TECHNICKÁ UNIVERZITA V LIBERCI

FAKULTA STROJNÍ KATEDRA OBRÁBĚNÍ A MOTNÁŽE

HODNOCENÍ PARAMETRŮ INTEGRITY POVRCHU A VYUŽITÍ POZNATKŮ PRO ZEFEKTIVNĚNÍ OBRÁBĚNÍ OZUBENÝCH KOL

EVALUTATION OF THE SURFACE INTEGRITY PARAMETERS AND APPLICATION OF KNOWLEDGE TO EFFECTIVE GEARS MACHINING

á
á

Studijní program: P2303 Strojírenská technologie

Obor: 2303V002 Strojírenská technologie

Zaměření: Obrábění a montáž

Školitel: doc. Ing. Jan Jersák, CSc.

Vedoucí katedry: doc. Ing. Jan Jersák, CSc.

Rozsah práce: 116 stran 96 obrázků 38 tabulek 2 tištěné přílohy

Datum: 29. 8. 2014

Prohlášení

Byla jsem seznámena s tím, že na mou disertační práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé disertační práce pro vnitřní potřebu TUL.

Užiji-li disertační práci, nebo neposkytnu-li licenci k jejímu využití, jsem si vědoma informovat o této skutečnosti TUL; v tomto případě má TUL právo požadovat ode mne úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Disertační práci jsem vypracovala samostatně s použitím uvedené literatury a na základě konzultací se školitelem.

29. srpna 2014

Podpis:....

Lucie Schmidová

Poděkování

Děkuji tímto svému školiteli doc. Ing. Janu Jersákovi, CSc. za podporu při vypracování této disertační práce. Dále děkuji doc. Ing. Jaromírovi Gazdovi, CSc. za cenné připomínky a rady. Děkuji také panu Zdeňkovi Poláchovi a Bohumilu Mačákovi z České Zbrojovky za pomoc a spolupráci při realizaci experimentální části disertační práce a poskytnutí technologického zázemí, firmě PCS s.r.o. za vypůjčení zubového snímače, paní Suvi Santa-aho z TU v Tampere za pomoc při hodnocení zbytkových napětí.

Anotace

- **Téma:** Hodnocení parametrů integrity povrchu a využití poznatků pro zefektivnění obrábění ozubených kol
- Abstrakt: Disertační práce se zabývá nedestruktivním hodnocením vlivu technologických podmínek při kontinuálním odvalovacím broušení ozubených kol na parametry integrity povrchu metodou analýzy Barkhausenova šumu (magnetoelastický parametr) a metodou rentgenové difrakce (zbytková napětí). Obě metody byly porovnány z hlediska hloubkových profilů hodnocených veličin. Výsledky analýz jsou využity pro zefektivnění obrábění ozubených kol a metodika uvedená v rámci této práce je využitelná pro řešení podobných problémů v průmyslových podmínkách.
- Klíčová slova: Metoda analýzy Barkhausenova šumu, integrita povrchu, technologické podmínky, broušení ozubených kol

Annotation

- **Topic:**Evaluation of the surface integrity parameters and application of
knowledge to effective gears machining
- Abstract: The PhD thesis deals with the non-destructive evaluation of the technological conditions influence during the continuous generating gears grinding process on the parameters of surface integrity by Barkhausen noise analysis (eg. Magnetoelastic parameter) and by X-ray diffraction method (eg. Residual stresses). Both methods were compared in terms of depth profiles of surface integrity parameters. The analysis results are used for more effective gears machining. The methodology presented in this work is useful for solving the similar problems in industrial environment.
- **Key words:** Barkhausen noise analysis, surface integrity, technological conditions, gears grinding

OBSAH

SEZ	SEZNAM ZKRATEK A SYMBOLŮ7				
1.	ÚVOD 10				
2.	CÍLE DISERTAČNÍ PRÁCE 11			11	
3.	INTEGRITA POVRCHU			12	
3	.1.	Cha	rakteristika pojmu integrita povrchu	12	
3	.2.	Zby	tková napětí	13	
	3.2.	1.	Mechanizmus vzniku zbytkových napětí	13	
	3.2.	2.	Smysl a velikost zbytkových napětí	14	
3	.3.	Met	tody hodnocení zbytkových napětí	15	
	3.3.	1.	Metoda analýzy Barkhausenova šumu	18	
	3.3.	2.	Rentgenová difrakční analýza	24	
	3.3.	3.	Odvrtávací metoda	29	
4.	VÝF	ОВА	ČELNÍCH OZUBENÝCH KOL	32	
4	.1.	Fréz	zování dělicím způsobem	33	
4	.2.	Fréz	zování odvalovacím způsobem	34	
4	.3.	Obr	ážení hřebenovým nožem	35	
4	.4.	Obr	ážení kotoučovým nožem	35	
4	.5.	Bro	ušení ozubených kol	36	
	4.5.	1.	Profilové broušení	36	
	4.5.	2.	Odvalovací broušení	37	
5.	Me	chan	izmus vzniku zbytkových napětí při broušení ozubených kol	40	
6.	ME	TODI	KA EXPERIMENTŮ	43	
6	.1.	Zko	umané vzorky	44	
6	.2.	Tec	hnologie broušení ozubených kol	49	
6	.3.	Měì	ření metodou analýzy Barkhausenova šumu	52	
6	.4.	Prin	icip výběru vzorků pro další analýzy	54	
6	.5.	Měì	ření zbytkových napětí	54	
6	.6.	Měì	ření hloubkových profilů hodnocených veličin	56	
7.	7. EXPERIMENTÁLNÍ VÝZKUM				
7	7.1. Hodnocení ozubených kol metodou analýzy Barkhausenova šumu 58				
	7.1.1. Stanovaní optimálních hodnot nastavení přístroje				

	7.1.	2. Hodno	cení vlivu technologických podmínek	62
	7.1.	3. Hodno	cení hloubkových profilů magnetoelastického parametr	u78
	7.2.	Hodnocení	zbytkových napětí	
	7.2.	L. Hodno	cení vlivu technologických podmínek	84
	7.2.	2. Hodno	cení hloubkových profilů zbytkových napětí	94
	7.3.	Verifikace s	chopnosti detekce podpovrchových trhlin	101
	7.4.	Porovnání	výsledků analýzy Barkhausenova šumu a rentgenové dif	rakce 104
	7.5.	Diskuze výs	ledků experimentálního výzkumu	106
8.	ZÁV	ĚR		111
	8.1.	Přínosy pře	dložené práce pro vědu	111
	8.2.	Přínosy pro	průmyslovou praxi	112
	8.3.	Návrhy dal	ího výzkumu	112
SE	ZNAM	POUŽITÉ LI	TERATURY	113
SE	ZNAM	PŘÍLOH		116

SEZNAM ZKRATEK A SYMBOLŮ

<i>a_e</i> [μm]	- efektivní hloubka jednoho záběru
B [T]	- magnetická indukce
ВК	- brousicí koutouč
<i>B_r</i> [T]	- remanentní (zbytková) indukce
c [-]	- hlavová vůle
CHD	 tloušťka cementované vrstvy
d _{hkl}	 vzdálenost sousedních rovin typu (hkl)
<i>d</i> [mm]	- průměr roztečné kružnice
d	- mezirovinná vzdálenost
d_0	 mezirovinná vzdálenost odpovídající nenapjatému stavu
<i>d_a</i> [mm]	- průměr hlavové kružnice
<i>d_f</i> [mm]	- průměr patní kružnice
<i>E</i> [MPa]	- Youngův modul
<i>H</i> [A/m]	- intenzita magnetického pole
<i>h</i> [mm]	- výška zubu
<i>h_a</i> [mm]	- výška hlavy zubu
<i>H_c</i> [A/m]	 koercitivní intenzita magnetického pole
<i>h_f</i> [mm]	- výška paty zubu
k _w	- kontaktní úsečka záběru základního hřebene s obrobkem
LB	- levý bok zubu
<i>m</i> [-]	- modul
meanval	- průměrná hodnota
<i>m</i> _n [-]	- normální modul
MP	 magnetoelastický parametr
MP _{max}	 maximální hodnota magnetoelastického parametru
n	- řád reflexe
n	- počet měřených bodů

<i>n</i> ₀ [min ⁻¹]	- otáčky obrobku		
<i>n</i> _n [min ⁻¹]	- otáčky nástroje		
<i>n</i> ₅ [min ⁻¹]	- otáčky brousicího šneku		
<i>n</i> _w [min ⁻¹]	- otáčky obrobku (ozubeného kola) při kontinuálním odvalovacím broušení		
ОК	- ozubené kolo		
$O_{\rm S}$ (X _S , Y _S , Z _S)	 souřadný systém obrobku 		
$O_W(X_W, Y_W, Z_W)$	- souřadný systém obrobku		
РВ	- pravý bok zubu		
P _{H-W}	- valivý bod záběru základního hřebene s obrobkem		
P _{S-H}	- bod záběru brousicího šneku se základním hřebenem,		
RTG	 rentgenová difrakční analýza 		
S	- brousicí šnek		
sDev	- standardní odchylka		
TZ	- tepelné zpracování		
$v_c [\mathrm{m.s}^{-1}]$	- řezná rychlost		
<i>v_f</i> [m.s ⁻¹]	- řezná rychlost frézy		
<i>v_{Hy}</i> [m.s ⁻¹]	 tangenciální rychlost základního hřebene 		
<i>v_{sz}</i> [m.s ⁻¹]	- složka rychlosti brousicího šneku vůči základnímu hřebeni ve směru ZS		
W	- obrobek		
x	- jednotkové posunutí		
z [-]	- počet zubů		
ZN	- zbytková napětí		
Ø	- průměr		
α [°]	- úhel záběru		
β[°]	- úhel sklonu zubů		
ε	- mřížková deformace		
θ [°]	- Braggův úhel		

θ ₁ [°C]	- teplota v bodě 1
λ [nm]	- vlnová délka použitého záření
μ [Hm ⁻¹]	- permeabilita
μ_0 [Hm ⁻¹]	- permeabilita vakua
μ_r [Hm ⁻¹]	- relativní permeabilita použitého materiálu (cívky)
v [-]	 Poissonovo číslo zkoumaného materiálu
$ ho_W$	- tvořicí rovina
σ [MPa]	- zbytková napětí
σ' [MPa]	 makroskopická zbytková napětí
σ'' [MPa]	- mikroskopická zbytková napětí
$\sigma^{\prime\prime\prime}$ [MPa]	 submikroskopická zbytková napětí
σ_{ij}	 složky tenzoru napětí působícího na objemový element vzorku
σ_x [MPa]	- zbytková napětí ve směru osy x
σ_y [MPa]	- zbytková napětí ve směru osy y
τ _{H-W}	- valivá rovina základního hřebene a obrobku
τ _{s-H}	- valivá rovina brousicího šneku a základního hřebene
arphi	- je směr napětí σ vzhledem k ose x ₁₁
φ _{51, 2, 3} [°]	- úhlové polohy brousicího šneku v různých okamžicích záběru
ψ[°]	- úhel mezi osou x_{33} (normálou k povrchu) a směrem deformace $\epsilon_{\varphi\psi}$
ψ[-]	- součinitel poměrné šířky ozubení

1. ÚVOD

V dnešní době jsou kladeny vysoké požadavky nejen na zvyšování produktivity a efektivnosti strojírenské výroby, ale také na zvyšování přesnosti a životnosti součástí. Se zvyšováním produktivity souvisí vyšší nároky na obráběcí stroje a nástroje. Zvyšují se jak řezné rychlosti, tak velikosti posuvů a dále rostou požadavky na kvalitu obrobeného povrchu. Kvalitu obrobeného povrchu lze sledovat z hlediska přesnosti rozměru a tvaru součásti, drsnosti a mikrostruktury povrchu součásti a z hlediska vlastností povrchové vrstvy [4]. První dvě hlediska jsou ovlivňována zejména přesností stroje, řeznou rychlostí, hloubkou záběru, velikostí posuvu, tvarem a opotřebením nástroje aj. Mezi nejčastěji hodnocené vlastnosti povrchové vrstvy patří stav struktury, stupeň zpevnění a především zbytková napětí. U zbytkových napětí hodnotíme jejich velikost a zejména smysl, který má velký vliv na případný rozsah vad – mikrotrhlin. Takovýto soubor charakteristik povrchové vrstvy je velmi často označován jako *integrita povrchu.* Mezi další funkční vlastnosti povrchu patří například odolnosti proti korozi, odolnost proti opotřebení, třecí vlastnosti apod. Na hodnocení integrity povrchu v průmyslové praxi je kladen stále větší důraz.

Pro hodnocení integrity povrchu lze použít celou řadu metod a to jak destruktivních, tak nedestruktivních. Každá metoda je charakterizována svou přesností, citlivostí, časem pro hodnocení dané veličiny a samozřejmě i cenou zařízení. S rostoucími požadavky na produktivitu výroby roste využití magnetických nedestruktivních metod, ke kterým mimo jiné patří i metoda analýzy Barkhausenova šumu.

Ozubená kola jsou určena pro přenos krouticího momentu mezi otočnými součástkami stroje, případně mezi osami. Ozubená kola tedy patří mezi velmi důležité součásti používané např. v převodovkách. Při výrobě ozubených kol je kladen důraz především na účinnost a únosnost soukolí. Dalším požadavkem je klidný, plynulý a tichý chod ozubeného převodu [38]. Z hlediska výroby je důraz kladen na produktivitu výroby, kontrolu a montáž. Proces obrábění ozubených kol je tedy velmi důležitý a je potřeba mu věnovat pozornost jak při hodnocení, tak při dalším výzkumu.

Tato disertační práce se zabývá hodnocením parametrů integrity povrchu a využití poznatků pro optimalizaci obrábění ozubených kol používaných ve větrných elektrárnách. V tomto případě jsou tedy velmi vysoké požadavky na kvalitu, životnost a spolehlivost součástí, neboť větrná elektrárna musí fungovat téměř nepřetržitě po řadu let. Hlavním směrem práce je zefektivnění operace kontinuálního odvalovacího broušení za použití vybraných parametrů integrity povrchu s využitím metody analýzy Barkhausenova šumu.

2. CÍLE DISERTAČNÍ PRÁCE

Cíle řešení disertační práce byly upřesňovány průběžně během doktorského studia na základě vlastního studia literárních pramenů a dále na základě poznatků získávaných při spolupráci s jinými výzkumnými pracovišti a průmyslovými podniky.

Základním cílem je verifikace možnosti aplikace metody analýzy Barkhausenova šumu pro hodnocení integrity povrchu broušených ozubených kol.

Dílčí cíle tedy zahrnují:

- Zhodnocení vlivu podmínek broušení oceli pro dynamicky namáhané součásti 18CrNiMo7-6 na integritu povrchu pomocí metody analýzy Barkhausenova šumu.
- Analýzu zbytkových napětí po broušení oceli 18 CrNiMo7-6 metodou rentgenové difrakce.
- > Konfrontaci metod analýzy Barkhausenova šumu a rentgenové difrakce.
- > Analýzu hloubkových profilů hodnocených veličin.
- > Posouzení možnosti zefektivnění procesu obrábění ozubených kol.
- > Verifikace detekce podpovrchových trhlin.

3. INTEGRITA POVRCHU

Pojem integrity povrchu a její obsah byl definován již začátkem 70. let minulého století, kdy byla prokázána nutnost spojení podmínek technologických operací s požadavky jakosti, spolehlivosti a životnosti součástí.

