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Abstract

This habilitation thesis is based on the author’s contributions to the mathe-
matical theory of incompressible fluids and to the shape optimization in fluid
mechanics. In Chapter 2, an overview of basic equations, theory of weak so-
lutions and finite-element approximation for incompressible fluids is given.
Chapter 3 is devoted to the formulation of shape optimization problems, to
the questions of existence of solutions, approximation and differentiability.
Finally, in Chapter 4 some results obtained by the author are mentioned,
namely on the theory of non-Newtonian piezoviscous fluids, applied shape
optimization and sensitivity analysis.
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Chapter 1

Introduction

The important role of fluids in human life has led many scientists and en-
gineers to develop theories, experimental and computational methods that
would lead to better understanding of their behaviour. Despite a large effort
of even the most distinguished experts, some of fundamental questions in the
mathematical description of fluids (e.g. existence of smooth solutions, char-
acterization of turbulence) as well as problems in numerical solution (large
Reynolds number and turbulent flows) are still not completely resolved even
for the “simple” model of water. The main difficulty is related to the inertial
effects due to the fact that fluids undergo large deformations. In addition,
the rheology of fluids can be more complicated than that of water, where
the stress-strain relation is linear. These so-called non-Newtonian fluids are
materials whose viscosity may depend on quantities like temperature, shear
rate, pressure, or on the history of deformation. Polymeric melts, oils, as-
phalt, glaciers, blood or toothpaste are a few examples of materials that can
be described as non-Newtonian fluids, depending also on the chosen time
scale.

This thesis is dealing with mathematical modeling of fluids in general,
having in mind particular applications. Mathematical modeling is one ap-
proach to study the properties of fluids can provide both qualitative and
quantitative results in details that are often not achievable by experiments,
provided that the modelling error is acceptable. An important task is to keep
under control or at least estimate the errors due to discretization and finite-
precision arithmetics. In this respect, it is an interdisciplinary discipline
whose success often relies on a strong cooperation of experts from several
fields.

The mathematical challenges in studying non-Newtonian fluids are mostly
related to two nonlinearities: one is due to the dependence of stress tensor on
other quantities and the other one is the convective term. We try to answer
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2 CHAPTER 1. INTRODUCTION

the questions of well-posedness of models as well as of their approximations
and the error estimation for so-called power-law and piezoviscous fluids, i.e.
fluids whose viscosity depends on the shear rate and/or on the pressure. We
also address the question of proper boundary conditions, which are in a sense
constitutive relations inherent to the fluid as well as the solid boundary.

The second main topic of this thesis will be the shape optimization, which
is related to the question of how the flow of a fluid depends on the geometry
of the flow domain. Shape optimization has applications e.g. in designing
particular devices, identification and inverse problems as well as in calibration
of models. Here the role of modelling and simulation is even more stressed as
the method of trial and error for the construction of a new design is often too
expensive and inefficient. We shall address the well-posedness, approximate
schemes and their convergence for the shape optimization problems with
models of nonlinear fluid mechanics as the state problem.

One of the author’s goals is to help reducing the gaps between mathe-
matical theory and applied sciences. Despite that scientists in each specific
field have to appropriate extensive specialized knowledge and techniques, it
is of significant interest to keep as much overview of related areas as possible.
The present thesis is an attempt to demonstrate that for a growing set of
models in fluid mechanics a rigorous theory is possible which can then put
the achievements in numerical computations to a more solid ground.

The structure of the thesis is as follows. In Chapter 2 we recall the ba-
sic equations of fluid mechanics with attention to some non-Newtonian and
nonlinear models. Then, on the example of the Navier-Stokes equations we
explain the main steps in the proof of existence and uniqueness of weak
solutions, the finite-element discretization and convergence analysis. Chap-
ter 3 is devoted to the formulation of shape optimization problems, their
mathematical and numerical analysis and solution. Again, the theoretical
considerations are demonstrated on the Navier-Stokes equations. Finally, in
Chapter 4 we present reprints of several author’s publications from the field
of mathematical fluid mechanics and shape optimization and comment on
their contribution to the scientific community.



Chapter 2

Mathematical and Numerical
Analysis in Fluid Mechanics

In this chapter we recall basic concepts of continuum mechanics and state
the governing equations as well as initial and boundary conditions for several
important models of fluids. We focus on the incompressible case and do not
consider thermal effects. The notion of a weak solution is introduced for the
classical Navier-Stokes equations and the main steps towards the existence
and the uniqueness of weak solutions are discussed. We also mention differ-
ences that have to be tackled when considering some non-Newtonian models
and non-trivial boundary conditions. In the last part of the chapter we de-
scribe the finite-element approximation of the Navier-Stokes equations and
results on the existence of discrete solutions as well as their convergence to
the weak solution.

2.1 Overview of models in fluid mechanics

We shall start by introducing the concept of a deformable body, Lagrangian
and Eulerian description and balance laws for continuum. We discuss consti-
tutive relations for Newtonian and non-Newtonian fluids, physically relevant
initial and boundary conditions. For more details on derivation and discus-
sion of the models we refer to [33].

2.1.1 Basic equations of continuum mechanics

Let BR ⊂ R3 denote the reference configuration in three-dimensional Eu-
clidean space of a body under consideration. The motion of the body can
be represented by a sufficiently smooth mapping χ : R×BR → R3 which for
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4 CHAPTER 2. MATHEMATICAL FLUID MECHANICS

given time t maps BR isomorphically onto a new configuration Bt := χ(t,BR).
Then, one can introduce the inverse mapping χ−1 so that any point X ∈ BR
can be uniquely identified with x := χ(t,X) ∈ Bt and conversely, X =
χ−1(t, x).

A scalar function ϕ associated with the abstract body will be denoted
by the same symbol in the Lagrangean as well as the Eulerian description,
i.e. ϕ(t,X) ≡ ϕ(t, x). The Lagrangean and Eulerian time derivative of ϕ is
defined as follows:

ϕ̇ :=
∂ϕ

∂t
(t,X) =

d

dt
ϕ(t, χ(t,X)), ϕ,t :=

∂ϕ

∂t
(t, x). (2.1)

We also define the deformation gradient F, the velocity v, the velocity
gradient L and its symmetric part D:

F = ∇Xχ :=
∂χ

∂X
, v :=

∂χ

∂t
,

L := ∇xv =
∂v

∂x
, D = Dv :=

1

2

(
L + L>

)
.

(2.2)

By chain rule of differentiation one gets the relation:

ϕ̇ = ϕ,t +∇xϕ · v. (2.3)

For the derivation of the balance laws we shall use the notion of a control
volume, namely an open set ΩR ⊂ BR, for which we define Ωt := χ(t,ΩR).

Balance of mass. Incompressibility, homogeneity. Let % denote the
density field. The balance of mass in the Eulerian form reads:

d

dt

∫

Ωt

%(t, x) dx = 0 for all control volumes ΩR ⊂ BR. (2.4)

By Reynolds transport theorem and localization one obtains from (2.4) the
continuity equation:

%,t + (∇x%) · v + % div v = %,t + div(%v) = 0. (2.5)

If the abstract body is incompressible then
∫

ΩR

dX =

∫

Ωt

dx for all control volumes ΩR ⊂ BR, (2.6)

which implies
detF(t,X) = 1 in BR, (2.7)
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and since
d

dt
detF = div v detF, (2.8)

the incompressibility is equivalent to the constraint

div v = trD = 0. (2.9)

Hence, the balance of mass for an incompressible material reads:

%,t + (∇x%) · v = %̇ = 0. (2.10)

The above identity implies that the density is a constant function of time for
each material point X. However, it permits variations of the density in space,
in which case we speak about an inhomogeneous incompressible material. A
typical example of such materials are granular fluids. For a homogeneous
incompressible fluid (i.e. %(t,X) = const.), the balance of mass follows
directly from (2.9).

Balance of linear and angular momentum. The balance of linear mo-
mentum is an analogy of the second Newton’s law in classical mechanics. It
states that for each control volume ΩR ⊂ BR,

d

dt

∫

Ωt

%v dx =

∫

Ωt

%f dx+

∫

∂Ωt

T>n dS, (2.11)

where T represents the Cauchy stress tensor, n denotes the unit outward
normal vector and f is the density of body forces.

The balance of angular momentum requires that the Cauchy stress is
symmetric, i.e.

T = T>. (2.12)

The localized form of the balance of linear and angular momentum then
reads:

%v̇ = %f + divT. (2.13)

Multiplying (2.5) by v and adding to (2.13) we obtain

(%v),t + div(%v ⊗ v) = %f + divT. (2.14)

The balance laws expressed using the above considerations are summa-
rized in the following systems of partial differential equations:

• compressible fluids:

%,t + div(%v) = 0, (%v),t + div(%v ⊗ v) = %f + divT; (2.15)
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• incompressible inhomogeneous fluids:

div v = 0, %̇ = 0, (%v),t + div(%v ⊗ v) = %f + divT; (2.16)

• incompressible homogeneous fluids:

div v = 0, v,t + div(v ⊗ v) = f +
1

%
divT, % = const. (2.17)

These systems, accomplished by an appropriate relation for T, are usually
called the equations of motion.

2.1.2 Constitutive relations for Newtonian fluids and
some of their generalizations

The systems governing the motion of fluids have to be closed by a constitutive
relation for the Cauchy stress T. If T depends linearly on the velocity gradient
L then we speak about Newtonian fluids, all other relations are denoted non-
Newtonian.

In the standard approach employed in classical textbooks of continuum
mechanics (e.g. [50]), one a priori assumes the stress tensor as a function of
certain quantities, in particular

T = F(%,L). (2.18)

The frame indifference then yields the general form of the relation — in the
above case one gets F(%,L) = α1I + α2D + α3D2, αi being functions of the
density and the invariants of D, i = 1, 2, 3. Requiring in addition that T
is linear with respect to D, we obtain the constitutive law of compressible
Newtonian fluid:

T = −p(%)I + λ(%)(trD)I + 2µ(%)D. (2.19)

Here p is the pressure (related to % by a state equation), λ and µ are the
bulk and shear moduli of viscosity. To obey the second law of thermody-
namics, µ(%) and λ(%) + 2

3
µ(%) have to be non-negative. Similarly, for an

incompressible homogeneous Newtonian fluid with the assumption T = G(L)
one obtains:

T = −pI + 2µD. (2.20)

Here the pressure p plays a different role than in (2.19), namely it is the La-
grange multiplier (or the reaction force) to the constraint of incompressibility
of the fluid.
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It has to be noticed that by the above approach one cannot derive models
of incompressible fluids whose viscosity parameter µ depends on the pressure.
For this reason we shall mention an alternative way of deriving the constitu-
tive laws. It is especially well-suited for incompressible non-Newtonian fluids
(see [33] for more details). Instead of assuming certain form of the tensor T it
may be more convenient to consider a specific form of the rate of dissipation

ξ := T : D, (2.21)

which is a scalar quantity. The second law of thermodynamics requires that
ξ ≥ 0. For a particular choice

ξ = 2ν(p, %, |D|2)|D|2, (2.22)

where p := −1
3

trT, |D|2 = D : D and ν(p, %, |D|2) > 0, this requirement is
automatically satisfied. Maximizing ξ with respect to D with the constraints
(2.21) and (2.9) leads to

T = −pI + 2ν(p, %, |D|2)D. (2.23)

This represents a class of non-Newtonian models whose viscosity may vary
with pressure, density and shear rate. Using this approach one can derive
even more general models (both compressible and incompressible) with im-
plicit constitutive relations between T and D (see e.g. [35], [34]). Among the
mostly used constitutive relations for fluids are the following ones:

• compressible Newtonian fluids:

T = −p(%)I + λ(%)(trD)I + 2µ(%)D; (2.24)

• incompressible homogeneous Newtonian fluids:

T = −pI + 2µD; (2.25)

• incompressible homogeneous fluids with shear-rate-dependent viscosity:

T = −pI + 2ν(|D|2)D; (2.26)

• incompressible homogeneous fluids with pressure- and shear-rate-dependent
viscosity:

T = −pI + 2ν(p, |D|2)D. (2.27)

The equations of motion (2.9), (2.14) accomplished by (2.25) are usually
denoted the Navier-Stokes equations for incompressible fluids.
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2.1.3 Initial and boundary conditions

For a complete description of the motion of a fluid one has to know its initial
state. For this reason one has to prescribe the initial conditions:

%(0, ·) = %0, v(0, ·) = v0, (2.28)

where %0, v0 is the density and the velocity field, respectively, at initial time.
Of course (2.28)1 makes sense only for compressible or inhomogeneous fluids
as the density of an incompressible homogeneous fluid is constant.

When the domain occupied by the fluid has a (internal or external) bound-
ary, then it is necessary to specify boundary conditions. Their proper choice
is not always straightforward, they can be viewed as another constitutive
properties of the fluid and the surrounding environment (see [21] for a brief
overview of historical developments in this direction).

The most common condition on a solid impermeable wall is

v = vwall, (2.29)

i.e. the velocity of the fluid equals the velocity of the wall (usually vwall = 0).
This is called the no-slip or Dirichlet boundary condition. It was however
pointed out already by Stokes [46] that no-slip is only an approximation of
the real case. In fact the molecules of the fluid do not adhere to the surface
and the sliding effects can play an important role especially when the mean
free path of the molecules is comparable to the characteristic length of the
domain (see [30]).

In situations when the motion of the fluid along the surface is not neg-
ligible (e.g. in micro- or nanofluidics, flows along hydrophobic surfaces, to
name a few examples), one has to consider some kind of slip condition. One
of the simplest and mostly used is the condition derived by Navier [36]:

(Tn)τ = −αvτ , v · n = 0, (2.30)

where α > 0 is the slip friction coefficient, n stands for the unit outward
normal vector to the boundary and vτ := v− (v ·n)n denotes the tangential
part of v. A combination of Navier’s and no-slip condition is the threshold
condition:

v · n = 0,

|(Tn)τ | ≤ g, gvτ = −|vτ |(Tn)τ .
(2.31)

The slip bound g > 0 indicates the transition from slip to no-slip regime. It
may either be constant or a function of |vτ | and Tn · n.

For practical purposes the physical domain is often truncated to a region
where the fluid motion is of major interest. Then some parts of the boundary
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are artificial and can represent inflow or outflow zone. The choice of inflow
and outflow boundary conditions for general compressible models is a delicate
issue which will be omitted in this work. In the remainder of this section we
shall address some popular choices for incompressible models. On inflow one
typically prescribes the velocity:

v = vin (2.32)

(a typical form of vin in case of Newtonian fluids has a parabolic profile).
The velocity and pressure inside the domain is usually not too sensitive to
small variations of the inflow velocity.

A more delicate issue is the selection of an outflow condition (see e.g.
[28]). Here it is usually not possible to guess the velocity because an improper
choice could result in completely wrong solution inside the domain. The most
common is the so-called do-nothing condition

Tn = 0, (2.33)

yielding satisfactory results e.g. in channel flows with free outflow. Some
other possibilities such as conditions involving the Bernoulli pressure:

(p+
1

2
|v|2)n− Sn = h (2.34)

or non-reflecting conditions:

−Tn = h+
1

2
(v · n)−v (2.35)

can be found in the literature. Their validity is often restricted to particular
situations; they are in general not justified for universal usage.

2.2 Well-posedness

One of the fundamental questions in mathematical theory of fluid mechanics
is the existence and uniqueness of a regular solution (i.e. solution that satis-
fies the equations of motion, initial and boundary conditions at every point
and time). The question is far from being completely answered. Even for
the classical Navier-Stokes equations for incompressible fluids it is still open,
despite enormous effort of many researchers.

In the theory of partial differential equations, several notions of solution
appear. With regard to their regularity, we speak about classical, strong,
renormalized, weak or very weak solutions. Roughly speaking, existence is
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easier to prove for weaker types of solution while uniqueness can be proved
easier for stronger ones.

In what follows, we shall mention some aspects of the existence analysis
for weak solutions to the incompressible fluids. For this purpose we consider
a bounded domain Ω ⊂ Rd, d ∈ {2, 3} and introduce the notation of the
following function spaces (see e.g. [1, 37, 31] for their precise definitions and
more properties):

• the space C(K) of continuous functions on a closed set K;

• the Lebesgue space Lq(Ω), q ∈ [1,∞], of measurable functions which
are integrable with q-th power. The norm in Lq(Ω) is

‖f‖q,Ω :=





(∫

Ω

|f |q
)1/q

if q ∈ [1,∞),

min{C > 0; |f(x)| ≤ C ∀a.e. x ∈ Ω} if q =∞;

• the subspace Lq0(Ω) of functions with zero integral mean, i.e.

Lq0(Ω) :=

{
f ∈ Lq(Ω);

∫

Ω

f = 0

}
;

• the Sobolev space W 1,q(Ω) with the norm

‖f‖1,q,Ω :=
(
‖f‖qq,Ω + ‖∇f‖qq,Ω

)1/q
;

• its subspace of functions with vanishing traces

W 1,q
0 (Ω) := {f ∈ W 1,q(Ω); f|∂Ω = 0}; (2.36)

• the space of divergence-free functions with vanishing traces

W 1,q
0,div(Ω) :=

{
w ∈ W 1,q

0 (Ω;Rd); divw = 0
}

; (2.37)

Vector-valued analogues of the above spaces will be denoted Lq(Ω;Rd), W 1,q(Ω;Rd)
etc.

Let us also mention several auxiliary tools and inequalities related to the
function spaces that will be used in what follows. In all of them it is required
that the domain Ω has some minimal regularity, namely it is a domain with
Lipschitz boundary. It means, roughly speaking, that the boundary can be
locally represented as a graph of a continuous function with bounded first-
order derivatives (see [37] for a rigorous definition).
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• Hölder’s inequality. For all f ∈ Lq(Ω), g ∈ Ls(Ω), where 1
q

+ 1
s

= 1, it
holds: ∫

Ω

fg ≤ ‖f‖q,Ω‖g‖s,Ω. (2.38)

• Imbedding of W 1,q(Ω) into Ls(Ω). For every

s ∈





[1, dq
d−q ] if q < d,

[1,∞) if q = d,

[1,∞] if q > d,

there exists a constant CIs = CIs(Ω, q) > 0 such that

∀ϕ ∈ W 1,q(Ω) : ‖ϕ‖s,Ω ≤ CIs‖ϕ‖1,q,Ω. (2.39)

If in addition s <

{
dq
d−q if q < d

∞ if q ≥ d
then the imbedding W 1,q(Ω) ↪→

Ls(Ω) is compact.

• Friedrichs’ inequality. There exists a constant CF := CF (Ω, q) > 0
such that

∀ϕ ∈ W 1,q
0 (Ω) : ‖ϕ‖q,Ω ≤ CF‖∇ϕ‖q,Ω. (2.40)

• Korn’s inequality. There exists a constant CK := CK(Ω, q) > 0 such
that

∀ϕ ∈ W 1,q
0 (Ω;Rd) : ‖ϕ‖q,Ω ≤ CK‖Dϕ‖q,Ω. (2.41)

• Solution operator for divergence equation. For all q ∈ (1,∞) there
exists a bounded linear mapping BΩ : Lq0(Ω) → W 1,q

0 (Ω;Rd) (the so-
called Bogovskĭı operator) with the following properties:

div(BΩf) = f in Ω, ‖BΩf‖1,q,Ω ≤ CB‖f‖q,Ω, (2.42)

where CB := CB(Ω, q) > 0. We note that the operator BΩ is the same
for all q.

We shall simplify the notation of norms by dropping the symbol Ω where it
makes no confusion. The symbol C(. . .) > 0 will denote a generic constant
depending only on the indicated quantities, whose meaning can differ from
line to line.
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2.2.1 Model problem: steady Navier-Stokes equations

Let us demonstrate the main steps in the proof of existence and uniqueness
of weak solutions on the steady Navier-Stokes equations for incompressible
fluids with the no-slip boundary condition:

div v = 0 in Ω, (2.43a)

div(v ⊗ v)− µ∆v +
1

%
∇p = f in Ω, (2.43b)

v = 0 on ∂Ω. (2.43c)

For simplicity of notations we shall denote p := p/% to eliminate the density
from the system. The term µ∆v is used in (2.43b) since it is identical to
div(µDv) when (2.43a) holds. We also note that since there is only the
gradient of the pressure in (2.43), the pressure itself can be determined only
up to an additive constant. In what follows we mention the key steps of
the analysis, complete results may be found in the classical literature, e.g.
[20, 19, 48].

A priori estimate. The first step in the existence analysis is the estimate
of the energy. Formally, multiplying (2.43b) by v and integrating over Ω we
obtain after integration by parts1:

µ‖∇v‖2
2 − µ

∫

∂Ω

(∇v)n · v
︸ ︷︷ ︸

v=0

+

∫

Ω

div(v ⊗ v) · v
︸ ︷︷ ︸

=0

+

∫

∂Ω

p(v · n)

︸ ︷︷ ︸
v=0

−
∫

Ω

p div v

︸ ︷︷ ︸
div v=0

=

∫

Ω

f · v. (2.44)

The boundary integrals and the pressure disappear due to (2.43c) and (2.43a),
the convective term vanishes since

∫

Ω

div(v ⊗ v) · v =

∫

Ω

(div v)|v|2 +

∫

Ω

v · ∇|v|
2

2

=

∫

∂Ω

(v · n)
|v|2
2
−
∫

Ω

(div v)
|v|2
2

= 0. (2.45)

1More precisely, one has to use the Green theorem:
∫

Ω

f
∂g

∂xi
=

∫

∂Ω

fgni −
∫

Ω

∂f

∂xi
g.
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The right hand side of (2.44) is estimated using Hölder’s and Friedrichs’
inequality: ∫

Ω

f · v ≤ ‖f‖2‖v‖2 ≤ CF‖f‖2‖∇v‖2. (2.46)

Here CF = CF (Ω, 2) > 0 is the constant of the Friedrichs inequality (2.40).
Combining (2.44) and (2.46) then leads to the estimate of the velocity:

‖v‖1,2

CF
≤ ‖∇v‖2 ≤ CF

‖f‖2

µ
. (2.47)

In addition, if the equation (2.43b) is multiplied by Bp and integrated over
Ω, one obtains an estimate of the pressure:

‖p‖2 ≤ C(Ω, µ, ‖f‖2). (2.48)

Weak formulation. The weak formulation of the boundary-value problem
(2.43) is derived by formal multiplication of (2.43a) and (2.43b) by smooth
test functions ψ and ϕ, respectively, integrating over Ω and using the Green
theorem. The a priori estimates (2.47) and (2.48) give the information about
suitable function spaces for the velocity and the pressure. The weak formu-
lation of (2.43) then reads:

Velocity-pressure formulation

Find a pair of functions (v, p) ∈ W 1,2
0 (Ω;Rd) × L2

0(Ω) such
that
∫

Ω

µ∇v : ∇ϕ− v ⊗ v : ∇ϕ− p divϕ+ ψ div v =

∫

Ω

f ·ϕ

for every (ϕ, ψ) ∈ W 1,2
0 (Ω;Rd)× L2

0(Ω).





(2.49)

Here and in what follows, A : B :=
∑d

i,j=1[A]ij[B]ij denotes the scalar product
of second order tensors and [w⊗z]ij := wizj is the dyadic product of vectors.

Alternatively, one can restrict to divergence-free test functions ϕ, which
leads to an alternative definition without pressure:

Velocity formulation

Find v ∈ W 1,2
0,div(Ω) such that

∫

Ω

µ∇v : ∇ϕ− v ⊗ v : ∇ϕ =

∫

Ω

f ·ϕ

for all ϕ ∈ W 1,2
0,div(Ω).





(2.50)
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Problems (2.49) and (2.50) are in fact equivalent, since the pressure can
always be reconstructed from the velocity field, as a consequence of de Rham’s
theorem.

Existence by Galerkin’s method. In what follows we prove the following
proposition:

For any µ > 0 and f ∈ L2(Ω;Rd) there exists a solution to (2.50).

The Galerkin method can be characterized by the following steps:

• The function space from the weak formulation is approximated by a
sequence of nested finite dimensional subspaces, which leads in the
case of a steady problem to a system of nonlinear algebraic equations;

• The existence of a solution of the approximate problem is proved using
a variant of the Brouwer fixed-point theorem with help of the a priori
estimates;

• For increasing dimension of the finite dimensional spaces we obtain a
sequence of approximate solutions. Using the a priori estimates and
the reflexivity of the Lebesgue and Sobolev spaces, one can pass to a
weakly convergent subsequence. To show that the limit of this sequence
is a solution to (2.50), one has to pass to the limit in the integral
identities. Linear terms are treated with help of the weak convergence,
for the nonlinear convective term one has to use strong convergence of
solutions (which follows from the Rellich-Kondrachov theorem on the
compact imbedding).

In the case of classical Navier-Stokes system, the Galerkin method is usu-
ally applied to the problem (2.50) formulated only in the velocity. The reason
for avoiding the pressure is the saddle-point structure of the system (2.43)
where the pressure plays the role of a Lagrange multiplier to the incompress-
ibility constraint (2.43a). By eliminating the pressure one recovers the elliptic
(positive definite) or parabolic structure of the problem. However, in some
problems, such as the models with pressure-dependent viscosity, it is natural
to introduce the pressure from the very beginning. In that case, positive
definiteness is achieved by regularizing the incompressibility in (2.49).

Let {ϕi}∞i=1 be a basis of W 1,2
0,div(Ω). We denote V n := span{ϕ1, ...,ϕn}

the finite dimensional space spanned by the first n basis functions. For every
n ∈ N we define the following problem:
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Galerkin approximation

Find a function vn ∈ V n in the form vn :=
∑n

i=1 α
iϕi, which

satisfies

∫

Ω

µ∇vn : ∇ϕi − vn ⊗ vn : ∇ϕi =

∫

Ω

f ·ϕi,

for every i ∈ {1, ..., n}.





(2.51)

The identity (2.51) represents a set of n equations for the coefficients
α := (α1, ..., αn) ∈ Rn, which can be equivalently written as:

P (α) = 0, (2.52)

where P : Rn → Rn is a (nonlinear) function defined by

Pi(α) :=

∫

Ω

µ∇vn : ∇ϕi − vn ⊗ vn : ∇ϕi − f ·ϕi, i = 1, ..., n. (2.53)

If P is continuous and if there exists R > 0 such that

∀α ∈ Rn, |α| = R : P (α) ·α ≥ 0, (2.54)

then a variant of the Brouwer fixed point theorem states that (2.52) has at
least one solution. It is not difficult to see that P is continuous. Moreover,
from the a priori estimates presented above one can show that

P (α) ·α =

∫

Ω

µ|∇vn|2 − f · vn ≥ C1|α|2 − C2, (2.55)

where C1, C2 > 0 depend only on µ and ‖f‖2 (we note that |α| is equivalent
to ‖vn‖1,2). Hence (2.54) holds for R =

√
C2/C1. Consequently there exists

at least one vn satisfying (2.51).
Next we can take the sequence {vn}∞n=1, which is, due to the a priori esti-

mates, bounded in W 1,2
0,div(Ω). The reflexivity of this space implies that there

is a weakly convergent subsequence {vnk}∞k=1 and a function v ∈ W 1,2
0,div(Ω)

such that
vnk ⇀ v weakly in W 1,2

0,div(Ω) as k →∞.
In addition,

vnk → v strongly in L4(Ω;Rd), k →∞,
passing eventually to a subsequence, as follows from the Rellich-Kondrachov
theorem2. Consequently,

vnk ⊗ vnk → v ⊗ v strongly in L2(Ω).

2The Rellich-Kondrachov theorem states that W 1,2(Ω) is compactly embedded into
Lq(Ω), q ∈ [1, 2d/(d− 2)).
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The above convergence properties are sufficient to pass to the limit in (2.51)
and thus prove that v satisfies (2.50). We also have the estimate (2.47) for
any weak solution.

Uniqueness. We show first that the pressure is uniquely determined by
the velocity:

If (v, p1) and (v, p2) are two solutions to (2.49) then p1 = p2.

Indeed, from (2.49) we obtain:

∫

Ω

(p1 − p2) divϕ = 0 ∀ϕ ∈ W 1,2
0 (Ω;Rd).

Using ϕ := B(p1 − p2) gives

‖p1 − p2‖2
2 = 0.

Next we show that the velocity is unique under the assumption of ‘small
data’.

There exists a positive constant C = C(Ω) such that if ‖f‖2 ≤ Cµ2,
then the solution to (2.50) is unique.

Let us assume that v1 and v2 are two solutions of (2.50). We take the test
function ϕ = w := v1 − v2, subtract the resulting integral identities and
obtain:

µ‖∇w‖2
2 −

∫

Ω

(v1 ⊗ v1 − v2 ⊗ v2) : ∇w = 0. (2.56)

The second term is estimated in absolute value using the following rearrange-
ment:
∫

Ω

(v1⊗ v1− v2⊗ v2) : ∇w =

∫

Ω

v1⊗w : ∇w+

∫

Ω

w⊗ v2 : ∇w =: I1 + I2.

(2.57)
Indeed, with help of the Hölder inequality, the embedding W 1,2(Ω) ↪→ L4(Ω)
and the estimate (2.47) we obtain:

|I1| ≤ ‖v1‖4‖w‖4‖∇w‖2 ≤ CI4‖v1‖1,2‖∇w‖2
2 ≤ CI4C

2
F

‖f‖2

µ
‖∇w‖2

2. (2.58)
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An argument similar to (2.45) yields I2 = 0. Hence (2.56)–(2.58) yields:
(
µ− CI4C

2
F‖f‖2

µ

)
‖∇w‖2

2 ≤ 0,

which leads to the conclusion that w = 0, i.e. v1 = v2 provided that

‖f‖2 ≤
µ2

CI4C2
F

, (2.59)

i.e. if the forcing is sufficiently small with regard to the viscosity.

2.2.2 Generalizations

For generalizations and modifications of the problem (2.43), further refined
or specialized methods have to be used. We briefly comment on some of
them.

Non-Newtonian power-law models. The mathematical analysis can be
done for nonlinear models with shear dependent viscosity, i.e.

T = −pI + S, S = 2ν(|Dv|2)Dv.

If S has the following polynomial growth in Dv:

S ≈ (κ+ |Dv|2)
r−2

2 Dv, κ ∈ {0, 1}, r > 1 (2.60)

(we speak about power-law fluids), then one can apply the theory of mono-
tone operators and a variant of Lebesgue dominated convergence theorem to
pass to the limit in the term

∫
Ω
S : Dϕ. The key property is the inequality

S : Dv ≥
{
c|Dv|r if κ = 0 or r > 2,

c|Dv|2 if κ = 1 and r < 2,

which together with the Korn inequality (2.41) permits to obtain the a priori
bounds of the velocity and the pointwise or strong convergence of Dv.

For r > 2 the fluids are called shear thickening (viscosity increases with
increasing shear rate), for r < 2 shear thinning (viscosity decreases with
increasing shear rate), the case r = 2 reduces to Newtonian fluids. There is a
critical value r∗ = 3d/(d+2) such that v ∈ W 1,r∗(Ω;Rd) implies v⊗v : ∇v ∈
L1(Ω). If r ≥ r∗ then one can use the solution v as a test function and thus
prove the a priori estimates. In the so-called supercritical case r < r∗ one
has to apply more refined techniques (namely L∞ or Lipschitz truncation)
to overcome this difficulty, see [17, 18].



18 CHAPTER 2. MATHEMATICAL FLUID MECHANICS

Non-Newtonian piezoviscous models. For fluids with shear-rate- and
pressure-dependent viscosity, also called piezoviscous fluids, the analysis can
be done under more restrictive assumptions:

d∑

i,j,k,l=1

∂Sij(p,D)

∂Dkl

AijAkl ≈ (1 + |D|2)
r−2

2 |A|2 ∀A ∈ Rd×d, (2.61a)

∣∣∣∣
∂S(p,D)

∂p

∣∣∣∣ ≤ γ0(1 + |D|2)
r−2

4 (2.61b)

with r ∈ (1, 2) and sufficiently small γ0 > 0, i.e. the fluid must be shear-
thinning and slightly pressure-thickening, see Figure 2.1.

|p|

ν

ν(p, |D3|2)

ν(p, |D2|2)

ν(p, |D1|2)

|D1| < |D2| < |D3|

Figure 2.1: Example of viscosity-pressure relation for different fixed values
of shear-rate.

In this model the meanvalue of the pressure
∫

Ω
p is one of input parame-

ters, since it influences the viscosity and consequently also the velocity field.
Hence instead of Lq0(Ω) we use the space Lq(Ω) for the pressure. Also the
pressure cannot be eliminated from the system by restricting onto divergence-
free spaces and thus one has to incorporate it to the approximate systems
from the beginning, taking e.g. the regularized continuity equation

−ε|p|αp+ div v = 0

for certain power α and regularization parameter ε > 0 and making an ex-
tra limit passage for ε → 0+. Since the viscosity is a nonlinear function of
the pressure, the limit passages in approximate schemes also require strong
convergence of the pressure. This is possible due to the special growth con-
ditions (2.61). We refer to [33, 16, 11] for overview of recent results in this
field.
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Boundary conditions. In practice, the homogeneous Dirichlet boundary
condition is not satisfactory. Indeed, considering a domain with walls, inflow
and outflow, a combination of several boundary conditions has to be used.
This requires also some modifications in the existence analysis. We comment
on a selection of frequently used conditions:

• At inflow, usualy non-homogeneous Dirichlet condition

v = vin

is used. Since the velocity then does not vanish on the boundary, the
weak formulation has to be modified. The estimate of the convective
term also relies on a suitable extension of vin to Ω satisfying

∀ϕ ∈ W 1,2
0,div(Ω) :

∫

Ω

ϕ⊗ϕ : ∇vin ≤
µ

2
‖∇ϕ‖2

2.

• Solid walls permitting slippage are modeled mostly by the Navier con-
dition. In the estimates of the velocity one has to use a modified
Friedrichs’ or Korn’s inequality which takes into account only vanishing
normal component of functions.

• Friction-type boundary conditions such as (2.31) are used for surfaces
to which the fluid adheres provided the shear stress is below some
threshold. This leads to a non-smooth problem that can be formulated
as a variational inequality with the incompressibility constraint.

• For outflow boundary conditions of the type (2.33) one needs a modified
Bogovskĭı operator B̃Ω : Lq(Ω) → W 1,q

ΓO
(Ω;Rd), where W 1,q

ΓO
(Ω;Rd) :=

{ϕ ∈ W 1,q(Ω); ϕ = 0 on ∂Ω \ ΓO} and ΓO is the outflow part of the
boundary. As a consequence of this condition, the pressure is com-
pletely determined by the velocity. An open question related to the
do-nothing outflow condition (2.33) is the estimate of the convective
term. When using the solution as a test function, one obtains after
integrating by parts:

∫

Ω

div(v ⊗ v) · v =
1

2

∫

ΓO

|v|2(v · n).

This term does not vanish and is impossible to estimate unless the
velocity is known a priori to be sufficiently small. Hence, for Navier-
Stokes equations one has to consider a modified condition such as (2.34)
or (2.35) that compensates the influence of the convection at outflow.
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2.3 Finite element approximation

We shall describe the spatial discretization of steady Navier-Stokes equations
by means of the finite element method. In contrast to the analysis of the
continuous problem, one is usually interested in the mixed (velocity-pressure)
formulation (2.49). The reason is twofold: First, in the majority of situa-
tions people are interested in obtaining the pressure, not only the velocity.
Second, the velocity-based formulation brings difficulty in discretizing the
incompressibility constraint.

Let Th be a triangulation of Ω, i.e. non-overlapping partition into d-
dimensional simplices, and h be the norm (diameter of largest element) of
Th. We shall consider finite-dimensional spaces Wh ⊂ W 1,2

0 (Ω;Rd) and Lh ⊂
L2

0(Ω) built on top of Th. In the discretization of Navier-Stokes equations
one has to take into account for the following issues:

• In order to get stable approximation of the pressure, the finite element
spaces Wh and Lh must satisfy the discrete inf-sup condition:

inf
ψh∈Lh
ψh 6=0

sup
ϕh∈Wh
ϕh 6=0

∫
Ω
ψh divϕh

‖ψh‖2‖ϕh‖1,2

≥ CBB (2.62)

where CBB := CBB(Ω) > 0 is a constant independent of h. Such
property holds e.g. for the Taylor-Hood finite elements:

Wh := (Pk+1(Th))d ∩W 1,2
0 (Ω;Rd), Lh := Pk(Th) ∩ L2

0(Ω), k ≥ 1,

where Pk(Th) denotes the set of piecewise polynomials on the elements
of Th with degree up to k and continuous in Ω.

• To retain the uniform estimates of discrete solutions, the discretization
of the convective term should obey the skew-symmetry. In particular,
in (2.49) the form

c(u,w, z) :=

∫

Ω

w ⊗ u : ∇z

is used which is skew-symmetric in the following sense:

c(u,w, z) = −c(u, z,w) ∀u ∈ W 1,2
0,div(Ω),w, z ∈ W 1,2(Ω;Rd).

In the approximate schemes the functions will not be divergence-free
and thus c will be replaced by

ch(u,w, z) :=
1

2
(c(u,w, z)− c(u, z,w)) ,
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which satisfies:

ch(u,w, z) = −ch(u, z,w) ∀u,w, z ∈ W 1,2(Ω;Rd).

In addition, for u ∈ W 1,2
0,div(Ω), w, z ∈ W 1,2(Ω;Rd) it holds:

ch(u,w, z) = c(u,w, z).

Let us introduce the following forms:

a(u,w) := µ

∫

Ω

∇u : ∇w, b(q,w) :=

∫

Ω

q divw, l(w) :=

∫

Ω

f ·w.

Replacing W 1,2
0 (Ω;Rd) by Wh, L

2
0(Ω) by Lh and c by ch in (2.49) we formally

arrive at the discrete problem:

Finite-element approximation

Find (vh, ph) ∈ Wh × Lh such that

a(vh,ϕh)− b(ph,ϕh) + b(ψh,vh)− ch(vh,vh,ϕh) = l(ϕh)

for every (ϕh, ψh) ∈ Wh × Lh.





(2.63)

In the following subsections we comment on the well-posedness, convergence
properties and numerical solution of (2.63).

2.3.1 Numerical analysis

The existence and convergence analysis for the discrete problem (2.63) mim-
icks in many aspects the Galerkin method for the original problem (2.50).
Here we however use spaces that are not necessarily nested, hence an addi-
tional condition on the density of the finite-element spaces will be imposed.
In addition to the existence and convergence result, it is also important to
estimate the error between the discrete and exact solutions to (2.50).

Existence of discrete solutions. Restricting the problem (2.63) to test
functions ϕh with zero discrete divergence, i.e.

∀ψh ∈ Lh : b(ψh,ϕh) = 0,

we eliminate ph and obtain a system of nonlinear algebraic equations for vh
similar to (2.53). With help of the Brouwer theorem and uniform estimates it
can be shown that this system has a solution. The existence of the discrete
pressure ph such that the pair (vh, ph) is a solution to (2.63) then follows
from the closed range theorem.
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Uniform estimates and convergence. Let us consider a sequence of
triangulations {Th}h→0+ and spaces {(Wh, Lh)}h→0+ satisfying the discrete
inf-sup condition (2.62) and the approximation property:

For every pair (ϕ, ψ) ∈ W 1,2
0 (Ω;Rd) × L2

0(Ω) there exists an ap-
proximating sequence {(ϕh, ψh)}h→0+, ϕh ∈ Wh, ψh ∈ Lh, such
that

ϕh → ϕ in W 1,2(Ω;Rd) and ψh → ψ in L2
0(Ω), h→ 0 + .





(2.64)

We note that the approximation property (2.64) is satisfied e.g. when the
sequence {Th}h→0+ is uniformly regular, i.e. if the minimal interior angles of
all triangles in Th are bounded from below uniformly with respect to h→ 0+.

Now we are going to estimate the discrete solutions (vh, ph) uniformly
with respect to h→ 0+. Using the test functions ϕh := vh and ψh := ph in
(2.63) we obtain after the same manipulations, similarly as in Section 2.2.1,
the uniform bound

‖vh‖1,2

CF
≤ ‖∇vh‖2 ≤ CF

‖f‖2

µ
. (2.65)

The estimate of the pressure follows from the discrete inf-sup condition (2.62):

‖ph‖2 ≤
1

CBB
sup
ϕh∈Wh
ϕh 6=0

b(ph,ϕh)

‖ϕh‖1,2

=
1

CBB
sup
ϕh∈Wh
ϕh 6=0

a(vh,ϕh)− ch(vh,vh,ϕh)− l(ϕh)
‖ϕh‖1,2

≤ C(Ω, µ, ‖f‖2), (2.66)

with C(Ω, µ, ‖f‖2) > 0 independent of h.
Having the uniform estimates (2.65), (2.66) at our disposal, we can deduce

that there is a pair (v̂, p̂) ∈ W 1,2
0 (Ω;Rd)×L2

0(Ω) and a subsequence {hk}∞k=1,
hk → 0+ as k →∞, such that

vhk ⇀ v̂ (weakly) in W 1,2(Ω;Rd), (2.67)

vhk → v̂ (strongly) in L4(Ω;Rd), (2.68)

phk ⇀ p̂ (weakly) in L2
0(Ω), k →∞. (2.69)

This is enough to pass to the limit in (2.63) and from the approximation
property (2.64) it follows that v̂ = v and p̂ = p, where (v, p) is a solution to
(2.49).
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Uniqueness and rate of convergence. The uniqueness of the discrete
solutions {(vh, ph)} holds under the same assumptions as in the case of the
continuous problem, i.e. pressure is uniquely determined by velocity and
velocity is unique under the assumption (2.59) of “small data”. Moreover, a
slightly more strict assumption guarantees the best approximation property
(known as the Céa lemma):

Let

‖f‖2 <
µ2

2C2
I4CF

. (2.70)

Then there is a constant C = C(Ω, µ, ‖f‖2) > 0 independent of h→ 0+
such that

‖v − vh‖1,2 + ‖p− ph‖2 ≤ C inf
ϕh∈Wh
ψh∈Lh

(‖v −ϕh‖1,2 + ‖p− ψh‖2) . (2.71)

The proof of this statement relies on the estimation of the difference

|ch(v,v,ϕh − vh)− ch(vh,vh,ϕh − vh)|
≤ C(Ω, µ, ‖f‖2)‖∇(v − vh)‖2‖∇(v −ϕh)‖2 + ε‖∇(v − vh)‖2

2

with certain sufficiently small ε > 0. This is true under the smallness condi-
tion (2.70)

The inequality (2.71) leads together with interpolation estimates in Sobolev
spaces to an explicit rate of the error norms:

‖v − vh‖1,2 ≤ Chr, ‖p− ph‖2 ≤ Chs,

where C = C(Ω, µ, ‖f‖2) > 0, and r, s > 0 depend on the degree of polyno-
mials contained in the finite element spaces Wh, Lh and on the regularity of
v and p.

2.3.2 Computation

Let {ϕ1, . . . ,ϕN} and {ψ1, . . . , ψM} be the basis of Wh, Lh, respectively. We
represent the discrete solution in terms of vectors of coefficients V , P :

vh :=
N∑

j=1

Vjϕ
j, ph :=

M∑

j=1

Pjψ
j.
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Then the discrete problem (2.63) has an equivalent algebraic form:

[
A + C(V ) B>

B O

] [
V
P

]
=

[
F
0

]
,

where A ∈ RN×N , B ∈ RM×N , C : RN → RN×N and F ∈ RN are defined as
follows:

[A]ij := a(ϕj,ϕi), [B]ij := b(ψj,ϕi),

[C(V )]ij := ch(vh,ϕ
j,ϕi), [F ]i := l(ϕi).

This system of nonlinear equations is usually linearized either by Picard or
Newton iterations. Their convergence is in case of Navier-Stokes equations
guaranteed for small data, i.e. large viscosity. In both cases we arrive at the
linearized system with saddle-point structure:

[
Ã B>
B O

] [
Ṽ

P̃

]
=

[
F̃
0

]
. (2.72)

The matrix Ã and the vector F̃ are in general different for each iteration.
The matrix of the system (2.72) is indefinite and nonsymmetric. For the
numerical solution one can use e.g. a general method such as sparse LU
decomposition [13, 2] or GMRES [40] with a suitable preconditioner.

We note that the finite element solution of Navier-Stokes and related
equations is to some extent also possible for large data (=small viscosity).
However in that case it is necessary to consider a stabilization or a turbulence
model that produces an artificial turbulent viscosity. We refer to [15, 39, 8]
for more details on stabilization.



Chapter 3

Shape Optimization in Fluid
Mechanics

In many real-world applications one is facing the problem of designing the
shape of a device which interacts with a fluid (car body, airplane wing, tur-
bine, to name a few examples). In order to meet certain requirements (e.g.
reduce drag or energy losses) it is important to know how the shape of the de-
vice affects the flow properties. The process of designing a suitable shape can
be formulated as a mathematical optimization problem. Successfull solving
this problem can significantly simplify the process by suggesting or excluding
certain designs.

In this chapter we aim to present the main ideas of shape optimization in
a model setting considering the Navier-Stokes equations as the flow problem.

3.1 Formulation of optimization problems

Let us consider a set O of admissible domains in which a fluid can flow. We
shall study the problem of minimizing the value of a function, which depends
on the domain through the solution of the so-called state problem, which in
our case will be the Navier-Stokes equations: For every admissible domain
Ω ∈ O we solve:

div vΩ = 0, div(vΩ ⊗ vΩ)− µ∆vΩ +∇pΩ = f in Ω,

vΩ = 0 on ∂Ω.

}
(P(Ω))

Here µ > 0 and f ∈ L2(Rd;Rd) are assumed to be independent of Ω. The cost
function to be minimized will be denoted J and we assume that it depends
on Ω as well as on vΩ and pΩ. For example, one can take one of the following

25
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cost functions:

J(Ω,vΩ, pΩ) :=





∫

∂Ω

(−pΩ + 2µDvΩ)n · t, t ∈ Rd (drag functional),
∫

Ω

|∇vΩ|2 (energy functional),
∫

Ω0

|vΩ − vopt|2, vopt ∈ L2(Ω0) (least-squares type f.).

(3.1)
In fluid mechanics, the solutions to the state problem are often not unique,
as is the case of (P(Ω)). For this reason we shall define the admissible set

A := {(Ω,vΩ, pΩ); Ω ∈ O, (vΩ, pΩ) is a solution of (Pw(Ω))},

where (Pw(Ω)) is the weak formulation of (P(Ω)):

Find (vΩ, pΩ) ∈ W 1,2
0 (Ω;Rd)× L2

0(Ω) such that

∫

Ω

(µ∇vΩ − vΩ ⊗ vΩ) : ∇ϕ− pΩ divϕ+ ψ div vΩ =

∫

Ω

f ·ϕ

for all (ϕ, ψ) ∈ W 1,2
0 (Ω;Rd)× L2

0(Ω).





(Pw(Ω))

The shape optimization problem then reads:

Find (Ω∗,v∗, p∗) ∈ A such that

J(Ω∗,v∗, p∗) = min
(Ω,vΩ,pΩ)∈A

J(Ω,vΩ, pΩ).



 (P)

In what follows we shall address the following questions:

• Under what assumptions does the problem (P) have a solution?

• Can (P) be approximated by a sequence of finite dimensional optimiza-
tion problems whose solutions converge to a solution of (P)?

• Is the cost function J differentiable? How can one compute its gradient?

3.2 Existence of optimal design

Assuming that for every Ω ∈ O the state problem (Pw(Ω)) has at least
one solution, we are interested in establishing the sufficient conditions under
which the function J has a minimizer, i.e. an optimal shape Ω∗ with a
corresponding solution (vΩ∗ , pΩ∗) of (Pw(Ω∗)).
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The classical way of proving the existence of a minimizers is based on the
Bolzano-Weierstrass theorem, i.e. a continuous function on a compact set
attains its minimum. In this respect, one has to introduce:

• convergence of domains Ωn
O→ Ω, where Ωn,Ω ∈ O, n ∈ N;

• convergence of functions (ϕn, ψn) (ϕ, ψ), where (ϕn, ψn) ∈ W 1,2
0 (Ωn;Rd)×

L2
0(Ω), n ∈ N, (ϕ, ψ) ∈ W 1,2(Ω;Rd)× L2

0(Ω) and Ωn
O→ Ω

in such a way that the following assumptions are satisfied:

(A1) O is compact with respect to the convergence “
O→”;

(A2) Solutions to (Pw(Ω)) are bounded independently of Ω ∈ O;

(A3) A is closed, i.e. if Ωn
O→ Ω and (vΩn , pΩn) are solutions to (Pw(Ωn)),

n ∈ N, such that (vΩn , pΩn)  (v, p), then (v, p) is a solution to
(Pw(Ω));

(A4) J is lower semicontinuous in the following sense:

Ωn
O→ Ω

(ϕn, ψn) (ϕ, ψ)

}
⇒ lim inf

n→∞
J(Ωn,ϕn, ψn) ≥ J(Ω,ϕ, ψ).

The existence result is then an easy consequence:

Let (A1)-(A4) be satisfied. Then (P) has a solution.

Indeed, let us take a sequence {(Ωn,vn, pn)} ⊂ A minimizing J . (A1) im-
plies that there is a subsequence (denoted by the same symbol) and a domain

Ω ∈ O such that Ωn
O→ Ω. Next, since by (A2) the sequence {(vn, pn)}∞n=1

is bounded, there is another subsequence (denoted by the same symbol) and
a pair (v, p) such that (vn, pn)  (v, p). From (A3) we get that (v, p) is a
solution to (Pw(Ω)). Finally, (A4) implies that

J(Ω,v, p) ≤ lim inf
n→∞

J(Ωn,vn, pn),

which means that (Ω,v, p) is an optimal triplet for (P).
In the following subsections we address the issue of proper definitions of

convergence of domains and functions such that (A1)-(A4) hold true.
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Ω(α)

x1

x2

α(x1)

Γ0

Γ0

Γ0

Γ(α)

Ω̂

Figure 3.1: Admissible domain Ω(α) and hold-all domain Ω̂.

3.2.1 Convergence of domains

In many practical problems, shape optimization involves improving just a
part of the boundary of Ω. Then it is usually reasonable to describe the part
to be optimized as a graph of a function. In our model setting, we shall
restrict for simplicity of presentation to the 2D case where every admissible
domain will be of the form

Ω(α) :=
{
x ∈ R2; x1 ∈ (0, 1), x2 ∈ (0, α(x1))

}
.

Its boundary is decomposed as follows:

∂Ω(α) = Γ0 ∪ Γ(α), Γ(α) := {(x1, α(x1)); x1 ∈ (0, 1)},

see Figure 3.1. The set O is then represented by a set of functions Uad := {α :
[0, 1] → R; Ω(α) ∈ O}. Hence we can define the convergence of domains
via convergence of the corresponding functions in Uad. Let Uad consist of
functions which are bounded together with their derivatives up to order k+1,
k ∈ {0, 1, . . .}:

Uad :=

{
α : [0, 1]→ R; ∀x1 ∈ [0, 1], l ∈ {1, . . . , k + 1} :

αmin ≤ α(x1) ≤ αmax, |α(l)(x1)| ≤ Cl

}
.
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The constants αmin, αmax, C1, . . . , Ck+1 > 0 are assumed to be such that
Uad 6= ∅. Then the convergence of domains in O can be introduced as follows:

Ω(αn)
O→ Ω(α) if and only if αn → α in Ck([0, 1]), n→∞. (3.2)

The Arzelà-Ascoli theorem implies that Uad is compact with respect to con-
vergence in Ck([0, 1]). Consequently,

O is compact with respect to the convergence (3.2).

3.2.2 Extension of functions and uniform bounds

For the convergence of functions which are defined in different domains of
definition we shall need:

• a hold-all domain Ω̂ such that Ω ⊂ Ω̂ for every Ω ∈ O;

• linear extension operators EΩ : X(Ω)→ W 1,2(Ω̂;Rd) whose norms are
independent of Ω ∈ O, i.e. such that

(EΩϕ)|Ω = ϕ,

‖EΩϕ‖1,2,Ω̂ ≤ CE‖ϕ‖1,2,Ω

for all Ω ∈ O and ϕ ∈ X(Ω).

Here X(Ω) is the space where the velocity lives and CE > 0 is independent of
Ω ∈ O. In the case of (Pw(Ω)) we have X(Ω) := W 1,2

0 (Ω;Rd). The extension
operators EΩ must in addition satisfy the Mosco conditions :

(M1) If Ωn
O→ Ω and EΩnϕn ⇀ ϕ̂ (weakly) in W 1,2(Ω̂;Rd), where ϕn ∈

X(Ωn), then ϕ̂|Ω ∈ X(Ω);

(M2) If Ωn
O→ Ω and ϕ ∈ X(Ω) then there exists a sequence {ϕn}∞n=1,

ϕn ∈ X(Ωn) such that EΩnϕn → EΩϕ (strongly) in W 1,2(Ω̂).

The choice of EΩ depends on the boundary condition which is prescribed
on Γ(α). In the case of homogeneous Dirichlet condition we use the zero

extension to Ω̂:

(EΩϕ)(x) = ϕ̃ :=

{
ϕ(x) if x ∈ Ω,

0 if x ∈ Ω̂ \ Ω.
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Clearly, for ϕ ∈ W 1,2
0 (Ω;Rd) we have ϕ̃ ∈ W 1,2

0 (Ω̂;Rd) and ‖ϕ̃‖1,2,Ω̂ =
‖ϕ‖1,2,Ω. The conditions (M1)-(M2) are satisfied due to density of compactly
supported functions in W 1,2

0 (Ω;Rd). For other types of boundary conditions
on Γ(α) such as Navier’s condition, the choice of suitable convergence in O
and extension operators is more delicate. For the pressure it is reasonable
to take the zero extension so that properties analogous to (M1)-(M2) are
satisfied.

Using the extension operator and the characteristic function

χΩ :=

{
1 in Ω,

0 elsewhere,

we rewrite (Pw(Ω)) equivalently using the fixed domain Ω̂:

Find (vΩ, pΩ) ∈ W 1,2
0 (Ω;Rd)× L2

0(Ω) such that

∫

Ω̂

χΩ (µ∇EΩvΩ − EΩvΩ ⊗ EΩvΩ) : ∇EΩϕ

−p̃Ω div(EΩϕ) + ψ̃ div(EΩvΩ) =

∫

Ω̂

χΩf · EΩϕ

for all (ϕ, ψ) ∈ W 1,2
0 (Ω)× L2

0(Ω).





