
0OMJOF BQMJLBDF QSP IPEOPDFOÓ FLPMPHJDLâDI
EPQBEǾ

#BLBMÈǲTLÈ QSÈDF

4UVEJKOÓ QSPHSBN� #���� o *OGPSNBǏOÓ UFDIOPMPHJF
4UVEJKOÓ PCPS� ����3��� o *OGPSNBǏOÓ UFDIOPMPHJF

"VUPS QSÈDF� *PO $JVCBDJVD
7FEPVDÓ QSÈDF� .HS� ,BNJM /FÝFUǲJM 1I�%�

-JCFSFD ����

0OMJOF BQQMJDBUJPO GPS FDPMPHJDBM JNQBDU
BTTFTTNFOU

#BDIFMPS UIFTJT

4UVEZ QSPHSBNNF� #���� o *OGPSNBUJPO 5FDIOPMPHZ
4UVEZ CSBODI� ����3��� o *OGPSNBUJPO 5FDIOPMPHZ

"VUIPS� *PO $JVCBDJVD
4VQFSWJTPS� .HS� ,BNJM /FÝFUǲJM 1I�%�

-JCFSFD ����

1SPIMÈÝFOÓ

#ZM KTFN TF[OÈNFO T UÓN äF OB NPV CBLBMÈǲTLPV QSÈDJ TF QMOǔ W[UB�
IVKF [ÈLPO Ǐ� �������� 4C� P QSÈWV BVUPSTLÏN [FKNÏOB f �� o ÝLPMOÓ
EÓMP�

#FSV OB WǔEPNÓ äF 5FDIOJDLÈ VOJWFS[JUB W -JCFSDJ 	56-
 OF[BTBIVKF EP
NâDI BVUPSTLâDI QSÈW VäJUÓNNÏCBLBMÈǲTLÏ QSÈDF QSP WOJUǲOÓ QPUǲFCV
56-�

6äJKJ�MJ CBLBMÈǲTLPVQSÈDJ OFCPQPTLZUOV�MJ MJDFODJ L KFKÓNVWZVäJUÓ KTFN
TJ WǔEPN QPWJOOPTUJ JOGPSNPWBU P UÏUP TLVUFǏOPTUJ 56-� W UPNUP QǲÓ�
QBEǔ NÈ 56- QSÈWP PEF NOF QPäBEPWBU ÞISBEV OÈLMBEǾ LUFSÏ WZOB�
MPäJMB OB WZUWPǲFOÓ EÓMB Bä EP KFKJDI TLVUFǏOÏ WâÝF�

#BLBMÈǲTLPV QSÈDJ KTFN WZQSBDPWBM TBNPTUBUOǔ T QPVäJUÓN VWFEFOÏ
MJUFSBUVSZ B OB [ÈLMBEǔ LPO[VMUBDÓ T WFEPVDÓN NÏ CBLBMÈǲTLÏ QSÈDF
B LPO[VMUBOUFN�

4PVǏBTOǔ ǏFTUOǔ QSPIMBÝVKJ äF UJÝUǔOÈ WFS[F QSÈDF TF TIPEVKF T FMFL�
USPOJDLPV WFS[Ó WMPäFOPV EP *4 45"(�

%BUVN�

1PEQJT�

14.5.2018

	 	

Acknowledgement	

Here	I	would	like	to	thank	my	supervisor	Mgr.	Kamil	Nešetřil,	Ph.D.	for	the	advises	

and	the	time	he	devoted	me	during	the	work	on	my	bachelor	thesis.	Also,	I	would	

like	to	thank	my	advisor	Anna	Kunath	for	consultations	and	the	useful	information	

provided	each	time	it	was	needed.	Last	but	not	least,	I	would	like	to	thank	my	family	

for	the	offered	support,	especially	to	my	sister	Diana.	

	 	

	 	

Abstrakt	

Táto	 bakalářská	 práce	 popisuje	 návrh	 a	 vývoj	 webové	 aplikace	 která	 má	 za	 cíl	

podnikům	 poskytnout	 pomoc	 při	 zavádění	 systematického	 managementu	

biodiverzity	 a	 zpřístupnit	 tuto	 tématiku	 i	menším	 firmám.	Aplikace	 je	 napsána	 s	

využitím	programovacího	 jazyka	PHP	a	 frameworkem	Laravel.	Výsledná	aplikace	

poskytuje	uživatelům	formulář	pro	sběr	dat	o	jejích	podniku	a	následné	jím	dovoluje	

zobrazit	 materiálové	 toky	 a	 sledovat	 vývoj	 klíčových	 indikátorů	 pomocí	

reportování.	

	

Klíčová	slova:	

PHP,	Laravel,	environmentální	management	

	

Abstract	

This	 Bachelor	 thesis	 describes	 the	 process	 of	 designing	 and	 developing	 a	 web	

application	 which	 aims	 to	 introduce	 small	 and	 medium	 sized	 companies	 to	 the	

subject	 of	 environmental	 management	 and	 helps	 them	 implement	 a	 systematic	

management	of	biodiversity.	The	application	 is	written	 in	 the	PHP	programming	

language	and	is	powered	by	the	Laravel	framework.	The	final	application	provides	

its	future	users	with	a	questionnaire	for	collecting	data	about	the	organization	they	

work	for	while	it	allows	them	to	visualize	the	flow	of	materials	and	the	evolution	of	

key	indicators.	

	

Key	words:	

PHP,	Laravel,	environmental	management	

	 	

	 8	

Table	of	Contents	

List	of	images...	10	

Shortcuts	list	...	11	

1.	 Introduction	..	12	

2.	 Environmental	Management	..	13	

2.1.	 Definition	of	the	environmental	management..	13	

2.2.	 Environmental	management	in	the	Czech	Republic	..	14	

2.3.	 Current	applications	on	the	market	...	15	

3.	 Work	aim	..	17	

4.	 Solution	design	...	19	

4.1.	 Design	pattern	...	19	

4.2.	 The	user	interface	..	19	

4.3.	 The	database	..	22	

5.	 Application	implementation	...	25	

5.1.	 Laravel	framework	...	25	
5.1.1.	 System	Requirements	..25	
5.1.2.	 Laravel	Installation	...25	
5.1.3.	 Laravel	Configuration	..26	
5.1.4.	 Error	handling	..27	
5.1.5.	 Facades	...27	
5.1.6.	 Artisan	...27	
5.1.1.	 Users	authentication	..28	

5.2.	 Building	the	database	..	28	
5.2.1.	 Migrations	..28	
5.2.2.	 Seeding..30	

5.3.	 The	request	and	response	..	31	

5.4.	 Routes	validation	...	32	

5.5.	 Input	validation	..	33	

5.6.	 Saving	and	retrieving	data	...	35	

5.7.	 Updating	the	data	..	39	

	 9	

5.8.	 Flow	of	materials	...	40	

5.9.	 Reporting..	40	

5.10.	 Application	localization..	43	

5.11.	 Production	mode	..	44	

6.	 Solution	evaluation	...	45	

7.	 Conclusion..	47	

Bibliography	..	49	

Annex	A	–	Attached	CD..	51	

Annex	B	–	Flow	of	materials	..	52	

Annex	C	–	Emissions	table	...	53

	

	 	

	 10	

List	of	images	

Image	1:	MVC	interactions	(source:	www.helloacm.com)	...	19

Image	2:	GUI	concept	for	questionnaire	form	..	20

Image	3:	GUI	concept	for	indicator	report	...	21

Image	4:	GUI	concept	for	the	flow	of	materials	...	22

Image	5:	Factories	table	design	preview	..	22

Image	6:	Relationship	between	factories	and	sectors	tables	..	23

Image	7:	Sectors	and	activities	tables	diagram	...	30

Image	8:	Preview	of	activities	table	in	the	database	...	31

Image	9:	General	information	view	tab	navigation	...	32

Image	10:	Error	when	adding	a	new	record	about	the	number	of	employees	32

Image	11:	UML	diagram	for	"ValidUMaterials"	rule	...	35

Image	12:	Edit	button	for	an	input	material	...	39

Image	13:	Energy	report	preview	..	41

Image	14:	Energy	consumption	and	mix	–	database	relationship	42

Image	15:	Energy	cache	tables	relationship	...	43

Image	16:	Flow	of	materials	...	52

Image	17:	Emissions	table	...	53

	 	

	 11	

Shortcuts	list	

EM	–	environmental	management	

ISO	–	International	Standardization	Organization	

EMAS	–	Eco-Management	and	Audit	Scheme	

GRI	–	Global	Reporting	Initiative	

EHS	–Environmental	health	and	safety	

MVC	–	model-view-controller	

PHP	–	server-side	scripting	language	designed	for	web	development	

	

	 12	

1. Introduction	

Today,	through	their	activities,	the	organizations	almost	always	have	an	impact	on	

the	environment.	Because	generally	this	is	a	negative	one,	in	the	corporate	sector,	

there	is	an	increasing	interest	for	the	environmental	measures.	The	first	reason,	why	

this	is	happening,	is	because	of	the	raising	awareness	among	the	general	public,	thus	

and	 consumers,	 about	 the	 ways	 of	 protecting	 the	 environment.	 This	 social	

consciousness	 is	 then	 reflected	 in	 the	behavior	of	 the	 customers.	They	prefer	an	

organic	 production	 or	 boycott	 the	 businesses	 that	 harm	 the	 environment	 [7].	 A	

second	 reason	 can	 be	 the	 increasing	 prices	 of	 energy,	 raw	materials	 and	waste	

disposal	or	the	fact	that	larger	organizations	are	exerting	pressure	on	their	suppliers	

to	introduce	environmental	tools.	

The	main	target	of	this	work	is	the	implementation	of	an	application	that	can	be	used	

as	a	tool	for	environmental	management.	Based	on	the	analysis	of	the	documents	

and	consultation	with	my	advisor	is	required	to	design	the	database,	the	graphical	

user	interface	and	the	components	that	the	application	needs	to	have.	Also,	another	

target	of	this	work	was	to	familiarize	myself	with	the	Laravel	framework	and	use	it	

for	the	implementation	of	the	application.	

I	 selected	 this	 topic	 because	 it	 was	 possible	 to	 be	 realized	 using	 the	 Laravel	

framework	and	the	PHP	programming	language.	I	deal	with	the	development	of	web	

applications,	 so	 this	 topic	 is	 close	 to	 me	 and	 at	 the	 same	 time	 it	 offers	 me	 the	

possibility	 to	gain	new	experience	 in	 this	 field	which	will	be	useful	 for	me	 in	the	

future.	Other	than	this,	the	protection	of	the	key	elements	of	our	environment	is	very	

important	for	our	health.	I	consider	that	everyone	should	have	the	ability	to	breathe	

clean	air,	drink	clean	water	and	be	protected	from	harmful	effects	of	waste.	In	order	

for	 this	 to	 be	 possible,	 everyone	 should	 do	 everything	 they	 can	 to	 protect	 the	

environment.	