3.1. Charakteristika pojmu integrita povrchu

Integrita povrchu je souborem všech vlastností a charakteristik povrchu strojní součásti vzniklého výrobním procesem, hodnotící vlastnosti povrchové plochy a povrchové vrstvy ve vztahu k vlastnostem základního materiálu [1, 4, 15].

Za nejdůležitější a nejčastěji monitorované faktory, které charakterizují integritu povrchu po obrábění, jsou považovány [31]:

- > mikrogeometrie obrobeného povrchu,
- stupeň a hloubka zpevnění povrchové vrstvy,
- strukturní, fázové a chemické změny v povrchové vrstvě,
- > smysl, velikost a gradient zbytkových napětí.

V průmyslové praxi jsou pak hodnoceny především tyto složky[34]:

- drsnost povrchu,
- geometrická přesnost,
- > změny tvrdosti v povrchové vrstvě,
- > změny struktury v povrchové vrstvě,
- tepelné změny opaly,
- trhlinky,
- zbytková napětí.

Existuje tedy velké množství vlivů, které působí na stav integrity povrchu [22]. Tyto vlivy lze dělit na vnější a vnitřní. Mezi vlivy vnější řadíme vlivy:

- mechanické tj. změny tvrdosti, zbytková napětí, makro a mikrotrhliny, atd.
- chemické koroze,
- tepelné důsledkem jsou fázové změny,
- > elektrické změna magnetických vlastností.

Samozřejmě existuje kombinace těchto vlivů, např. koroze pod napětím či elektrochemická koroze, ale také technologické procesy např. obrábění, tepelné zpracování a tváření [23]. Do vlivů vnitřních patří [23]:

- zbytková napětí,
- morfologie povrchu (drsnost),

- materiálové a mechanické vlastnosti tvrdost, zpevnění, strukturní stav,
- přítomnost povrchových a podpovrchových vad vměstky, mikrotrhliny apod.

K hodnocení parametrů integrity existuje značné množství metod, a to jak destruktivních, semidestruktivních a také nedestruktivní. Volba vhodné metody závisí především na požadavku hodnoceného parametru [32].

3.2. Zbytková napětí

Zbytková napětí patří mezi nejčastěji hodnocené parametry integrity povrchu. K jejich vzniku dochází prostřednictvím různých mechanizmů. Pro hodnocení zbytkových napětí lze využít různé metody.

3.2.1. Mechanizmus vzniku zbytkových napětí

Pojmem zbytková napětí jsou označována napětí, která zůstávají v pevném materiálu i po odstranění příčiny jejich vzniku [12]. Ke vzniku napětí dochází prostřednictvím různých mechanizmů jako např. v důsledku nerovnoměrných plastických deformací, vlivem teplotních gradientů během tepelného cyklu nebo díky strukturním změnám [12]. Mezi hlavní příčiny vzniku zbytkových napětí patří:

- a) nerovnoměrná plastická deformace nerovnoměrnost je způsobena rozdíly působících sil v povrchové vrstvě a v jádře vzorku. Povrchové opracování jako kuličkování, válečkování, leštění atd. deformují povrch materiálu více než vnitřek [1]. Plasticky deformovaný povrch vykazuje po odstranění vnější síly stav tzv. zbytkové komprese. Oproti tomu jádro vzorku zůstává beze změn a je namáháno pouze elasticky.
- b) nerovnoměrný ohřev či ochlazení způsobují teplotní účinek tzv. teplotní gradienty. Ačkoli je povrchová vrstva pevně spojena s jádrem vzorku, dochází především k ohřevu povrchové vrstvy, zatímco teplota jádra se víceméně nezmění. Následně pak při chladnutí povrchové vrstvy dochází k jejímu smršťování, plastické deformaci a vzniku tahových napětí. Tato tahová napětí dosahují vyšších hodnot než vnitřní tlaková napětí, která vznikla při ohřevu. Rozdíl vnitřních tahových napětí při chladnutí a vnitřních tlakových napětí při ohřevu pak určuje velikost tepelných zbytkových napětí v povrchové vrstvě.
- c) nerovnoměrné strukturní změny tento děj je obvykle iniciován teplotou nebo deformací vznikajícími při procesu řezání. Dochází k fázové transformaci nebo vylučování nových strukturních složek, které mají nejen rozdílné mechanické a fyzikální vlastnosti, ale také rozdílný měrný objem a v důsledku těchto změn dochází ke vzniku tzv. strukturních napětí.

d) *chemické procesy* - především absorpce a difuse cizích látek a plynů do povrchové vrstvy.

Zbytková napětí jsou podle příčiny také označována jako napětí technologická, neboť jsou nejčastěji důsledkem působení technologických procesů během výroby součástí.

3.2.2. Smysl a velikost zbytkových napětí

Zbytková napětí, která se vyskytují v uzavřených systémech, můžeme třídit podle různých hledisek. Třídění dle příčin vzniku je uvedeno v předchozí podkapitole. Dalším hlediskem klasifikace je hodnocení doby působení napětí. Díky působení vnějších sil a momentů na soustavu vznikají tzv. napětí vložená. Pokud však v uzavřené soustavě působí napětí bez působení vnějších sil, jsou to tzv. napětí vnitřní. Tato vnitřní napětí jsou v uzavřené soustavě v rovnováze. Avšak dojde-li k porušení celistvosti soustavy (vzorku), způsobí tato napětí deformaci soustavy (změny rozměrů vzorku).

Vnitřní napětí lze podle doby trvání rozdělit na napětí:

- a) vložená zanikají po odstranění příčin vzniku, za podmínky nepřekročení meze kluzu. Příkladem mohou být napětí způsobená rozdílem teplot (nerovnoměrné zahřátí součásti) či napětí vzniklá upnutím součásti.
- b) *zbytková* zůstávají ve vzorku i po odstranění příčin vzniku.

Napětí zbytková jsou tedy pro kvalitu součásti užitečná i nepříznivá. Např. operace kuličkování vnáší do povrchové vrstvy tlaková zbytková napětí, jejichž důsledkem dojde k prodloužení životnosti součásti. Oproti tomu tahová zbytková napětí mohou způsobit vznik trhlin či snížení meze únavy a jsou tedy pro kvalitu součásti nepříznivá. Tato napětí lze podle velikosti objemu, ve kterém dosahují rovnováhy (viz obr. 3.1), rozdělit na:

- zbytková napětí I. druhu dosahují rovnováhy ve velkých oblastech, tj. jsou konstantní co do směru a velikosti. Rovnováhy tato napětí dosahují v celém objemu vzorku a při porušení silové a momentové rovnováhy dochází u těchto napětí vždy ke změně makroskopických rozměrů tělesa, a proto jsou tedy také nazývána jako makroskopická.
- zbytková napětí II. druhu jsou homogenní v oblasti několika zrn, proto jsou také označována jako mikroskopická. U vícefázových soustav mohou být jednotlivá zrna napjata opačně.
- zbytková napětí III. druhu se projevují v objemu několika meziatomových vzdáleností, např. v dostatečně velké části zrna a jsou tedy také označována jako submikroskopická.

Všechny tři druhy zbytkových napětí se zpravidla vyskytují současně. V technické praxi jsou však pojmem zbytková napětí označována především makroskopická zbytková napětí (tj. napětí I. druhu). Jejich přítomnost se většinou projevuje rozměrovými a tvarovými změnami po porušení napěťové rovnováhy. Tyto důsledky ovlivňují využitelnost, životnost či korozní odolnost strojních součástí.

Obr. 3.1 Znázornění makroskopických (σ'), mikroskopických (σ'') a submikroskopických (σ''') zbytkových napětí σ [MPa][11]

3.3. Metody hodnocení zbytkových napětí

Metod hodnocení napětí existuje celá řada a prochází neustálým vývojem. Tyto metody mohou být rozděleny podle různých hledisek. Jedním z nejčastějších rozdělení je na základě fyzikálních principů na metody:

- a) mechanické tyto metody jsou založeny na mechanickém uvolnění napětí, které se projeví deformací vzorku po odebrání povrchové vrstvy. Mezi tyto metody patří např. metoda dělicí a odvrtávací.
- b) difrakční metody rentgenové a neutronové difrakce, kde je princip difrakce využíván k měření změn vzdáleností meziatomových rovin, na základě kterých jsou pak určeny hodnoty zbytkových napětí.
- c) *magnetické* které jsou založeny na využití souvislosti mezi magnetickými vlastnostmi a strukturně mechanickým stavem materiálu.
- d) *ultrazvukové* kde je měřena rychlost šíření ultrazvukové vlny, která je závislá na stavu napjatosti vzorku.

Dále je také možno rozdělit metody měření zbytkových napětí podle povahy na metody:

- destruktivní kde dochází k porušení součásti. U těchto metod dochází k uvolnění zbytkových napětí porušením celistvosti vzorku a měří se jeho deformace. Do této skupiny patří hlavně metody mechanické.
- semidestruktivní u těchto metod dochází pouze k částečnému porušení součásti a vzorek lze dále používat. Sem patří metoda odvrtávání mezikruží.
- nedestruktivní kde dochází k využití vztahů mezi fyzikálními nebo krystalografickými vlastnostmi materiálu a zbytkovým napětím. Tyto metody jsou vzhledem k nepoškození měřených vzorků velmi často používané.

Přehled metod pro určování zbytkových napětí a jejich rozdělení dle různých kritérií lze najít v literatuře [32, 41]. Na obrázku č. 3.2 je znázorněna hloubka průniku a prostorové rozlišení jednotlivých metod.

Obr. 3.2 Hloubka průniku a prostorové rozlišení jednotlivých metod hodnocení zbytkových napětí. Destruktivní a semidestruktivní metody jsou označeny šedou barvou. [36]

V následující tabulce č. 1 je uveden přehled metod a jsou zde popsány hlavní výhody a nevýhody jednotlivých metod.

Další podkapitoly jsou věnovány detailnějšímu popisu principů často používaných metod hodnocení zbytkových napětí tj. metodě analýzy Barkhausenova šumu, rentgenové difrakční analýze a metodě odvrtávání.

Metoda	Výhody	Nevýhody
	Všeobecně použitelná	Laboratorně založené
Pontronová difrakco	Široká škála materiálů	systémy
Nentgenova umakce	Makro a mikro zbytková	Malé součásti
	napětí	Pouze základní měření
	Rychlá	Interpretace dat
Metoda odvrtávání	Snadné používání	Semidestruktivní
	Obecně dostupná	Omezená citlivost a rozlišení
	Široká škála materiálů	
	Makro a mikro zbytková	Pouze speciální zařízení
Neutropová difrakce	napětí	Laboratorně založené
	Optimální průnik a rozlišení	systémy
	3D mapy	systemy
	Velmi rychlý	Pouze pro feromagnetické
	Široká citlivost na vliv	materiály
Barkhausenův šum	mikrostruktury zejména u	Nutno rozdělit vliv
	svárů	mikrostruktury, zbytkových
	Ruční	napětí a tvrdosti
	Všeobecně dostupná	Omozoné rozližaní
	Velmi rychlá	
Ultrazvuk	Nízké náklady	Hromadne mereni pres
	Ruční	cely objern
	Široká škála materiálů	Destruktivní
	Ekonomická a rychlá	Interpretace dat
rezu	Ruční	Omezené rozlišení napětí
	Vysoké rozlišení map napětí	Dostruktivní
	Kolmé řezné plochy	Interpretace dat
Metoda obrysu	Ruční	Nemožnost řezů příliš blízko
	Siroka skala materialu	u sebe
	Hluboké měření zbytkových	Interpretace dat
	napětí	Semidestruktivní
Hluboké odvrtávání	Tlusté součásti	Omezená citlivost a rozlišení
	Široká škála materiálů	napětí
	Lepší pronikání a rozlišení	
	rentgenového záření	Pouze speciální zařízení
Synchrotronová difrakce	Hloubkové profilování	Laboratorně založené
	Rychia Makro a mikro zbytkowá	systémy
	nanětí	
	Měření prutových těles a	
	desek	
vietoda odstranovani vrstev	Možnost měření povlaků	Interpretace dat
	Hodnocení hloubkových	Interpretace uat
	profilů	

Tab. 1 Porovnání metod pro hodnocení zbytkových napětí [36]

3.3.1. Metoda analýzy Barkhausenova šumu

Jedná se o nedestruktivní metodu hodnocení zbytkových napětí a patří mezi metody magnetické. Tuto metodu objevil v roce 1919 profesor Heinrich Georg Barkhausen. Je-li magnet od jádra přiblížen či vzdálen, je v reproduktoru slyšitelné praskání či chrastění (obr. 3.3). Jak bylo dokázáno vývojem kvantové fyziky, tento šum souvisí s nespojitostí během procesu magnetizace feromagnetického materiálu.

Obr. 3.3 Původní uspořádání profesora Barkhausena [29]

Feromagnetické materiály vnímáme jako materiály složené z malých magnetických oblastí podobajících se tyčovým magnetům, které jsou nazývány doménami [3]. Každá doména se pak magnetizuje podél krystalograficky význačných směrů. Domény jsou mezi sebou odděleny hranicemi nazývanými doménové (Blochovy) stěny. Vnější magnetické pole pak způsobuje pohyb těchto stěn (viz. obr. 3.4). Není-li feromagnetická látka vložena do vnějšího magnetického pole, jsou směry magnetických domén náhodné a součet magnetických momentů je nulový, tzn., že látka se navenek jeví jako nemagnetická.

Obr. 3.4 Orientace magnetických domén za působení vnějšího magnetického pole [40]

Vliv působení vnějšího magnetického pole na magnetické schopnosti vzorku znázorňuje hysterezní křivka zobrazená na obrázku 3.5. Hysterezní křivka vyjadřuje závislost magnetické indukce *B* [T] na intenzitě magnetického pole *H* [A/m]. Pokud je odmagnetizovaná feromagnetická látka vložena do vnějšího magnetického pole a dochází k postupnému zvyšování intenzity magnetického pole *H* do nasyceného

stavu, kde celé feromagnetikum začne tvořit jednu doménu, je výsledkem křivka prvotní magnetizace. Bude-li poté intenzita magnetického pole snižována, bude křivka závislosti magnetické indukce *B* na intenzitě vnějšího magnetického pole *H* vypadat odlišně – dostaneme tzv. hysterezní křivku. Po zrušení magnetického pole klesne magnetická indukce na hodnotu B_r tj. remanentní (zbytkovou) indukci. Při magnetizaci opačným směrem se indukce *B* zmenšuje až na nulu. Intenzita magnetického pole *H*, při níž se zruší remanentní magnetická indukce B_r , se nazývá koercitivní intenzita magnetického pole H_c [27]. H_c je tedy síla potřebná k odmagnetizování materiálu (tj. zrušení B_r). Čím je koercitivní síla větší, tím je materiál tzv. *magneticky tvrdší*. Je-li poté intenzita magnetického pole zvětšována v opačném směru, dochází ke zvětšování magnetické indukce až do stavu nasycení. Je-li proveden celý magnetizační cyklus výsledkem je uzavřená hysterezní smyčka feromagnetika.

Obr. 3.5 Hysterezní křivka a orientace magnetických domén v průběhu magnetizace [44]

Hysterezní křivka tedy vyjadřuje závislost magnetické indukce (*B*) na intenzitě magnetického pole (*H*) B = f (*H*). Celková magnetická indukce *B* je dána vztahem:

$$B = \mu \cdot H, \tag{3.1}$$

kde μ je permeabilita. Permeabilita μ [Hm⁻¹] má dvě základní složky a to absolutní μ_0 a relativní μ_r :

$$\mu = \mu_0.\,\mu_r,\tag{3.2}$$

kde: μ_0 udává permeabilitu vakua (= $4\pi \cdot 10^{-7}$ Hm⁻¹)

 μ_r je relativní permeabilita, která je závislá na použitém materiálu (v tomto případě na materiálu cívky).