(P̂w(Ω))

Following the steps from Section 2.2.1, we take (ϕ, ψ) := (vΩ, pΩ) in (P̂w(Ω))
in order to obtain the uniform estimate of v. However, to ensure that the re-
sulting upper bound is independent of Ω, one has to use Friedrichs’ inequality
in Ω̂. It is feasible since EΩvΩ ∈ W 1,2

0 (Ω̂), so that

µ‖∇(EΩvΩ)‖2
2,Ω̂

=

∫

Ω̂

f · EΩvΩ ≤ ‖f‖2,Ω̂‖EΩvΩ‖2,Ω̂

≤ CF‖f‖2,Ω̂‖∇(EΩvΩ)‖2,Ω̂,

where CF := CF (Ω̂, 2) > 0 is independent of Ω ∈ O.
The uniform estimate of the pressure holds provided that the norm of

the Bogovskĭı operator BΩ is bounded independently of Ω ∈ O. This can
be proved for example if the admissible domains are uniformly star-shaped
or uniformly Lipschitz (see [19, 9]), which is our case. In summary, we have
proved:

There exists a constant C > 0 such that

∀(Ω,vΩ, pΩ) ∈ A : ‖EΩ∇vΩ‖2,Ω̂ + ‖p̃Ω‖2,Ω̂ ≤ C. (3.3)
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3.2.3 Convergence of functions and closedness of ad-
missible set

Let Ωn
O→ Ω. We define the convergence of a sequence {(ϕn, ψn)}∞n=1, where

(ϕn, ψn) ∈ W 1,2
0 (Ωn;Rd)×L2

0(Ωn), n ∈ N, to the pair (ϕ, ψ) ∈ W 1,2
0 (Ω;Rd)×

L2
0(Ω) as follows:

(ϕn, ψn) (ϕ, ψ) if and only if

{
EΩnϕn ⇀ EΩϕ in W 1,2(Ω̂;Rd),

ψ̃n ⇀ ψ̃ in L2
0(Ω̂).

(3.4)

The estimate (3.3) implies that from any sequence {(vn, pn)}∞n=1, where
(vn, pn) is a solution to (Pw(Ωn)), n ∈ N, one can extract a subsequence
(denoted by the same symbol) such that

(EΩnvn, p̃n) ⇀ (v̂, p̂) in W 1,2(Ω̂;Rd)× L2
0(Ω̂).

Then by (M1), we obtain that (vn, pn) (v, p) := (v̂|Ω, p̂|Ω).
Now let us consider an arbitrary sequence {(Ωn,vn, pn)} ⊂ A such that

Ωn
O→ Ω, (vn, pn) (v, p) and a pair of test functions (ϕ, ψ) ∈ W 1,2

0 (Ω;Rd)×
L2

0(Ω) in (P̂w(Ω)). Thanks to (M2) and the density of compactly supported

functions in L2
0(Ω̂), we can take approximating sequences {ϕn}∞n=1, {ψn}∞n=1

so that (P̂w(Ωn)) becomes:

∫

Ω̂

χΩn (µ∇(EΩnvn)− (EΩnvn)⊗ (EΩnvn)) : ∇(EΩnϕn)

− p̃n div(EΩnϕn) + ψ̃n div(EΩnvn) =

∫

Ω̂

χΩnf · EΩnϕn.

Since Ωn
O→ Ω, the characteristic functions satisfy χΩn → χΩ in Lq(Ω) for

any q ∈ [1,∞). Passing to the limit n → ∞, using the weak and strong
convergence of {(vn, pn)} and {(ϕn, ψn)}, respectively, we obtain:

∫

Ω̂

χΩ (µ∇(EΩv)− (EΩv)⊗ (EΩv)) : ∇(EΩϕ)− p̃ div(EΩϕ)

+ ψ̃ div(EΩv) =

∫

Ω̂

χΩf · EΩϕ,

which implies that (v, p) is a solution to (P̂w(Ω)). This completes the proof
of (A3).

Finally, since all 3 examples of cost functions from (3.1) are lower semi-

continuous with respect to the weak convergence in W 1,2(Ω̂;Rd) × L2(Ω̂),
(A4) is satisfied.
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Figure 3.2: Approximation of the boundary of Ω(α): Discrete design domain
Ω(sκ) (left) and discrete computational domain Ω(rhsκ) with its triangula-
tion Th(sκ) (right).

3.3 Numerical analysis and computation

We are going to describe the approximation of the shape optimization prob-
lem (P). This involves discretization of domains as well as of the state prob-
lem. It is usually not difficult to prove that the discrete shape optimization
problem has a solution without any additional assumptions. The result for
convergence of discrete optimal solutions is however quite weak due to the
fact that (P) is in general a non-convex optimization problem.

3.3.1 Discrete shape optimization problem

Every admissible domain Ω(α) will be approximated by a discrete design
domain Ω(sκ), where sκ is a function parameterized by n := n(κ) degrees
of freedom. We require that n(κ) → ∞ as κ → 0+ and that every α ∈ Uad
can be approximated by a sequence {sκ}κ→0+ in Ck([0, 1]). One can consider
for instance piecewise Bézier functions such as in Figure 3.2. There, the

degrees of freedom are the vertical positions of points Ai− 1
2

=
(
i− 1

2

n
, αi

)
,

i = 0, ..., n + 1. For example, if Uad consists of functions with bounded
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derivatives (k = 0), then the set of discrete design domains is represented by

Un :=

{
α ∈ Rn+2; αmin ≤ αi ≤ αmax, i = 0, ..., n+ 1;

|αi+1 − αi|
κ

≤ C1, i = 0, ..., n

}
,

i.e. the constraints on the derivatives of α are replaced by constraints
on differences of the piecewise linear function given by the control points
{Ai− 1

2
}n+1
i=0 . With every α ∈ Un we associate the function sκ := sκ(α), so

that the discrete admissible set is

Uκ
ad := {sκ(α); α ∈ Un(κ)}.

Next we turn to the discretization of the state problem. We consider the
finite element approximation of (P(Ω)). For this reason we need to replace
the discrete design domain Ω(sκ) by its piecewise polygonal approximation
Ω(rhsκ), where h is a mesh discretization parameter such that h → 0+
whenever κ → 0+ and rh is a piecewise linear interpolation operator, see
Figure 3.2. For every discrete computational domain Ω(rhsκ) we construct a
triangulation Th(sκ) with the norm h. The finite element approximation of
(P(rhsκ)), as described in Section 2.3, will be denoted by (Ph(rhsκ)). Let us
define the set

Aκh := {(sκ,vh, ph); sκ ∈ Uκ
ad, (vh, ph) is a solution to (Ph(rhsκ))}.

Then the discrete shape optimization problem reads:

Find (s∗κ,v
∗
h, p
∗
h) ∈ Aκh such that

J(s∗κ,v
∗
h, p
∗
h) = min

(sκ ,vh,ph)∈Aκh

J(sκ,vh, ph).



 (Pκh)

3.3.2 Existence and convergence of discrete optimal
shapes

In order to establish the existence and convergence results, we have to impose
additional assumptions on the family of triangulations {Th(sκ)}, h,κ → 0+,
which are listed below.

We will suppose that, for any h,κ > 0 fixed, the system {Th(sκ)}, sκ ∈
Uκ
ad consists of topologically equivalent triangulations, meaning that

(T1) the triangulation Th(sκ) has the same number of nodes and the nodes
still have the same neighbours for any sκ ∈ Uκ

ad;
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(T2) the positions of the nodes of Th(sκ) depend solely and continuously on
variations of the design nodes {Ai− 1

2
}n+1
i=0 .

For h,κ → 0+ we suppose that

(T3) the family {Th(sκ)} is uniformly regular with respect to h,κ and sκ ∈
Uκ
ad: there is θ0 > 0 such that θ(h, sκ) ≥ θ0, ∀h,κ > 0, ∀sκ ∈ Uκ

ad,
where θ(h, sκ) is the minimal interior angle of all triangles from Th(sκ).

Due to (T1), one can easily show that (Pκh) leads to the following non-
linear programming problem:

min
(α,q(α))∈Un×Rm

J (α, q(α)) subject to R(α, q(α)) = 0, (Pn)

where J , R, q(α) is the algebraic representation of J , (Ph(rhsκ)) and
(vh, ph), respectively. It also follows that m = N + M , where N , M is the
number of degrees of freedom for the velocity and the pressure, respectively.

Using the a priori estimates and limit passage similar as in Section 2.3, one
can prove the following continuity of the control-to-state mapping α 7→ q(α):

Let αl → α, l → ∞, where αl,α ∈ Un, and let q(αl) ∈ Rm satisfy
R(αl, q(αl)) = 0. Then there exists a q(α) ∈ Rm and a subsequence
(denoted by the same symbol) such that

q(αl)→ q(α), l→∞

and R(α, q(α)) = 0.

Since Un is compact, we immediately obtain the existence of a discrete
optimal shape.

Problem (Pn) (and equivalently (Pκh)) has a solution.

As far as convergence is considered, it is possible to show two kinds
of result. Firstly, for κ, h → 0+ solutions to the discrete state problems
(Ph(rhsκ)) converge (passing eventually to a subsequence) to a solution of

(Pw(Ω)), provided that Ω(sκ)
O→ Ω(α):
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For every sequence {(sκ,vh, ph)}κ,h→0+, (sκ,vh, ph) ∈ Aκh such that

Ω(rhsκ)
O→ Ω(α) there is a triplet (α, v̂, p̂) and a subsequence (denoted by

the same symbol) such that

EΩ(rhsκ)vh ⇀ v̂ in W 1,2(Ω̂;Rd),

p̃h ⇀ p̂ in L2
0(Ω̂), κ, h→ 0+

and, in addition, (α, v̂|Ω(α), p̂|Ω(α)) ∈ A. If the solution of (Pw(Ω)) is
unique then the whole sequence converges in the sense mentioned above.

The second convergence result ensures that optimal solutions to (Pκh)
converge (modulo subsequence) to the optimal solution of (P), however under
quite strong assumptions of uniqueness of states and continuity of J :

Let the solutions to (Pw(Ω)) be unique for every α ∈ Uad and J be con-
tinuous. Then for every sequence {(s∗κ,v∗h, p∗h)}κ,h→0+ of optimal triplets
of (Pκh), κ, h→ 0+ there is a subsequence (denoted by the same symbol)
such that

Ω(rhs
∗
κ)
O→ Ω(α∗),

EΩ(rhs∗κ)v
∗
h ⇀ v̂∗ in W 1,2(Ω̂),

p̃∗h ⇀ p̂∗ in L2
0(Ω̂), κ, h→ 0+,





(3.5)

where (α∗,v∗|Ω(α∗), p
∗
|Ω(α∗)) is an optimal triplet for (P). In addition, any

accumulation point of the sequence in the sense (3.5) possesses this prop-
erty.

3.3.3 Computation: gradient-based optimization and
differentiation of cost function

The discrete shape optimization problem (Pn) is a mathematical program-
ming problem that can be solved using standard optimization algorithms.
Its characteristic property is that the evaluation of the cost function is usu-
ally far more time consuming (it requires to solve the state problem) than
one step of the optimization algorithm. Depending on application, one may
consider in principle two kinds of algorithms:
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• Global optimization: The algorithms try to find the true minimizer,
however at a high computational cost (usually, thousands of evalu-
ations of the cost function are necessary). On the other hand, some
evaluations can be done in parallel. This is reasonable often when there
is no natural preference or starting point for the optimization process.

• Local (gradient-based) optimization: Here one tries to find a local min-
imum using true or approximate gradient (or eventually hessian). This
approach requires significantly less evaluations, however the solution is
only a local improvement of an initial guess that has to be provided.
The gradient has to be either computed using quite sophisticated meth-
ods (solution of adjoint equation, differentiation of the algebraic system
with respect to coordinates of mesh nodes) or approximated by differ-
ence quotients (inaccurate, time consuming). This is reasonable when
the optimal solution is presumed to be a minor improvement of an
initial design.

In what follows we shall comment on the gradient based approach. The
evaluation of the cost function is done by the following chain:

α 7→ q(α) 7→ J(α) := J (α, q(α)).

For simplicity we assume that the first mapping is single valued, i.e. the
solver of the state problem

R(α, q(α)) = 0 (3.6)

gives a unique solution. Differentiating (3.6) with respect to α we get:

∂R

∂α
+
∂R

∂q
∇αq = 0, i.e. ∇αq = −

(
∂R

∂q

)−1
∂R

∂α
. (3.7)

Then the gradient of J can be expressed as follows:

∇J =
∂J

∂α
+ (∇αq)>

∂J

∂q

(3.7)
=

∂J

∂α
−
(
∂R

∂α

)>(
∂R

∂q

)−>
∂J

∂q

=
∂J

∂α
−
(
∂R

∂α

)>
p(α),

(3.8)

where the adjoint state p(α) is the solution of the linearized problem

(
∂R

∂q

)>
p(α) =

∂J

∂q
. (3.9)
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Hence, for evaluation of ∇J one has to solve the adjoint equation (3.9),
express the derivatives ∂J/∂α, ∂R/∂α and use (3.8). Computation of the
partial derivatives with respect to α is an elaborate and error-prone task. It
is done either using algebraic sensitivity analysis or can be simplified with the
aid of the automatic differentiation, where the computer code is implemented
in such a way that every algebraic operation involves also the computation
of the respective derivatives. For more details on automatic differentiation
we refer to [22, 23].

3.4 Sensitivity analysis

Computation of gradient of cost function in numerical solution can be done
in two ways:

• Discretize-then-differentiate. The state problem and the cost function
is discretized and the true gradient of the discretized cost function is
computed, as described in Section 3.3.3;

• Differentiate-then-discretize. First, the state problem and the cost
function is differentiated with respect to shape. The resulting system
is then discretized and its solution formally used in the formula for the
gradient of the cost function.

The second approach is easier to implement since one does not need any
algebraic sensitivity analysis, however the computed gradient of the cost
function is only formal. In any case, precise characterization of the gradient
of the cost function is useful on its own. We shall describe the approach based
on the material derivative, which is similar to the concept of Lagrangean and
Eulerian description in continuum mechanics.

Let T : Rd → Rd be a smooth vector field, ε > 0 and xε := x + εT (x).
Then the mapping x 7→ xε transforms a domain Ω onto Ωε := {xε; x ∈ Ω},
see Figure 3.3. The field T describes a direction of deformation of Ω which
serves for the definition of derivatives of quantities depending on the domain.
For a function uε defined in Ωε, ε ≥ 0, we define the material derivative:

u̇(x) := lim
ε→0

uε(xε)− u(x)

ε
=

d (uε(xε))

dε

∣∣∣∣
ε=0

, x ∈ Ω,

denoting u := u0. By the chain rule of differentiation we get

u̇(x) =
duε
dε

∣∣∣∣
ε=0

(x) +∇u(x) · dxε
dε

= u′(x) +∇u(x) · T (x),
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Ω

Ωε

εT

Figure 3.3: An example of a domain Ω and its deformation to Ωε using a
field T .

where u′ is the shape derivative. The material derivative u̇ is thus related to
the shape derivative u′ by the identity

u̇ = u′ +∇u · T .

We note that the definition of the shape derivative requires u to be more
regular. The directional shape derivative of a functional

Fε :=

∫

Ωε

fε(xε)

is then expressed as

dF (Ω;T ) :=
d

dε
Fε

∣∣∣∣
ε=0

=

∫

Ω

ḟ + f divT =

∫

Ω

f ′ +

∫

∂Ω

fT · n. (3.10)

In what follows we shall illustrate how to use this approach for expressing
the shape gradient of a cost function depending on the solution of a state
problem. Consider now the problem (Pw(Ω)). Differentiating the integrals
in (Pw(Ωε)) according to (3.10) one obtains, after some effort, that the shape
derivatives (v′, p′) satisfy the linearized problem:

div v′ = 0 in Ω, (3.11a)

div(v′ ⊗ v + v ⊗ v′)− µ∆v′ +∇p′ = 0 in Ω, (3.11b)

v′ = −((∇v)n)(T · n) on ∂Ω. (3.11c)
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One could also work with material derivatives, but then the obtained expres-
sions are much more complicated. Let us take the cost function

Jε :=

∫

Ωε

|∇vε|2.

Then its shape gradient can be expressed as follows:

dJ(Ω;T ) =

∫

Ω

2∇v : ∇v′ +
∫

∂Ω

|∇v|2T · n. (3.12)

In order to avoid the shape derivative in the expression, we use the adjoint
problem with the solution (w, q):

divw = 0 in Ω, (3.13a)

2(Dw)v + µ∆w +∇q = 2∆v in Ω, (3.13b)

w = 0 on ∂Ω. (3.13c)

Then, multiplying (3.13a), (3.13b) by p′ and v′, respectively, integrating by
parts and using (3.11) we obtain:

∫

Ω

2∇v : ∇v′ =
∫

∂Ω

∇v : (µ∇w + qI− 2∇v) (n⊗ n)T · n.

Inserting this into (3.12) we arrive at

dJ(Ω;T ) =

∫

∂Ω

∇v : ((µ∇w + qI− 2∇v)n⊗ n+∇v)T · n. (3.14)

From (3.14) we see that the shape gradient dJ is supported on the boundary
∂Ω and depends on the normal component of the field T . This quite natural
property of the shape gradient holds for many functions and is the statement
of the so-called structure theorem for shape functions.

The above computations using the shape derivative u′ are done only for-
mally. To make them rigorous, one has to identify the material derivative u̇
first by reformulating (Pw(Ωε)) to the fixed domain Ω, showing Lipschitz esti-
mates for the differences (uε−u)/ε and passing to the limit. Then, expressing
the shape gradient J̇ as a volume integral which depends continuously and
linearly on T , one can pass to the shape derivative, provided that it is regular
enough.
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Chapter 4

Presented Works and Their
Novelties

In this last chapter we present selected works documenting the author’s
contribution to mathematical fluid mechanics and shape optimization. The
reprints of publications are divided into groups which are commented sepa-
rately. Namely, we summarize results on:

• mathematical and numerical analysis of non-Newtonian fluids;

• applied shape optimization for nonlinear fluid models;

• shape optimization involving fluid models with slip boundary condi-
tions;

• shape sensitivity analysis for non-Newtonian fluids.

4.1 Mathematical theory of piezoviscous flu-

ids

It has been known for decades that the viscosity of a fluid can depend on the
pressure and the shear-rate. While for water and many common fluids the
dependence is negligible, in some areas such as tribology, glaciology or geol-
ogy in general it may play a significant role. Lubricants in journal bearings
are one example of fluids, where the viscosity can grow with the pressure even
in an exponential way [6]. The mathematical theory for this class of models
is so far limited to quite restrictive cases, where the growth with pressure
has to be compensated by the decrease with the shear-rate.
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When considering inner flows of incompressible fluids, a mathematical
artifact is that the pressure is determined by the velocity up to an addi-
tive constant. For Navier-Stokes equations, the value of this constant is
not important since it does not influence the velocity field. In the case of
pressure-dependent viscosity it is however not true, namely choosing a wrong
mean value of pressure yields wrong velocity. In addition, without fixing the
pressure one cannot achieve uniqueness of solutions.

We present reprints of the works [32, 29] which bring the following new
results:

• In the first paper we resolve the specific issue of fixing the pressure by
physically relevant boundary conditions. In particular, certain outflow
and filtration conditions that prescribe the pressure on a part of the
boundary are presented. We prove the existence and uniqueness of weak
solutions with these boundary conditions. The mathematical theory
for this type of problems involves modifications due to the fact that
test functions as well as the solution do not completely vanish on the
boundary.

• In the second paper we study the finite-element approximation for the
model without the convective term. We prove the convergence and
the error estimates, and verify them by a numerical example. The
error estimates are complicated by the nonlinear term containing the
viscosity.

Reprints

• M. Lanzendörfer, J. Stebel. On Pressure Boundary Conditions for
Steady Flows of Incompressible Fluids with Pressure and Shear Rate
Dependent Viscosities. Applications of Mathematics, 56(3):265-285,
2011.

• A. Hirn, M. Lanzendörfer, J. Stebel. Finite element approximation of
flow of fluids with shear rate and pressure dependent viscosity. IMA
Journal of Numerical Analysis, 32(4):1604-1634, 2012.
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ON PRESSURE BOUNDARY CONDITIONS FOR STEADY FLOWS

OF INCOMPRESSIBLE FLUIDS WITH PRESSURE AND

SHEAR RATE DEPENDENT VISCOSITIES*

Martin Lanzendörfer, Jan Stebel, Praha

(Received November 7, 2008)

Abstract. We consider a class of incompressible fluids whose viscosities depend on the
pressure and the shear rate. Suitable boundary conditions on the traction at the in-
flow/outflow part of boundary are given. As an advantage of this, the mean value of the
pressure over the domain is no more a free parameter which would have to be prescribed
otherwise. We prove the existence and uniqueness of weak solutions (the latter for small
data) and discuss particular applications of the results.

Keywords: existence, weak solutions, incompressible fluids, non-Newtonian fluids, pres-
sure dependent viscosity, shear dependent viscosity, inflow/outflow boundary conditions,
pressure boundary conditions, filtration boundary conditions

MSC 2010 : 35Q35, 35J65, 76D03

1. Introduction

A well-known property of the Navier-Stokes equations describing the motion of

an incompressible Newtonian fluid is that the fluid pressure is determined to within

a constant. This degree of freedom does not play important role as far as only the

pressure gradient is present in the equations of motion. Some generalizations of the

Navier-Stokes equations, such as the equations for fluids with shear rate dependent

viscosity share this property as well.

It has been observed that under some circumstances the fluid viscosity may depend

significantly both on the shear rate and on the pressure. In such case the value of the

* Jan Stebel was supported by the Nečas Center for Mathematical Modelling project
LC06052 financed by MŠMT. Martin Lanzendörfer acknowledges the support of Czech
Science Foundation project GA201/06/0352.
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pressure affects the whole solution of the equations. In previous theoretical studies,

such as [10], [16], [26], the mean value of the pressure either over the whole domain

or over its nontrivial subdomain was prescribed as one of the input parameters.

A difficulty of this approach lies in the fact that the pressure mean value is not

a proper quantity from the practical point of view, i.e. there is no hint on the value

which should be prescribed for a particular application. The objective of this paper

is to propose an alternative way of fixing the pressure, namely to use a suitable

inflow/outflow boundary condition.

Let us demonstrate the idea on a simple example: Consider the Navier-Stokes

equations and the Poiseuille flow in a 2D channel (0, L) × (0, 1) of length L and

height 1, for which the velocity and the pressure are given by

v(x) = (v0x2(1 − x2), 0), v0 ∈ R,

p(x) = p0 − 2µv0x1, p0 ∈ R.

Here µ is the (constant) viscosity and 1
4v0 is the peak velocity in the channel centre.

The parameter p0 can be chosen arbitrarily and has no influence on the velocity. If

we additionally prescribe a constant normal force h on the channel outlet {L}×(0, 1)

by

(1.1) −p + 2µD(v)n · n = h,

where D(v) is the symmetric velocity gradient and n the unit outer normal to the

boundary, then we automatically obtain p0 = 2µv0L − h and the pressure is fixed.

We will show (see Section 4) that boundary conditions similar to (1.1) have the same

effect on weak solutions to fluids with shear rate and pressure dependent viscosity.

In many applications, induced force is prescribed on a part of the boundary:

(1.2) Tn = h(x),

where T = −pI + S denotes the Cauchy stress, n the outer normal to the boundary

and h a given force. As a particular example, often a kind of natural outflow can be

achieved in flow simulations by simply prescribing

Tn = 0;

this type of condition (usually referred to as the do nothing condition) is easy to use

in numerical simulations and yields quite reliable results (see e.g. [20]).

Some existence analysis of the Navier-Stokes equations with the condition (1.2) is

available: Local results (i.e. for small data or short time) were obtained e.g. in [24]
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and in [25] for stationary and for time dependent case, respectively. Global existence

analysis is, however, an open problem because (1.2) does not prevent backward flow

through the boundary and thus an uncontrolled amount of kinetic energy can be

brought into the domain. In [23] the authors showed the existence of weak solutions

to the variational inequality involving an explicit constraint imposed on the backward

flows.

In this paper we will study boundary conditions involving a surface force depending

on the velocity:

(1.3) −Tn = b(x,v),

where the assumptions on b are specified in Subsection 2.2. Important examples and

their motivation are given in Section 5. We follow the approach used e.g. in [13],

where

b = h(x) +
1

2
(v · n)−v

with z− := max{0,−z} being the negative part of z. Namely, we restrict ourselves to
such forms of b in (1.3) that expend all the kinetic energy brought in by the inflow,

allowing us to establish standard energy estimates.

The paper is organized as follows. In Section 2 we specify the problem to be

analyzed and state the main theorem. The existence and uniqueness of weak solutions

is then proved in Section 3 and Section 4, respectively. Finally, Section 5 contains

particular applications covered by the theory.

2. Definition of the problem and the main result

We investigate the system of PDEs

div(v ⊗ v) − div S + ∇p = f

div v = 0

}
in Ω,

where

(2.1) S ≡ S(p,D(v)) = ν(p, |D(v)|2)D(v).

Here v, p, f , ν(p, |D(v)|2) is the velocity, the kinematic pressure, the body force
and the kinematic viscosity, respectively. The equations describe the motion of an

incompressible homogeneous fluid in a bounded domain Ω ⊂ R
d, d = 2 or 3. The
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domain boundary consists of three measurable and disjoint parts: ∂Ω := ΓD ∪Γ1∪Γ2,

on which we prescribe the boundary conditions

v = 0 on ΓD,(2.2)

pn − Sn = b1(v) on Γ1,(2.3)

(2.4)
v = (v · n)n

p − Sn · n = b2(v)

}
on Γ2.

Throughout the paper we will assume that ∂Ω, ΓD, Γ1, and Γ2 are Lipschitz contin-

uous. Further we will denote Γ := Γ1 ∪ Γ2 and suppose that |ΓD| > 0 and |Γ| > 0,

i.e., the Dirichlet condition (2.2) and at least one of the conditions (2.3), (2.4) are

present. Note that |ΓD| > 0 is needed in order to guarantee the validity of Korn’s

inequality.

The equations governing the flow of an incompressible fluid with the viscosity

depending on the pressure and the shear rate were subject to a number of recent

studies. For more details on models of the type (2.1), we refer the reader to [16],

[27], [29], [30]. Simple flows and numerical simulations are discussed in [21], [22].

In [9], [10], [26], issues concerning various boundary conditions were studied. In [8],

[11], some further generalizations are provided. The proof of existence presented here

derives from the one developed in [16], where the existence theory was established

for steady flows subject to homogeneous Dirichlet boundary condition only.

2.1. Structural assumptions

The following assumptions on S are considered.

(A1) For a given r ∈ (1, 2), there exist positive constants C1 and C2 such that

for all symmetric linear transformations B,D ∈ R
d×d and all p ∈ R:

C1(1 + |D|2)(r−2)/2|B|2 6 ∂S(p,D)

∂D
· (B ⊗ B)

6 C2(1 + |D|2)(r−2)/2|B|2,

where (B ⊗ B)ijkl = BijBkl.

(A2) For all symmetric linear transformations D ∈ R
d×d and for all p ∈ R:

∣∣∣∂S(p,D)

∂p

∣∣∣ 6 γ0(1 + |D|2)(r−2)/4 6 γ0,

with γ0 > 0 to be specified later.

For particular examples see the references given above.
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We state some useful inequalities following from (A1) and (A2). First, it was

proved in [28], Lemma 1.19 of Chapter 5, that for every p ∈ R and D ∈ R
d×d
sym

|S(p,D) : D| 6 C2

r − 1
(1 + |D|)r−1,(2.5)

S(p,D) : D > C3 min{|D|2, |D|r},(2.6)

with C3 = C3(r, C1). Next, defining

(2.7) I1,2 := |D1 − D2|2
∫ 1

0

(1 + |D1 + s(D2 − D1)|2)(r−2)/2 ds,

one can show that (see e.g. Lemma 1.4 in [10])

C1

2
I1,2 6 (S(p1,D1) − S(p2,D2)) : (D1 − D2) +

γ2
0

2C1
|p1 − p2|2,(2.8)

|S(p1,D2) − S(p2,D2)| 6 C2

√
I1,2 + γ0|p1 − p2|,(2.9)

‖1 + |D1| + |D2|‖r−2
r ‖D1 − D2‖2r 6

∫

Ω

I1,2 dx.(2.10)

We use the inequality (2.6) in the form

Lemma 2.1. Assume that (A1), (A2) are fulfilled. Let1 u ∈ W1,r(Ω) and F > 0.

Then
∫

Ω

S(p,D(u)) : D(u) dx − F‖D(u)‖r(2.11)

> C4 min{‖D(u)‖2r, ‖D(u)‖r
r} − C5(F

2 + F r′
),

where r′ := r/(r − 1), and the constants C4, C5 > 0 depend solely on Ω, r and C3.

P r o o f. Define Ω̂ := {x ∈ Ω: |D(u)| > 1} and Ω := Ω \ Ω̂. Then (2.6) gives

∫

Ω

S(p,D(u)) : D(u) dx − F‖D(u)‖r

> C3‖D(u)|Ω‖22 + C3‖D(u)|Ω̂‖r
r − F (‖D(u)|Ω‖r + ‖D(u)|Ω̂‖r).

Hölder’s inequality ‖D(u)|Ω‖2r 6 ‖D(u)|Ω‖22|Ω| 1
2 (2−r)·2/r 6 ‖D(u)|Ω‖22|Ω| 1

2 (2−r)·2/r,

Young’s inequality and the fact that 1
2 min{‖D(u)‖2r, ‖D(u)‖r

r} 6 ‖D(u)|Ω‖2r +

‖D(u)|Ω̂‖2r then lead to (2.11). �

1 In this paper, W1,r(Ω), W1,r
0
(Ω), Lq(Ω), Lq

0
(Ω) stand for the Sobolev space, its subspace

of functions with zero trace, the Lebesgue space, and its subspace of functions with zero
mean value, respectively. Bold symbols denote the vector counterparts of these spaces.
The norms of W1,r(Ω), Lq(Ω) will be denoted by ‖ · ‖1,r, ‖ · ‖q respectively.
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2.2. Boundary assumptions

Concerning the boundary conditions (2.3)–(2.4), we define

〈b(v),ϕ〉 := 〈b1(v),ϕ〉Γ1 + 〈b2(v · n),ϕ · n〉Γ2

and assume the following conditions:

(B1) With some γ1 ∈ 〈3, r∗), the mapping

(2.12) b1(·) : Lγ1(Γ1) → Lγ1(Γ1)
∗

is continuous and bounded. Here r∗ := (d − 1)r/(d − r) denotes the exponent

for whichW1,r(Ω) →֒ Lr∗
(∂Ω).

(B2) With some β1 > 0,

(2.13) 〈b1(u),u〉Γ1 > −1

2

∫

Γ1

(u · n)|u|2 dx − β1‖u‖γ1,Γ1

for all u ∈ Lγ1(Γ1).

(B3) With some γ2 > 3, the mapping

(2.14) b2(·) : Lγ2(Γ2) → Lγ2(Γ2)
∗

is continuous and bounded.

(B4) With some β2 > 0 and β2 > 0,

(2.15) 〈b2(u · n),u · n〉Γ2 > −1

2

∫

Γ2

(u · n)|u|2 dx + β2‖u‖γ2

γ2,Γ2
− β2

for all u ∈ Lγ2(Γ2).

(B5) With some continuous function m : R
+ → R

+, where lim
xց0

m(x) = 0, b2 is

uniformly2 monotone:

(2.16) 〈b2(w) − b2(z), w − z〉Γ2 > m(‖w − z‖γ2,Γ2)

for all w 6= z ∈ Lγ2(Γ2).

Additionally, in order to prove the uniqueness of solutions we will require that the

following stronger conditions hold:

2 For the sake of simplicity, the uniform monotonicity is assumed here. The readers can
verify themselves that the monotonicity of b2 would also allow to show the existence of
a weak solution, with help of the Minty trick.
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(B6) With some λ1 > 0 and K1 > 0 (to be specified later),

(2.17) ‖b1(u1) − b1(u
2)‖γ′

1,Γ1 6 λ1‖u1 − u2‖γ1,Γ1

for all u1,u2 ∈ Lγ1(Γ1), ‖ui‖γ1,Γ1 6 K1, i = 1, 2.

(B7) With some λ2 > 0 and K2 > 0 (to be specified later),

(2.18) ‖b2(u1 · n) − b2(u
2 · n)‖1,Γ2 6 λ2‖u1 − u2‖r∗,Γ2

for all u1,u2 ∈ Lγ2(Γ2), ‖ui‖γ2,Γ2 6 K2, i = 1, 2.

2.3. Weak formulation

We define the following function spaces:

W1,r
b.c.(Ω) := {v ∈ W1,r(Ω); tr v|ΓD = 0, tr v|Γ2 = (tr v · n)n ∈ Lγ2(Γ2)},

W1,r
b.c.,div(Ω) := {v ∈ W1,r

b.c.(Ω); div v = 0 a.e. in Ω}.

Note that, due to embedding, v ∈ W1,r(Ω) implies v ∈ Lγ1(Γ1). Given f ∈
W1,r

b.c.(Ω)∗, we consider the following weak formulation:

Definition 2.2 (Problem (P)). A pair (v, p) ∈ W1,r
b.c.,div(Ω) × Lr′

(Ω) is called

a weak solution of Problem (P) if and only if

∫

Ω

div(v ⊗ v) · ϕ dx +

∫

Ω

S(p,D(v)) : D(ϕ) dx(2.19)

−
∫

Ω

p divϕ dx + 〈b(v),ϕ〉 = 〈f ,ϕ〉

for all ϕ ∈ W1,r
b.c.(Ω).

We close this subsection by recalling the properties of the Bogovskĭı operator

(see [32] or [1], [3] for the reference) and by stating its corollary.

Lemma 2.3 (Bogovskĭı’s operator; [32], Lemma 3.17). Let 1 < q < ∞. Then
there exists a continuous linear operator B : Lq

0(Ω) → W1,q
0 (Ω) such that for all

f ∈ Lq
0(Ω)

(2.20)

{
div(Bf) = f a.e. in Ω,

‖Bf‖1,q 6 Cdiv(Ω, q)‖f‖q.
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Lemma 2.4. Let q ∈ (1,∞), s ∈ 〈1,∞〉. Then there exists a continuous bounded
linear operator B̃ : Lq(Ω) → W1,q

b.c.(Ω) such that for all f ∈ Lq(Ω)

(2.21)





div(B̃f) = f a.e. in Ω,

‖B̃f‖1,q 6 C̃div(Ω,Γ1,Γ2, q)‖f‖q,

‖B̃f‖s,Γ 6 C′
div(Ω,Γ1,Γ2, s)|

∫
Ω
f |.

P r o o f. Let us take an arbitrary function ξ ∈ C∞(Ω)d such that ξ|ΓD = 0,

ξ|Γ2 = (ξ · n)n and
∫
Γ
ξ · ndx = 1. Then for any f ∈ Lq(Ω) we define B̃(f) :=

B
(
f −

(∫
Ω f dx

)
div ξ

)
+

(∫
Ω f dx

)
ξ. Since B̃(f)|∂Ω =

(∫
Ω f dx

)
ξ, we have that

B̃(f) ∈ W1,q
b.c.(Ω). It is then easy to verify with help of Lemma 2.3 that such choice

meets the statement (2.21). �

2.4. Main result

Theorem 2.5 (Well-posedness of (P)).

Let f ∈ W1,r
b.c.(Ω)∗ and assume that (A1)–(A2) hold for the viscosity, (B1)–(B5)

hold for the boundary data, with

(2.22)
3d

d + 2
< r < 2 and γ0 <

1

C̃div(Ω,Γ1,Γ2, 2)

C1

C1 + C2
.

Then

(i) there exists a weak solution to (P);

(ii) for any weak solution (v, p) of (P), the velocity v satisfies the estimate

(2.23) ‖v‖1,r + ‖v‖γ2,Γ2 6 K,

whereK ց 0 whenever (‖f‖W 1,r
b.c.(Ω)∗ , β1, β2) ց 0, the other problem data being

fixed;

(iii) if additionally (B6), (B7) are satisfied and if K and λ1, λ2 are small enough,

then the weak solution to (P) is unique.
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3. The existence of a weak solution

The proof of (i) has the same structure as the proof given in [16] for the problem

with the homogeneous Dirichlet boundary condition on ∂Ω: In 3.1, we define an

approximate problem (Pε), derive energy estimates and show the existence of a weak

solution to (Pε) via Galerkin approximations. Also, (ii) follows from the estimates

derived in here. In 3.2, we show estimates for the pressure pε uniform with respect

to ε. This allows us to find sequences {(vεn , pεn)}, εn ց 0, weakly converging to

a limit (v, p). In 3.3, the strong convergence of pεn and D(vεn) is shown and (v, p)

is identified as the weak solution to problem (P).

3.1. Approximate problem (Pε)

We relax the incompressibility constraint and look for a pair (vε, pε) ∈ W1,r
b.c.(Ω)×

W 1,2(Ω) satisfying

(3.1) ε

∫

Ω

∇pε · ∇ξ dx + ε

∫

Ω

pεξ dx +

∫

Ω

(div vε)ξ dx = 0 for all ξ ∈ W 1,2(Ω),

together with
∫

Ω

div(vε ⊗ vε) · ϕ dx − 1

2

∫

Ω

(div vε)(vε · ϕ) dx −
∫

Ω

pε divϕ dx(3.2)

+

∫

Ω

S(pε,D(vε)) : D(ϕ) dx + 〈b(vε),ϕ〉 = 〈f ,ϕ〉 for all ϕ ∈ W1,r
b.c.(Ω).

Note that, contrary to the case studied in [16], equation (3.1) does not determine

the mean value of the pressure 1
|Ω|

∫
Ω pε dx. This is a consequence of the fact that

vε · n|Γ is not prescribed.
We show that (vε, pε) can be found as a limit of the Galerkin approximations

(vN , pN ) defined as

pN :=

N∑

k=1

cN
k αk and vN :=

N∑

k=1

dN
k ak for N = 1, 2, . . . ,

where {αk}∞k=1 and {ak}∞k=1 are bases of W
1,2(Ω) and W1,r

b.c.(Ω), respectively, and

where cN := (cN
1 , . . . , cN

N ) and dN := (dN
1 , . . . , dN

N ) solve the algebraic system

(3.3a) ε

∫

Ω

∇pN · ∇αk dx + ε

∫

Ω

pNαk dx +

∫

Ω

(div vN )αk dx = 0, k = 1, . . . , N,

∫

Ω

div(vN ⊗ vN ) · al dx − 1

2

∫

Ω

(div vN )(vN · al) dx −
∫

Ω

pN div(al) dx(3.3b)

+

∫

Ω

S(pN ,D(vN )) : D(al) dx +
〈
b(vN ),al

〉
= 〈f ,al〉 , l = 1, . . . , N.
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Multiplying the kth equation in (3.3a) by cN
k and the lth equation in (3.3b) by dN

l

and summing for k, l = 1, . . . , N , we obtain

ε‖pN‖21,2 +

∫

Ω

div(vN ⊗ vN ) · vN dx − 1

2

∫

Ω

(div vN )|vN |2 dx(3.4)

+

∫

Ω

S(pN ,D(vN )) : D(vN ) dx +
〈
b(vN ),vN

〉
=

〈
f ,vN

〉
.

Using Green’s theorem, we observe that

(3.5)

∫

Ω

div(vN ⊗ vN ) · vN dx − 1

2

∫

Ω

(div vN )|vN |2 dx =
1

2

∫

Γ

(vN · n)|vN |2 dx.

Moreover, from (2.13) and (2.15) it follows that

1

2

∫

Γ

(vN · n)|vN |2 dx +
〈
b(vN ),vN

〉
> β2‖vN‖γ2

γ2,Γ2
− β1‖vN‖γ1,Γ1 − β2,

and thus

ε‖pN‖21,2 + β2‖vN‖γ2

γ2,Γ2
+

∫

Ω

S(pN ,D(vN )) : D(vN ) dx

6 ‖f‖W 1,r
b.c.(Ω)∗‖vN‖1,r + β1‖vN‖γ1,Γ1 + β2.

Using (2.11), Korn’s inequality, and the embedding W1,r(Ω) →֒ Lγ1(Γ1) we finally

arrive at

(3.6) ε‖pN‖21,2 + β2‖vN‖γ2

γ2,Γ2
+ C4 min{‖D(vN )‖2r, ‖D(vN )‖r

r} 6 K.

Here and in what follows, C > 0 and K > 0 stand for generic constants, independent

of N and ε. In addition, K ց 0 whenever the problem data ‖f‖W 1,r
b.c.(Ω)∗ , β1, and

β2 tend to zero (while the other data are fixed). From (3.6) it directly follows that

(3.7) ‖vN‖1,r 6 K.

Estimates (3.6) and (3.7) imply, with help of the Brouwer fixed point theorem,

the solvability of (3.3). Using (2.5) we obtain the estimate

‖S(pN ,D(vN ))‖r′ 6 C.

Due to this and the boundedness of b2, there is a subsequence of {(vN , pN )} (denoted
by the same symbol) and a pair (vε, pε) such that

(3.8)





vN ⇀ vε weakly in W1,r(Ω) and in Lγ2(Γ2),

pN ⇀ pε weakly in W1,2(Ω),

S(pN ,D(vN )) ⇀ Sε weakly in Lr′
(Ω)d×d,

b2(v
N ) ⇀ bε

2 weakly in Lγ′
2(Γ2).

274

52 CHAPTER 4. PRESENTED WORKS AND THEIR NOVELTIES



Moreover, the compact embeddings yield

(3.9)





pN → pε strongly in L2(Ω),

vN → vε strongly in Ls(Ω) for all s : 1 6 s <
rd

d − r
,

vN → vε strongly in Lγ1(Γ1).

The fact that r > 3d/(d + 2), (3.8)1, and (3.9) are sufficient to show that

∫

Ω

div(vN ⊗ vN ) · ϕ dx − 1

2

∫

Ω

(div vN )(vN · ϕ) dx

−→
∫

Ω

div(vε ⊗ vε) · ϕ dx − 1

2

∫

Ω

(div vε)(vε · ϕ) dx

for all ϕ ∈ W1,r
b.c.(Ω). Thus, we can pass to the limit in (3.3) and obtain (3.1) together

with

∫

Ω

div(vε ⊗ vε) · ϕ dx − 1

2

∫

Ω

(div vε)(vε · ϕ) dx −
∫

Ω

pε divϕ dx(3.10)

+

∫

Ω

Sε : D(ϕ) dx + 〈b1(vε),ϕ〉Γ1 +
〈
bε
2,ϕ · n

〉
Γ2

= 〈f ,ϕ〉

for all ϕ ∈ W1,r
b.c.(Ω).

Next, from inequality (2.8) with p1 := pN and p2 := pε (and analogously for

v1, v2), (2.10) and ‖D(vε)‖r 6 lim inf
N→∞

‖D(vN )‖r 6 C it follows that

C‖D(vN ) − D(vε)‖2r(3.11)

6
∫

Ω

[S(pN ,D(vN )) − S(pε,D(vε))] : (D(vN ) − D(vε)) dx

+
γ2
0

2C1
‖pN − pε‖22.

Similarly to [16], we prove the strong convergence of D(vN ). Using (3.11), (2.16),

and letting N → ∞ we observe (due to (3.8)) that

lim sup
N→∞

(‖D(vN ) − D(vε)‖2r + m(‖vN − vε‖γ2,Γ2))

6 lim sup
N→∞

(∫

Ω

S(pN ,D(vN )) : D(vN ) dx +
〈
b2(v

N · n),vN · n
〉
Γ2

)

−
∫

Ω

Sε : D(vε) dx −
〈
bε
2,v

ε · n
〉
Γ2
.
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This can be further estimated from above, with help of (3.4), (3.9), lim inf
N→∞

‖pN‖1,2 >
‖pε‖1,2, (3.1), and (3.10), by

〈f ,vε〉 − 〈b1(vε),vε〉Γ1 − ε‖pε‖21,2 −
∫

Ω

div(vε ⊗ vε) · vε dx

+
1

2

∫

Ω

(div vε)|vε|2 dx −
∫

Ω

Sε : D(vε) dx −
〈
bε
2,v

ε · n
〉
Γ2

= 0.

Therefore, and due to (3.9)1, we have the almost everywhere convergence

D(vN ) → D(vε) a.e. in Ω, vN → vε a.e. on Γ2 and pN → pε a.e. in Ω.

Vitali’s theorem and the continuity (2.14) of b2(·) allow us to identify the limits as
∫

Ω

S(pN ,D(vN )) : D(ϕ) dx →
∫

Ω

S(pε,D(vε)) : D(ϕ) dx =

∫

Ω

Sε : D(ϕ) dx,

〈
b2(v

N · n),ϕ · n
〉
Γ2

→ 〈b2(vε · n),ϕ · n〉Γ2 =
〈
bε
2,ϕ · n

〉
Γ2

for every ϕ ∈ W1,r
b.c.(Ω).

3.2. Uniform estimates for the pressure pε and the weak convergence

For any pair (vε, pε) which solves (3.1) and (3.2) we can obtain the same energy

estimates as in 3.1:

(3.12) ε‖pε‖21,2 + ‖vε‖γ2

γ2,Γ2
+ ‖vε‖1,r 6 K and ‖S(pε,D(vε))‖r′ 6 C.

Let us recall Lemma 2.4 and test (3.2) with ϕε := B̃(|pε|r′−2pε). Note that

‖ϕε‖1,r 6 C̃div(Ω,Γ1,Γ2, r)‖pε‖r′/r
r′ and ‖ϕε‖γ2,Γ2 6 C′

div(Ω,Γ1,Γ2γ2)‖pε‖r′/r
r′/r. Then,

using (2.5), Hölder’s inequality, (2.12), (2.14), the embedding W1,r(Ω) →֒ Lγ1(Γ1),

and at last the estimate (3.12), we get

‖pε‖r′
r′ =

∫

Ω

div(vε ⊗ vε) · ϕε dx − 1

2

∫

Ω

(div vε)(vε · ϕε) dx

+

∫

Ω

S(pε,D(vε)) : D(ϕε) dx + 〈b(vε),ϕε〉 − 〈f ,ϕε〉

6 C‖vε‖21,r‖ϕε‖1,r +
C2

r − 1
‖1 + |D(vε)|‖r−1

r ‖ϕε‖1,r + ‖f‖W 1,r
b.c.

(Ω)∗‖ϕε‖1,r

+ C‖b1(vε)‖γ′
1,Γ1‖ϕε‖1,r + ‖b2(vε · n)‖γ′

2,Γ2‖ϕε‖γ2,Γ2

6 C‖pε‖r′/r
r′ .

Since r > 1, this implies

(3.13) ‖pε‖r′ 6 C.
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Again, we find a sequence εn ց 0 and a pair (v, p) such that

(3.14)





vεn ⇀ v weakly in W1,r(Ω) and in Lγ2(Γ2),

pεn ⇀ p weakly in Lr′
(Ω),

S(pεn ,D(vεn)) ⇀ S weakly in Lr′
(Ω)d×d,

b2(v
ε) ⇀ b2 weakly in Lγ′

2(Γ2),

vεn → v strongly in Lγ1(Γ1),

vεn → v strongly in Ls(Ω) for all s : 1 6 s <
dr

d − r
.

Clearly, due to (3.12), v satisfies (ii) of Theorem 2.5. Note that (3.14)1 and (3.12)

together with (3.1) yield

(3.15) div v = 0 a.e. in Ω.

We can then pass to the limit in (3.2), obtaining

∫

Ω

div(v ⊗ v) · ϕ dx +

∫

Ω

S : D(ϕ) dx −
∫

Ω

p divϕ dx(3.16)

+ 〈b1(v),ϕ〉Γ1 +
〈
b2,ϕ · n

〉
Γ2

= 〈f ,ϕ〉 for all ϕ ∈ W1,r
b.c.(Ω).

Finally, we use Vitali’s theorem and the continuity of b2(·) again, to show that
∫

Ω

S(pεn ,D(vεn)) : D(ϕ) dx →
∫

Ω

S(p,D(v)) : D(ϕ) dx =

∫
S : D(ϕ) dx,

〈b2(vε · n),ϕ · n〉Γ2 → 〈b2(v · n),ϕ · n〉Γ2 =
〈
b2,ϕ · n

〉
Γ2

for all ϕ ∈ W1,r
b.c.(Ω). In order to do so, we prove the convergences

D(vεn) → D(v) a.e. in Ω, vεn → v a.e. on Γ2,(3.17)

and pεn → p a.e. in Ω,

in the next subsection.

3.3. The almost everywhere convergence

Let us rewrite inequality (2.8) in the form

Y n :=

∫

Ω

∫ 1

0

(1 + |D(vεn) + s(D(v) − D(vεn))|2)(r−2)/2|D(vεn) − D(v)|2 ds dx,

C1

2
Y n 6

∫

Ω

[S(pεn ,D(vεn)) − S(p,D(v))] : (D(v
εn − D(v)) dx +

γ2
0

2C1
‖pεn − p‖22.
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Taking ϕ := vεn − v in (3.2), ξ := pεn in (3.1), using (3.14), (3.15), and taking

ϕ := v in (3.16), we observe that

lim sup
εnց0

(∫

Ω

[S(pεn ,D(vεn)) − S(p,D(v))] : (D(vεn ) − D(v)) dx

+ 〈b2(vεn · n) − b2(v · n), (vεn − v) · n〉Γ2
)

= lim sup
εnց0

(∫

Ω

S(pεn ,D(vεn)) : D(vεn) dx + 〈b2(vεn · n),vεn · n〉Γ2
)

−
∫

Ω

S : D(v) dx −
〈
b2,v · n

〉
Γ2

6 0,

which together with (2.16) yields (denoting by o(1) a sequence vanishing as εn ց 0)

(3.18) m(‖vεn − v‖γ2,Γ2) +
C1

2
Y n 6 γ2

0

2C1
‖pεn − p‖22 + o(1).

Next, we set ϕn := B̃(pεn − p), ‖ϕn‖1,2 6 C̃div(Ω,Γ1,Γ2, 2)‖pεn − p‖2. Note that
since (pεn − p) ⇀ 0 weakly in Lr′

(Ω), it follows that ϕn ⇀ 0 weakly inW1,r(Ω) and

ϕn → 0 strongly in Lγi(Γi), i = 1, 2. Testing (3.2) with ϕn, we obtain
∫

Ω

pεn(pεn − p) dx =

∫

Ω

div(vεn ⊗ vεn) · ϕn dx − 1

2

∫

Ω

(div vεn)(vεn · ϕn) dx

+

∫

Ω

S(pεn ,D(vεn)) : D(ϕn) dx + 〈b(vεn),ϕn〉 − 〈f ,ϕn〉 ,

from which it follows that

‖pεn − p‖22 =

∫

Ω

[S(pεn ,D(vεn)) − S(p,D(v))] : D(ϕn) dx + o(1).

This implies, by virtue of (2.9), (3.14), and (3.18), that

‖pεn − p‖22 6 C2

√
Y n‖D(ϕn)‖2 + γ0‖pεn − p‖2‖D(ϕn)‖2 + o(1)

6 γ0C̃div(Ω,Γ1,Γ2, 2)
(
1 +

C2

C1

)
‖pεn − p‖22 + o(1)‖pεn − p‖2 + o(1),

which leads to
(
1 − γ0C̃div(Ω,Γ1,Γ2, 2)

(
1 +

C2

C1

))
‖pεn − p‖22 6 o(1)‖pεn − p‖2 + o(1).

Due to the assumption (2.22)2, (3.18), and (2.10), we finally observe that

‖pεn − p‖2 → 0, ‖D(vεn) − D(v)‖r → 0, and ‖vεn − v‖γ2,Γ2 → 0,

which implies (3.17) and completes the proof of (i) of Theorem 2.5.
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4. Uniqueness considerations

Take two possible weak solutions (v1, p1), (v2, p2). Subtracting (2.19) and denot-

ing Si := S(pi,D(vi)), i = 1, 2, we obtain (for every ϕ ∈ W1,r
b.c.(Ω))

∫

Ω

(S1 − S2) : D(ϕ) dx =

∫

Ω

(p1 − p2) divϕ dx −
〈
b(v1) − b(v2),ϕ

〉
(4.1)

−
∫

Ω

div(v1 ⊗ v1 − v2 ⊗ v2) · ϕ dx.

Setting ϕ := v1 − v2, we get (as div vi = 0, i = 1, 2)
∫

Ω

(S1 − S2) : D(v1 − v2) dx = −
〈
b(v1) − b(v2),v1 − v2

〉
(4.2)

−
∫

Ω

div(v1 ⊗ v1 − v2 ⊗ v2) · (v1 − v2) dx.

Let us assume that (2.23) holds with CIK 6 K1, where CI comes from the embedding

inequality ‖u‖γ1,Γ1 6 CI‖u‖1,r. Then the right-hand side of (4.2) can be estimated

using the embeddings W1,r(Ω) →֒ L2r′
(Ω), W1,r(Ω) →֒ Lγ1(Γ1), (2.17), and the

monotonicity of b2, as follows:
∣∣∣∣
∫

Ω

div(v1 ⊗ v1 − v2 ⊗ v2) · (v1 − v2) dx

∣∣∣∣ 6 CK‖v1 − v2‖21,r,(4.3a)

−
〈
b(v1) − b(v2),v1 − v2

〉
6 Cλ1‖v1 − v2‖21,r.(4.3b)

Again, in what follows, C,K > 0 stand for generic constants determined by the

problem data. Here and later in this section, C is independent of f , β1, and β2,

i.e. it is not correlated to K. Applying this back to (4.2) and using (2.8), we thus

obtain

(4.4)
C1

2

∫

Ω

I1,2 dx 6 γ2
0

2C1
‖p1 − p2‖22 + C(K + λ1)‖v1 − v2‖21,r.

This together with (2.10), Korn’s and Friedrichs’ inequalities yields that for λ1 and

K small enough

(4.5) ‖v1 − v2‖1,r 6 C‖p1 − p2‖2.

Next, using (2.9) and Hölder’s inequality, we obtain for any ϕ ∈ W1,r
b.c.(Ω)

∣∣∣∣
∫

Ω

(S1 − S2) : D(ϕ) dx

∣∣∣∣(4.6)

6 C2

(∫

Ω

I1,2 dx

)1/2

‖D(ϕ)‖2 + γ0‖p1 − p2‖2‖D(ϕ)‖2
(4.4)

6
(
γ0

(
1 +

C2

C1

)
+ C

√
K + λ1

)
‖p1 − p2‖2‖D(ϕ)‖2.
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Let us set ϕ := B̃(p1 − p2) in (4.1). Note that ‖ϕ‖1,2 6 C̃div(Ω,Γ1,Γ2, 2)‖p1 − p2‖2
and also that ‖ϕ‖γ1,Γ1 , ‖ϕ‖∞,Γ2 6 C‖p1 − p2‖2. We arrive at

∫

Ω

(S1 − S2) : D(ϕ) dx = ‖p1 − p2‖22 −
〈
b(v1) − b(v2),ϕ

〉

−
∫

Ω

div(v1 ⊗ v1 − v2 ⊗ v2) · ϕ dx,

which in combination with (4.6) gives

‖p1 − p2‖22 6
(
γ0

(
1 +

C2

C1

)
+ C

√
K + λ1

)
‖p1 − p2‖2‖D(ϕ)‖2(4.7)

+
〈
b(v1) − b(v2),ϕ

〉
+

∫

Ω

div(v1 ⊗ v1 − v2 ⊗ v2) · ϕ dx.