	 	

	 13	

2. Environmental	Management	

The	 following	 paragraph	 will	 first	 introduce	 the	 term	 of	 environmental	

management	 (EM),	 then	 it	 will	 analyze	 how	 EM	 is	 implemented	 in	 the	 Czech	

Republic	and	what	tools	are	available	on	the	market	that	address	this	problem.	

2.1. Definition	of	the	environmental	management	

EM	is	not	an	easy	term	to	define.	As	J.	Barrow	has	acknowledged	[1],	it	can	refer	to	

a	goal	or	vision,	to	attempts	to	steer	a	process,	to	the	application	of	a	set	of	tools,	to	

a	 philosophical	 exercise	 seeking	 to	 establish	 new	 perspectives	 towards	 the	

environment	and	human	societies,	and	to	much	more	besides	that.	However,	EM	is	

mainly	concerned	with	the	ways	in	which	humans	relate	to	their	environment,	as	

well	with	the	understanding	of	the	structure	and	functioning	of	the	Earth	system.	

Environmental	 management	 is,	 therefore,	 concerned	 with	 the	 description	 and	

monitoring	 of	 environmental	 changes,	 the	 prediction	 of	 future	 changes	 and	 the	

attempts	to	maximize	human	benefit	and	to	minimize	environmental	degradation	

due	to	human	activities.	

EM	is	a	broad	and	rapidly	expanding	field,	crucial	to	the	well-being	of	humans	and	

the	maintenance	of	environmental	quality.	The	human	impact	on	the	environment	

is	causing	widespread	concern,	as	a	consequence	the	successful	management	of	the	

Earth’s	biodiversity	is	rendered	vital.	The	term	biodiversity	refers	to	the	variety	of	

plant	and	animal	life	in	the	world	or	in	a	particular	natural	habitat,	a	high	level	of	

which	is	usually	considered	to	be	important	and	desirable	[2].	

The	biodiversity	is	the	basis	for	the	intact	ecosystem	services	that	bring	benefits	to	

companies	and	are	often	freely	used	[3].	The	ecosystem	services	are	categorized	into	

four	 different	 groups.	 These	 are	 the	 following:	 supply	 services	 which	 are	 food,	

water,	raw	materials	and	regulatory	services	meaning	the	regulation	of	climate	or	

flood,	cultural	services	including	landscape	aesthetics	and	inspiration,	and	a	number	

of	support	services	such	as	nutrient	circulation	or	soil	processes	[4].	For	companies	

these	 services	 are	 important	 from	 two	 aspects:	 on	 one	 hand,	 the	 companies	 are	

dependent	on	them,	given	that	the	services	provide	important	factors	for	production	

that	 is	 raw	materials	 of	 a	 certain	 quantity	 and	 quality,	while	 on	 the	 other	hand,	

through	their	activity	the	companies	impact	on	these	services	and	on	biodiversity,	

	 14	

and	can	influence	the	latter	in	a	negative	way	due	to	overuse	or	pollution	[5].	The	

systematic	business	management	of	biodiversity	helps	companies	reduce	risks	and	

negative	impacts	on	biodiversity	through	corporate	practices,	and	at	the	same	time	

offers	them	entrepreneurial	opportunities	[6].	The	loss	of	biodiversity	can	mean	a	

drop	in	raw	material	supply,	a	reduction	in	quality	and/or	quantity,	and	also	might	

bring	on	price	risks	[5].	Companies	that	are	aware	of	their	impact	on	biodiversity,	

the	need	of	its	existence	and	which	systematically	take	into	account	these	aspects	in	

their	decision-making	processes,	can	only	benefit	from	this	approach.	Therefore,	the	

best	way	of	becoming	aware	of	how	human	activity	impacts	on	biodiversity	is	by	

implementing	an	environmental	management	system.	

2.2. 	Environmental	management	in	the	Czech	Republic	

In	the	Czech	Republic	the	EM	is	mainly	based	upon	the	ISO	14001	and	EMAS	(Eco-

Management	and	Audit	Scheme)	standards.	In	more	detail,	ISO	14001	is	published	

by	the	International	Standardization	Organization	and	its	current	version	is	that	of	

2015.	 This	 standard	 has	 a	 global	 character	 and	 is	 applicable	 on	 industries	 and	

organizations	of	varying	sizes	[7].	In	contrast,	the	EMAS	is	a	European	Commission	

regulation	and	has	only	a	European	outreach.	Like	ISO	14001,	it	can	be	applied	on	

all	sectors	and	businesses,	regardless	of	their	size	[8].	Both	standards	aim	to	build	a	

systematic	 corporate	 EM,	 however,	 the	 chosen	 procedure,	 methodology	 and	

terminology	are	different.	 In	general,	 the	claims	of	EMAS	are	higher	than	the	ISO	

14001	requirements	[9].	Biodiversity,	in	these	standards,	plays	only	a	small	role	and	

the	involvement	of	this	aspect	in	EM	is	left	to	companies	[5].	EMAS	recommends	one	

key	 indicator	 of	 biodiversity,	 which	 is	 land	 use	 (more	 precisely,	 use	 of	 land,	

expressed	 in	m2	of	built-up	area)	[10].	 ISO	14001,	however,	does	not	specify	any	

mandatory	indicators.	The	topic	of	incorporating	aspects	of	biodiversity	into	EM	is	

addressed	 in	 several	handbooks	and	 recommendations,	but	 there	 is	no	 standard	

comparable	to	ISO	14001	or	EMAS,	which	would	deal	with	biodiversity	management	

in	companies.	

The	 situation	 is	 similar	 on	 the	 field	 of	 applications	 and	 corporate	 software	 for	

diversity	management.	Nowadays	more	products	for	EM,	such	as	ecological	balance	

preparation	 or	 product	 life	 cycle	 assessment	 are	 available	 on	 the	 market.	

Biodiversity	is	often	part	of	the	tool	but	rarely	forms	a	separate	product.	There	is	

	 15	

also	a	need	to	distinguish	applications	by	the	target	group.	Therefore,	the	subject	of	

research	 is	 often	 the	 applications	 and	 models	 for	 biodiversity	 assessment	 and	

planning	 of	 various	 measures	 for	 administrative	 authorities	 or	 environmental	

research.	 These	 applications	 often	 focus	 on	 data	 evaluation	 or	 modeling	 of	 the	

interaction	of	various	factors	on	biodiversity.	The	developed	application	that	will	be	

described	 in	 the	 next	 chapters,	 serves	mainly	 corporate	management	 hence,	 the	

target	groups	are	the	companies.	

2.3. Current	applications	on	the	market	

Below	 is	 presented	 a	 list	 of	 applications	 for	 corporate	 EM	 that	 nowadays	 are	

available	on	the	market.	

360report	

360report	 (www.360report.org)	 is	 a	 web-based	 sustainability	 software	 that	

complies	with	sustainability	standards	such	as	GRI,	ISO	26000	and	United	Nations	

Global	 Compact.	 The	 entered	 data	 are	 used	 for	 automatic	 generation	 of	 a	 GRI-

certifiable	Sustainability	Report	 (Word	document	or	PDF	 file).	 In	addition,	 a	CO2	

balance	is	created	in	accordance	with	Greenhouse	Gas	Protocol.	

Enablon	EHS-Management	

Enablon	EHS	(Environmental	health	and	safety)	software	helps	companies	to	meet	

their	 EHS	 management	 and	 compliance	 challenges,	 including	 environmental	

analysis	and	reporting,	management	of	air,	water,	waste	and	chemicals,	regulatory	

compliance,	worker	health	and	safety,	incidents	prevention	etc.	[16].	

EPM-KOMPAS	

Developed	 by	 Technical	 University	 of	 Dresden	 in	 cooperation	 with	 a	 circle	 of	

industrial	 partners	 from	 Saxony,	 the	 software	 can	 be	 used	 as	 an	 entry	 aid	 or	 to	

develop	 an	 EM	 system	 in	medium-sized	 companies.	 The	 following	 functions	 are	

supported	by	the	software:	

•	Handling	of	hazardous	substances,	waste,	emissions	

•	Creation	of	material	and	energy	flows	(balance	sheets)	

•	Defining	environmental	goals	

•	Assessment	of	environmental	measures	

	 16	

•	Generation	of	reports	(for	authorities)	

•	Researching	conspicuous	material	and	energy	flows	

•	Control	of	results/successes	

The	problem	is	that	in	these	applications	biodiversity	plays	only	a	minor	role,	and	

that	 generally	 applications	 focus	 mostly	 on	 aspects	 such	 as	 waste,	 energy	

consumption	or	reporting.	

In	the	Czech	Republic,	EM	is	a	voluntary	and	not	a	very	common	business	process.	

Many	 companies	 have	 not	 yet	 recognized	 the	 benefit	 of	 this	 approach,	 and	 only	

large,	multinational	corporations	with	adequate	backgrounds	often	deal	with	this	

issue	 [11].	 However,	 this	 subject	 is	 also	 important	 for	 small	 and	 medium-sized	

enterprises.	For	them,	 the	topic	 is	often	very	complex	 in	 the	sense	that	 they	 lack	

information	sources	and	staff.	The	online	application	 for	ecological	assessment	 is	

designed	 particularly	 for	 them.	 The	 software	 aims	 to	 help	 users	 implement	

systematic	biodiversity	management	and	make	it	accessible	to	smaller	businesses.	

Through	the	application	the	users	will	get	necessary	information	about	how	they	

interact	 with	 the	 biodiversity	 and	 they	 will	 be	 able	 to	 formulate	 their	 business	

strategy	with	respect	to	these	aspects.	Also,	the	application	will	allow	them,	using	

indicators,	to	determine	and	evaluate	the	impact	of	business	activities	and	outline	

possible	measures.	

	 	

	 17	

3. Work	aim	

The	aim	of	this	work	is	to	prepare	the	schema	of	an	online	application	for	ecological	

impact	 assessment	 and	 implement	 it	 using	 the	 PHP	 framework	 Laravel	

(www.laravel.com).	The	application	has	to	contain	the	following	components:		

The	questionnaire	

The	first	step	into	analyzing	a	company's	business	impact	on	biodiversity,	and	the	

most	important,	without	which	all	the	other	steps	would	not	work	or	make	sense,	is	

collecting	information	about	the	company’s	strategy	and	philosophy,	processes,	and	

flow	of	materials.		