Hysterezní křivka může mít různý tvar (obr. 3.6), který je ovlivněn především chemickým složením a stavem krystalové mřížky, který souvisí se způsoby technologického zpracování – např. válcování za studena nebo za tepla, žíhání a kalení. Feromagnetické materiály lze rozdělit na magneticky měkké a magneticky tvrdé [13]. Magneticky měkké látky mají úzkou hysterezní křivku a po odstranění vnějšího magnetického pole nezůstávají zmagnetizované, jelikož nízké koercitivní intenzitě magnetického pole H_c dochází ke snadné magnetizaci i demagnetizaci. Oproti tomu magneticky tvrdé materiály mají širokou hysterezní smyčku a jsou charakterizovány vysokou koercivitou H_c . U těchto látek je magnetizace nesnadná a po odstranění vnějšího magnetického pole mají tyto látky schopnost zůstat trvalými magnety.

Barkhausenův šum má pro většinu materiálů frekvenční spektrum začínající na magnetizačním kmitočtu a končící přibližně na 250 kHz. Útlum signálu je exponenciální funkcí na vzdálenosti, kterou projde uvnitř materiálu. Základní příčinou tlumení signálu jsou vířivé proudy, které jsou indukovány při šíření signálu vznikajícího pohybem domén. Útlum určuje tzv. měřící hloubku, ze které ještě lze získat informaci o velikosti amplitudy. U běžného použití je měřící hloubka v rozsahu 0,01 až 1,5 mm [28]. Tato hloubka je ovlivněna především:

- a) frekvenčním rozsahem generovaného signálu,
- b) vodivostí a permeabilitou zkoušeného materiálu.

Intenzitu signálu Barkhausenova šumu podstatně ovlivňují dva materiálové parametry. Prvním z nich je přítomnost a rozložení pružných napětí. Tato napětí ovlivňují cestu, kterou se domény ubírají za cílem snadné orientace ve směru magnetizace. Tento jev, při kterém elastické vlastnosti ovlivňují doménovou strukturu

a magnetické vlastnosti, nazýváme magnetoelastická interakce [17]. Důsledkem této interakce u materiálů s pozitivní magnetostrikcí (většina ocelí a železo) je snižování intenzity Barkhausenova šumu tlakovým napětím, zatímco tahové napětí intenzitu zvyšuje (obr. 3.7). Díky této skutečnosti můžeme z měření intenzity Barkhausenova šumu stanovit zbytková napětí.

Obr. 3.7 Vliv napětí na amplitudu signálu Barkhausenova šumu [35]

Druhým parametrem ovlivňujícím intenzitu Barkhausenova šumu je metalurgická struktura. Tento jev můžeme hrubě popsat za použití pojmu tvrdost. Intenzita signálu spojitě klesá s rostoucí tvrdostí. Je to důsledkem blokace pohybu doménových stěn na mřížkové úrovni v zásadě stejnými překážkami a defekty jako pohyb dislokací při plastické deformaci. Odsud vyplývá souvislost amplitudy Barkhausenova šumu s mezí pevnosti – s rostoucí tvrdostí klesá intenzita Barkhausenova šumu a naopak nízká tvrdost intenzitu zvyšuje (obr. 3.8). Jelikož tvrdost souvisí se strukturou materiálu [43], lze tedy z měření Barkhausenova šumu získat informaci o mikrostrukturním stavu materiálu.

Obr. 3.8 Vliv tvrdosti na amplitudu Barkhausenova šumu [35]

Povrchové vady jako např. spáleniny po broušení, nezakalené hrany či oduhličené oblasti určitým způsobem ovlivňují napětí či mikrostrukturu a mohou tedy být detekovány metodou Barkhausenova šumu. Řada dynamických procesů, jako např. tečení či únava materiálu, způsobuje změny v napětí a mikrostruktuře materiálu a lze je tedy také sledovat magnetoelastickými metodami. Z výše uvedených souvislostí tedy vyplývá, že pokud má dobře obrobený povrch součásti vysokou tvrdost a záporná zbytková napětí, měla by být intenzita signálu nízká. Pokud však dojde k poklesu tvrdosti či nárůstu zbytkových napětí, projeví se tato skutečnost nárůstem amplitudy Barkhausenova šumu [24, 37]. Amplitudě Barkhausenova šumu odpovídá jednotka nazývaná magnetoelastický parametr (MP). Magnetoelastický parametr je tedy mírou integrity povrchu a lze podle něj sledovat kvalitu povrchu (obr. 3.9).

Obr. 3.9 Použití hodnoty magnetoelastického parametru jako míry integrity povrchu [29]

Do přímého kontaktu s měřeným vzorkem přichází speciální snímač. Druhů snímačů je celá řada (jsou např. uzpůsobeny tvaru součásti apod.), avšak jejich princip a uspořádání jsou vždy stejné. Každý snímač obsahuje magnetizační cívku, která spolu s magnetizačními póly umožňuje lokální magnetizaci vzoru a tím indukuje periodické změny v doménové struktuře. Snímací pól se snímací cívkou, který je další součástí snímače, poté registruje spolu s vyhodnocovací elektronikou tyto změny magnetizace, jež souvisí s Barkhausenovým šumem. Základní uspořádání snímacích prvků je ukázáno na následujícím obrázku 3.10.

Konkrétní konstrukční uspořádání průmyslového snímače je na dalším obrázku 3.11. Na obrázku 3.12 vlevo je zobrazen zubový snímač pro ozubená kola (OK), který byl používán během experimentů. Hodnocení hloubkových profilů bylo provedeno za použití univerzálního snímače, který je zobrazen na obrázku 3.12 vpravo.

Obr. 3.11 Ukázka univerzálního snímače používaného pro měření vzorků[10]

Obr. 3.12 Ukázka zubového (vlevo) a univerzálního (vpravo) snímače používaného pro měření vzorků

Obr. 3.13 Ukázka typických hloubkových profilů zbytkového napětí [10]

Typický průběh závislosti zbytkového napětí na hloubce je znázorněn na obrázku 3.13. Obrázek poukazuje na skutečnost, že významné změny u "spáleného" povrchu se projevují do hloubky řádově desítek mikrometrů, což dobře souvisí s hloubkou, ze které obvykle pochází Barkhausenovský signál [10].

3.3.2. Rentgenová difrakční analýza

Rozptyl rentgenového záření je v podstatě odraz (reflexe) na atomových mřížkových rovinách. Pozorovatelný (ustálený) interferenční jev, projevující se v určitých směrech koncentrací rozptýlené energie, nastává pouze tehdy, mají-li vlny rozptýlené atomy v rovnoběžných rovinách stejnou fázi [20]. Platí-li Braggova rovnice, je rozdíl drah obou paprsku celočíselným násobkem vlnové délky použitého záření.

$$n\lambda = 2d\sin\theta,\tag{3.3}$$

kde: *n* – řád reflexe,

 λ – vlnová délka použitého záření,

d – vzdálenost sousedních rovin typu (hkl)

 θ – Braggův úhel, pod nímž dopadají paprsky na systém rovin.

Pod vlivem mechanického napětí dochází ke změně mezirovinné vzdálenosti d a úhlové polohy θ [20]. Diferencováním rovnice (3.3) dostaneme vztah

$$\varepsilon = \frac{d - d_0}{d_0} = -\cot g \ \theta_0 (\theta - \theta_0) \tag{3.4}$$

mezi mřížkovou deformací ε v napjatém krystalu a úhlovým posunem interferenčního maxima ($\theta - \theta_0$); d_0 a θ_0 jsou hodnoty d a θ odpovídající nenapjatému krystalu. [20]

Obr. 3.14 Deformace vzdáleností mřížkových rovin {hkl} a změny úhlové polohy interferenčního maxima; I_o a I jsou intenzity dopadajícího a difraktovaného svazku rentgenového záření; a) nenapjatý stav, b) změny vyvolané silou F [20].

Budeme-li uvažovat soustavu souřadnic spojenou se vzorkem (obr. 3.15) a označíme-li σ_{ij} složky tenzoru napětí působícího na objemový element vzorku, který splňuje podmínky lineární teorie elasticity [20], lze mřížkovou deformaci $\varepsilon_{\varphi\psi}$ v libovolném směru $\varphi \ a \ \psi$ vyjádřit vztahem

$$\varepsilon_{\varphi\psi} = \frac{1}{2} s_{2} (\sigma_{11} \cos^{2} \varphi + \sigma_{12} \sin 2\varphi + \sigma_{22} \sin^{2} \varphi - \sigma_{33}) \sin^{2} \psi + \frac{1}{2} s_{2} (\sigma_{13} \cos \varphi + \sigma_{23} \sin \varphi) \sin 2\psi + \frac{1}{E} \sigma_{33} + s_{1} (\sigma_{11} + \sigma_{22}), \qquad (3.5)$$

kde: φ je směr napětí σ_{φ} vzhledem k ose x_{11} ,

 ψ – úhel mezi osou x_{33} (normálou k povrchu) a směrem deformace $\varepsilon_{\varphi\psi}$,

$$\frac{1}{2}s_{2} = \frac{v+1}{E}, \quad s_{1} = \frac{-v}{E},$$

v – Poissonovo číslo zkoumaného materiálu,

E – Youngův modul zkoumaného materiálu.

Obr. 3.15 Systém souřadnic spojený se vzorkem [1]

V případě dvouosé napjatosti, kdy σ_{13} = 0, a po substituci za σ_{φ}

$$\sigma_{\varphi} = \sigma_{11} \cos^2 \varphi + \sigma_{12} \sin 2\varphi + \sigma_{22} \sin^2 \varphi$$

bude vztah (3.5) lineární závislostí mezi mřížkovou deformací $\varepsilon_{\varphi\psi}$ a $sin^2\psi$:

$$\varepsilon_{\varphi\psi} = \frac{\nu+1}{E} \sigma_{\varphi} \sin^2 \psi - \frac{\nu}{E} (\sigma_{11} + \sigma_{22}). \qquad (3.6)$$

Derivací rovnice (3.6) podle $sin^2\psi$ dostaneme

$$\frac{\partial \mathcal{E}_{\varphi\psi}}{\partial \sin^2 \psi} = \frac{\nu + 1}{E} \sigma_{\varphi}, \qquad (3.7)$$

Lucie Schmidová

tj. směrnice přímky $\varepsilon_{\phi\psi}(\sin^2\psi)$ je dána elastickými konstantami *E*, *v* a působícím napětím σ_{φ} .

Ztotožníme-li mřížkovou deformaci ε s deformací $\varepsilon_{\varphi\psi}$, dostaneme základní rovnici rentgenografického měření napětí podle tzv. metody " $sin^2\psi$ ":

$$\varepsilon_{\varphi\psi} = \cot g \,\theta_0 (\theta - \theta_0) = \frac{\nu + 1}{E} \sigma_\varphi \sin^2 \psi - \frac{\nu}{E} (\sigma_{11} + \sigma_{22}) \,. \tag{3.8}$$

Výraz pro výpočet složky napětí σ_{φ} :

$$\sigma_{\varphi} = -\frac{E}{\nu+1} \operatorname{cotg} \theta_0 \frac{\partial \theta_{\varphi\psi}}{\partial \sin^2 \psi}.$$
(3.9)

Rentgenografické stanovení složky σ_{φ} metodou " $sin^2\psi$ " tedy vyžaduje dostatečně přesné určení úhlové polohy $\theta_{\varphi\psi}$ interferenčních linií získaných difrakcí záření na vhodných systémech (hkl) v azimutální rovině φ = konst. při různých hodnotách úhlu ψ . Princip metody " $sin^2\psi$ " je schématicky znázorněn na obr. 3.16.

Obr. 3.16 Princip měření napětí metodou "sin² ψ " [20]

Rentgenografická tenzometrická metoda "jedné expozice" [20]

Z výše uvedeného popisu vyplývá, že k sestrojení lineární závislosti $\varepsilon_{\varphi,\psi}$ (sin² ψ), ze které se počítají σ_{φ} , $\sigma_{11 +} \sigma_{22}$, potřebujeme experimentální hodnoty $\varepsilon_{\varphi,\psi}$ minimálně ze dvou měření za použití různých úhlů ψ . Je-li do rovnice (3.8) dosazeno $\psi_1 \neq \psi_2 \neq 0$, pak po odečtení $\varepsilon_{\varphi,\psi_1} - \varepsilon_{\varphi,\psi_2}$ dostaneme:

$$\sigma_{\varphi} = \frac{1}{\frac{1}{2}s_2} \frac{\varepsilon_{\varphi,\psi_1} - \varepsilon_{\varphi,\psi_2}}{\sin^2 \psi_1 - \sin^2 \psi_2} \cot g \,\theta_0 \frac{\partial \theta_{\varphi\psi}}{\partial \sin^2 \psi} \,. \tag{3.10}$$

Výraz (3.8) je v rentgenové tenzometrii využíván k výpočtu napětí σ_{φ} metodou "jedné expozice". Při uspořádání Debyeovy-Scherrerovy metody s fotografickou registrací difraktovaného záření lze hodnoty $\varepsilon_{\varphi,\psi_1}$, $\varepsilon_{\varphi,\psi_2}$ určit z jednoho rentgenogramu. Tento experimentální postup se nevyznačuje vysokou přesností určení σ_{φ} , neboť

- při sestrojení závislosti $\varepsilon_{\varphi,\psi}(\sin^2\psi)$ se zde vychází pouze ze dvou zjištěných hodnot $\varepsilon_{\varphi,\psi}$;

 chyby stanovení Braggova difrakčního úhlu jsou při fotografické detekci zpravidla větší než při měření na rentgenovém difraktometru s počítačovou registrací difraktovaného záření.

V praxi se používají zejména rychlé rentgenografické metody měření zbytkových napětí, které jsou přitom nezávislé na tvaru a rozměrech měřených vzorků. Právě tyto požadavky splňuje metoda "jedné expozice".

Debyeovo-Scherrerovo uspořádání na zpětný odraz vždy předpokládá úzce kolimovaný dopadající svazek záření. Ozářená ploška má v tomto případě zpravidla menší rozměry než při měření na difraktometru. Tuto skutečnost lze v rtg tenzometrii s výhodou použít pro mapování povrchů studovaných vzorků.