From (2.18), (2.21)3, the embedding and (4.5) it follows that

〈
b2(v

1 · n) − b2(v
2 · n),ϕ · n

〉
6 Cλ2‖v1 − v2‖1,r‖p1 − p2‖2(4.8)

6 Cλ2‖p1 − p2‖22,

provided that CIK 6 K2, with CI from ‖u‖r∗,Γ2 6 CI‖u‖1,r. Applying the same

technique as in (4.3), namely the embeddings and (2.17), then using (4.5) and (4.8),

we can collectively estimate the boundary and the convective term on the right-hand

side of (4.7) by the expression C(λ1 + λ2 + K)‖p1 − p2‖22 and obtain
(

1 − C̃div(Ω,Γ1,Γ2, 2)
(
γ0

(
1 +

C2

C1

))
(4.9)

− C(
√

K + λ1 + λ1 + λ2 + K)

)
· ‖p1 − p2‖22 6 0.

Due to (2.22)2, for λ1, λ2 and K small enough the coefficient on the left-hand side

is positive and thus (v1, p1) = (v2, p2).

R em a r k 4.1 (pressure is fixed by velocity). Let (v, p1) and (v, p2) be weak

solutions to (P). Then, under the assumptions of Theorem 2.5, p1 = p2.

P r o o f. From (2.9) we observe that

∣∣∣∣
∫

Ω

(S1 − S2) : D(ϕ) dx

∣∣∣∣ 6 γ0‖p1 − p2‖2‖D(ϕ)‖2 for all ϕ ∈ W1,r
b.c.(Ω).

Then we subtract (2.19), take a test function ϕ := B̃(p1 − p2) and obtain

‖p1 − p2‖22 6 γ0C̃div(Ω,Γ1,Γ2, 2)‖p1 − p2‖22.

Since by assumption γ0C̃div(Ω,Γ1,Γ2, 2) < 1, we conclude that p1 = p2. �
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R em a r k 4.2. Note that the additional assumptions—namely the requirement

of small data f , β1, β2—stated in (iii) of Theorem 2.5, are due to the presence of

the convective term and the nonlinear boundary terms, not due to the nonlinear

viscosity.

Indeed, one can consider a Stokes-like system (PS)

− divS + ∇p = f , div v = 0 in Ω

and the boundary terms

b = b(x) on Γ.

The readers can verify themselves that the weak solution to (PS) exists and is unique

even for large data.

5. Boundary conditions in applications

Although the assumptions (B1)–(B7) seem to be motivated mainly by PDE analy-

sis, they cover important engineering applications; we mention three types of them

in the sequel.

Artificial boundary. In numerical simulations, large or even unbounded do-

mains arising from the physical model must be truncated and the boundary condi-

tion for artificial boundaries has to be provided. For example in [13], an application

to the flow through a cascade of profiles with the outflow condition

(5.1) −Tn = h(x) +
1

2
(v · n)−v

is considered (see also Section 1). In [6], several b.c. including (5.1) were proposed

(for unsteady incompressible Navier-Stokes equations) in order to perform long-time

simulations at high Reynolds numbers. See also [4], [5], [7].

Note that b1 given by (5.1) meets (B1), (B2) with γ1 = 3 and β1 = ‖h‖3/2,Γ1 .

Note also that ‖b1(v1) − b1(v
2)‖3/2,Γ1 6 1

2‖v1 − v2‖3,Γ1(‖v1‖3,Γ1 + ‖v2‖3,Γ1) allows

to establish (B6) with any λ1 > 0, provided K1 > 0 is chosen sufficiently small.

Conditions involving Bernoulli’s pressure. In some applications, the quan-

tity p + 1
2 |v|2, referred to as the total pressure or the Bernoulli pressure, is used

for prescribing the inflow/outflow boundary conditions on artificial boundaries (see

e.g. [12], [14], [20], [33]). Note that this class of conditions

(5.2)
(
p +

1

2
|v|2

)
n − Sn = h(x)
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is covered by our theory. Similarly to (5.1), b1 given by (5.2) satisfies (B1), (B2)

with γ1 = 3 and β1 = ‖h‖3/2,Γ1, and (B6) with any λ1 > 0, provided that K1 > 0 is

sufficiently small.

However, it is questionable whether the total pressure is generally applicable, when

seeking after proper boundary conditions for viscous flows. The authors of [20] note:

“The total pressure is constant along streamlines in Euler flow and therefore is an im-

portant quantity in some high-Reynolds-number situations”, but later they correctly

point out that these conditions3 “. . . are not satisfied by Poiseuille flow. Thus their

poor performance is to be expected.” In other words, we do not recommend (5.2)

as a suitable outflow condition for artificial boundaries. At the same time, this

emphasizes that (5.1) is intended to be used for outflow—not inflow—boundaries.

Porous wall. Boundary conditions of the type (1.3) are applicable to the flows

where an inflow/outflow is possible through a porous wall (filtration boundary con-

ditions). In most studies, for the flow through an isotropic porous medium the linear

law of Darcy

−∇p =
µ

k
v

is considered (with k the permeability of the medium, v the volumetric velocity,

µ the viscosity and p the pressure; body forces such as gravity are neglected here).

As an analogy, when studying the flow where a part of the boundary is a thin porous

wall (or membrane), one can prescribe the condition

(5.3) −Tn · n = pout + c1v · n with c1 > 0

for the normal part of the velocity, see e.g. [34]. However, Darcy’s law is valid only

for slow flows. It can be in fact derived from the Stokes equation, i.e. neglecting

the inertia of the fluid, see e.g. [31]. For higher Reynolds numbers, the experimental

observations “did not allow to find a universally accepted formula” [31]. Nevertheless,

the relation

(5.4) −∇p =
µ

k
v + d2|v|v + d3|v|2v, with d2, d3 > 0,

was proposed more than a century ago in [15]. Here, the last two terms were added

to make the equation fit the experimental results. Formula (5.4) with d3 = 0 is well

established as the Forchheimer equation; see e.g. [2] for a survey of both experimental

and theoretical results prior to 1972, or [19], [31] for more recent references. The

authors are not aware of any reference concerning the porous wall boundary condition

3 considering the intuitive setting of h(x) constant across the channel, analogously to (1.2)
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which would involve both the high velocity effects and the non-Newtonian fluids with

pressure and/or shear rate dependent viscosities.

As an analogy of (5.4), the boundary condition of the type

(5.5) −Tn · n = pout + (c1 + c2|v · n| + c3|v · n|2)v · n with c1, c2, c3 > 0

seems to correspond to the physics better than (5.3). If c3 > 0 then b2 given by (5.5)

meets (B3)–(B5) with γ2 = 4 and e.g. with β2 = c3/2 and β2 = |Γ2|(1/c3)3 +

‖pout‖4/3
4/3,Γ2

(1/c3)
1/3. Considering (5.5) with c3 = 0, one has to assume c2 > 1

2 and

verify (B3)–(B5) e.g. by setting β2 = 1
2 (c2 − 1

2 ) and β2 = (c2 − 1
2 )−1/2‖pout‖3/2

3/2,Γ2
.

From Hölder’s inequality we have

‖b2(w) − b2(z)‖1,Γ2 6 c1|Γ2|1/r∗′‖w − z‖r∗ + c2(‖w‖r∗′ + ‖z‖r∗′)‖w − z‖r∗(5.6)

+
3

2
c3(‖w‖22r∗′ + ‖z‖22r∗′)‖w − z‖r∗ .

Note that 2r∗′ < r∗, since r > 3d/(d + 2). Thus, (B7) can be achieved for any

λ2 > c1|Γ2|(r
∗−1)/r∗

, choosing K2 > 0 sufficiently small.

Concerning the boundary conditions given on the tangential part of the velocity

on a porous wall, the no-slip condition (2.4)1 is chosen here as one of several possible

choices. It was preferred mainly in order to keep the ideas simple, even though

from the physical point of view there is no particular preference over kinds of the

slip condition. Nevertheless, the no-slip condition can be reasonable either as an

approximation or in cases justified by the particular application, see for instance [17],

[18], [34].

6. Conclusion

The class of fluids with pressure and shear rate dependent viscosities together

with mixed boundary conditions involving the pressure was studied. Under certain

assumptions, it was shown that a weak solution exists and that this weak solution

is unique if the data are small. In contrast to previous studies, no constraint on the

pressure mean value is present in the formulation of the problem. The proof follows

the ideas of [16], except for the treatment of the inflow/outflow boundary conditions.

Finally, a brief survey on these boundary conditions fitting to our theory is presented

together with their physical application.
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In this paper we consider a class of incompressible viscous fluids whose viscosity depends on the shear
rate and pressure. We deal with isothermal steady flow and analyse the Galerkin discretization of the
corresponding equations. We discuss the existence and uniqueness of discrete solutions and their con-
vergence to the solution of the original problem. In particular, we derive a priori error estimates, which
provide optimal rates of convergence with respect to the expected regularity of the solution. Finally,
we demonstrate the achieved results by numerical experiments. The fluid models under consideration
appear in many practical problems, for instance, in elastohydrodynamic lubrication where very high pres-
sures occur. Here we consider shear-thinning fluid models similar to the power-law/Carreau model. A re-
stricted sublinear dependence of the viscosity on the pressure is allowed. The mathematical theory con-
cerned with the self-consistency of the governing equations has emerged only recently. We adopt the
established theory in the context of discrete approximations. To our knowledge, this is the first analysis
of the finite element method for fluids with pressure-dependent viscosity. The derived estimates coincide
with the optimal error estimates established recently for Carreau-type models, which are covered as a spe-
cial case.

Keywords: non-Newtonian fluid; shear-rate- and pressure-dependent viscosity; finite element method;
error analysis.

1. Introduction

The article is devoted to the finite element discretization of equations governing the steady flow of a class
of incompressible fluids whose viscosity depends nonlinearly on the shear rate and pressure. We dis-
cuss the well-posedness of the discretized problem and derive a priori estimates for the discretization
error.
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The isothermal flow of an incompressible viscous fluid is typically described by the Navier–Stokes
equations, which embody Newton’s hypothesis that the viscosity—the ratio between the shear stress
and the shear rate—is constant. Since the early formation of fluid mechanics it has been known that this
assumption may not be applicable to all viscous flows. In past decades many non-Newtonian phenom-
ena have become the subject of scientific interest. We will consider models with shear-dependent and
pressure-dependent viscosity, which play an important role in many areas such as elastohydrodynamic
lubrication, geology and glaciology (see, e.g., Hindmarsh, 1998; Bair & Gordon, 2006; Stemmer et al.,
2006; Schoof, 2007; Szeri, 2010 and the references given in Hron et al., 2001). The viscosity of fluids
in such applications varies considerably with the pressure, even by several orders of magnitude.

We study the steady isothermal flow of an homogeneous incompressible viscous fluid in a bounded
domain Ω ⊂ Rd , d ∈ {2, 3}, governed by the following system of PDEs:

− div SSS(π, DDDvvv) + ∇π = fff

divvvv = 0

}
in Ω, (1.1)

where vvv is the velocity, π denotes the pressure (more specifically, the ratio of the mean normal stress
and the density) and fff represents the density of an applied body force. Here, DDDvvv is the symmetric part
of the velocity gradient. Note that we avoid mathematical difficulties related to the convective term by
neglecting inertial forces in the first equation. We consider extra stress tensors SSS of the form

SSS(π, DDDvvv) = 2η(π, |DDDvvv|2)DDDvvv, (1.2)

where η is the generalized kinematic viscosity. Many details, examples, and an extensive discussion
concerning the class of models (1.2) can be found in Málek & Rajagopal (2006, 2007).

We assume that the domain boundary ∂Ω is Lipschitz and consists of two parts, ∂Ω = ΓD ∪ ΓP ,
|ΓD| > 0. Then, we complement the system (1.1) with the boundary conditions

vvv = vvv D on ΓD, (1.3)

−SSS(π, DDDvvv)nnn + πnnn = bbb on ΓP , (1.4)

where nnn denotes the unit outer normal vector to ∂Ω . We distinguish two cases.

(a) If |ΓP | = 0 (i.e., the Dirichlet boundary conditions are prescribed on the whole boundary, ΓD =
∂Ω) then we additionally fix the level of pressure by requiring

−
∫

Ω
π dxxx = π0 ∈ R. (1.5)

For simplicity of notation1 we assume π0 = 0.

(b) If |ΓP | > 0 then (1.4) suffices to fix the level of the pressure. This was shown in Lanzendörfer &
Stebel (2011a,b); see also Lemma 2.9, Remark 2.11 and Theorem 3.2 below.

It is a special feature of piezoviscous fluids, in case (a), that through SSS(π, DDDvvv), the number π0 affects
the whole solution, including the velocity field. Hence, the nonphysical constraint (1.5) comprises an
important input parameter undeterminable by practical applications. In contrast, bbb in (1.4) represents the
force acting on the domain boundary and reflects physically reasonable input data.

While the mathematical self-consistency of the shear-thinning or shear-thickening fluid models
has been studied intensively since the 1960s, the rigorous analysis of those with pressure-dependent

1The theoretical methods and results of this paper are not restricted to the choice π0 = 0.
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viscosity has emerged only recently (see Málek & Rajagopal, 2006 for references). The well-posedness
of problems in which the viscosity depends solely on the pressure, or grows with the pressure
superlinearly, has not been resolved, except under severe restrictions on the data size or time interval.
When the viscosity changes with the pressure too rapidly, the equations corresponding to steady flow
lose their ellipticity. A breakthrough result appeared in Málek et al. (2002), where viscosities depending
on both the pressure and the shear rate have been considered. The structure of the viscosity proposed
therein has allowed for global and large data existence results for both steady and unsteady motions
under various boundary conditions (see, e.g., Franta et al., 2005; Bulı́ček et al., 2007; Lanzendörfer,
2009; Lanzendörfer & Stebel, 2011a).

Our aim is to adopt the established mathematical theory in the framework of Galerkin discretizations.
The finite element method has been studied extensively in the context of power-law/Carreau models, for
which the viscosity depends only on the shear rate (see Baranger & Najib, 1990; Barrett & Liu, 1993,
1994; and the references therein). In particular, Hirn (2010) and Belenki et al. (2010) have recently
derived optimal a priori error estimates in the shear-thinning case. However, no such analysis is available
when the fluid’s viscosity also depends on the pressure. To the best of our knowledge, the present paper
provides the first analytical study of the finite element method in the context of fluids with shear-rate-
and pressure-dependent viscosity.

This paper is devoted to the finite element approximation of the problem (1.1)–(1.5) where the
extra stress tensor SSS is supposed to satisfy a certain p-structure; see Assumptions (A1)–(A2) below. For
p ∈ (1, 2] we will show that the finite element solutions (vvvh, πh) exist, are determined uniquely, and
that they converge to the weak solution (vvv, π) strongly in W1,p(Ω) × Lp′

(Ω), p′ := p/(p − 1), for
diminishing mesh size, h. Moreover, if the solution (vvv, π) satisfies the regularity condition∫

Ω
(1 + |DDDvvv|)p−2|∇DDDvvv|2 dxxx < ∞ and π ∈ W1,p′

(Ω), (1.6)

then an O(h) error bound for the velocity in W1,p(Ω) and an O(h2/p′
) error bound for the pressure

in Lp′
(Ω) will be established:

‖vvv − vvvh‖1,p � ch, ‖π − πh‖p′ � ch
2
p′ .

These estimates will be derived by means of the well-known quasinorm technique, which was originally
developed for the error analysis of the p-Laplace equation (see Barrett & Liu, 1994). Numerical exper-
iments indicate that these estimates are optimal with respect to the supposed regularity. Moreover, the
present paper also covers the case of Carreau-type models for which the a priori error estimates derived
here coincide with those established in Belenki et al. (2010) and Hirn (2010).

The paper is organized as follows: in Section 2 we formulate basic assumptions, introduce tools,
and define the problem and its discretization. Section 3 deals with the existence and uniqueness of the
discrete solutions and their convergence to the weak solution of the problem. A priori error estimates are
derived in Section 4 and are applied to the finite element discretization in Section 5. Finally, in Section 6
we demonstrate the theoretical results by numerical experiments.

2. Preliminaries

In this section we introduce the notation, we state our assumptions on the extra stress tensor, indicate
how the stress tensor is related to N -functions and we show its resulting properties. Then, we introduce
the weak formulation of the system (1.1)–(1.5) and its Galerkin discretization.
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2.1 Notation and function spaces

The set of all positive real numbers is denoted by R+. Let R+
0 := R+ ∪ {0}. The Euclidean scalar

product of two vectors ppp,qqq ∈ Rd is denoted by ppp · qqq, the scalar product of PPP, QQQ ∈ Rd×d is defined by
PPP : QQQ := ∑d

i, j=1 Pi j Qi j . We set |QQQ| := (QQQ : QQQ)1/2. Often we use c as a generic constant, whose value
may change from line to line but does not depend on important variables. We write a ∼ b if there exist
positive constants c and C independent of all relevant quantities such that cb � a � Cb. Similarly, the
notation a � b is used for a � Cb.

For a measurable set ω ⊂ Ω , |ω| denotes its d-dimensional Lebesgue measure. For ν ∈ [1, ∞],
Lν(Ω) stands for the Lebesgue space and Wm,ν(Ω) for the Sobolev space of order m. The space Lν

0(Ω)

contains all q ∈ Lν(Ω) with −
∫
Ω q dxxx := 1

|Ω|
∫
Ω q dxxx = 0. For ν > 1 we use the notation W1,ν

0 (Ω) for
the Sobolev space with vanishing traces on ∂Ω . The Lν(ω)-norm is denoted by ‖·‖ν;ω and the Wm,ν(ω)-
norm is denoted by ‖·‖m,ν;ω. The notation (u, v)ω is used for the integral

∫
ωuv dxxx . In the case of ω = Ω ,

we usually omit the index Ω . Spaces of Rd -valued functions are denoted with boldface type, though no
distinction is made in the notation of norms and inner products; the norm in Wm,ν(Ω) ≡ [Wm,ν(Ω)]d

is given by ‖www‖m,ν = ( ∑
1�i�d

∑
0�|α|�m‖∂αwi‖ν

ν

)1/ν , etc.

2.2 Structural assumptions on the extra stress tensor

Let p > 1, ε > 0, and γ0 � 0 be given. We suppose that the extra stress tensor SSS belongs to the
class (1.2) and satisfies the following structural assumptions.

(A1) There exist positive constants σ0, σ1 such that for all PPP, QQQ ∈ Rd×d
sym , q ∈ R there holds

σ0

(
ε2 + |PPP|2

) p−2
2 |QQQ|2 � ∂SSS(q, PPP)

∂PPP
: (QQQ ⊗ QQQ) � σ1

(
ε2 + |PPP|2

) p−2
2 |QQQ|2,

where Rd×d
sym := {PPP ∈ Rd×d ; PPP = PPPT} and (QQQ ⊗ QQQ)i jkl = Qi j Qkl .

(A2) For all PPP ∈ Rd×d
sym and q ∈ R there holds∣∣∣∣∂SSS(q, PPP)

∂q

∣∣∣∣ � γ0

(
ε2 + |PPP|2

) p−2
4

.

REMARK 2.1 Models satisfying Assumptions (A1)–(A2) can approximate some real-world liquids
within a certain range of shear rates and pressures (see Málek et al., 2002; Málek & Rajagopal, 2006,
2007, for examples and applications; see also Remark 6.1). Note that both assumptions are rather re-
strictive with regard to the dependence of the viscosity on the pressure, which is usually considered as
η ∼ exp(απ) in practical applications. The well-posedness of problems with superlinear dependence
on the pressure is, however, an open problem, as, similarly, is the limiting case ε = 0. For a possible
generalization of the theoretical results to unbounded viscosities see Bulı́ček et al. (2009). Most real-life
fluids, that are under consideration, exhibit shear-thinning behaviour, which corresponds to exponents
p < 2. Later, we will restrict ourselves to shear-thinning models. The case p = 2 will be included in the
subsequent analysis, although we will mostly speak of shear-thinning fluids only. An exemplary model
that satisfies (A1)–(A2) with p = 2 can be found in Málek & Rajagopal (2007).
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We show how the stress tensor relates to N -functions. A continuous convex function ψ : R+
0 → R+

0
is called an N -function if ψ(0) = 0, ψ(t) > 0 for t > 0, limt→0+ ψ(t)/t = 0 and limt→∞ ψ(t)/t =
∞. Consequently, the right derivative ψ ′ of ψ exists, is nondecreasing and satisfies ψ ′(0) = 0, ψ ′(t) >
0 for t > 0, and limt→∞ ψ ′(t) = ∞. We define the complementary N -function ψ∗ by ψ∗(t) :=
sups�0(st − ψ(s)) for all t � 0. If ψ ′ is strictly increasing then (ψ∗)′ = (ψ ′)−1. An important subclass
of N -functions consists of those that satisfy the Δ2-condition: ψ satisfies the Δ2-condition if there exists
C > 0 such that ψ(2t) � Cψ(t) for all t � 0. Here, Δ2(ψ) denotes the smallest such constant. Diening
& Ettwein (2008, Lemma 32) provides the following Young-type inequality: for all δ > 0 there exists
cδ > 0, which depends only on Δ2(ψ),Δ2(ψ

∗) < ∞, such that for all s, t � 0 there holds

sψ ′(t) + ψ ′(s)t � δψ(s) + cδψ(t). (2.1)

Let us consider the following simple examples: for p > 1 we introduce the convex function,

ϕ ∈ C(R+
0 ,R+

0 ), ϕ(t) := 1

p
t p. (2.2)

Clearly, ϕ and ϕ∗, where ϕ∗(t) = 1
p′ t p′

, are N -functions satisfying the Δ2-condition. For a given
N -function ψ with Δ2(ψ), Δ2(ψ

∗) < ∞, we define the family of shifted functions {ψa}a�0 by

ψa(t) :=
∫ t

0
ψ ′

a(s) ds with ψ ′
a(t) := ψ ′(a + t)

t

a + t
. (2.3)

Then, Diening & Ettwein (2008, Lemma 23) ensures that {ψa}a�0 are again N -functions and satisfy the
Δ2-condition uniformly in a � 0 with Δ2-constants depending only on Δ2(ψ), Δ2(ψ

∗). Let us return
to case (2.2): the family of shifted N -functions {ϕa}a�0 belongs to C1(R+

0 ) ∩ C2(R+) and satisfies the
Δ2-condition uniformly in a � 0 with Δ2-constants depending only on p. Using the definition of ϕa we
easily conclude that

min{1, p − 1}(a + t)p−2 � ϕ′′
a (t) � max{1, p − 1}(a + t)p−2 (2.4)

and ϕ′
a(t) ∼ ϕ′′(a + t)t ∼ ϕ′′

a (t)t . Moreover, ϕa(t) ∼ ϕ′
a(t)t uniformly in t, a � 0. Due to (2.4)

the inequalities of Assumption (A1) defining the (p, ε)-structure of SSS can be expressed equivalently in
terms of the N -functions ϕε.

2.3 Basic properties of the extra stress tensor

We express several consequences of Assumptions (A1)–(A2). Below, we formulate the results as
generally as possible, although in the forthcoming sections we only treat the shear-thinning case. We
introduce the function FFF : Rd×d

sym → Rd×d
sym by

FFF(PPP) := (ε + |PPP|) p−2
2 PPP, (2.5)

where p and ε are the same as in Assumptions (A1)–(A2). The quantity FFF is closely related to the extra
stress tensor SSS as shown by the following lemma.
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LEMMA 2.2 For given p ∈ (1, ∞) and ε ∈ [0, ∞), let SSS satisfy (A1), let FFF be defined by (2.5), and let
ϕ be defined by (2.2). Then, uniformly for all PPP, QQQ ∈ Rd×d

sym , q ∈ R, it holds that

(SSS(q, PPP) − SSS(q, QQQ)) : (PPP − QQQ) ∼ (ε + |PPP| + |QQQ|)p−2|PPP − QQQ|2

∼ ϕε+|PPP|(|PPP − QQQ|) ∼ |FFF(PPP) − FFF(QQQ)|2,

|SSS(q, PPP) − SSS(q, QQQ)| ∼ ϕ′
ε+|PPP|(|PPP − QQQ|),

where the constants depend only on σ0, σ1 and p. In particular, they are independent of ε � 0. Moreover,
the following estimates hold:

SSS(q, QQQ) : QQQ � σ0

2p
(|QQQ|p − ε p) and |SSS(q, QQQ)| � σ1

p − 1
|QQQ|p−1. (2.6)

Proof. For (2.6) we refer to Málek et al. (1996, Lemma 1.19). All remaining estimates are proven
in Diening et al. (2007) or Diening & Ettwein (2008). �

As a straightforward consequence of Assumptions (A1)–(A2) we also obtain the following result.

LEMMA 2.3 For given p ∈ (1, ∞), ε ∈ (0, ∞), and γ0 ∈ [0, ∞), let SSS satisfy (A1), (A2). For PPP0, PPP1 ∈
Rd×d

sym and s ∈ [0, 1] let us set PPPs := PPP0 + s(PPP1 − PPP0). Then, for all PPP0, PPP1 ∈ Rd×d
sym and π, q ∈ R it

holds that

σ0

2

∫ 1

0
(ε2 + |PPPs |2) p−2

2 |PPP1 − PPP0|2 ds � (SSS(π, PPP1) − SSS(q, PPP0)) : (PPP1 − PPP0) + γ 2
0

2σ0
|π − q|2, (2.7)

|SSS(π, PPP1) − SSS(q, PPP0)| � σ1

∫ 1

0
(ε2 + |PPPs |2) p−2

2 |PPP1 − PPP0| ds + γ0

∫ 1

0
(ε2 + |PPPs |2) p−2

4 |π − q| ds.

(2.8)

Proof. See, e.g., Bulı́ček et al. (2007, Lemma 1.4). �
In view of Lemma 2.3 we define the distance

d(vvv,uuu)2 :=
∫

Ω

∫ 1

0

(
ε2 + |DDDuuu + s(DDDvvv − DDDuuu)|2

) p−2
2 |DDDvvv − DDDuuu|2 ds dxxx (2.9)

for all vvv,uuu ∈ W1,p(Ω). We get the following corollary.

COROLLARY 2.4 For given p ∈ (1, ∞), ε ∈ (0, ∞) and γ0 ∈ [0, ∞), let SSS satisfy (A1), (A2). Let d(·, ·)
be defined by (2.9). Then, for all vvv,www ∈ W1,p(Ω) and π, q ∈ L2(Ω), there holds

σ0

2
d(vvv,www)2 � (SSS(π, DDDvvv) − SSS(q, DDDwww), DDDvvv − DDDwww)Ω + γ 2

0

2σ0
‖π − q‖2

2. (2.10)

For each δ > 0 there exists a positive constant cδ depending only on σ1 and δ, such that

(SSS(π, DDDvvv) − SSS(q, DDDwww), DDDvvv − DDDwww)Ω � cδd(vvv,www)2 + δγ 2
0 ‖π − q‖2

2. (2.11)

FLUIDS WITH SHEAR-RATE- AND PRESSURE-DEPENDENT VISCOSITY 1609

Downloaded from https://academic.oup.com/imajna/article-abstract/32/4/1604/654493
by Department of Plant Physiology, Faculty of Science, Charles University user
on 06 February 2018

4.1. MATHEMATICAL THEORY OF PIEZOVISCOUS FLUIDS 69



If p � 2 then, for all vvv,www ∈ W1,p(Ω) and all sufficiently smooth functions π, q , there holds

‖SSS(π, DDDvvv) − SSS(q, DDDwww)‖2 � σ1ε
p−2

2 d(vvv,www) + γ0ε
p−2

2 ‖π − q‖2, (2.12)

‖SSS(π, DDDvvv) − SSS(q, DDDwww)‖p′ � cd(vvv,www)
2
p′ + γ0ε

p−2
2 ‖π − q‖p′ , (2.13)

where c = c(p, σ1) is a positive constant.

Proof. Clearly, (2.10) is a consequence of (2.7), whereas (2.11) follows from (2.8) and Young’s inequal-
ity. Setting DDDs := DDDwww + s(DDDvvv − DDDwww), for ν � 1 we infer from (2.8) and Minkowski’s inequality that

‖SSS(π, DDDvvv) − SSS(q, DDDwww)‖ν � σ1

(∫
Ω

∣∣∣ ∫ 1

0
(ε2 + |DDDs |2) p−2

2 |DDDvvv − DDDwww| ds
∣∣∣ν dxxx

) 1
ν

+ γ0

(∫
Ω

∣∣∣ ∫ 1

0
(ε2 + |DDDs |2) p−2

4 |π − q|ds
∣∣∣ν dxxx

) 1
ν

. (2.14)

We immediately deduce (2.12) from (2.14) with ν = 2 and Jensen’s inequality. In order to derive (2.13)
we recall the following well-known result (see Acerbi & Fusco, 1989, Lemma 2.1):(

ε2 + (|PPP1| + |PPP2|)2
)α ∼

∫ 1

0

(
ε2 + |PPP2 + s(PPP1 − PPP2)|2

)α
ds ∀ PPP1, PPP2 ∈ Rd×d

sym , (2.15)

which holds true for each α > −1/2 provided that ε+|PPP1|+|PPP2| > 0. Note that the constants in (2.15)
depend only on α. Furthermore, we mention the trivial inequality

1

2
(|PPP1| + |PPP2|) � |PPP1| + |PPP1 − PPP2| � 2(|PPP1| + |PPP2|) ∀ PPP1, PPP2 ∈ Rd×d

sym . (2.16)

Using (2.15), (2.16), and the fact that p � 2, we conclude from (2.14) with ν = p′ that

‖SSS(π, DDDvvv) − SSS(q, DDDwww)‖p′ � c

(∫
Ω

(
ε2 + (|DDDwww| + |DDDvvv − DDDwww|)2

) p−2
2 p′

|DDDvvv − DDDwww|p′
dxxx

) 1
p′

+ γ0

⎛⎝∫
Ω

∣∣∣∣∣
∫ 1

0

(
ε2 + |DDDs |2

) p−2
4 |π − q| ds

∣∣∣∣∣
p′

dxxx

⎞⎠
1
p′

� c

(∫
Ω

(
ε2 + (|DDDwww| + |DDDvvv − DDDwww|)2

) p−2
2 |DDDvvv − DDDwww|2 dxxx

) 1
p′

+ γ0ε
p−2

2

(∫
Ω

|π − q|p′
dxxx

) 1
p′

,

where the constant c depends only on p and σ1. This yields (2.13). �
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We remark that the distance d(·, ·) is equivalent to the so-called quasinorm, which was introduced
in Barrett & Liu (1993). Hence, all results below can also be expressed in terms of quasinorms. The
following lemma indicates that d(·, ·) is also equivalent to the FFF-distance.

LEMMA 2.5 For p ∈ (1, ∞), ε ∈ (0, ∞), let SSS satisfy (A1). Let d(·, ·) be defined by (2.9) and let FFF be
defined by (2.5). For all vvv,uuu ∈ W1,p(Ω) and π ∈ L2(Ω), there holds

d(vvv,uuu)2 ∼ ‖FFF(DDDvvv) − FFF(DDDuuu)‖2
2 ∼ (SSS(π, DDDvvv) − SSS(π, DDDuuu), DDDvvv − DDDuuu)Ω. (2.17)

All constants depend only on p, σ0, σ1.

Proof. See, e.g., Diening et al. (2007). The assertion follows from Lemma 2.2 and (2.15). �

The following lemma, whose proof can be found in Berselli et al. (2010), shows the connection
between the quasinorms and Sobolev norms.

LEMMA 2.6 For p ∈ (1, 2] and ε ∈ (0, ∞), let SSS satisfy (A1) and let FFF be defined by (2.5). Then, for
all sufficiently smooth functions vvv,uuu, and for ν ∈ [1, 2], there holds

‖DDD(vvv − uuu)‖2
ν � ‖FFF(DDDvvv) − FFF(DDDuuu)‖2

2‖(ε + |DDDvvv| + |DDDuuu|)2−p‖ ν
2−ν

, (2.18)

where the constant depends only on p, σ0, and σ1. If ν = 2 then ν
2−ν = ∞.

2.4 Weak formulation

The natural spaces for the velocity and pressure are given by

XXX p := {www ∈ W1,p(Ω); trwww = 000 on ΓD},

Q p := {q ∈ Lp′
(Ω); if |ΓP | = 0 then

∫
Ω q dxxx = 0},

where p′ := p/(p − 1). The following Korn inequality holds in XXX p as long as |ΓD| > 0.

LEMMA 2.7 (Korn’s inequality). Let ν ∈ (1, ∞), Ω ⊂ Rd , be a bounded domain and ∂Ω,ΓD ∈
C0,1, where ΓD ⊂ ∂Ω has nonzero (d − 1)-dimensional measure. Then, there exists a constant cK :=
cK (Ω, ΓD, ν) > 0 such that

cK ‖www‖1,ν � ‖DDDwww‖ν ∀www ∈ XXXν .

Proof. The result can be found in Málek et al. (1996, Theorem 1.10, p. 196); although it is formulated
for ΓD = ∂Ω there, its proof covers the case |ΓD| > 0. �

Let us summarize the general assumptions that will be used in the following sections.

ASSUMPTION 2.8 We suppose that

• Ω ⊂ Rd , d � 2, is a bounded domain, ∂Ω = ΓD ∪ ΓP and ∂Ω,ΓD, ΓP ∈ C0,1, |ΓD| > 0.

• For given p ∈ (1, 2], ε ∈ (0, ε0] with ε0 > 0 arbitrary, and γ0 ∈ (0, ∞), Assumptions (A1)–(A2)
hold true.
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• The following data are given:

vvv0 ∈ W1,p(Ω), divvvv0 = 0 a.e. in Ω, vvv0 = vvv D on ΓD,

fff ∈ Lp′
(Ω) and bbb ∈ L(p#)′(ΓP ), with (p#)′ := (d−1)p

d(p−1) .

Here, p# := (d−1)p
d−p is such that tr(W1,p(Ω)) ↪→ Lp#

(∂Ω).

The weak formulation of system (1.1)–(1.5) reads:

(pS) find (vvv, π) ∈ (vvv0 + XXX p) × Q p (the weak solution) such that

(SSS(π, DDDvvv), DDDwww)Ω − (π, divwww)Ω = ( fff ,www)Ω − (bbb,www)ΓP ∀www ∈ XXX p, (2.19)

(divvvv, q)Ω = 0 ∀ q ∈ Q p. (2.20)

2.5 Galerkin approximation

For given h > 0 let XXXh , Yh , be finite-dimensional spaces and

XXX p
h := XXXh ∩ XXX p, Q p

h := Yh ∩ Q p,

VVV p
h := {wwwh ∈ XXX p

h ; (divwwwh, qh)Ω = 0 ∀qh ∈ Q p
h }.

We will specify the spaces in the context of finite elements in Section 5, h will then stand for the mesh
parameter. At this stage we only require that XXX p

h and Q p
h approximate XXX p and Q p in the following

sense:

lim
h↘0

inf
wwwh∈XXX p

h

‖www − wwwh‖1,p = lim
h↘0

inf
qh∈Q p

h

‖q − qh‖p′ = 0 ∀www ∈ XXX p ∀ q ∈ Q p. (2.21)

The pure Galerkin approximation of (pS) consists in replacing the Banach spaces XXX p and Q p by their
finite-dimensional subspaces XXX p

h and Q p
h :

(pSh) find (vvvh, πh) ∈ (vvv0,h + XXX p
h ) × Q p

h (the discrete solution) such that

(SSS(πh, DDDvvvh), DDDwwwh)Ω − (πh, divwwwh)Ω = ( fff ,wwwh)Ω − (bbb,wwwh)ΓP ∀wwwh ∈ XXX p
h , (2.22)

(divvvvh, qh)Ω = 0 ∀ qh ∈ Q p
h . (2.23)

Here, vvv0,h is any2 appropriate approximation of the Dirichlet data that satisfies

(divvvv0,h, qh)Ω = 0 ∀ qh ∈ Q p
h and lim

h↘0
‖vvv0 − vvv0,h‖1,p = 0. (2.24)

2For example, vvv0,h ∈ XXXh is typical in the context of finite elements; but one can also take vvv0,h = vvv0.

A. HIRN ET AL.1612

Downloaded from https://academic.oup.com/imajna/article-abstract/32/4/1604/654493
by Department of Plant Physiology, Faculty of Science, Charles University user
on 06 February 2018

72 CHAPTER 4. PRESENTED WORKS AND THEIR NOVELTIES



2.6 Inf–sup conditions

The following observation plays an essential role in the further analysis.

LEMMA 2.9 Let Assumption 2.8 be satisfied. For any ν ∈ (1, ∞) there exists a constant β(ν) (depend-
ing on ν, Ω and ΓP ) such that

0 < β(ν) � inf
q∈Qν

sup
www∈XXXν

(q, divwww)Ω

‖q‖ν′ ‖www‖1,ν
. (2.25)

In particular, there exists a constant β0(ν) depending on ν and Ω such that

0 < β0(ν) � inf
q∈Lν′

0 (Ω)

sup
www∈W1,ν

0 (Ω)

(q, divwww)Ω

‖q‖ν′ ‖www‖1,ν
. (2.26)

If |ΓP | > 0 then one possible choice of β(ν) is related to β0(ν) through (2.27).

Proof. If |ΓP | = 0 then XXXν = W1,ν
0 (Ω) and Qν = Lν′

0 (Ω). Then, (2.25) and (2.26) are identical, well
known and follow from the properties of the Bogovskii operator; see Remark 2.10. Let |ΓP | > 0. Then,
(2.25) can be derived from (2.26) (see, e.g., Haslinger & Stebel, 2011). For q ∈ Lν′

(Ω) arbitrary, we
write q = q0 + (−

∫
Ω q dxxx). Since q0 ∈ Lν′

0 (Ω), there exists www0 ∈ W1,ν
0 (Ω), ‖www0‖1,ν = 1 such that

β0(ν)‖q0‖ν′ � (q0, divwww0)Ω = (q, divwww0)Ω . Since ΓP ∈ C0,1, |ΓP | > 0, there exists some ξξξ ∈ XXXν

such that
∫
Ω divξξξ dxxx = ∫

ΓP
ξξξ · nnn dxxx = 1. Taking

www := www0 + δ sign(−
∫
Ω q dxxx)ξξξ with δ := β0(ν)|Ω|1/ν′

1 + |Ω|1/ν′ ‖divξξξ‖ν
,

and using ‖q‖ν′ � ‖q0‖ν′ + |Ω|1/ν′ |−∫Ω q dxxx |, we obtain

(q, divwww)Ω = (q, divwww0)Ω + δ sign(−
∫
Ω q dxxx) (q0, divξξξ)Ω + δ|−∫Ω q dxxx |(1, divξξξ)Ω

� β0(ν)‖q0‖ν′ − δ‖q0‖ν′ ‖divξξξ‖ν + δ|−∫Ω q dxxx |

� β0(ν)

1 + |Ω|1/ν′ ‖divξξξ‖ν
‖q‖ν′ .

Also, www ∈ XXXν , and ‖www‖1,ν � 1 + δ‖ξξξ‖1,ν , which finally gives (2.25) with

β(ν) = β0(ν)

1 + |Ω|1/ν′ ‖divξξξ‖ν + β0(ν)|Ω|1/ν′ ‖ξξξ‖1,ν
. (2.27)

This completes the proof. �

REMARK 2.10 There exists a continuous linear operator B : Lν
0(Ω) → W1,ν

0 (Ω), referred to as the
Bogovskii operator, such that div(B f ) = f in Ω and ‖B f ‖1,ν � Cdiv(Ω, ν)‖ f ‖ν (see Bogovskii,
1980; Amrouche & Girault, 1994; Novotný & Straškraba, 2004). In the preceding studies (see Franta
et al., 2005; Lanzendörfer, 2009), the Bogovskii operator, instead of the inf–sup condition, was applied
directly. For |ΓP | = 0 one observes Cdiv(Ω, 2) � β0(2)−1. For |ΓP | > 0 the modified operator B̃ f :=
B( f − (

∫
Ω f dxxx) divξξξ) + (

∫
Ω f dxxx)ξξξ was utilized (see Lanzendörfer & Stebel, 2011b, Lemma 2.4).

Note from (2.27) that the corresponding constant (see ibid.) C̃div(Ω, ΓP , ν) equals β(ν)−1.
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REMARK 2.11 Lemma 2.9 reveals, in terms of the spaces XXX p, Q p, why the additional constraint (1.5)
is requisite to fix the level of pressure if ∂Ω = ΓD . Note that (1, divwww)Ω = 0 for all www ∈ W1,ν

0 (Ω) and
thus, obviously,

inf
q∈Lν′

(Ω)

sup
www∈W1,ν

0 (Ω)

(q, divwww)Ω

‖q‖ν′ ‖www‖1,ν
= 0.

Below, we require for given ν ∈ (1, ∞) that the families of spaces {XXXν
h}h>0, {Qν

h}h>0, satisfy the
discrete inf–sup condition:

(ISν) for given ν ∈ (1, ∞) there exists a constant β̃(ν) independent of h such that

0 < β̃(ν) � inf
q∈Qν

h

sup
www∈XXXν

h

(q, divwww)Ω

‖q‖ν′ ‖www‖1,ν
.

The availability of (ISν) and the value of β̃(ν) depend on the choice of the spaces XXXh and Yh . In Section 5
we will deal with the construction of appropriate spaces. For the purposes of Theorem 3.3 we also
require the following modification of (ISν):

(ISν
0) there exists a constant β̃0(ν), independent of h, such that

0 < β̃0(ν) � inf
q∈Yh∩Lν′

0 (Ω)

sup
www∈XXXh∩W1,ν

0 (Ω)

(q, divwww)Ω

‖q‖ν′ ‖www‖1,ν
.

REMARK 2.12 If |ΓP | = 0 then (ISν
0) is exactly (ISν). In general, (ISν

0) need not be implied by (ISν)
and vice versa. Let us suppose for a while that both conditions hold true. Since (2.27) in Lemma 2.9
indicates3 β0(ν) � β(ν) on the continuous level, we can expect β̃0(ν) � β̃(ν) for typical choices of
XXXh , Yh . In such a case, the additional requirement of (ISν

0) will guarantee convergence results for a larger
range of γ0; see (3.7) in Theorem 3.3 and (3.18) in Corollary 3.6.

Later, we will use (IS2
0) in conjunction with the following observation: let (IS2

0) hold, let |ΓP | > 0
and p ∈ (1, 2). For arbitrary q ∈ Q p

h , we write q = q0 + −
∫
Ω q dxxx , where4 q0 ∈ Yh ∩ L2

0(Ω). Since
‖q‖2 � ‖q0‖2 + |Ω|1/2|−∫Ω q dxxx |, we obtain

β̃0(2)
(
‖q‖2 − |Ω|1/2|−∫Ω q dxxx |

)
� sup

www∈XXX2
h

(q, divwww)Ω

‖www‖1,2
∀ q ∈ Q p

h . (2.28)

3. Well-posedness of the problem

Below, we show the existence of solutions to (pSh) (discrete solutions), we discuss the conditions guar-
anteeing the uniqueness of solutions to both (pSh) and (pS), and we finally establish the existence of
a solution to (pS) (a weak solution) as the limit of the discrete solutions.

3We did not prove β0(ν) � β(ν); (2.27) merely gives a lower bound for β(ν), which is lower than β0(ν).
4Here, we assume that constants belong to Yh .
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Note that the well-posedness of (pS) with a convective term included has already been resolved: for
ΓD = ∂Ω this was published in Franta et al. (2005) and Lanzendörfer (2009), while the case |ΓP | > 0
was dealt with in Lanzendörfer & Stebel (2011a). In these works, the proof was done in a different way
to here: first a quasicompressible approximation to (pS) was established (by the Galerkin method), and
later it was shown that this approximation converges (on the continuous level) to the ‘incompressible’
solution to (pS). Here, since our concern lies with the finite element discretization, the weak solution
is established directly as a limit of discrete solutions, where the discrete solutions satisfy the (discrete)
incompressibility constraint (2.23). Many of the estimates used here will be employed also in the next
section. Compared to the previous studies, we slightly relax the restriction on γ0 and—since we neglect
convection—our procedure allows for p ∈ (1, 2]. We begin with the well-posedness of (pSh).

THEOREM 3.1 (Existence of discrete solutions). Let Assumption 2.8 hold. Let XXX p
h and Q p

h fulfil (ISp)
with β̃(p) > 0 arbitrary.

Then there exists a solution to (pSh). Any such solution (vvvh, πh) satisfies the a priori estimate

‖vvvh‖1,p + ‖SSS(πh, DDDvvvh)‖p′ + β̃(p)‖πh‖p′ � K . (3.1)

The constant K depends only on Ω,ΓD, p, ε0, σ0, σ1, ‖ fff ‖p′ , ‖bbb‖(p#)′;ΓP
and ‖vvv0,h‖1,p.

Proof. For any δ > 0 (small) we consider the quasicompressible problem
(pSδ

h): find (vvvδ
h, πδ

h ) ∈ (vvv0,h + XXX p
h ) × Q p

h such that(
SSS(πδ

h , DDDvvvδ
h), DDDwwwh

)
Ω

− (
πδ

h , divwwwh
)
Ω

= ( fff ,wwwh)Ω − (bbb,wwwh)ΓP ∀wwwh ∈ XXX p
h , (3.2)

δ
(
πδ

h , qh
)
Ω

+ (
divvvvδ

h, qh
)
Ω

= 0 ∀ qh ∈ Q p
h . (3.3)

The inserted term δ(πδ
h , qh)Ω ensures the coercivity of the equations with respect to the pressure and

allows use of the Brouwer fixed-point theorem to establish the solution to (pSδ
h). Indeed, setting wwwh :=

vvvδ
h − vvv0,h and qh := πδ

h , summing the equations and using Hölder’s and Korn’s inequality, (2.24)1, the

embedding tr(W1,p(Ω)) ↪→ Lp#
(∂Ω), the estimate

(
SSS(πδ

h , DDDvvvδ
h), DDDvvvδ

h − DDDvvv0,h
)
Ω
� σ0

2p
‖DDDvvvδ

h‖p
p − σ1

p − 1
‖DDDvvvδ

h‖p−1
p ‖DDDvvv0,h‖p − σ0

2p
|Ω|ε p

due to (2.6), and Young’s inequality, we obtain the a priori bound

δ‖πδ
h‖2

2 + ‖vvvδ
h‖p

1,p + ‖SSS(πδ
h , DDDvvvδ

h)‖p′
p′ � C,

where C > 0 depends on Ω,ΓD, p, ε0, σ0, σ1, ‖ fff ‖p′ , ‖bbb‖(p#)′;ΓP
and ‖vvv0,h‖1,p. In particular, C is

independent of δ and h. Therefore, using (ISp) and (3.2), we observe that

β̃(p)‖πδ
h‖p′ � sup

wwwh∈XXX p
h

(πδ
h , divwwwh)Ω

‖wwwh‖1,p
� C,

with C > 0 and β̃(p) > 0, independent of δ and h. The same arguments applied to (pSh) prove (3.1).
The uniform bounds above and the fact that XXX p

h and Q p
h are of finite dimension imply that there is

FLUIDS WITH SHEAR-RATE- AND PRESSURE-DEPENDENT VISCOSITY 1615

Downloaded from https://academic.oup.com/imajna/article-abstract/32/4/1604/654493
by Department of Plant Physiology, Faculty of Science, Charles University user
on 06 February 2018

4.1. MATHEMATICAL THEORY OF PIEZOVISCOUS FLUIDS 75



(vvvh, πh) ∈ (vvv0,h + XXX p
h ) × Q p

h such that (for some sequence δn ↘ 0)

vvv
δn
h → vvvh in W1,p(Ω),

π
δn
h → πh in Lp′

(Ω),

SSS
(
π

δn
h , DDDvvv

δn
h

)
→ SSS(πh, DDDvvvh) in Lp′

(Ω)d×d .

Consequently, (vvvh, πh) is a solution to (pSh). �
Note that the constant K in (3.1) does not depend on h since ‖vvv0,h‖1,p � 2‖vvv0‖1,p for h � h0.

According to Theorem 3.1, discrete solutions exist regardless of Assumption (A2). However, uniqueness
of a solution can only be shown by means of (A2) under a smallness assumption on γ0 as depicted by

THEOREM 3.2 (Uniqueness). Let the assumptions of Theorem 3.1 hold. If (IS2) is satisfied and

γ0 < β̃(2)ε
2−p

2
σ0

σ0 + σ1
, (3.4)

then the solution to (pSh) is determined uniquely.
Similarly, there is at most one solution to (pS) provided that Assumption 2.8 is satisfied and

γ0 < β(2)ε
2−p

2
σ0

σ0 + σ1
.

Proof. We prove the uniqueness of a solution to (pSh); the other result is analogous. Let (vvv i
h, π i

h),
i = 1, 2, be two solutions to (pSh). Then, we realize that(

SSS(π1
h , DDDvvv1

h) − SSS(π2
h , DDDvvv2

h), DDDwwwh

)
Ω

= (π1
h − π2

h , divwwwh)Ω ∀wwwh ∈ XXX p
h .

In particular, choosing wwwh := vvv1
h − vvv2

h , we observe(
SSS(π1

h , DDDvvv1
h) − SSS(π2

h , DDDvvv2
h), DDDvvv1

h − DDDvvv2
h

)
Ω

= 0,

and we thus obtain from (2.10) that

d(vvv1
h, vvv2

h)2 �
γ 2

0

σ 2
0

∥∥∥π1
h − π2

h

∥∥∥2

2
. (3.5)

Hence, (IS2) and (2.12) yield the following estimate

β̃(2)
∥∥∥π1

h − π2
h

∥∥∥
2
� sup

wwwh∈XXX2
h

(π1
h − π2

h , divwwwh)Ω

‖wwwh‖1,2

�
∥∥∥SSS(π1

h , DDDvvv1
h) − SSS(π2

h , DDDvvv2
h)

∥∥∥
2

� σ1ε
p−2

2 d
(
vvv1

h, vvv2
h

)
+ γ0ε

p−2
2

∥∥∥π1
h − π2

h

∥∥∥
2
, (3.6)
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which together with (3.5) and (3.4) leads to π1
h = π2

h a.e. in Ω and to d(vvv1
h, vvv2

h) = 0. But this com-
pletes the proof because (2.17), (2.18) and the a priori bound (3.1) ensure that ‖DDDvvv1

h − DDDvvv2
h‖2

p �
C d(vvv1

h, vvv2
h)2 = 0. Since |ΓD| > 0, Lemma 2.7 yields vvv1

h = vvv2
h a.e. in Ω . �

THEOREM 3.3 (Convergence of discrete solutions). Let the assumptions of Theorem 3.1 hold, let the
discrete spaces {(XXX p

h , Q p
h )}h>0 satisfy (2.21) and let {vvv0,h}h>0 satisfy (2.24). In addition, let (IS2

0) hold
and let γ0 fulfill

γ0 < β̃0(2)ε
2−p

2
σ0

σ0 + σ1
. (3.7)

Then the solutions to (pSh) converge to a solution to (pS) as follows:

(vvvhn , πhn ) → (vvv, π) strongly in W1,p(Ω) × Lp′
(Ω) for some hn ↘ 0. (3.8)

In addition, if the solution to (pS) is unique, then the whole sequence {(vvvh, πh)}h>0 tends to (vvv, π).

REMARK 3.4 Note that β̃0(2) appears in (3.7) even in the case |ΓP | > 0. In general, this guarantees
convergence for a larger range of γ0 compared to, e.g., (3.4); see Remark 2.12.

Proof of Theorem 3.3. Theorem 3.1 ensures that solutions (vvvh, πh) ∈ (vvv0,h + XXX p
h ) × Q p

h to (pSh) exist

and satisfy the a priori estimate (3.1). Hence, there exist (vvv, π) ∈ (vvv0 + XXX p) × Q p and SSS ∈ Lp′
(Ω)d×d

such that for a sequence hn ↘ 0 there holds

vvvhn ⇀ vvv weakly in W1,p(Ω), (3.9)

πhn ⇀ π weakly in Lp′
(Ω), (3.10)

SSS(πhn , DDDvvvhn ) ⇀ SSS weakly in Lp′
(Ω)d×d . (3.11)

Obviously, the weak limits satisfy (2.20) and

(SSS, DDDwww)Ω − (π, divwww)Ω = ( fff ,www)Ω − (bbb,www)ΓP ∀www ∈ XXX p. (3.12)

Here, we have used the density (2.21). Subtracting (3.12) and (2.22), we observe

(SSS(πhn , DDDvvvhn ) − SSS, DDDwwwhn )Ω = (πhn − π, divwwwhn )Ω ∀wwwhn ∈ XXX p
hn

. (3.13)

Then (3.13) with wwwh := vvvhn − vvv0,hn implies

(SSS(πhn , DDDvvvhn ) − SSS(π, DDDvvv), DDDvvvhn − DDDvvv)Ω = (πhn − π, div(vvvhn − vvv0,hn ))Ω

+ (SSS, DDDvvvhn − DDDvvv0,hn )Ω + (SSS(πhn , DDDvvvhn ), DDDvvv0,hn − DDDvvv)Ω − (SSS(π, DDDvvv), DDDvvvhn − DDDvvv)Ω.

Using (2.24), (2.23) and (2.20), we realize that

(SSS(πhn , DDDvvvhn ) − SSS(π, DDDvvv), DDDvvvhn − DDDvvv)Ω = (π, div(vvv − vvvhn ))Ω

+ (π, div(vvv0,hn − vvv0))Ω + (SSS, DDDvvvhn − DDDvvv)Ω

+ (SSS − SSS(πhn , DDDvvvhn ), DDDvvv)Ω + (SSS(πhn , DDDvvvhn ) − SSS, DDDvvv0,hn )Ω − (SSS(π, DDDvvv), DDDvvvhn − DDDvvv)Ω.
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Recalling (3.9)–(3.11) and using (2.24) we conclude that

(SSS(πhn , DDDvvvhn ) − SSS(π, DDDvvv), DDDvvvhn − DDDvvv)Ω = o(1), hn ↘ 0, (3.14)

where o(1) denotes an arbitrary sequence that tends to zero for hn ↘ 0.
Furthermore, from (2.18), (3.1), (2.10) and (3.14) we deduce (cf. (3.5))

C‖DDDvvvhn − DDDvvv‖2
p � d(vvvhn , vvv)2 �

γ 2
0

σ 2
0

‖πhn − π‖2
2 + o(1) (3.15)

for some C > 0 independent of hn . We suppose for a while that

β̃0(2)‖πhn − π‖2 � ‖SSS(πhn , DDDvvvhn ) − SSS(π, DDDvvv)‖2 + o(1). (3.16)

Then combining (3.16) and (2.12), we arrive at

β̃0(2)‖πhn − π‖2 � σ1ε
p−2

2 d(vvvhn , vvv) + γ0ε
p−2

2 ‖πhn − π‖2 + o(1), hn ↘ 0.