There	are	two	types	of	data	that	the	companies	will	fill	in	the	questionnaire.	The	first	

type,	such	as	the	management	certificates	of	the	organization	or	the	features	that	

characterize	the	company’s	business	philosophy	and	products,	is	required	only	once	

and	changes	only	from	time	to	time.	As	for	the	second	type	of	data,	this	should	be	

filled	in	once	per	year,	and	it	includes	the	input	materials	and	the	quantity	that	has	

been	 used,	 electricity	 consumption	 and	 cost	 or	 how	 were	 the	 output	 products	

distributed	last	year	or	even	at	an	earlier	time.	

The	questionnaire	should	be	divided	in	the	next	sections:	

• General	information	about	the	company	

• Management	

• Input	materials	

• Output	products	

• Marketing	strategy	

• Company	headquarters/branches	

• Employees	

• Finances	

Most	 of	 the	 questions	 offer	multiple	 choice	 answers,	 but	 given	 the	 fact	 that	 the	

project	 is	 in	 an	 early	 development	 stage,	 it	 can	 often	 happen	 that	 some	 answer	

options	will	be	missing,	so	the	application	should	offer	the	user	the	possibility	to	fill	

in	 manually	 his	 answers.	 This	 should	 help	 avoiding	 the	 loss	 of	 important	

	 18	

information	about	the	organization	and	will	help	in	the	future	to	extend	the	list	of	

choices	when	answering	a	certain	question.	

Flow	of	materials	

In	first	version	of	this	application,	the	materials	flow	component	should	be	able	to	

show	 a	 basic	 graphical	 representation	 of	 the	 company's	 flow	 of	materials	 for	 a	

selected	year.	Data	about	the	packaging	and	auxiliary	materials,	also	about	the	input	

materials,	their	quantity	and	supplier,	the	quantity	of	water	and	electricity	used,	by-

products,	 their	quantity	and	how	they	are	handled,	 the	product	 lines,	as	well	 the	

final	products	and	their	quantity,	will	be	presented	to	the	user.	Also	here	should	be	

shown	 the	 information	 about	 the	 number	 of	 employees,	 customer	 program,	

transport	means	and	traveled	distance,	the	sectors	to	which	the	enterprise	belongs,	

their	activities	and	other	information.	

Key	indicators	assessment	and	reporting	

This	component	should	show	an	overview	of	the	key	indicators	like:	

• Electricity	consumption	

• Water	consumption	

• Electricity	from	renewable	sources	

• Number	of	trainings	on	environmental	management		

• Financial	expenses	

• Table	of	emissions	

The	 first	3	 indicators	should	be	assessed	by	absolute	quantity,	quantity	share	 for	

each	employee	and	quantity	 share	 for	 the	 total	 surface	 size	of	 the	 company.	The	

number	of	training	on	environmental	management	should	be	assessed	according	to	

how	many	took	place	within	the	organization,	also	to	the	number	of	employees	that	

took	part	 in	 them.	Financial	expenses	should	be	assessed	by	how	much	has	been	

spent	for	each	unit	of	consumed	water,	energy	or	produced	and	transported	waste.	

All	 these	 indicators	 should	 help	 the	 companies	 observe	 their	 impact	 on	 the	

environment.	 The	 data	 should	 be	 displayed	 in	 tables,	 and	 for	 an	 effortless	

interpretation,	 there	 should	also	be	a	graphical	display	on	how	 the	data	evolved	

during	the	years.	Given	that	 the	target	market	of	 this	application	 is	Germany,	 the	

Czech	Republic	and	Poland,	the	application	should	be	multilingual.	 	

	 19	

4. Solution	design		

Before	 starting	 to	 implement	 the	application,	 it	was	 required	 to	 choose	a	design	

pattern,	to	prepare	a	concept	of	how	the	graphical	user	interface	(GUI)	will	look	like,	

to	 analyze	 all	 the	 data	 I	 got	 from	my	 adviser,	 and	 based	 on	 that,	 to	 prepare	 the	

database	design.	

4.1. Design	pattern	

Laravel	 is	 a	 PHP	 framework	 that	 is	 based	 on	 the	 model-view-controller	 (MVC)	

design	pattern,	so	the	choice	here	 is	obvious.	The	MVC	is	a	software	architecture	

that	organizes	code	 in	an	application	 in	order	to	 improve	maintainability.	 It	does	

this	 by	 separating	 the	 application	 into	 three	 parts:	 the	model,	 the	 view,	 and	 the	

controller.	In	addition	to	this,	it	defines	the	interactions	between	them	[12]	(Image	

1).	

	

Image	1:	MVC	interactions	(source:	www.helloacm.com)	

The	model	manages	 the	 data	 of	 the	 application.	 It	 receives	 user	 input	 from	 the	

controller.	 The	 view	 effectively	 provides	 the	 user	 interface	 element	 of	 the	

application.	It	will	render	data	from	the	model	into	a	form	that	is	suitable	for	the	

user	interface.	Whereas	the	controller	receives	user	input	and	makes	calls	to	model	

objects	and	view	to	perform	appropriate	actions.	

4.2. The	user	interface	

The	GUI	is	the	part	of	a	software	that	helps	the	user	to	interact	with	the	rest	of	the	

application.	GUI	has	to	be	simple,	efficient	and	enjoyable	to	use.	I	divided	the	GUI	of	

the	application	in	the	following	components:	

	 20	

The	Dashboard	

This	is	the	page	where	the	user	will	get	after	signing	in.	The	dashboard	will	give	him	

the	possibility	to	choose	the	section	of	the	questionnaire	he	wants	to	fill	in	next,	to	

see	the	flow	of	materials,	the	report	of	the	assessed	indicators	or	the	emissions	table.	

Also,	here	he	will	find	information	about	what	each	component	does.	

The	questionnaire	

In	Chapter	3	it	is	said	that	the	questionnaire	will	have	more	sections	and	that	some	

of	the	questions	have	to	be	answered	once,	while	others	every	year.	When	designing	

the	questionnaire’s	GUI,	my	thought	was	that	the	user	should	be	able	to	see	what	

data	and	for	what	years	he	already	has	in	the	database,	without	needing	to	navigate	

to	the	flow	of	materials	or	reporting.	This	is	useful	especially	when	a	new	user	of	the	

application	wants	to	provide	data	for	more	years	of	activity,	he	started	to	fill	in	data,	

but	he	decided	to	continue	during	another	day,	either	he	wants	to	edit	data	or	just	

wants	to	see	it.	

The	first	concept	was	that	all	the	questions	will	be	in	the	same	form.	This	solution	

was	easy	to	implement,	but	it	had	the	disadvantage	of	crowding	the	form	and	also,	

because	in	the	same	form	could	have	been	more	questions	where	is	required	the	

year,	 therefore	 this	 could	 confuse	 the	 user.	 The	 second	 idea	 was	 to	 divide	 the	

questions	that	require	an	answer	every	year	from	the	others	(see	Image	2).	

	

Image	2:	GUI	concept	for	questionnaire	form	

	 21	

“Open/Hide	form”	button	will	allow	the	user	to	show	or	hide	the	form	for	adding	

new	data.	Under	the	form,	there	will	be	the	data	from	other	years.	The	“Edit”	button	

gives	to	the	user	the	option	to	add	additional	information	about	an	indicator	if	this	

is	required,	 for	 this	reason,	a	modal	will	appear.	As	 for	 the	multiple	select,	 it	will	

allow	 the	 user	 to	 select	 his	 answers	 and	 in	 case	 he	 can’t	 find	 something	 in	 the	

provided	options,	he	can	use	the	input	field	to	add	his	own	option.	Also,	if	he	wants	

to	add	more	options,	he	can	press	“+”,	which	will	generate	a	new	input	filed.	The	

“Save”	button	will	trigger	the	action	that	will	store	the	data	into	the	database.	

Report	

As	it	was	specified	in	Chapter	3,	each	indicator	will	be	provided	with	a	table	of	values	

of	 how	 a	 given	 indicator	 has	 evolved	 over	 the	 years	 and	 also	 with	 a	 graphical	

overview	 for	 an	 easier	 interpretation.	 For	 this	 component	 I	 decided	 to	 have	 the	

values	 in	 the	table	displayed	from	the	newest	to	 the	oldest,	and	for	 the	graphical	

part	the	opposite	(see	Image	3).	

	

Image	3:	GUI	concept	for	indicator	report	

The	labels	can	be,	for	example,	the	absolute	quantity	of	the	indicator	or	the	quantity	

share	for	each	employee.	In	the	empty	cells	will	be	the	values	of	a	given	label	in	a	

given	year.	

The	flow	of	materials	

For	this	component,	I	decided	that	each	element	in	the	Image	4	will	be	a	table	or	a	

list	where	all	the	items	for	a	given	year	(if	applicable)	will	be	shown.		

	 22	

	

Image	4:	GUI	concept	for	the	flow	of	materials	

4.3. The	database	

During	the	consultations	with	my	advisor,	I	got	more	Excel	files	containing	all	the	

questions	that	the	questionnaire	had	to	contain.	Based	on	that,	I	had	to	design	the	

database.		

The	 application	will	 allow	 the	 user	 to	 answer	 all	 the	 questions	 contained	 in	 the	

questionnaire’s	 forms.	When	 I	 started	 to	analyze	 the	data	 from	 the	documents,	 I	

went	from	the	idea	that	the	company	is	a	factory	and	that	is	why	I	named	the	main	

table	in	the	database	“factories”.	

Other	than	dividing	the	type	of	questions	by	how	often	they	should	be	answered,	

they	can	be	divided	by	the	number	of	answers,	which	can	be	either	one	or	multiple.	

Each	of	these,	can	be	with	or	without	an	already	provided	list	of	possible	answers.	

The	questions	that	require	one	answer	and	only	once,	for	example,	the	number	of	

branches,	will	have	their	answer	stored	in	the	table	“factories”	(see	Image	5).	

	

Image	5:	Factories	table	design	preview	

	 23	

The	questions	that	require	multiple	answers	will	have	the	list	of	possible	answers	

stored	in	the	database.	The	company’s	sectors	of	activities	as	they	are	classified	by	

the	Statistical	Classification	of	Economic	Activities	of	the	Czech	Republic	(CZ-NACE)	

can	serve	as	an	example.	The	table	in	which	they	will	be	stored	is	named	“sectors”.	

The	relationship	between	“factories”	and	”sectors”	will	have	the	cardinality	of	many	

to	many	(M:N)	and	the	data	that	describes	the	relationship	will	be	stored	in	the	table	

“factory_sector”	(see	Image	6).	