Obr. 3.17 Schéma metody zpětného odrazu při šikmém dopadu primárního svazku P na povrch vzorku, který je vystaven tahovému napětí σ_{φ} ; R_1 a R_2 jsou body interferenčního kužele studované látky v azimutální rovině σ_{φ} ; N_{ψ_1} , N_{ψ_2} – normály k systému (hkl) mřížkových rovin vhodně orientovaných krystalků, N – normála k povrchu vzorku, $\eta_i =$ 90°– θ_i , kde θ_i je Braggův úhel reflexe na systému (hkl) s mezirovinnou vzdáleností d_i (i = 1, 2) [20] Z obr. 3.17 lze vidět, že úzký svazek monochromatických rentgenových paprsků *P* dopadá na povrch napjatého vzorku pod úhlem ψ_0 v azimutální rovině určené směrem primárního svazku a povrchovou normálou *N*. Při uvedeném uspořádání Debyeovy-Scherrerovy metody dostaneme na snímku excentrické interferenční linie napjatého materiálu vzhledem k ose primárního svazku, která určuje střed filmu, tj. $r_{\psi_1} \neq r_{\psi_2}$. Asymetrie rentgenogramů je důsledkem difrakce paprsku *P* na soustavách rovin {hkl} různě orientovaných (a tedy i různě deformovaných) ke směru působícího napětí. [1]

V případě, že primární svazek záření dopadá na povrch zkoumaného vzorku pod úhlem ψ_0 = 45°, lze na základě rovnice (3.10) odvodit vztah:

$$\sigma_{\varphi} = \frac{\cot g \theta_0}{1/2s_2} \frac{\cos^2 2\theta_0}{2\sin 2\eta} \frac{r_{\psi_1} - r_{\psi_2}}{D}$$
(3.11)

kde: θ_0 – Braggův úhel reflexe (hkl) odpovídající nenapjatému materiálu,

 $\eta=90^\circ-\theta_0,$

D – vzdálenost film-vzorek,

 r_{ψ_1} , r_{ψ_2} udávají excentricitu interferenční linie vzhledem ke středu filmu (viz obr. 3.18a).

Obr. 3.18 Schéma difrakčního obrazu získaného metodou "jedné expozice" [20]

Zavedeme-li označení:

$$\Delta^{hkl} = r_{\psi_1} - r_{\psi_2}; \quad K = \frac{\cot g \theta_0}{\frac{1}{2}s_2} \frac{\cos^2 2\theta_0}{2\sin 2\eta}, \tag{3.12}$$

pak bude:

$$\sigma_{\varphi} - K \frac{\Delta^{hkl}}{D}.$$
(3.13)

Veličina *K* je při sledování linie (hkl) svazku *P* dopadajícího pod úhlem $\psi_0 = 45^\circ$ na daný materiál vždy kladnou konstantou. Předpokládáme-li navíc neměnnou vzdálenost *D*, pak vyplývá, že velikost povrchové složky napětí σ_{φ} je úměrná excentricitě Δ^{hkl} a sgn $(\sigma_{\varphi}) = \text{sgn}(\Delta^{hkl})$.

Jelikož není možné stanovit polohu středu filmu, nelze určit Δ^{hkl} přímým měřením r_{ψ_1} a r_{ψ_2} . Jeden ze způsobů, jak tuto komplikaci obejít, spočívá v tom, že před expozicí zacloníme horní polovinu filmu (viz obr. 3.18b) maskou dokonale absorbující difraktované záření. Z difrakčního "kroužku" (hkl) bude tedy při expozici t_1 registrována pouze jeho spodní část. Po ukončení expozice otočíme kazetu o 180° kolem osy splývající se směrem primárního svazku, horní polovinu opět zacloníme a při nezměněném uspořádání znovu exponujeme (expozice t_2). Nespojitosti průběhu difrakční linie na obou stranách snímku (obr. 3.18) odpovídají veličině Δ^{hkl} ze vztahu (3.13).

3.3.3. Odvrtávací metoda

Mezi další velmi často používané metody pro měření zbytkových napětí patří především metoda odvrtávací. Odvrtávací metoda, jak je již z názvu zřetelné, je založena na vyvrtání otvoru o malém průměru (většinou 1 až 4 mm) do hloubky odpovídající přibližně průměru otvoru. Díky tomuto odstranění části materiálu dojde k částečnému uvolnění zbytkových napětí ze součásti. Za pomoci tenzometrů, umístěnými v podobě tenzometrické růžice v těsné blízkosti vrtané dírky, se změří příslušné deformace na povrchu zkoumaného vzorku a na základě kalibračních koeficientů se určí velikost a směr hlavních zbytkových napětí. Tato metoda je označována jako semidestruktivní, kde malé narušení povrchu nemusí mít vliv na funkčnost měřené součásti.

Vyvrtáním průchozího otvoru o poloměru r_0 dojde v místě P (obr. 3.19) určeném polárními souřadnicemi (ρ , φ) k uvolnění napětí, jehož velikost lze získat porovnáním napjatosti v pevně definovaném místě před a po vyvrtání otvoru [8].

Obr. 3.19 Tenká deska s jednoosým namáháním[8]

Za použití předpokladu homogenity a izotropie tenké desky, lze dosadit do Hookova zákona a psát vztahy pro uvolněné radiální a tangenciální deformace ε_{ρ} a ε_{n} :

$$\varepsilon_{\rho} = \sigma(A + B\cos 2\varphi), \qquad (3.14)$$
$$\varepsilon_{\mu} = \sigma(-A + C\cos 2\varphi),$$

kde pro konstanty úměrnosti A, B, C platí:

$$A = -\frac{1+\mu}{2E} \left(\frac{r_{_{0}}^{^{2}}}{\rho^{^{2}}}\right), \quad B = -\frac{1+\mu}{2E} \left[\left(\frac{4}{1+\mu}\right) \frac{r_{_{0}}^{^{2}}}{\rho^{^{2}}} - \frac{3r_{_{0}}^{^{4}}}{\rho^{^{4}}} \right], \quad C = -\frac{1+\mu}{2E} \left[\left(-\frac{4\mu}{1+\mu}\right) \frac{r_{_{0}}^{^{2}}}{\rho^{^{2}}} - \frac{3r_{_{0}}^{^{4}}}{\rho^{^{4}}} \right].$$
(3.15)

Na obrázku 3.20 jsou znázorněny průběhy radiálních a tangenciálních deformací. Z těchto grafů vyplývá, že nejvhodnější polohou pro měření deformací je oblast, kde $\rho/r_0 \in (2,2; 3,4)$. V této oblasti se měří radiální deformace, neboť jsou zde téměř trojnásobně větší než tangenciální.

Předpoklad elastického materiálu umožňuje využití principu superpozice a od jednoduchého případu jednoosé napjatosti lze přejít ke dvouosému [8]. Pro deformaci v radiálním směru platí:

$$\varepsilon_{\rho} = \sigma_{x}(A + B\cos 2\varphi) + \sigma_{y}(A - B\cos 2\varphi) = A(\sigma_{x} + \sigma_{y}) + B(\sigma_{x} - \sigma_{y})\cos 2\varphi = \varepsilon_{\rho}(\sigma_{x}, \sigma_{y}, \varphi)$$
(3.16)

V předcházející rovnici existují tři neznámé, hlavní napětí σ_x , σ_y a úhel φ , které lze vypočítat, je-li hodnota radiální deformace získána ve třech nezávislých směrech. Z těchto důvodů se nejčastěji používají odporové tenzometrické růžice, které mají tři

tenzometry. Na obrázku 3.19b je znázorněno uspořádání tenzometrů na nejčastěji aplikované tenzometrické růžici. Deformace, jež jsou naměřeny tenzometry označenými *a*, *b*, *c*, vypočítáme z následujících rovnic:

$$\begin{aligned} \varepsilon_a &= A(\sigma_x + \sigma_y) + B(\sigma_x - \sigma_y) \cos 2\varphi, \\ \varepsilon_b &= A(\sigma_x + \sigma_y) + B(\sigma_x - \sigma_y) \cos 2(\varphi + 45^\circ), \\ \varepsilon_c &= A(\sigma_x + \sigma_y) + B(\sigma_x - \sigma_y) \cos 2(\varphi + 90^\circ), \end{aligned}$$
(3.17)

jejichž řešením jsou následující vztahy:

$$\sigma_{\max} = \frac{\varepsilon_a + \varepsilon_b}{4A} + \frac{\sqrt{2}}{4B} \sqrt{(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2},$$

$$\sigma_{\min} = \frac{\varepsilon_a + \varepsilon_b}{4A} - \frac{\sqrt{2}}{4B} \sqrt{(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2},$$

$$\tan 2\varphi = \frac{\varepsilon_a - 2\varepsilon_b + \varepsilon_c}{\varepsilon_c - \varepsilon_a}.$$
(3.18)

Úhel φ je měřen od tenzometru *a* k nejbližší hlavní ose podle následujících vztahů (φ je kladný ve směru od tenzometru *a* k tenzometru *c*):

$$\begin{split} & \varepsilon_c > \varepsilon_a \rightarrow \phi \text{ je vztažen k } \sigma_{max}, \\ & \varepsilon_c < \varepsilon_a \rightarrow \phi \text{ je vztažen k } \sigma_{min}, \\ & \varepsilon_c = \varepsilon_a - \varepsilon_b < \varepsilon_a \rightarrow \sigma_{max} \text{ je v } \phi = 45^\circ, \\ & -\varepsilon_b > \varepsilon_a \rightarrow \sigma_{max} \text{ je v } \phi = -45^\circ. \end{split}$$

Tímto způsobem lze určit velikost i směry hlavních zbytkových napětí. Důležitým upozorněním je, že vztahy (3.18) byly odvozeny za předpokladů dvojosého stavu napjatosti lineárně elastické, izotropní a homogenní desky, bez gradientu napětí do hloubky, kdy díra o malém průměru byla vyvrtána skrz.

4. VÝROBA ČELNÍCH OZUBENÝCH KOL

Úvod této kapitoly je nejdříve věnován základním pojmům z geometrie ozubených kol. Obrázek 4.1 znázorňuje základní parametry čelního ozubení. Základním parametrem ozubených kol je tzv. modul m [-]. Jedná se část průměru roztečné kružnice [mm] připadající na jeden zub kola. Výška zubu h [mm] je definována jako vzdálenost mezi hlavovým a patním válcem [5]. Jedná se tedy o součet výšky hlavy ha [mm] a paty zubu h_f [mm]. Výška hlavy zubu h_a [mm] se rovná modulu m [-]. Oproti tomu **výška paty** zubu h_f [mm] je v principu součtem modulu m [-] a hlavové vůle c [-]. Hlavová vůle c [-] je zpravidla čtvrtina modulu m. Výšku paty zubu h_f lze tedy stanovit jako násobek modulu m koeficientem 1,25. Dalším parametrem je průměr roztečné kružnice d [mm], který je vypočítán jako násobek modulu m [-] s počtem zubů z [-]. Roztečná kružnice rozděluje zub a mezeru stejným dílem. Hlavová kružnice je opisována na hlavě zubů. **Průměr hlavové kružnice** d_a [mm] je tedy součet roztečného průměru d [mm] s dvojnásobkem výšky hlavy zubu h_a [mm]. Naopak průměr patní kružnice d_f [mm] je stanoven jako rozdíl roztečného průměru d [mm] s dvojnásobkem výšky paty zubu h_f [mm]. Při výpočtu šířky ozubeného kola je modul násoben **součinitelem poměrného šířky ozubení** ψ .

Obr. 4.1 Základní parametry čelního ozubení [9]

Ozubená kola lze také korigovat a to především z důvodů [42]:

- zabránění podřezání zubů u kol s mezním počtem zubů,
- zabránění špičatosti zubu,
- snížení hlučnosti, vibrací a zlepšení účinnosti ozubení,
- zvětšení únosnosti ozubení
- dosažení přesné osové vzdálenosti.

Princip korekce spočívá v přibližování nebo oddalování výrobního nástroje od středu ozubeného kola. Tím se mění tvar i vlastnosti evolventního ozubení a vytváří se

tak korigované ozubení [30]. Korekci ozubení lze provést posunutím roztečné přímky základního profilu o určitou vzdálenost na vnější nebo vnitřní stranu roztečné kružnice ozubeného kola (OK) [6, 39]. Velikost posunutí lze vyjádřit součinem [42]:

$$x \cdot m$$
, (4.1)

kde x je jednotkové posunutí a m je modul nástroje.

Výroba ozubení patří mezi velmi složité technologie. Ve strojírenství jsou nejčastěji využívány technologie obrábění čelních ozubených kol a těm je věnována i tato práce. Dosahovaná přesnost a kvalita ozubení je ovlivněna více vlivy. Patří mezi ně např. stroj, nástroj, upnutí obrobku včetně přesnosti technologických základen, dále také řezné podmínky apod. [5].

Ozubení čelních kol může být obráběno:

- dělicím způsobem, tj. tvarovou kotoučovou nebo stopkovou frézou,
- odvalovacím způsobem
 - o frézováním odvalovací frézou,
 - o obrážením hřebenovým nožem,
 - o obrážením kotoučovým nožem,
- protahováním.

Jako dokončovací způsoby obrábění je používáno:

- broušení dělicím a odvalovacím způsobem,
- ševingování,
- lapování,
- honování.

4.1. Frézování dělicím způsobem

Při frézování dělicím způsobem je profil zubových mezer vytvářen pomocí tvarové kotoučové nebo čepové (stopkové) frézy (obr. 4.2). Profil tvarové frézy je shodný s profilem zubové mezery. Tyto frézy jsou nazývány jako modulové, jelikož jsou vyráběny k určitému modulu ozubení. Zubové mezery jsou frézovány postupně. Obrobek je upnut v dělicím přístroji, který zajišťuje potřebný dělicí pohyb [9]. Po obrobení jedné je obrobek pootočen o jednu rozteč a následně je frézována další zubová mezera. Tento cyklus je opakován do vyfrézování celého ozubení. Tímto způsobem frézování jsou vyráběna ozubená kola především v kusové výrobě. Nevýhodou je totiž malá produktivita, malá přesnost a obtížnost přesného nastavení vzájemné polohy obrobku a nástroje [9].

Obr. 4.2 Kotoučová a stopková (čepová) fréza na evolventní ozubení [9]

4.2. Frézování odvalovacím způsobem

Pomocí frézování odvalovacím způsobem je obráběna většina ozubených kol. Odvalovací frézy jsou nástrojem, který má tvar evolventního šneku spoluzabírajícího s ozubeným kolem. Základní profil v normálové rovině je lichoběžníkový. Evolventa boků zubů frézovaného kola vznikne odvalem boku zubů frézy [5]. Při frézování se jednochodá fréza otáčí za jednu otáčku obráběného ozubeného kola tolikrát, kolik zubů má obráběné kolo [26]. Dvouchodá fréza vykoná poloviční počet otáček apod. [26]. Boky zubů jsou vytvářeny jako obalové plochy jednotlivých poloh nástroje (obr. 4.3) [5].

Obr. 4.3 Princip vytvoření evolventy při odvalovacím frézování [5]

Na obrázku č. 4.4 je znázorněna kinematika pohybů při odvalovacím frézování. Odvalovací fréza rotuje otáčkami *n* a současně rotuje obrobek otáčkami n_0 . K plynulému frézovaní zubů dochází díky pootočení obrobku o jednu zubovou rozteč za jednu otáčku frézy při použití jednochodé frézy. Současně se fréza pohybuje ve směru obráběných zubů rychlostí v_f , aby došlo k vytvoření ozubení po celé šířce kola.

Obr. 4.4 Kinematika pohybů při odvalovacím frézování [5]

4.3. Obrážení hřebenovým nožem

Obrážení hřebenovým nožem je velmi často označováno jako systém MAAG. Nástrojem je v tomto případě ozubený hřeben. Ten koná přímočarý vratný pohyb a je nastaven na hloubku řezu a_p . Díky otáčení obrobku n_0 a posuvu obrobku v_f při délce zdvihu / dochází k odvalování. Mezi výhody patří jednoduchá geometrie hřebenových nožů, díky čemuž má vyrobené ozubení vysokou přesnost. Pracovní cyklus hřebenového nože je přerušovaný, protože délka hřebene je omezená [26].

