regions and intervals a lin- 
earization is often used for which confidence 
regions are elliptic. However, a linearization is 
useful only in cases when a model is not strongly 
nonlinear and nonlinearity measures, for 
example, the parameter bias, are small. The 
more accurate confidence region calculated 
on the base of Lagrange multipliers or the 
likelihood ratio can also be constructed. They 
are generally non-elliptic and are not continu- 
ous. 

For asymptotic normality of maximum likeli- 
hood estimates 6 it follows that the quadratic 
form 

Q = (/I - 6)rD(6)-‘(fi - b) (12) 

has x2(m) distribution. The corresponding 
lOO(l-OS)% confidence region of parameters fl 
forms a m-dimensional ellipsoid with bound- 
aries expressed by 

(/?* - 6)rD(6)-‘(fl* - i) = x:_,(m) (13) 

where x:_,(m) is the 100(1 - cw)%th quantile of 
x2(m) with m degrees of freedom. The center of 
this ellipsoid is in the point 6. 

For the least-squares method the application 
of equation (13) leads to definition of confidence 
ellipsoid having the boundary 

Abr(JrJ)-‘Ab =mcf2F,_,(m,n -m) (14) 

where Ab =/I -6and F,_,(m,n -m) is quan- 
tile of Fisher-Snedecor distribution. 

When a bias of parameters h is c$culated, 
instead of Ab the correction Ab, = b -h - fi 
may be used. 
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For expressing a geometry of confidence ellip- 
soids the decomposition of the matrix (JrJ)-’ to 
eigenvalues Li and eigenvectors Zi may be intro- 
duced 

(J=J)-’ = ZLZr (15) 

where Z is a matrix containing eigenvectors in 
columns and diagonal matrix L contains eigen- 
values L, 2 L2 2 . - - 2 L,,, on a diagonal. Using 
this decomposition the new orthogonal set of 
coordinates y = Z Ab can be defined. This set 
has an important property that the axes of 
confidence ellipsoid are identical with the axes 
of the coordinate system. Introducing notation 

p2=mB2F,_,(m,n -m) (16) 

the confidence ellipsoid can be expressed by 
simple formula 

!,z=P2 (17) 

The lengths of half-axes of the ellipsoid are 
equal to p&. For a projection Ajk of the j-th 
half-axis into the axis of parameter & it holds 
that 

Ajk=PIZkjJLil (18) 

where Z,,. is the k-th elements of the vector Z, 
which is thej-th column of matrix Z. 

When dimension of a parameter vector is 
m > 2, a partial confidence ellipsoid can be 
constructed.5 

For building the confidence region the 
Lagrange multipliers or a likelihood ratio may 
also be used. For example, from properties of 
likelihood ratio the bound of lOO(l-cl)% confi- 
dence region can be defined by relation 

2[ln L(6) -In L(B)] = x:_,(m) (19) 

For a least-squares criterion the relation (19) 
leads to the relation 

U(B) - U(b) = mrJ2F, _ ,(m, n - m) (20) 

The confidence region defined by this equation 
is not generally elliptical or continuous. 

With the use of equation (13) the 
lOO(1 - a)%th confidence interval of parameter 
pj in the form 

6,-~?&t,-,,~(n -m)</3,<gj 

+d&t,_,,,(n -m) (21) 

is direct analogy of confidence intervals of the 
parameters of linear models. An influence of 
other parameters is neglected. When all diag- 

onal-off elements of the matrix C = (JrJ)-’ are 
zero the relation (21) may be used. However, 
elements of the vector b are often mutually 
correlated so that intervals of equation (21) are 
under-estimated. 

More suitable determination of the confi- 
dence interval of parameter fik is based on the 
maximal length Ak of a projection Ak, into the 
parameter axis &. The confidence interval of a 
parameter & is then estimated by 

&A~~fik&~k~dk (22) 

Instead of projections it is simpler to search 
directly coordinates of extreme points on the 
confidence ellipsoid in directions of individual 
parameter axes.2 The corresponding con- 
fidence interval of a parameter fik is defined by 
inequality 

holds. For m = 1 all confidence intervals2’-23 are 
identical. Increasing the number of regression 
parameters m the confidence intervals (22) and 
(23) are broader than those of (21). All confi- 
dence intervals are symmetrical. Using lineariza- 
tion the confidence intervals of prediction 
f(x*; b) and confidence bands can be simply 
derived.4 The more accurate confidence bands 
may be constructed with the use of convenient 
reparametrization.’ 