Using (3.15) and assumption (3.7), we conclude ‖πhn − π‖2 � o(1). Consequently, (3.15) also yields
‖DDDvvvhn − DDDvvv‖p � o(1), which finally implies that

πhn → π a.e. in Ω and DDDvvvhn → DDDvvv a.e. in Ω.

This allows us to apply Vitali’s lemma and to identify SSS,∫
Ω

SSS(πhn , DDDvvvhn ) : DDDwww dxxx →
∫

Ω
SSS(π, DDDvvv) : DDDwww dxxx =

∫
Ω

SSS : DDDwww dxxx ∀www ∈ XXX p.

Therefore, it only remains to show (3.16). Define w̃wwhn ∈ XXX2
hn

, ‖w̃wwhn ‖1,2 = 1, such that

sup
wwwhn ∈XXX2

hn

(πhn − π, divwwwhn )Ω

‖wwwhn ‖1,2
= (πhn − π, div w̃wwhn )Ω.

Then, there exists w̃ww ∈ XXX2 such that (for a not-relabelled subsequence) w̃wwhn − w̃ww ⇀ 0 weakly in XXX2

and5 ‖w̃wwhn − w̃ww‖1,2 � 1. Hence, using (3.13) and (3.11) we obtain

(πhn − π, div w̃wwhn )Ω =(SSS(πhn , DDDvvvhn ) − SSS, DDDw̃wwhn − DDDw̃ww)Ω + o(1)

=(SSS(πhn , DDDvvvhn ) − SSS(π, DDDvvv), DDDw̃wwhn − DDDw̃ww)Ω + o(1)

�‖SSS(πhn , DDDvvvhn ) − SSS(π, DDDvvv)‖2 + o(1), hn ↘ 0.

5Indeed, for n large enough, ‖w̃ww‖2
1,2 � 2(w̃wwhn , w̃ww)1,2;Ω , which implies ‖w̃wwhn − w̃ww‖2

1,2 � ‖w̃wwhn ‖2
1,2 (= 1).
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Recalling (2.28) and using that −
∫
Ω πhn − π dxxx → 0, we deduce that for any qhn ∈ Q p

hn
,

β̃0(2)‖πhn − qhn ‖2 � sup
wwwhn ∈XXX2

hn

(πhn − qhn , divwwwhn )Ω

‖wwwhn ‖1,2
+ β̃0(2)|Ω|1/2

∣∣∣∣−∫
Ω

πhn − qhn dxxx

∣∣∣∣
� sup

wwwhn ∈XXX2
hn

(πhn − π, divwwwhn )Ω

‖wwwhn ‖1,2
+ ‖π − qhn ‖2 + C

∣∣∣∣−∫
Ω

πhn − qhn dxxx

∣∣∣∣
� ‖SSS(πhn , DDDvvvhn ) − SSS(π, DDDvvv)‖2 + C ‖π − qhn ‖2 + o(1), hn ↘ 0,

with C > 0 independent of hn . Using the density of {Q p
hn

} in Q p, we finally assert (3.16),

β̃0(2)‖πhn − π‖2 � β̃0(2) inf
qhn ∈Q p

hn

{‖πhn − qhn ‖2 + ‖qhn − π‖2
}

� ‖SSS(πhn , DDDvvvhn ) − SSS(π, DDDvvv)‖2 + o(1), hn ↘ 0.

This completes the proof. �
Theorem 3.3 guarantees the existence of a solution to (pS) provided that we have a suitable family of

discrete spaces {XXX p
h , Q p

h }h>0. The proper existence result is formulated in Corollary 3.6. In the following
lemma we construct such a family of discrete spaces that satisfies (ISp) and (IS2

0) with a constant β̃0(2),
which is almost equal to β0(2).

LEMMA 3.5 Let Ω , ΓD , ΓP , p be as in Assumption 2.8. Then, for any δ > 0 (small), there exists
a family of finite-dimensional spaces {XXXhn }, {Yhn }, hn ↘ 0 that satisfy (2.21) and fulfill (ISp) and (IS2

0)
with

β̃(p) � β(p) − δ and β̃0(2) � β0(2) − δ. (3.17)

Proof. Consider arbitrary hn ↘ 0, n = 1, 2, . . . . Since W1,2
0 (Ω), XXX p, Q p are separable Banach spaces

with the bases {w̄wwn}∞n=1, {wwwn}∞n=1, {qn}∞n=1, respectively, and since W1,2
0 (Ω) ⊂ XXX p, we can define the

Galerkin spaces by X̃XXm := span{w̄wwi ,wwwi }m
i=1 and Ỹn := span{qi }n

i=1, clearly allowing for (2.21). In order
to ensure (3.17) we only need to choose suitable pairs of the spaces, i.e., to any discrete pressure space
we have to assign a rich enough discrete velocity space. We show this only for (IS2

0) and (3.17)2, the
inclusion of (ISp) is obvious.

Due to (2.21) and Lemma 2.9, for any q ∈ L2
0(Ω) there exists k(q) such that

β0(2) − δ � sup
www∈X̃XXk(q)∩W1,2

0 (Ω)

(q, divwww)Ω

‖q‖2‖www‖1,2
.

We choose minimal such k(q). For n fixed, define m(n) := sup{k(q) : q ∈ Ỹn ∩L2
0(Ω)}. It is easy to see

that Yhn := Ỹn and XXXhn := X̃XXm(n) satisfy (IS2
0) and (3.17). It remains to prove that m(n) is finite. This

is shown by contradiction: let m(n) be infinite. Then, we find a sequence q j ∈ Ỹn ∩ L2
0(Ω), ‖q j‖2 = 1,

j = 1, 2, . . . , such that k(q j ) > j and

sup
www∈X̃XX j ∩W1,2

0 (Ω)

(q j , divwww)Ω

‖www‖1,2
< β0(2) − δ.
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Since Ỹn is of finite dimension, we find some q̃ ∈ Ỹn ∩ L2
0(Ω), ‖q̃‖2 = 1, and a subsequence ji > i

such that ‖q ji − q̃‖2 < δ/2 for i = 1, 2, . . . . But then, the inequality

sup
www∈X̃XXi ∩W1,2

0 (Ω)

(q̃, divwww)Ω

‖www‖1,2
< β0(2) − δ/2

holds for any i = 1, 2, . . . , which combined with the density (2.21) and Lemma 2.9 gives the desired
contradiction. �
COROLLARY 3.6 (Existence of solutions). Let Assumption 2.8 hold and

γ0 < β0(2)ε
2−p

2
σ0

σ0 + σ1
. (3.18)

Then, there exists a solution to (pS). Moreover, any solution to (pS) fulfils the a priori estimate

‖vvv‖1,p + ‖SSS(π, DDDvvv)‖p′ + β(p)‖π‖p′ � K . (3.19)

The constant K depends only on Ω,ΓD, p, ε0, σ0, σ1, ‖ fff ‖p′ , ‖bbb‖(p#)′;ΓP
and ‖vvv0‖1,p.

Proof. The a priori estimate (3.19) follows analogously to the proof of (3.1). The existence of a solution
results from Theorems 3.1 and 3.3 and Lemma 3.5. �

4. A priori error estimates

In this section we aim to derive a priori estimates for the error in the approximation vvv −vvvh and π − πh .
For the remainder of this paper let us use the convention that (vvv, π) and (vvvh, πh) denote the solution to
(pS) and (pSh), respectively, whose existence and uniqueness was shown in the previous section. The
main results are given by Corollaries 4.3 and 4.4, which state a priori error estimates in the form of
a best approximation result.

LEMMA 4.1 Let Assumption 2.8 hold. For each δ > 0 there exists a constant cδ > 0 such that for all
uuuh ∈ (vvv0,h + VVV p

h ) and rh ∈ Q p
h there holds

d(vvv,vvvh) � cδ(‖FFF(DDDvvv) − FFF(DDDuuuh)‖2 + ‖DDDvvv − DDDuuuh‖p + ‖π − rh‖p′) +
(

1

σ0
+ δ

)
γ0‖π − πh‖2,

where the constant cδ also depends on p, ε0, σ0, σ1, ΓD,Ω, ‖ fff ‖p′ , ‖bbb‖(p#)′;ΓP
and ‖vvv0‖1,p.

Proof. Let (uuuh, rh) be an arbitrary element of (vvv0,h + VVV p
h ) × Q p

h . From (pS) and (pSh) it follows that

(SSS(π, DDDvvv) − SSS(πh, DDDvvvh), DDDwwwh)Ω = (π − πh, divwwwh)Ω = (π − rh, divwwwh)Ω

for all wwwh ∈ VVV p
h . This, with wwwh := (uuuh − vvvh) ∈ VVV p

h , implies

(SSS(π, DDDvvv) − SSS(πh, DDDvvvh), DDDvvv − DDDvvvh)Ω = (SSS(π, DDDvvv) − SSS(πh, DDDvvvh), DDDvvv − DDDuuuh)Ω

+ (π − rh, div(uuuh − vvvh))Ω =: I1 + I2.

Applying (2.10) we conclude that

σ0

2
d(vvv,vvvh)2 � I1 + I2 + γ 2

0

2σ0
‖π − πh‖2

2. (4.1)
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It remains to estimate I1 and I2. First of all, we split the term I1 in the following way,

I1 = (SSS(π, DDDvvv) − SSS(πh, DDDuuuh), DDDvvv − DDDuuuh)Ω

+ (SSS(πh, DDDuuuh) − SSS(πh, DDDvvvh), DDDvvv − DDDuuuh)Ω =: I3 + I4.

Due to (2.11) and Lemma 2.5, for each δ1 > 0 there exists cδ1 > 0 such that

I3 � cδ1d(vvv,uuuh)2 + δ1γ
2
0 ‖π − πh‖2

2 � cδ1‖FFF(DDDvvv) − FFF(DDDuuuh)‖2
2 + δ1γ

2
0 ‖π − πh‖2

2.

Let ϕ be defined by (2.2). In order to get an upper bound for I4, we apply Lemma 2.2 and Young’s
inequality (2.1) for the shifted N -functions, ϕa , taking into account that the Δ2-constants of ϕa , (ϕa)∗
depend only on p and do not depend on the shift-parameter a � 0. Hence, for any δ2 > 0 we obtain

I4 � c
∫

Ω
ϕ′

ε+|DDDuuuh |(|DDDuuuh − DDDvvvh |)|DDDvvv − DDDuuuh | dxxx

� δ2

∫
Ω

ϕε+|DDDuuuh |(|DDDuuuh − DDDvvvh |) dxxx + cδ2

∫
Ω

ϕε+|DDDuuuh |(|DDDvvv − DDDuuuh |) dxxx

∼ δ2‖FFF(DDDuuuh) − FFF(DDDvvvh)‖2
2 + cδ2‖FFF(DDDvvv) − FFF(DDDuuuh)‖2

2

� δ2cd(vvv,vvvh)2 + cδ2‖FFF(DDDvvv) − FFF(DDDuuuh)‖2
2,

where we have also used Lemma 2.5. Collecting the estimates above we arrive at

I1 � cδ1,δ2‖FFF(DDDvvv) − FFF(DDDuuuh)‖2
2 + δ1γ

2
0 ‖π − πh‖2

2 + δ2cd(vvv,vvvh)2. (4.2)

Next we estimate I2. Using Korn’s & Young’s inequality, applying Lemma 2.6 with ν = p, recalling
the uniform a priori bounds (3.1) and (3.19), we deduce that for each δ3 > 0 there exists cδ3 > 0 so that

I2 � |(π − rh, div(uuuh − vvvh))Ω | � c‖π − rh‖p′ ‖DDDuuuh − DDDvvvh‖p

� δ3
(‖DDDvvv − DDDuuuh‖2

p + ‖DDDvvv − DDDvvvh‖2
p

) + cδ3‖π − rh‖2
p′

� δ3‖DDDvvv − DDDuuuh‖2
p + δ3c‖FFF(DDDvvv) − FFF(DDDvvvh)‖2

2‖ε + |DDDvvv| + |DDDvvvh |‖2−p
p + cδ3‖π − rh‖2

p′

� δ3‖DDDvvv − DDDuuuh‖2
p + δ3cd(vvv,vvvh)2 + cδ3‖π − rh‖2

p′ . (4.3)

Combining the estimates (4.1), (4.2) and (4.3), we conclude that

σ0

2
d(vvv,vvvh)2 � δ2cd(vvv,vvvh)2 + δ3cd(vvv,vvvh)2 + cδ1,δ2‖FFF(DDDvvv) − FFF(DDDuuuh)‖2

2 + δ3‖DDDvvv − DDDuuuh‖2
p

+ cδ3‖π − rh‖2
p′ +

(
1

2σ0
+ δ1

)
γ 2

0 ‖π − πh‖2
2.

Multiplying this by 2/σ0 and taking the square root, we easily complete the proof. �
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Lemma 4.1 enables us to estimate the pressure error in the L2-norm.

THEOREM 4.2 Let Assumption 2.8 hold. Let the discrete spaces fulfil (IS2) and let the parameters

meet condition (3.4): γ0 < β̃(2)ε
2−p

2
σ0

σ0+σ1
. Then, there exists a constant c > 0, which depends

only on p, ε, γ0, σ0, σ1, β̃(2), ΓD,Ω, ‖ fff ‖p′ , ‖bbb‖(p#)′;ΓP
, ‖vvv0‖1,p, so that the pressure error is bounded

in L2(Ω) by

‖π − πh‖2 � c inf
uuuh∈vvv0,h+VVV p

h

(‖FFF(DDDvvv) − FFF(DDDuuuh)‖2 + ‖DDDvvv − DDDuuuh‖p) + c inf
rh∈Q p

h

‖π − rh‖p′ .

Proof. Let (uuuh, rh) be an arbitrary element of (vvv0,h + VVV p
h ) × Q p

h . Then, (pS) and (pSh) imply

(rh − πh, divwwwh)Ω = (SSS(π, DDDvvv) − SSS(πh, DDDvvvh), DDDwwwh)Ω + (rh − π, divwwwh)Ω (4.4)

for all wwwh ∈ XXX p
h . Using (IS2) and (4.4), we deduce (compare with (3.6))

β̃(2)‖rh − πh‖2 � sup
wwwh∈XXX2

h

(rh − πh, divwwwh)Ω

‖wwwh‖1,2
� ‖SSS(π, DDDvvv) − SSS(πh, DDDvvvh)‖2 + ‖rh − π‖2.

Applying (2.12) and Lemma 4.1 we conclude that for each δ > 0 there exists a constant cδ > 0 such
that

β̃(2)‖rh − πh‖2 � σ1ε
p−2

2 d(vvv,vvvh) + γ0ε
p−2

2 ‖π − πh‖2 + ‖rh − π‖2

� σ1ε
p−2

2 cδ(‖FFF(DDDvvv) − FFF(DDDuuuh)‖2 + ‖DDDvvv − DDDuuuh‖p + ‖π − rh‖p′)

+ σ1ε
p−2

2

(
1

σ0
+ δ

)
γ0‖π − πh‖2 + γ0ε

p−2
2 ‖π − πh‖2 + ‖rh − π‖2.

Using Minkowski’s inequality and Lp′
(Ω) ↪→ L2(Ω) for p � 2 we arrive at

‖π − πh‖2 � cδ(‖FFF(DDDvvv) − FFF(DDDuuuh)‖2 + ‖DDDvvv − DDDuuuh‖p + ‖π − rh‖p′)

+ β̃(2)−1σ1ε
p−2

2

(
1

σ0
+ δ

)
γ0‖π − πh‖2 + β̃(2)−1γ0ε

p−2
2 ‖π − πh‖2.

Recalling (3.4), and choosing δ > 0 sufficiently small, we can absorb all terms, that include the pressure
error, into the left-hand side. Hence, we get the desired result. �
COROLLARY 4.3 Let the assumptions of Theorem 4.2 be satisfied. Then, the error of approximation of
the velocity field is bounded by

‖FFF(DDDvvv) − FFF(DDDvvvh)‖2 � c inf
uuuh∈(vvv0,h+VVV p

h )
(‖FFF(DDDvvv) − FFF(DDDuuuh)‖2 + ‖DDDvvv − DDDuuuh‖p) + c inf

rh∈Q p
h

‖π − rh‖p′ .

(4.5)

Proof. The estimate follows from Lemma 2.5, Lemma 4.1 and Theorem 4.2. �
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COROLLARY 4.4 Let the assumptions of Theorem 4.2 hold. In addition, let (ISp) hold and

γ0 < β̃(p)ε
2−p

2 . (4.6)

Then, the error of approximation of the pressure field is bounded in Lp′
(Ω) by

‖π − πh‖p′ � c‖FFF(DDDvvv) − FFF(DDDvvvh)‖
2
p′
2 + c inf

rh∈Q p
h

‖rh − π‖p′ . (4.7)

Proof. The estimate is again based on the inf–sup inequality (ISp). Using (ISp), (4.4), Hölder’s inequal-
ity, (2.13) and (2.17), for arbitrary rh ∈ Q p

h we obtain the estimate

β̃(p)‖rh − πh‖p′ � sup
wwwh∈XXX p

h

(rh − πh, divwwwh)Ω

‖wwwh‖1,p

� ‖SSS(π, DDDvvv) − SSS(πh, DDDvvvh)‖p′ + ‖rh − π‖p′

� c ‖FFF(DDDvvv) − FFF(DDDvvvh)‖
2
p′
2 + γ0ε

p−2
2 ‖π − πh‖p′ + ‖rh − π‖p′ .

Due to assumption (4.6) this completes the proof. �

In practice, one never obtains the solution (vvvh, πh) to problem (pSh) exactly. Instead, one obtains its
approximation (ṽvvh, π̃h) ∈ (vvv0,h + VVV p

h ) × Q p
h , satisfying

(SSS(π̃h, DDDṽvvh), DDDwwwh)Ω − (π̃h, divwwwh)Ω = ( fff ,wwwh)Ω − (bbb,wwwh)ΓP + 〈eee,wwwh〉 ∀wwwh ∈ XXX p
h ,

(div ṽvvh, qh)Ω = 〈g, qh〉 ∀ qh ∈ Q p
h ,

where eee ∈ (XXX p
h )∗, g ∈ (Q p

h )∗ and the brackets 〈·, ·〉 denote the corresponding duality pairings. Here,
eee = eee(ṽvvh, π̃h) and g = g(ṽvvh, π̃h) represent some additional error which includes, e.g., the residual
associated with the approximate solution to the nonlinear algebraic problem or the error due to numerical
integration. However, provided that one is able to estimate eee and g, then one can derive error estimates
for vvv − ṽvvh and π − π̃h similar to those derived above by following the same procedure. For instance,
denoting |〈eee,wwwh〉| � E ‖wwwh‖1,p and |〈g, qh〉| � G ‖qh‖2 (with E , G independent of h and assuming,
say, E, G � 1, such that ‖DDDṽvvh‖p remains reasonably bounded), one can show (cf. (4.5), (4.7)):

‖FFF(DDDvvv) − FFF(DDDṽvvh)‖2 � c inf
uuuh∈(vvv0,h+VVV p

h )
(‖FFF(DDDvvv) − FFF(DDDuuuh)‖2 + ‖DDDvvv − DDDuuuh‖p)

+ c inf
rh∈Q p

h

‖π − rh‖p′ + c(E + G),

‖π − π̃h‖p′ � c‖FFF(DDDvvv) − FFF(DDDṽvvh)‖
2
p′
2 + c inf

rh∈Q p
h

‖rh − π‖p′ + cE .
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5. Finite element approximation

In this section we consider some finite element approximations of (pS) that satisfy the abstract
theory of the previous sections. We assume that, for ease of exposition, Ω is a polygonal/polyhedral
domain and that Th is a shape regular decomposition of Ω into d-dimensional simplices (or quadrilat-
erals/hexahedra) so that Ω = ⋃

K∈Th
K . By hK we denote the diameter of an element K ∈ Th ; the

mesh parameter h represents the maximum diameter of the elements, i.e., h := max{hK ; K ∈ Th}.
We assume that Th is nondegenerate (see Brenner & Scott, 1994). Hence, the neighbourhood SK of
K ∈ Th , which denotes the union of all elements in Th touching K , fulfils |K | ∼ |SK | with constants
independent of h. Furthermore, the number of elements in SK is uniformly bounded with respect to
K ∈ Th .

Let Xh and Yh be appropriate finite element spaces defined on Th that satisfy Xh ⊂ W1,∞(Ω)
and Yh ⊂ L∞(Ω). We recall that the finite element spaces for the velocity and pressure are given by
XXX p

h := XXXh ∩ XXX p, XXXh = [Xh]d and Q p
h := Yh ∩ Q p. In order to ensure approximation properties and the

discrete inf–sup conditions, we need to specify the choice of spaces.

ASSUMPTION 5.1 (Approximation property of Xh and Yh). We assume that Xh contains the set of linear
polynomials on Ω . Moreover, we suppose that there exists a linear projection jjj h : W1,1(Ω) → XXXh and
an interpolation operator ih : W1,1(Ω) → Yh such that

(1) jjj h preserves zero boundary values on ΓD , such that jjj h(XXX p) ⊂ XXX p
h ,

(2) jjj h is locally W1,1-stable in the sense that there exists c > 0 (independent of h) such that

−
∫

K
| jjj hwww| dxxx � c −

∫
SK

|www| dxxx + c −
∫

SK

hK |∇www| dxxx ∀www ∈ W1,1(Ω), ∀ K ∈ Th, (5.1)

where SK denotes a local neighbourhood of K (as defined above),

(3) jjj h preserves divergence6 in the Y ∗
h -sense, i.e.,

(divwww, qh)Ω = (div jjj hwww, qh)Ω ∀www ∈ W1,1(Ω), ∀ qh ∈ Yh, (5.2)

(4) ih preserves mean values, i.e., ih(Q p) ⊂ Q p
h , and, for any ν � 1, ih satisfies

‖q − ihq‖ν � ch‖q‖1,ν ∀ q ∈ W1,ν(Ω). (5.3)

Later, we will suppose that functions in Xh satisfy the following global inverse inequality.

ASSUMPTION 5.2 (Inverse property of Xh). For ν, μ ∈ [1, ∞] and 0 � m � l there holds

‖wh‖l,ν � Chm−l+min(0, d
ν − d

μ )‖wh‖m,μ ∀ wh ∈ Xh . (5.4)

Assumption 5.2 usually requires that the mesh is quasiuniform in the sense of Brenner & Scott
(1994). Assumption 5.1 is similar to Assumption 2.21 in Belenki et al. (2010). Clearly, the existence of
jjj h and ih , as in Assumption 5.1, depends on the choice of the finite element pairing Xh/Yh .

6Note that in case of |ΓP | > 0 this implies
∫
ΓP

www ·nnn dxxx = ∫
ΓP

( jjjhwww) ·nnn dxxx , which requires that the triangulation matches ΓP
appropriately.
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• The construction of an operator jjj h , that satisfies Assumption 5.1 (1)–(3), is well known for some
particular finite elements, including the Crouzeix–Raviart and MINI element (see Belenki et al.,
2010). If ΓD �= ∂Ω , Assumption 5.1 (1) requires that the triangulation matches ΓD appropriately
(compare with Scott & Zhang, 1990).

• Assumption 5.1 (2) is standard in the context of interpolation in Sobolev–Orlicz spaces (see Diening
& Růžička, 2007). For standard finite elements, it is well known that the Scott–Zhang interpolation
operator satisfies (5.1) (see Scott & Zhang, 1990). It is crucial that from (5.1) one can derive the
local stability result

−
∫

K
ψ(|∇ jjj hwww|) dxxx � c−

∫
SK

ψ(|∇www|) dxxx ∀www ∈ W1,ψ (Ω), ∀ K ∈ Th, (5.5)

which is valid for arbitrary N -functions, ψ , with Δ2(ψ) < ∞. Here, W1,ψ (Ω) is the classical
Sobolev–Orlicz space and the constant c depends only on Δ2(ψ). For details we refer to Diening &
Růžička (2007).

• For standard finite elements, ih may be chosen as the L2-projection onto Yh ,

(ihq, qh)Ω = (q, qh)Ω ∀ qh ∈ Yh, ∀ q ∈ L1(Ω). (5.6)

Indeed, it is shown in Crouzeix & Thomée (1987) that the L2-projection is Lν-stable and even
W1,ν-stable for any ν ∈ [1, ∞], and, consequently, the L2-projection fulfills (5.3). The results
of Crouzeix & Thomée (1987) are derived for finite element spaces Yh based on simplices, Yh :=
{w ∈ C(Ω); w|K ∈ Pr (K ) for all K ∈ Th}, where Pr (K ) denotes the space of polynomials on K
of degree less than or equal to r . Moreover, setting qh = 1 in (5.6), we deduce that ih preserves mean
values. Hence, ih(Q p) ⊂ Q p

h .

Next, we depict important consequences of Assumption 5.1.

LEMMA 5.3 Let there exist a linear projection jjj h that satisfies Assumption 5.1 (2). Then, for all K ∈ Th

and www ∈ W1,p(Ω) there holds

−
∫

K
|FFF(DDDwww) − FFF(DDD jjjhwww)|2 dxxx � ch2

K −
∫

SK

|∇FFF(DDDwww)|2 dxxx (5.7)

provided that FFF(DDDwww) ∈ W1,2(Ω)d×d . The constant c depends only on p.

Proof. The proof is based on the Orlicz-stability (5.5). We refer to Belenki et al. (2010) and
Hirn (2010). �

Moreover, the assumptions on jjj h imply the discrete versions of the inf–sup inequality.

LEMMA 5.4 Let there exist a linear projection jjj h that satisfies Assumption 5.1 (1)–(3). Then, for ν ∈
(1, ∞) the discrete inf–sup inequality (ISν) is satisfied.

Proof. Since Th is nondegenerate, the local stability result (5.5) (with ψ(t) := tν) leads to the global
W1,ν-stability inequality, ‖ jjj hwww‖1,ν � Cs‖www‖1,ν for all www ∈ XXXν , where ν ∈ (1, ∞) and the stability
constant Cs does not depend on h. Thus, the continuous inf–sup inequality (2.25) and Assumption 5.1
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imply that for arbitrary qh ∈ Qν
h ⊂ Qν it holds

‖qh‖ν′ � β(ν)−1 sup
www∈XXXν

(qh, divwww)Ω

‖www‖1,ν
= β(ν)−1 sup

www∈XXXν

(qh, div jjj hwww)Ω

‖www‖1,ν

� β(ν)−1Cs sup
www∈XXXν

(qh, div jjj hwww)Ω

‖ jjj hwww‖1,ν
� β̃(ν)−1 sup

wwwh∈XXXν
h

(qh, divwwwh)Ω

‖wwwh‖1,ν
,

where β̃(ν) := β(ν)/Cs is independent of h. �
REMARK 5.5 Let us briefly discuss the case of unstable discretizations. For instance, one can consider
the equal-order d-linear Q1/Q1 element (based on quadrilateral/hexahedral grids), which uses contin-
uous isoparametric d-linear shape functions for both the velocity and the pressure approximation. In
this case the discrete inf–sup condition is violated. For p-Stokes systems, for which the generalized
viscosity depends only on the shear rate, Hirn proposed a stabilization technique based on the local pro-
jection stabilization (LPS) method that leads to optimal convergence results (see Hirn, 2010). Whether
the stabilization method can be applied to the equal-order discretization of (pS) is subject of current
research.

Next, we state our a priori error estimates that quantify the convergence of the finite element method.
For this, the regularity FFF(DDDvvv) ∈ W1,2(Ω)d×d of the solution vvv is required. This condition is equivalent
to (1.6)1 (see Berselli et al., 2010). We mention that (1.6) is available for sufficiently smooth data at
least in the space-periodic setting in two space dimensions (see Bulı́ček & Kaplický, 2008).

COROLLARY 5.6 Let the assumptions of Theorem 4.2 hold. We suppose that there exist operators jjj h

and ih satisfying Assumption 5.1. Moreover, we additionally assume the regularity of the weak solution

FFF(DDDvvv) ∈ W1,2(Ω)d×d and π ∈ W1,p′
(Ω),

and we set vvv0,h := jjj hvvv0. Then, the error of approximation is bounded in terms of the maximum mesh
size h as follows:

‖FFF(DDDvvv) − FFF(DDDvvvh)‖2 � Cvvvh, ‖π − πh‖2 � Cπ h. (5.8)

Additionally assume (4.6): γ0 < β̃(p)ε
2−p

2 . Then, the pressure error in Lp′
(Ω) is bounded by

‖π − πh‖p′ � C ′
π h

2
p′ . (5.9)

The constants Cvvv , Cπ , C ′
π > 0 depend only on p, ε, γ0, σ0, σ1, β̃(2), ΓD , Ω , ‖ fff ‖p′ , ‖bbb‖(p#)′;ΓP

,

‖vvv0‖1,p, ‖∇FFF(DDDvvv)‖2, ‖π‖1,p′ and C ′
π additionally depends on β̃(p).

Proof. According to Lemma 5.4, the discrete inf–sup inequalities (IS2), (ISp) hold true. Hence, the
desired error estimates follow from Theorem 4.2, Corollaries 4.3 and 4.4, and the interpolation prop-
erties of jjj h and ih . More precisely, the velocity is given by vvv = vvv0 + v̂vv for some v̂vv ∈ XXX p. Since v̂vv
is divergence-free, the interpolant jjj hv̂vv fulfills (div jjj hv̂vv, qh)Ω = 0 for all qh ∈ Q p

h . Hence, jjj hv̂vv ∈ VVV p
h

and jjj hvvv = jjj hvvv0 + jjj hv̂vv ∈ (vvv0,h + VVV p
h ). Consequently, we can set uuuh := jjj hvvv and rh := ihπ in The-

orem 4.2 and Corollary 4.3. Using Lemma 2.6 with ν := p, the global W1,p-stability of jjj h (which
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follows from (5.5) with ψ(t) = t p and the nondegeneracy of Th), the a priori bound (3.19), and the in-
terpolation properties (5.7) and (5.3), we easily conclude (5.8). Finally, (5.9) follows from Corollary 4.4
and (5.8). �
REMARK 5.7 Using (2.18), (3.1) and (3.19), we deduce from Corollary 5.6 that

‖DDDvvv − DDDvvvh‖p � c ‖FFF(DDDvvv) − FFF(DDDvvvh)‖2 � ch. (5.10)

Hence, we also obtain an a priori error estimate in W1,p(Ω).

If d = 2 then the W1,p′
-regularity assumption for the pressure can be avoided and confined to

π ∈ W1,2(Ω) provided that the velocity additionally satisfies vvv ∈ W1,∞(Ω). Note that in the case
of space-periodic boundary conditions, C1,α-regularity of vvv has been proven in Bulı́ček & Kaplický
(2008). The following corollary represents a variant of Corollary 5.6 that is motivated by our subsequent
numerical experiments.

COROLLARY 5.8 Let d = 2. Let the hypothesis of Theorem 4.2 hold true and let Assumption 5.2 be
satisfied. We suppose that there exist operators jjj h and ih as in Assumption 5.1. Moreover, we assume
that the solution (vvv, π) satisfies the additional regularity

FFF(DDDvvv) ∈ W1,2(Ω)d×d , vvv ∈ W1,∞(Ω) and π ∈ W1,2(Ω).

We set vvv0,h := jjj hvvv0. Then, the error of approximation is bounded as follows:

‖FFF(DDDvvv) − FFF(DDDvvvh)‖2 � Cvvvh, ‖π − πh‖2 � Cπ h. (5.11)

Assume additionally (4.6) and the W1,2-stability of ih . Then, there holds

‖π − πh‖p′ � C ′
π h

2
p′ . (5.12)

The constants Cvvv , Cπ , C ′
π > 0 depend only on p, ε, γ0, σ0, σ1, β̃(2), ΓD , Ω , ‖∇FFF(DDDvvv)‖2, ‖π‖1,2,

‖vvv‖1,∞ and C ′
π additionally depends on β̃(p).

Proof. Under the supposed regularity, (5.11) and (5.12) are not surprising: since vvv ∈ W1,∞(Ω) and
ε > 0, the generalized viscosity, η, remains bounded from below and above so that system (1.1) can basi-
cally be interpreted as a Stokes system. We only need to show that vvvh is uniformly bounded in W1,∞(Ω):
first of all, we mention that the projection jjj h is W1,∞-stable. Indeed, similarly to Scott & Zhang
(1990), it can be shown that jjj h is locally W1,1-stable, i.e., there holds ‖ jjj hwww‖1,1;K � ‖www‖1,1;SK for
all www ∈ W1,1(Ω) and K ∈ Th . Moreover, since Xh(K ) is finite dimensional, there holds |∇ i jjj hwww(yyy)| �
−
∫

K |∇ i jjj hwww| dxxx , i ∈ {0, 1}, for all yyy ∈ K and K ∈ Th . Due to the nondegeneracy of Th it follows
that ‖ jjj hwww‖1,∞;K � ‖www‖1,∞;SK for all www ∈ W1,∞(Ω). This yields ‖ jjj hwww‖1,∞;Ω � ‖www‖1,∞;Ω for
all www ∈ W1,∞(Ω). Using the inverse inequality (5.4) with d = 2, the W1,∞-stability of jjj h , Korn’s
Lemma 2.7, and Lemma 2.6 with ν = 2, we can estimate vvvh in W1,∞(Ω) as follows:

‖vvvh‖1,∞ � ‖vvvh − jjj hvvv‖1,∞ + ‖ jjj hvvv‖1,∞

� c
[
h−1‖vvvh − jjj hvvv‖1,2 + ‖vvv‖1,∞

]
� c

[
h−1‖DDDvvvh − DDD jjjhvvv‖2 + ‖vvv‖1,∞

]
� c

[
h−1‖FFF(DDDvvvh) − FFF(DDD jjjhvvv)‖2(ε0 + ‖∇vvvh‖∞ + ‖∇vvv‖∞)

2−p
2 + ‖vvv‖1,∞

]
. (5.13)
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Similarly to the way in which we have derived (4.5), via Lemma 2.6 with ν = 2 we can infer the error
estimate

‖FFF(DDDvvv)−FFF(DDDvvvh)‖2+‖π−πh‖2 � ‖FFF(DDDvvv)−FFF(DDD jjjhvvv)‖2+(ε0+‖∇ jjj hvvv‖∞+‖∇vvvh‖∞)
2−p

2 ‖π−ihπ‖2.

Using the properties of jjj h and ih we consequently arrive at (w.l.o.g. ε0 � 1)

‖FFF(DDDvvv) − FFF(DDDvvvh)‖2 + ‖π − πh‖2 � Ch(ε0 + ‖∇vvv‖∞ + ‖∇vvvh‖∞)
2−p

2 , (5.14)

where the constant C depends on ‖∇FFF(DDDvvv)‖2 and ‖π‖1,2. Combining (5.13) and (5.14) we conclude

‖vvvh‖1,∞ � C = C(‖∇FFF(DDDvvv)‖2, ‖π‖1,2, ‖vvv‖1,∞).

The constant C also depends on p, ε, ε0, γ0, σ0, σ1, β̃(2), Ω , but it is independent of h. Thus, (5.14)
yields the desired error estimates (5.11). It remains to prove the pressure estimate in Lp′

(Ω). Interpo-
lating Lp′

(Ω) between L2(Ω) and W1,2(Ω), using (5.3) and the W1,2-stability of ih , for p > 2d
d+2 and

λ := d
2 − d

p′ we obtain the estimate

‖π − ihπ‖p′ � c ‖π − ihπ‖λ
1,2‖π − ihπ‖1−λ

2 � ch
1+ d

p′ − d
2 ‖π‖1,2. (5.15)

Thus, for d = 2 the estimate (5.12) follows from the combination of (4.7), (5.11) and (5.15). �

6. Numerical examples

In this section we present some numerical examples, which illustrate the a priori error estimates of
Corollary 5.6. Here, the following model is used:

η(π, |DDDvvv|2) := η0

(
δ1 + δ2(δ3 + exp(απ))−s + δ4|DDDvvv|2

) p−2
2

, (6.1)

where s, α, δ1, . . . , δ4 � 0.

REMARK 6.1 Similarly to, e.g., Málek et al. (2002), it can be shown that model (6.1) satisfies Assump-
tions (A1)–(A2), e.g., with ε2 := δ1/δ4, σ0 := η0δ

(p−2)/2
4 (p−1)(1+δ2δ

−s
3 /δ1)

(p−2)/2, σ1 := η0δ
(p−2)/2
4

and γ0 := η0δ
(p−4)/4
4 sα 2−p

2 δ
p/4
2 δ

−sp/4
3 .

Problem (pS) was discretized with the following finite elements based on quadrilateral meshes: the
first-order Q2/Q0 elements, the second-order Q2/Q1 and Q2/P−1 elements and the bilinear Q1/Q1
elements (see Gresho & Sani, 2000, or Sani et al., 1981). The latter element pair is not stable, thus
we used the LPS-type stabilization method presented in Hirn (2010); it is worth mentioning that in all
examples the stabilization method was less sensitive with respect to the stabilization parameter. The
algebraic equations were solved by Newton’s method, the linear subproblems by the GMRES method.
All computations were performed by means of the software package (Gascoigne, 2006) and/or the soft-
ware developed by Hron et al. (2003). In the following numerical experiments we depict the rates of
convergence with respect to the number of cells (under global mesh refinement). For ease of presenta-
tion we use the shortcuts EFFF

vvv := ‖FFF(DDDvvv) − FFF(DDDvvvh)‖2, E1,ν
vvv := ‖vvv − vvvh‖1,ν , Eν

vvv := ‖vvv − vvvh‖ν and
Eν

π := ‖π − πh‖ν .
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Example 1: In a square domain Ω := (−0.5, 0.5) × (−0.5, 0.5) the exact solution to (pS) is given
by vvv(xxx) := |xxx |a−1(x2, −x1)

� and π(xxx) := |xxx |bx1x2 for a, b ∈ R. Problem (pSh) was then solved7

for fff := − div SSS(π, DDDvvv) + ∇π . The parameters a and b were chosen so that FFF(DDDvvv) ∈ W1,2(Ω)d×d

and π ∈ W1,2(Ω); this requirement amounts to the conditions a > 1 and b > −2. Since ‖∇vvv‖∞ is
bounded for a > 1, according to Corollary 5.8, the requirement π ∈ W1,2(Ω) is sufficient to ensure the
optimal rate of convergence (note that Corollary 5.6 would require π ∈ W1,p′

(Ω) with p′ > 2). We set
a = 1.01 and b = −1.99. Hence, as soon as (3.4) is satisfied, we expect E FFF

vvv = O(h), E2
π = O(h), and

E p′
π = O(h2/p′

), for finite elements satisfying Assumption 5.1.
The parameters of the model (6.1) were set to δ1 := 10−8, s := 2/(2 − p) and η0 = δ2 = δ3 =

δ4 := 1 in this example. Then, Remark 6.1 implies γ0 = α and, hence, (3.4) is ensured at least for

α < β̃(2)δ
(2−p)/4
1

(p−1)(1+1/δ1)
(p−2)/2

(p−1)(1+1/δ1)(p−2)/2+1
, i.e., by virtue of δ1 � 1, (3.4) is satisfied for α � 1. In this

particular example, for the stated parameters, we have numerically observed the expected convergence
rates for α ∈ [0, 8] approximately. For greater α, Newton’s method did not converge any more. One may
ask whether assumption (3.4) could be relaxed8 and in particular, whether the estimates (5.9) and (5.10)
remain valid in the degenerate case, ε ↘ 0. Here, it is worth noting that in the case of Carreau-type
models (i.e., γ0 ≡ 0), error estimates similar to (5.9) and (5.10) actually hold true and are numerically
validated also for ε = 0 (see Belenki et al., 2010; Hirn, 2010). For fluids with pressure-dependent
viscosity, though, the behaviour for ε ↘ 0 remains an open question. In what follows we set α := 1.

For the stable first-order Q2/Q0 elements the convergence rates for different values of p ∈ (1, 2)
are presented in Table 1(a–c). We realize that the numerical results agree with the presented theory
very well. In particular, the example reflects that the rate of convergence for the pressure in Lp′

(Ω)
depends on the choice of p as predicted by the estimate (5.12). Apart from that, we observed that the
experimental order of convergence declines as soon as a < 1 or b < −2. This indicates that the derived
a priori error estimates are optimal with respect to the regularity of the solution. We also observe that
the error E p

vvv behaves like O(h2). This raises hope that a duality argument similar to the one described
in Brenner & Scott (1994) may be applicable here. In Table 1(d–i) we present the observed convergence
rates for the element pairs Q1/Q1, Q2/Q1 and Q2/P−1. In this example they basically coincide with
those obtained for Q2/Q0.

Example 2: pressure drop problem. In order to confirm the results in a realistic flow configuration, we
consider a planar flow between two steady parallel plates, driven by the difference of pressure between
inlet and outlet. Here, Ω = (0, 1.64) × (0, 0.41) and the homogeneous Dirichlet boundary condition
is prescribed on the upper and lower edge, while we set bbb := 0.8nnn on the inflow (left) boundary, and
bbb := 000 on the outflow (right) boundary. Moreover, we additionally require9 there that vvv = (vvv · nnn)nnn,
i.e., the streamlines are orthogonal to the inflow and outflow boundary (compare with Heywood et al.,
1996). Note that if the viscosity did not vary with the pressure, this setting would lead to a unidirectional
flow (Poiseuille flow) of the form vvv = (v1(x2), 0)� and π = π(x1). Since the viscosity depends on the
pressure, however, this need not be the case; e.g., there is no such unidirectional solution for the Barus

7Both ΓP = ∅ (with −∫Ω π dxxx prescribed) and ΓP chosen as one of the square edges were tested as the boundary conditions.
8However, this observation does not allow us to claim that (3.4) could be relaxed. The solution to Example 1 is given a priori

while fff is defined accordingly. In particular, the solution always exists, whatever the values of α and γ0 are. Moreover, the above
estimate for γ0 takes into account all π ∈ R, |DDDvvv| � 0, and may be far from describing the behaviour of the viscosity in
a neighbourhood of the given solution.

9This requirement is achieved by altering the definition of the space XXX p (see, e.g., Lanzendörfer & Stebel, 2011b).
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TABLE 1 Numerical verification of the a priori error estimates

No. of cells EFFF
vvv E p

vvv E2
π E p′

π

44 0.98 1.83 0.82 0.74
45 1.01 1.89 0.85 0.77
46 1.02 1.92 0.88 0.79
47 1.01 1.93 0.90 0.80
48 1.01 1.96 0.91 0.81

Expected 1 — 1 0.82

(a) p = 1.7, Q2/Q0

EFFF
vvv E p

vvv E2
π E p′

π

0.97 1.85 0.82 0.65
1.00 1.91 0.85 0.66
1.00 1.95 0.88 0.67
1.01 1.96 0.90 0.67
1.01 1.96 0.91 0.67

1 — 1 0.67

(b) p = 1.5, Q2/Q0

EFFF
vvv E p

vvv E2
π E p′

π

0.90 1.90 0.82 0.19
0.95 1.95 0.85 0.19
0.98 1.97 0.88 0.19
0.98 1.99 0.90 0.19
0.98 2.00 0.91 0.19

1 — 1 0.18

(c) p = 1.1, Q2/Q0

No. of cells EFFF
vvv E p

vvv E2
π E p′

π

45 1.00 2.17 1.00 0.83
46 1.00 2.17 1.00 0.83
47 1.00 2.17 1.00 0.82
48 1.00 2.16 1.00 0.83
49 1.00 2.16 1.00 0.83

(d) p = 1.7, Q1/Q1 stabilized

EFFF
vvv E p

vvv E2
π E p′

π

0.99 2.49 1.00 0.46
0.99 2.48 1.00 0.46
0.99 2.45 1.00 0.46
1.00 2.41 1.00 0.47
1.00 2.36 1.00 0.47

(e) p = 1.3, Q1/Q1 stabilized

EFFF
vvv E p

vvv E2
π E p′

π

0.99 2.70 0.99 0.19
0.99 2.66 1.00 0.19
0.99 2.56 1.00 0.19
1.00 2.44 1.00 0.19
1.00 2.30 1.01 0.19

(f) p = 1.1, Q1/Q1 stabilized

No. of cells EFFF
vvv E p

vvv E2
π E p′

π

44 — — — —
45 1.01 2.33 1.01 0.68
46 1.01 2.33 1.01 0.67
47 1.00 2.32 1.01 0.67
48 1.00 2.31 1.01 0.67
49 1.00 2.29 1.01 0.67

(g) p = 1.5, Q1/Q1 stabilized

EFFF
vvv E p

vvv E2
π E p′

π

1.02 2.33 1.01 0.68
1.01 2.32 1.01 0.68
1.02 2.33 1.01 0.68
1.02 2.30 1.01 0.68
1.02 2.25 1.01 0.68
— — — —

(h) p = 1.5, Q2/Q1

EFFF
vvv E p

vvv E2
π E p′

π

1.02 2.30 1.01 0.68
1.02 2.27 1.01 0.68
1.02 2.26 1.01 0.68
1.01 2.23 1.01 0.68
1.02 2.10 1.01 0.67
— — — —

(i) p = 1.5, Q2/P−1

model, η = η0 exp(απ), as shown in Hron et al. (2001). Here, we consider the model (6.1), provided
with η0 := 0.005, p = 1.5, s := 2

2−p , δ1 := 5 × 10−6, δ2 = δ3 := 1, δ4 := 10−5, and α := 10.
The resulting velocity, pressure and viscosity fields are shown in Fig. 1. For moderate and low pressures
(in the midlength and in the right-hand part of the domain) this model approximates the Barus model,
while for higher pressures (in the left-hand part of the domain) the behaviour is that of the Carreau
model. In Table 2 we present the observed convergence rates for the different finite element pairs. Since
the exact solution is unknown, we have used the finite element approximation computed on a grid of
410 cells as the reference solution. Looking at Table 2, we observe good agreement with the derived
estimates. While E2

π behaves as O(h) in the case of the Q2/Q0 discretization, the higher-order element
pairs, including the Q1/Q1 discretization, lead to better convergence rates.
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FIG. 1. Pressure drop problem, p = 1.5.

TABLE 2 Numerical verification of the error estimates: pressure drop problem

No. of cells E1,p
vvv E p

vvv E2
π

44 0.99 1.95 1.00
45 0.99 1.98 1.01
46 1.02 1.96 1.03
47 1.08 2.02 1.16
48 — — —

Expected 1 — 1

(a) Q2/Q0

E1,p
vvv E p

vvv E2
π

2.29 3.44 2.19
2.51 3.78 2.24
2.46 3.69 2.08
2.25 3.26 2.06
— — —

(b) Q2/Q1

E1,p
vvv E p

vvv E2
π

2.16 3.19 1.92
2.19 3.15 1.96
2.14 3.04 1.99

† † †
— — —

(c) Q2/P−1

E1,p
vvv E p

vvv E2
π

— — —
1.00 1.97 1.94
1.00 2.00 2.04
1.01 2.01 1.98
1.02 2.06 1.89

(d) Q1/Q1 stabilized

† In this case we were not able to solve the algebraic problem to the accuracy sufficient to improve the discrete solution on finer
meshes. Note that E p

vvv /‖vvv‖p ∼ 10−7 at this level of refinement.

7. Conclusions

We have shown the convergence of the finite element method in the context of fluids with shear-rate-
and pressure-dependent viscosity. The convergence of the method has been quantified by the a priori
error estimates of Corollary 5.6. These error estimates have been demonstrated practically by numerical
experiments. All results in the present paper also cover the case of Carreau-type models. In this case
the error estimates of Corollary 5.6 coincide with the optimal error estimates for Carreau-type models
which have been established in Belenki et al. (2010) and Hirn (2010).

The numerical experiments indicate that the problems are well posed for a wider class of models
than required by the assumptions. This is encouraging for further investigation since the assumptions
are rather restrictive from the point of view of practical applications.
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4.2 Shape optimization in applications

A typical example of industrial application is the optimization of the shape
of a dividing header (also called headbox) inside the paper making machine.
The dividing header is located at the so-called wet end of the large machine
(see Figure 4.1). The role of the header is to distribute the mixture of water,

Wet end Wet press section Dryer section Calender section

Headbox Slice Wire mesh Felt Felt dryer Heated dryer Top felt

Bottom felt

Figure 4.1: Simplified scheme of components of a paper-making machine.

wood fibers and additives onto a wire screen evenly so that the resulting paper
is homogeneous and has the same properties in all parts. The distribution
of the fibers is strongly affected by the flow regime inside the header. A
natural way of controlling the flow properties is by adjusting the shape of the
header. In order to simplify the design and minimize the amount of expensive
experimental work, the problem has been solved by numerical simulation of
the appropriate shape optimization problem.

In the papers [12, 24] we attempt to deal with the problem in a rigorous
way, starting by precise formulation of the fluid flow model and the shape
optimization problem, establishing the existence and uniqueness results for
the problem as well as for its finite-element approximation, convergence of
the approximations and finally showing the results of example computations.
We present the reprint of the second part of this series, dealing with the
numerical analysis and computation.

The flow in the header is turbulent, which we take into account by an
algebraic turbulence model. In particular, the stress tensor has the form

T = −pI + µ0Dv + µt(|Dv|)Dv, (4.1)

where µ0 is the viscosity of the fluid and µt(|Dv|) the turbulent viscosity in
the form

µt(|Dv|) = %l2m,α|Dv|. (4.2)



96 CHAPTER 4. PRESENTED WORKS AND THEIR NOVELTIES

The mixing length lm,α is an experimentally determined function depending
on the distance from the boundary.

The contribution of the papers is based on the following results:

• Mathematical analysis of the state problem, namely the steady-state
Navier-Stokes equations with the algebraic turbulence model. Due to
(4.2), the system of equations has a similar form like the equations for
non-Newtonian fluids with shear-dependent viscosity. However, here
the viscosity depends also on spacial variable and may vanish on the
boundary. This is a major obstacle in the analysis and requires a careful
rigorous formulation, which is based on non-standard weighted Sobolev
spaces.

• Existence of an optimal shape (both in the continuous and the discrete
case) is based on the uniform estimates of solutions to the fluid flow
problem, which are proved independent of the geometry of the flow
domain. This requires the use of some inequalities and auxiliary math-
ematical tools with attention to their dependence on the geometry of
the domain. The lack of a density result in the weighted Sobolev spaces
is overcome by formulating an augmented shape optimization problem.

• The algorithms for the numerical solution are supported by the ex-
istence and convergence results for the discrete problems, hence it is
guaranteed under which assumptions the computations lead to mean-
ingful results.

Reprint

• J. Haslinger, J. Stebel. Shape Optimization for Navier-Stokes Equa-
tions with Algebraic Turbulence Model: Numerical Analysis and Com-
putation. Applied Mathematics and Optimization, 63(2):277-308, 2011.
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Abstract We study the shape optimization problem for the paper machine headbox
which distributes a mixture of water and wood fibers in the paper making process.
The aim is to find a shape which a priori ensures the given velocity profile on the
outlet part. The mathematical formulation leads to the optimal control problem in
which the control variable is the shape of the domain representing the header, the
state problem is represented by the generalized Navier-Stokes system with nontrivial
boundary conditions. This paper deals with numerical aspects of the problem.
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1 Introduction

The first component in the paper making process is the headbox which is located at
the wet end of a paper machine. The headbox shape and the fluid flow phenomena
taking place there largely determine the quality of the produced paper. The first flow
passage in the headbox is a dividing manifold, called the header. It is designed to
distribute the fibre suspension on the wire so that the produced paper has an optimal
basis weight and fibre orientation across the whole width of a paper machine. The
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Fig. 1 The header

aim is to find an optimal shape for the back wall of the header so that the outlet flow
rate distribution from the headbox results in an optimal paper quality.

The paper making pulp is a mixture of wood fibres, water, filler clays and various
chemicals at concentration of 1% solids to 99% water by weight. In the large-scale
simulation it seems reasonable to model this complex mixture as a single continuum,
with the fluid being an incompressible liquid described by the Navier-Stokes equa-
tions.

The turbulence character of the flow in the header is a desirable phenomenon in
the paper making process. Typically, the input Reynolds number is about 106. In the
modelling of turbulence, one usually uses the averaging procedure, which requires
additionally a closure formula for the so-called Reynolds tensor. Since the flow in the
header is steady and it is expected that the geometry of the domain changes only in
the part of the boundary, we use a classical algebraic model introduced by Prandtl
[22], see Sect. 2.3.

Figure 1 shows the geometry of the header. The inlet is on the left and the so-
called recirculation on the right hand side. Typically about 10% of the fluid flows out
through the recirculation. The main outlet is performed by a number (usually several
hundreds or thousands) of small tubes. This fact presents a difficulty in the numerical
simulation and thus the complicated geometry of the tube bank is replaced by an
effective medium using an approximate homogenization technique (see [12]).

This work was motivated by some previous papers: The fluid flow model which is
used here has been derived and studied numerically in [12]. The shape optimization
problem has also been solved numerically and the results are presented in [13], see
also [14]. The above cited papers are of formal character, skipping completely exis-
tence results. The mathematical justification of the model is done in [15]. The present
paper is focused on a discretization, convergence analysis and numerical realization
of the shape optimization problem.

Numerical solution of shape optimization problems is usually realized by means
of gradient based minimization methods, which requires to perform the sensitivity
analysis. There are two approaches in computational sensitivity analysis, namely
differentiate-then-discretize and discretize-then-differentiate. Both of them are ac-
cepted by the optimization community and both have their pro and con (see e.g. [11],
Sect. 2.9 on p. 57). Since the differentiation and the discretization do not commute,
results are different on a given discrete level. It is known that the discretization of the
continuous shape gradient provides the true gradient neither of the continuous cost
functional nor of its discretization. This may cause serious difficulties in numerical
minimization. Also the rigorous mathematical derivation of the shape gradient is usu-
ally very demanding, (see e.g. [23]). Since our paper is devoted to the discretization
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and convergence analysis, it is very natural to use the discretize-then-differentiate ap-
proach which works with the true gradient of the discrete cost functional. To get it
one can employ tools of the automatic differentiation.

The text is organized as follows. In Sect. 2 we present the complete model and
the known existence results. An approximation of the fluid flow model and of the
shape optimization problem is studied in Sects. 3 and 4, respectively. Finally, Sect. 5
describes an implementation and presents results of several model examples.

2 Description of the Model

In this section we define the mathematical model of the flow in the header and the
shape optimization problem, and recall the main existence results. For its justification
and for proofs we refer to [3].

We start by specifying the geometry of the problem.