	

Image	6:	Relationship	between	factories	and	sectors	tables	

The	 “key”	 column	 in	 the	 table	 “sectors”	 it’s	 unique	 and	will	 be	 used	 as	 a	 key	 to	

retrieve	the	translation	of	a	given	sector	from	the	translations	files.	Keeping	in	the	

database	only	the	keys	of	translations	will	allow,	if	later	needed,	the	generation	of	

multilingual	 flow	of	materials.	 To	 avoid	 duplicates,	 the	 columns	 “factory_id”	 and	

“sector_id”	in	table	“factory_sector”	will	create	a	unique	constraint.	

One	of	the	questions	that	requires	multiple	answers	but	doesn’t	provide	the	user	

with	 a	 list	 of	possible	 answers	 is	 “What	 are	 the	 company’s	 final	products?”.	 The	

relationship	 between	 “factories”	 and	 “final_products”	will	 have	 the	 cardinality	of	

one	to	many	(1:N).	

Another	question	like	“What	are	the	input	materials	that	you	use	in	your	company?”,	

combines	both	situations	described	above.	For	the	already	provided	list	of	materials	

a	relationship	with	the	cardinality	M:N	will	be	used.	However,	for	the	materials	that	

are	not	illustrated	in	the	list,	the	user	will	be	able	to	provide	them	himself.	His	input	

	 24	

will	 be	 stored	 in	 the	 table	 “other_input_materials”,	 the	 relationship	 between	 the	

latter	and	the	table	“factories”	will	have	the	cardinality	1:N.	 	

	 25	

5. Application	implementation	

My	task	in	this	work	was	to	implement	an	online	application	for	ecological	impact	

assessment.	 The	 application	 was	 written	 mostly	 using	 the	 PHP	 programming	

language,	powered	by	the	Laravel	framework.	Together	with	PHP	was	used	jQuery	

programming	language.	The	most	actual	version	of	Laravel	at	the	beginning	of	the	

development	was	version	5.5,	which	requires	PHP	version	7.0+.	The	database	server	

used	was	MySQL,	distribution	5.7.21.	During	the	development,	the	application	ran	

on	 Apache	 web	 server,	 under	 the	 operational	 system	 macOS	 High	 Sierra.	 As	

integrated	development	environment	was	used	PhpStorm.	The	design	of	the	user	

interface	uses	the	front-end	framework	Materialize	(materializecss.com).	

5.1. 	Laravel	framework	

Laravel	 is	 a	 web	 application	 framework	 with	 expressive,	 elegant	 syntax	 which	

attempts	to	take	the	pain	out	of	development	by	easing	common	tasks	used	in	the	

majority	 of	 web	 projects,	 such	 as	 authentication,	 routing,	 sessions,	 and	 caching.	

Laravel	 aims	 to	make	 the	development	process	a	pleasing	one	 for	 the	developer	

without	sacrificing	the	application's	functionality.	

5.1.1. System	Requirements	

When	installing	Laravel	framework,	the	following	system	requirements	should	be	

met	[13]:	

• PHP	version	7.0.0	or	higher	

• OpenSSL	PHP	Extension	

• PDO	PHP	Extension	

• Mbstring	PHP	Extension	

• Tokenizer	PHP	Extension	

• XML	PHP	Extension	

5.1.2. Laravel	Installation	

To	install	Laravel,	it	is	required	to	have	installed	Composer.	This	is	a	dependency	

manager	that	the	framework	uses	to	manage	its	dependencies.	First	it	is	needed	to	

download	the	Laravel	installer	using	Composer.	Running	the	following	command	in	

the	terminal	did	the	job:	

	 26	

composer global require "laravel/installer"

For	this	to	run,	it	is	needed	to	make	sure	that	composer's	system-wide	vendor	bin	

directory	 is	 placed	 in	$PATH	 [13].	 Once	 installed,	 I	 ran	 in	 the	 terminal	 the	 next	

command:	

laravel new netsci

This	 created	 a	 fresh	 Laravel	 installation	 in	my	 home	directory,	 under	 the	 folder	

netsci	and	generated	the	application’s	key.	The	key	is	used	to	secure	encrypted	

data	and	the	user	sessions.	

To	serve	the	application,	I	configured	the	Apache	web	server’s	document/web	root	

to	 be	 public	 directory.	 The	 index.php	 in	 this	 directory	 serves	 as	 the	 front	

controller	for	all	HTTP	requests	that	enter	the	application.	

5.1.3. Laravel	Configuration	

All	of	the	configuration	files	for	the	Laravel	framework	are	stored	in	the	config	

directory.	 Because	 it	 is	 often	 useful	 to	have	 different	 configuration	 for	 local	 and	

production	environment,	Laravel	utilizes	the	DotEnv	library.	In	project’s	directory	

is	a	file	named	.env	that	contains	more	variables.	At	the	moment	when	I	started	do	

develop	the	application	the	following	variables	were	the	most	important:	

• DB_CONNECTION=mysql

• DB_HOST=127.0.0.1

• DB_PORT=3306

• DB_DATABASE=netsci

• DB_USERNAME=netsciapp

• DB_PASSWORD=NETSCIapp

These	variables	define	the	database	server	used	by	the	application	(MySQL),	the	IP	

address	 and	 the	 port	 where	 the	 database	 server	 is	 listening,	 the	 name	 of	 the	

database	 to	use	and	 the	 access	 credentials.	Other	database	 configurations	as	 the	

charset	or	the	collation	can	be	set	in	config/database.php.	Also	here,	we	

can	see	the	use	of	the	DotEnv	library.	If	we	take	for	example	the	database	name:		

'database' => env('DB_DATABASE', 'forge'),

	 27	

the	env	function	will	set	the	value	of	the	database	parameter	to	be	the	variable	

DB_DATABASE	from	the	.env file,	however	if	the	variable	will	not	be	found,	the	

second	parameter	(forge)	of	the	function	will	be	used.	

As	 it	 is	 already	 known	 from	 Chapter	 3,	 the	 application	 should	 be	 multilingual.	

Laravel’s	 default	 language	 and	 fallback	 language	 is	 English.	 The	 language	

configurations	can	be	found	in	config/app.php,	where	I	set	them	to	be	in	Czech:	

'locale' => 'cs',

'fallback_locale' => 'cs'.

The	fallback	 language	 is	used	to	return	text	 translations	when	a	 translation	 for	a	

given	current	language	cannot	be	found.	

5.1.4. Error	handling		

In	Laravel,	all	exceptions	are	handled	by	the	App\Exceptions\Handler	class.	

The	report	method	in	this	class	logs	the	exception	with	the	whole	stack	trace	in	to	

the	storage/logs/laravel.log	file.	This	is	rather	of	no	use.	When	you	have	

many	 lines	of	stack	 trace	and	more	exceptions,	 it	 is	hard	 to	 find	 the	actual	 error	

message	 in	 the	 log.	To	make	things	easier,	 I	modified	the	method	to	 log	only	the	

exception’s	code,	the	exception	message,	the	file	and	the	line	where	this	occurred	

($e	is	the	exception):	

Log::error('[' . $e->getCode() . '] "' . $e->getMessage() . '"

on line '. $e->getLine() . ' in file ' . $e->getFile());

5.1.5. Facades	

In	this	thesis,	the	“facade”	term	is	often	mentioned.	In	Laravel,	facades	provide	an	

interface	to	classes	that	are	registered	in	the	application’s	service	container.	Out	of	

the	box,	Laravel	is	containing	many	facades	that	provide	access	to	almost	all	of	the	

frameworks	features.	

5.1.6. Artisan	

Artisan	 is	 a	 command-line	 interface	 that	 is	 included	 into	 Laravel.	 The	 multiple	

commands	that	are	provided	by	it,	assisted	me	while	I	was	building	the	application.	

Artisan	commands	should	be	run	in	the	project's	root	folder	like	this:	

php artisan “command_name”.

	 28	

5.1.1. Users	authentication	

Out	of	the	box,	Laravel	comes	with	pre-built	authentication	controllers,	which	are	

located	in	App\Http\Controllers\Auth	namespace.	In	many	cases,	there	is	no	

need	to	modify	these	controllers	at	all,	but	this	was	not	the	case	with	this	application.		

Laravel	uses	User	model	to	retrieve	data	about	the	logged	in	user,	which	needs	a	

“users”	 table	 to	 exist	 in	 the	 database.	 In	 this	 application,	 authentication	 data	 is	

stored	in	table	“factories”,	as	follow,	the	name	“Factory”	for	the	model	will	be	more	

appropriate	than	“User”.	Now	that	a	different	table	and	model	are	used	than	in	the	

standard	Laravel,	changes	have	been	made	to	the	config/auth.php	 file	to	use	

the	table	“factories”	and	the	Factory	model	to	log	in	users.	

Having	the	configurations	ready,	the	next	step	is	to	prepare	the	routes	and	the	views	

for	the	authentication.	Luckily,	Laravel	provides	a	quick	way	to	scaffold	them	using	

one	simple	command:	

php artisan make:auth

As	agreed	with	the	advisor,	during	the	registration	of	a	new	factory,	the	user	will	

provide	the	factory’s	name	alongside	with	the	email	and	the	password.	To	make	this	

possible,	 to	 the	 form	 contained	 by	 the	 view	 register.blade.php	 has	 been	

added	a	new	input	field	“factory_name”	and	the	RegisterController	has	been	

modified	to	validate	and	save	the	new	added	field.	

Accessing	the	authenticated	user	can	be	done	using	the	Auth	facade.	Alternatively,	

if	 the	 user	 is	 already	 authenticated,	 it	 can	 be	 accessed	 using	 an	 instance	 of	

Illuminate\Http\Request.	

5.2. 	Building	the	database	

5.2.1. Migrations	

To	design	the	database,	was	used	MySQLWorkbench	application,	but	for	the	actual	

implementation	 of	 the	 tables	 was	 used	 Laravel’s	 Migration	 class.	 Migrations	

allow	the	developer	to	easily	modify	or	share	the	application’s	database	schema.	To	

build	the	application’s	schema,	Migration	class	uses	the	Schema	 facade,	which	

provides	database	support	for	creating	and	manipulating	tables.	In	the	actual	form,	

	 29	

the	 database	 contains	 over	 80	 tables.	 All	 created	 migrations	 can	 be	 found	 in	

database/migrations	folder.	