Goodness-of-@ tests block 

In many regression programs the statistical 
analysis of residuals represents the main diag- 
nostic tool and a resolution criterion in a search 
of the “best” model when more than one are 
possible or proposed. The goodness-of-fit test 
(which is also called the fitness test) analyses 
the residual set and examines statistical charac- 
teristics. 

To application of statistical analysis of classi- 
cal residuals C, it should be critically noted that 
the diagnostic use of classical residuals is not 
rigorous but of a rather approximate character. 
The classical residuals do not exhibit a zero 
mean, they are biased and they are a combi- 
nation of errors E. Moreover, they are depen- 
dent on true values of parameters /3 which are 
unknown. 

Statistical analysis of classical residuals. 
Classical residuals are defined as the differences 
C bet_ween observation yi and prediction pi = 
f(x,; 6) by equation (7). Graphical and analyti- 
cal examining residuals check the quality of a 



282 Jw MILITK~ and MILAN MELOUN 

nonlinear model.4 The following plots are often where L(6) is the likelihood function. The 
used in nonlinear models examination: “best” model is considered to be a model for 

(1) The overall diagram gives a first view of 
residuals. If the model is correct these residuals 
should resemble observations from a normal 
distribution with zero mean. 

(2) Plot type I (also called the index plot) is 
a scatter plot of residuals B, against an index i in 
the time order as occurred. 

(3) Plot type II (also called the plot against 
an independent variable) is a scatter plot of 
residuals Ci against the independent variable xi, 
j=l,...,m. 

which this criterion reaches a minimal value. 
Using the least-squares criterion the AIC may 
be expressed 

m AIC=nln - 
[ 1 +2m (27) n 

(5) The prediction ability of a model pro- 
posed may be examined by the mean quadratic 
error of prediction MEP being defined by the 
relation 

(4) Plot type III (also called the plot against 
a prediction) is a scatter plot of residuals against 
the prediction gi. 

MEP = ; .i ( yi - f(x,; &,)* 
r-l 

(28) 

The following statistics are used in nonlinear 
models examination: 

(1) The arithmetic mean of residuals known 
as the estimate of residuals bias, E(t), should be 
equal to zero; 

The symbol &, denotes the estimator of par- 
ameter /.I computed without the point <xi, y,). 
Here instead of the parameter estimate 6,,,, the 
one-step approximation 6t, defined by follow- 
ing equation (29) may be used. Lower values of 
MEP criterion give better prediction ability of 
the model proposed. 

(2) The residual variance is calculated from 
the residual sum of squares 

8* = U(6)/@ - m) (24) 

The square-root of a residual variance known 
as an estimate of the residual standard devi- 
ation, s(C), should be of the same magnitude as 
the (instrumental) error Sin,,(y), of dependent 
variable (observation, measured quantity y), 
i.e., S(b) X Sin,,(y); 

(3) The determination coefficient D* is com- 
puted from the relation 

IdentiJication of influential points. Influential 
points can strongly affect some regression 
characteristics. The points affecting prediction 
fi, for example, may not be influential from the 
point of view of parameter variance. The degree 
of influence of individual points should be 
classified regarding which characteristics are 
affected.4 While for linear models all the charac- 
teristics for identification of influential points 
are a function of residuals & and diagonal 
elements Pii of the projection matrix 
P = X(x%)-‘XT For nonlinear regression 
models the parameter estimates and residuals 
cannot be expressed so simply as a linear com- 
bination of experimental data. When the Taylor 
type linearization of original nonlinear model is 
used, all methods of identification of influential 
points in linear models can be used here. Then 
in the nonlinear case the matrix J has the same 
role as X in the linear case. For a one-step 
approximation of the parameter estimate b,,, 
computed without point (xi, yi) is valid 

D*=l- n U(Q 
c (Vi - PI2 

r=l 

where jj = l/n Z;=, yi is the arithmetic mean of 
response variable. The determination coefficient 
is for linear models equal to the square of the 
multiple correlation coefficient. When the deter- 
mination coefficient is multiplied by 100% 
we receive the regression rabat in percents, 
lOOD*[%]. Determination coefficient D* is an 
increasing function of a number of parameters, 
therefore, it is not convenient to use as a 
resolution diagnostic for search of models of 
different numbers of parameters. 