Obr. 4.5 Kinematika pohybů při obrážení hřebenovým nožem [5]

4.4. Obrážení kotoučovým nožem

Kotoučový obrážecí nůž vykonává přímočarý vratný pohyb a rotuje otáčkami n_n . Obrobek současně rotuje otáčkami n_0 . Obrobek a nástroj se tedy vzájemně odvalují a výsledkem je obrobený evolventní profil zubů. Při zpětném chodu nástroje dochází k vysunutí ze záběru z důvodu zachování kvality obrobené plochy.

Obr. 4.6 Kinematika pohybů při obrážení kotoučovým nožem [5]

4.5. Broušení ozubených kol

Princip broušení ozubených kol lze rozdělit na dvě skupiny. První skupinou je tzv. profilové broušení, kde jsou používány tvarové brousicí kotouče. V případě použití jednoho brousicího kotouče (BK) jde o tvar zubové mezery a při použití dvou BK jde o tvar boku zubu (evolventu). Druhou skupinu tvoří odvalovací způsob broušení. Dochází buď k odvalu v jedné zubové mezeře a poté dojde za pomoci dělicího přístroje k potočení obrobku, nebo je využíván BK ve tvaru evolventního šneku.

4.5.1. Profilové broušení

Profilové broušení je v případě výroby ozubení také nazýváno jako broušení dělicím způsobem. Při broušení jsou používány profilové brousicí kotouče (BK). Jednou z možností je broušení za použití dvou BK s tvarem odpovídajícímu boku zubu, kde každý BK brousí jeden bok zubu (obr. 4.7 a). Druhý způsob využívá BK ve tvaru zubové mezery (obr. 4.7 b), kde dochází k broušení obou boků zubů současně. V obou případech dojde po broušení k pootočení ozubeného kola (OK) o rozteč a celý proces je opakován, dokud nejsou obroušeny všechny boky zubů OK. Nevýhodou profilového broušení je, že pro ozubená kola s jiným modulem a jiným počtem zubů je potřeba jiný tvar BK.

Obr. 4.7 Profilové broušení: a) dva brousicí kotouče s profilem ve tvaru boku zubu, b) jeden brousicí kotouč s profilem ve tvaru zubové mezery [25]
4.5.2. Odvalovací broušení

Odvalovací broušení je přesnější a výkonnější než broušení profilové. Dělí se do dvou skupin a to na kontinuální a diskontinuální. V obou případech jsou boky zubů vytvářeny jako obálky jednotlivých poloh geometrické polohy brousicího kotouče (BK).

4.5.2.1. Diskontinuální odvalovací broušení

Diskontinuální odvalovací broušení je v podstatě broušení dělicím způsobem s odvalem boku zubu [5]. Existují dva principy tohoto procesu. První využívá jeden BK ve tvaru lichoběžníkového profilu (systém NILES) a druhý spočívá v použití dvou talířových BK (systém MAAG).

> Systém NILES

Na obrázku 4.8 je znázorněno schéma odvalování boku zubu po BK s osovým profilem odpovídajícím základnímu profilu zubu. BK kromě rotace vykonává také přímočarý vratný pohyb ve směru osy broušeného kola [5], přičemž se obráběné ozubené kolo příslušně pootáčí, čímž dochází k tzv. odvalu. Bok zubu je broušen postupně směrem od paty k hlavě. Po broušení jedné zubové mezery dojde k pootočení ozubeného kola a následuje broušení dalších boků zubů.

Obr. 4.8 Schéma odvalování boku zubu po jednom BK s profilem zubu ozubeného hřebenu – systém NILES [5]

Systém MAAG

Při broušení systémem MAAG jsou používány dva talířové BK, které mohou být skloněny pod úhlem záběru α (obr. 4.9 a) nebo jsou postaveny kolmo (obr. 4.9 b). Při broušení kolmo postavenými kotouči vytvářejí pracovní plochy kotoučů rovnoběžné plochy dvou zubů pomyslného hřebene s úhlem záběru nula stupňů [5]. V obou případech je odvalovací pohyb vytvářen superpozicí příčného a rotačního pohybu obrobku [5]. Díky střídavému pohybu příčného suportu dochází k postupnému odvalování a broušení zubové mezery. Současně také dochází

k pohybu podélného suportu, díky čemuž je bok zubu obroušen po celé své délce. Po dokončení broušení dojde k pootočení ozubeného kola o jednu rozteč a vše se opakuje.

Broušení se skloněnými BK může probíhat hranou nebo plochou. Produktivnější je plochou, protože při něm lze použít vyšší posuvovou rychlost [5]. Při broušení s kolmo postavenými BK dochází k dotyku BK s bokem zubu v jednom bodě.

Obr. 4.9 Schéma broušení systémem MAAG a) pomocí dvou BK skloněných pod úhlem záběru, b) s kolmo postavenými BK [5]

4.5.2.2. Kontinuální odvalovací broušení – REISHAUER

Broušení odvalovacím způsobem probíhá za použití brousicího kotouče (BK) ve tvaru šneku. Tato metoda je označována jako systém REISHAUER. Princip metody je velmi podobný principu odvalovacího frézování (viz. kapitola 4.2), avšak místo odvalovací frézy je použit tvarový brousicí kotouč, který je na pracovním povrchu opatřen jednoduchou nebo dvouchodou šroubovicí, která nekonečným počtem obálkových profilů svého závitu vytváří požadovaný profil broušeného ozubení [33]. Základní podmínka při broušení ozubených kol metodou REISHAUER je synchronní běh nástroje a obrobku. BK koná dva pohyby – jednak rotuje kolem vlastní osy, díky čemuž je vyvozen řezný pohyb a dále dochází k pohybu BK ve směru broušených zubů, aby bylo obroušeno ozubení po celé délce ozubeného kola (OK). OK (tj. obrobek) taktéž rotuje kolem vlastní osy a to tím způsobem, že za jednu otáčku BK se pootočí o jednu zubovou rozteč [33].

Kinematická charakteristika procesu kontinuálního odvalovacího broušení je znázorněna na obr. 4.10. Záběr obrobku s tvarovým brousicím kotoučem (viz. výše) je analyzován pomocí vloženého teoretického základního hřebene [14]. Valivý bod *P* je pro názornost na obrázku 4.10 oddělen do dvou bodů. Bod *P*_{S-H} znázorňuje bod záběru BK se základním hřebenem. V případě nehybného tvarového brousicího kotouče koná bod záběru *P*_{S-H} pohyb po trajektorii ve tvaru šroubovice (na obr. 4.10 jsou znázorněny tři úhlové polohy označené jako $\varphi_{S1, 2 a 3}$). Valivý bod záběru základního hřebene

s obrobkem je pak označen jako P_{H-W} . Tangenciální rychlost v_{Hy} kinematicky vyznačuje záběr základního hřebene a obrobku. Záběr tvarového brousicího kotouče a základního hřebene je charakterizován složkou rychlosti v_{Sz} tvarového brousicího kotouče vůči základnímu hřebeni ve směru osy Z_s.

Obr. 4.10 Kinematická charakteristika kontinuálního odvalovacího broušení – systém REISHAUER [14]

W – obrobek, S – brousicí šnek, H – základní hřeben, O_W (X_W, Y_W, Z_W) – souřadný systém obrobku, O_S (X_S, Y_S, Z_S) – souřadný systém brousicího šneku, τ_{H-W} – valivá rovina základního hřebene a obrobku, τ_{S-H} – valivá rovina brousicího šneku a základního hřebene, p_W – tvořicí rovina, P_{H-W} – valivý bod záběru základního hřebene s obrobkem, P_{S-H} – bod záběru brousicího šneku se základním hřebenem, φ_{S1, 2, 3} – úhlové polohy brousicího šneku v různých okamžicích záběru, k_W – kontaktní úsečka záběru základního hřebene s obrobkem, n_W [min⁻¹]- otáčky obrobku, n_S [min⁻¹]- otáčky brousicího šneku, v_{Hy} [m.s⁻¹] – tangenciální rychlost základního hřebene, v_{Sz} [m.s⁻¹] – složka rychlosti brousicího šneku vůči základnímu hřebeni ve směru Z_S.

5. Mechanizmus vzniku zbytkových napětí při broušení ozubených kol

Broušení všeobecně patří mezi metody obrábění s nedefinovanou geometrií břitu. Materiál je odebírán současně velkým počtem zrn (břitů) s nepravidelným tvarem a negativním úhlem čela. K úběru materiálu dochází vlivem abrazivního účinku brusných zrn v interakci s povrchem obrobku. Jelikož jsou zrna schopna přenášet pouze malé síly, dochází v průběhu operace k samovolnému uvolňování jednotlivých zrn – dochází k tzv. samoostření brousicího kotouče [2].

Na obrázku 5.1 je znázorněn princip realizace úběru materiálu při operaci broušení. Ve fázi *I* dochází k "nárazu" brusného zrna do povrchu obrobku a následně zrno klouže po povrchu obrobku a dochází pouze k elastickým deformacím. V důsledku těchto procesů dochází ke vzniku tepla. V následující fázi *II* již brusné zrno vytváří rýhu v důsledku vznikajících plastických deformací a na okrajích vzniká val. V této souvislosti se zvyšuje teplota. V poslední fázi *III* dochází ke vzniku a oddělení třísky z odebraného materiálu o tloušťce a_{e ef}.

Obr. 5.1 Princip tvorby třísky při broušení [18]

Broušení ovlivňuje vlastnosti povrchové vrstvy jednak z hlediska drsnosti povrchu, ale také v oblasti zbytkových napětí. Zbytková napětí ovlivňují životnost a únavovou pevnost ozubených kol (OK). V provozu totiž dochází k superpozici s napětími vyvolanými v důsledku vnějšího zatížení. Na obrázku 5.2a je znázorněna křivka charakterizující rozložení teploty v povrchové vrstvě. Po překročení teploty θ_2 je vrstva 1 deformována plasticky. Uvnitř této vrstvy se nevyskytují vnitřní napětí, tzn., že nepůsobí na vrstvu 2. Ve vrstvě 2 dochází v důsledku teplotních rozdílů pouze k elastické deformaci. Poslední vrstva 3 již není procesem broušení teplotně ovlivněna. Obr. 5.2b pak znázorňuje popsanou situaci z hlediska zbytkových napětí σ . Ve vrstvě 1 se nevyskytují žádná zbytková napětí, vrstva 2 se snaží roztáhnout (tlakové napětí), čemuž brání vrstva 3 (vyrovnávací tahové napětí) [31]. Na další části obrázku (5.2c + d) je zobrazen stav po přejetí brousicího kotouče, kdy dochází k chladnutí. Při poklesu teploty vrstvy 1 pod hodnotu θ_2 přechází vrstva z plastického do pružně plastického stavu a má snahu se zkrátit. Následkem toho vznikají ve vrstvách 2 a 3 vyrovnávací tlaková napětí. Na obrázku 5.2e je naznačen skutečný typický průběh zbytkových napětí po broušení [31]. Tlakové zbytkové napětí těsně pod povrchem je způsobeno superpozicí deformačních a strukturních změn.

Obr. 5.2 Schéma vzniku zbytkových napětí při broušení [31]

Dle literatury [7] lze popsat tři základní typy hloubkových profilů zbytkových napětí (viz. obr. 5.3), které jsou ovlivněny kombinací mechanického a tepelného účinku při procesu broušení.

Obr. 5.3 Typy hloubkových profilů zbytkových napětí po broušení [7]

Typ *I* ukazuje na situaci, kdy byl v rámci broušení převládající vliv tepelného účinku. V tomto případě dosahují zbytková napětí v povrchové a podpovrchové oblasti obrobku kladných hodnot (tj. zbytková napětí jsou tahová). Následkem toho vzniká potenciál ke vzniku a šíření mikrotrhlin, což je jev nežádoucí. **Typ II** charakterizuje průběh hloubkového profilu zbytkových napětí při kombinaci tepelného a mechanického účinku v rámci operace broušení. Jedná se o nejčastější typ průběhu zbytkových napětí. Maximální hodnota zbytkových napětí je pod povrchem obrobku. Může dosahovat jak kladných (obr. 5.3), tak záporných hodnot. Velikost a charakter zbytkových napětí je závislá na poměru vlivu tepelného a mechanického účinku. V důsledku tahových hodnot zbytkových napětí pod povrchem může dojít k rozvoji trhlin a jejich šíření směrem k povrchu součásti.

Typ III znázorňuje hloubkový profil zbytkových napětí po operaci broušení, kde byl převládající vliv mechanického účinku oproti tepelnému.

6. METODIKA EXPERIMENTŮ

Tato kapitola je věnována metodice experimentů, tj. stanovení podmínek experimentů, nastavení měřicích zařízení atd. V následující tabulce jsou uvedeny podmínky experimentů.

Tab. 2 Podmínky experimentů

Zkušební	vzorky		planetová ozubená k	ola						
materiál			18CrNiMo7-6							
normální	modul		m _n = 5							
počet zub	ů		z = 20							
úhel sklor	nu zubu		β = 0°							
požadova	ný stupeň	přesnosti	7 dle ČSN ISO 1328-1							
radiální pi	ídavek na	broušení		0,5	[mm]					
Dodavate	l teplenéh	o zpracování								
				43			1			
				114			1			
А	cementa	ce, pískování	dávky TZ	116	sšog	et OK	1			
			,	219			7			
				223			2			
				224			5			
В	cen	nentace	dávky TZ	239 B	poče	et OK	4			
С	cementad	e, kuličkování	dávky TZ	264 B	poče	et OK	4			
Podmínky	experime	ntu								
Způsob br	oušení	odvalovací bro	oušení - metoda REISH	AUER						
Stroj		Bruska	Gearspect SBO 400 CNC							
Procesní k	apalina	Dascalone 598	3 DB-R							
Brousicí k	outouč	WINTERTHUR	T1SP-350x104x106 MC							
					v _{c1}	23	[m.s ⁻¹]			
Řezná nycl	bloct				v _{c2}	35	[m.s ⁻¹]			
Reznaryci	nost				v _{c3}	44	[m.s ⁻¹]			
					v _{c4}	52	[m.s ⁻¹]			
					a _{e1}	45	[µm]			
Efektivní l	aloubka zá	hăru			a _{e2}	55	[µm]			
LIEKUVIIII		beru			a _{e3}	71	[µm]			
			a _{e4}	83	[µm]					
Měžoné n	oromotro.	magnetoelast	tický parametr		mp		[-]			
ivierene p	arametry	zbytkové nap	ětí v povrchové vrstvě		σ _L , σ _T		[MPa]			
magnetoelastický analyzátor Microscan 600-1										
менсі ара	aluid	rentgenový di	ifraktometr XSTRESS 3	000						

6.1. Zkoumané vzorky

V rámci této práce budou zkoumanými vzorky planetová ozubená kola (OK) používaná ve větrných elektrárnách pro servisní účely. Parametry OK budou následující:

- materiál 18crNiMo7-8 (materiálový list viz obr. 6.2),
- normální modul $m_n = 5$,
- počet zubů z = 20,
- úhel sklonu zubu β = 0° (tj. přímé zuby),
- požadovaný stupeň přesnosti: 7 dle ČSN ISO 1328-1
- radiální přídavek na broušení = 0,5 mm.

Výrobní výkres ozubeného kola se všemi dalšími parametry je v příloze 1. Každé OK bude řádně označeno a to číslem OK, číslem dávky tepelného zpracování, čísly zubů a bude označen levý i pravý bok zubu (viz. obr. 6.1). Označení levý a pravý bok bylo odvozeno od pohledu na profil upnutého ozubeného kola. OK bude upnuto na rozpínací trn vždy označenou stranou nahoru. Číslem 1 bude vždy označen zub, který bude při procesu broušení jako první v záběru s brousicím kotoučem.