To	create	a	new	migration	for	the	“factories”	table,	I	ran	in	the	terminal	the	following	

command:	

php artisan make:migration create_factories_table

where	the	result	of	this	command	was	the	following	file:	

2017_10_05_204736_create_factories_table.php

The	 file	 name	 contains	 the	 date	 and	 time	when	 the	migration	was	 created.	 As	 a	

result,	 when	 the	migrations	will	 run,	 the	 tables	will	 be	 created	 in	 chronological	

order,	hence	avoiding	possible	errors.	

Migration	create_factories_table	contains	the	functions	up	and	down.	The	

up	function	contains	the	following	code:	

Schema::create('factories', function (Blueprint $table){

 $table->increments('id');

 $table->string('email')->unique();

 $table->integer('year')->unsigned()->nullable();

 $table->text('key_processes')->nullable();

 $table->boolean('client_service')->nullable();

 $table->timestamps();…

});

After	running	the	up	function,	the	table	“factories“	will	be	created	in	the	database.	

The	method	increments	will	create	the	private	key	id,	which	will	auto	increment	

when	a	new	record	will	be	added.	The	string method	creates	columns	of	data	

type	varchar	and	if	the	second	parameter	of	the	function	is	not	specified,	which	is	

the	 length,	 the	columns	will	store	strings	up	to	255	characters	 long.	Chaining	the	

unique	method	to	the	email	column	will	create	a	unique	index	for	it.	As	for	the	

boolean	method,	it	will	create	a	column	of	data	type	tinyint(1).	Moreover,	the	

timestamps	method	will	create	two	additional	columns	of	data	type	timestamp:	

created_at	and	updated_at.	The	first	will	store	information	about	the	date	and	

time	when	the	record	was	created,	and	the	second	–	data	about	when	the	record	was	

updated.	 Chaining	 the	method	nullable	 to	 the	 columns	 allows	 them	 to	 accept	

	 30	

NULL	values.	In	addition,	the	integer	method	will	create	a	column	of	data	type	

int.	Adding	the	unsigned	method	makes	the	column	of	type	int	unsigned.	

The	down	function	in	the	migration	class	contains	the	code	for	dropping	the	table	

(Schema::dropIfExists('factories');)	which,	when	needed,	will	reverse	

the	migration.	

In	 many	 to	 many	 relations	 is	 required	 to	 have	 an	 intermediary	 table	 that	 will	

describe	the	relationship	between	two	tables.	In	this	case,	foreign	keys	should	be	

added	to	the	table.	If	we	take	as	example	the	“factory_sector”	table	creation,	we	see	

how	easily	this	is	done	in	the	up	function	of	the	migration:		

Schema::table('factory_sector', function (Blueprint $tb){

 $tb->foreign('factory_id')->references('id')

 ->on('factories');

 $tb->foreign('sector_id')->references('id')

 ->on('sectors');

});

5.2.2. Seeding	

If	you	take	a	look	at	the	Image	7	you	can	see	that	an	activity	can	have	one	or	more	

specifications.	In	the	questionnaire,	depending	on	what	sectors	the	user	will	choose,	

to	him	will	be	shown	a	list	of	activities	that	are	specific	only	for	the	selected	sectors.	

	

Image	7:	Sectors	and	activities	tables	diagram	

Laravel	 includes	a	 simple	method	to	seed	 the	database	with	 test	data	using	seed	

classes.	However,	these	classes	can	be	used	not	only	for	test	data.	As	my	case	can	

show,	I	used	them	to	seed	the	real	data	that	needed	to	be	in	the	database	 for	the	

user.	Also,	 the	seeder	classes	came	in	handy	each	time	 it	was	a	big	change	to	the	

database	tables	and	it	was	needed	to	reinsert	or	change	the	data.	

	 31	

All	 the	 seeder	 classes	 can	 be	 found	 in	database/seeds	 directory.	 In	 order	 to	

generate	the	seeder	class	for	the	“activities”	table,	the	following	command	was	used:		

php artisan make:seeder ActivitiesTableSeeder

After	creating	the	seeder	class,	the	author	added	the	data	that	should	be	saved	into	

the	database	to	the	run	function:	

$items = [

['key' => 'a1', 'sector_id' => '1'],

 ['key' => 'a2', 'sector_id' => '1'],

 ['key' => 'c1', 'sector_id' => '3'], …

];

foreach ($items as $item)

 Activity::create($item);

When	the	run	function	of	the	ActivitiesTableSeeder	class	is	later	called,	the	

Activity	model	inserts	the	data	into	the	database	(see	Image	8).	

	

Image	8:	Preview	of	activities	table	in	the	database	

The	seeders	 created	by	author	have	been	 later	added	 to	 the	run	 function	of	 the	

DatabaseSeeder	class	using	call	function,	which	for	“activities”	table	seeder	is	

as	follows:	

$this->call(ActivitiesTableSeeder::class).

5.3. The	request	and	response	

The	questionnaire	has	8	sections.	Each	section	has	its	own	controller	and	view.	The	

views	and	the	controllers	are	named	after	the	section	they	represent.	The	form	of	

the	section	“General	information”	has	been	divided	in	3	parts	(Image	9).	To	navigate	

between	different	parts	a	tab	like	navigation	system	is	used.	

	 32	

	

Image	9:	General	information	view	tab	navigation	

When	sending	pure	HTTP	requests,	 if	 there	 is	an	error,	 the	whole	page	has	to	be	

reloaded	and	the	navigation	will	 jump	back	to	the	first	tab.	The	user	then	will	be	

constrained	to	select	the	tab	that	corresponds	to	the	part	he	was	trying	to	fill	in	and	

correct	 the	 mistakes	 he	 possibly	 made.	 Jumping	 back	 and	 forward	 in	 the	 tab	

navigation	can	be	a	bad	experience	for	the	user,	and	in	order	to	make	things	simpler	

it	has	been	decided	to	save	the	form	data	using	AJAX	requests	instead.	

When	 the	 user	 clicks	 the	 save	 button	 of	 the	 form	 the	 jQuery	 function,	

makeAjaxRequest,	 the	data	 is	sent	 to	 the	controller.	Here	 is	where	the	data	 is	

validated,	and	then	passed	to	the	model	where	it	is	saved.	If	the	action	is	completed	

successful,	 a	 toast	 message	 containing	 the	 text	 “Success”	 will	 be	 displayed,	

otherwise	 –	 “Something	 went	 wrong”.	 If	 the	 errors	 are	 caused	 by	 the	 data	 not	

passing	the	validation	of	the	controller,	the	function	makeAjaxRequest	will	pass	

the	response	to	the	jQuery	function	printErrors	which	will	display	an	alert	box	

at	the	top	of	the	form	containing	the	errors	(Image	10).	

	

Image	10:	Error	when	adding	a	new	record	about	the	number	of	employees	

5.4. Routes	validation	

All	 of	 the	 application’s	 routes	 are	 defined	 in	 the	 routes/web.php	 file.	 If,	 for	

example,	the	routes	for	the	“Output”	section	of	the	questionnaire	are	taken:	

Route::group(['prefix' => 'output', 'as' => 'output.'],

function() {

 Route::get('/', ['as' => 'product',

 'uses' => 'Forms\OutputController@getProducts']);

 Route::post('/product_lines', ['as' => 'product_lines',

 'uses' => 'Forms\OutputController@postProductLines']); …});,

	 33	

results	the	following	routes	that	will	be	available	to	the	user:	

• /output/

• /output/product_lines

This	first	route	displays	the	form	and	allows	only	requests	that	use	the	GET	method.	

As	for	the	second	route,	it	is	used	to	store	information	about	the	product	lines	and	

allows	 the	 method	POST.	 If	 any	 other	 method	 will	 be	 used	 for	 this	 routes,	 the	

validation	 of	 the	 request	methods	will	 fail	 and	 a	 response	with	 status	 code	 405	

(Method	Not	Allowed)	will	be	returned.	 If	 the	user	requests	a	page	that	does	not	

have	the	route	defined	in	routes/web.php	file,	then	a	response	with	status	code	

404	(Page	not	found)	is	returned.	

5.5. Input	validation	

User’s	 input	 validation	 is	 taking	 place	 in	 the	 controller	 using	 the	 function	

validate.	 The	 function	 requires	 two	 parameters.	 The	 first	 one	 is	 an	 object	 of	

Request	 type,	whereas	 the	 second	 is	 an	 array	 of	 rules.	 Out	 of	 the	 box,	 Laravel	

provides	a	lot	of	rules	to	validate	the	application’s	incoming	data	and	when	this	is	

not	enough,	the	framework	allows	to	use	custom	created	rules.	

When	 the	 user	 fills	 in	 information	 about	 the	 factory	 in	 the	 section	 “General	

information”,	he	needs	to	provide	the	year	when	his	organization	was	founded.	The	

year	 field	 is	 mandatory,	 it	 should	 be	 a	 whole	 number	 and	 it	 is	 expected	 to	 be	

somewhere	between	1900	and	the	current	year.	The	key	in	the	array	containing	the	

rules	must	be	named	after	the	input	fields	that	are	contained	in	the	form.	The	rule	

for	the	year	of	foundation	is:	

$this->validate($request, [

 'year'=>'required|integer|between:1900,'.date('Y'),

 …

]);

After	knowing	the	year	of	foundation,	later	on,	when	the	year	is	required	in	the	other	

forms,	 its	 value	 is	 then	 expected	 to	 be	 between	 the	 year	 of	 foundation	 and	 the	

current	year.	When	a	field	is	not	mandatory,	the	rule	required	 is	replaced	with	

nullable.	

	 34	

When	 the	user,	 for	example,	provides	 information	about	 the	product	 lines	of	his	

organization,	there	are	more	input	fields	available	to	him.	Sometimes	it	can	happen	

that	the	user	will	fill	in	the	same	text	in	two	fields.	To	constrain	him	to	fill	in	only	

different	product	lines,	the	rule	distinct	(work	only	with	arrays)	is	used:	

'product_lines.*' => 'distinct'

Checking	the	uniqueness	of	data	is	a	more	complicated	situation.	Every	table	in	the	

database	has	unique	defined	constraints	but	when	the	application	tries	to	add	a	new	

record	that	already	exists	an	error	will	occur.	To	avoid	this,	the	unique	rule	is	used.	