(4) To distinguish between various models 
proposed the Akaike information criterion AIC 
is more suitable to apply being defined by the 
relation 

AIC = -lnL(6)+2m (26) 

1 

6li, = 6 - (J’J)-‘Ji &. 
II 

Here Pii are elements of a projection matrix 
P = J(JTJ)-‘JT. With use of equation (29) the 
variance estimate s&, when leaving out the ith 
point is defined by 

s$, = 
U(6) - g-g 

l, 

n-m-l (30) 
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Some characteristics of influential points 
based on linearization and used in program 
MINOPT are in Table 1. Interpretation of these 
characteristics may be found in Ref. 4. 

To express an influence of individual points 
on parameter estimates the quadratic expansion 
of a regression model may be used, too.‘O 

Nonlinear measure of an influence of the ith 
point on the parameter estimates is also rep- 
resented by the likelihood distance 

LD, = 2[ln L (5) - In L (6)&l (31) 

In case of the least-squares the likelihood dis- 
tance is expressed by 

” 

W,,,) LD,=nln - 
[ 1 U(6) 

(32) 

In both equations (31) and (32) the estimate bCi, 
is calculated by a nonlinear regression when the 
ith point is left out or the one-step approxi- 
mation St,, of the parameter estimates is used. 
When inequality LD, > X:-~(Z) holds, the ith 
point is strongly influential. The significance 
level a is usually chosen to be equal to 0.05. 

Procedure of nonlinear model testing 

A quality of nonlinear model proposed is 
examined using following criteria. 

Quality of parameter estimates. Quality of 
parameter estimates 6, is considered according 
to their confidence intervals Aj, equation (18) 
and (21) and ARJ, equations (22) and (23) _or 
according to their standard deviations s(bj), 
equation (3), the absolute bias hi, equation (5) 
and the relative bias hRJ, equation (10). Often an 
empirical rule of thumb is used: the parameter 
/Ii is considered to be significant when its esti- 
mate ij is greater than its 2 standard deviations, 
2s(&) < 1 b,l. High values of parameter standard 
deviation ~(6) is caused by termination of a 
minimization process before reaching minimum. 
Therefore, also inaccuracy of calculation of 
matrix J appears or a high nonlinearity of 

Table 1. Three characteristics of influential points based on 
linearization. Critical level is the value of characteristic 
exceed this level, the corresponding point is denoted as 

Name 

Cook 
distance D, 

highly outlying 

Form Critical level 

(6 - 6,)‘~3(6 - A,) 1 

Jackknife 
residual i,, 

1 

e, 
$,JI-p, 

Regraasion model: model 1 

18 

V 

17 

1800 20 30 40 60 
X 

xl - residual: model 1 

30 0 10 20 30 49 99 99 
xl 

Fig. 1. Non-linear regression of data for Mode1 I: (a) a 
curve-fitting, and (b) a scatter plot of type II of classical 

residuals. 

regression model exists. The test of statistical 
significance of each parameter fii, the null hy- 
pothesis @, = 0 OS. the alternative one /Ii # 0, is 
carried out. 

Inter-dependence between parameters. Matrix 
of paired correlation coefficients of parameters, 
rii, expresses a measure of correlation or inter- 
dependence between two parameters fii and /Ii. 
If ru in absolute value is close to one, two 
parameters /3, and j?/ are linearly dependent. 

Quality of achieved model fitness. Agreement 
of proposed model with experimental data is 
examined by (i) the statistical analysis, and (ii) 
the goodness-of-fit test. 