Obr. 6.1 Ukázka značení ozubeného kola

Na obrázku 6.2 je znázorněn materiálový list chrom-nikl-molybdenové oceli 18CrNiMo7-6. Jedná se o ocel určenou pro vysoce namáhané strojní součásti, kam ozubená kola jednoznačně patří. Ocel je určena k cementování. Díky této operaci tepelného zpracování dochází ke zvýšení odolnosti proti opotřebení a únavové pevnosti. Cementovaná součást je na povrchu tvrdá, ale jádro zůstává houževnaté [21].

	Pře	hled v	astno	ostí o	oceli 1	8CrNi	Mo7	-6							1.6	6587	
Druh oceli	Středně legovana	ušlechtila	chrom-	nikl-m	olybdeno	vá ocel k	ceme	ntovár	ní								
TDP	ČSN EN 10084				198												
Drivejši označeni	17CrNiMo6 podle	DIN 1721	0 Xánhin		* as casa ina	namaha		manta		nation in a s	tonoln		av rámí a	أسطححما		na manala i i da mad	anti 67
Charakteristika	až 64 HRC, zatín Ocel prokaluje do	co jádro c hloubky	emento přibližně	vané s 60 mr	oučásti je n. Je vho	e i při rela dná pro	ativně dynam	vysoké icky n	é pevno namáha	osti znači ne souča	tëpern të hou ssti.	ževnaté.	Přísad	da Mo z	vyšuje	prokalitelr	ost,
	С	Si max.	Mn		P max.	S max	:	Cr		Mo	N	I	Al				
Chemické složení v % hmot. (rozbor tavby)	0,15 - 0,21	0,40	0,50 - 0,90		0,035	0,03	0,035 1,50 - 1,80		0	0,25 - 0,35	1,40 - 1,70 (Při kontrolované velikosti austenitického zrna 0,015-0,050 (informativně,není uvedeno v norm)50 vrmě).	
Dovolené odchylky ve výrobku od rozboru tavby ³⁾	± 0,02	0,03	± 0,04	4 4	+ 0,005	+ 0,0	+ 0,005 ± 0,05		05	± 0,03	: 0,03 5 ± 0,05						
Mechanické vlastnosti	Průměr n	m	Rp	0,2 min	n MPa		Rm №	Pa	3 9	A min	%	Z	min %		K	CU min. J.	cm ⁻²
v jádře referenčního vzorku po	d ≤ 11			980		1	230 -	1520	8	9	_		<i>i</i> .			30	
(uvedené hodnoty neisou součástí	11 <d≤2< td=""><td>25 50</td><td>-</td><td>640</td><td><u>15</u></td><td>5</td><td>$\frac{180 - 1}{25 - 1}$</td><td>320</td><td>-</td><td>9 10</td><td></td><td></td><td></td><td></td><td></td><td>35</td><td></td></d≤2<>	25 50	-	640	<u>15</u>	5	$\frac{180 - 1}{25 - 1}$	320	-	9 10						35	
EN 10084) ¹⁾		00	+	490		6	65 - 1 685 -	980		10	-		-	-		35	
	Zpracováno na střihateln (stav S)				Žíháno	na měkl	(A)		Z	pracován tvrdo	io na ri isti (T⊢	ozmezí I)		Zp rac perliti	ováno ckou s	na feritick trukturu (F	ው P)
max. 255 max. 229 179 - 229 159 - 207																	
pro stav :	Stav po	válcování		-	Stav p	o norma	izaci		Ží	nàno na j	globula	irní cem	entit (vh	nodné pi	ro tvář	ení za stuc	ena)
	ca 2	70 4)			Ġá	a 260 4	2					'n	ax. 180	D ⁴⁾			
Brokalitalnast ²⁾	Druh Meze						Vzdá	lenost	t od plo Tvrc	chy kalei lost v HR	ného č :C	ela v mn	1				
Prokaliteinost	max.	1,5 48		3 48	5 48	7 48	9 47		11 47	13 46	15 46	20 44		25 43	30 42	35 41	40 41
	min.	40		40	39	38	37		36	35	34	32		31	30	29	29
	HH max.	48		48	48	48	47		47	39	46	44	-	35	42	41	41
	max.	45		45	45	45	44		43	42	42	40		39	38	37	37
min. 40 40 39 38 37 36 35 34 32 31 30 29									29								
50 45 40 30 25 20 15 10 9 20 15 10 9 20 15 10 9 20 15 10 9 20 15 10 9 20 15 10 9 20 15 10 10 10 10 10 10 10 10 10 10 10 10 10	P R R S S	40	- H H - H H - H H	H max L min min max		MPa	500 - 400 - 300 - 200 - 100 - 900 - 800 - 500 - 500 - 500 -			křivka (1	efere	nčni vzc	ogg st.C	ůměr 10	0 mm)		Rm Rp0,2
Tváření za tenla	Deperuidené roz	mazítania	t n ro tur	Tec	chnologi	CKe Vias	tnosti	8									
	Normalizační žíhání °C	Žíháni měkko °C	ina S	Isoter žíhán	mické ní°C	Teploti cemen	tace °(C K	Feplota kalení n jádro °(a 2 ^{b)}	Tepl kaler vrstv	ota nina u°C ^{b)}	Ter po °C	plota pouštěr	11 c)	Teplota ka pro Jomin zkoušku ^o	lení /ho C
	850	600 až	680	850 a 640 -	až 950 3 hod	880 a:	2 980	+	830 -	- 870	780	až 820 olei	150	0 až 200)	860 (pro	lleva
Tepelné zpracování	Body přeměny :	Ac ₁ ~ 735	°C, Ac	~ 810°	C. Ms (2	akladní	materi	al) ~ 3	360°C.	Ms (cen	nentov	aná vrst	/a) ~ 18	30°C			
	Uvedené podmí ^{a)} při jednoduché ^{b)} mimo oleje při možné deforn ^{c)} doba popoušte	nky jsou d m kalení chází v úv race po ka iní minima	oporuče se ocel l ahu i tej alení. ilně 1 ho	ené. kalízte pláláze od.	eploty cer eň 160 až	mentace 250° C.	nebo Způso	nižši (ob ochl	(závisl i lazovár	na tvaru v ni závisi i	výrobk na tvai	u). u výrobk	u s ohl	edem ni	a		
Obrobitelnost	Pro dobrou obro	bitelnost j	e výhod	ný stav	FPpop	řípadě st	av A										
Střihatelnost	Ocel je střihatel	ná za stud	lena ve	stavu.	žíhaném												
 ¹⁾ Slouží k průkazu dosažitelnosti me Rp0,2 - mez 0,2; Rm – pevnost v ²⁾ Pro ocel objednanou bez požadaví ³⁾ ± znamená, že u jedné tavby smí b 	chanických hodno tahu; A - tažnost w na prokalitelnos ýt překročena horr	v jádře o (počátečn jsou hodi i nebo spi	dpovídaj í délka l hoty pro odní hra	jícího p L₀ = 5,6 kaliteln nice ro	orůřezu re 55√S₀);K(nosti pouz vzmezí ro	eferenčni CU – nár se inform zboru tav	hovzo azová ativní. /by, ali	orku p práce, e nikol	o kaler , zkuše li obě s	ií a popu: bní těles: oučasně:	štění. o KCU	s U-vrut	em.				

⁴⁾ Uvedené údaje jsou informativní a nejsou součástí EN 10084.
 ⁵⁾ Pro Mo>0,30% je odchylka ± 0,04%

Obr. 6.2 Materiálový list oceli 18CrNiMo7-6

Obr. 6.3 První část technologického postupu

		VÝROBEK: SOUČÁST:	
		NÁZEV: (12)	LIST: 2 LISTŮ: 2
MATER	Á1	PLANETOVÉ KOLO I	
MATERI	AL: 18CrNiMo7-6-	POLOTOVAR: POCET KS:	
			.
Ċ.op.	Pracoviště	Popis práce:	Pomůcky:
060/007	HS 3800	FRÉZOVAT ZUBY	up. trn
070/008	05836 HS 3800	 upnout na trn více kusů fréz.ozub. s přídavkem 0,15 na bok zubu dodržet patní průměr. SRAZIT HRANY 	fréza N ZOL 033
	15 892	- srazit hrany na čele ozubení 0,4 x 45°až 0,6 x 45°	
080/009	HS 3800 09860	KONTROLOVAT - rozměry dle Tg.postupu a výkresu	
090/010	HS 3630 51 814	CEMENTOVAT - hloubka cementační vrstvy h = 1,25 ÷ 1,5 mm	
100/011	HS 3630 21 814	KALIT - HRC 58 + 4	
110/012	HS 9336 28 676	KONTROLA TVRDOSTI - tvrdost cementační vrstvy 58 + 4 HRc	
120/013	HS 3630 16 134	PÍSKOVAT - jemně pískovat , nepoškodit ozubení	
130/014	HS 3630 99998	POPSAT - číslem dávky tep. zpracování	
132 (3)(5)(11)	HS 3800 44443	SOUSTRUŽIT na Ø 68,15-68,16; Ra 1,2 max.; házení ozubení 0,04 max.	U ZOL 1193
140/016 (4)	HS 3800 05562	BROUSIT OTVOR (HONOVAT)	
150/017 (2)	HS 3800 05886	BROUSIT OZUBENÍ - hotově dle výkresu - 4 kusy s rozdílným rozměrem přes zuby max. 0,01 shodně značit	rozp.pouzdro
160/018	HS 3800 15 892	SRAZIT HRANY - srazit hrany na ozubení 0,3 až 0,5 x 45 °	
170/019	HS 3800	KONTROLA DEFEKTOSKOPEM - demagnetovat	Contraction of the second s
190/021	HS 3800	KONEČNÁ KONTROLA	
200/022	HS 3800 09421	KONZERVOVAT - BALIT - ULOŽIT	
Datum:		Vypracoval: Schválil:	
Index (11)1x	Pož. dílnv: 7	Změna Datum Podpis 3 změna drsnosti a rozměrů 3.XI.09 Ř 4	
(12) 4x	Konstrukčn	ní změna "I " 51210 Ď 5	

Obr. 6.4 Druhá část technologického postupu

Postup tepelného zpracování

lázev so	oučásti			Sta anuštatu				Číslo výk	resu		
				JIS. SOUČASTI:							
Planete	ové ko	olo									
	and a d	4. mal 4!			očet listů: 1			Číslo list	u: 1		
K	ontrola	IVFOOSTI			Výchozí materiál a stav		Kone	ečný mate	eriál a s	stav	
				1		výkovek					
				1	(18CrNiMo	7-6+HH)					
	-	///		62	Váha 1 ks v kg						
					Přehled tepelného postu	ipu:					
	Ч	////			Cementovat do hl.	.50 m	m.				
		Ø	115		kalit popustit	na HRC	58 -6	-62			
			-		Kain, popusit	SOLO	00 0	-			
	Pra	coviště				0010		Pro 1 v	ložení		
Číslo				Popis	práce	Výrobní	kusů	teplota	Čas	v min.	
oper.	číslo	druh				pomůcky	L	°C	zahřátí r	na teplotě	
			<u> </u>								
010	2		Odmaštene a	osušenė souca	asti viozit svisle do kose						
	2	Zou zoříz	Zavázt do por	oč 1							
	3	Zav.zariz.	Předebřát na t	enlotě pod enc	lo atmosférou			780		30	
	4	Pec 4	Cementovat	lo hl.: 1.25-1.5	0 mm		1				
	<u> </u>		C - potenciál -	-1,2%- 7 hod.				925±5		~9,5 h	
				0,7%- 2,5 hod			(dle zk	oušek	()		
011			Vyjet do předk	omory, snížit t	eplotu					5-10	
			Zajet do pece	a temperovat i	na kalici teplotě			820		~ 60	
			C-potenciál 0,	65-0,8%.				±5			
			Kalit do tepléh	o oleje				60-90		~ 15	
			Odkapat v pře	dkomoře, vyje	t na vzduch						
	5	Ргаска	Odmastit v pra	acce, osusit							
	6	Mraz box	Do 4 hod no l	calení zmrazit	na teplotu		m	inus 60	1	60-90	
	7	Popouštěc	Popustit v pop	ouštěcí peci r	na teplotu,			150-		90-	
	1	pec	ochladit na vz	duchu				200		120	
012	8	Pecián	Zaleštit plošk	u do hl.:	a unature O 1mm				+		
	-	Smirk.plat	Kentrolovet ti	pro	o vrstvu U, Imm				-		
	9	I vruomer	cementov čá	st HRc 58 -6	2			e			
			necemtov, čá	ist : 1080-1420	–)MPa -provést v metal.la	ab. na výl	orusu				
				336-450 H	V (34-44,5 HRC)						
	10	D' L L					_	I	I	L	
013	10	Pisk.kom	Jemné písko	vat							
			Poznámka: J	leden kus z dá	vky předat do metalurgi	e	_				
			na zjištění	hloubky cemer	nt. vrstvy, tvrdosti		-	MF	TALU	RGIE	
			cem. vrstvy	y a jádra a mik	rostruktury.		L	1			
Vypra	coval:										
Datum	1:				Т						
Změna	a	Ve výrob	e od, podpis								
-											
1											

Obr. 6.5 Postup tepelného zpracování

Na předchozích stranách (obr. 6.3 a 6.4) je uveden informativní výrobní postup planetového ozubeného kola (OK). Polotovarem OK je výkovek o stupni přesnosti F dle ČSN EN 10 243-1, skupiny obtížnosti kování M1 a členitosti tvaru S1. Hloubka cementované vrstvy CHD je 1,0 - 1,4 mm a tvrdost cementační vrstvy po kalení dosahuje hodnot 58-62 HRC. V rámci postupu výroby je nejprve soustružena jak vnější část OK, tak i vnítřní díra. Poté je OK upnuto na trn a následuje odvalovací frézování zubu s přídavkem 0,15 mm na bok zubu. Po kontrole rozměrů dochází k tepelnému zpracování (TZ) výrobků. Hlavním cílem tepelného zpracování je cementování a kalení součástí. Podrobný postup tepelného zpracování používaný přímo v České zbrojovce v Uherském brodě (ČZUB) je zobrazen na obrázku č. 6.5 (předchozí strana). Jelikož kapacita metalurgického provozu není dostačující, je část OK tepelně zpracovávána u dalších 2 dodavatelů, jak je uvedeno v tabulce č.2. Požadavky na kvalitu součástí jsou v obou případech stejné. Existuje tu však jeden rozdíl. Tepelně zpracovaná OK v ČZUB (= sudodavatel A) se pískují. U prvního vnějšího dodavatele TZ (= subdodavatel B) je tato operace zcela vypuštěna. Naopak u druhého vnějšího dodavatele (= subdodavatel C) jsou místo pískování OK kuličkována. Po TZ již dochází k broušení ozubení odvalovacím kontinuálním způsobem. Tato problematika bude podrobněji popsána v následující kapitole. Po operaci broušení dochází ke kontrole OK.

6.2. Technologie broušení ozubených kol

Tato kapitola je detailněji věnována operaci broušení. Ozubená kola budou broušena metodou kontinuálního odvalovacího broušení. Teorie tohoto procesu je popsána v kapitole 4.5.2.2. Výroba ozubených kol (OK) bude probíhat za použití odvalovací brusky Gearspect SBO 400 CNC (obr. 6.6).