Checking	if	an	email	already	exists	in	the	database	it	is	an	easy	task,	and	it	is	done	

when	a	new	user	wants	to	register.	The	email	is	mandatory,	it	should	be	a	string	that	

is	formatted	as	an	email,	is	no	longer	than	255	characters	and	has	to	be	unique	in	

table	“factories”:	

'email'=>'required|string|email|max:255|unique:factories'

However,	 things	get	more	complicated	when	more	 fields	 together	have	to	 form	a	

unique	constraint.	In	the	section	“Input”	of	the	questionnaire,	the	user	is	asked	to	

provide	5–10	most	 used	 input	materials.	When	 saving	 a	new	 record	 about	what	

materials	the	organization	uses,	it	should	be	considered	the	fact	that	a	company	can	

have	 in	 the	database	 the	 same	material	 that	 appears	only	once	 for	one	year,	but	

multiple	times	for	different	years.	Also,	the	application	does	not	limit	the	number	of	

how	many	times	the	user	can	add	new	materials	for	a	chosen	year.	To	check	if	an	

organization	 already	 has	 a	 record	 about	 a	 given	material	 for	 a	given	 year	 in	 the	

database	the	next	rule	is	used:	

'input_materials.*'=>'unique:factory_input_material,

input_material_id,null,null,factory_id,' . $factory->id .

',year,' . $request['year']

The	rule	will	generate	the	following	SQL	query:	

select count(*) as aggregate from `factory_input_material` where

`input_material_id`=? and `factory_id`=? and `year`=?

After	the	query	is	executed,	if	the	number	of	records	contained	in	the	table	is	bigger	

than	zero,	the	validation	will	fail	and	an	error	message	will	be	shown	to	the	user.	

	 35	

The	two	null	are	used	when	is	needed	to	skip	a	value	for	a	specific	column,	the	first	

one	being	the	value	and	the	second	one	the	name	of	the	column.	

Because	the	number	of	materials	used	can	be	bigger	than	10,	there	is	a	question	that	

asks	the	user	to	provide	their	total	number.	Here,	the	user	can	change	the	number	

of	materials,	so	the	unique	rule	will	not	be	effective	any	longer,	and	more	records	

for	 the	 same	 year	 will	 be	 added	 in	 the	 database.	 To	 avoid	 this,	 a	 custom	 rule	

ValidUMaterials	 was	 created	 (Image	 11).	 The	 custom	 rules	 are	 located	 in	

app/Rules/	directory.	

The	 constructer	of	 the	 class	 takes	up	 to	3	parameters	 ($request,	$function,	

$message).	The	$function	parameter	contains	the	name	of	 the	 function	to	be	

called	in	the	function	passes.	The	called	function	executes	a	query	and	returns	true	

when	no	records	are	found,	otherwise	returns	false.	The	$message	parameter	is	by	

default	empty	and	when	is	not	provided,	the	constructor	will	set	the	class	variable	

$message	to	be	the	value	of	$function.	When	the	called	function	returns	false,	

the	 message	 function	 is	 executed	 and	 that	 returns	 the	 error	 text	 that	 will	 be	

displayed	to	the	user.	In	the	function	validate	the	custom	rule	then	looks	like:	

'nr_of_materials'=>['nullable','integer', new ValidUMaterials

($request, 'uniqueCount')]

	

Image	11:	UML	diagram	for	"ValidUMaterials"	rule	

5.6. Saving	and	retrieving	data	

Laravel	 uses	 Eloquent	 ORM	 (Object-relational	 mapping)	 to	 work	 with	 database.	

Each	database	table	has	a	corresponding	“Model”	which	is	used	to	interact	with	that	

	 36	

table.	Models	allow	to	query	for	data	in	the	tables,	as	well	as	insert	new	records	into	

the	table	[14].	

All	models	of	the	application	are	located	in	app/Models/	directory.	Most	of	them	

are	in	directories	that	are	named	after	the	questionnaire’s	sections	where	they	are	

used.	

The	models	by	default	work	with	the	table	after	they	are	named.	For	example	the	

model	Factory	will	automatically	search	for	the	table	that	is	the	plural	of	its	name	

in	the	database	(“factories”).	To	use	another	table,	this	has	to	be	explicitly	specified	

in	the	class	using	the	variable	$table.	The	model	Specification16	can	be	used	

as	an	example.	By	default,	Laravel	will	search	for	the	table	“specification16s”	which	

does	not	exist	in	the	database	but	there	is	a	“specifications16”	instead.	

	The	 variable	 $fillable,	 can	 also	 be	 found	 in	 the	 models,	 which	 is	 an	 array	

containing	the	columns	names	that	can	be	mass	assignable.	When	the	user	sends	a	

new	request	to	save	data,	if	there	is	an	unexpected	field,	then	the	model	will	ignore	

it	and	will	save	only	the	data	for	the	allowed	columns.	

Eloquent	models	allow	to	define	relationships	between	the	tables.	In	this	application	

are	used	one	to	many	and	many	to	many	relationships.	The	relationship	from	Image	

6	is	described	in	Factory	model	as:	

public function sectors() {

 return $this->belongsToMany(

 'App\Models\GeneralInfo\Sector', 'factory_sector'

);

}

As	it	can	be	seen	from	the	code,	the	first	parameter	of	the	function	belongsToMany	

is	 the	 model	 of	 the	 table	 that	 is	 related	 to	 the	 current	 model,	 and	 the	 second	

parameter,	which	is	optional,	is	the	name	of	the	intermediary	table	that	these	two	

form.	Eloquent	is	smart	enough	to	understand	from	the	name	of	the	classes	what	is	

the	 name	 of	 the	 intermediary	 table.	 It	 can	 be	 specified	when	 the	 table	 is	 named	

otherwise	 than	 the	 convention	 or	 just	 to	make	 things	 easier	 to	 understand.	 The	

function	can	also	take	more	parameters,	where	the	foreign	key	or	the	local	key	can	

be	specified	if	they	are	not	named	after	the	convention.	Because	the	application	does	

	 37	

not	require	to	know	to	which	factories	a	sector	belongs,	there	is	no	need	to	specify	

the	inverse	of	the	relationship	in	Sector	model.	

For	the	relationship	one	to	many	from	the	Image	7	in	the	model	Sector	will	be	used	

the	hasMany	function:	

public function activities() {

 return $this->hasMany('App\Models\Activity');

}

Once	the	models	and	their	tables	are	created,	the	application	can	save	and	retrieve	

data	from	the	database.	The	application	uses	3	different	ways	to	save	new	data.	

sync	

This	method	accepts	as	parameter	an	array	of	IDs	to	place	on	the	intermediate	table	

[15].	 All	 the	 IDs	 that	 are	 not	 contained	 in	 the	 array	 are	 then	 removed.	 In	 the	

application,	this	method	is	used	for	saving	multiple	answers	for	one	time	questions.	

When	the	current	logged	in	user	calls	the	method	sync	on	sectors:	

$this->sectors()->sync($request[sectors]);

the	sync	method	will	automatically	assign	the	sectors	to	the	user.	

attach	

This	method	is	used	to	save	data	for	many	times	questions.	The	attach	allows	an	

additional	array	of	data	to	be	saved	in	the	intermediary	table	when	attaching	a	new	

relationship.	When	attaching	a	new	input	material	to	an	organization,	the	next	three	

parameters	 have	 to	 be	 provided	 to	 the	 database	 table:	 factory_id,	 year,

input_material_id.	The	controller	passes	the	data	to	the	model	as	a	Request	

object	containing:	

• logged	in	user	

• array	containing	the	materials	IDs	

• year	

To	attach	the	IDs	to	the	database,	first	is	needed	to	synchronize	each	one	of	them	

with	 the	 year.	 To	 do	 this,	 the	 function	 syncYearAndItems	 from	 the	 model	

Factory	is	used:	

	 38	

public function syncYearAndItems($items, $year){

 $pivotData = array_fill(0, count($items),

 ['year'=>$year]);

 return array_combine($items, $pivotData);

}

where	the	items	parameter	 is	 the	array	containing	the	IDs.	After	 this	 the	attach	

method	is	called:		

$this->inputMaterials()->attach($syncedItems);

which	attaches	the	$syncedItems	to	the	logged	user.	

firstOrCreate	

This	method	is	used	to	save	user	input	which	is	not	validated	by	unique	rule.	The	

method	itself	protects	against	creating	duplicates	in	the	database.	First,	 it	tries	to	

find	 a	 record	 that	matches	 the	 provided	 columns	 and	 their	 values.	 If	 nothing	 is	

found,	then	a	new	record	is	inserted	in	the	database,	else	the	instance	of	the	model	

is	returned:	

OtherInputMaterial::firstOrCreate([

 'factory_id' => $this->id,

 'name' => $item,

 'year' => $request['year'],

]);

To	 retrieve	 data	 from	 the	 database,	 it	 is	 called	 the	 function	 that	 defines	 the	

relationship	 between	 the	 models.	 For	 example,	 to	 see	 what	 activities	 an	

organization	has,	it	is	used:	

$factory->activities()->get()

where	this	for	example	is	used	to	retrieve	all	certificates	from	database:	

Certificate::all()

To	retrieve	5	 records	 from	 the	 table	 “water_costs”,	 that	belongs	 to	 the	 logged-in	

user,	where	the	column	“year”	is	smaller	than	a	given	value,	next	function	is	used:	

$factory->waterCost()

 ->where('year', '<=', $year)

 ->take(5)->get();

	 39	

In	some	cases,	when	a	table	from	the	database	does	not	have	an	Eloquent	model	

defined,	the	DB facade is used to retrieve data.

To	generate	a	new	model,	the	next	command	was	used:	

php artisan make:model NewModel

5.7. Updating	the	data	

The	update	of	the	data	in	the	database	is	also	made	in	a	few	different	ways.	One	way	

of	doing	this	is	to	retrieve	a	instance	of	the	model,	set	the	parameters	values	and	

then	call	the	save	method	on	that	model.	

The	logged	in	user	is	an	instance	of	Factory.	All	of	the	contact	information	of	the	

organization	are	contained	in	the	table	“factories”.	When	the	request	is	passed	to	the	

model,	its	parameters	have	their	values	set	to	the	ones	from	the	request:	

$this->contact_person = $request['contact_person'];

$this->phone_nr = $request['phone_nr'];

$this->city = $request['city'];

After	this,	the	save	method	is	called:		

$this->save()

which	updates	the	data	in	the	database.	

When	the	user	has	already	selected	and	saved	the	 input	materials,	he	has	to	add	

additional	information	like	the	used	quantity	or	the	supplier.	This	is	done	by	clicking	

the	“Edit”	button	(Image	12).	

	

Image	12:	Edit	button	for	an	input	material	

The	button	uses	the	HTML	data	attribute	to	store	 information	 like	the	ID	of	 the	

material	 and	 the	 year	when	 it	was	 used.	When	 the	 button	 is	 clicked,	 the	 data	 is	

passed	to	a	modal	that	contains	the	form	for	the	additional	information.	After	the	

form	 is	 filled	 in,	 and	 the	 user	 clicks	 the	 “Save”	 button,	 an	AJAX	 request	 is	made.	

