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ABSTRACT 

Time-fiequency statistical characteristics of 
cyclostationary signals are studied. The characteristics 
considered are real and complex instantaneous autospectra. 
Unfortunately, as both these characteristics can take on 
negative values, they are not spectral densities. Moreover, 
the second characteristics is a complex function of time 
and fi-equency. The first characteristics, on the other hand, 
can be deteriorated by artifacts occurrence. The origin of 
these artifacts is shown to be the difference between the 
support area, on which the autospectrum is unambiguously 
defined, and the area, which represents the basic period of 
the autospectrum. However, both characteristics can be 
computed with very good time and frequency resolution. 

1. INTRODUCTION 

A number of phenomena in nature, society, and 
technology have cyclic character, i.e. they repeat to some 
extent more or less periodically. Rotation of the Earth on 
one hand and working cycles of engines, turbines, and 
compressors on the other hand are just a few examples. 
Signals acquired by observers of these and associated 
phenomena have statistical characteristics which are 
periodic functions of time. Hence such !Signals are called 
cyclostationary [ 11, periodically correlated [2],  or 
periodically nonstationary [2]. Traditional approach used 
to analyze these signals is based on assumption of their 
stationarity. This assumption implies continuous time 
averaging. Statistical characteristics obtained in this way 
are well known autospectral densities mid autocorrelation 
functions. However, during continuous time averaging a 
certain amount of information, concerning, e.g., phase 
magnitude or time-frequency behavior of signals, is lost. 
Therefore methods have been looked for to preserve this 
information. They all are based on periodlic time averaging 
and the resulting stadistical characteristics are known as 

periodic mean [l], gated autospectrum [3], cyclic 
autocorrelation and cyclic autospectrum [ 11, spectral 
correlation [4], double autocorrelation and double 
autospectrum [ 5 ] ,  etc. In the paper some statistical 
characteristics that are related to time-frequency behavior 
of cyclostationary signals will be discussed. 

At the first sight the approach used in time-fiequency 
analysis of cyclostationary signals may seem to be the 
same as that used for transient signals. However, as will be 
shown, defmite and important differences exist. These 
differences follow fiom the periodic nature of 
cyclostationary signal statistical characteristics. 

Motivation for the research described in this paper has 
been an endeavor to improve analysis of noise and 
vibration generated by reciprocating machinery. Results 
obtained by other researchers in this field can be found, 
e.g., in references [6-121. 

2. STATISTICAL CHARACTERISTICS OF 
CYCLOSTATIONARY SIGNALS 

Time-frequency statistical characteristics of 
cyclostationary signals can be obtained both from time and 
fiequency domain characteristics. In the following an 
approach based on time domain autocorrelation functions 
will be used. However, the same results would also be 
obtained via frequency domain characteristics. 

A double autocorrelation function is defined as [5 ]  

Here E[ ] denotes averaging operation on the ensemble of 
time signals x(t). A different autocorrelation function can 
be derived from (1) by introducing new variables 

t = ( t , + t , ) l 2 ,  r=t* - t ,  . 
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After substituting (2) into (1) one obtains [5] Real and imaginary parts of W,(fl,t3 can take on both -~ . 

positive and negative values. 
R,(z,t)= E [ x ( t - z / 2 ) x ( t + d 2 ) ]  . (3) 

In the second case one obtains a real instantaneous 

In the case of cyclostationary signals the autocorrelation 

averaging over different periods of signal x(f) and both 
Rxx(t,,tZ) and Rxx(z;t) are periodic functions of the 
respective variables. In the case of R,(tl,tJ it follows kom 
the definition (1) that 

autospecmm (cyc1ic distribution) 
functions R,(t,,tj and R,(z,t) are computed by periodic TP 

- TP 

The real instantaneous autospectrum W&O is a periodic 
function of time again, i.e. 

wn(f,t) = /Rn(r,t)e-’2$rdz * (12) 

R n ( t 1 7 t 2 ) =  ‘ ~ ( ~ 1  + n q 7 t 2  +mq) Y (4) wu( . f>f )  = K( fJ  + mT,) Y 

w,(fJ) = wL(fJ), w , ( f 7 t )  = w,(- f , t ) .  (14) 

(13) 
where T, is the period of cyclostationarity and n, m=O, 21, 
1 2, ... . Hence the basic period of R,,(tI,tz) in the plane 
(ti, tz) is given by an area 

and a real-valued and even function of frequency, i.e. 

t ,  € ( - q / 2 , T p / 2 ) ,  t, €( -Tp/2 ,Tp/2) .  ( 5 )  
Unfortunately it also can take on negative values. Because 
the extended basic period area is not coincident with the 
support area, the function W,O;t) also contains artifacts 

As both instanti”us autospectra Can take on negative 
values, they are not spectral densities. Nevertheless their 
information content is rich. First, they show time- 
fiequency behavior of cyclostationary signals. Second, 
they contain information concerning the phase magnitude 
of cyclostationary signals. If for Some reason time- 
fiequency distribution of energy in signal (time-kequency 
autospectral density) is required, gated autospecmm [3] 
can be used to show it. Unfortunately, time and frequency 

As far as Rxx(cO is concerned, its periodicity is 

Rn ( z, t ,  = Rn ( + 2nq 3 + mq) (6) that deteriorate its interpretation. 