The statistical analysis of nonlinear regression 
contains following characteristics: the residual 
sum of squares U(6), the regression rabat in 
percents 100 D*[%], equation (25), the mean 
quadratic error of prediction MEP, equation 
(28), the Akaike information criterion AIC, 
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Table 2. Illustration of shortened output of MINOPT analysis of {x,,~,} data for Model I 

Quality of parameter estimates 
Point and interval estimates of parameters 

Point Standard Absolute Relative Half-length of 
Parameter estimate deviation bias bias confidence interval 

fi, 4 s(b,) h, h/l.&/;;; Aj 
15673E + 01 1.726lE-01 -0.0161 
9.9925E - 01 1.5625E - 01 0.0160 1.5977 
2.2222E - 02 2.1017E - 03 3.9E - 06 0.0176 

Correlation (inter-dependence) between parameters 
Matrix of paired correlation coefficient of parameters, rV 

kO.6232 +&33 
kO.5637 f 0.5642 
*0.0075 kO.0076 

BI 82 B3 
8, l.OOOOE+OO -9.968lE - 01 9.8629E - 01 
2 -9.968lE 98629E - - 01 01 -9.9523E l.OOOOE+OO - 01 -9.9523E l.OOOOE+0l - 01 

Independ. 
variable 

i X 

1 1 
2 5 
3 10 
4 15 
5 20 
6 25 
7 30 
8 35 
9 40 

10 50 

Quality of achieved curve-fitting 
Statistical analysis and goodness-of-fit test of classical residuals 

Response Prediction Standard 
measured calculated deviation Bias 

1.670&+01 1.669&+01 
1.6800E + 01 1.6790E + 01 
1.69OOE + 01 1.692lE + 01 
1.7lOOE+Ol 1.7068E + 01 
1.7200E + 01 1.7232E + 01 
1.74OOE + 01 1.7415E + 01 
1.7600E + 01 1.7619E+Ol 
1.7900E + 01 1.7848E + 01 
1.8lOOE + 01 1.8104E+Ol 
1.8700E + 01 1.8709E + 01 

49) h(3) 
1.9847E - 0 - 1.2022E - 04 
1.5842E - 0 - 1.7692E - 05 
1.2380E - 0 6.41318 -05 
l.l210E-0 9.6718E-05 
l.l897E-0 8.5504E - 05 
1.3105E - 0 4.0018E - 05 
1.3837E - 0 - 2.4973E - 05 
1.386lE-0 -8.8089E - 05 
1.4192E - 0 -l.l967E-04 
2.7266E - 0 8.4264E - 05 

Classical 
residual 

5.06;E - 03 
1.0093E - 02 

-2.1134E-02 
3.2219E - 02 

-3.1663E - 02 
- 1.4804E - 02 
- 1.9465E - 02 

5.182lE-02 
- 3.7685E - 03 
-8.5853E - 03 

Statistical analysis 

Residual sum of squares, U(6): 
Regression rabat, lOOD’, [%I: 
Akaike information criterion, AIC: 
Estimate of standard deviation of prediction, s(P/x): 

5.986lE - 03 
9.9838E + 01 

-64642E + 01 
2.9243E - 02 

Point 
i 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Goodness-of-fit test 

Estimate of residual variance, s’(g): 8.5516E-04 
Estimate of residual standard deviation, s(P): 2.9243E - 02 

Quality of experimental data 
Indication of influential points (outliers and leverages): 

Jackknife Cook Diagonal Normalized 
residual distance elements distance 

7.09;iE - 01 
D Ht., FDA 

1.5852E - 02 4.6060E - 01 1.3469E - 03 
7.9083E - 01 2.3346E - 02 2.9349E - 01 5.8963E - 03 

-7.8569E - 01 4.6314E - 02 1.7922E - 01 2.0878E - 02 
l.l740E+OO 8.1704E - 02 1.4695E - 01 4.416lE -02 

-9.9223E - 01 9.2870E - 02 1.6550E - 01 39056E - 02 
-6.3466E - 01 2.6862E - 02 2.0083E - 01 9.4246E - 03 
-7.5215E - 01 5.489OE - 02 2.2387E - 01 1.523lE - 02 

1.4315E + 00 3.9119E - 01 2.2466E - 01 2.6786E - 01 
-2.4752E - 01 2.23lOE - 03 2.3554E - 01 7.5113E-04 
-5.3222E - 01 1.4630E + 00 8.6934E - 01 4.1484E-04 