Following	the	validation,	the	data	is	passed	to	the	Factory	model	where	it	is	saved	

	 40	

using	 the	 function	 updateInputMaterial.	 Here	 the	 request	 parameters	 are	

added	into	an	associative	array	($attributes)	where	the	keys	are	named	after	

the	 columns	 than	 will	 be	 updated	 in	 the	 intermediary	 table	 (many	 to	 many	

relationship):	

$attributes['quantity'] = $request['quantity']; …

$this->inputMaterials()

 ->wherePivot('year', $request['year'])

 ->updateExistingPivot($request['input_material_id'],

 $attributes);

When	the	user	adds	the	quantity	of	a	final	product,	the	algorithm	of	how	the	data	is	

updated	 is	 very	 similar.	 The	 only	 difference	 is	 that	 each	 record	 in	 the	 table	

“final_products”	 has	 its	 own	 ID,	 so	 there	 is	 no	 need	 to	 use	 the	 year	 in	 a	where	

condition:	

$this->finalProducts()

 ->where('id', $request['id'])

 ->update($attributes);

5.8. 	Flow	of	materials	

The	materials'	flow	component	retrieves	the	data	from	the	database	and	uses	the	

HTML	 tables	 to	organize	 it	 in	 the	 page.	 The	 arrows	 between	 tables	 showing	 the	

direction	of	the	flow	are	arranged	in	the	page	using	CSS	(cascade	style	sheet).	The	

same	 arrow	 image	 is	used,	 only	 it	 is	 rotated	 at	 different	 angles	 (Image	 16).	 The	

HTML	block	containing	the	flow	of	materials	is	very	wide,	so	in	order	to	see	all	the	

information,	the	user	needs	to	use	the	scroll	bar	located	at	the	bottom	of	this	block,	

to	move	the	flow	from	the	left	to	the	right.	

At	the	top	of	the	page	the	user	has	a	box,	where	he	can	insert	the	year	for	which	he	

wants	to	see	the	materials'	flow.	When	some	of	the	information	that	is	displayed	in	

the	flow	is	missing,	the	user	is	informed	about	that.	

5.9. 	Reporting	

When	 the	 user	 goes	 to	 the	 report	 page,	 first	 thing,	 he	 sees	 a	 comparison	 of	 the	

evolution	of	energy	and	water	consumption	in	the	last	two	years,	and	secondly,	he	

sees	a	detailed	evolution	of	the	same	indicators,	together	with	others,	for	the	last	5	

	 41	

years.	When	 in	 the	database	are	 less	 than	5	 records	 for	an	 indicator,	or	 the	user	

requires	a	year	when	data	has	not	yet	been	provided,	then	the	evolution	of	available	

data	is	shown.	

From	chapter	3	is	known	that	the	water	and	energy	consumption	are	assessed	by	

the	absolute	quantity,	quantity	share	by	employees	and	by	organization’s	surface.	

The	data	about	the	elements	mentioned	above	is	stored	in	different	tables.	Because	

the	questionnaire	has	many	sections	and	the	application	does	not	constrain	the	user	

to	answer	to	the	questions	contained	in	them	in	a	specific	order,	the	database	can	

end	having,	for	example,	more	records	about	the	number	of	employees	than	about	

the	 company’s	 surface,	 because	 both	 questions	 require	 an	 yearly	 answer.	 The	

application	also	does	not	limit	the	access	of	the	user	to	the	reporting	page	in	case	

that	some	data	is	missing,	and	as	result,	the	report	of	indicators	can	be	inaccurate.	

To	avoid	this,	from	the	database	are	first	retrieved	the	absolute	quantity,	and	then	

accordingly	to	the	years	contained	by	these	records,	the	number	of	employees	and	

the	size	of	organization’s	surface.	

	

Image	13:	Energy	report	preview	

To	draw	the	graphical	part	(Image	13)	of	the	report	the	javascript	Chart.js	library	is	

used.	In	the	reporting.blade.php	view	are	set	all	the	variables	needed	to	be	

	 42	

displayed	in	the	chart,	some	of	these	are	the	explanatory	labels	and	the	indicators	

data.	 After	 the	 page	 is	 loaded,	 the	 script	 contained	 in	report.js	 file	 gets	 the	

context	of	the	canvas	specific	for	a	given	indicator,	draws	and	displays	the	chart.	

When	 the	 user	 is	 asked	 to	 indicate	 the	 quantity	 of	 energy	 consumed	 by	 his	

organization	(table	“electricity_consumptions”),	in	his	answer,	he	should	not	include	

the	amount	of	energy	coming	from	own	sources.	For	this,	there	is	an	additional	part	

in	the	section	“Input”	of	the	questionnaire.	Together	with	indicating	the	mix	of	own	

energy	sources,	there	should	be	specified	the	quantity	of	energy	provided	by	these	

sources	(table	“factory_own_energy”).	To	get	the	absolute	quantity	of	energy	used,	

data	 coming	 from	 both	 named	 tables	would	 have	 to	 be	 summed.	 An	 even	more	

complicated	 situation	 is	 when	 trying	 to	 sum	 the	 energy	 used	 from	 renewable	

sources.	The	organization	can	use	renewable	energy	that	is	not	coming	from	own	

sources.	Of	course,	 the	mix	can	be	also	 indicated	together	with	the	quantity	used	

from	specific	sources	(table	“factory_energy_mix”).	In	order	to	get	the	quantity	of	

renewable	energy	used,	again,	data	 from	the	latter	 two	tables	has	to	be	summed.	

The	database	relation	can	be	seen	in	Image	14.	

	

Image	14:	Energy	consumption	and	mix	–	database	relationship	

Trying	to	retrieve	data	and	sum	the	quantities	from	these	tables	for	5	distinct	years	

means	a	lot	of	operations	with	the	database.	To	improve	this,	two	additional	tables	

have	been	added	to	the	database:	

	 43	

• electricity_caches	

• renewable_caches	

The	 first	one	 contains	the	 sum	 for	 the	absolute	quantity	of	 energy	used,	 and	 the	

second	one,	the	sum	of	quantities	of	energy	provided	by	renewable	sources	(Image	

15).	 The	 data	 in	 these	 tables	 is	 updated	 by	 the	 application	 whenever	 the	 user	

modifies	 the	 quantity	 of	 an	 energy	 source	 contained	 by	 “factory_energy_mix”	 or	

“factory_own_energy”.	 The	 latter	 named	 tables	 are	 used	 when	 calculating	 the	

emissions	of	dust,	SO2,	CO2,	CH4	and	others	gases	that	pollute	the	air	(Image	17)	in	a	

given	year.	

	

Image	15:	Energy	cache	tables	relationship	

5.10. Application	localization	

When	the	user	 first	opens	the	welcome	page	of	 the	application,	he	can	select	 the	

language	in	which	he	wants	the	application	to	be	displayed	in.	The	application	uses	

the	 same	 routes	 to	 display	 a	 page	 in	 different	 languages.	 In	 order	 to	 keep	 the	

language	selected	by	the	user,	the	locale	is	saved	in	the	application’s	session.	When	

the	user	selects	the	desired	language,	the	application	navigates	to	the	route	for	the	

given	locale,	sets	the	session	and	redirects	the	user	back	on	the	page	where	he	was:	

Route::get('/lang/{locale}', function ($locale) {

 Lang::setLocale(Session::put('locale', $locale));

 return redirect()->back();

});

After	 the	 locale	 being	 set	 in	 the	 application’s	 session,	 next	 time	 when	 the	 user	

navigates	to	a	different	page,	the	default	language	of	the	application	is	changed	to	

the	 one	 selected	 by	 the	 user	 using	 the	 middleware	 LanguageSwitcher.	 This	

middleware	is	executed	by	the	framework’s	kernel.	

	 44	

5.11. Production	mode	

One	last	step,	that	should	be	made	after	uploading	the	application	to	a	production	

server,	is	to	change	the	application’s	environment	from	“develop”	to	“production”	

and	set	the	debug	option	to	“false”.	The	changes	have	to	be	done	in	the	.env	file.	

The	variables	for	this	are	APP_ENV	and	APP_DEBUG.	Once	these	changes	are	made	

and	in	case	of	an	error,	the	user	will	be	seeing	a	nice	page	instead	of	the	exception’s	

stack	 trace.	 In	 this	 way,	 the	 exposure	 of	 any	 sensitive	 data	 to	 the	 user	 will	 be	

avoided.	

	 	

	 45	

6. Solution	evaluation	

The	part	that	took	a	lot	of	time	during	this	work	was	the	analysis	of	the	documents	

I	got	from	my	advisor,	understanding	the	relationship	between	the	questions	and	

designing	 the	 database	 to	 cover	 every	 one	 of	 them,	 and	 store	 all	 the	 possible	

answers.	From	time	to	time,	new	questions	have	been	added,	so	the	database	often	

suffered	modifications.	

There	are	more	pairs	of	tables	in	the	database	that	could	be	united	in	one.	However,	

because	the	questions	that	have	their	answers	stored	in	those	tables	are	optional,	it	

was	chosen	to	use	different	and	smaller	tables	in	order	to	avoid	NULL	values	in	the	

database.	

In	some	cases,	 like	the	reporting	of	 financial	cost	per	unit	of	waste,	 the	task	was	

confusing.	Different	 types	of	waste	can	have	their	quantity	expressed	 in	different	

types	of	measuring	units	 (for	example	kilograms,	 liters).	According	 to	 the	 law	of	

physics,	the	summing	of	different	units	cannot	be	done,	and	even	if	absurdly	they	

will	be	summed	the	report	will	be	inaccurate.	After	consultation	with	my	advisor,	it	

was	decided	to	skip	this	until	further	instructions.	

The	application	saves	all	the	user	data,	but	does	not	always	display	it.	That	is	the	

case	only	with	the	users	input	(other	input),	when	an	answer	was	not	found	in	the	

list	provided	by	the	application.	The	support	to	edit	other	input,	with	the	exception	

of	other	input	materials,	is	not	yet	added	to	the	application.		