2.1 Admissible Domains

Let L1,L2,L3 > 0, αmax ≥ H1 ≥ H2 ≥ αmin > 0, γ > 0 be given and suppose that
α ∈ Uad , where

Uad =
{
α ∈ C0,1([0,L]); αmin ≤ α ≤ αmax,

α|[0,L1] = H1, α|[L1+L2,L] = H2, |α′| ≤ γ a.e. in [0,L]
}
. (1)

Here L = L1 + L2 + L3. With any function α ∈ Uad we associate the domain �(α),
see Fig. 2:

�(α) =
{
x = (x1, x2) ∈ R2;0 < x1 < L,0 < x2 < α(x1)

}
(2)

and introduce the system of admissible domains

O = {
�; ∃ α ∈ Uad : � = �(α)

}
.

Further we will need the domains �̂ = (0,L) × (0, αmax) and �0 = ((0,L1) ×
(0,H1)) ∪ ((0,L) × (0, αmin)) ∪ ((L1 + L2,L) × (0,H2)). Notice that �0 ⊂ � ⊂ �̂

for all � ∈ O.

Fig. 2 Geometry of �(α) and
parts of the boundary ∂�(α)
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Clearly �(α) ∈ C0,1 for all α ∈ Uad . We will denote the parts of the boundary
∂�(α) as follows (see Fig. 2):

�D =
{
x ∈ ∂�(α);x1 = 0 or x1 = L

}
,

�out =
{
x ∈ ∂�(α);L1 ≤ x1 ≤ L1 + L2, x2 = 0

}
,

�α =
{
x ∈ ∂�(α);L1 ≤ x1 ≤ L1 + L2, x2 = α(x1)

}
,

�f = ∂�(α) \ (
�D ∪ �out ∪ �α

)
.

The components �D , �out and �f do not depend on α ∈ Uad .

2.2 Formulation of the Shape Optimization Problem

Let �̃ ⊂ �out and vopt ∈ L2(�̃) be a given function representing the desired velocity
profile at the outlet. We are interested in the problem

min J (α,v,p) :=
∫

�̃

|v2 − vopt|2

s.t. α ∈ Uad,

(v,p) solves (3)–(4) in �(α).

Since �̃ is fixed, it is obvious that J does not depend explicitly on α. Further we will
consider only a class of weak solutions to (3)–(4) which will be specified in what
follows.

2.3 Classical Formulation of the State Problem

The fluid motion in �(α) is described by the generalized Navier–Stokes system

−div T(p,D(v)) + ρ div(v ⊗ v) = 0
div v = 0

}
in �(α). (3)

Here v means the velocity, p the pressure, ρ is the density of the fluid and the stress
tensor T is defined by the following formulae:

T(p,D(v)) = −pI + 2μ(|D(v)|)D(v),

μ(|D(v)|) := μ0 + μt(|D(v)|) = μ0 + ρl2
m,α|D(v)|,

where μ0 > 0 is a constant laminar viscosity and μt(|D(v)|) stands for a turbulent
viscosity. The function lm,α represents a mixing length in the algebraic model of
turbulence and it has the following form (see [13] for more details):

lm,α(x) = 1

2
α(x1)

(
0.14 − 0.08

(
1 − 2dα(x)

α(x1)

)2

− 0.06

(
1 − 2dα(x)

α(x1)

)4
)

,
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where dα(x) = min{x2, α(x1) − x2},x ∈ �(α).
The equations are completed by the following boundary conditions:

v = 0 on �f ∪ �α,

v = vD on �D,

v · τ = v1 = 0 on �out,

T22 := Tν · ν = −σ |v2|v2 on �out,

(4)

where ν,τ stands for the unit normal and tangential vector to �out, respectively and
σ > 0 is a given suction coefficient. The condition (4)4 was suggested in [12] by a
numerical study of the pipe flow. It can be also considered as a condition describing
a porous wall, which can be derived from the Forchheimer equation, an analogy of
the Darcy equation for high velocity flows [1, 16].

By a classical solution we mean any velocity field v ∈ (C2(�(α)))2 ∩ (C1(�(α)))2

and a pressure p ∈ C1(�(α)) ∩ C(�(α)) satisfying (3) and (4).

2.4 Weak Formulation of the State Problem

Throughout the paper we will assume that there exists a function v0 ∈ (W 1,3(�0))
2

which satisfies the Dirichlet boundary conditions in the sense of traces, i.e.

v0|�D
= vD, v0|∂�0\(�D∪�out) = 0, v0 · τ |�out = 0

and, in addition, divv0 = 0 in �0. We extend v0 by zero on �̂ \ �0 so that v0 ∈
(W 1,3(�̂))2 and divv0 = 0 in �̂ (the extended function v0 will be denoted by the
same symbol). Observe that such v0 is independent of α ∈ Uad .

The norm in the space Wk,p(�(α)) will be denoted by ‖ · ‖k,p,�(α) in what fol-
lows. If k = 0, then notation ‖ · ‖p,�(α) will be used. For any α ∈ Uad we denote

V0(α) =
{
ϕ = (ϕ1, ϕ2) ∈ C∞

0 (�(α)) × C∞(�(α));

dist(supp(ϕ2), ∂�(α) � �out) > 0
}

and define the spaces for the velocity

W(α) = (C∞(�(α)))2
‖·‖α

, W0(α) = V0(α)
‖·‖α

, (5)

where the closure is taken in the norm

‖v‖α := ‖v‖1,2,�(α) + ‖MαD(v)‖3,�(α) + ‖divv‖3,�(α),

Mα(x) := (
lm,α(x)

)2/3
, x ∈ �(α).

Finally, let

Wv0(α) = {
v ∈ W(α); v − v0 ∈ W0(α)

}
.

We say that v ∈ W(α) satisfies the stable boundary conditions (4)1−3 in the weak
sense iff v ∈ Wv0(α).
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Lemma 1 W(α) and W0(α) are separable reflexive Banach spaces.

Definition 1 Define the operator Aα : W(α) → (W(α))∗ by the formula

〈Aα(v),w〉α := 2ρ

∫

�(α)

M3
α|D(v)|D(v) : D(w); v,w ∈ W(α).

Here 〈·, ·〉α denotes the duality pairing between (W(α))∗ and W(α).

We are ready to give a weak formulation of the state problem. In what follows
we will use the Einstein summation convention, i.e. aibi := ∑n

i=1 aibi . Further we
denote (f, g)α := ∫

�(α)
fg, provided that fg ∈ L1(�(α)).

Definition 2 A pair (v,p) ∈ W(α) × L
3
2 (�(α)) is said to be a weak solution of the

state problem (P(α)) iff

(i) v ∈ Wv0(α);
(ii) for every ϕ ∈ W0(α) it holds:

2μ0(D(v),D(ϕ))α + ρ

(
vj

∂vi

∂xj

, ϕi

)

α

+ 〈Aα(v),ϕ〉α

+ σ

∫

�out

|v2|v2ϕ2 − (p,divϕ)α = 0; (6)

(iii) for every ψ ∈ L
3
2 (�(α)) it holds: (ψ,divv)α = 0.

Convention In the sections, where we will deal with the state problem on a fixed
domain �(α), α ∈ Uad , the letter α in the argument will be often omitted. Thus we
will write � := �(α), W := W(α), A := Aα , (·, ·) := (·, ·)α etc. without causing
confusion.

2.5 Existence of a Weak Solution

Recall that the function v0 is now defined in the whole �̂ and it does not depend
on α ∈ Uad . This fact will be used further in order to establish estimates which are
independent of α ∈ Uad .

Theorem 2 Let

σ >
ρ

2
. (7)

Then

(i) for every α ∈ Uad there exists at least one weak solution of (P(α));
(ii) there exists a constant CE := CE(μ0, ρ, σ,‖∇v0‖3,�̂) > 0 such that for any

weak solution (v,p) of (P(α)), α ∈ Uad , the following estimate holds:

‖∇v‖2
2,� + ‖M|D(v)|‖3

3,� + ‖v2‖3
3,�out

+ ‖p‖
3
2
3
2 ,�

≤ CE. (8)
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In addition, the constant CE does not depend on α ∈ Uad;
(iii) if (v,p1) and (v,p2) are two weak solutions of (P(α)), α ∈ Uad , then p1 = p2.

Moreover, for ‖∇v0‖3,�̂ small enough (independently of α ∈ Uad) there exists a
unique weak solution.

For the proof we refer to [3].

2.6 Existence of an Optimal Shape

Note that the assumption of Theorem 2, which guarantees the existence of at least one
weak solution to the state problem (P(α)), does not depend on a particular choice of
�(α) ∈ O. In what follows we assume that this assumption is satisfied. Further let

Ŵ (α) :=
{
v ∈

(
W 1,2(�(α))

)2 ; div v ∈ L3(�(α)), Mα|D(v)| ∈ L3(�(α))

}

and define

Ŵv0(α) :=
{
v ∈ Ŵ (α); v satisfies the Dirichlet

conditions (4)1–(4)3 on ∂�(α)
}
.

Remark 1 It holds that Wv0(α) ⊆ Ŵv0(α). The question arises, if these spaces are
identical. This is in fact the density problem. For the moment we do not know the
answer.

The lack of the mentioned density property leads us to modify the definition of the
state problem as follows:

Definition 3 (Augmented state problem (P̂(α))) Let α ∈ Uad . A pair (v,p) :=
(v(α),p(α)) ∈ Ŵv0(α) × L

3
2 (�(α)) is said to be a solution of the augmented state

problem (P̂(α)) iff

• (v,p) satisfies (ii) and (iii) of Definition 2;
• (v,p) satisfies the estimate (8).

Clearly any solution of (P(α)) becomes a solution of (P̂(α)) too. Moreover the
statement of Theorem 2 can be applied to (P̂(α)) as well; in particular we have the
same criterion for uniqueness.

Definition 4 (Augmented shape optimization problem (̂P)) Let us define the set

Ĝ := {(α,v,p); α ∈ Uad, (v,p) is a solution of (P̂(α))}.
A triple (α∗,v∗,p∗) ∈ Ĝ is said to be a solution of the augmented shape optimization
problem (̂P) iff

J (α∗,v∗,p∗) ≤ J (α,v,p) ∀(α,v,p) ∈ Ĝ.
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Next we introduce convergence of a sequence of domains.

Definition 5 Let {�(αn)}, αn ∈ Uad be a sequence of domains. We say that {�(αn)}
converges to �(α), shortly �(αn) � �(α), iff αn ⇒ α in [0,L].

As a direct consequence of the Arzelà–Ascoli theorem we see that the system O
is compact with respect to convergence introduced in Definition 5.

In [3] we proved the following stability result for the solutions {(vn,pn)} of
(P̂(αn)).

Theorem 3 Let (v(αn),p(αn)) be solutions to (P̂(αn)), n = 1,2, . . . and α ∈ Uad

satisfy

αn ⇒ α in [0,L], n → ∞.

Then there exists v̂ ∈ (W 1,2(�̂))2, p̂ ∈ L
3
2 (�̂) and a subsequence of {(ṽn, p̃n)} (de-

noted by the same symbol) such that

ṽn ⇀ v̂ in
(
W 1,2(�̂)

)2
,

M̃αnD(ṽn) ⇀ M̃αD( v̂ ) in
(
L3(�̂)

)2×2
,

p̃n ⇀ p̂ in L
3
2 (�̂), n → ∞,

(9)

where the symbol ˜ stands for the zero extension of a function from the domain of
its definition to �̂. In addition, denoting v(α) := v̂|�(α) and p(α) := p̂|�(α), then
(v(α),p(α)) solves (P̂(α)).

Corollary 4 Problem (̂P) has a solution.

3 Approximation of the Flow Problem

In this section we describe the finite-element approximation of (P(α)) and analyze
its properties such as the existence of discrete solutions and their convergence to a
solution of the original problem.

Let Ũad ⊂ Uad be a set of all piecewise linear functions α ∈ Uad . Throughout
this section we will assume that α ∈ Ũad is fixed (hence the symbol α will be of-
ten dropped), so that � := �(α) is a polygonal domain.

Let {Th}, h → 0+ be a family of triangulations of � and h be the norm of Th.
Throughout the section we will assume that the following conditions are satisfied:

(A1) the family {Th} is uniformly regular with respect to h: there is θ0 > 0 such that
θ(h) ≥ θ0 ∀h > 0, where θ(h) is the minimal interior angle of all triangles from
Th;

(A2) the family {Th} is consistent with the decomposition of ∂� into �out and
∂� \ �out .
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In what follows we will assume that W0h ⊂ W0 and Lh ⊂ L
3
2 (�) are finite dimen-

sional spaces.

Definition 6 We say that (W0h,Lh) satisfy the inf-sup condition (also the Babuška-
Brezzi condition), if there exists a constant CBB > 0 independent of h and α ∈ Ũad

s.t.

inf
q∈Lh

sup
w∈W0h

(q,divw)

‖q‖ 3
2
‖w‖α

≥ CBB. (10)

Let us emphasize that we require the constant CBB to be independent of α ∈ Ũad ,
which will be important in the shape optimization part. While in the literature there
are many examples of inf-sup stable elements for the situation when velocity is pre-
scribed on the whole boundary ∂�, the choice of (W0h,Lh) satisfying (10) may not
be obvious.

Denote

L
q

0(�) :=
{
ψ ∈ Lq(�);

∫

�

ψ = 0

}
.

Lemma 5 Assume that there exists ϕ ∈ W0h such that
∫
�out

ϕ ·ν > 0. Let Vh ⊂ W0h ∩
W

1,2
0 (�)2, Qh ⊂ Lh ∩ L

3
2
0 (�) be finite dimensional spaces satisfying

inf
q∈Qh

sup
w∈Vh

(q,divw)

‖q‖ 3
2
‖w‖α

≥ C (11)

with a constant C > 0 independent of h and α ∈ Ũad . Then (10) holds true.

Proof Let us pick arbitrary ϕ ∈ W0h such that ‖ϕ‖α = 1 and β := ∫
�out

ϕ · ν > 0. For
any q̃ ∈ Lh we can write q̃ = q + c, where q ∈ Qh and c ∈ R. Moreover it can be
easily shown that

‖q̃‖ 3
2

≤ ‖q‖ 3
2
+ |c||�0| 2

3 . (12)

From (11) we see that there exists w ∈ Vh, ‖w‖α = 1, such that

(q,divw) ≥ C

2
‖q‖ 3

2
.

Setting w̃ := w + C
4 (sgn c)ϕ, using Hölder’s inequality and (12) we obtain:

(q̃,div w̃) = (q,divw) + C

4
sgn c(q,divϕ) + C

4
β|c|

≥ C

4

(
‖q‖ 3

2
+ β|c|

)
≥ C

4
min

{
1,

β

|�0| 2
3

}
‖q̃‖ 3

2
,

which completes the proof. �
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It is possible to take usual finite element spaces Vh and Qh which are inf-sup

stable in the norms of W
1,3
0 (�) and L

3
2
0 (�) (such as the Taylor-Hood elements, see

e.g. [2] for particular examples). Since the norm ‖ · ‖1,3 is stronger than ‖ · ‖α , (11)
holds true. Based on Lemma 5, one can easily obtain W0h, Lh satisfying (10).

Definition 7 A pair (vh,ph) ∈ W × Lh is said to be a solution of the discrete state
problem (Ph(α)) iff

(i) vh − v0 ∈ W0h,
(ii) for every ϕh ∈ W0h it holds:

2μ0(D(vh),D(ϕh)) + ρ

(
vhj

∂vhi

∂xj

, ϕhi

)
+ ρ

2
((divvh)(vh − v0),ϕh)

+ (|divvh|divvh,divϕh) + 〈A(vh),ϕh〉 + σ

∫

�out

|vh2|vh2ϕh2

− (ph,divϕh) = 0, (13)

(iii) for every ψh ∈ Lh it holds: (ψh,divvh) = 0.

Let us point out that in contrast to (P(α)), problem (Ph(α)) contains the addi-
tional terms ρ

2 ((divvh)(vh − v0),ϕh) and (|divvh|divvh,divϕh) in order to obtain
a uniform estimate for the discrete solutions. In the continuous case, these terms van-
ish due to the divergence free velocity. However, (iii) of (Ph(α)) does not guarantee
that divvh = 0 a.e. in �.

3.1 Existence of a Discrete Solution

We will use a technique that is similar to the one presented in [3], Sect. 2.4, to prove
that (Ph(α)), α ∈ Ũad possesses a solution.

Theorem 6 Let σ >
ρ
2 and the Babuška-Brezzi condition (10) be satisfied. Then for

every h > 0

(i) there exists a solution of (Ph(α));
(ii) any solution (vh,ph) of (Ph(α)) admits the estimate

‖∇vh‖2
2,� + ‖M|D(vh)|‖3

3,� + ‖divvh‖3
3,� + ‖vh2‖3

3,�out
+ ‖ph‖

3
2
3
2 ,�

≤ CE,

(14)
where the constant CE := CE(μ0, ρ, σ,‖∇v0‖3,�̂) > 0 is the same as in Theo-

rem 2, in particular independent of h and α ∈ Ũad;
(iii) for ‖∇v0‖3,�̂ small (independently of h), the solution is unique;
(iv) ph is uniquely determined by vh.

Theorem 6 will be proven in three steps. First we will deal with the existence of
vh, then for given vh we will establish ph and finally uniqueness of vh and ph will
be discussed.
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Proof Let us define the mapping divh : W0h → L∗
h as follows:

〈divh wh,ψh〉 :=
∫

�

ψh divwh ∀wh ∈ W0h,ψh ∈ Lh

and denote Vh := ker divh. We want to find vh ∈ W , such that

(i) vh − v0 ∈ Vh,
(ii) for every ϕh ∈ Vh it holds:

2μ0(D(vh),D(ϕh)) + ρ

(
vhj

∂vhi

∂xj

, ϕhi

)
+ ρ

2
((divvh)(vh − v0),ϕh)

+ (|divvh|divvh,divϕh) + 〈A(vh),ϕh〉 + σ

∫

�out

|vh2|vh2ϕh2 = 0. (15)

It is readily seen that for ϕh ∈ Vh, (13) and (15) coincide. Using the technique of [3],
Lemma 8, one can prove the existence of vh by means of a priori estimates and the
Brouwer fixed point theorem. Moreover, the estimate

‖∇vh‖2
2,� + ‖M|D(vh)|‖3

3,� + ‖divvh‖3
3,� + ‖vh2‖3

3,�out
≤ CE, (16)

holds with a constant CE > 0 independent of h > 0 and α ∈ Ũad .
Now let us define the functional Bh ∈ W ∗

0h:

〈Bh,ϕh〉 := 2μ0(D(vh),D(ϕh)) + ρ

(
vhj

∂vhi

∂xj

, ϕhi

)
+ ρ

2
((divvh)(vh − v0),ϕh)

+ (|divvh|divvh,divϕh)

+ 〈A(vh),ϕh〉 + σ

∫

�out

|vh2|vh2ϕh2, ∀ϕh ∈ W0h. (17)

In virtue of (15), we see that Bh ∈ (Vh)
◦. From the well known properties of linear

mappings in finite dimensional spaces it follows that

(Vh)
◦ = (ker divh)

◦ = R(div′
h).

Here V ◦
h is the polar set of Vh and div′

h : Lh �→ W ∗
0h is the adjoint of divh (see e.g. [9]).

The last equality yields the existence of ph ∈ Lh satisfying div′
h ph = Bh, meaning

that

〈div′
h ph,ϕh〉 = (ph,divϕh) = 〈Bh,ϕh〉

for every ϕh ∈ W0h. Using this, (10), (16) and (17) we obtain:

‖ph‖ 3
2

≤ C,

where C > 0 is a constant independent of h and α ∈ Ũad .
Uniqueness of vh can be proven in the same way as in [3], Lemma 13. To

prove (iv), let us assume that (vh,p
1
h) and (vh,p

2
h) are two solutions of (Ph(α)).
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Then, if we insert (vh,p
1
h) and (vh,p

2
h) into (13) and subtract the respective equa-

tions, we obtain:

∀ϕh ∈ W0h (p1
h − p2

h,divϕh) = 0. (18)

From (10) it follows that p1
h = p2

h a.e. in �. �

3.2 Convergence of Discrete Solutions

In this section we will study the relation between (vh,ph) and (v,p) for h → 0+.

Convention Here and in what follows we will use the same symbol for an original
sequence and its subsequences.

Theorem 7 Let the assumptions of Theorem 6 be satisfied and let {W0h}h>0, {Lh}h>0

be dense in W0 and L
3
2 (�), respectively. Then for any sequence {(vh,ph)} of solu-

tions to (Ph(α)) there exists a subsequence and a limit pair (v,p) ∈ Wv0 × L
3
2 (�)

such that

vh → v in W, (19a)

ph ⇀ p in L
3
2 (�), h → 0+ (19b)

and (v,p) is a solution of (P(α)), α ∈ Ũad .

For the proof of this theorem we will need the following auxiliary result which
can be established using Lemma 1.19 in [20].

Lemma 8 (Some properties of Aα , α ∈ Uad)

(i) Aα is monotone in W(α) in the following sense:

〈Aα(v) − Aα(w),v − w〉α ≥ C‖MαD(v − w)‖3
3,� ∀v,w ∈ W(α),

where C > 0 is independent of α.
(ii) Aα is continuous in W(α).

Proof of Theorem 7 The existence of v ∈ W , A ∈ W ∗, d ∈ L
3
2 (�) satisfying

vh ⇀ v in W, (20)

vh ⇀ v in W 1,2(�), (21)

MD(vh) ⇀ MD(v) in L3(�),

A(vh) ⇀ A in W ∗, (22)

|divvh|divvh ⇀ d in L
3
2 (�), (23)

ph ⇀ p in L
3
2 (�),
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follows from (14).
Next we prove that divv = 0 a.e. in �. Let ψ ∈ L

3
2 (�). Then there is a sequence

{ψh}, ψh ∈ Lh, such that ψh → ψ in L
3
2 (�). From this and (21) we obtain:

0 = (ψh,divvh) → (ψ,divv), (24)

so that divv = 0 a.e. in �.
Now we make the limit passage in (13). Let ϕ ∈ W0. Then there is a sequence

{ϕh}, ϕh ∈ W0h such that

ϕh → ϕ in W0. (25)

Similarly to the proof of Lemma 9 in [3], we will use the compact imbeddings in the
respective spaces, (19), (24) and (25) to pass to the limit with h → 0+ in the standard
terms, which together with (22) and (23) yield:

(D(v),D(ϕ)) +
(

vj

∂vi

∂xj

, ϕi

)
+ (d,divϕ) + 〈A,ϕ〉 +

∫

�out

|v2|v2ϕ2 − (p,divϕ) = 0

(26)
for every ϕ ∈ W0 (here we put 2μ0 = ρ = σ = 1 for simplicity).

Now we use monotonicity of |divv|divv and A to show that

(d,divϕ) + 〈A,ϕ〉 = 〈A(v),ϕ〉 for every ϕ ∈ W.

Indeed, let ϕ ∈ W . Then

0 ≤ (|divvh|divvh − |divϕ|divϕ,div(vh − ϕ)) + 〈A(vh) − A(ϕ),vh − ϕ〉

= −(D(vh),D(vh − v0)) −
(

vhj

∂vhi

∂xj

, vhi − v0i

)

− 1

2
((divvh) (vh − v0) ,vh − v0)

−
∫

�out

|vh2|vh2(vh2 − v02) + (|divvh|divvh,div(v0 − ϕ))

− (|divϕ|divϕ,div(vh − ϕ)) + 〈A(vh),v0 − ϕ〉
− 〈A(ϕ),vh − ϕ〉, (27)

making use of (13) and the fact that vh − v0 ∈ W0h. Letting h → 0+ and using lower
semicontinuity of ‖D(vh)‖2,� and continuity of the remaining terms we obtain:

0 ≤ −(D(v),D(v − v0)) −
(

vj

∂vi

∂xj

, vi − v0i

)
−

∫

�out

|v2|v2(v2 − v02)

+ (d,div(v0 − ϕ)) − (|divϕ|divϕ,div(v − ϕ))

+ 〈A,v0 − ϕ〉 − 〈A(ϕ),v − ϕ〉. (28)
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From (26) and (28) we arrive at the inequality

0 ≤ (d − |divϕ|divϕ,div(v − ϕ)) + 〈A − A(ϕ),v − ϕ〉, (29)

which holds for any ϕ ∈ W . Choosing ϕ := v ± λψ , λ > 0, ψ ∈ W and dividing by
λ we obtain for λ → 0+:

(d,divψ) + 〈A,ψ〉 = 〈A(v),ψ〉.

From this and (26) we see that (v,p) solves (P(α)).
To prove strong convergence of vh to v we use (i) in Lemma 8:

C
(
‖D(vh − v)‖2

2,� + ‖M|D(vh − v)|‖3
3,� + ‖divvh‖3

3,�

)

≤ (D(vh − v),D(vh − v)) + 〈A(vh) − A(v),vh − v〉 + ‖divvh‖3
3,�

= (D(vh),D(vh − v0)) + 〈A(vh),vh − v0〉 + (|divvh|divvh,div(vh − v0))

+ (D(vh),D(v0 − v)) − (D(v),D(vh − v))

+ 〈A(vh),v0 − v〉 − 〈A(v),vh − v〉. (30)

The expression

(D(vh),D(vh − v0)) + 〈A(vh),vh − v0〉 + (|divvh|divvh,div(vh − v0))

on the right hand side of (30) can be replaced using (13). Then due to weak con-
vergence of {vh} and {ph} the right hand side of (30) vanishes for h → 0+, which
yields (19a). �

4 Approximation of the Shape Optimization Problem

4.1 Parameterization of the Discrete Shapes

We now introduce two types of discretized domains: a discrete design and discrete
computational domain. The boundary �α of the discrete design domain is realized
by a smooth, piecewise quadratic Bézier function. The optimal discrete design do-
main is the main output of the computational process according to which a designer
makes decisions. On the other hand, our finite element method requires a polygonal
computational domain.

Let κ > 0 be a discretization parameter, �κ : L1 = a0 < a1 < · · · < an = L1 +L2

be an equidistant partition of [L1,L1 + L2], ai = L1 + i
n
L2, n = n(κ) = L2

κ and
ai−1/2 be the midpoint of [ai−1, ai], i = 1, . . . , n. Further let Ai−1/2 = (ai−1/2, αi),
αi ∈ R, i = 1, . . . , n be the design nodes, Ai = 1

2 (Ai−1/2 + Ai+1/2) be the midpoint
of the segment [Ai−1/2,Ai+1/2], i = 1, . . . , n−1, A0 = (a0,H1), and An = (an,H2),
see Fig. 3. We introduce the set
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Fig. 3 Approximation of the boundary of �(α)

Uκ : =
{
sκ ∈ C([0,L]); sκ|[0,L1] = H1, sκ|[L1+L2,L] = H2,

sκ|[ai−1,ai ] is a quadratic Bézier function

determined by {Ai−1,Ai−1/2,Ai}, i = 1, . . . , n
}
.

In order to define a family of admissible shapes locally realized by Bézier func-
tions, it is necessary to specify αi ∈ R defining the position of the design nodes
Ai−1/2, i = 1, . . . , n. With the partition �κ we associate the set U ⊂ Rn:

U =
{
α = (α1, . . . , αn) ∈ Rn; αmin ≤ αi ≤ αmax, i = 1, . . . , n;

|αi+1 − αi |
κ

≤ γ, i = 1, . . . , n − 1; 2|α1 − H1|
κ

≤ γ,
2|αn − H2|

κ
≤ γ

}
,

where γ > 0 is the same as in (1). The family of the admissible discrete design do-
mains is now represented by

Oκ = {�(sκ); sκ ∈ Uκ
ad},

where

Uκ
ad = {sκ ∈ Uκ; the design nodes Ai−1/2 = (ai−1/2, αi), i = 1, . . . , n,

are such that α = (α1, . . . , αn) ∈ U}.
Due to properties of the Bézier functions it holds that Uκ

ad ⊂ Uad .
We now turn to the definition of the computational domains. To this end we intro-

duce another family of partitions {�h}, h → 0+, of [L1,L1 + L2] (not necessarily
equidistant), whose norm will be denoted by h. Next we will suppose that h → 0+ iff
κ → 0+. Let rhsκ be the piecewise linear Lagrange interpolant of sκ ∈ Uκ

ad on �h.
The computational domain related to �(sκ) will be represented by �(rhsκ); i.e. the
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curved side �sκ , being the graph of sκ ∈ Uκ
ad , is replaced by its piecewise linear La-

grange approximation rhsκ on �h. The system of computational domains will be
denoted by Oκh in what follows:

Oκh := {�(rhsκ); sκ ∈ Uκ
ad}.

Since �(rhsκ) is already polygonal, one can construct its triangulation Th(sκ) with
the norm h > 0 and depending on sκ ∈ Uκ

ad .

Convention The domain �(rhsκ) with a given triangulation Th(sκ) will be denoted
by �h(sκ) in what follows.

4.2 Formulation of the Discrete Problem

Let us define the set

Gκh := {(sκ,vh,ph); sκ ∈ Uκ
ad, (vh,ph) is a solution of (Ph(rhsκ))}.

The discretization of (P) then reads as follows:
{

Find (s∗
κ,v∗

h,p
∗
h) ∈ Gκh such that

J (s∗
κ,v∗

h,p
∗
h) ≤ J (sκ,vh,ph) ∀(sκ,vh,ph) ∈ Gκh.

(Pκh)

The approximate optimal shape is given by �(s∗
κ).

Next we will analyze the existence of solutions to (Pκh) and their relation to solu-
tions of (̂P) as h,κ → 0+.

4.3 Existence of Solutions

In order to establish the existence results, we have to impose additional assumptions
on the family of triangulations {Th(sκ)}, h,κ → 0+, which are listed below.

We will suppose that, for any h,κ > 0 fixed, the system {Th(sκ)}, sκ ∈ Uκ
ad con-

sists of topologically equivalent triangulations, meaning that

(T1) the triangulation Th(sκ) has the same number of nodes and the nodes still have
the same neighbors for any sκ ∈ Uκ

ad;
(T2) the positions of the nodes of Th(sκ) depend solely and continuously on varia-

tions of the design nodes {Ai−1/2}ni=1.

For h,κ → 0+ we suppose that

(T3) the family {Th(sκ)} is uniformly regular with respect to h,κ and sκ ∈ Uκ
ad:

there is θ0 > 0 such that θ(h, sκ) ≥ θ0, ∀h,κ > 0, ∀sκ ∈ Uκ
ad , where θ(h, sκ)

is the minimal interior angle of all triangles from Th(sκ).

Finally, due to the mixed boundary conditions, we suppose that

(T4) the family {Th(sκ)} is consistent with the decomposition of ∂�h(sκ) into �out

and ∂�h(sκ) \ �out .
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Let us note that (T3)–(T4) imply the assumptions (A1)–(A2) from the previous sec-
tion.

One can easily show that (Pκh) leads to the following nonlinear programming
problem:

⎧⎪⎨
⎪⎩

min(α,q(α))∈U×Rm J (α,q(α))

subject to

R(α,q(α)) = 0,

(Pn)

where J , R, q(α) is the algebraic representation of J , (Ph(sκ)), and (vh,ph), re-
spectively.

Remark 2 From (T1) it follows that m := m1 +m2, where m1 := dimW0h and m2 :=
dimLh, does not depend on sκ ∈ Uκ

ad or equivalently on α ∈ U . The components of
the residual vector R are given by

Rk(α,q) := 2μ0
(
D(vh),D(ϕk

h)
)
�h(sκ)

+ ρ

(
vhj

∂vhi

∂xj

, ϕk
hi

)

�h(sκ)

+ ρ

2
((divvh)(vh − v0),ϕ

k
h)�h(sκ) + (|divvh|divvh,divϕk

h)�h(sκ)

+ 〈Arhsκ (vh),ϕ
k
h〉�h(sκ) + σ

∫

�out

|vh2|vh2ϕ
k
h2 − (ph,divϕk

h)�h(sκ),

k = 1, . . . ,m1,

Rm1+k(α,q) := (ψk
h,divvh)�h(sκ), k = 1, . . . ,m2,

where

vh := v0 +
m1∑
k=1

qkϕ
k
h, ϕk

h := ϕk
h(α),

ph :=
m2∑
k=1

qm1+kψ
k
h, ψk

h := ψk
h(α)

(31)

and {ϕk
h(α)}, {ψk

h(α)} is a basis of W0h(sκ) and Lh(sκ), respectively. The cost func-
tion J : Rm → R does not depend explicitly on α ∈ U since J does not.

We recall the a priori estimates:

‖∇vh‖2
2,�h(sκ) + ‖Mrhsκ |D(vh)|‖3

3,�h(sκ) + ‖divvh‖3
3,�h(sκ)

+ ‖vh2‖3
3,�out

+ ‖ph‖
3
2
3
2 ,�h(sκ)

≤ CE,

where CE > 0 is independent of h > 0 and sκ ∈ Uκ
ad .

The following continuity property of the mapping α �→ q(α), α ∈ U is a direct
consequence of (T1) and (T2) (for the proof see [24]).
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Lemma 9 Let αN → α, N → ∞, where αN,α ∈ U , and let q(αN) satisfy
R(αN,q(αN)) = 0. Then there is a q(α) ∈ Rm and a subsequence (denoted by the
same symbol) such that

q(αN) → q(α), N → ∞ (32)

and R(α,q(α)) = 0.

Since U is compact, we immediately obtain the existence of a discrete optimal
shape.

Theorem 10 Problem (Pn) (and equivalently (Pκh)) has a solution.

4.4 Convergence Analysis

The key role in our analysis plays the following counterpart of Theorem 3 (recall that
the symbol ˜ stands for the zero extension of functions).

Lemma 11 Let (sκ,vh(sκ),ph(sκ)) ∈ Gκh, h,κ → 0+, sκ ∈ Uκ
ad , and α ∈ Uad

satisfy

sκ ⇒ α in [0,L], κ → 0 + .

Then there exists v̂ ∈ (W 1,2(�̂))2, p̂ ∈ L
3
2 (�̂) and appropriate subsequences such

that

ṽh(sκ) ⇀ v̂ in
(
W 1,2(�̂)

)2
,

M̃rhsκ D(ṽh(sκ)) ⇀ M̃αD(̂v) in
(
L3(�̂)

)2×2
,

p̃h(sκ) ⇀ p̂ in L
3
2 (�̂), h,κ → 0 + .

(33)

In addition, denoting v(α) := v̂|�(α) and p(α) := p̂|�(α), then v(α) ∈ Ŵv0(α) and
(v(α),p(α)) solves (P̂(α)).

Remark 3 Since Mα = 0 on ∂�(α) \�D , M̃α is continuous in �̂. The same holds for
the function lm,α .

Proof of Lemma 11 We will proceed in the same way as in the proof of Theorem 15
in [3], with several minor changes.

From (14) we know that the sequence {‖vh‖rhsκ ,‖ph‖ 3
2 ,�h(sκ)

} is bounded and
that (33) holds for its appropriate subsequence. Since rhsκ ⇒ α in [0,L] as h,
κ → 0+, we easily get that v(α) := v̂|�(α) ∈ Ŵv0(α). In addition, p̂ and v̂ vanish
in �̂ \ �(α). From the density property of the system {Lh} it follows that div v̂ = 0
a.e. in �̂.

We will focus on the limit passage in (Ph(rhsκ)). Let ϕ ∈ V0(α) be given and ϕh

be the piecewise linear Lagrange interpolant of ϕ̃|�h(sκ) on the triangulation Th(sκ)

of �h(sκ). Since dist(supp ϕ̃,�(rhsκ)) > 0 for h,κ > 0 small enough, the graph of
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rhsκ has an empty intersection with supp ϕ̃, which means that ϕh ∈ W0h(rhsκ) and
it can be used as a test function in (Ph(rhsκ)). In addition,

ϕ̃h → ϕ̃ in W 1,∞(�̂)2, h → 0+, (34)

as follows from the well-known approximation results and the uniform regularity
assumption (T 3) on {Th(sκ)}. Now we can pass to the limit in the standard terms
in (13):

(D(ṽh),D(ϕ̃h))�̂ → (D(̂v),D(ϕ̃))�̂,
∫

�out

|ṽh2|ṽh2ϕ̃h2 →
∫

�out

|̂v2 |̂v2ϕ̃2, (35)

(
ṽhj

∂ṽhi

∂xj

, ϕ̃hi

)

�̂

→
(

v̂j

∂v̂i

∂xj

, ϕ̃i

)

�̂

,

(p̃h,div ϕ̃h)�̂ → (p̂,div ϕ̃)�̂, h,κ → 0+,

as follows from (33) and (34).
Finally, in order to show that

(|div ṽh|div ṽh,div ϕ̃h) + 〈Ãrhsκ (ṽh), ϕ̃h〉 → 〈Ãα(ṽ(α)), ϕ̃〉, (36)

we use the Vitali theorem. To prove pointwise convergence of D(ṽh) to D(̂v) we
proceed as in the proof of Theorem 15 in [3]. Let �ε := {x ∈ �(α); dist(x, ∂�) >

ε}, ε > 0, and ξ := ξε ∈ C∞
0 (�(α)) such that ξ ≥ 0 in �(α) and ξ ≡ 1 in �ε . We

construct a test function ϕ := ξ(ṽh1 − ṽh2 −ψ), where h1, h2 > 0 and ψ ∈ W
1,3
0 (�̂)2

satisfies

divψ = div(ṽh1 − ṽh2) a.e. in �̂, (37a)

‖ψ‖1,3,�̂ ≤ Cdiv‖ṽh1 − ṽh2‖3,�̂, (37b)

where Cdiv > 0 is independent of h1 and h2 (see e.g. [7] for solvability of the diver-
gence equation). Given δ > 0, (37) yields:

‖ṽh1 − ṽh2‖3,�̂ ≤ δ, ‖ψ‖1,3,�̂ ≤ δ, ‖ϕ‖3,supp ξ ≤ δ (38)

provided that h1 and h2 are sufficiently small. Instead of inserting ϕ directly into
(Ph1(rhsκ)) and (Ph2(rhsκ)), we use the Lagrange interpolants ϕh1

, ϕh2
, respec-

tively. We realize that if hi , i = 1,2, is small enough, then

‖ϕ̃hi
− ϕ‖1,3,�̂ ≤ δ. (39)

We use (13), (38) and (39) to deduce that

2μ0(D(vhi
),D(ϕhi

))�hi
(sκi

) + 〈Arhi
sκi

(vhi
),ϕhi

〉�hi
(sκi

) = O(1), i = 1,2, (40)
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where O(1) denotes an expression which vanishes as δ → 0. From the definition of
ϕ, (38) and (39) we obtain:

(D(vhi
),D(ϕhi

))�hi
(sκi

) = (D(vhi
), ξD(vh1 − vh2))supp ξ + O(1), (41a)

〈Asκi
(vhi

),D(ϕhi
)〉�hi

(sκi
)

= (M3
rh1 sκ1

|D(vhi
)|D(vhi

)), ξD(vh1 − vh2))supp ξ + O(1), (41b)

i = 1,2. Altogether, (39)–(41) yield:

2μ0‖D(vh1 − vh2)‖2
2,�ε

≤ 2μ0(D(vh1 − vh2), ξD(vh1 − vh2))supp ξ

+ 2ρ(ξM3
rh1 sκ1

(|D(vh1)|D(vh1) − |D(vh2)|D(vh2)),D(vh1 − vh2))supp ξ

= 2μ0(D(vh1),D(ϕh1
))supp ξ + 〈Arh1 sκ1

(vh1),ϕh1
〉�h1 (sκ1 )

− 2μ0(D(vh2),D(ϕh2
))supp ξ − 〈Arh2 sκ2

(vh2),ϕh2
〉�h2 (sκ2 ) = O(1).

Consequently

D(ṽh) → D(̂v), h,κ → 0+, a.e. in �̂

for an appropriate subsequence. From this, (14) and the Vitali theorem we arrive at
(36) (note that divvh = tr D(vh)). Thus (v(α),p(α)) solves (P̂(α)). �

Remark 4 As in the continuous case, due to the lack of a density result for W0(α), we
are not able to prove that the limit v(α) belongs to Wv0(α). Therefore the augmented
state problem (P̂(α)) and shape optimization problem (̂P) is considered instead of
(P(α)) and (P), respectively.

On the basis of the previous lemma we obtain the following convergence result.

Theorem 12 Let ‖∇v0‖3,�̂ be small enough so that the solutions of (P(α)) and
(P̂(α)), α ∈ Uad , are unique. Let {(s∗

κ,v∗
h,p

∗
h)} be a sequence of optimal pairs of

(Pκh), h,κ → 0+. Then there is a subsequence of {s∗
κ,v∗

h,p
∗
h)} such that

s∗
κ ⇒ α∗ in [0,L], (42a)

ṽ∗
h ⇀ v∗ in

(
W 1,2(�̂)

)2
, (42b)

M̃rhsκ D(ṽ∗
h) ⇀ M̃αD(v∗) in

(
L3(�̂)

)2×2
, (42c)

p̃∗
h ⇀ p∗ in L

3
2 (�̂), h,κ → 0+, (42d)

where (α∗,v∗
|�(α∗), p

∗
|�(α∗)) is an optimal triple for (̂P). In addition, any accumula-

tion point of {s∗
κ,v∗

h,p
∗
h)} in the sense of (42) possesses this property.

Proof Let α ∈ Uad be arbitrary. Then there exists a sequence {sκ}, sκ ∈ Uκ
ad , such

that sκ ⇒ α in [0,L], κ → 0+, as follows from the well-known properties of Bézier
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functions. From Lemma 11 it follows that

ṽh(sκ) ⇀ v in
(
W 1,2(�̂)

)2
, (43)

M̃rhsκ D(ṽh(sκ)) ⇀ M̃αD(v) in
(
L3(�̂)

)2×2
, (44)

p̃h(sκ) ⇀ p in L
3
2 (�̂), h,κ → 0+, (45)

where (vh(sκ),ph(sκ)) are the solutions of (Ph(rhsκ)) and (v(α),p(α)) :=
(v|�(α),p|�(α)) is the unique solution of (P̂(α)). Since J is continuous with respect
to convergence in (43) and

J (s∗
κ,v∗

h,p
∗
h) ≤ J (sκ,vh(sκ),ph(sκ)),

we have that

J (α∗,v∗
|�(α∗), p

∗
|�(α∗)) ≤ J (α,v(α),p(α)).

Here α ∈ Uad is arbitrary, hence (α∗,v∗
|�(α∗), p

∗
|�(α∗)) is a solution of (̂P). �

Remark 5 Let us mention that the state solutions must be unique for the complete
convergence result. Otherwise the limit solutions are optimal only in a subclass of Ĝ
formed by all accumulation points of solutions to (Ph(rhsκ)), h,κ → 0+.

4.5 Differentiability of the Discrete Cost Function

To establish existence of discrete optimal solutions and their convergence, we have
exploited continuity of the cost function with respect to shape variations. In numeri-
cal realization, however, the optimization problems are usually solved using gradient-
based methods that search for a local minimum. We will therefore examine smooth-
ness of the discrete cost function so that the subsequent numerical procedure is prop-
erly justified.

Lemma 13 Assume that, in addition to (T2), the nodal coordinates of Th(sκ) are
continuously differentiable with respect to α, and that the finite element spaces W0h,
Lh are formed by the isoparametric technique. Then R and J are continuously dif-
ferentiable w.r.t. α ∈ U and q ∈ Rm.

Proof Due to Remark 2 we observe that R is formed by a sum of integrals over
triangles and edges whose differentiability can be analyzed separately. Consider for
instance the integral

IT :=
∫

T

M3
rhsκ |D(vh)|D(vh) : D(ϕk

h),

k ∈ {1, . . . ,m1}, T ∈ Th(sκ). Since vh depends linearly on q (as follows from (31))
and x �→ |x|x is continuously differentiable, it holds that ∂IT

∂q is continuous.
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Let T̂ be a reference triangle and jT the determinant of the corresponding one-to-
one mapping ξ : T̂ → T . Then we have

IT =
∫

T̂

M̂3
rhsκ |D(̂vh)|D(̂vh) : D(ϕ̂k

h)jT ,

where v̂h(x) := vh(ξ(x)) etc. Since the domain of integration is fixed, we obtain:

∂IT

∂α
=

∫

T̂

∂

∂α

(
M̂3

rhsκ |D(̂vh)|D(̂vh) : D(ϕ̂k
h)jT

)
.

For the isoparametric FEM it holds that vh,∇vh,ϕ
k
h,∇ϕk

h, jT are continuously dif-
ferentiable w.r.t. α (see [14, Theorem 3.3 on p. 122] for precise formulas). In
[24, Lemma 1.2 on p. 8] we have shown that

M3
α(x) = l2

m(α(x1), x2), x ∈ �(α), α ∈ Uad

where

lm(y) := y1

2

(
0.14 − 0.08d2(y) − 0.06d4(y)

)
,

d(y) :=
(

1 − 2 min{y2, y1 − y2}
y1

)
.

One easily verifies that d2 is continuously differentiable. Hence the same applies also
to lm and α �→ M3

rhsκ . Consequently ∂IT

∂α is continuous.
The remaining terms appearing in R and J , respectively, can be treated analo-

gously. �

In the following lemma we establish a sufficient condition for invertibility of the
matrix ∂R

∂q .

Lemma 14 There exists a constant Creg > 0 independent of κ and h such that
∂R
∂q (α,q) is nonsingular for all α ∈ U and q ∈ Rm provided that ‖∇v0‖3,�̂ < Creg.

Proof It can be shown that

∂R

∂q
(α,q) =

(
A(α,q) B�(α)

B(α) O

)
,

where the components akl , bkl of the matrices A := A(α,q) and B := B(α), respec-
tively, are given by the formulae:

akl = 2μ0(D(ϕl
h),D(ϕk

h))�h(sκ) + ρ

(
ϕl

hj

∂vhi

∂xj

+ vhj

∂ϕl
hi

∂xj

, ϕk
hi

)

�h(sκ)

+ ρ

2
((divϕl

h)(vh − v0) + (divvh)ϕ
l
h,ϕ

k
h)�h(sκ)
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+ 2ρ

(
M3

rhsκ
D(vh)

|D(vh)|D(vh) : D(ϕl
h) + M3

rhsκ |D(vh)|D(ϕl
h),D(ϕk

h)

)

�h(sκ)

+ 1

2
(|divvh|divϕl

h,divϕk
h)�h(sκ)

+ 2σ

∫

�out

|vh2|ϕl
h2ϕ

k
h2, k, l = 1, . . . ,m1,

bkl = −(ψl
h,divϕk

h)�h(sκ), k = 1, . . . ,m1, l = 1, . . . ,m2,

vh = v0 +
m1∑
i=1

qiϕ
i
h.

For every q̃ ∈ Rm1 we have that

Aq̃ · q̃ ≥ 2μ0‖D(wh)‖2
2,�h(sκ) + ρ

(
whj

∂vhi

∂xj

+ vhj

∂whi

∂xj

,wi

)

�h(sκ)

+ ρ

2
((divwh)(vh − v0) + (divvh)wh,w)�h(sκ),

where wh := ∑m1
i=1 q̃iϕ

i
h. Using Hölder’s, Friedrichs’, Korn’s inequality and imbed-

ding, we can estimate

ρ

(
wj

∂vhi

∂xj

+ vhj

∂wi

∂xj

,wi

)

�h(sκ)

+ ρ

2
((divw)(vh − v0) + (divvh)w,w)�h(sκ)

≤ C(‖∇vh‖2,�h(sκ) + ‖∇v0‖3,�̂)‖D(w)‖2
2,�h(sκ),

where C > 0 is independent of κ and h. From (14) and the fact that CE ↘ 0 as
‖∇v0‖3,�̂ ↘ 0 (see Remark 2 in [3]) we infer that A is positive definite if ‖∇v0‖3,�̂

is small enough.
Due to (10), the equation B�y = 0 has only the trivial solution, hence B has full

rank and ∂R
∂q is nonsingular. �

We are now going to express the gradient of the cost function. Although in our
particular situation J does not explicitly depend on α, we will consider the general
case and define

J(α) := J (α,q(α)).

The control-to-state mapping is in general multi-valued, thus differentiation of J has
sense only if restricted to a particular branch of solutions. Since R is smooth, differ-
entiability of the mapping α �→ q(α) of solutions to the equation

R(α,q(α)) = 0 (46)

follows from the implicit function theorem, provided that the matrix ∂R
∂q is nonsingu-

lar.
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In order to avoid computation of dq
dα , the adjoint state p := p(α) is introduced

through the equation

(
∂R

∂q
(α,q(α))

)�
p = ∂J

∂q
(α,q(α)). (47)

Then the gradient of J reads:

∂J

∂αk

(α) = ∂J
∂αk

(α,q(α)) − p ·
(

∂R

∂αk

(α,q(α))

)
, k = 1, . . . , n. (48)

We summarize the above ideas in the following statement.

Theorem 15 Suppose that the hypothesis of Lemma 13 holds. Let (ᾱ,q(ᾱ)) ∈ U ×
Rm be a solution to (46) and the matrix ∂R

∂q be nonsingular at (ᾱ,q(ᾱ)). Then there

is a neighbourhood of this point in which the mapping

α �→ q(α)

defines a continuously differentiable branch of solutions to the system (46). Moreover,
the cost function J is continuously differentiable on this branch and its gradient is
expressed through (48) and (47).

If ‖∇v0‖3,�̂ is small enough so that ∂R
∂q is invertible and solutions to the state

problem are unique, then the control-to-state mapping is single-valued and formulas
(48) and (47) determine the gradient of J in the usual sense. Note that the condition
guaranteeing uniqueness of the solutions to the discrete state problems is independent
of α and h.

Although invertibility of ∂R
∂q is guaranteed only for “small data”, the result of this

subsection is not restricted only to that case. Roughly speaking, convergence of the
Newton method for numerical realization of the state problem goes hand in hand with
the differentiability of the state problem.

5 Numerical Realization

In this section we present a method of numerical realization of the shape optimization
problem. We would like to emphasize that our implementation is not restricted to this
particular problem but it can be applied to a wide range of shape optimization and
optimal control problems that can be formulated like (Pn).

5.1 State Problem

We will start with the numerical solution of the discrete state problem (Ph(α)) (see
Sect. 3 for definition of (Ph(α)), α ∈ Ũad) whose algebraic form is (46).
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We assume that α is given and consider (46) as a system of m nonlinear algebraic
equations for the vector of unknowns q := q(α) ∈ Rm which will be solved by the
Newton-Raphson method:

Given qk ∈ Rm, define qk+1 := qk −
(

∂R

∂q
(α,qk)

)−1

R(α,qk). (49)

Let us recall that the sequence {qk}, k = 0,1, . . . , converges provided that the
initial guess q0 is close enough to the solution of (46). Thus we have to supply a
good approximation of q at the beginning. This is usually done by using some other
algorithm (e.g. the fixed point iterations) before the Newton-Raphson method is used.
The main advantage of this method is that if R is twice continuously differentiable
and the inverse of ∂R

∂q (α,q(α)) exists, then convergence of (49) is at least quadratic.

Instead of computing the inverse matrix ( ∂R
∂q (α,qk))

−1, we solve for every k the
linear system

∂R

∂q
(α,qk)�qk = R(α,qk) (50)

for the unknown �qk ∈ Rm and put qk+1 := qk − �qk . For the solution of (50)
we used the package SuperLU, which performs an LU decomposition with partial
pivoting (see [6] for detailed description).

In our program we do not implement the analytical form of ∂R
∂q . Instead, we only

specify how to assemble the residual vector R(α,qk). The matrix of the linearized
system (50) is obtained automatically by using tools of the automatic differentiation.
The residual vector is decomposed into the sum of area and boundary integrals, which
are further calculated element by element or edge by edge using suitable numerical
quadratures.

The algorithm for the numerical solution of the state problem now reads as fol-
lows:

Algorithm 1 Solution of the discrete state problem
1. Choose the tolerance rmax > 0 for the residuum and the max. number of the New-

ton iterations kmax ∈ N.
2. Choose q0 ∈ Rm.
3. For k = 0, . . . , kmax − 1:

• Compute bk := R(α,qk) and set Ck := ∂R(α,qk)

∂q .
• Solve Ck�qk = bk and set qk+1 := qk − �qk , rk := |bk|.
• If rk < rmax then go to 4.

4. If rk < rmax then set q := qk , otherwise report error.

5.2 Shape Optimization Problem

We solve numerically the mathematical programming problem (Pn). Since the func-
tion to be minimized is smooth, we will use a gradient based minimization algorithm
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supplied by the gradient information derived in Sect. 4.5. Most of the tedious work
will be done by means of the automatic differentiation (see [10, 14]).

For the numerical minimization itself we used the following packages:

• KNITRO—a robust tool for many types of smooth optimization problems (see
[4, 5, 27]).

• NAG C library—in particular the function e04wdc which is intended for smooth
optimization and uses the sequential quadratic programming [8].

Both packages provide a Fortran/C interface that allows to supply arbitrary routines
for the cost function and gradient evaluation. A comparison of both packages and the
obtained results can be found in Sect. 5.3 where results of several model examples
are presented.

The evaluation of the cost function J is done by the following chain:

α �→ q(α) �→ J(α) := J (α,q(α)).

Since the first mapping is in general multi-valued, we restrict ourselves to a single
branch corresponding to the initial state (α0,q(α0)) , so that J(α) and ∇J(α) are
well-defined, at least locally. We assume also that the solutions q(α) obtained by the
iterative process lie on the same branch. Instead of the global minimum of J (α,q(α))

we search for a local minimizer of J(α).

∂J

∂αk

(α) = ∂J
∂αk

(α,q(α)) − p ·
(

∂R

∂αk

(α,q(α))

)
, k = 1, . . . , n, (51)

(
∂R

∂q
(α,q(α))

)T

p = ∂J
∂q

(α,q(α)). (52)

The gradient ∇J(α) is computed by the method described in Sect. 4.5, see
(47)–(48). In particular, we have to solve only one additional linear problem for the
adjoint state p. Let us also notice that for our particular cost function used in the
computations it holds that

∂J
∂αk

(α,q) = 0, k = 1, . . . , n.

The implementation of (47)–(48) is simple, provided that the partial derivatives ∂R
∂α ,

∂R
∂q , ∂J

∂q are computed in a smart way. Their hand-coding is in most cases elaborate
and error-prone, requiring an additional algebraic sensitivity analysis. For this rea-
son we compute them with the aid of the automatic differentiation and the operator
overloading feature of C++ (see [25] for details on the implementation).

For the computations of the state problem for different α ∈ U (or sκ ∈ Uκ
ad , equiv-

alently) we need to construct triangulations of �h(sκ) that satisfy (T1)–(T4). We
use an approach which exploits the shape of �h(sκ): We choose a suitable sκ ∈ Uκ

ad
and create a triangulation Th(sκ). Then, given sκ ∈ Uκ

ad , we define the triangulation
of �h(sκ) from Th(sκ) in such a way, that every node (x(sκ), y(sκ)) of Th(sκ) is
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shifted in the vertical direction:

x(sκ) := x(sκ),

y(sκ) := y(sκ)
sκ(x(sκ))

sκ(x(sκ))
.