Obr. 6.6 Odvalovací bruska Gearspect SBO 400 CNC

Na následujícím obrázku 6.7 je zobrazen pohled do pracovního prostoru brusky. Je zde viditelný jednak brousicí šnek, ale také OK upnuté na rozpínacím trnu.

Obr. 6.7 Pracovní prostor odvalovací brusky Gearspect SBO 400 CNC

Pro broušení OK bude pro všechny experimenty používán brousicí šnek od firmy WINTERTHUR s označením T1SP – 350 x 104 x 160 MOD. 5.0 EW 20GRD1CG 93A120 H18VPLF29/601W (obr. 6.8). Brousicí šnek bude orovnán vždy po broušení 14 kusů OK za použití dvojice orovnávacích kotoučů výrobce Dr. Kaiser. Procesní kapalinou bude syntetický řezný olej Dascolene 598 DB-R.

Obr. 6.8 Brousicí šnek WINTERTHUR T1SP – 350x104x160 MOD. 5.0 EW 20GRD1CG 93A120 H18VPLF29/601W

V předchozím textu byly popsány řezné podmínky v širším smyslu slova. Jednalo se o typ brusky, druh brousicího šneku a druh procesní kapaliny. Tyto podmínky byly pro všechny experimenty konstantní. Proměnnými řeznými podmínkami v užším smyslu slova bude řezná rychlost v_c [m.s⁻¹] a efektivní hloubka jednoho záběru a_e [µm].

Tab. 3 Seznam ozubených kol

číslo OK	dodavatel TZ	dávka TZ	řezná rychlost [m.s ⁻¹]	efektivní hloubka jednoho záběru [µm]
1	A (cementace, pískování)	224	kor	ntrolní OK
2	A (cementace, pískování)	224	23	45
3	A (cementace, pískování)	219	23	45
4	A (cementace, pískování)	219	52	45
5	A (cementace, pískování)	219	52	71
6	A (cementace, pískování)	219	23	71
7	A (cementace, pískování)	224	23	45
8	A (cementace, pískování)	224	23	45
9	A (cementace, pískování)	224	23	45
10	A (cementace, pískování)	219	23	55
11	A (cementace, pískování)	219	35	55
12	A (cementace, pískování)	219	kor	ntrolní OK
13	B (cementace, -)	239 B	23	45
14	B (cementace, -)	239 B	23	45
15	B (cementace, -)	239 B	44	83
16	B (cementace, -)	239 B	44	83
17	A (cementace, pískování)	219	kor	ntrolní OK
18	A (cementace, pískování)	219	-	-
19	A (cementace, pískování)	219	-	-
20	A (cementace, pískování)	223	23	45
21	A (cementace, pískování)	223	kor	ntrolní OK
22	A (cementace, pískování)	220	23	45
23	A (cementace, pískování)	43	23	45
24	A (cementace, pískování)	116	23	45
25	A (cementace, pískování)	114	23	45
26	C (cementace, kuličkování)	264 B	44	83
27	C (cementace, kuličkování)	264 B	23	45
28	C (cementace, kuličkování)	264 B	23	71
29	C (cementace, kuličkování)	264 B	-	-
30	C (cementace, kuličkování)	264 B	kor	ntrolní OK

V současné době je používaná řezná rychlost $v_c = 23 \text{ [m.s⁻¹]}$. V rámci experimentů budou dále testovány následující řezné rychlosti:

- $v_c = 35 \ [m.s^{-1}],$
- $v_c = 44 \ [m.s^{-1}],$
- $v_c = 52 \,[\text{m.s}^{-1}].$

Další proměnnou je efektivní hloubka jednoho záběru a_e [µm]. Celkový přídavek na operaci broušení je 0,5 mm a používaná efektivní hloubka jednoho záběru a_e = 45 [µm]. V rámci experimentů budou dále použity a_e :

- *a_e* = 55 [μm],
- $a_e = 71 \, [\mu m],$
- *a_e* = 83 [μm].

V tabulce č. 3 je seznam ozubených kol (OK), která budou podrobena experimentům. U každého OK je uvedeno, u kterého subdodavatele TZ bylo zpracováno, jaké je příslušné číslo dávky TZ a dále za jakých řezných podmínek bude OK broušeno (tj. jaká bude použita řezná rychlost a efektivní hloubka jednoho záběru).

6.3. Měření metodou analýzy Barkhausenova šumu

Jako první bude provedeno hodnocení integrity povrchu za použití metody analýzy Barkhausenova šumu. Princip této metody je popsán v kapitole 3.3.1. Jako měřicí zařízení bude použit přístroj MicroScan 600-1 (obr. 6.9), který se skládá z jednotky Rollscan [0 a programů Viewscan a Microscan.

Obr. 6.9 MicroScan 600-1

Ozubená kola budou hodnocena (OK) dvěma zubovými snímači. Prvním bude nízkofrekvenční snímač č.5516 (majetek ČZUB) a druhý, vysokofrekvenční, snímač č.5912 bude zapůjčený od firmy PCS s.r.o. Ukázka snímače ve styku s OK je zobrazena

na obrázku 6.10. Integrita OK bude hodnocena již před operací broušení a to oběma snímači. Dále pak, vyjma vybraných vzorků, u kterých byl hodnocen pouze vliv tepelného pracování (TZ), bude provedeno měření po operaci broušení.

Obr. 6.10 Ukázka měření boku zubu zubovým snímačem

Jako první bude provedeno měření přeběhů magnetizačního napětí a magnetizační frekvence. Na základě výsledků pak bude zvoleno optimální nastavení magnetizačního napětí a magnetizační frekvence na přístroji Microscan 600-1. V rámci měření jednoho boku zubu bude změřeno min. osmdesát hodnot magnetoelastického parametru (MP), aby mohly být výsledky spolehlivě statisticky zpracovány. Program Viewscan z naměřených hodnot na základě následujících vztahů vypočítá standardní odchylku:

$$sDev = \sqrt{\sum_{i=0}^{n-1} (x_i - menval)^2 / n}$$
 (7.1)

$$meanval = \sum_{i=0}^{n-1} x_i / n,$$
 (7.2)

kde: meanval = průměrná hodnota,

x = vstupní hodnoty MP,

n = počet měřených bodů,

sDev = standardní odchylka.

Tyto statisticky zpracované hodnoty budou použity pro sestrojení grafů a vyvození závěrů. Jelikož nízkofrekvenční snímač č.5516 (majetek ČZUB) si nebude možné půjčit na měření mimo závod v Uherském Brodě, bude potřeba stanovit tzv. koeficient pro přepočet hodnot mezi snímačem č.5516(ČZUB) a vysokofrekvenčním snímačem č.5912(PCS).

6.4. Princip výběru vzorků pro další analýzy

Jelikož má každé ozubené kolo 20 zubů, bude nutné přistoupit k výběru zubů, které budou podrobeny dalším analýzám. Pro další výzkum budou vybrány vždy dva zuby z každého ozubeného kola (OK). Kritériem bude minimální a maximální absolutní hodnota rozdílu naměřených hodnot MP mezi levým a pravým bokem zubu. Toto kritérium je zvoleno z toho důvodu, aby byly zkoumány zuby "nejlépe" broušené (minimální rozdíl) a "nejhůře" broušené (tj. maximální rozdíl).

Na základě předchozího výběru budou za pomoci rozbrušovací pily DELTA z každého OK odděleny dva zuby (obr. 6.11). Pro řezání vzorků byla vybrána rozbrušovací pila DELTA díky tomu, že řezání probíhá díky tzv. studenému řezu, tj. oddělením zuby by nemělo dojít ke změnám integrity povrchu v důsledku tepelného ovlivnění. Tyto vzorky budou řádně označeny a připraveny pro další analýzy.

Obr. 6.11 Oddělení dvou vybraných zubů určených pro další analýzy za použití rozbrušovací pily DELTA

Po oddělení vzorků bude potřeba navrhnout, zkonstruovat a vyrobit speciální přípravek, do které bude upnut oddělený zub. Účelem tohoto přípravku bude především zajištění opakovatelnosti a spolehlivosti měření. Zub by měl být upnut tak, aby bylo možné vložit vzorek pod hlavu difraktometru. Dále bude díky přípravku možné měřit hloubkové profily hodnocených veličin.

6.5. Měření zbytkových napětí

Kromě hodnocení magnetoelastického parametru budou měřena zbytková napětí pomocí rentgenové difrakční analýzy (RTG) metodou $sin^2\psi$ (viz kap. 3.3.2). Měření zbytkových napětí bude provedeno v laboratořích Technické univerzity v Tampere

(Finsko) za použití mobilního difraktometru Xstress 3000 (obr. 6.12) od firmy Stresstech Oy. Pro hodnocení vzorků bude použito následující nastavení přístroje:

- Exp time [s]: 7 = čas, po který je vzorek vystaven rentgenovému záření při každém úhlu sklonu,
- No of incl: 4/4 = určuje počet naklonění pro negativní a pozitivní sklon,
- Incl [deg]: -45/45 = maximální úhel pro negativní a pozitivní sklon,
- Distance: 9,15 mm = vzdálenost mezi vzorkem a hrotem kolimátoru,
- Colimator: ø 3 mm = průměr kolimátoru,
- Xray Voltage [kV]: 30 = rtg napětí,
- Xray Current [mA]: 6,7 = rtg proud.

Pro zajištění opakovatelnosti měření bude hodnocený vzorek vždy upnut ve speciálním přípravku.

Obr. 6.12 Mobilní difraktometr Xstress 3000

Měření zbytkových napětí bude provedeno ve dvou směrech, a to ve směru vektoru řezné rychlosti – označeno jako osa x a ve směru kolmém – označeno jako osa y. Na obrázku č. 6.13 je zobrazen model zubu s vyznačenými směry měření.

Obr. 6.13 Model zubu s vyznačenými směry měření zbytkových napětí

6.6. Měření hloubkových profilů hodnocených veličin

Po měření MP a zbytkových napětí na povrchu zubů budou hodnoceny hloubkové profily těchto veličin. K získání hloubkových profilů bude použita metoda elektrolytického odleptávání vzorků pomocí přístrojů Struers Movipol-3 (obr. 6.14 vlevo) a LectroPol-5 (obr. 6.14 vpravo). Odleptávaný vzorek bude připojen ke kladnému pólu zdroje stejnosměrného proudu – tj. k anodě. Poté bude na požadované místo přiložena leštící pistole připojená na záporný pól – katodu a bude zajišťovat přívod elektrolytu. Při zapnutí zařízení dojde k postupnému rozpouštění vzorku připojenému k anodě a usazování odebraného materiálu v elektrolytu. Měření hloubky odebrané vrstvy bude prováděno za pomoci digitálního úchylkoměru Mitutoyo vždy ve středu odleptané plochy.

Obr. 6.14 Elektrolytické odleptávání vzorků pomocí přístrojů Struers Movipol-3 (vlevo) a LectroPol-5 (vpravo)

Na každém zubu bude hodnocen hloubkový profil v 7 bodech. Prvním bodem bude měření MP na povrchu vzorku za použitím univerzálního snímače č. 5910. Tento snímač je vybrán, jelikož na rozdíl od zubového snímače měří MP v jednom bodě. Další body hloubkového profilu budou hodnoceny po následujících cyklech doby odleptávání:

- 1. bod měřeno na povrchu,
- 2. bod 1 x 15 s,
- 3. bod 1 x 15 s,
- 4. bod 1 x 20 s,
- 5. bod 1 x 30 s,
- 6. bod 2 x 30 s,
- 7. bod 2 x 30 s.

Měřením hloubkových profilů bude také ověřena schopnost detekce podpovrchových trhlin metodou analýzy Barkhausenova šumu. V rámci experimentů nebude možné zaručit, u kolika vzorků budou zbytková napětí taková, aby ke vzniku trhlin pod povrchem došlo.

7. EXPERIMENTÁLNÍ VÝZKUM

Tato kapitola je hodnocení vybraných parametrů integrity povrchu a diskuze výsledků. Planetová zubená kola (OK) používaná ve větrných elektrárnách byla vyráběna ve firmě Česká zbrojovka, a.s. v Uherském Brodě v provozu letecké výroby a kooperací. Pro broušení vzorků byla použita bruska Gearspect SBO 400 CNC (viz metodika experimentů kap. 7). První část experimentů (hodnocení vzorků metodou analýzy Barkhausenova šumu před a po operaci broušení a porovnání vlivu dodavatelů a dávek tepelného zpracování) byla provedena přímo ve výrobním prostředí. Z tohoto důvodu bylo nutné v určitém směru ponížit počet experimentů, aby nedocházelo k narušení celkového procesu výroby daného provozu. Hodnocená ozubená kola byla tepelně zpracována u tří subdodavatelů. Tepelně zpracovaná OK v ČZUB (= sudodavatel A) se pískují. U prvního vnějšího dodavatele TZ (= subdodavatel B) je tato operace zcela vypuštěna. Naopak u druhého vnějšího dodavatele (= subdodavatel C) jsou místo pískování OK kuličkována. Další části experimentů byly realizovány jednak na Technické univerzitě v Liberci, ale také na Technické univerzitě v Tampere (Finsko), ve firmě Stresstech Oy (Jyväskylä, Finsko) a ve firmě Žďas a.s. ve Žďáru nad Sázavou. Zde bylo provedeno hodnocení magnetoelastického parametru (MP) a zbytkových napětí na povrchu zubů. Dále zde proběhlo měření hloubkových profilů hodnocených veličin za použití metody elektrolytického odleptávání.

7.1. Hodnocení ozubených kol metodou analýzy Barkhausenova šumu

Jako první bylo provedeno hodnocení integrity povrchu za použití metody analýzy Barkhausenova šumu. Princip této metody je popsán v kapitole 3.3. Jako měřicí zařízení byl použit přístroj MicroScan 600-1 (obr. 6.9 v kapitole 6.3), který se skládá z jednotky Rollscan 300 a programů Viewscan a Microscan.

7.1.1. Stanovaní optimálních hodnot nastavení přístroje

Pro stanovení nastavení optimálních hodnot magnetizačního napětí a magnetizační frekvence bylo třeba provést hodnocení přeběhů těchto veličin. Toto měření proběhlo za použití programu Viewscan. Na obrázku č. 7.1 je zobrazena ukázka záznamu měření magnetizačního napětí. Z těchto měření byla vybrána optimální hodnota nastavení **6,6 V**.

Ve stejném programu bylo dále provedeno hodnocení přeběhů magnetizační frekvence. Záznam tohoto měření je zobrazen na obrázku č. 7.2. Stejně jako v předchozím případě byla z těchto průběhů stanovena optimální hodnota nastavení magnetizační frekvence **125 Hz**. Tato frekvence je u měření magnetoelastických parametrů používána nejčastěji a u starších typů přístroje Rollscan je tato frekvence použita jako neměnná hodnota.

Obr. 7.1 Záznam měření přeběhů magnetizačního napětí

Pro hodnocení MP bylo tedy použito následující nastavení:

- magnetizační napětí 6,6 V,
- magnetizační frekvence 125 Hz,
- tvar magnetizačního signálu: sinus,
- filtr 70 200 kHz,
- interval čtení magnetoelastického parametru (MP): 50 ms,
- rozsah napětí (špička špička): 0 10 Vpp,
- frekvenční rozsah 10 1000 Hz,
- automatická demagnetizace vypnuta.