After	making	an	AJAX	request	to	save	the	questionnaire’s	data,	in	case	of	questions	

with	an	yearly	answer,	the	data	is	not	automatically	appended	and	displayed	to	the	

user.	For	this,	a	message	appears	to	inform	the	user	that	in	order	to	see	new	data	

the	page	has	 to	be	 reloaded.	 If	 the	user	decides	 to	 reload	 the	page,	 then	 the	 tab	

navigation	system	will	jump	back	to	the	first	option,	and	the	user	will	need	to	click	

the	 tab	 where	 he	 was	 before	 that.	 Because	 this	 can	 be	 considered	 a	 bad	 user	

experience,	 an	 option	 about	 how	 to	 fix	 this	 is	 to	 use	 AJAX	 requests	 in	 order	 to	

retrieve	the	new	added	data,	or	another	option	 is	 to	send	the	current	 tab	ID	as	a	

parameter	in	the	HTTP	request	for	the	view	to	let	it	know	where	the	user	was	before	

he	reloaded	the	page	and	then,	using	jQuery,	tell	to	Materialize.css	framework	what	

	 46	

tab	to	show.	When	the	user	edits	some	data,	like	quantity	of	solar	energy	used,	the	

new	data	will	be	automatically	appended	to	the	page.	

A	drawback	of	the	application	is	that	in	order	to	see	the	report	of	some	indicators	

and	have	accurate	information	about	them,	or	the	emissions	table,	the	user	needs	to	

provide	 answers	 to	 many	 optional	 questions.	 For	 example,	 knowing	 the	 mix	 of	

energy	 sources	 used	 by	 the	 company	 is	 a	 very	 specific	 question	 and	 such	

information	may	not	be	always	available	to	the	user.	

Something	that	can	be	confusing,	especially	for	new	users,	is	that	the	questionnaire	

has	 the	 section	 “Employees”,	 however,	 they	 are	 asked	 about	 the	 number	 of	

employees	the	organization	has	in	the	section	“General	information”.	A	more	logical	

approach,	in	my	opinion,	will	be	to	keep	all	the	questions	about	employees	in	the	

same	section.	

A	component	that	will	come	in	the	next	version	of	 the	application,	 together	with	

others,	 is	one	 that	will	 tell	 the	 user	what	 his	organization	 has	 to	 do	 in	 order	 to	

improve	its	impact	on	biodiversity.	This	will	be	done	by	analyzing	the	answers	that	

are	already	stored	in	the	database.	

The	main	advantage	of	the	developed	application	is	that	it	is	focused	primarily	on	

biodiversity	and	the	interrelationship	between	firms	and	biodiversity,	and	partly	on	

ecosystem	services.	The	application	also	deals	with	aspects	 like	waste,	energy	or	

raw	materials,	but	it	puts	them	much	more	in	context	with	biodiversity.	At	the	same	

time,	it	also	allows	the	“classical”	evaluation	of	indicators	in	terms	of	consumption	

or	cost.	 	

	 47	

7. Conclusion	

The	main	task	of	this	work	was	to	prepare	the	schema	of	an	online	application	for	

ecological	 impact	assessment	 that	will	have	a	 questionnaire	used	 to	 collect	data.	

This	application	will	allow	the	user	to	see	the	flow	of	materials	and	will	report	the	

key	indicators,	for	example	the	electricity	or	water	consumption.	Another	task	was	

to	study	the	Laravel	framework	and	use	it	to	implement	the	application.	All	the	tasks	

were	fulfilled.	

In	 the	 theoretical	 part	 of	 this	 work	 the	 reader	 is	 introduced	 with	 the	 term	 of	

environmental	 management	 (EM),	 it	 is	 also	 analyzed	 why	 are	 the	 ecosystem	

services	 provided	 by	 biodiversity	 important	 for	 companies	 and	 how	 is	 EM	

implemented	in	the	Czech	Republic.	Together	with	this,	there	are	also	enumerated	

some	 benefits	 that	 this	 corporate	 practice	 brings	 to	 the	 organizations	 and	 are	

analyzed	 some	 of	 the	 current	 applications,	 available	 on	 the	 market,	 that	 are	

addressing	 this	 topic.	 Also,	 in	 this	 Bachelor	 thesis	 are	 explained	 some	 of	 the	

Laravel’s	components	used	to	implement	the	application.	

Next,	is	described	the	approach	in	designing	the	database	schema	and	the	graphical	

user	 interface	 of	 the	 components	 that	 the	 application	 has	 and	 are	 explained	 the	

decisions	made	during	its	implementation.	

In	 the	 practical	 part	 of	 this	 Bachelor	 thesis	 is	 described	 how	 the	 tables	 of	 the	

database	were	created	and	what	components	of	the	Laravel	framework	were	used	

to	 insert	 the	 data	 needed	 by	 the	 application.	 Next,	 there	 are	 described	 the	

modifications	that	have	been	made	 to	 the	 framework,	 also	how	 the	user	 input	 is	

validated	and	the	rules	used	for	validation.	As	well,	here	is	described	how	the	data	

is	saved,	updated	and	retrieved	from	the	database.	Last	but	not	least,	it	is	described	

how	do	some	of	 the	components	work	and	the	optimizations	made	to	reduce	the	

number	of	queries	made	to	the	database	and	the	time	needed	to	access	it.	

The	application	offers	to	the	user	a	questionnaire	containing	more	sections	to	collect	

data	 about	 the	 organization	 where	 he	 works.	 The	 collected	 data	 then	 can	 be	

displayed	and	analyzed	using	the	 flow	of	materials	or	the	report	provided	by	the	

application.	

	 48	

In	the	future	more	components	should	be	added	to	the	application,	one	of	them	will	

tell	the	user	what	is	that	his	organization	has	to	do	in	order	to	improve	its	impact	on	

biodiversity,	also	there	will	be	made	improvements	on	how	the	flow	of	materials	is	

displayed.	

The	application	will	be	offered	as	service	and	its	target	markets	at	the	moment	are	

the	Czech	Republic,	Germany	and	Poland.	

	 	

	 49	

Bibliography	

[1]	 Barrow,	C.,	2004.	Environment	Management	and	Development.	Taylor	&	

Francis,	Inc.	ISBN:	0–415–28034–4.	

[2]	 Oxford	Dictionaries	|	English.	2018.	biodiversity	|	Definition	of	biodiversity	

in	English	by	Oxford	Dictionaries.	[ONLINE]	Available	

at:	https://en.oxforddictionaries.com/definition/biodiversity.	[Accessed	

09	April	2018].	

[3]	 PricewaterhouseCoopers,	2013.	Naturkapital	Deutschland	–	TEEB	DE:	Die	

Unternehmensperspektive	–	Auf	neue	Herausforderungen	vorbereitet	sein,	

Berlin.	ISBN:	978-3-944280-05-9

[4]	 Hassan,	R.,	2005.	Ecosystems	and	Human	Well-Being	:	Current	State	and	

Trends:Findings	of	the	Condition	and	Trends	Working	Group,	Vol.	1.	Island	

Pr.	p.	25.	ISBN	1-55963-228-3.	

[5]	 Kramer	a	kol.,	2017.	Praktická	příručka	pro	management	biodiverzity	a	

ekosystémových	služeb	v	regionálních	malých	a	středních	podnicích	a	

hodnotových	řetězcích,	Zittau

[6]	 Heitepriem,	Nico.	(2012).	Unternehmen	&	Biodiversität	–	Biodiversität	im	

unternehmerischen	Immobilien-und	Liegenschaftsmanagement.	p.	20.	

[7]	 Štěpánková,	E.,	2013.	Environmental	Management	and	its	Impact	on	the	

Corporate	Competitiveness.	p.	20–21	[ONLINE]	Availible	at:	

https://is.muni.cz/th/pub0b/Stepankova_DizP.pdf	[Accessed	10	April	

2018].	

[8]	 EMAS	–	Environment	-	European	Commission.	2018.	EMAS	–	Environment	-	

European	Commission.	[ONLINE]	Available	

at:	http://ec.europa.eu/environment/emas/index_en.htm	[Accessed	11	

April	2018].	

[9]	 TÜV	Rheinland,	Managementsystem	–	die	Unterschied	zwischen	EMAS	und	

ISO	1400.	[ONLINE]	Available	at:	

https://www.tuv.com/media/germany/60_systeme/energie_umwelt/iso1

	 50	

4001/Umweltmanagement_-

_Unterschied_zwischen_EMAS_und_ISO_14001.pdf	

[10]	 2013/131/EU:	Commission	Decision	of	4	March	2013	establishing	the	

user’s	guide	setting	out	the	steps	needed	to	participate	in	EMAS,	under	

Regulation	(EC)	No	1221/2009	of	the	European	Parliament	and	of	the	

Council	on	the	voluntary	participation	by	organizations	in	a	Community	

eco-management	and	audit	scheme	(EMAS)	(notified	under	document	C	

(2013)	1114)	Text	with	EEA	relevance,	p.25.	

[11]	 Litea	Solution	s.r.o.	2018.	Dobrovolné	nástroje	v	České	republice	«	Enviros.	

[ONLINE]	Available	at:	https://www.enviros.cz/2011/03/16/dobrovolne-

nastroje-v-ceske-republice/.	[Accessed	11	April	2018].	

[12]	 Buschmann,	Frank	(1996) Pattern-Oriented	Software	Architecture.	ISBN:	

978-0-471-95869-7

[13]	 Taylor	Otwell.	2018.	Installation	-	Laravel	-	The	PHP	Framework	For	Web	

Artisans.	[ONLINE]	Available	at:	https://laravel.com/docs/5.5.	[Accessed	

25	April	2018].	

[14]	 Taylor	Otwell.	2018.	Eloquent:	Getting	Started	-	Laravel	-	The	PHP	

Framework	For	Web	Artisans.	[ONLINE]	Available	at:	

https://laravel.com/docs/5.5/eloquent.	[Accessed	01	May	2018].	

[15]	 Taylor	Otwell.	2018.	Eloquent:	Relationships	-	Laravel	-	The	PHP	Framework	

For	Web	Artisans.	[ONLINE]	Available	at:	

https://laravel.com/docs/5.6/eloquent-relationships.	[Accessed	01	May	

2018].	

[16]	 Enablon.	2018.	EHS	Management	Software	Solutions		|	Enablon.	[ONLINE]	

Available	at:	https://enablon.com/solutions/ehs-management-software.	

[Accessed	11	April	2018].	

	 	

	 51	

Annex	A	–	Attached	CD	

On	the	attached	CD	can	be	found	the	text	of	this	work,	together	with	the	source	code	

of	this	application	and	the	SQL	file	containing	the	database	structure.	

Description	of	the	items:	

• BP_Ion_Ciubaciuc.pdf	–	the	text	of	this	work	in	electronic	form	

• Folder	netsci	–	all	source	codes	of	the	application	

• netsci_tables.sql	–	the	application’s	database	tables	

• netsci_inserts.sql	–	data	required	by	application	

	 	

	 52	

Annex	B	–	Flow	of	materials	

	

Image	16:	Flow	of	materials	

	 53	

Annex	C	–	Emissions	table	

	

Image	17:	Emissions	table	