(53)

The map sκ �→ (x(sκ), y(sκ)) is continuously differentiable and due to the definition
of Uκ

ad , the assumptions (T1)–(T4) are satisfied.
The evaluation of J and ∇J can be summarized as follows:

Algorithm 2 Evaluation of the discrete cost function and its gradient
1. Given α ∈ U , solve the state problem and obtain q(α);
2. Evaluate J(α) := J (α,q(α));
3. Solve the adjoint equation (47) to obtain p(α);
4. Evaluate ∇J using (48).

5.3 Model Examples

We end up with several numerical examples. Let us note that the parameters used in
the following computations do not correspond to any real industrial application.

5.3.1 State Problem

Traditionally the paper machine header has been designed with a linearly tapered
header. We use this header design to test the state problem solver. The computational
domain is 9.5 m long and 1 m wide (see Fig. 4). This domain is partitioned by us-
ing a uniform triangular mesh into 8000 triangles. The velocity is approximated by
continuous piecewise quadratic functions, while the pressure by continuous linear
functions. For this type of approximation (known as the Taylor-Hood element) it is
known that the Babuška-Brezzi condition (11) holds true [2, 26]. The resulting num-
ber of degrees of freedom of q is 28663.

The pulp is modelled as an incompressible fluid with the laminar viscosity μ0 =
10−3 Pa s and the density ρ = 103 kg/m3. The inlet and outlet velocity profiles are
chosen as follows:

vD|{0}×(0,H1) =
(

4

(
1 −

(
2x2

H1
− 1

)8)
,0

)
m/s,

vD|{L}×(0,H2) =
(

1 −
(

2x2

H2
− 1

)8

,0

)
m/s.

If we define the kinematic viscosity ν := μ0/ρ, then ν−1 gives the Reynolds num-
ber 106 in case of the standard Navier-Stokes equations. This usually requires the use
of a stabilized numerical scheme. However our turbulence model produces enough
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Fig. 4 Dimensions of the computational header

Fig. 5 Solution of the state
problem (for σ = 103 and
linearly tapered header):
pressure p, velocity magnitude
|v| and streamlines, dynamic
viscosity μ

turbulent viscosity so that the state problem can be solved without any additional sta-
bilization. As the initial approximation we chose a solution of a similar problem with
a higher viscosity. The stopping criterion for the residuum is rmax = 10−9. The non-
linear loop needed from 2 to 10 iterations, each of which took about 7.1 s on AMD
Opteron 246 with 2 GB RAM. The direct solver SuperLU was efficient enough for
this problem size, requiring only 20% of one Newton iteration time, while the rest
was spent on the residual assembly. Solution of the state problem in the linearly ta-
pered header is depicted in Fig. 5.

5.3.2 Shape Optimization Problem

The traditional linearly tapered header serves as a starting point for the shape opti-
mization. The number of design parameters is set to n = 20. Due to the well-known
properties of the Bézier functions the derivative of sκ ∈ Uκ

ad can be estimated as fol-
lows:

|s′
κ | ≤ αmax − αmin

κ
= αmax − αmin

L2
n ∀sκ ∈ Uκ

ad.

Therefore for reasonably small n the constraint γ on the derivative will be removed
from the definition of Uκ

ad . We then obtain a nonlinear optimization problem with
simple bounds only. We set αmax = H1 and αmin = H2. The boundary segment
�̃ ⊂ �out used in the definition of the cost function is �̃ = (1.5,8.5). The outflow
suction coefficient σ = 103 in what follows.

We ran the computation repeatedly with two different target velocity profiles vopt.
In the first case we used a constant target velocity vopt = −0.443 m/s. We tested two
optimization packages in order to compare the obtained results and the performance.
All parameters were left default, only in case of KNITRO solver we tried several
values of the initial trust region parameter δ. Both packages, KNITRO and NAG,
converged apparently to the same shape. However NAG turned out to be superior in
terms of the required cost function and gradient evaluations. KNITRO solver ended in
all cases after approximately 100 iterations, achieving the KKT optimality conditions
with the error smaller than 10−3. On the other hand, NAG C library needed 73 itera-
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Fig. 6 Convergence history of
the used optimization algorithms

Fig. 7 Shapes of the header
(from the top): Initial, optimal
for the constant and
non-constant target velocity

Fig. 8 Initial and optimal outlet
velocity (constant target
velocity)

tions to get the optimality error smaller than 2 × 10−6. The value of the cost function
decreased from 2.5 × 10−2 to 4.2 × 10−5 in case of NAG. In Fig. 6 the convergence
history of all algorithms is shown.

In the second case a function

vopt = −0.65 sin

(
x − L1

L2
π

)
m/s

was chosen as the target outlet velocity. Here the computation ended after 44 itera-
tions using NAG and the cost function value decreased from 8.7×10−2 to 1.1×10−3.
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Fig. 9 Initial and optimal outlet
velocity (non-constant target
velocity)

Fig. 10 Solution of the state
problem: pressure p, velocity
magnitude |v| and streamlines,
dynamic viscosity μ, optimal
shape for the constant target
velocity

Fig. 11 Solution of the state
problem: pressure p, velocity
magnitude |v| and streamlines,
dynamic viscosity μ, optimal
shape for the non-constant target
velocity

Computed optimal shapes are depicted in Fig. 7. The optimal velocity profiles for the
constant and the non-constant target are shown in Fig. 8, and in Fig. 9, respectively,
and the corresponding solutions of the state problem in Figs. 10 and 11.

There is no reason to expect that the cost function is convex, therefore the found
minima are possibly only local ones. However, all the used algorithms converged
to very similar shapes that are close to the one obtained in [14], where a different
method was applied. Thus, there is a chance that the final design is close to the global
minimum. In any case, for practical purposes it is usually sufficient to find a local
minimum which improves the initial state.

One can see from Fig. 7 that the difference between the initial and optimized
shapes is not too big. This indicates that the cost function is very sensitive with re-
spect to shape variations. In spite of this fact, the proposed examples reveal that it
is possible to control the outflow velocity and consequently the quality of produced
paper by appropriate change of the header geometry.
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6 Conclusion

The paper consists of 5 sections. After explaining the physical motivation in Sect. 1,
we formulate the problem and recall the existence results for the continuous case
in Sect. 2. Due to an algebraic turbulence model the weak formulation of the state
problem involves the weighted Sobolev spaces.

The main part of the paper is devoted to approximation and numerical realization
of the problem formulated beforehand: In Sect. 3 a finite element discretization of the
flow problem is studied. The existence of discrete solutions and their convergence to
a solution of the continuous problem is proved. Section 4 describes an approxima-
tion of shapes, existence of discrete optimal shapes, and their convergence to a so-
lution of the original shape optimization problem. The results of these two sections
are obtained using the technique developed in [3], sharing many similarities with
[17–19] and [21].

Finally, an algorithm for numerical realization is described in Sect. 5. The pro-
posed method takes the advantage of the automatic differentiation which significantly
simplifies and speeds up the computer program. The model examples show that very
good results can be obtained and that the mathematical modelling together with nu-
merical analysis can bring a significant contribution to the paper making engineering.
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4.3 Shape optimization and slip boundary con-

ditions

The choice of boundary conditions at the solid-fluid interface is not always
straightforward. Under certain circumstances, fluids may move along the
surface. Apart of inviscid fluids, where the impermeability condition

v · n = 0 (4.3)

is satisfactory at solid boundaries, the slip behaviour is relevant also for vis-
cous fluids e.g. in presence of a hydrophobic [49, 14], nonwetting [5, 7], chem-
ically patterned surfaces [47, 53] or in general a surface with micro/nanosize
structure [38, 52, 10]. Then, one has to provide an appropriate constitutive
relation between the tangential part of the velocity and of the tangent shear
stress. The Navier condition, stating that vτ is a linear function of (Sn)τ ,
where T = −pI+ S, is a natural choice in many cases. However, in some ap-
plications the resistance of the fluid to the tangential force is observed, which
implies that the fluid is at rest until the stress reaches certain threshold value.
Mathematically it can be expressed by the relations:

|(Sn)τ | ≤ g, gvτ = −|vτ |(Sn)τ . (4.4)

In the following reprints we present results for three types of threshold-
slip boundary conditions (see Figure 4.2), for simplicity used with the Stokes
system. The first paper [26] deals with the case of given slip bound g and

vτ

στ

vτ

στ

vτ

στ

Navier threshold Navier given slip bound solution-dependent slip bound

Figure 4.2: Examples of slip laws (4.4).

the shape optimization problem approximated by a problem where the im-
permeability condition is penalized. The second paper [25] considers slip
bound depending on the tangential velocity (g = g(|vτ |)) and suggests an
augmented formulation, where the tangential and the normal stress appear
as new unknowns. In the last paper [27] we present a numerical analysis and
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solution for the case of slip bound linearly depending on the tangent velocity
(g = σ0+σ1|vτ |). The shape optimization problem is solved by penalizing the
impermeability (4.3) and regularizing the non-smooth boundary condition.
The main results include:

• Existence analysis of the Stokes problem with threshold slip bound-
ary conditions. Due to the boundary condition, the problem becomes
non-smooth and leads to a variational inequality combined with the
incompressibility constraint. We also introduce new augmented formu-
lations which split the tangential and normal stress allowing its separate
treatment and approximation.

• Domain dependence of solutions and existence of optimal shapes. In
this respect, the main contribution lies in the construction of a suit-
able extension operator which takes into account the slip boundary
condition.

• Treatment of the impermeability condition (4.3) and the non-smooth
slip law in the approximate schemes. On curved boundaries, the nu-
merical realization of (4.3) is troublesome. We use either penalization
or regularization, which introduces an additional unknown. In all cases
it is shown that for vanishing penalty and regularization parameters
the solutions converge to the solution of the original problem.

Reprints
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Abstract. We study the Stokes problems in a bounded planar domain Ω with a friction
type boundary condition that switches between a slip and no-slip stage. Our main goal is to
determine under which conditions concerning the smoothness of Ω solutions to the Stokes
system with the slip boundary conditions depend continuously on variations of Ω. Having
this result at our disposal, we easily prove the existence of a solution to optimal shape
design problems for a large class of cost functionals. In order to release the impermeability
condition, whose numerical treatment could be troublesome, we use a penalty approach.
We introduce a family of shape optimization problems with the penalized state relations.
Finally we establish convergence properties between solutions to the original and modified
shape optimization problems when the penalty parameter tends to zero.
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1. Introduction

An important part of mathematical modeling of fluid flow is the proper choice

of boundary conditions. Solid impermeable walls are traditionally described by the

no-slip condition, i.e.,

u = 0,

where u denotes the velocity field. In some applications, however, one can observe

a tangential velocity along the surface. In this case it is more realistic to use some
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RVO: 67985840. Finally a part of this paper was done in co-operation of the first and
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kind of the slip condition. Navier [14] proposed the condition

uτ = −λστ , λ > 0,

saying that the tangential velocity uτ should be proportional to the shear stress στ .

Relations of this type are often used especially in non-Newtonian fluid mechanics,

see e.g. [13], [4].

In this paper we introduce a system with a friction-type condition, which switches

between a slip and no-slip stage depending on the magnitude of the shear stress.

Due to its non-smoothness, the weak formulation of the considered problem leads to

a variational inequality. To demonstrate the difficulties arising from this fact and

still to keep ideas clear, we consider the Stokes problem in a planar domain Ω.

Problems involving friction-type boundary conditions have been analysed e.g. in

[6], [7], [15]. The main goal of this paper is to study under which conditions concern-

ing the smoothness of Ω solutions to the Stokes problem with threshold slip depend

continuously on variations of Ω. This is the basic property enabling us to prove the

existence of optimal shapes for a large class of optimal shape design problems.

It should be stressed that domain dependence of solutions subject to slip boundary

conditions is more delicate than in the case of no-slip. In particular, the control-to-

state mapping for problems with slip boundary conditions can be discontinuous for

some sequences of equi-Lipschitz domains [1], which cannot happen when no slip

is considered. It is also known that uniform C1,1 regularity of boundary pertur-

bations is sufficient for continuous dependence of solutions subject to Navier’s slip

condition [17]. We refer to [3] for more details on this subject.

The slip conditions bring another difficulty also for the numerical treatment. On

polygonal computational domains the impermeability condition cannot be applied

directly due to insufficient approximation of the normal vector. One possible remedy

is to use a penalty approach [12]. We introduce a family of shape optimization

problems with the penalized states and establish mutual relations between solutions

to the original and modified optimization problems when the penalty parameter

tends to zero.

The paper is organized as follows: In the next section we present the fluid flow

model and define a class of shape optimization problems. The domain dependence

of solutions to the state problem is analysed in Section 3. In Section 4 we de-

fine a family of shape optimization problems governed by the Stokes system with

threshold slip but with a penalized form of the impermeability condition. Dis-

cretizations of these problems together with the convergence analysis are presented

in Section 5.

Throughout the paper, the following notation will be used: Hk(Q), k > 0 integer,

stands for the classical Sobolev space of functions which are together with their
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generalized derivatives up to order k square integrable in Q (H0(Q) := L2(Q)) with

the norm denoted by ‖ · ‖k,Q. For the norm in L∞(Q) we use the notation ‖ · ‖∞,Q.

Finally, c denotes a generic, positive constant. To emphasize that c depends on

a particular parameter p, we shall write c := c(p).

2. Formulation of the problem

Let us consider the Stokes problem in a bounded domain Ω ⊂ R
2 with Lipschitz

boundary ∂Ω. The slip boundary conditions are prescribed on a part of the boundary

S and the no-slip condition on Γ = ∂Ω \ S:

− ∆u + ∇p = f in Ω,(2.1a)

divu = 0 in Ω,(2.1b)

u = 0 on Γ,(2.1c)

uν = 0 on S,(2.1d)

‖στ‖ 6 g on S,(2.1e)

uτ 6= 0 ⇒ ‖στ‖ = g & ∃λ > 0: uτ = −λστ on S.(2.1f)

Here u = (u1, u2) is the velocity field, p is the pressure, and f is the external

force. Further, ν, τ denote the unit outward normal and tangential vector to ∂Ω,

respectively. If a ∈ R
2 is a vector, then aν := a · ν, aτ := a − aνν are its normal

component and the tangential part on ∂Ω, respectively. The Euclidean norm of a is

denoted by ‖a‖. Finally, στ := (∂u/∂ν)τ stands for the shear stress and g > 0 a.e.

on S is a given slip bound. By the classical solution of (2.1) we mean any couple

of sufficiently smooth functions (u, p) satisfying the differential equations and the

boundary conditions in (2.1).

To give the weak formulation of (2.1) we shall need the following function spaces:

V (Ω) = {v ∈ (H1(Ω))2 ; v = 0 on Γ, vν = 0 on S},(2.2)

Vdiv(Ω) = {v ∈ V (Ω); div v = 0 a.e. in Ω},(2.3)

L2
0(Ω) =

{
q ∈ L2(Ω);

∫

Ω

q = 0

}
.(2.4)

The weak formulation of (2.1) reads as follows:

(P) Find (u, p) ∈ V (Ω) × L2
0(Ω) such that

∀v ∈ V (Ω): a(u,v − u) − b(v − u, p) + j(vτ ) − j(uτ )> (f ,v − u)0,Ω,

∀ q ∈ L2
0(Ω): b(u, q) = 0,
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where

a(u,v) =

∫

Ω

∇u : ∇v :=

∫

Ω

∇ui · ∇vi,(2.5a)

b(v, q) =

∫

Ω

q div v,(2.5b)

j(ϕ) =

∫

S

g‖ϕ‖.(2.5c)

R em a r k 1. Since we consider a two-dimensional case, we have that ‖vτ‖ = |v ·τ |
on S.

The following existence and uniqueness result is known [6].

Theorem 1. Let f ∈ (L2(Ω))2, g ∈ L∞(S), g > 0 a.e. on S. Then (P) has

a unique solution (u, p) and

(2.6) ‖∇u‖0,Ω + ‖p‖0,Ω 6 c(‖f‖0,Ω + ‖g‖∞,S),

where c is a positive constant which does not depend on f and g.

Up to now, the domain Ω was given. From now on, we shall consider a specific

family of domains, namely

O = {Ω(α) ; α ∈ Uad},

where (see Figure 1)

Ω(α) = {(x1, x2) ; x1 ∈ (0, 1), x2 ∈ (α(x1), γ)},(2.7)

Uad = {α ∈ C1,1([0, 1]); αmin 6 α 6 αmax in [0, 1], |α(j)| 6 Cj ,(2.8)

j = 1, 2 a.e. in (0, 1)}.

Here γ, αmin, αmax, C1, C2 are given positive constants chosen in such a way that

Uad 6= ∅.
The boundary ∂Ω(α) is split into S(α) and Γ(α) = ∂Ω(α) \ S(α), where

S(α) = {(x1, x2) ; x1 ∈ (0, 1), x2 = α(x1)}, α ∈ Uad,

i.e., S(α) is the graph of α. On any Ω(α) we shall solve the Stokes system with the

slip boundary conditions on S(α) and the no-slip condition on Γ(α). To emphasize

the fact that the state problem is parametrized by α ∈ Uad we shall use the following

notation: V (α) := V (Ω(α)), Vdiv(α) := Vdiv(Ω(α)), L2
0(α) := L2

0(Ω(α)). Similarly,
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x1

x2

Ω(α)

S(α)

Figure 1. Geometry of the domain Ω(α).

the bilinear forms aα, bα and the non-differentiable term jα denote the ones from

(2.5) with Ω, S replaced by Ω(α) and S(α), respectively. The weak form of the state

problem on Ω(α), α ∈ Uad reads as follows:

(P(α)) Find (u(α), p(α)) ∈ V (α) × L2
0(α) such that

∀v ∈ V (α) : aα(u(α),v − u(α)) − bα(v − u(α), p(α))

+jα(vτ ) − jα(uτ (α)) > (f ,v − u(α))0,Ω(α),

∀ q ∈ L2
0(α) : bα(u(α), q) = 0.

In what follows we shall suppose that f ∈ (L2
loc(R

2))2 and, for simplicity of our

analysis, that g is a positive constant.

Finally, let J : ∆ → R be a cost functional, ∆ = {(α,y, q) ; α ∈ Uad, y ∈
V (α), q ∈ L2

0(α)} and J(α) = J(α,u(α), p(α)), where (u(α), p(α)) is the unique

solution of (P(α)). Next we shall study the following optimal shape design problem:

(P) Find α∗ ∈ Uad such that ∀α ∈ Uad : J(α∗) 6 J(α).

To prove that (P) has a solution we shall need the following lower-semicontinuity

property of J :

(2.9)

αn → α in C1([0, 1]), αn, α ∈ Uad

yn ⇀ y in (H1(Ω̂))2, yn,y ∈ (H1
0 (Ω̂))2

qn ⇀ q in L2(Ω̂), qn, q ∈ L2
0(Ω̂)





⇒ lim inf
n→∞

J(αn,yn|Ω(αn), qn|Ω(αn)) > J(α,y|Ω(α), q|Ω(α)),
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where Ω̂ is a domain which contains all Ω(α), α ∈ Uad. Here and in what follows,

Ω̂ = (0, 1)× (0, γ) with γ from the definition of Ω(α). Our first goal will be to prove

the following result.

Theorem 2. Let (2.9) be satisfied. Then (P) has a solution.

3. Stability of solutions with respect to shape variations

In this section we shall prove that the solutions of (P(α)) depend on α ∈ Uad

in a continuous way, which is the basic property used to prove the existence of a

solution to (P). To this end we have to introduce convergence of domains belonging

to O and convergence of functions with variable domains of their definition.

Definition 1. Let Ω(αn) ∈ O, n = 1, 2, . . . be given. We say that the sequence

{Ω(αn)} tends to Ω(α) ∈ O (and write Ω(αn) → Ω(α)) if

αn → α in C1([0, 1]).

Definition 2. Let yn ∈ V (αn), αn ∈ Uad, n = 1, 2, . . . be given. We say that

the sequence {yn} tends weakly to y ∈ V (α), α ∈ Uad (and write yn ⇀ y) if

(3.1) παnyn ⇀ παy (weakly) in (H1(Ω̂))2,

where for any β ∈ Uad, πβ ∈ L(V (β), H1
0 (Ω̂)) denotes an extension mapping from

Ω(β) on Ω̂, whose norm can be estimated independently of β ∈ Uad. If weak conver-

gence in (3.1) can be replaced by the strong one, we say that {yn} tends strongly to
y (and write yn → y).

For functions belonging to H1
0 (αn) := H1

0 (Ω(αn)) or L2
0(αn) the situation is much

simpler since one can use the zero extension outside of Ω(αn).

Definition 3. Let zn ∈ H1
0 (αn), αn ∈ Uad, n = 1, 2, . . .We say that the sequence

{zn} tends to z ∈ H1
0 (α) weakly, strongly (and write zn ⇀ z, zn → z, respectively)

if

z0n ⇀ z0 in H1
0 (Ω̂),

z0n → z0 in H1
0 (Ω̂),

respectively. Here the symbol “0” stands for the zero extension of functions from

their domain of definition on Ω̂ (analogously we define convergence of a sequence

{qn}, qn ∈ L2
0(αn)).
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R em a r k 2. Since all domains belonging to O satisfy the so-called uniform cone
property, such an extension mapping from Definition 2 can be easily constructed.

Indeed, first we use the uniform extension mapping from V (β) to H1(R2), whose

existence is guarenteed, as follows from [5]. Then extended functions are multiplied

by a suitable cut-off function in order to get zero traces on the boundary of Ω̂.

The following auxiliary result is a direct consequence of the Arzelà-Ascoli and

Lebesgue theorem (see e.g. [16], [9] for further details on convergence of domains).

Lemma 1. It holds:

(i) the system O is compact with respect to convergence from Definition 1;

(ii) if Ω(αn) → Ω(α), αn, α ∈ Uad, then

χn → χ in Lq(Ω̂) ∀ q ∈ [1,∞),

where χn, χ are the characteristic functions of Ω(αn) and Ω(α), respectively.

First we show that the constant c in (2.6) can be chosen to be independent of

α ∈ Uad.

Lemma 2. There exists a constant c > 0 such that

(3.2) ‖παu(α)‖1,Ω̂ + ‖p0(α)‖0,Ω̂ 6 c

holds for any α ∈ Uad.

P r o o f. Using test functions v ∈ Vdiv(α), α ∈ Uad, problem (P(α)) takes the

form:

(3.3) aα(u(α),v−u(α))+ jα(vτ )− jα(uτ (α)) > (f ,v−u(α))0,Ω(α), v ∈ Vdiv(α).

Inserting v = 0 and v = 2u(α) into (3.3) we obtain:

(3.4)

|u(α)|21,Ω(α) := ‖∇u(α)‖20,Ω(α) 6 aα(u(α),u(α)) + jα(uτ (α)) = (f ,u(α))0,Ω(α)

6 ‖f‖0,Ω̂‖παu‖1,Ω̂,

where for simplicity of notation παu := παu(α). The seminorm on the left of (3.4)

can be estimated from below by the Friedrichs inequality with a constant c > 0 which

does not depend on α ∈ Uad [9]. Thus

c‖u(α)‖21,Ω(α) 6 |u(α)|21,Ω(α) 6 ‖f‖0,Ω̂‖παu‖1,Ω̂.
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From this and the fact that also the norm of πα can be estimated uniformly with re-

spect to α ∈ Uad, the boundedness of ‖παu(α)‖1,Ω̂ follows. To prove the boundedness

of the pressure we proceed as follows: Using the fact that

aα(u(α),u(α)) − bα(u(α), p(α)) + jα(uτ (α)) = (f ,u(α))0,Ω(α)),

we obtain from the inequality in (P(α)):

(3.5) bα(v, p(α)) 6 aα(u(α),v) + jα(vτ ) − (f ,v)0,Ω(α) 6 c‖v‖1,Ω(α), v ∈ V (α),

where c > 0 does not depend on α ∈ Uad, making use of the boundedness of ‖παu‖1,Ω̂

and the uniform boundedness of the trace mapping Trα ∈ L(H1(Ω(α)), L2(Ω(α)))

with respect to α ∈ Uad [9]. From (3.5) it follows that

(3.6) sup
v∈V (α)

bα(v, p(α))

‖v‖1,Ω(α)
6 c.

From [8] we know that there is a mapping Bα ∈ L(L2
0(α), (H1

0 (α))2) such that

div Bαq = q a.e. in Ω(α), whose norm is bounded independently of α ∈ Uad (see

also [3], Section 4)1. The choice v := Bαp(α) in (3.6) yields:

sup
v∈V (α)

bα(v, p(α))

‖v‖1,Ω(α)
> bα(Bαp(α), p(α))

‖Bαp(α)‖1,Ω(α)
=

‖p(α)‖20,Ω(α)

‖Bαp(α)‖1,Ω(α)
> c̄‖p(α)‖0,Ω(α),

where the constant c̄ > 0 is independent of α ∈ Uad. This concludes the proof. �

We shall also need the following auxiliary result.

Lemma 3. Let αn, α ∈ Uad be such that αn → α in C1([0, 1]) and let v ∈ V (α)

be given. Then there exists a sequence {vk}, vk ∈ (H1(Ω̂))2 and a function v ∈
(H1(Ω̂))2 such that v|Ω(α) = v and

(3.7) vk → v in (H1(Ω̂))2, k → ∞.

In addition, for any k ∈ N there exists nk ∈ N such that

(3.8) vk|Ω(αnk
) ∈ V (αnk

).

P r o o f. Let να := να(x1), ν
αn := ναn(x1) denote the unit outward normal

vector to S(α) and S(αn), respectively. By the same symbols we shall denote their

1 In fact, the norm of Bα depends only on ‖α‖1,∞,[0,1], i.e., it is uniformly bounded for

α ∈ {β ∈ C0,1([0, 1]) ; 0 6 β 6 αmax, |β′| 6 C1 in [0, 1]}.
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natural extensions defined in Ω̂, i.e., να(x) := να(x1) and ν
αn(x) := ναn(x1),

x = (x1, x2) ∈ Ω̂. We set

ϕ(x) := v(x) · να(x), ψ(x) := vτα(x), x ∈ Ω(α).

Then ϕ ∈ H1
0 (Ω(α)), ψ ∈ (H1(Ω(α)))2 and ψ = 0 on Γ(α). Using the density argu-

ments, one can find sequences {ϕk}, ϕk ∈ C∞
0 (Ω(α)) and {ψk}, ψk ∈ (C∞(Ω(α)))2,

dist(suppψk,Γ(α)) > 0 for all k ∈ N such that

ϕk → ϕ in H1
0 (Ω(α)),

ψk → ψ, k → ∞, in (H1(Ω(α))2

and also

ϕ0
k → ϕ0 in H1

0 (Ω̂),

παψk → παψ, in (H1(Ω̂))2.

Moreover, we may assume that dist(suppπαψk, Γ̂) > 0 for all k ∈ N where Γ̂ :=

∂Ω̂ \ [0, 1] × {0}. The sequence {vk} satisfying (3.7)–(3.8) will be constructed as
follows. Suppose for the moment that there exists a filter of indices {nk}, k → ∞,
such that for any k ∈ N it holds that S(αnk

) ∩ suppϕ0
k = ∅ and in addition there

exist functions Nnk
∈ (C0,1(Ω̂))2 such that Nnk

|∂Ω(αnk
) = ναnk and

(3.9) Nnk
→ να in (H1(Ω̂))2, k → ∞.

Define vk by:

(3.10) vk = ϕ0
kNnk

+ (παψk)τnk
= ϕ0

kNnk
+ παψk − (παψk ·Nnk

)Nnk
.

From this and the definition of nk it immediately follows that vk ∈ (H1(Ω̂))2, vk = 0

on Γ(αnk
) and vk ·ναnk |S(αnk

) = ϕ0
k|S(αnk

) = 0. Hence, vk|Ω(αnk
) ∈ V (αnk

). Passing

to the limit with k → ∞ in (3.10), we obtain:

vk → ϕ0να + παψ − (παψ · να)να =: v in (H1(Ω̂))2.

It is easy to see that v satisfies v|Ω(α) = v.

It remains to prove (3.9). Since αn → α in C1([0, 1]), we have

(3.11) ναn → να in C(Ω̂)
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and from the definition of O it follows that

(3.12) ‖∇νβ‖∞,Ω̂ 6 C2 for every β ∈ Uad.

Let ξk ∈ C∞([0,∞)) be functions satisfying 0 6 ξk 6 1 in [0,∞), ξk|[0,1/(2k)] = 1,

and ξk|[1/k,∞) = 0 for every k ∈ N. For k, n ∈ N we set

Nn,k(x) := ξk(|x2 − α(x1)|)(ναn − να) + να.

It is readily seen that Nn,k ∈ (C0,1(Ω̂))2 for all k, n ∈ N and

(3.13) ‖Nn,k − να‖0,Ω̂ 6 ‖ναn − να‖0,Ω̂ as n → ∞

uniformly with respect to k ∈ N.

Let k ∈ N be fixed. Then from the definition of ξk it follows that there exists an

index n0 := n0(k) ∈ N such that Nn,k|∂Ωn = ναn for any n > n0. Furthermore:

(3.14) ‖∇(Nn,k − να)‖0,Ω̂ 6 max
(x1,x2)∈Ω̂

|∇(ξk(|x2 − α(x1)|))|‖ναn − να‖0,Ω̂

+ ‖∇(ναn − να)‖0,{|x2−α(x1)|<1/k}

6
√

1 + C2
1 ‖ξ′k‖∞,[0,∞)‖ναn − να‖0,Ω̂ + 2C2/k.

From this we see (still keeping k ∈ N fixed) that there exists an index n1 := n1(k) ∈ N

such that ‖∇(Nn,k−να)‖0,Ω̂ = O(1/k) for any n > n1. SettingNnk
:= Nnk,k, where

nk = max{n0, n1}, we obtain (3.9), making use of (3.13). �

The main result of this section is the following stability result.

Theorem 3. Let αn, α ∈ Uad be such that αn → α in C1([0, 1]) and denote

by (un, pn) := (u(αn), p(αn)) ∈ V (αn) × L2
0(αn) the unique solution of (P(αn)).

Suppose that there exists an element (ū, p̄) ∈ (H1
0 (Ω̂))2 × L2

0(Ω̂) such that

παnun ⇀ ū in (H1(Ω̂))2,(3.15a)

p0n ⇀ p̄ in L2
0(Ω̂).(3.15b)

Then (u(α), p(α)) := (ū|Ω(α), p̄|Ω(α)) solves (P(α)).

P r o o f. First we show that (ū|Ω(α), p̄|Ω(α)) ∈ Vdiv(α) × L2
0(α). The fact that

u(α) := ū|Ω(α) = 0 on Γ(α) and p(α) := p̄|Ω(α) ∈ L2
0(Ω(α)) is readily seen. It
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remains to prove that divu(α) = 0 in Ω(α) and u(α) · να = 0 on S(α). This is

equivalent to verifying that

(3.16)

∫

Ω(α)

u(α) · ∇ϕ = 0 ∀ϕ ∈ H1(Ω(α)), ϕ = 0 on Γ(α).

Let ϕ from (3.16) be given and denote by ϕ̃ ∈ H1(Ω̂) its extension such that ϕ̃ = 0

on ∂Ω̂ \ [0, 1] × {0}. Since un ∈ V (αn) for all n ∈ N, we get

(3.17)

∫

Ω(αn)

un · ∇ϕ̃ = 0 ⇔
∫

Ω̂

χnπαnun · ∇ϕ̃ = 0,

where χn is the characteristic function of Ω(αn). Letting n → ∞ in (3.17), we obtain
∫

Ω̂

χnπαnun · ∇ϕ̃ →
∫

Ω̂

χū · ∇ϕ̃ =

∫

Ω(α)

u(α) · ∇ϕ = 0,

where χ is the characteristic function of Ω(α), making use of Lemma 1 (ii) and

(3.15a). Hence, u(α) ∈ Vdiv(α). Now we show that the pair (u(α), p(α)) satisfies the

inequality in (P(α)).

Let v ∈ V (α) be given and construct the sequence {vk}, vk ∈ (H1(Ω̂))2 satisfying

(3.7) and (3.8). Since vk|Ω(αnk
) ∈ V (αnk

) for an appropriate nk ∈ N, it can be

used as a test function in (P(αnk
)) (to simplify notation we shall write ank

:= aαnk
,

bnk
:= bαnk

, jnk
:= jαnk

):

(3.18) ank
(unk

,vk − unk
) − bnk

(vk − unk
, pnk

) + jnk
(vkτ ) − jnk

(unkτ )

> (f ,vk − unk
)0,Ω(αnk

).

Letting k → ∞ in (3.18) and using Lemma 1 (ii), (3.7), (3.15) we obtain (for details
we refer to [9]):

lim sup
k→∞

ank
(unk

,vk − unk
) 6 aα(u(α),v − u(α)),(3.19a)

lim
k→∞

bnk
(vk − unk

, pnk
) = bα(v − u(α), p(α)),(3.19b)

lim
k→∞

(f ,vk − unk
)0,Ω(αnk

) = (f ,v − u(α))0,Ω(α).(3.19c)

The frictional term can be written as

jnk
(vkτ ) = g

∫ 1

0

|vkτ ◦ αnk
|
√

1 + |α′
nk

|2 dx1

= g

∫ 1

0

|vk ◦ αnk
− (vk ◦ αnk

· ναnk )ναnk |2
√

1 + |α′
nk

|2 dx1.
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From [9] we know that

vk ◦ αnk
→ v ◦ α in (L2((0, 1)))2, k → ∞.

Therefore,

jnk
(vkτ ) → jα(vτ ), k → ∞,

using the fact that ναnk ⇒ να, α′
nk

⇒ α′ (uniformly) in [0, 1] (similarly for

jnk
(unkτ )). From this and (3.19) we see that (u(α), p(α)) satisfies the inequality in

(P(α)), i.e., (u(α), p(α)) solves (P(α)). �

R em a r k 3. It is easy to show that (3.15a) implies that

(3.20) χn∇παnun → χ∇ū in (L2(Ω̂))2,

where χn, χ are the characteristic functions of Ω(αn) and Ω(α), respectively. To

prove (3.20) it is sufficient to show that

‖χn∇παnun‖0,Ω̂ → ‖χ∇ū‖0,Ω̂, n → ∞.

Indeed,

‖χn∇παnun‖2
0,Ω̂

= aαn(un,un) = bαn(un, p
0
n) − jαn(unτ ) + (f ,un)0,Ω(αn)

→ bα(u(α), p(α)) − jα(uτ (α)) + (f ,u(α))0,Ω(α)

= aα(u(α),u(α)) = ‖χ∇ū‖2
0,Ω̂

.

From (3.20) it easily follows that

un → u(α) in (H1
loc(Ω(α)))2

(see [9]).

P r o o f of Theorem 2. Let {(un, pn)}, where (un, pn) solves (P(αn)), be a min-

imizing sequence in (P). Since {(παnun, p
0
n)} is bounded in (H1(Ω̂))2 × L2

0(Ω̂) as

follows from Lemma 2, one can find its subsequence (denoted by the same symbol)

such that (3.15) holds true. The existence of a solution to (P) is then an easy con-

sequence of (2.9) and Theorem 3. �
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4. Shape optimization with the penalized state problem

The aim of this section is to analyse a new shape optimization problem for the

Stokes system with threshold slip but with a penalization of the impermeability

condition (2.1d). In addition to the notation introduced in the previous sections we

denote

Ṽ (α) = {v ∈ (H1(Ω(α)))2 ; v = 0 on Γ(α)},
Ṽdiv(α) = {v ∈ Ṽ (α) ; bα(v, q) = 0 ∀ q ∈ L2

0(α)}, α ∈ Uad,

and define the penalty term

cα(u,v) =

∫ 1

0

(u ◦ α · να)(v ◦ α · να) dx1,

where u ◦α · να := u(x1, α(x1)) · να(x1), x1 ∈ (0, 1). This bilinear form will be used

to approximate the boundary condition u · να = 0 on S(α).

Let α ∈ Uad be fixed and ε > 0 be a penalty parameter. The penalized form of

(P(α)) reads as follows

(P(α)ε) Find (uε, pε) ∈ Ṽ (α) × L2
0(α) such that

∀v ∈ Ṽ (α) : aα(uε,v − uε) − bα(v − uε, pε)

+ jα(vτ ) − jα(uετ ) +
1

ε
cα(uε,v − uε) > (f ,v − uε)0,Ω(α),

∀ q ∈ L2
0(α) : bα(uε, q) = 0.

Using the same technique as in [6] one can show that (P(α)ε) has a unique solution

(uε, pε) for any ε > 0. Moreover,

uε → u in (H1(Ω(α)))2,(4.1a)

pε ⇀ p in L2
0(α), ε → 0+(4.1b)

and (u, p) is the unique solution of (P(α)).

Now we introduce the following family of shape optimization problems with the

state problem (P(α)ε). For any ε > 0 fixed, we define

(Pε) Find α∗
ε ∈ Uad such that ∀α ∈ Uad : Jε(α

∗
ε) 6 Jε(α),

where Jε(α) := J(α,uε(α), pε(α)) with (uε(α), pε(α)) being the solution of (P(α)ε).

Using a similar approach as in Section 3 (see also [9]) one can prove the following

result.
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Theorem 4. Let (2.9) be satisfied. Then (Pε) has a solution for any ε > 0.

In the subsequent part of this section we shall analyse the mutual relation between

solutions of (P) and (Pε) for ε → 0+. We start with the following result.

Lemma 4. There exists a constant c := c(‖f‖0,Ω̂) > 0 independent of α ∈ Uad

and ε > 0 such that the solution (uε(α), pε(α)) of (P(α)ε) is bounded:

(4.2) ‖παuε(α)‖1,Ω̂ +
1

ε
cα(uε(α),uε(α)) + ‖p0ε(α)‖0,Ω̂ 6 c.

P r o o f. The boundedness of the first two terms in (4.2) follows easily from the

fact that uε(α) ∈ Ṽdiv(α) and satisfies

(4.3) aα(uε,uε) + jα(uετ ) +
1

ε
cα(uε,uε)

6 aε(uε,v) + jα(vτ ) +
1

ε
cα(uε,v) − (f ,v − uε)0,Ω(α) ∀v ∈ Ṽdiv(α),

making use of the definitions of (P(α)ε) and Ṽdiv(α). Inserting v ≡ 0 into the right-

hand side of (4.3) we obtain the claim. To show the boundedness of {pε(α)} we
proceed as follows: From the inequality in (P(α)ε) we see that

bα(v, pε(α)) 6 aα(uε(α),v) − (f ,v) ∀v ∈ (H1
0 (Ω(α)))2.

Thus (see also Lemma 2)

c̄‖pε‖0,Ω(α) 6 sup
v∈(H1

0 (Ω(α)))2

v 6=0

bα(v, pε)

‖v‖1,Ω(α)
6 c,

making use of the boundedness of {‖uε(α)‖1,Ω(α)}. Since also c̄ does not depend on
α ∈ Uad and ε > 0, we arrive at (4.2). �

The key role in our analysis plays the following stability type result.

Lemma 5. Let αn → α in C1([0, 1]), αn, α ∈ Uad and {(un, pn)} be the sequence
of solutions to (P(αn)εn), εn → 0+. Then there exist a subsequence of {(un, pn)}
(denoted by the same symbol) and a pair (ū, p̄) ∈ (H1

0 (Ω̂))2 × L2
0(Ω̂) such that

παnun ⇀ ū in (H1(Ω̂))2,(4.4a)

p0n ⇀ p̄ in L2
0(Ω̂), n → ∞.(4.4b)

In addition, the pair (ū|Ω(α), p̄|Ω(α)) is a solution of (P(α)).
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P r o o f. The existence of a subsequence satisfying (4.4) follows from Lemma 4.

Clearly, ū|Ω(α) ∈ Ṽdiv(α). Next we show that u := ū|Ω(α) satisfies (2.1d) on S(α).

From (4.2) we see that

(4.5) 0 6 cn(un,un) 6 εnc → 0 as n → ∞,

where for brevity cn := cαn . On the other hand,

(4.6) cn(un,un) → cα(u,u) as n → ∞.

Indeed,

(4.7) ‖un ◦ αn · ναn − u ◦ α · να‖0,(0,1)

6 ‖(un ◦ αn − u ◦ α) · ναn‖0,(0,1) + ‖u ◦ α(ναn − να)‖0,(0,1) → 0, n → ∞.

Convergence of the first term on the right of (4.7) is shown in [9], Lemma 2.21. From

(4.5) and (4.6) it follows that u · να = 0 on S(α), hence u ∈ Vdiv(α).

It remains to show that u solves (P(α)). Let v ∈ V (α) be given. Then accordingly

to Lemma 3 there exists a sequence {vk}, vk ∈ (H1(Ω̂))2 satisfying (3.7) and (3.8).

Since vk|Ω(αnk
) can be used as a test function in (P(αnk

)εnk
), we obtain:

ank
(unk

,vk − unk
) − bnk

(vk − unk
, pnk

) + jnk
(vkτ ) − jnk

(unk
) > (f ,vk)0,Ω(αnk

).

Here we used the fact that

1

εnk

cnk
(unk

,vk − unk
) = − 1

εnk

cnk
(unk

,unk
) 6 0.

The rest of the proof is identical with the one of Theorem 3. �

To establish a relation between solutions of (P) and (Pε) for ε → 0+ we shall also

need the continuity of J in the following sense

(4.8)

αn → α in C1([0, 1]), αn, α ∈ Uad

yn → y in (H1(Ω̂))2, yn,y ∈ (H1
0 (Ω̂))2

qn ⇀ q in L2(Ω̂), qn, q ∈ L2
0(Ω̂)





⇒ lim
n→∞

J(αn,yn|Ω(αn), qn|Ω(αn)) = J(α,y|Ω(α), q|Ω(α)).
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Theorem 5. Let (2.9) and (4.8) be satisfied. Then from any sequence {α∗
ε} of

solutions to (Pε), ε → 0+, one can choose a subsequence (denoted by the same

symbol) and find a triplet (α∗,u∗, p∗) ∈ Uad × (H1
0 (Ω̂))2 × L2

0(Ω̂) such that

α∗
ε → α∗ in C1([0, 1]),(4.9a)

πα∗
ε
uε(α

∗
ε) ⇀ u∗ in (H1(Ω̂))2,(4.9b)

p0ε(α
∗
ε) ⇀ p∗ in L2

0(Ω̂), ε → 0+.(4.9c)

Moreover, α∗ is a solution of (P) and (u∗|Ω(α∗), p
∗|Ω(α∗)) solves (P(α∗)). Besides

that, any accumulation point of {(α∗
ε,uε(α

∗
ε), pε(α

∗
ε))} in the sense of (4.9) has this

property.

P r o o f. The existence of a subsequence {α∗
ε} satisfying (4.9a) follows from the

Arzelà-Ascoli theorem. Furthermore, (4.9b), (4.9c), and the fact that (u∗|Ω(α∗),

p∗|Ω(α∗)) solves (P(α∗)) are proven in Lemma 5. Let α ∈ Uad be given and

(u(α), p(α)) be the unique solution of (P(α)). From (4.1) we know that

uε(α) → u(α) in (H1(Ω(α)))2,

pε(α) ⇀ p(α) in L2
0(Ω(α)), ε → 0+

and also

(4.10) παuε(α) → παu(α) in (H1(Ω̂))2,

p0ε(α) ⇀ p0(α) in L2
0(Ω̂), ε → 0+.

The definition of (Pε) yields

J(α∗
ε ,uε(α

∗
ε), pε(α

∗
ε)) 6 J(α,uε(α), pε(α)).

Letting ε tend to zero on the filter of indices for which (4.9) holds, we obtain

J(α∗,u∗|Ω(α∗), p
∗|Ω(α∗)) 6 J(α,u(α), p(α)) ∀α ∈ Uad,

making use of (2.9), (4.8), and (4.10). �
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5. Approximation of (Pε)

In this section, a finite-dimensional approximation of (Pε) will be proposed and

analysed. Next we shall assume that ε > 0 is fixed. We introduce a finite ele-

ment discretization of (P(α)ε) and a discretization of the set Uad. We will show

that the discrete shape optimization problem has a solution. Finally, we will study

convergence properties of such solutions if the discretization parameter h → 0+.

5.1. Formulation of the discrete problem. We start with the approximation

of the admissible set Uad. Since for finite element methods it is convenient to use

polygonal domains, we will consider piecewise linear approximations of Uad. On

the other hand, as Uad contains C
1,1-functions, this approximation of Uad becomes

external and some technical difficulties arise, especially in the convergence analysis.

Let d ∈ N be given and set h := 1/d. By δh we denote the equidistant partition

of [0, 1]:

δh : 0 = a0 < a1 < . . . < ad = 1,

where

aj = jh, j = 0, 1, . . . , d.

The set of discrete admissible shapes Uh
ad consists of continuous, piecewise linear

functions on δh which satisfy constraints analogous to those imposed in (2.8):

Uh
ad := {αh ∈ C([0, 1]) ; αh|[ai−1,ai] ∈ P1([ai−1, ai]) ∀ i = 1, . . . , d;

αmin 6 αh(ai) 6 αmax ∀ i = 0, . . . , d;

|αh(ai) − αh(ai−1)| 6 C1h ∀ i = 1, . . . , d;

|αh(ai+1) − 2αh(ai) + αh(ai−1)| 6 C2h
2 ∀ i = 1, . . . , d − 1}.

The positive constants αmin, αmax, C1 and C2 are the same as in (2.8). We denote

the set of discrete admissible shapes by

Oh := {Ω(αh) ; αh ∈ Uh
ad}.

The symbol Th(αh) will denote a triangulation of Ω(αh) with the norm h. We will

consider the system {Th(αh) ; αh ∈ Uh
ad} which consists of topologically equivalent

triangulations, i.e.:

(T1) the number of nodes as well as the neighbours of each triangle in Th(αh) is the

same for all αh ∈ Uh
ad;

(T2) the position of the nodes in Th(αh) depends continuously on αh;
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(T3) the triangulations Th(αh) are compatible with the decomposition of ∂Ω(αh)

into S(αh) and Γ(αh) for any αh ∈ Uh
ad.

In order to establish convergence results we will also need:

(T4) the system {Th(αh) ; αh ∈ Uh
ad} is uniformly regular with respect to h > 0 and

αh ∈ Uh
ad, i.e., there exists a constant θ0 > 0 such that

θh(αh) > θ0 ∀h > 0 ∀αh ∈ Uh
ad,

where θh(αh) denotes the minimal interior angle of all triangles from Th(αh).

In order to give a finite element discretization of the state problem, we define the

spaces of piecewise polynomial functions

Ṽh(αh) := {vh ∈ (C(Ω(αh)))2 ; vh|T ∈ (P2(T ))2 ∀T ∈ Th(αh), vh = 0 on Γ(αh)},

Lh(αh) :=

{
qh ∈ C(Ω(αh)) ; qh|T ∈ P1(T ) ∀T ∈ Th(αh),

∫

Ω(αh)

qh = 0

}
.

Let ε > 0, h > 0 and αh ∈ Uh
ad be given. The discrete penalized state problem reads

as follows:

(Phε(αh)) Find (uhε, phε) := (uhε(αh), phε(αh)) ∈ Ṽh(αh) × Lh(αh) s.t.

∀vh ∈ Ṽh(αh) : aαh
(uhε,vh − uhε) − bαh

(vh − uhε, phε)

+ jαh
(vhτ ) − jαh

(uhετ ) +
1

ε
cαh

(uhε,vh − uhε)

> (f ,vh − uhε)0,Ω(αh),

∀ qh ∈ Lh(αh) : bαh
(uhε, qh) = 0.

Since the pair Ṽh(αh) and Lh(αh) satisfies the Babuška-Brezzi condition (see (5.2)

below), problem Phε(αh) has a unique solution.

Lemma 6. There exists a constant c := c(‖f‖0,Ω̂) > 0 independent of ε > 0,

h > 0 and αh ∈ Uh
ad such that the solution (uhε, phε) of (Phε(αh)) is bounded:

(5.1) ‖παh
uhε‖1,Ω̂ +

1

ε
cαh

(uhε,uhε) + ‖p0hε‖0,Ω̂ 6 c.

P r o o f. The boundedness of the first two terms in (5.1) can be shown exactly

as in the proof of Lemma 4. The pressure estimate will be proven provided that the

discrete inf-sup condition

(5.2) inf
q∈Lh(αh)\{0}

sup
v∈Ṽh(αh)\{0}

bαh
(q,v)

‖q‖0,Ω(αh)‖v‖1,Ω(αh)
> c

648

148 CHAPTER 4. PRESENTED WORKS AND THEIR NOVELTIES



holds with a constant c > 0 independent of h > 0 and αh ∈ Uh
ad. Indeed, in [2],

Chapter VI.6, it is shown that (5.2) holds with a constant c := c(c̄), where c̄ is

the constant in the inf-sup condition for the spaces L2
0(αh) and Ṽ (αh). As we have

pointed out before, c̄ does not depend on αh, and so neither does c. �

Analogously to the continuous setting, the discrete shape optimization problem is

defined as the minimization of Jhε on Uh
ad, where

Jhε(αh) := J(αh,uhε(αh), phε(αh)),

with (uhε(αh), phε(αh)) being the solution of (Phε(αh)). Thus, for each ε > 0 and

h > 0, the discrete shape optimization problem reads:

(Phε) Find α∗
hε ∈ Uh

ad such that ∀αh ∈ Uh
ad : Jhε(α

∗
hε) 6 Jhε(αh).

Adapting the approach from the previous section to the discrete case, one can

easily show that the graph

Ghε := {(αh,uhε(αh), phε(αh)) ; αh ∈ Uh
ad,

(uhε(αh), phε(αh)) is the solution of Phε(αh)}

is compact for any ε > 0 and h > 0, so the following result is straightforward.

Theorem 6. Let h, ε > 0 be fixed and Jhε be lower semicontinuous on Uh
ad. Then

(Phε) has a solution.

5.2. Convergence analysis. In this section we will analyse the mutual relation

between solutions to (Phε) and (Pε) as h → 0+ keeping ε > 0 fixed, aiming to show

that the discrete optimal shapes converge in some sense to an optimal shape of the

continuous setting.

We start by recalling some auxiliary results concerning the relationship between

Uh
ad, h → 0+, and Uad, which can be proven using the same arguments as in [10], [11].

Lemma 7. For any α ∈ Uad there exists a sequence {αh}, αh ∈ Uh
ad such that

αh → α in C([0, 1]), h → 0+.

Lemma 8. Let {αh}, αh ∈ Uh
ad be such that αh → α in C([0, 1]), h → 0+. Then

α ∈ Uad and there exists a subsequence {αhm} ⊂ {αh} satisfying:

(5.3) α′
hm

→ α′ in L∞(0, 1), hm → 0+.

In order to pass to the limit in the variational inequality we also need the following

result.
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Lemma 9. Let {αh}, αh ∈ Uh
ad be such that αh → α in C([0, 1]), h → 0+ and let

v ∈ Ṽ (α) be given. Then there exist a sequence {vh}, vh ∈ (H1(Ω̂))2, and a function

v ∈ (H1(Ω̂))2 such that vh|Ω(αh) ∈ Ṽh(αh), v|Ω(α) = v and

(5.4) vh → v in (H1(Ω̂))2, h → 0+.

P r o o f. Let η > 0 be arbitrary and set v := παv ∈ (H1
0 (Ω̂))2. By the density

argument one can find ϕ ∈ (C∞
0 (Ω̂))2 such that

(5.5) ‖ϕ− v‖1,Ω̂ <
η

2
.

Let Θ(αh) = Ω̂ \ Ω(αh) and T̂h(αh) be a triangulation of Θ(αh) such that the nodes

of Th(αh) and T̂h(αh) on S(αh) coincide and, moreover, the family {T̂h(αh)}, h → 0,

satisfies (T1), (T2) and (T4). By rh we denote the piecewise quadratic Lagrange

interpolation operator in Ω̂ with the triangulation Th(αh) ∪ T̂h(αh). From (T4) it

follows that there exists a constant c > 0 independent of h > 0 and αh ∈ Uh
ad such

that

(5.6) ‖rhϕ−ϕ‖1,Ω̂ 6 ch‖ϕ‖2,Ω̂ ∀ϕ ∈ (H2(Ω̂))2.

We set vh := rhϕ. Then clearly vh|Ω(αh) ∈ Ṽh(αh) for every h > 0. Moreover, from

(5.6) we see that there exists h0 := h0(η) > 0 such that for any h 6 h0 it holds that

‖vh −ϕ‖1,Ω̂ <
η

2
,

which together with (5.5) completes the proof. �

The following lemma establishes convergence properties of solutions to (Phε(αh))

as h → 0+.

Lemma 10. Let {αh}, αh ∈ Uh
ad, h → 0+, be an arbitrary sequence. Then there

exist its subsequence (denoted by the same symbol), a function α ∈ Uad, and a pair

(ū, p̄) ∈ (H1
0 (Ω̂))2 × L2

0(Ω̂) such that

αh → α in C([0, 1]),

παh
uhε(αh) ⇀ ū in (H1(Ω̂))2,

phε(αh)0 ⇀ p̄ in L2(Ω̂), h → 0+.

Moreover, (ū|Ω(α), p̄|Ω(α)) is the solution to (P(α)ε).
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P r o o f. The existence of convergent subsequences follows from Lemma 6, the

Arzelà-Ascoli theorem and Lemma 8. From Lemma 9 we know that for any v ∈ Ṽ (α)

one can find a sequence {vh}, vh|Ω(αh) ∈ Ṽh(αh) satisfying (5.4). The limit passage

for h → 0+ in (Phε(αh)) can be done as in the proof of Theorem 3, making use of

(5.3). �

To establish the convergence of solutions to (Phε) as h → 0+ we shall need the

continuity of J in the following sense:

(5.7)

αh → α in C([0, 1]), αh ∈ Uh
ad, α ∈ Uad

παh
yh ⇀ y in (H1(Ω̂))2, yh ∈ Ṽh(αh),y ∈ (H1

0 (Ω̂))2

q0h ⇀ q in L2(Ω̂), qh ∈ Lh(αh), q ∈ L2
0(Ω̂)





⇒ lim
h→0+

J(αh,yh, qh) = J(α,y|Ω(α), q|Ω(α)).

We have the following convergence result.