Hence the basic period of R,(zt) in the plane (t, z) is given 
by an extended area 

t E (-q / 2 , q  / 2), Z E (-q, q )  . (7) 

But the autocorrelation function RJct) is unambiguously 
defined on the support area 

E (-q 2~ q 2)7 ‘ E (-q + 21t17 q - 2 1 t l ) .  (8) 
resolutions that can be obtained with gated autospectrum 
are much worse than with the instantaneous autospectra By comparison of (7) and (8) it can be seen that the 

support area has a half size of the extended basic area. 
[31. 

The time-kequency statistical characteristics of 
cyclostationary signals x(t) can be obtained by a direct 
Fourier transform of the two autocorrelation functions. In 
the first case one obtains a complex instantaneous 
autospectrum 

TP -_ 
2 

The complex instantaneous autospectrum W,fi, td is a 
periodic function of time 

and a complex conjugate function of kequency 

3. SIMULATED SIGNAL 

To show the properties of the studied statistical 
characteristics, a suitable cyclostationary signal x(t) was 
simulated on a computer and then analyzed using both the 
complex and real instantaneous autospectra W,fi,tZ) and 
W,gt), respectively. The signal was a train of 100 square 
pulses with a random amplitude (mean value h = O  V, 
standard deviation o,=l V). This random form of the 
signal was selected purposehlly to show ability of the 
methods studied here to reveal the pulse form even in those 
cases, where techniques, such as synchronous averaging, 
would fail. The pulses occurred periodically with a period 
T,=1 ms, their width was 62.5 ps and they were situated in 
the middle of each period. The sampling fi-equency was 
128 kHz. The frst  6 periods of the simulated random pulse 
train x(‘ are shown in Fig. 1. 
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Fig. 1 .: Simulated random pulse train signal x(t). 
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The double autoc orrelation functions R,(tl, t$ and 
RJz, t) were computed by averaging over 100 periods and 
then Fourier transfonned to obtain the complex and real 
instantaneous autos,pectra W,df,t$ and Wxx(Xt), 
respectively. An example of the compui.ed instantaneous 
autospectrum W,fi,tJ is displayed in Fig. 2 .  From Fig. 2 
it follows that Wxxfi,  t 3  shows the time-frequency behavior 
of the signal x(t) within the basic period without any 
distortion and artifacts. 

Wxx(flt2) 

Fig. 2. Magnitude of the complex instantaneous 
autospectrum IV,cfi,tJ of a pulse train x(Q. 

An example of the computed real instantaneous 
autospectrum W,I'Jo is displayed in Fig. 3. Even if this is 
not necessary with real autospectrum, for the purpose of a 
better comparison, magnitude of W,,'Jt) is shown. Two 
artifacts, one at the beginning and the other at the end of 
the basic period can be seen in Fig. 3. The artifacts distort 
the spectrum significantly and it is evident that with more 
complex signals this distortion could be a serious problem. 

4. REAL SIGNALS 

Real signals, such as vibration and noise measured on 
rotating machinery, are seldom strictly cyclostationary. 
Hence their conditioning prior to further processing is 
usually required. One possible way to solve this problem is 
a parallel recording of the signal x(t) and tachopulses. 
Tachopulses are used to define the period of 
cyclostationarity and the signal is then resampled to have 
the same number of samples in each basic period Tp. 
However, other techniques, such as adaptive processing 
can be used as well. 

High complexity of real signals may represent another 
problem, To resolve different discrete spectral 
components, spectral resolution must usually be very high 
over a wide range of frequencies. If this is the case, then 
computation of W,cfi,td and Wxx,'J;t) within the whole 
basic period would be impractical. However, closer 
examination of formulas (l), (3), (9) and (12) reveals that 
it is possible to limit computations just to the region of 

Wxx(f,l) 

Fig. 3. Magnitude of the real instantaneous autospectnun 
W,I'Jt) of a pulse train x(t). 

3 



interest and thus lower computational burden to an 
acceptable value. Yet another problem may be the length 
of signals needed to compute statistical characteristics with 
a high spectral resolution, because at present time 
equivalents of techniques, like overlapped processing used 
in standard spectral methods, are not known for 
cyclostationary signals. 

5. CONCLUSION 

In the paper time-frequency statistical characteristics of 
cyclostationary signals were studied. The characteristics 
considered were the complex and real instantaneous 
autospectra Wxxfi,  tz) and W,Kt), respectively. 
Unfortunately, both these characteristics can take on 
negative values and therefore they are not spectral 
densities. Even more, the first characteristics is a complex 
function of time and frequency. On the other hand, the real 
instantaneous autospectrum can be deteriorated by artifacts 
occurrence. It was shown that the origin of these artifacts is 
the difference between the support area, on which the real 
autospectrum is unambiguously defined, and the area, 
which represents the basic period of the real 
autospectrum. However, it should be stressed here that 
both these characteristics can be computed with excellent 
spectral and time resolutions. When necessary, gated 
autospectrum can be used to obtain time-frequency 
autospectral density of cyclostationary signals relatively 
easily. Unfortunately, time and frequency resolutions that 
can be obtained with this technique are very low [3]. 

Methods discussed in this paper have been developed for 
applications encompassing acoustic noise reduction, 
acoustic quality control and predictive maintenance of 
rotating machinery. Real signals, such as vibration and 
noise measured on rotating machinery usually need 
conditioning to make them cyclostationary. This may 
require recording suitable tachopulses for definition of the 
basic period and subsequent signal resampling. Further 
research is needed to find effective methods for computing 
statistical characteristics with high time and frequency 
resolutions using reasonably short signal lengths and 
computation times. 
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