Map of parameter sensitivity in model 

Relative Relative 
change Total change 

Parameter CjR(-5%) sensitivity CjR(+S%) 
j WI Ci WI 
1 -l.l930E-08 l.OOOOE+OO 2.8004E - 08 
2 -7.0302E + 00 3.4946E + 00 7.67OOE + 00 
3 - 1.7824E + 01 4.5182E + 03 2.1104E+01 

Likelihood 
distance 

LDA 
8.8043E - 03 
9.4152E - 03 
1.4915E - 02 
4.7807E - 02 
4.2378E - 02 
94039E - 03 
1.13298-02 
9.9158E - 01 
8.9988E - 03 
6.90488 - 03 
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equations (26) and (27), the standard deviation 
of prediction s(y/x), the total bias of parameter 
estimates M, equation (1 l), a graph of the 
confidence interval of prediction. 

The goodness-of-fit contains: the table of the 
prediction calculated 9, the standard deviation 
of prediction s(g), the residual bias h(P), 
equation (9), and classical residuals t, equation 
(7). Statistical characteristics describe classical 
residuals: the residual bias E(t), equation (8), 
the norm of residual bias 11 E 11, the mean of 
absolute residuals E( I Z I), the mean of absolute 
values of relative residuals lOOE( I C,, I ) in per- 
cents, the estimate of residual variance s2(C), 
equation (24) and its square-root the residual 
standard deviation s(C). 

Prediction ability of model proposed. Predic- 
tion ability of model can be classified by the 
following procedure: data are divided on two 
groups, M, with indices i = 1, . . . , n/2 and A4, 
with indices i = n/2 + 1, . . . , n. Denote esti- 
mates of parameters made from points of sub- 
croup M, as 6(M,) and from subgroup M2 as 
b(A4,). Prediction ability of the model is 
expressed by criterion 

K= 
U(6) 

,~,[Yi-f(xi;b(M,)12+,~~Yi-f(~i;b(M~)12 

(33) 

The prediction ability of the model is higher 
when the criterion K is close to one. The mean 
quadratic error of prediction MEP, equation 
(28), can also be calculated. The lower the value 
of MEP the better is the prediction ability of the 
proposed model. 

Quality of experimental data. For examin- 
ation of quality experimental data an identifi- 
cation of influential points by regression 
diagnostics is applied: the Jackknife residuals GJJ, 
the Cook distance D, the diagonal elements of 
projection (hat) matrix Hii, the test criterion 
DSF, the normalized distance FDA, and the 
likelihood distance LD, equations (3 1) and (32). 

Map of parameter sensitivity in model. The 
total sensitivity C, for all parameters /Ii and the 
relative changes caused by 5% change of par- 
ameters /?, are computed. Characteristics C, 
and their interpretation are described in a forth- 
coming book.4 

Graph of regression curve. A graph of re- 
gression curve fitted through given experimental 
points with the 95% confidence bands and two 

plots of classical residuals give a graphical 
overview of fitness achieved: the plot of type II 
and the plot of type III. 

Physical meaning of parameter estimates. In 
proposed models some restrictions of physical 
meaning are given on parameter estimates. For 
example, concentrations or molar absorption 
coefficients are defined in a range of positive 
numbers only. 

Software 

Program MINOPT from CHEMSTAT pack- 
age carries out the numerical and statistical 
analysis of a non-linear regression model f(x; /?) 
with use of modified “double dog-leg” strategy. 
This program contains all the above mentioned 
criteria of nonlinear model quality. 

Program MINOPT is a part of CHEMSTAT 
package and is available from authors on 
request. 

Illustrative examples 

For illustration of MINOPT statistical 
characteristics the example of Model 1 from 
paper3 was recomputed. Selected outputs are 
shown in Table 2. 

CONCLUSION 

Many problems in the chemical laboratory 
can be reduced to the problem of finding a 
correct mathematical model and its unknown 
parameters. It may be carried out by minimizing 
a difference between experimental and calcu- 
lated data. The variety of regression diagnostics 
introduced here serves as an efficient tool in 
search of true model. 
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