Theorem 7. Let {α∗
hε}, h → 0+, be a sequence of solutions to (Phε), h → 0+,

and let (5.7) be satisfied. Then there exist: a subsequence of {α∗
hε} (denoted by the

same symbol) and a triplet (α∗
ε ,u

∗
ε, p

∗
ε) ∈ Uad × (H1

0 (Ω̂))2 × L2
0(Ω̂) such that

α∗
hε → α∗

ε in C([0, 1]),

πα∗
hε
uhε(α

∗
hε) ⇀ u∗

ε in (H1(Ω̂))2,

p0hε(α
∗
hε) ⇀ p∗ε in L2(Ω̂), h → 0+.

Moreover, α∗
ε is a solution of (Pε) and (u∗

ε|Ω(α∗
ε )
, p∗ε|Ω(α∗

ε)
) solves (Pε(α

∗
ε)).

The p r o o f is analogous to the one of Theorem 5.
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Received 27 April 2015, revised 4 November 2015, accepted 21 December 2015
Published online 22 January 2016

Key words Stokes problem, slip boundary conditions, domain dependence of solutions.

MSC (2010) 49Q10, 76D07

We study the Stokes problem in a bounded planar domain � with a friction type boundary condition that switches
between a slip and no-slip stage. Unlike our previous work [8], in the present paper the threshold value may depend on
the velocity field. Besides the usual velocity-pressure formulation, we introduce an alternative formulation with three
Lagrange multipliers which allows a more flexible treatment of the impermeability condition as well as optimum design
problems with cost functions depending on the shear and/or normal stress. Our main goal is to determine under which
conditions concerning smoothness of the boundary of �, solutions to the Stokes system depend continuously on variations
of �. Having this result at our disposal, we easily prove the existence of a solution to optimal shape design problems for
a large class of cost functionals.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

This paper analyses one property of the Stokes system defined in � ⊂ R2 with a slip type boundary condition, namely the
continuous dependence of its solutions on the shape of �. This property plays the crucial role in the existence analysis of
optimal shape design problems. The no-slip boundary condition, i.e. the vanishing velocity on the boundary, is widely used
in practice. It characterizes the adhesion of the fluid on the solid wall. This condition is acceptable for small velocities and
on a macroscopic level. On the other hand, there are many situations (flow of the fluid on hydrophobic surfaces, polymer
melts flow, problems with multiple interfaces, micro/nanofluidics etc.) where the slip of the fluid occurs. To get a more
realistic model, the slip has to be taken into account. For the physical justification of different types of slip conditions we
refer to [14] and [9]. The mathematical analysis of the Stokes and Navier-Stokes system with the slip and leak boundary
conditions has been done in [3] and extended to non-stationary problems in [4]. The regularity of solutions to the Stokes
system with slip and leak boundary conditions has been established in [15]. In [1] the stick–slip condition is considered as
an implicit constitutive equation on the boundary, having a monotone 2-graph property, and the existence of weak solutions
to Bingham and Navier-Stokes fluids is proven.

Shape optimization involving fluid models with slip boundary conditions as the state problem is of a great practical
importance. Slip boundary conditions affect the velocity profile and hence the velocity gradient of the fluid in the vicinity
of the wall. The velocity gradient is an important factor in the transformation of the mechanical energy to heat, the
process representing the energy loss. Shape optimization of the interior of hydraulic elements may reduce the velocity
gradient resulting in energy savings. In [8] a class of shape optimization problems for the Stokes system with the threshold
boundary conditions involving a priori given slip bound has been studied. The existence result for the continuous setting
of the problem and convergence analysis for appropriate discretizations of the continuous model have been established.

Nevertheless it is known from experiments that the slip bound may depend on the solution itself, e.g. on values of the
tangential component of the velocity. The aim of this paper is to extend the existing stability results to this type of the slip
boundary condition. Besides the standard velocity-pressure formulation used in [8] we present a new weak formulation
adding another two Lagrange multipliers: one releasing the impermeability condition and the other regularizing the non-
smooth slip functional. This new formulation turns out to be useful in numerical solution of this problem. Moreover, it

∗ Corresponding author: E-mail: jan.stebel@tul.cz

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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enables us to approximate directly the normal and shear stress and to use these quantities as arguments of appropriate
objective functionals to control the stress distribution along the slip part of the boundary.

The paper is organized as follows: in Sect. 2 we present the velocity-pressure formulation of the Stokes system with a
solution dependent slip bound. Using fixed point arguments we prove that such problem has at least one solution for any slip
bound represented by a continuous, positive function g having a polynomial growth. If in addition, g is one-sided Lipschitz
continuous with sufficiently small modulus, then the solution is unique. Section 3 deals with a four-field formulation
of the problem whose solution is represented by the velocity u, pressure p, normal, tangential shear stress σν , and σ τ ,
respectively. In Sect. 4 we prove that the graph of the respective generally multi-valued solution mappings considered as a
function of the shape of the slip part of the boundary, is closed in an appropriate topology. On the basis of these results the
existence of solutions to a class of optimal shape design problems will be proven in Sect. 5.

2 The velocity-pressure formulation of the problem

Unlike [8], where the slip bound was given, the present paper deals with a more general case, namely the slip bound will
be a function of the tangential velocity.

Let � ⊂ R2 be a bounded domain with the Lipschitz boundary ∂�. The slip boundary conditions are prescribed on an
open, non-empty part S of the boundary and the no-slip condition on � = ∂� \ S, � �= ∅:

− div(2μDu) + ∇p = f in �, (2.1a)

div u = 0 in �, (2.1b)

u = 0 on �, (2.1c)

uν = 0 on S, (2.1d)

|σ τ | ≤ g(|uτ |) on S, (2.1e)

g(|uτ |)uτ = −|uτ |σ τ on S. (2.1f)

Here μ > 0 is the (constant) viscosity, u = (u1, u2) is the velocity field, p is the pressure, D(u) is the symmetric part
of the gradient of u and f is the external force. Further, ν = (ν1, ν2), τ = (ν2,−ν1) denote the unit outward normal, and
tangential vector to ∂�, respectively. If a ∈ R2 is a vector then aν := a · ν, aτ := a · τ is its normal, and the tangential
component on ∂�, respectively. Finally, σ τ := (2μ(Du)ν)τ stands for the shear stress and g : R+ → R+ is a given slip
bound function. By a classical solution of (2.1) we mean any couple of sufficiently smooth functions (u, p) satisfying the
differential equations and the boundary conditions in (2.1).

Remark 2.1.

(i) Note that if μ is constant then div(2μDv) = μ�v for any sufficiently smooth v satisfying div v = 0 in �. Throughout
the paper we shall assume that 2μ = 1.

(ii) The condition (2.1f) says that a slip may occur only if the equality holds in (2.1e).

To give the weak formulation of (2.1) we shall need the following function sets:

V (�) = {v ∈ (H 1(�))2| v = 0 on �, vν = 0 on S}, (2.2)

V div(�) = {v ∈ V (�)| div v = 0 a.e. in �}, (2.3)

L2
0(�) = {q ∈ L2(�)|

∫
�

q = 0}, (2.4)

L2
+(S) = {ϕ ∈ L2(S)| ϕ ≥ 0 a.e. on S}, (2.5)

H 1/2(S) = {ϕ ∈ L2(S)| ∃v ∈ H 1(�), v = 0 on � : v = ϕ on S}, (2.6)

H
1/2
+ (S) = {ϕ ∈ H 1/2(S)| ϕ ≥ 0 a.e. on S}. (2.7)

Remark 2.2. If v ∈ V (�) and S ∈ C1,1 then it is readily seen that vτ |S ∈ H 1/2(S).

From now on we shall suppose that S ∈ C1,1 (for the definition see [12]).

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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The trace space H 1/2(S) is equipped with the norm

‖ϕ‖1/2,S = inf
v∈V (�)
vτ =ϕ

|v|1,� = |w(ϕ)|1,�,

where w(ϕ) ∈ V (�) is the solution to

�w(ϕ) = 0 in �,

w(ϕ) = 0 on �,

wν(ϕ) = 0 on S,

wτ (ϕ) = ϕ on S.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Further we introduce the following forms:

a(u, v) =
∫

�

Du : Dv, b(v, q) =
∫

�

q div v, j(ϕ, vτ ) =
∫

S

g(ϕ)|vτ |,

u, v ∈ (H 1(�))2, q ∈ L2(�), ϕ ∈ H
1/2
+ (S). (2.8)

We shall assume that g : R+ → R+ is continuous and there exists a positive constant cg and r ∈ (1,∞) such that

g(x) ≤ cg(1 + xr−1) ∀x ∈ R+, (2.9)

so that the mapping ϕ �→ g(ϕ) is bounded and continuous from Lr
+(S) to Lr ′

+(S), r ′ := r/(r − 1). We also note that
H 1/2(S) is compactly embedded into Lq(S) for any q ∈ [1,∞) (see [12]).

The weak formulation of (2.1) reads as follows:

Find (u, p) ∈ V (�) × L2
0(�) such that

∀v ∈ V (�) : a(u, v − u) − b(v − u, p)

+j(|uτ |, vτ ) − j(|uτ |, uτ ) ≥ ( f , v − u)0,�,

∀q ∈ L2
0(�) : b(u, q) = 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(P)

We will show that under the above mentioned assumptions on g, problem (P) has at least one solution for any
f ∈ (L2(�))2. To this end we use the weak variant of Schauder’s fixed point theorem [10].

For a given function ϕ ∈ H
1/2
+ (S) we consider the auxiliary problem:

Find (uϕ, pϕ) ∈ V (�) × L2
0(�) such that

∀v ∈ V (�) : a(uϕ, v − uϕ) − b(v − uϕ, pϕ)

+j(ϕ, vτ ) − j(ϕ, uϕ
τ ) ≥ ( f , v − uϕ)0,�,

∀q ∈ L2
0(�) : b(uϕ, q) = 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(Pϕ)

We know that for every ϕ ∈ H
1/2
+ (S) there exist: a unique solution (uϕ, pϕ) of (Pϕ) and positive constants c, c such

that
‖∇uϕ‖0,� ≤ c ‖ f ‖0,� , (2.10a)

‖pϕ‖0,� ≤ c(‖ f ‖0,� + ∥∥g(ϕ)
∥∥

r ′,S), (2.10b)

holds for every f ∈ (L2(�))2 and ϕ ∈ H 1/2(S). To prove (2.10) we proceed as in [3] making use of the Korn inequality,
the inf-sup condition for the pressure and the growth condition (2.9).

Let us define the mapping 
 : H
1/2
+ (S) → H

1/2
+ (S) by


(ϕ) = |uϕ
τ | on S.

Then (P) is equivalent to the problem of finding a fixed point of 
 in H
1/2
+ (S).

Theorem 2.3. The mapping 
 has the following properties:

(i) 
(B) ⊂ B, where B = {ϕ ∈ H
1/2
+ (S)| ‖ϕ‖1/2,S ≤ c} and c is the constant from (2.10a).
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(ii) 
 is weakly continuous in H
1/2
+ (S), i.e.

ϕk ⇀ ϕ in H 1/2(S), ϕk, ϕ ∈ H
1/2
+ (S) ⇒ 
(ϕk) ⇀ 
(ϕ) in H 1/2(S).

P r o o f . The property (i) follows immediately from∥∥ |uϕ
τ | ∥∥1/2,S

≤ ∥∥uϕ
τ

∥∥
1/2,S

≤ ‖∇uϕ‖0,� ≤ c,

making use of (2.10a) and the definition of the norm in H 1/2(S).
Let (uk, pk) denote the solution to (Pϕk ). Assume that ϕk ⇀ ϕ in H 1/2(S) and consequently ϕk → ϕ in Lq(S)

∀q ∈ [1,∞). Since the sequence {(uk, pk)} is bounded in V (�) × L2
0(�) as follows from (2.10), there exists a subsequence

(denoted by the index k′) such that

uk′
⇀ u in (H 1(�))2, pk′

⇀ p in L2
0(�), k′ → ∞.

It is easy to show that (u, p) is a solution of (Pϕ), i.e. (u, p) = (uϕ, pϕ). Indeed,

lim sup
k′→∞

a(uk′
, v − uk′

) ≤ a(u, v − u),

( f , v − uk′
)0,� → ( f , v − u)0,�,

b(v − uk′
, pk′

) → b(v − u, p) ∀v ∈ V (�).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.11)

To prove ∫
S

g(ϕk′)(|vτ | − |uk′
τ |) →

∫
S

g(ϕ)(|vτ | − |uτ |), k′ → ∞, (2.12)

we use that

ϕk′ → ϕ in Lr(S) ⇒ g(ϕk′) → g(ϕ) in Lr ′
(S), (2.13)

and

|uk′
τ | → |uτ | in Lr(S). (2.14)

Clearly (2.13) and (2.14) imply (2.12). From (2.11) and (2.12) it follows that (u, p) is a solution to (Pϕ). Since this solution
is unique, then

(uk, pk) ⇀ (u, p) weakly in (H 1(�))2 × L2
0(�), k → ∞,

i.e. (u, p) = (uϕ, pϕ). Finally

uk ⇀ uϕ in (H 1(�))2 ⇒ |uk| ⇀ |uϕ| in (H 1(�))2 ⇒ |uk
τ | ⇀ |uϕ

τ | in H 1/2(S)

⇔ 
(ϕk) ⇀ 
(ϕ) in H 1/2(S)

proving (ii). �

The weak variant of Schauder’s fixed-point theorem and Theorem 2.3 ensure the existence of at least one fixed point of

 in H

1/2
+ (S). Thus (P) has at least one solution.

Next we shall study under which conditions, problem (P) has a unique solution.

Theorem 2.4. In addition to (2.9), let g : R+ → R+ be one-sided Lipschitz continuous in R+:

(g(x1) − g(x2))(x2 − x1) ≤ L(x1 − x2)
2 ∀x1, x2 ∈ R+, (2.15)

with the constant L ≥ 0 satisfying

L <
1

c2
, (2.16)

where c is the norm of the trace mapping tr : V (�) → L2(S), tr v = vτ , assuming that V (�) is equipped with the norm∥∥D(·)∥∥0,�
. Then 
 has a unique fixed point.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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P r o o f . Let ϕ1, ϕ2 ∈ H
1/2
+ (S) be two fixed points of 
 and (ui , pi) be solutions to (P(ϕi)), i = 1, 2. Then ui ∈

V div(�) and

a(ui , v − ui) + j(|ui
τ |, vτ ) − j(|ui

τ |, ui
τ ) ≥ ( f , v − ui)0,� ∀v ∈ V div(�).

By a standard technique we obtain:

1

c2

∥∥|u2
τ | − |u1

τ |
∥∥2

0,S
≤ ∥∥D(u1 − u2)

∥∥2

0,�
= a(u1 − u2, u1 − u2) ≤

∫
S

(g(|u1
τ |) − g(|u2

τ |))(|u2
τ | − |u1

τ |)

≤(2.15) L
∥∥|u2

τ | − |u1
τ |

∥∥2

0,S
. (2.17)

From this and (2.16) we see that ϕ1 = |u1
τ | = |u2

τ | = ϕ2. �

Remark 2.5. Any non-decreasing function g automatically satisfies (2.15) with the constant L = 0 so that (P) has a
unique solution. If L > 0 then (2.15) permits a “small” decrease of g and the solution to (P) is unique provided that (2.16)
is satisfied.

3 Four-field formulation of (Pϕ) and (P)

The pressure p in the velocity-pressure formulation introduced in the previous section is the Lagrange multiplier associated
with the incompressibility condition in �. This section presents another formulation involving two additional Lagrange
multipliers σ ν , σ τ defined on S releasing the impermeability condition uν = 0 on S, and regularizing the non-differentiable
functional j . To this end we shall need the additional function spaces:

W (�) = {v ∈ H 1(�)| v = 0 on �}, (3.1)

W(�) = W (�) × W (�), (3.2)

H−1/2(S) = (H 1/2(S))′ (dual of H 1/2(S)), (3.3)

H1/2(S) = H 1/2(S) × H 1/2(S), (3.4)

H−1/2(S) = (H1/2(S))′. (3.5)

If μ = (μ1, μ2) ∈ H−1/2(S), ϕ = (ϕ1, ϕ2) ∈ H1/2(S) then

〈μ,ϕ〉 := 〈μ1, ϕ1〉 + 〈μ2, ϕ2〉.
Since S ∈ C1,1, the mapping

tr : v �→ (vν, vτ ), where vν = v|S · ν, vτ = v|S · τ ,

maps W(�) onto H1/2(S). If μ = (μν, μτ ) ∈ H−1/2(S) then

〈μ, tr v〉 := 〈μν, vν〉 + 〈μτ , vτ 〉.
Analogously to the previous section, the space H1/2(S) is equipped with the norm

‖ϕ‖1/2,S = inf
v∈W(�)

tr v=ϕ

|v|1,� = |w(ϕ)|1,�, (3.6)

where w(ϕ) solves:

�w(ϕ) = 0 in �,

w(ϕ) = 0 on �,

tr w(ϕ) = ϕ on S.

⎫⎪⎪⎬⎪⎪⎭ (3.7)

The standard dual norm in H−1/2(S) is given by

[[μ]]−1/2,S = sup
ϕ∈H1/2(S)

ϕ �=0

〈μ,ϕ〉
‖ϕ‖1/2,S

= sup
v∈W(�)

tr v �=0

〈μ, tr v〉
‖tr v‖1/2,S

,
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where ‖ ‖1/2,S is defined by (3.6). One can introduce another norm on H−1/2(S), namely

‖μ‖−1/2,S = sup
v∈W(�)

v �=0

〈μ, tr v〉
|v|1,�

.

It is known [5] that

[[μ]]−1/2,S = ‖μ‖−1/2,S ∀μ ∈ H−1/2(S). (3.8)

To regularize the functional j(ϕ, ·) we use the closed convex set K(ϕ) ⊂ H−1/2(S) defined by

K(ϕ) = {μτ ∈ Lr ′
(S)| |μτ | ≤ g(ϕ) a.e. on S}, ϕ ∈ H

1/2
+ (S).

It is readily seen that

j(ϕ, vτ ) =
∫

S

g(ϕ)|vτ | = sup
μτ ∈K(ϕ)

∫
S

μτvτ .

Hence

j(ϕ, vτ ) ≥ (μτ , vτ )S :=
∫

S

μτvτ ∀μτ ∈ K(ϕ). (3.9)

The four-field formulation of (Pϕ) reads as follows:

Find (u, p, σ ν, σ τ ) ∈ W(�) × L2
0(�) × H−1/2(S) × K(ϕ) s.t.

∀v ∈ W(�) : a(u, v) − b(v, p) − 〈σ ν, vν〉 − (σ τ , vτ )S = ( f , v)0,�,

∀q ∈ L2
0(�) : b(u, q) = 0,

∀μν ∈ H−1/2(S) : 〈μν, uν〉 = 0,

∀μτ ∈ K(ϕ) : (μτ + σ τ , uτ )S ≤ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(Mϕ)

Suppose that (Mϕ) has a solution. In what follows we give its interpretation. From (Mϕ)2,3 we see that u ∈ V div(�),
where V div(�) is defined by (2.3). Using test functions v ∈ V (�) in (Mϕ)1 we get

a(u, v − u) − b(v − u, p) − (σ τ , vτ − uτ )S = ( f , v − u)0,� ∀v ∈ V (�). (3.10)

From (Mϕ)4 it follows that

−(σ τ , uτ )S = sup
μτ ∈K(ϕ)

(μτ , uτ )S = j(ϕ, uτ ),

which together with (3.9) yields

−(σ τ , vτ − uτ )S ≤ j(ϕ, vτ ) − j(ϕ, uτ ).

From this and (3.10) we obtain:

a(u, v − u) − b(v − u, p) + j(ϕ, vτ ) − j(ϕ, uτ ) ≥ ( f , v − u)0,� ∀v ∈ V (�),

i.e. the couple (u, p) ∈ V (�) × L2
0(�) solves (Pϕ). The formal application of Green’s formula to (Mϕ)1 gives:

σ ν = −p + ((Du)ν)ν and σ τ = ((Du)ν)τ on S.

On the contrary, if (u, p) is a solution to (Pϕ) there exists a unique couple (σ ν, σ τ ) ∈ H−1/2(S) × K(ϕ) such that
(u, p, σ ν, σ τ ) is a solution to Mϕ . This is a consequence of the next theorem.

Theorem 3.1. Problem (Mϕ) has a unique solution (u, p, σ ν, σ τ ) for any ϕ ∈ H
1/2
+ (S). In addition, the couple (u, p)

solves (Pϕ).

P r o o f . To prove the existence and uniqueness of a solution to (Mϕ) it is sufficient to show that the bilinear form
c(v, (q,μ)) := −b(v, q) − 〈μ, tr v〉 satisfies the LBB-condition. It is well-known (see e.g. [5]) that

∃γ > 0 : sup
v∈(H 1

0 (�))2

v �=0

b(v, q)

|v|1,�

≥ γ ‖q‖0,� ∀q ∈ L2
0(�)
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and from (3.8) we have

sup
v∈W(�)

v �=0

〈μ, tr v〉
|v|1,�

= [[μ]]−1/2,S ∀μ ∈ H−1/2(S).

Then there exists a constant γ̃ > 0 such that

sup
v∈W(�)

v �=0

c(v, (q,μ))

|v|1,�

≥ γ̃ (‖q‖0,� + [[μ]]−1/2,S) ∀(q,μ) ∈ L2
0(�) × H−1/2(S)

as follows from Theorem 3.1 in [11]. �
Any quadruplet (u, p, σ ν, σ τ ) is said to be a solution of the problem with the solution dependent slip coefficient if it

solves (Mϕ) with ϕ = |uτ | on S:

(u, p, σ ν, σ τ ) ∈ W(�) × L2
0(�) × H−1/2(S) × K(|uτ |) s.t.

∀v ∈ W(�) : a(u, v) − b(v, p) − 〈σν, vν〉 − (σ τ , vτ )S = ( f , v)0,�,

∀q ∈ L2
0(�) : b(u, q) = 0,

∀μν ∈ H−1/2(S) : 〈μν, uν〉 = 0,

∀μτ ∈ K(|uτ |) : (μτ + σ τ , uτ )S ≤ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(M)

On the basis of the results of Sect. 2 and Theorem 3.1 we arrive at the following theorem.

Theorem 3.2. Problem (M) has a solution. In addition, if g satisfies the assumptions of Theorem 2.4, then the solution
is unique.

4 Stability of solutions with respect to boundary variations

The aim of this section is to show that solutions to (P) and (M) depend continuously on the shape of �. We shall suppose
that only the part S of ∂� where the slip conditions are prescribed, is subject to variations. In addition, for the sake of
simplicity of our presentation we shall assume that S is represented by the graph of a function α which belongs to an
appropriate class Uad . Here and in what follows Uad will be defined by

Uad = {α ∈ C1,1([0, 1])| 0 < αmin ≤ α ≤ αmax in [0, 1], |α(j) | ≤ Cj , j = 1, 2 a.e. in (0, 1)}, (4.1)

where αmin, αmax and Cj > 0, j = 1, 2 are given. With any α ∈ Uad we associate the domain

�(α) = {(x1, x2) ∈ R2| x1 ∈ (0, 1), x2 ∈ (α(x1), ω)},
where ω > 0 is a constant which does not depend on α ∈ Uad . Further ∂�(α) = S(α) ∪ �(α), where

S(α) = {(x1, α(x1)) ∈ R2| x1 ∈ (0, 1)}
is the slip part of ∂�(α). The family of admissible domains consists of all �(α) with α ∈ Uad . We shall also assume that
f ∈ (L2

loc(R2))2.

4.1 Stability of (P)

Let α ∈ Uad be given and denote by (u(α), p(α)) ∈ V (�(α)) × L2
0(�(α)) a (not necessarily unique) solution to (P(α))

defined in �(α):

∀v ∈ V (�(α)) : aα(u(α), v − u(α)) − bα(v − u(α)), p(α))

+ jα(|uτ (α)|, vτ ) − jα(|uτ (α)|, uτ (α))

≥ ( f , v − u(α))0,�(α),

∀q ∈ L2
0(�(α)) : bα(u(α), q) = 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(P(α))

where aα , bα and jα are defined by (2.8) on � := �(α), S := S(α).
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Remark 4.1. Let us note that the condition (2.16) ensuring the uniqueness of the solution to (P(α)) can be chosen to
be independent of α ∈ Uad . Indeed, the constant c in (2.16) can be bounded from above uniformly with respect to α ∈ Uad

making use of Lemma 2.19 in [7] and also the constant in the Korn inequality can be chosen to be independent of α ∈ Uad

([6, 13]).

Let �̂ := (0, 1) × (0, ω) ⊃ �(α) ∀α ∈ Uad be the hold-all domain and πα ∈ L(V (�(α)), (H 1
0 (�̂))2) an extension

mapping from �(α) to �̂. Since all �(α), α ∈ Uad satisfy the uniform cone property, there exists πα whose norm can be
estimated independently of α ∈ Uad (see [2]). Finally, the upper index “0” stands for the zero extension of functions from
�(α) to �̂.

Theorem 4.2. There exists a constant c := c( f , cg, r) > 0 independent of α ∈ Uad such that∥∥παu(α)
∥∥

1,�̂
+ ∥∥p0(α)

∥∥
0,�̂

≤ c (4.2)

holds for any solution (u(α), p(α)) to (P(α)).

P r o o f . The estimate of the first term in (4.2) follows from (2.10a) and Remark 4.1 concerning the Korn inequality.
Similarly, the estimate of the pressure term follows from (2.10b) using that the constant in the inf-sup condition for pressure
can be chosen independently of α ∈ Uad (see [7]) and the growth condition (2.9). �

Let

GP := {(α, u(α), p(α))| α ∈ Uad , (u(α), p(α)) solves (P(α))}
be the graph of the generally multivalued solution mapping � : α �→ (u(α), p(α)), α ∈ Uad .

Theorem 4.3. The graph GP is closed in the following sense:

αn → α in C1([0, 1]), αn, α ∈ Uad ,

(παn
un, p

0
n) ⇀ (u, p) in (H 1

0 (�̂))2 × L2
0(�̂),

where (αn, un, pn) := (αn, u(αn), p(αn)) ∈ GP

⎫⎪⎪⎬⎪⎪⎭ ⇒ (u|�(α), p|�(α)) solves (P(α))

and hence (α, u|�(α), p|�(α)) ∈ GP .

P r o o f . Let v ∈ V (�(α)) be given. From Lemma 3 in [8] we know that there exist: a function v ∈ (H 1(�̂))2, a
sequence {vk}, vk ∈ (H 1(�̂))2 and a filter of indices {nk} such that v|�(α) = v,

vk → v in (H 1(�̂))2, k → ∞,

vk|�(αnk
) ∈ V (�(αnk

)).

}
(4.3)

Therefore vk|�(αnk
) can be used as a test function in (P(αnk

)):

aαnk
(unk

, vk − unk
) − bαnk

(vk − unk
, pnk

)

+ jαnk
(|unkτ |, vkτ ) − jαnk

(|unkτ |, unkτ )

≥ ( f , vk − unk
)0,�(αnk

),

∀q ∈ L2
0(�(αnk

)) : bαnk
(unk

, q) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.4)

Denote (u(α), p(α)) := (u|�(α), p|�(α)). The fact that u(α) ∈ V div(�(α)) and the following limit passages can be proven
exactly as in [8]:

lim sup
k→∞

aαnk
(unk

, vk − unk
) ≤ aα(u(α), v − u(α)),

lim
k→∞

bαnk
(vk − unk

, pnk
) = bα(v − u(α), p(α)),

lim
k→∞

( f , vk − unk
)0,�(αnk

) = ( f , v − u(α))0,�(α),

making use of (4.3). It remains to pass to the limit in the slip terms.
From (4.3) and weak convergence παnk

(unk
) ⇀ u in (H 1(�̂))2 it follows ([7]):

unk |S(αnk
) ◦ αnk

→ u|S(α) ◦ α

vk|S(αnk
) ◦ αnk

→ v|S(α) ◦ α

}
in (Lr(0, 1))2. (4.5)
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For the proof of (4.5) with r = 2 we refer to Lemma 2.21 in [7]. However the result is true for any r ∈ [1,∞) using that
H 1(�̂) is compactly embedded in Lr(0, 1). From (4.5) we easily obtain:

unkτ ◦ αnk
:= (unk |S(αnk

) · τ αnk ) ◦ αnk
→ (u|S(α) · τ α) ◦ α = uτ ◦ α

vkτ ◦ αnk
:= (vk|S(αnk

) · τ αnk ) ◦ αnk
→ (v|S(α) · τ α) ◦ α = vτ ◦ α

}
in Lr(0, 1), (4.6)

since τ αnk ◦ αnk
⇒ τα ◦ α (uniformly) in [0, 1], where τ β stands for the unit tangential vector to S(β), β ∈ Uad (see [8]).

Consequently,

g(|unkτ ◦ αnk
|) → g(|uτ ◦ α|) in Lr ′

(0, 1). (4.7)

Hence

jαnk
(|unkτ |, vkτ ) =

∫ 1

0
g(|unkτ ◦ αnk

|)|vkτ ◦ αnk
|
√

1 + (α′
nk

)2 dx1

→
∫ 1

0
g(|uτ ◦ α|)|vτ ◦ α|

√
1 + (α′)2 dx1 = jα(|uτ |, vτ ), k → ∞, (4.8)

as follows from (4.6)2, (4.7) and convergence αn → α in C1([0, 1]). The limit passage for the second slip term in (4.4) can
be done in the same way. �

Remark 4.4. Theorem 4.3 automatically guarantees the following property of the sequence {un}:
un|Q → u(α)|Q in (H 1(Q))2 (4.9)

for any domain Q such that Q ⊂ �(α), i.e. un → u(α) in (H 1
loc(�(α)))2.

Indeed, let χ , χn be the characteristic function of �(α) and �(αn), respectively. Inserting v = 0, 2un into (P(αn)) we
obtain: ∥∥χnD(παn

un)
∥∥2

0,�̂
= −jαn

(|unτ |, unτ ) + (χn f , παn
un)0,�̂.

Hence

lim
n→∞

∥∥χnD(παn
un)

∥∥2
0,�̂

= −jα(|uτ |, uτ ) + (χ f , u)0,�̂ = ‖χDu‖2
0,�̂

(4.10)

arguing as in (4.8), using that χn → χ in Lq(�̂) for any q ∈ [1,∞) and the fact that u(α) := u|�(α) solves (P(α)). Let Q

be as above. Since αn → α in C1([0, 1]) it holds that Q ⊂ �(αn) for any n large enough. From (4.10) it follows:

lim
n→∞ ‖Dun‖2

0,Q = ∥∥Du(α)
∥∥2

0,Q
,

which together with the assumptions of Theorem 4.3 and the Korn inequality prove (4.9).

4.2 Stability of (M)

Let Uad be defined again by (4.1). We keep notation of Subsect. 4.1, i.e. the meaning of �(α), S(α), jα , aα , bα , να , τα

remains. In addition, 〈 , 〉α will denote the duality pairing between H−1/2(S(α)) and H 1/2(S(α)). If μν ∈ H−1/2(S(α))
and v ∈ (H 1(�(α)))2 then

〈μν, vν〉α := 〈μν, v|S(α) · να〉α ∀α ∈ Uad .

Recall that

(μτ , vτ )S(α) =
∫

S(α)

μτvτ ∀μτ ∈ Lr ′
(S(α)), vτ ∈ Lr(S(α)).

Problem (M) formulated on � := �(α) will be denoted by (M(α)).
Let

GM = {(α, u(α), p(α), σ ν(α), σ τ (α))| α ∈ Uad , (u(α), p(α), σ ν(α), σ τ (α)) solves (M(α))}
be the graph of the respective solution mapping.

Theorem 4.5. The graph GM is closed in the following sense: Let

αn → α in C1([0, 1]), αn, α ∈ Uad (4.11)
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and

(παn
un, p

0
n) ⇀ (u, p) in (H 1

0 (�̂))2 × L2
0(�̂). (4.12)

Then also

〈σ ν
n , vν〉αn

→ 〈σ ν(α), vν〉α, (4.13)

(σ τ
n , vτ )0,S(αn) → (σ τ (α), vτ )0,S(α) (4.14)

holds for every v ∈ (H 1
0 (�̂))2, where (un, pn, σ

ν
n , σ τ

n ) is a solution to (M(αn)), n = 1, . . . In addition, the quadruplet
(u|�(α), p|�(α), σ

ν(α), σ τ (α)) solves (M(α)).

P r o o f . From Theorem 4.3 we already know that (u|�(α), p|�(α)) is a solution to (P(α)). To this couple there exists a

unique pair (σ ν(α), σ τ (α)) ∈ H−1/2(S(α)) × Lr ′
(S(α)) such that (u|�(α), p|�(α), σ

ν(α), σ τ (α)) is a solution to (M(α)).
It remains to prove (4.13) and (4.14) only. We use the formulation of (M(αn)):

(un, pn, σ
ν
n , σ τ

n ) ∈ W(�(αn)) × L2
0(�(αn)) × H−1/2(S(αn)) × K(|unτ |S(αn) |) :

∀v ∈ (H 1
0 (�̂))2 : 〈σ ν

n , vν〉αn
+ (σ τ

n , vτ )S(αn) = aαn
(un, v)

−bαn
(v, pn) − ( f , v)0,�(αn),

∀q ∈ L2
0(�(αn)) : bαn

(un, q) = 0,

∀μν ∈ H−1/2(S(αn)) : 〈μν, unν〉αn
= 0,

∀μτ ∈ K(|unτ |S(αn) |) : (μτ + σ τ
n , unτ )S(αn) ≤ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.15)

where

K(|unτ |S(αn) |) = {μτ ∈ Lr ′
(S(αn))| |μτ | ≤ g(|un|S(αn) · ταn |) a.e. in S(αn)}.

Observe that one can use test functions v ∈ (H 1
0 (�̂))2 in (4.15)1 since W(�(β)) = (H 1

0 (�̂))2
|�(β) ∀β ∈ Uad .

Denote u(α) := u|�(α) and p(α) := p|�(α) . Letting n → ∞ in (4.15)1 we obtain:

lim
n→∞

{〈σ ν
n , vν〉αn

+ (σ τ
n , vτ )S(αn)

} = aα(u(α), v) − bα(v, p(α)) − ( f , v)0,�(α)

= 〈σ ν, vν〉α + (σ τ , vτ )S(α), (4.16)

which holds for every v ∈ (H 1
0 (�̂))2. It remains to show that the limit of each term on the left of (4.16) exists. Arguing as

in (4.6) we obtain:

vτ ◦ αn := (v|S(αn) · ταn) ◦ αn → (v|S(α) · τ α) ◦ α =: vτ ◦ α in Lr((0, 1)), n → ∞. (4.17)

Therefore if v ∈ (H 1
0 (�̂))2 in (4.16) is such that vτ = 0 on S(α) then vτ ◦ αn → 0 in Lr((0, 1)). Hence

(σ τ
n , vτ )S(αn) =

∫ 1

0
(σ τ

n ◦ αn)(vτ ◦ αn)
√

1 + (α′
n)

2 dx1 → 0, n → ∞,

making use (4.7) and the fact that |σ τ
n ◦ αn| ≤ g(|(un|S(αn) · τ αn) ◦ αn|) a.e. in (0, 1). This together with (4.16) gives (4.13)

and consequently also (4.14). �

5 Application of the stability property in optimal shape design problems

On the basis of the results of Sect. 4 it is easy to prove the existence of solutions to a class of optimal shape design problems
for systems governed by the Stokes equation with a solution dependent slip bound.

Let JP : GP → R and JM : GM → R be cost functionals defined on the graphs of the solution mappings corresponding
to (P(α)) and (M(α)), α ∈ Uad , respectively. Shape optimization problems with (P(α)), (M(α)) as the state relation
read as follows:

Find z∗ ∈ GP such that

JP(z∗) ≤ JP(z) ∀z ∈ GP ,

}
(PP )

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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and

Find z∗ ∈ GM such that

JM(z∗) ≤ JM(z) ∀z ∈ GM.

}
(PM)

If (P(α)) has a unique solution for any α ∈ Uad then (PP) can be written as the following minimization problem on Uad :

Find α∗ ∈ Uad such that

JP(α∗) ≤ JP(α) ∀α ∈ Uad ,

}
(PP )

where JP(α) := JP(α, u(α), p(α)), (α, u(α), p(α)) ∈ GP . The same can be done for (PM).
To prove the existence of solutions to (PP) and (PM) we use compactness and lower semicontinuity arguments.
Convergence in GP and GM will be introduced using the results of Theorem 4.3 and 4.5. We say that zn → z, zn, z ∈ GP

if (4.11) and (4.12) hold. Analogously, zn → z, zn, z ∈ GM if (4.11)–(4.14) hold.
From the definition of Uad and the Arzelà-Ascoli theorem we see that Uad is a compact subset of C1. This, together with

(4.2) and Theorem 4.3 and 4.5 proves the following result.

Theorem 5.1. The sets GP and GM are compact with respect to convergences introduced above.

We say that JP and JM are lower semicontinuous functionals on GP , and GM, respectively if

zn → z, zn, z ∈ GP ⇒ lim inf
n→∞ JP(zn) ≥ JP(z), (5.1)

zn → z, zn, z ∈ GM ⇒ lim inf
n→∞ JM(zn) ≥ JM(z). (5.2)

Theorem 5.2. Let the functionals JP , JM satisfy (5.1), and (5.2), respectively. Then there exists a solution to (PP) and
(PM).

Proof is straightforward.

Conclusions

In the first part of this paper we analyzed the mathematical model of the Stokes system with a threshold slip boundary
condition whose slip bound depends on the solution itself. We used two weak formulations of this problem: the standard
velocity-pressure formulation and the extended formulation in terms of the velocity, pressure, shear and normal stress.
We proved the existence of a solution for a large class of functions representing the slip bound and studied under which
conditions the solution is unique. In the second part of the paper we analyzed how solutions to both weak formulations
depend on the geometry of the problem, in particular on the shape of the slip part S of the boundary. Using an appropriate
parametrization of S we proved that the graphs of the respective solution mappings are compact in an appropriate topology.
This result plays the key role in shape optimization. Let us mention that the same stability result can be proven for the
Navier-Stokes system with the same boundary conditions.
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Kôkyûroku 888, 199–216 (1994).

[4] H. Fujita, A coherent analysis of Stokes flows under boundary conditions of friction type, Journal of Computational and Applied
Mathematics 149, 57–69 (2002).

[5] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics,
Vol. 749 (Springer, 1979).

www.zamm-journal.org C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

4.3. SHAPE OPTIMIZATION AND SLIP CONDITIONS 163



1060 J. Haslinger and J. Stebel: Stokes problem with a solution dependent slip bound

[6] J. Haslinger, A note on contact shape optimization with semicoercive state problems, Appl. Math. 47, 397–410 (2002).
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of his 60th birthday.

Abstract. This paper deals with shape optimization of systems governed by

the Stokes flow with threshold slip boundary conditions. The stability of so-
lutions to the state problem with respect to a class of domains is studied. For

computational purposes the slip term and impermeability condition are han-

dled by a regularization. To get a finite dimensional optimization problem, the
optimized part of the boundary is described by Bézier polynomials. Numerical

examples illustrate the computational efficiency.

1. Introduction. The standard kinematic boundary condition in mathematical
models of fluid mechanics is represented by the no-slip condition, namely the fluid
has the zero velocity u on the boundary of a solid impermeable wall. This condition
however does not always hold. In many real problems a fluid slip along the boundary
has been observed. In particular, this effect occurs on hydrophobic surfaces, i.e.
surfaces coated by a thin film of a non-wettable material from which the fluid (water)
is repelled [24]. The Navier boundary condition is the classical one which takes into
account the fluid slip [20]. It says that the shear stress σt is proportional to the
tangential velocity ut: σt = −kut, where k is the adhesive coefficient. Consequently,
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a slip occurs whenever σt is non-vanishing. This model is not able to describe
frequent situations when the slip has a threshold character, i.e. it may come only
if the shear stress attains certain value which is either given a priori or depends in
some way on the solution itself. For the physical justification of different slip laws
we refer to [15, 23]. Due to their non-smooth character, resulting mathematical
models lead to an inequality type problem. For the steady Stokes flow with slip
conditions and a given slip bound we refer to [6], [25], [17], and to [18] for the steady
Navier-Stokes flow. The Stokes problem with a solution dependent slip bound has
been studied in [13]. Recently, the stick-slip condition has been considered in [3]
as an implicit constitutive equation on the boundary having a monotone 2-graph
property. The existence of weak solutions to Bingham and Navier–Stokes fluids is
proven there.

The present paper deals with optimal shape design problems governed by the
Stokes system subject to the threshold boundary conditions. Such problems are
of a great practical importance. Indeed, using appropriate shapes of hydrophobic
surfaces, one can control (among others) the velocity profile to reduce the energy
losses. The stability of solutions to the state problem with respect to an appropriate
class of domains is the key property used in the existence analysis. This subject has
been studied in [26] for the Navier boundary condition, in [14] for the slip bound
given a priori and in [13] for the solution dependent slip bound. Due to the threshold
character of the slip boundary conditions, the respective control-to-state mapping
which with any admissible domain associates the solution to the state problem (M)
is non-differentiable in the classical sense. Therefore the resulting optimization
problem (P) formulated and analyzed in [13] and [14] is generally non-smooth, as
well. It can be solved numerically by non-smooth optimization methods. The main
drawback (to some extent) of this approach is the fact that it requires knowledge of
the non-smooth differential calculus to perform sensitivity analysis ([21]) needed in
computations. A possible way how to overcome this difficulty is to approximate the
nonsmooth slip term j in (M) by an appropriate sequence of smooth functionals
jε, ε → 0+ to get a sequence of smooth nonlinear equations (Mε). Denoting by
(Pε) the shape optimization problem with (Mε) as the state problem a natural
question arises, namely if there exists a relation between solutions to (Pε) and (P)
for ε→ 0+. This is one of subjects analyzed here.

The paper is organized as follows: in Section 2 we present the velocity-pressure
formulation (M) of the Stokes system with a class of slip boundary conditions.
Besides the regularization of the slip term we use for computational purposes also
a penalization of the impermeability condition to define the regularized-penalized
problems (Mε). Section 3 is devoted to the stability analysis of solutions to (Mε)
with respect to domains Ω and the parameter ε → 0+. The assumptions are
formulated in an abstract way enabling us to use them in other problems, too. On
the basis of these results one can easily prove the existence of solutions to (Pε) and
(P) and to establish the mutual relation between their solutions if ε→ 0+. This is
done in Section 4. Section 5 introduces an appropriate family of admissible domains,
and penalty/regularization functionals satisfying all the assumptions formulated in
the previous sections. Section 6 deals with numerical aspects. Optimized part of
the boundary is described by Bézier polynomials, while the regularized-penalized
problem (Mε) is discretized by P1-bubble/P1 elements. Sensitivity analysis uses
the standard adjoint state approach. Finally, Section 7 presents numerical results
of three model examples.
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2. State problem. Let Ω ⊂ R2 be a bounded domain with the Lipschitz boundary
∂Ω = Γ̄ ∪ S̄, where Γ, S are disjoint, non-empty and open in ∂Ω. In Ω we consider
the Stokes system with a slip-type boundary condition prescribed on S:





−∆u+∇p = f in Ω

divu = 0 in Ω

u = 0 on Γ

uν = 0 on S

σt ∈ ∂j(−ut) on S,

(1)

where u = (u1, u2) is the velocity field, p is the pressure and f is an external
force. Further, ν = (ν1, ν2), t = (−ν2, ν1) stand for the unit outward normal, and
tangential vector to S, uν = u · ν, ut = u · t denote the normal, and tangential

component of u, σt = 2D(u)ν ·t is the shear stress on S and D(u) = 1
2 (∇u+(∇u)

T
)

is the symmetric part of the gradient of u. Finally, ∂j(•) stands for the subgradient
of a convex functional j at a point •.

To give the weak velocity and velocity-pressure formulation we first introduce
several function spaces:

V(Ω) = {v ∈ (H1(Ω))2 | v = 0 on Γ, vν = 0 on S},
Vdiv(Ω) = {v ∈ V(Ω) | divv = 0 in Ω},
L2

0(Ω) = {q ∈ L2(Ω) |
∫

Ω
q dx = 0}.

The weak velocity formulation of (1) is defined by the following minimization prob-
lem:

Find u = argmin
v∈Vdiv(Ω)

{
J(v) := 1

2a(v,v) + j(vt)− (f ,v)0,Ω

}
, (P(Ω))

where

a(u,v) = 2

∫

Ω

D(u) : D(v) dx ∀u,v ∈ (H1(Ω))2.

Further j : L2(S)→ R+ is a non-negative, convex, lower semicontinuous functional,
and (f ,v)0,Ω =

∫
Ω
f · v dx ∀v ∈ (L2(Ω))2.

It is well-known that (P(Ω)) has a unique solution u and, in addition, (P(Ω)) is
equivalent to the following variational inequality of the second kind:

{
Find u ∈ Vdiv(Ω) such that

a(u,v−u) + j(vt)− j(ut) ≥ (f ,v−u)0,Ω ∀v ∈ Vdiv(Ω).
(P ′(Ω))

The velocity-pressure variational formulation of (1) reads as follows:




Find (u, p) ∈ V(Ω)× L2
0(Ω) such that

a(u,v−u)− b(v−u, p) + j(vt)−j(ut) ≥ (f ,v−u)0,Ω ∀v∈V(Ω)

b(u, q) = 0 ∀q ∈ L2
0(Ω),

(M(Ω))

where b : (H1(Ω))2 × L2
0(Ω)→ R is defined by b(v, q) =

∫
Ω

divv q dx. Also (M(Ω))
has a unique solution (u, p) as a consequence of the inf-sup condition satisfied by b
(see [8, Th. 3.7]):

∃β = const. > 0 : sup
v∈(H1

0 (Ω))2

b(v, q)

‖v‖1,Ω
≥ β‖q‖0,Ω ∀q ∈ L2

0(Ω). (2)

In addition, the first component u solves (P(Ω)).
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Since the functional j is generally non-differentiable, we use a regularization
approach together with a penalization of the impermeability condition vν = 0 on
S. To this end we introduce the spaces

W(Ω) = {v ∈ (H1(Ω))2 | v = 0 on Γ},
Wdiv(Ω) = {v ∈W(Ω) | b(v, q) = 0 ∀q ∈ L2

0(Ω)}
and a system of functionals {jε}, ε→ 0+ with the following properties:

− jε : L2(S)→ R+ is non-negative, convex, and differentiable ∀ε>0; (3)

− lim
ε→0+

jε(q) = j(q) ∀q ∈ L2(S); (4)

− lim inf
ε→0+

jε(qε) ≥ j(q) holds for any {qε}, qε∈L2(S) s.t. qε → q in L2(S). (5)

The condition vν = 0 on S will be penalized by the functional

g(vν) = 1
2

∫

S

(vν)2 ds, v ∈W(Ω). (6)

The penalized-regularized formulation of (P(Ω)), (M(Ω)) reads as follows:

Find uε= argmin
v∈Wdiv(Ω)

{
Jε(v) := 1

2a(v,v) + jε(vt) +
1

ε
g(vν)− (f ,v)0,Ω

}
(Pε(Ω))

and 



Find (uε, pε) ∈W(Ω)× L2
0(Ω) such that

a(uε,v)− b(v, pε) + 〈∇jε(uεt), vt〉

+
1

ε
〈∇g(uεν), vν〉 = (f ,v)0,Ω ∀v ∈W(Ω)

b(uε, q) = 0 ∀q ∈ L2
0(Ω),

(Mε(Ω))

respectively. From (6) we see that

〈∇g(uν), vν〉 =

∫

S

uνvν ds. (7)

Problems (Pε(Ω)), (Mε(Ω)) have unique solutions uε, and (uε, pε), respectively
for every ε > 0. In addition, the first component uε of the solution to (Mε(Ω))
solves (Pε(Ω)). Using techniques from [9, Chpt. I, Th. 7.1 and Chpt. II, Th. 6.3]
one can show that

(uε, pε) ⇀ (u, p) in (H1(Ω))2 × L2(Ω), (8)

as ε→ 0+ where (u, p) is the solution of (M(Ω)). In the next section we shall study
the stability of solutions to (Mε(Ω)) with respect to Ω and ε → 0+. Convergence
(8) will be a special case of this result.

3. Stability of (Mε(Ω)) with respect to ε > 0 and Ω. Now we shall consider
problems (Pε(Ω)) and (Mε(Ω)) parametrized simultaneously by ε > 0 and Ω. To
this end we introduce a system O of bounded domains Ω with the Lipschitz bound-

aries ∂Ω = ΓΩ ∪ SΩ, where ΓΩ, SΩ are parts of ∂Ω where the no-slip, and slip
boundary conditions, respectively are prescribed. We shall suppose that |ΓΩ| ≥ δ,
|SΩ| ≥ δ, where δ > 0 does not depend on Ω ∈ O and |SΩ|, |ΓΩ| stand for the length
of SΩ, and ΓΩ, respectively. Furthermore let there exist two bounded domains C,
Ω̂ such that C ⊂ Ω ⊂ Ω̂ and dist(∂Ω, ∂Ω̂) ≥ δ0 for all Ω ∈ O, where δ0 > 0 is
independent of Ω ∈ O.
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To analyze the stability with respect to Ω ∈ O one has to define convergence
O→

in O. The system O with a concrete choice of
O→ will be denoted by {O, O→}.

In this abstract setting we do not specify explicitly the choice of {O, O→}. This

will be done implicitly, namely we shall consider such {O, O→} for which the as-
sumptions formulated below will be satisfied. Only what we require a priori is that

any subsequence of a convergent sequence of domains from {O, O→} converges to the
same element.

First we suppose that O possesses a uniform extension property: for any Ω ∈ O
there exists an extension mapping EΩ ∈ L((H1(Ω))2, (H1(Ω̂))2) such that

‖EΩv‖1,Ω̂ ≤ c‖v‖1,Ω (9)

holds for every v ∈ (H1(Ω))2 with a constant c > 0 independent of Ω ∈ O.
To emphasize the fact that Ω is one of the parameters of the problem, it will be

appended to all data as a superscript. Thus we shall write aΩ, bΩ,uΩ,uΩ
ε ,... instead

of a, b,u,uε,... which are defined in the same way as in Section 2. In particular
the functionals, jΩ, jΩ

ε , g
Ω : L2(SΩ)→ R+. To simplify notation we shall also write

v̂Ω := EΩv, v ∈ (H1(Ω))2, in what follows while q̊ stands for the extension of a
function q ∈ L2(Ω) by zero outside of Ω.

To guarantee uniform boundedness of solutions to (Mε(Ω)) with respect to Ω ∈ O
and ε > 0, the system O will be chosen in such a way that the following assumptions
are satisfied:

∃α = const. > 0 : aΩ(v,v) ≥ α‖v‖21,Ω ∀v ∈W(Ω) ∀Ω ∈ O; (10)

∃β = const. > 0 : sup
v∈(H1

0 (Ω))2

bΩ(v, q)

‖v‖1,Ω
≥ β‖q‖0,Ω ∀q ∈ L2

0(Ω) ∀Ω ∈ O, (11)

i.e. aΩ is W(Ω)-elliptic and bΩ satisfies the inf-sup condition, both uniformly with
respect to Ω ∈ O.

Further we shall suppose that

∃ c = const. > 0 ∃ ε0 > 0 : jΩ
ε (0) ≤ c ∀ε ∈]0, ε0], ∀Ω ∈ O, (12)

and the right hand side of the Stokes system in Ω is the restriction of a function
f ∈ (L2(Ω̂))2.

Lemma 3.1. Let (10)–(12) be satisfied. Then there exists a constant c > 0 such
that

‖uΩ
ε ‖1,Ω + ‖pΩ

ε ‖0,Ω ≤ c (13)

and

0 ≤ gΩ(uΩ
εν) ≤ c ε (14)

hold for any ε ∈]0, ε0] and Ω ∈ O.

Proof. From the definition of (Pε(Ω)) we have:

1

2
aΩ(uΩ

ε ,u
Ω
ε ) +

1

ε
gΩ(uΩ

εν) ≤ JΩ
ε (uΩ

ε ) + (f ,uΩ
ε )0,Ω

≤ JΩ
ε (0) + (f ,uΩ

ε )0,Ω ≤ jΩ
ε (0) + ‖f‖0,Ω̂‖uΩ

ε ‖1,Ω.
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From this, (10) and (12) the boundedness of {uΩ
ε } and (14) follow. Using test

functions v ∈ (H1
0 (Ω))2 in (Mε(Ω)) together with (11) we obtain:

β‖pΩ
ε ‖0,Ω ≤ sup

v∈(H1
0 (Ω))2

bΩ(v, pΩ
ε )

‖v‖1,Ω
≤ ‖uΩ

ε ‖1,Ω + ‖f‖0,Ω̂

and hence (13) holds true.

Owing to (9) and (13), the extensions of (uΩ
ε , p

Ω
ε ) from Ω to Ω̂ are bounded, as

well:
∃ c = const. > 0 : ‖ûΩ

ε ‖1,Ω̂ + ‖p̊Ω
ε ‖0,Ω̂ ≤ c ∀ε ∈]0, ε0] ∀Ω ∈ O. (15)

Let {Ωk},Ωk ∈ O be such that Ωk
O→ Ω ∈ O and consider problems (Mεk(Ωk)),

where εk → 0+ as k → ∞. Next we will study the relation between solutions of

(Mεk(Ωk)) and (M(Ω)) when k → ∞. To this end we shall suppose that {O, O→}
is chosen in such a way that the following assumptions are satisfied:

– for any {vk} such that vk ⇀ v in (H1(Ω̂))2, vk|Ωk
∈W(Ωk) it follows that

v|Ω ∈W(Ω); (16)

– ∀v ∈ V(Ω) there exists a sequence {vk}, vk ∈ (H1(Ω̂))2 and a function

v̄ ∈ (H1(Ω̂))2, v̄|Ω = v such that

vk → v̄ in (H1(Ω̂))2 (17)

and for any k ∈ N there exists nk ∈ N for which

vk|Ωnk
∈ V(Ωnk

); (18)

– if {vk}, {wk}, and {qk}, {zk} are such that vk ⇀ v, wk → w in (H1(Ω̂))2,

and qk ⇀ q, zk → z in L2(Ω̂) then

lim sup
k→∞

aΩk(vk|Ωk
,wk|Ωk

− vk|Ωk
) ≤ aΩ(v|Ω,w|Ω − v|Ω) (19)

lim
k→∞

bΩk(wk|Ωk
, qk|Ωk

) = bΩ(w|Ω, q|Ω) (20)

lim
k→∞

bΩk(vk|Ωk
, zk|Ωk

) = bΩ(v|Ω, z|Ω) (21)

lim
k→∞

(f ,v|Ωk
)0,Ωk

= (f ,v|Ω)0,Ω. (22)

– if vk ⇀ v in (H1(Ω̂))2 then1

gΩk(vkν )→ gΩ(vν) (23)

and
jΩk
εk

(vkt )→ jΩ(vt), k →∞. (24)

Theorem 3.2. Let εk → 0+, Ωk
O→ Ω as k → ∞, Ωk,Ω ∈ O and (16)–(24)

be satisfied. Let the sequence of solutions {(uΩk
εk
, pΩk
εk

)} to (Mεk(Ωk)) be such that

ûΩk
εk

⇀ ū in (H1(Ω̂))2, (25)

p̊Ωk
εk

⇀ p̄ in L2(Ω̂), k →∞ (26)

for some (ū, p̄) ∈ (H1(Ω̂))2 × L2
0(Ω̂). Then (ū|Ω, p̄|Ω) solves (M(Ω)).

1Recall that vkν = vk|SΩk · νk, vν = v|SΩ · ν, and νk,ν is the outward unit normal vector to

SΩk , and SΩ, respectively (similarly vkt and vt).
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Proof. To simplify notation, instead of the superscript Ωk we shall write simply k
in what follows. Thus ak := aΩk , jkεk := jΩk

εk
, etc. Using this convention, (ukεk , p

k
εk

)
satisfies:





ak(ukεk ,v)− bk(v, pkεk) + 〈∇jkεk(ukεkt), vt〉

+
1

εk
〈∇gk(ukεkν), vν〉 = (f ,v)0,Ωk

∀v ∈W(Ωk)

bk(ukεk , q) = 0 ∀q ∈ L2
0(Ωk).

(Mεk(Ωk))

First we show that ū|Ω ∈ Vdiv(Ω). The fact that ū = 0 on ΓΩ and ū|Ω ·ν = 0 on SΩ

follows from (16), and (14)+(23). Let z ∈ L2(Ω̂) be arbitrary, denote zk := z|Ωk
and

decompose zk: zk = z̄k + ck, where ck =
(∫

Ωk
zk dx

)
/meas Ωk. Since z̄k ∈ L2

0(Ωk)

we have:
∫

Ωk

divukεkzk dx =

∫

Ωk

divukεk z̄k dx+ ck

∫

Ωk

divukεk dx = ck

∫

Sk

ukεkν ds.

Passing to the limit with k →∞, using (14), (21), (25) and the definition of zk we
see that ∫

Ω

div ū z dx = 0 ∀z ∈ L2(Ω̂), (27)

i.e. div ū|Ω = 0.

The fact that p̄|Ω ∈ L2
0(Ω) follows from (20), hence (ū|Ω, p̄|Ω) ∈ Vdiv(Ω)×L2

0(Ω).

Let v ∈ V(Ω) be arbitrary and {vk} be a sequence satisfying (17) and (18).
Using vk −unk

εk
as a test function in (Mεnk

(Ωnk
))2, where nk is the filter of indices

for which (18) holds, we obtain:

ank(unk
εnk

,vk − unk
εnk

)− bnk(vk, pnk
εnk

)+

〈∇jnk
εnk

(unk
εnk

t), v
k
t − unk

εnk
t〉 ≥ (f ,vk − unk

εnk
)0,Ωnk

(28)

taking into account that vk|Ωnk
∈ V(Ωnk

) and the second equation in (Mεnk
(Ωnk

)).

Adding the term jnk
εnk

(vkt )− jnk
εnk

(unk
εnk

t) to both sides of (28) and using convexity of

jnk
εnk

we arrive at

ank(unk
εnk

,vk − unk
εnk

)− bnk(vk, pnk
εnk

)

+ jnk
εnk

(vkt )− jnk
εnk

(unk
εnk

t) ≥ (f ,vk − unk
εnk

)0,Ωnk
. (29)

If k →∞ in (29) then

aΩ(ū|Ω,v− ū|Ω)− bΩ(v− ū|Ω, p̄|Ω) + jΩ(vt)− jΩ(ūt) ≥ (f ,v− ū|Ω)0,Ω ∀v ∈ V(Ω)

making use of (19)–(22), (24). From this and the inf-sup condition it follows that
p̄|Ω = pΩ. Consequently, (ū|Ω, p̄|Ω) := (uΩ, pΩ) is the solution of (M(Ω)).

Let us comment on the assumptions formulated above. It is known that if the
system O consists of domains with the uniform cone property (it will be denoted

2for simplicity of notation we write vk instead of vk|Ωnk
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by Ocone) then (9) is satisfied ([4]). Ocone has yet other properties which guarantee
that some of the previous assumptions are automatically satisfied. It holds:

− Ocone is compact with respect to the Hausdorff metric; (30)

− if Ωk
H→ Ω, Ωk ∈ Ocone then

∂Ωk
H→ ∂Ω (31)

and

χk → χ in L2(Ω̂), (32)

where
H→ stands for convergence in the Hausdorff metric, χk, χ are the characteristic

functions of Ωk and Ω, respectively (see [22], [16]). From (32) we easily obtain
(19)–(22). Also the uniform ellipticity of aΩ with respect to Ω ∈ Ocone, i.e. (10), is
satisfied (see [11]). The next property is an easy consequence of (32), too:

– if Ωk
H→ Ω, Ωk ∈ Ocone and vk ⇀ v in (H1(Ω̂))2 then

lim inf
k→∞

‖Dvk‖0,Ωk
≥ ‖Dv‖0,Ω. (33)

On the other hand, in order to satisfy (16), (17), (18), (23), and (24) we usually need
appropriate subsets of Ocone which consist of domains with more regular boundaries.
One example of such a system will be presented in Section 5.

4. Optimal shape design problems. First we present a class of optimal shape
design problems we want to solve with the velocity-pressure formulation (M(Ω)) of
(1) as the state relation.

Let {O, O→} be a system of admissible domains introduced in Section 3. Further
we choose an objective functional I which depends on (Ω,uΩ, pΩ), Ω ∈ O, with
(uΩ, pΩ) being the solution to (M(Ω)) and denote J (Ω) := I(Ω,uΩ, pΩ).

Optimal shape design problems we shall deal with read as follows:

Find Ω∗ ∈ arg min {J (Ω) | Ω ∈ O} . (P)

To prove the existence of solutions to (P) we shall need the following assumptions:

– (sequential compactness of O)
in any sequence {Ωk}, Ωk ∈ O there exist: a subsequence {Ωkj} and Ω ∈ O
such that

Ωkj
O→ Ω ∈ O, j →∞; (34)

– (uniform boundedness of {(uΩ, pΩ)})

∃ c = const. > 0 : ‖ûΩ‖1,Ω̂ + ‖p̊Ω‖0,Ω̂ ≤ c ∀Ω ∈ O; (35)

– (lower semicontinuity of I)

if Ωk
O→ Ω, Ωk,Ω ∈ O, vk ⇀ v in (H1(Ω̂))2, and qk ⇀ q in L2(Ω̂) then

lim inf
k→∞

I(Ωk,v
k|Ωk

, qk|Ωk
) ≥ I(Ω,v|Ω, q|Ω). (36)

Finally we suppose that the following assumption is satisfied:

– if Ωk
O→ Ω, Ωk,Ω ∈ O and {(uΩk , pΩk)} is the sequence of solutions to

(M(Ωk)) such that (ûΩk , p̊Ωk) ⇀ (ū, p̄) in (H1(Ω̂))2 × L2(Ω̂) then

(ū|Ω, p̄|Ω) solves (M(Ω)). (37)

172 CHAPTER 4. PRESENTED WORKS AND THEIR NOVELTIES



SHAPE OPTIMIZATION FOR STOKES PROBLEM 1289

Theorem 4.1. Let (34)–(37) be satisfied. Then (P) has a solution.

Proof. Let {Ωk}, Ωk ∈ O be a minimizing sequence in (P):

lim
k→∞

J (Ωk) = inf
O
J (Ω).

Owing to (34), (35), and (37) we may pass to a subsequence (denoted by the same

symbol) such that Ωk
O→ Ω∗ ∈ O, (ûΩk , p̊Ωk) ⇀ (ū, p̄) in (H1(Ω̂))2 × L2(Ω̂) and

(ū|Ω∗ , p̄|Ω∗) solves (M(Ω∗)). The rest of the proof follows from (36).

As we have mentioned in Introduction, problem (P) is generally non-smooth
due to a possible non-differentiability of the control-to-state mapping φ : Ω 7→
(uΩ, pΩ). For this reason we shall approximate problem (P) by a sequence of prob-
lems (Pε), ε→ 0+ which utilize (Mε(Ω)) as the state problem.

Problem (Pε), ε > 0, reads as follows:

Find Ω∗ε ∈ arg min {Jε(Ω) | Ω ∈ O}, (Pε)

where Jε(Ω) := I(Ω,uΩ
ε , p

Ω
ε ) and (uΩ

ε , p
Ω
ε ) solves (Mε(Ω)).

Next we shall analyze if and under which conditions there exists a relation be-
tween solutions to (P) and (Pε) when ε→ 0+.

First of all we have to guarantee that (Pε) has a solution for any ε ∈]0, ε0], ε0 > 0
sufficiently small. To this end we need the following minor modification of (37):

– if Ωk
O→ Ω, Ωk,Ω ∈ O and {(uΩk

ε , pΩk

ε )} is the sequence of solutions to

(Mε(Ωk)) such that (ûΩk

ε , p̊Ωk

ε ) ⇀ (ū, p̄) in (H1(Ω̂))2 × L2(Ω̂), k →∞, then

(ū|Ω, p̄|Ω) solves (Mε(Ω)) (38)

and this holds for any ε ∈]0, ε0].

Theorem 4.2. Let (15), (34), (36), and (38) be satisfied. Then (Pε) has a solution
for any ε > 0.

Proof. It can be omitted.

To prove the next theorem we have to replace (36) by the following stronger
continuity assumption:

– if Ωk
O→ Ω, Ωk,Ω ∈ O, and vk ⇀ v in (H1(Ω̂))2, qk ⇀ q in L2(Ω̂), k → ∞,

then

lim
k→∞

I(Ωk,v
k|Ωk

, qk|Ωk
) = I(Ω,v|Ω, q|Ω). (39)

Theorem 4.3. Let (15), (34), (39) and all the assumptions of Theorem 3.2 be
satisfied. Then for any sequence of solutions {Ω∗εk} to (Pεk), εk → 0+ as k → ∞,
there exist: its subsequence (denoted by the same symbol) and Ω∗ ∈ O such that

{
Ω∗εk

O→ Ω∗,

(û∗k, p̊
∗
k) ⇀ (ū, p̄) in (H1(Ω̂))2 × L2(Ω̂), k →∞,

(40)

where (u∗k, p
∗
k) is the solution of (Mεk(Ω∗εk)). In addition, Ω∗ is a solution to (P)

and (ū|Ω∗ , p̄|Ω∗) solves (M(Ω∗)). Any accumulation point of {(u∗k, p∗k)} in the sense

of (40) is a solution to (P).
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Proof. From (15), (34) and Theorem 3.2 it follows that there exists Ω∗ ∈ O and
a subsequence of {(Ω∗εk , û

∗
k, p̊
∗
k)} (denoted by the same symbol) satisfying (40) and

such that (ū|Ω∗ , p̄|Ω∗) solves (M(Ω∗)). It remains to show that Ω∗ solves (P).

Indeed, let Ω̃ ∈ O be arbitrary but fixed and {(ũk, p̃k)} be the sequence of solutions

to (Mεk(Ω̃)), k →∞. Since

(ũk, p̃k) ⇀ (ũ, p̃) in (H1(Ω̃))2 × L2(Ω̃), k →∞, (41)

where (ũ, p̃) is a solution of (M(Ω̃)), the definition of (Pεk) yields:

I(Ω∗εk ,u
∗
k, p
∗
k) ≤ I(Ω̃, ũk, p̃k).

Letting k→∞ and using (39), (40), and (41) we obtain that J (Ω∗) ≤ J (Ω̃) ∀Ω̃ ∈
O.

To conclude the theoretical part we formulate assumptions under which (37)
and (38) are satisfied. Since the proof is only a minor modification of the one of
Theorem 3.2 it will be omitted.

Theorem 4.4. Let (16) and (19)–(22) be satisfied. If, in addition

a) (17), (18) are satisfied and from vk ⇀ v in (H1(Ω̂))2, Ωk
O→ Ω it follows that

jΩk(vkt )→ jΩ(vt), then (37) holds;
b) (23) and (24) with εk = ε ∈]0, ε0] ∀k ∈ N are satisfied, then (38) holds.

5. Model shape optimization problems. The aim of this section is to apply
the previous theoretical results to a class of optimization problems that will be
used in numerical experiments. The system O consists of domains with a simple
shape, namely a part of the boundary to be optimized with the prescribed stick-slip
condition is represented by the graph of a function.

The system O is defined as follows:

O = {Ω(α) | α ∈ Uad},
where

Ω(α) =
{

(x1, x2) ∈ R2 | x1 ∈]0, 1[, x2 ∈]α(x1), 1[
}

and

Uad =
{
α ∈ C1,1([0, 1]) | αmin ≤ α ≤ αmax < 1, |α(j)| ≤ Cj , j=1, 2 a.e. in ]0, 1[

}
,

(42)
i.e. Uad is the set of functions which are together with their first derivatives equi-
bounded and equi-Lipschitz continuous in [0, 1]. The constants αmin, αmax, C1, and

C2 are chosen in such a way that Uad 6= ∅. The boundary ∂Ω(α) = Γ(α) ∪ S(α),
and S(α) is the graph of α ∈ Uad (see Figure 1).

In O we introduce convergence as follows:

Ωk := Ω(αk)
O→ Ω(α), αk ∈ Uad ⇐⇒ αk → α in C1([0, 1]).

On any Ω(α), α ∈ Uad we shall consider the Stokes system with the no-slip,
stick-slip boundary condition prescribed on Γ(α), and S(α), respectively. The fact
that the shape of Ω(α) is fully determined by the function α ∈ Uad enables us
to simplify notation. Instead of V(Ω(α)), Vdiv(Ω(α)), L2

0(Ω(α)),... we shall write
V(α), Vdiv(α), L2

0(α),... Similarly, aα, bα, jα,... is used in place of aΩ(α), bΩ(α),
jΩ(α),...

174 CHAPTER 4. PRESENTED WORKS AND THEIR NOVELTIES



SHAPE OPTIMIZATION FOR STOKES PROBLEM 1291

x1

x2

αmin

αmax

γ

1

Ω(α)

S(α)

Figure 1. Shape of admissible domains.

Using this convention of notation, the velocity-pressure formulation of (1) reads
as follows:




Find (uα, pα) ∈ V(α)× L2
0(α) such that

aα(uα,v − uα)− bα(v − uα, pα)

+ jα(vt)− jα(uαt ) ≥ (f ,v − uα)0,Ω(α) ∀v ∈ V(α)

bα(uα, q) = 0 ∀q ∈ L2
0(α).

(M(α))

Now we shall verify all the assumptions of Section 3 and 4. Owing to the definition
of Uad, all domains from O enjoy the uniform cone property and consequently (9),
(10), (19)–(22) are satisfied. The constant β in the inf-sup condition (11) depends
only on ‖α‖W 1,∞(0,1) and it can be chosen independently of α ∈ Uad (see [2], [7]).
Clearly, (16) is satisfied as well due to the special shape of Ω(α), α ∈ Uad. Let us
notice that all these assumptions hold true for any α belonging to an appropriate
subset of C0,1([0, 1]). The reason why we ask α ∈ C1,1([0, 1]) is to satisfy the
remaining conditions of Section 3 and 4. Some of them have been already proven
in [14], namely:

– (17) and (18) (Lemma 3 in [14]) ;
– (23) for the penalty functional

gα(vν) =

∫ 1

0

(vν ◦ α)2 dx1 =

∫ 1

0

(v(x1, α(x1)) · να)2 dx1,

where να stands for the unit outward normal vector to S(α).

In the next section we use the slip functional jα, α ∈ Uad, of the following form:

jα(q) =

∫

S(α)

ϕ(q) ds, ϕ(q) = σ0|q|+
σ1

2
|q|2, q ∈ L2(S(α)), (43)

where σ0 and σ1 are given non-negative constants such that σ0 +σ1 > 0. With this
choice of ϕ, the boundary condition (1)5 can be rewritten as follows:

|σt| < σ0 ⇒ ut = 0,

|σt| ≥ σ0 ⇒ −σt = σ0
ut
|ut|

+ σ1ut



 on S(α). (44)
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If σ0 = 0 then (44) is usually referred to as the Navier boundary condition, while
for σ1 = 0 it reminds the Tresca friction law known from solid mechanics.

Lemma 5.1. The functional jα defined by (43) is non-negative, convex, continuous
and weakly lower semicontinuous in L2(S(α)) ∀α ∈ Uad.

Proof. Clearly, ϕ is non-negative and convex, so is jα. Since

jα(q) = σ0‖q‖L1(S(α)) +
σ1

2
‖q‖20,S(α),

its continuity and the weak lower semicontinuity, respectively, follows from the
corresponding properties of the norms ‖ · ‖L1(S(α)) and ‖ · ‖0,S(α).

For any α ∈ Uad and ε > 0 we define the regularization functional

jαε (q) =

∫

S(α)

ϕε(q) ds,

where

ϕε(q) =

{
ϕ(q) if |q| ≥ ε,
σ0
|q|2+ε2

2ε + σ1

2 |q|2 if |q| < ε,
q ∈ L2(S(α)). (45)

The behavior of jαε and jα with respect to α ∈ Uad and ε → 0+ is summarized
in the next lemma.

Lemma 5.2. The functionals jα, jαε defined by (43), and (45), respectively, have
the following properties:

(i) for every α ∈ Uad and ε > 0, jαε is non-negative, convex and continuously
differentiable in L2(S(α));

(ii) condition (12) is satisfied;
(iii) for every α ∈ Uad it holds:

qε → q in L2(S(α))⇒ jαε (qε)→ jα(q), ε→ 0+; (46)

(iv) for every α ∈ Uad it holds:

qε ⇀ q weakly in L2(S(α))⇒ lim inf
ε→0+

jαε (qε) ≥ jα(q); (47)

(v) if αk → α in C1([0, 1]), αk, α ∈ Uad, εk → 0+, and vk ⇀ v in (H1(Ω̂))2, then

jαk
εk

(vkt )→ jα(vt), k →∞
and

jαk(vkt )→ jα(vt), k →∞.
Proof. It is readily seen that (i) holds. From the definition of ϕε and ϕ we have:

‖ϕε − ϕ‖∞,R ≤ ϕε(0) =
σ0ε

2
, (48)

and
ϕε(x) ≥ ϕ(x) ∀x ∈ R; (49)

ad (ii) From (48) it follows that

∀α ∈ Uad jαε (0) ≤
√

1 + C2
1

σ0

2
ε, (50)

making use of the definition of Uad, i.e. (12) holds with c :=
√

1 + C2
1
σ0

2 ε0;

ad (iii) If qε → q in L2(S(α)), ε→ 0+, α ∈ Uad, then

|jαε (qε)− jα(q)| ≤ |jαε (qε)− jα(qε)|+ |jα(qε)− jα(q)| =: J1 + J2. (51)
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But

J1 ≤
∫

S(α)

|ϕε(qε)− ϕ(qε)| ds ≤ |S(α)|‖ϕε − ϕ‖∞,R
(48)

≤ |S(α)|σ0ε

2

and

J2 → 0 for ε→ 0+,

as follows from continuity of jα, i.e. (46) holds true;

ad (iv) Let qε ⇀ q weakly in L2(S(α)), ε→ 0+, α ∈ Uad. Then

lim inf
ε→0+

jαε (qε)
(49)

≥ lim inf
ε→0+

jα(qε) ≥ jα(q),

making use of the weak lower semicontinuity of jα;

ad (v) It holds:

|jαk
εk

(vkt )− jα(vt)| =
∣∣∣∣
∫ 1

0

ϕεk(vkt ◦ αk)
√

1 + α′2k − ϕ(vt ◦ α)
√

1 + α′2
∣∣∣∣ dx1

≤
∫ 1

0

∣∣ϕεk(vkt ◦ αk)− ϕ(vkt ◦ αk)
∣∣
√

1 + α′2k dx1

+

∫ 1

0

∣∣∣∣ϕ(vkt ◦ αk)
√

1 + α′2k − ϕ(vt ◦ α)
√

1 + α′2
∣∣∣∣ dx1 =: J3 + J4.

Clearly

J3 ≤ ‖
√

1 + α′2k ‖∞,(0,1)‖ϕεk − ϕ‖∞,R
(48)

≤
√

1 + C2
1

σ0

2
εk. (52)

From vk ⇀ v in (H1(Ω̂))2 and αk → α in C1([0, 1]) it follows that (see Theorem 3
in [14])

vkt ◦ αk → vt ◦ α in L2(0, 1), k →∞
and also

ϕ(vkt ◦ αk)→ ϕ(vt ◦ α) in L1(0, 1).

Hence

J4 → 0 as k →∞.
From this and (52), the first limit in (v) follows. The second limit can be proven
analogously.

Owing to the definition of Uad, the system O is compact with respect to the C1

norm, i.e. (34) holds. If the cost functional I is lower semicontinous as in (36) then
all the assumptions of Theorem 4.1 and 4.2 are satisfied. Consequently, problems
(P) and (Pε) have a solution. If, in addition, I satisfies (39), then Theorem 4.3 can
be applied. It says that solutions to (Pε) for ε→ 0+ are close to the ones of (P) in
the sense of (40).

6. Approximation and numerical realization of (Pε). In this section we de-
scribe how to discretize and realize shape optimization problems governed by the
Stokes system with the regularized, penalized threshold, and impermeablity con-
dition, respectively. The system of admissible domains Ω is as in Section 5, i.e.
the shapes of Ω are uniquely determined by functions α ∈ Uad defined by (42).
The control variables α ∈ Uad will be discretized by Bézier functions, while a finite
element method will be used to discretize the state equation (Mε(α)).
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6.1. Discrete design parametrization and a finite element approximation
of the state problem. We define the following finite dimensional parametrization
of the slip boundary S(α) = {(x1, x2) | x1 ∈ [0, 1], x2=α(x1)}, α ∈ Uad using a
Bézier polynomial of degree m:

αm(x1) =
m∑

i=0

aiB
(m)
i (x1), x1 ∈ [0, 1], (53)

where B
(m)
i (t) =

(
m
i

)
ti(1 − t)(m−i), i=0, ...,m are the Bernstein polynomials on

[0, 1]. Thus, the discrete design variable is the vector of the x2-coordinates a =
(a0, a1, ..., am) of the Bézier control points ( im , ai), i=0, ...,m.

Next we discretize the state problem (Mε(αm)) by the P1-bubble/P1 elements
satisfying the Ladyzhenskaya-Babuška-Brezzi condition [1]. Let Th be a triangula-
tion of Ωh(αm) (a polygonal approximation of Ω(αm)) and

Vh(αm) = {vh ∈ C(Ωh(αm)) | vh|T ∈ P1(T ) ∀T ∈ Th, vh = 0 on Γh}

be the space of piecewise linear finite elements of Lagrange type. The space of
bubble functions is defined by

Bh(αm) =
{
vh ∈ C(Ωh(αm)) | vh|T ∈ span(bT ) ∀T ∈ Th

}
,

where bT = λ1,Tλ2,Tλ3,T ∈ P3(T ) is the “bubble” function and λ1,T , λ2,T , and λ3,T

are the barycentric coordinates of points with respect to the vertices of T .
Then we introduce the following finite element spaces:

Wh(αm) = [Vh(αm) +Bh(αm)]2

Qh(αm) =
{
qh ∈ C(Ωh(αm)) | qh|T ∈ P1(T ) ∀T ∈ Th,

∫
Ωh(αm)

qh dx = 0
}
,

which are the discretizations of the spaces W(Ω(αm)) and L2
0(Ω(αm)), respectively.

The finite element approximation of the state problem in the parametrized do-
main Ω(αm) then reads (for simplicity of notation, the superscript αm is omitted):





Find (uhε , p
h
ε ) ∈Wh(αm)×Qh(αm) such that

a(uhε ,v)− b(v, phε ) + 〈∇jε(uhεt), vt〉

+
1

ε
〈∇g(uhεν), vν〉 = (f ,v)0,Ω(αm) ∀v ∈Wh(αm)

b(uhε , q) = 0 ∀q ∈ Qh(αm).

(Mh
ε (αm))

Finally we present a way how to construct a finite element mesh Th in Ωh(αm)
in such a way that the coordinates of its nodes {N (i)}np

i=1 depend smoothly on

the design parameter vector a. Let T̂h be a (not necessarily structured) reference

triangulation of the square [0, 1]× [0, 1] with the nodes {N̂ (i)}np

i=1. Then we set

N
(i)
1 = N̂

(i)
1 , N

(i)
2 = N̂

(i)
2 + αm(N̂

(i)
1 )(1− N̂ (i)

2 ), i = 1, ..., np,

where N (i) = (N
(i)
1 , N

(i)
2 ) and similarly for N̂ (i). This simple transformation is

efficient and works well in case of moderate mesh deformations as shown in Figure 2.
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Figure 2. Left: reference triangulation T̂h. Right: Mapped trian-
gulation Th.

6.2. Nonlinear programming problem and sensitivity analysis. After per-
forming the finite element discretization of (Mh

ε (αm)), the algebraic form of the
state problem is given by the following system of nonlinear algebraic equations:

r([u,p]
T

) :=




A+Cε(u)+ 1
εG −B

BT 0






u

p


−




f

0


 = 0, (54)

where u ∈ Rnu ,p ∈ Rnp is the vector of the nodal values of the velocity u and the
pressure p, respectively, A ∈ Rnu×nu is a symmetric and positive definite matrix,
B ∈ Rnp×nu is the velocity-pressure coupling matrix, 1

εG ∈ Rnc×nu is a matrix
representation of the penalized impermeability condition, and Cε(u) ∈ Rnc×nu is a
matrix function representation of the smoothed slip term. Further np is the total
number of the nodes in Th, nc is the number of the nodes lying on the slip boundary
S(αm), and nu is the dimension of the solution component representing the velocity.
The system (54) can be solved iteratively by a standard way by using e.g. Newton’s
method.

Let

U =
{
a∈Rm+1 | αmin≤ai≤αmax, i=0, ...,m; |ai+1 − ai| ≤ C1

m , i=0, ...,m−1,

|ai+2 − 2ai+1 + ai| ≤ C2

m2 , i=0, ...,m−2
}
,

where C1, C2 are the same as in (42), be the set of admissible discrete design vari-
ables. From the properties of the Bernstein polynomials ([5]) it easily follows that
if a ∈ U then αm ∈ Uad, where αm is defined by (53).

As the residual vector r in (54) depends also on the design variable a, we write
the algebraic state problem (54) in the form

r(a,q(a)) = 0, q(a) = [u(a),p(a)]
T
.

Denote J : U → R, J(a) := I(a,q(a)), where I is a discretization of the cost
functional I. Then the discrete optimization problem to be realized reads as follows:

a∗ ∈ argmin
a∈U

{J(a) | r(a,q(a)) = 0} . (55)
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In order to be able to use gradient-based nonlinear programming algorithms for
solving (55) we need to evaluate the gradient of J with respect to the design variable
vector a. The cost function J is continuously differentiable provided that I is so

owing to the fact that Th is a smooth topologically equivalent deformation of T̂h
(see [12]). Then, it is well-known that the partial derivatives of J with respect to
the design variables are given by

dJ(a)

dai
=
∂I(a,q(a))

∂ai
+ ηT

[
∂r(a,q(a))

∂ai

]
, i = 0, ...,m, (56)

where η is the solution to the adjoint equation
[
∂r(a,q(a))

∂q

]T

η = ∇qI(a,q(a)). (57)

The partial derivatives in (56), (57) can be computed by hand or using automatic
differentiation of computer programs. For details we refer to [10] and [12].

Remark 1. The evaluation of the Jacobian matrix on the left hand side of (57)
requires in fact C2 continuity of ϕε and this is not the case when ϕε is defined by
(45). To get such smoothness, the piecewise quadratic approximation of the absolute
value function in (45)2 has to be replaced by a piecewise quartic approximation
resulting in

ϕε(q) =

{
ϕ(q) if |q| ≥ ε,
σ0

[
− 1

8ε3 |q|4 + 3
4ε |q|2 + 3

8ε
]

+ 1
2σ1|q|2 if |q| < ε.

The functional jε defined using this approximation clearly satisfies all the assump-
tions of Lemma 5.2.

7. Numerical examples. In this section we present numerical results of three
model examples in which for the sake of simplicity of computations we use the
bilinear form aΩ defined by the full velocity gradients, i.e. aΩ(u,v) = (∇u,∇v)0,Ω.
Let us mention that for this definition of aΩ, the assumptions (10) and (19) remain
valid. We consider the following cost functionals of the least squares type:

I1(Ω(α),uα, pα) = 1
2

∫ 1

0

(uαt ◦ α− u0
t )

2 dx1

and

I2(Ω(α),uα, pα) = 1
2

∫

Ω(α)

(pα − p0)2 dx,

where u0
t ∈ C([0, 1]), p0 ∈ L2(Ω̂) are given.

The state solver as well as the cost function evaluation were implemented using
MATLAB [19]. The partial derivatives in (56), (57) of the MATLAB code were
easy enough to be computed by hand. Minimization was carried out by fmincon

with ‘interior-point’ option from the MATLAB Optimization Toolbox. The pa-
rameters defining the stopping criterion were chosen as TolX=10−4, TolFun=10−4,
TolCon=10−5.

Example 1. (Tresca) Let σ0=1, σ1=0 in (45) and

f(x) = (10 sin(2π( 1
2 − x2)), 0).

Our aim is to minimize the objective functional I1 with

u0
t (x1) = 0.036 ·

[
max{sin(2πx1 − π

5 ), 0}
]2
.
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The parameters defining the set U are m=10, αmin=−0.05, αmax=0.25, C1=1, and
C2=10.

We solved the shape optimization problem using a reference mesh T̂h consisting of
4759 elements for three different penalty and smoothing parameters ε=10−3, 10−4,
10−5 to implement the non-penetration and slip terms. In all cases a0=0 ∈ Rm+1

was used as the initial guess.
The zoomed optimized shapes of the slip boundaries and convergence histories

of the objective function values are shown in Figure 3. Gradient based (descent)
optimization methods are guaranteed to find only local minima. In this case the
found local minima are close to the global ones, too. Moreover, the behaviour is
stable with respect to ε. There is almost no difference between the optimized shapes
for ε=10−4 and ε=10−5.
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Figure 3. Optimized shapes (left) and convergence histories
(right) for different values of the penalty/smoothing parameter ε.

The streamlines and pressure contours as well as the distributions of the tan-
gential velocity ut and the shear stress σt on S(αopt) corresponding to the state
solution in the optimized domain for ε = 10−5 are shown in Figures 4 and 5.

Figure 4. Streamlines (left) and pressure contours (right) for ε = 10−5.
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Figure 5. Tangential velocity and shear stress for ε = 10−5

Example 2. (Threshold Navier) In this example we assume the threshold Navier
boundary condition (44) with σ0 = 1, σ1 = 10, and ε = 10−5. The cost functional
I1, the external force f , and the reference mesh are the same as in Example 1.

The parameters defining the set U are m = 10, αmin=−0.05, αmax = 0.25, C1 = 1,
and C2 = 10. The value of the cost functional corresponding to the initial guess
a0 = 0 was 1.21× 10−4. After 28 optimization iterations (29 function evaluations)
it was reduced to 1.30 × 10−7. The streamlines and pressure contours as well as
the tangential velocity and shear stress distributions on S(αopt) in the optimized
domain are shown in Figures 6 and 7.

The computed optimal shapes corresponding to this example and the previous
one (for ε = 10−5) are compared in Figure 8.

Figure 6. Streamlines (left) and pressure contours (right).

Example 3. In this example we wish to solve a pressure reconstruction problem,
by minimizing the cost functional I2. As the pressure is uniquely determined up to
a constant, we set p(1, 1) = 0.

We consider the Tresca-type model with σ0=10, σ1=0, and ε=10−5. The param-
eters defining U are m=10, αmin=−0.05, αmax=0.25, C1=2, and C2=10. Further,
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Figure 7. Tangential velocity and shear stress.
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Figure 8. Optimized Bézier functions αm for two different values
of σ1.

let f = (f1, f2), where

f1(x1, x2) = 4π2(sin(2πx1) + sin(2πx2)− 2 cos(2πx1) sin(2πx2)),

f2(x1, x2) = −4π2(sin(2πx1) + sin(2πx2)− 2 cos(2πx2) sin(2πx1)),

p0 = 2π(cos(2πx2)− cos(2πx1))

is the external force and the target pressure.
The objective function value corresponding to the initial guess αi = 0.1, i =

0, ..., 10 was 1.26 × 100. After 31 optimization iterations (48 function evaluations)
it was reduced to 1.06× 10−2.

The contours of the target pressure p0 and the computed pressure in the opti-
mized geometry are shown in Figure 9. The shear stress and tangential velocity
distributions are shown in Figure 10.

8. Conclusions. In this paper we have considered shape optimization with the
state constraint given by the Stokes system with the threshold slip boundary con-
ditions on a part of the computational domain. In numerical realization, the part
of boundary to be optimized is parametrized using a Bézier function. The problem
is discretized using stable P1-bubble/P1 elements. The slip boundary condition
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Figure 9. Contours of the target pressure p0 (left) and computed
pressure (right).
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Figure 10. Tangential velocity and shear stress on S(αopt).

is realized approximately using a combination of the penalty method and smooth-
ing of the nondifferentiable slip term. The numerical examples demonstrate the
effectiveness of our approach.
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4.4 Sensitivity analysis for non-Newtonian flu-

ids

Shape optimization for non-Newtonian fluids is not so often considered in
theoretical and computational studies. Some works has been published on
optimal control [3, 4, 42, 51], however for boundary control there is still lack
of results.

In the papers [43, 44] we deal with the characterization of shape derivative
for a class of models with shear-rate-dependent viscosity. We consider the
minimization of the drag functional for the obstacle problem. The formal
derivation of the linearized problem as well as the formula for the shape
gradient of the cost function is justified by the material derivative approach.
Hence it is feasible to use the obtained formulas e.g. to approximate the
shape gradient in numerical simulations.

We present the reprint of the paper [44], where the results and main steps
in the proofs are shown for the stationary problem. For the complete proofs
and the unsteady problem we refer to [43].

Reprint

• J. Sokolowski, J. Stebel. Shape Sensitivity Analysis of Incompressible
Non-Newtonian Fluids. In System Modeling and Optimization, pages
427–436. IFIP Advances in Information and Communication Technol-
ogy, vol 391. Springer, 2013.
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Abstract. We study the shape differentiability of a cost function for
the steady flow of an incompressible viscous fluid of power-law type. The
fluid is confined to a bounded planar domain surrounding an obstacle.
For smooth perturbations of the shape of the obstacle we express the
shape gradient of the cost function which can be subsequently used to
improve the initial design.

Keywords: shape optimization, shape gradient, incompressible fluid,
non-Newtonian fluid, Navier-Stokes equations.

1 Introduction

Shape optimization for nonlinear partial differential equations is a growing field
in the contemporary optimum design of structures. In this field systems of the
solid and fluid mechanics as well as e.g., the coupled models of fluid-structure
interaction are included for real life problems. The main difficulty associated with
the mathematical analysis of nonlinear state equations is the lack of existence
of global strong solutions for mathematical models in three spatial dimensions.

In numerical methods of shape optimization the common approach is the
discretization of continuous shape gradient. Therefore, the proper derivation
and analysis of the regularity properties of the shape gradient is crucial for
numerical solution of the shape optimization problem. The shape sensitivity
analysis requires, in particular, the proof of the Lipschitz continuity of solutions
the the state equations with respect to the boundary variations. This property of
solutions can be obtained e.g. by analysis of the state equation transported to the
fixed reference domain which is explained in the case of linear elliptic boundary
value problems in monograph [11]. For the nonlinear problems the Lipschitz
continuity is not obvious and it requires the additional regularity of solutions
to the state equation. In addition, for the applications of levelset method of
shape optimization it is required that the obtained shape gradient of the cost
functional is given by a function while the general theory gives only the existence

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 427–436, 2013.
c© IFIP International Federation for Information Processing 2013
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of a distribution. In conlusion, it seems that the shape sensitivity analysis in the
case of a nonlinear state equation is the main step towards the numerical solution
of the shape optimization problems.

In gas dynamics described by the compressible Navier-Stokes there is the ex-
istence of weak global solutions. However, the shape sensitivity analysis can be
performed only for specific local solutions. The state of art in shape optimization
for compressible Navier-Stokes equations is presented in the forthcoming mono-
graph [8], see also [7]. For incompressible Navier-Stokes equations, the sensitivity
analysis of shape functionals is performed e.g. in [2] and [6]. In this paper we
are concerned with the non-Newtonian model where the stress is a (nonlinear)
function of the velocity gradient. Optimal control problem for this model was
studied in [9, 13]. Numerical shape optimization was done in [1], see also [3]. We
present new results on the existence of the shape gradient.

We consider the steady flow of an incompressible fluid in a bounded domain
Ω := B \ S in R2, where B is a container and S is an obstacle. Motion of the
fluid is described by the system of equations

div (v ⊗ v) − div S(Dv) + ∇p + Cv = f in Ω,

div v = 0 in Ω, (P (Ω))

v = g on ∂Ω.

Here v, p, C, f stands for the velocity, the pressure, the constant skew-symmetric
Coriolis tensor and the body force, respectively. The traceless part S of the
Cauchy stress can depend on the symmetric part Dv of the velocity gradient in
the following way:

S(Dv) = ν(|Dv|2)Dv, (1)

where ν, |Dv|2 is the viscosity and the shear rate, respectively. In particular, we
assume that ν has a polynomial growth (see Section 2.1 below), which includes
e.g. the Carreau and the power-law model.

In the model the term of Coriolis type is present. This term appears e.g.
when the change of variables is performed in order to take into account the
flight scenario of the obstacle in the fluid.

The aim of this paper is to investigate differentiability of a shape functional
depending on the solution to (P (Ω)) with respect to the variations of the shape
of the obstacle. We consider a model problem with the drag functional

J(Ω) :=

∫

∂S

(S(Dv) − pI)n · d, (2)

with a given constant unit vector d. Instead of J one could take other type of
functional, since our method does not rely on its specific form.

Our main interest is the rigorous analysis of the shape differentiability for
(P (Ω)) and (2). We follow the general framework developed in [11] using the
speed method and the notion of the material derivative. Let us point out that due
to (1) the state problem is nonlinear in its nature. We refer the reader to [12]
for an introduction to optimization problems for nonlinear partial differential
equations.
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1.1 Shape Derivatives

We start by the description of the framework for the shape sensitivity analysis.
For this reason, we introduce a vector field T ∈ C2(R2,R2) vanishing in the
vicinity of ∂B and define the mapping

y(x) = x + εT(x).

For small ε > 0 the mapping x �→ y(x) takes diffeomorphically the region Ω
onto Ωε = B \ Sε where Sε = y(S). We consider the counterpart of problem
(P (Ω)) in Ωε, with the data f|Ωε

and g|Ωε
. The new problem will be denoted by

(P (Ωε)) and its solution by (v̄ε, p̄ε).
For the nonlinear system (P (Ω)) we introduce the shape derivatives of solu-

tions. To this end we need the linearized system of the form:
Find the couple (u, π) such that

div [u ⊗ v + v ⊗ u − S′(Dv)Du] + ∇π + Cu = F in Ω,

div u = 0 in Ω, (Plin(Ω))

u = h on ∂Ω,

where F and h are given elements.
The shape derivative v′ and the material derivative v̇ of solutions are formally

introduced by

v′ := lim
ε→0

v̄ε − v

ε
, v̇ := lim

ε→0

v̄ε ◦ y − v

ε
,

where v̄ε ◦ y(x) := v̄ε(y(x)), and are related to each other as follows:

v̇ = v′ + (∇v)T.

The standard calculus for differentiating with respect to shape yields that v′ is
the solution of (Plin(Ω)) with the data F = 0 and h = −∂v/∂n(T · n). Using
(7) as the definition of J we obtain the expression for the shape gradient:

dJ(Ω; T) := lim
ε→0

J(Ωε) − J(Ω)

ε

=

∫

Ω

[(Cv′) · ξ + (S′(Dv)Dv′ − v′ ⊗ v − v ⊗ v′) : ∇ξ] −
∫

∂S

(f · d)T · n. (3)

In the above formula, the part containing v′ depends implicitly on the direc-
tion T. This is not convenient for practical use, hence we introduce the adjoint
problem for further simplification of (3):

Find the couple (w, s) such that

−2(Dw)v − div
[
S′(Dv)�Dw

]
+ ∇s − Cw = 0 in Ω,

div w = 0 in Ω,

w = d on ∂Ω. (Padj(Ω))
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Consequently, the expression for dJ reduces to

dJ(Ω; T) = −
∫

∂S

[(
S′(Dv)�Dw − sI

)
:
∂v

∂n
⊗ n + f · d

]
T · n. (4)

In order to prove the result given by (3) and (4) we need the material derivatives.
In particular, it is sufficient to show that the linear mapping

T �→ dJ(Ω; T)

is continuous in an appropriate topology, see the structure Theorem in the book
[11] for details.

2 Preliminaries

We impose the structural assumptions on the data, state the known results
on well-posedness of (P (Ω)) and introduce the elementary notation for shape
sensitivity analysis.

2.1 Structural Assumptions

We require that S has a potential Φ : [0,∞) → [0,∞), i.e. Sij(D) =
∂Φ(|D|2)/∂Dij. Further we assume that Φ is a C3 function with Φ(0) = 0 and
that there exist constants C1, C2, C3 > 0 and r ≥ 2 such that

C1(1 + |A|r−2)|B|2 ≤ S′(A) :: (B ⊗ B) ≤ C2(1 + |A|r−2)|B|2, (5a)

|S′′(A)| ≤ C3(1 + |A|r−3) (5b)

for any 0 �= A,B ∈ R2×2
sym. Here the symbol :: stands for the usual scalar product

in R24 . The above inequalities imply the monotone structure of S, see e.g. [5].

2.2 Weak Formulation

For the definition of the weak solution we will use the space

W1,r
0,div (Ω) := {φ ∈ W1,r

0 (Ω); divφ = 0}.

Let f ∈ (W1,2
0,div (Ω))∗ and g ∈ W1,r(Ω) with div g = 0. Then a function v ∈

g + W1,r
0,div (Ω) is said to be a weak solution to the problem (P (Ω)) if

∫

Ω

[
S(Dv) : Dφ − v ⊗ v : ∇φ + Cv · φ

]
=

∫

Ω

f · φ (6)

for every φ ∈ W1,r
0,div (Ω). Note that the pressure is eliminated since test functions

are divergence free.
The following result was shown in [4].
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Theorem 1 (Kaplický et al. [4]). Let Ω ∈ C2, f ∈ L2+ε0(Ω), ε0 > 0 and
(5a)–(5b) hold with r > 3

2 . Then there exists a constant δ > 0 such that for
every g satisfying

‖g‖3,q ≤ δ, (q > 2),

problem (P (Ω)) has a weak solution satisfying v ∈ W2,2+ε(Ω), p ∈ W 1,2+ε(Ω),
ε > 0.

Note that the above result applies only to the unperturbed domain, i.e. ε = 0.
Assuming smallness of ‖f‖2,B and ‖g‖3,q,B, one can prove that (P (Ω)), (P (Ωε)
has a unique weak solution satisfying

‖v‖ ≤ CE(‖f‖2,B, ‖g‖3,q,B) and ‖v̄ε‖ ≤ CE(‖f‖2,B, ‖g‖3,q,B),

respectively, where CE is independent of ε. At this point we summarize the main
hypotheses.

Assumption 1. In what follows, Ω ∈ C2 is a bounded planar domain of the
form Ω = B \ S, f ∈ L2+ε0(B), ε0 > 0, g ∈ W3,q(B) (q > 2) is supported in
the vicinity of ∂B, (5a)–(5b) hold with r ∈ [2, 4) and ‖f‖2,B, ‖g‖3,q,B are small
enough.

Let us point out that equation (2) which defines J is not suitable for weak solu-
tions in general, since the energy inequality does not provide enough information
about the trace of p and Dv. We therefore introduce an alternative definition
that requires less regularity. Let us fix an arbitrary divergence free function
ξ ∈ C∞

c (B,R2) such that ξ = d in a vicinity of S. Then, integrating (2) by parts
and using (P (Ω)) yields:

J(Ω) =

∫

Ω

[(Cv − f) · ξ + (S(Dv) − v ⊗ v) : ∇ξ] . (7)

Note that this identity is finite for any v ∈ W1,2(Ω).

2.3 Deformation of the Shape

Let us introduce the following notation: We will denote by D T the Jacobian
matrix whose components are (DT)ij = (∇T)ji = ∂iTj. Further,

N(x) := g(x)M−1(x), M(x) := I + εDT(x), g(x) := detM(x).

One can easily check that the matrix N and the determinant g admit the expan-
sions:

g = 1 + εdiv T + O(ε2), N = I + εN′ + O(ε2), N′ = (div T)I − DT, (8)

where the symbol O(ε2) denotes a function whose norm in C1(Ω) is bounded by
Cε2, see [11].
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The value of the shape functional for Ωε is given by

J(Ωε) :=

∫

Ωε

[(Cv̄ε − f) · ξε + (S(Dv̄ε) − v̄ε ⊗ v̄ε) : ∇ξε] ,

where ξε := (N−�ξ) ◦ y−1. Using the properties of the Piola transform one can
check that div ξε = 0. If v̄ε and p̄ε were sufficiently smooth, it would hold that

J(Ωε) =

∫

∂Sε

(S(Dv̄ε) − p̄εI)nε · d. (9)

Nevertheless, as opposed to (P (Ω)), we do not require any additional regularity
of the solution to the perturbed problem (P (Ωε)) and hence the expression in
(9) need not be well defined.

We introduce the auxiliary function ṽ:

ṽ := lim
ε→0

N�v̄ε ◦ y − v

ε
,

which is related to the material derivative v̇ by the identity

ṽ = N′�v + v̇.

For the justification of the results of the paper we will use ṽ since, unlike the
material derivative, it preserves the divergence free condition.

3 Main Results

The first result is the existence of ṽ and hence also of the material derivative.

Theorem 2. Let Assumption 1 be satisfied. Then the function ṽ exists and is
the unique weak solution of (Plin(Ω)) with the data

F = A′
0 := div (v ⊗ N′�v) + N′div (v ⊗ v)

+ div
[
S′(Dv)

(
((N′ − I trN′)∇v)sym − D(N′�v)

)
+ N′�S(Dv)

]

− N′div S(Dv) +
(
(N′ − I trN′)C + CN′�)v + (I trN′ − N′)f + (∇f)T, (10a)

h = 0. (10b)

The following estimate holds:

‖ṽ‖1,2,Ω ≤ C‖A′
0‖W1,2

0,div (Ω)∗ ≤ C‖T‖C2(Ω). (11)

Next we establish the existence of the shape gradient of J .
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Theorem 3. Let Assumption 1 be satisfied and f ∈ W1,2(Ω). Then the shape
gradient of J reads

dJ(Ω,T) = Jv(ṽ) + Je(T),

where the dynamical part Jv and the geometrical part Je is given by

Jv(ṽ) =

∫

Ω

[(Cṽ) · ξ + (S′(Dv)Dṽ − ṽ ⊗ v − v ⊗ ṽ) : ∇ξ] ,

Je(T) =

∫

Ω

{[
(I trN′ − N′)Cv − CN′�v − (I trN′ − N′) f − (∇f)T

]
· ξ

+
[
v ⊗ N′�v + S′(Dv)

(
(N′∇v − ∇(N′�v))sym − (trN′)Dv

)
+ N′�S(Dv)

]
: ∇ξ

+
[
v ⊗ v − S(Dv)

]
: ∇(N′�ξ)

}
,

respectively. In particular, as ṽ depends continuously on T, the mapping

T �→ dJ(Ω,T)

is a bounded linear functional on C2(R2,R2).

Based on the previous result we can deduce that the shape gradient has the
form of a distribution supported on the boundary of the obstacle. Since this
representation is unique, the formal results derived in Section 1.1 are justified
provided that the shape derivatives and adjoints exist and are sufficiently regular.

Corollary 1. Let Assumption 1 be satisfied. Then

(i) the shape derivative v′ exists and is the unique weak solution to (Plin(Ω))

with F = 0, h = −∂v

∂n
(T · n);

(ii) the adjoint problem (Padj(Ω)) has a unique weak solution that satisfies:
w ∈ W2,2(Ω) and s ∈ W 1,2(Ω).

If in addition f ∈ W1,2(Ω), then

(iii) the shape gradient of J satisfies (3);

(iv) the representation (4) is satisfied in the following sense:

dJ(Ω; T) = −
∫

∂S

[(
S′(Dv)�Dw − sI

)
:
∂v

∂n
⊗ n + f · d

]
T · n. (12)

In the remaining part we show the main steps of the proof of Theorem 3. Details
can be found in [10], where the time-dependent problem is treated.
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4 Formulation in the Fixed Domain

In this section we transform the problem (P (Ωε)) to the fixed domain Ω. Let us
introduce the following notation:

vε(x) := N�(x)v̄ε(y(x)), x ∈ Ω.

Note that the definition of vε implies that div vε = 0. The new function vε ∈
g + W1,r

0,div (Ω) satisfies the equality

∫

Ω

[
gS(Dεvε) : Dεφ − vε ⊗ vε : ∇φ + Cvε · φ

]

=

∫

Ω

f · φ + 〈A1
ε,φ〉W1,2

0,div (Ω) for all φ ∈ W1,r
0,div (Ω), (13)

where the term A1
ε on the right hand side is defined for φ ∈ W1,2

0,div (Ω) by

〈A1
ε,φ〉W1,2

0,div (Ω) =

∫

Ω

[
vε ⊗ N−�vε : ∇(N−�φ) − vε ⊗ vε : ∇φ

+ (C − gN−1CN−�)vε · φ + (gN−1f ◦ y − f) · φ
]
. (14)

Here Dεvε := g−1(N∇(N−�vε))sym.
Applying change of coordinates we further get:

J(Ωε) =

∫

Ω

[
g
(
N−1CN−�vε − N−1f ◦ y

)
· ξ

+
(
N�S(Dεvε) − vε ⊗ (N−�vε)

)
: ∇(N−�ξ)

]
. (15)

Now after all quantities and equations have been transformed to the fixed domain
Ω, we can analyze the limit ε → 0.

Lemma 1. The sequence {vε}ε>0 is bounded in W1,r
0,div (Ω) and satisfies:

vε ⇀ v weakly in W1,r
0,div (Ω),

N�S(Dεvε) ⇀ S(Dv) weakly in Lr′
(Ω,R2×2),

A1
ε ⇀ 0 weakly in W1,r

0,div (Ω)∗.

In particular, v is the unique weak solution to (P (Ω)).

5 Existence of Material Derivative

Our next task is to identify ṽ as the limit of the sequence {uε}, where

uε :=
vε − v

ε
.
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First we write down the system for the differences uε. Subtracting (13) and (6)
we find that uε ∈ W1,r

0,div (Ω) satisfies the equality

∫

Ω

[1

ε
g(S(Dεvε) − S(Dεv)) : Dεφ + Cuε · φ − (vε ⊗ uε + uε ⊗ v) : ∇φ

]

=
1

ε
〈Aε,φ〉W1,2

0,div (Ω) (16)

for all φ ∈ W1,r
0,div (Ω). The term Aε ∈ W1,2

0,div (Ω)∗ on the right hand side is
defined as follows:

Aε := A1
ε + A2

ε,

A1
ε is given by (14),

〈A2
ε,φ〉W1,2

0,div (Ω) :=

∫

Ω

[
N�S(Dεv) : ∇(N−�φ) − S(Dv) : Dφ

]
.

Next we state the properties of the sequence {uε}ε>0.

Lemma 2. The sequence {uε}ε>0 is bounded in W1,2
0,div (Ω). Further it holds:

Aε

ε
⇀ A′

0 weakly in W1,2
0,div (Ω)∗,

uε ⇀ ṽ weakly in W1,2
0,div (Ω),

1

ε
(g(S(Dεvε) − S(Dεv)),Dεφ) → (S′(Dv)Dṽ,Dφ) for all φ ∈ W1, 2r

4−r (Ω),

where A′
0 is defined in (10a) and ṽ is the solution of (Plin(Ω)) with F := A′

0

and h = 0.

This completes the proof of Theorem 2.

6 Shape Gradient of J

To prove Theorem 3, we decompose the fraction

J(Ωε) − J(Ω)

ε
= Jε

1 + Jε
2

in a suitable way. Using Lemma 1 and Lemma 2 and the properties of g and N′,
it is then possible to show that

Jε
1 → Jv(ṽ) and Jε

2 → Je(T).

The continuity of the map T �→ dJ(Ω; T) follows from the estimate (11).
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Chapter 5

Conclusion

The field of non-Newtonian fluids is very broad and far from being com-
pletely understood both from theoretical and practical point of view. In
this thesis we tried to demonstrate some achievements in the mathematical
and numerical analysis of non-Newtonian fluids, in particular the existence,
uniqueness, convergence and error estimates for the solutions of piezoviscous
fluid models under a physically motivated boundary conditions. Further de-
velopments in this field are required in order to justify or improve existing
numerical approaches.

Shape optimization in fluid mechanics is also an important discipline with
practical impact in engineering. The complex structure of these problems is
possibly the reason for lack of stronger general results such as uniqueness or
convergence of approximate optimal solutions. The specific properties of the
geometric description and specific features of the state problem often mean
that each optimization problem has to be studied on its own, requiring to
adopt appropriate knowledge and tools. The works on shape optimization
presented in this thesis can give guidelines to studies of related problems.
We believe that they can contribute to a wider spread of shape optimization
to more particular applications.

Ivo Babuška, a worldwide-known mathematician recognized for his work
in numerical mathematics, is known for his famous question “Will you sign
the blueprint?” [41] It is directed at the issue of robustness and reliability
of numerical simulations, which is extremely important in fluid mechanics
and shape optimization since the simulation results are usually extremely
sensitive to input parameters as well as various sources of error. We hope
that the need for reliable computational results will also lead to a growing
interest in rigorous theoretical studies in this field.
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[18] J. Frehse, J. Málek, and M. Steinhauer. On analysis of steady flows
of fluids with shear-dependent viscosity based on the lipschitz trunca-
tion method. SIAM journal on mathematical analysis, 34(5):1064–1083,
2003.

[19] G. P. Galdi. An introduction to the mathematical theory of the Navier-
Stokes equations: Steady-state problems. Springer Science & Business
Media, 2011.

[20] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes
equations: theory and algorithms, volume 5. Springer Science & Business
Media, 2012.

[21] S. Goldstein. Modern Developments in Fluid Dynamics, volume II. Ox-
ford University Press, 1938.



BIBLIOGRAPHY 201

[22] A. Griewank and A. Walther. Evaluating derivatives: principles and
techniques of algorithmic differentiation, volume 105. Siam, 2008.
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