Obr. 7.2 Záznam měření přeběhu magnetizační frekvence

Tab. 4 Určení koeficientu pro přepočet hodnot MP mezi snímačem č.5516 (ČZUB) a snímačem č.5912 (PCS)

	PCS max ČZUB max	PCS prumer ČZUB prumer
OK 1 - zub 2 - levý bok	1,903	1,890
OK 2 - zub 8 - levý bok	1,824	1,820
OK 13 - zub 17 - pravý bok	1,794	1,795
OK 4 - zub 16 - pravý bok	1,759	1,743
OK 4 - zub 11 - levý bok	1,752	1,747
průměrný poměr	1,806	1,799

	×			×			×		
snimač číslo OK	CZUB	PCS	koeficient prepočtu			koeficient prepočtu	CZUB	MALEC	koeficient prepočtu
číslo měření	MP	MP	MP PCS / MP ČZUB	MP	MP	MP PCS / MP ČZUB	MP	MP	MP PCS / MP ČZUB
1	72.2	132.5	1.835	70.7	143.7	2.033	47.1	79.8	1.694
2	71	132,1	1,861	71,7	140,5	1,960	47,6	77,7	1,632
3	71,8	133,5	1,859	71,4	143,3	2,007	47	77	1,638
4	71,4	131,4	1,840	71,4	142,3	1,993	46,7	76,6	1,640
5	71,4	129,8	1,818	71,8	148,6	2,070	47	77,6	1,651
6	70,9	134	1,890	71,1	142,9	2,010	47,4	79,2	1,671
7	71,2	128,9	1,810	71,3	140,8	1,975	49,1	78,2	1,593
8	73,7	133,2	1,807	69,5 71.2	142,6	2,052	46,8	78,8	1,684
10	73.8	120,7	1,701	70.2	140,1	2,052	49.2	77.4	1,044
10	72	133.5	1,854	70,5	145.8	2,068	50.1	78	1,57
12	72,4	132,4	1,829	69,7	143,5	2,059	49	77,7	1,586
13	73,5	131,2	1,785	73,8	139,8	1,894	51,6	75,2	1,457
14	71,1	130,7	1,838	71,1	135,9	1,911	49,3	78,2	1,586
15	74,1	132,3	1,785	71,1	139,7	1,965	50,6	78,4	1,549
16	73,3	132,5	1,808	71,6	137,7	1,923	49,4	74,9	1,516
17	74,2	130,5	1,759	71,2	134,4	1,888	50,9	77	1,513
18	72,5	130,8	1,804	72,8	132,3	1,817	51	78	1,529
20	72.2	130,1	1,847	72,8	130,3	1,872	50,7	80.7	1,527
20	72,2	136.4	1,892	73.5	136.7	1,860	49.7	83.1	1,014
22	71,1	135,4	1,904	71,8	137,2	1,911	51,7	82,4	1,594
23	73	137,2	1,879	70	138,7	1,981	52	82,5	1,587
24	71,1	138,3	1,945	74,3	136	1,830	51,4	82,2	1,599
25	75	139,6	1,861	73,6	133,5	1,814	51,4	84,2	1,638
26	71	137,9	1,942	75,3	132,8	1,764	49,7	83,9	1,688
27	72,6	136,1	1,875	72,5	132,8	1,832	49,8	82,9	1,665
28	70,4	138,3	1,964	73,1	132,2	1,808	50,5	84,7	1,677
29	70.8	134,1	1,009	77,1	130,3	1,755	49,6 /0.7	04,0 82.4	1,703
31	71,3	135,9	1,906	74.8	133.1	1,701	-50	85.2	1,000
32	70,8	136,3	1,925	75,4	133,5	1,771	48,3	86,6	1,793
33	69	137,1	1,987	75,3	132,3	1,757	49,7	87,7	1,765
34	70,6	135,4	1,918	76,4	133,5	1,747	49,4	86,5	1,751
35	72,5	135,2	1,865	74,8	133,3	1,782	48,3	86,6	1,793
36	67,9	138,8	2,044	75	132,6	1,768	48,3	88,6	1,834
37	70,5	132,4	1,878	75	135,4	1,805	48	88,1	1,835
38	71,8	136,4	1,900	75,6	133,6	1,767	48,6	89,6	1,844
40	72,3	135.9	1,652	74,9	132,9	1,774	40,0	88	1,810
40	71.5	135.9	1,901	76.9	131.8	1,743	47.5	87.1	1,834
42	69,8	137,8	1,974	77,2	137,4	1,780	47,7	87,3	1,830
43	71,7	136,5	1,904	77,2	132,7	1,719	46,1	87,6	1,900
44	70,6	139,2	1,972	75,6	134	1,772	45,9	88,3	1,924
45	70,9	138,9	1,959	77,3	139,8	1,809	47,5	89,2	1,878
46	69,9	137,8	1,971	76,8	137,6	1,792	46,8	87,3	1,865
47	71,4	139,4	1,952	77,5	135,6	1,750	46,7	88,2	1,889
40	70,9 67.3	130,7	1,950	77,4	136,9	1,795	40,7	89,5 88,8	1,910
50	68.1	141.1	2.072	75.5	132.5	1,755	46.2	87.2	1,887
51	70,6	139,1	1,970	75,6	134	1,772	46,8	87,5	1,870
52	70,6	135,3	1,916	76,7	131,7	1,717	46,1	84,7	1,837
53	69	135,2	1,959	75,6	135,6	1,794	46,7	86,3	1,848
54	68,3	136,1	1,993	75,7	134,2	1,773	45,3	85,1	1,879
55	69,9	136	1,946	77,8	131,7	1,693	45,8	86,8	1,895
56	70	135,3	1,933	76,1	135,1	1,775	46,1	86,6	1,879
58	68.1	139,3	2,070	70,4	130,2	1,809	40,0	04,3 85.1	1,809
59	66.6	134.3	2.017	77.9	136.6	1,754	44.3	84.1	1,898
60	64,3	135,6	2,109	77,3	134,4	1,739	44	85,9	1,952
61	62,3	130,5	2,095	75,2	136,6	1,816	45,9	83,8	1,826
62	61,6	124,7	2,024	77,8	135,2	1,738	43,9	83,6	1,904
63	62,6	122	1,949	76,1	132,4	1,740	43,5	81,7	1,878
64	64	122,2	1,909	73,3	132,7	1,810	43,8	83,8	1,913
65	64,7	124,5	1,924	74,5	129,1	1,733	43	81,2	1,888
67	66.1	121,2	1,845	73,4	129,5	1,764	42,2	83,0	1,981
68	65.7	126	1,918	73.9	129.6	1,754	41 1	83.2	2.024
69	65.3	125.6	1,923	74,1	128,2	1,730	41.3	83.8	2,029
70	65,6	126,4	1,927	73,5	131,5	1,789	41,3	84,1	2,036
71	65,6	127,9	1,950	76,9	130,8	1,701	41,7	84	2,014
72	67	122,4	1,827	75,8	133,3	1,759	41,6	81	1,947
73	64,8	122,3	1,887	74,9	131,9	1,761	40,7	81,9	2,012
74	67,6	120,2	1,778	75,7	128,6	1,699	40,2	82,9	2,062
75	66,9	127,1	1,900	73,7	133	1,805	41,2	82,1	1,993
70	67.9	124,9	1,013	75.0	132 8	1,030	41,∠ /11	01,9 82	1,900
//	07,0	123,0	1,020	13,3	132,0	1,730		02	1,000
hodnota	69,821	131,954	1,890	74,343	135,290	1,820	46,963	84,307	1,795

Tab. 5 Tabulka 1 naměřených hodnot MP pro snímač č.5516 (ČZUB) a snímač č.5912 (PCS)

			(PCS)			
snímač	ČZUB	MALEC	koeficie <u>nt přepočtu</u>	ČZUB	MALEC	koeficient přepočtu
číslo OK	OK4 zub 36	OK4 zub 36	MP PCS / MP ČZUB	OK4 zub 11	OK4 zub 11	MP PCS / MP ČZUB
číslo měření	MP 104.6	MP	4 774	MP 65.7	MP 106 7	1.000
2	124,6	220,7	1,771	67.4	126,7	1,928
3	124,5	220,1	1,768	67	128,8	1,922
4	123,4	208,2	1,687	67,1	129,1	1,924
5	121,8	221,3	1,817	65,5	126,2	1,927
6	118,2	219,1	1,854	65,1	129,7	1,962
8	122,6	222,4	1,814	65,5	128,8	1,966
9	120,2	214,4	1,784	65,8	130,7	1,986
10	123,9	213,2	1,721	65,2	127,3	1,952
11	123,6	222,5	1,800	66,6	128,4	1,928
13	120,6	215,5	1,787	65,4	123,3	1,953
14	125,4	216,2	1,724	66	127,7	1,935
15	119,6	223,8	1,871	66,1	126,6	1,915
16	121,8	219	1,798	65,7	128,7	1,959
18	127.3	219,2	1,725	66.9	133.5	1,976
19	129	218,6	1,695	67,2	129,3	1,924
20	126	218	1,730	67,7	130,7	1,931
21	125,3	212,4	1,695	65,8	129,7	1,971
22	130.6	215,1	1,703	65.7	132	1,998
24	133,5	225,4	1,688	66,6	124,6	1,871
25	131,6	221,4	1,682	68,7	126,1	1,836
26	129,8	223,2	1,720	67,5	126,4	1,873
27	129,1 129.2	231	1,789	67,2	127,9	1,903
29	138,7	230,3	1,660	67,4	128,1	1,901
30	129,9	229,9	1,770	65,8	124	1,884
31	126	229,2	1,819	67,1	126,3	1,882
32	131,1 135.1	229,9	1,754	68,9	125,5	1,821
34	126.4	251.3	1,988	67.2	124,0	1,911
35	125,3	238,2	1,901	68,2	123,7	1,814
36	128,5	238,4	1,855	67,5	124,5	1,844
37	128,4	240,6	1,874	68,7	123,9	1,803
39	123,4	231,1	2,035	67.4	123,2	1,855
40	125,5	241,1	1,921	67,8	122,1	1,801
41	127,8	232,3	1,818	67,6	120,4	1,781
42	127,9	234,7	1,835	68,3	118,8	1,739
43	127,6	239,5	1,077	67.6	110,7	1,740
45	129,9	227,1	1,748	67,9	118,2	1,741
46	130,6	223,6	1,712	69,3	118,9	1,716
47	131,6	228,3	1,735	67,3	118,2	1,756
48	130,5	229,5	1,759	69,8	116	1,662
50	133.5	223,8	1,705	69.7	117.9	1,692
51	125,8	232,8	1,851	68,2	118,7	1,740
52	127,8	234,4	1,834	68,8	121	1,759
53	126,3	231,1	1,830	69,6	117,1	1,682
55 55	129,2	237,1	1,635	69,7	114,2	1,030
56	131,4	237,8	1,810	69,9	111	1,588
57	126,8	228,1	1,799	69,9	111,3	1,592
58	131,1	228	1,739	69,3	114,8	1,657
59 60	128,8	236	1,832	70,4	113,1	1,607
61	126,4	225,8	1,786	70,1	113,8	1,623
62	128,8	227,8	1,769	69,7	110,9	1,591
63	131	220,6	1,684	70,4	110,7	1,572
64	126,2	227,2	1,800	69,9 69.3	112,1	1,604
66	122.8	230,1	1,703	69,3	105,8	1,580
67	124,7	232	1,860	69,8	105,5	1,511
68	134,4	224,3	1,669	68,3	106,4	1,558
69	125,5	227,8	1,815	69,6	107	1,537
70 71	119,7	228,9 224	1,912	69,3 67.8	105	1,515
72	120,3	226,8	1,861	68,1	102,6	1,507
73	123,2	231,1	1,876	68,1	101,1	1,485
74	127,1	231,1	1,818	68	100	1,471
/5 76	124	233,1	1,880	68.5	96,8	1,428
77	119,1	224,3	1,883	67,1	100	1,490
průměrná hodnota	126,254	220,051	1,743	67,906	118,637	1,747

Pro měření zubovým snímačem č.5516 je na základě kalibrace a požadovaných vlastnostech vzorků (tj. tvrdost, zbytková napětí v povrchové vrstvě, hloubka cementační vrstvy – vše je součástí dokumentů německého odběratele OK, ke kterým nebyl získán souhlas pro zveřejnění v této práci) stanovena mez vyřazení **MP**_{max} **80**. Pro stanovení koeficientu pro přepočet mezní hodnoty MP_{max} pro snímač č.5912 (PCS) bylo náhodně vybráno 5 boků zubů. Naměřené hodnoty MP jsou uvedeny v tabulce číslo 5 a číslo 6. Průměrný poměr mezi maximálními hodnotami činí 1,806. Mezi průměrnými hodnotami pak 1,799. Na základě těchto výsledků (viz. tab. 4) byl určen **koeficient pro přepočet mezní hodnoty MP**_{max} = **1,8.** Mez vyřazení pro snímač č.5912 (PCS) tedy činí **MP**_{max} **144** (=80*1,8).

Pro zajištění měření magnetoelastického parametru na bocích zubů ozubených kol vždy ve stejných místech, bylo potřeba do mezery mezi zuby vložit ocelovou tyčku o průměru 5,4 mm (tyčka s modrým koncem viz obr. 7.3). Tím bylo u všech vzorků zaručeno, že měření probíhá ve středové oblasti zubu – červená čára na obrázku 7.3.

Obr. 7.3 Místo měření magnetoelastického parametru na ozubených kolech

7.1.2. Hodnocení vlivu technologických podmínek

Technologické podmínky používané při experimentech již byly uvedeny v kapitole 7. V první fázi bylo provedeno hodnocení naměřených hodnot magnetoelastického parametru (MP) na povrchu zubů. Aby byly výsledky přehledné, bylo vypracováno více grafů vždy pro jednotlivé subdodavatele tepelného zpracování (TZ), případně pro stejnou dávku TZ - seznam dodavatelů a dávek je uveden v tabulce č. 3. V případech kdy bylo ve skupině více vzorků, byly vyneseny hodnoty pro levý a pravý bok zubů zvlášť. Levý bok zubu je ve všech případech vynášen jak plná čára a oproti tomu čárkovaná čára značí hodnoty MP pro pravý bok zubu.

Tab.	7	Tabulka	naměřených	hodnot	MP	pro	snímač	č.5912	pro	soubor	vzorků
cemento	ova	iných a p	ískovaných Ol	K (subdo	dava	tel A) z dávky	/ TZ 224	bro	ušených	při v _c =
23 [m.s ⁻	1] c	a a _e = 45 [[µm] – levé bo	ky							

OK 2	23 m/s; 45	5μm	OK 7	23 m/s; 45	5μm	OK 8	23 m/s; 45	μm	ОК 9	23 m/s; 45 μm		
subdod	avatel A dá	ávka 224	subdod	avatel A da	ávka 224	subdod	avatel A dá	ávka 224	subdodavatel A dávka 224			
levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	
zub 1	137,02	3,79	zub 1	119,92	10,79	zub 1	127,04	6,55	zub 1	119,34	3,89	
zub 2	136,43	12,01	zub 2	138,23	3,31	zub 2	131,48	8,46	zub 2	121,92	7,21	
zub 3	136,34	6,63	zub 3	143,96	5,76	zub 3	130,4	6,79	zub 3	125,16	4,87	
zub 4	134,77	6,96	zub 4	140,7	3,24	zub 4	124,81	5,45	zub 4	126,77	3,53	
zub 5	134,51	3,45	zub 5	142,48	2,77	zub 5	130,21	3,29	zub 5	126,03	3,7	
zub 6	111,82	5,92	zub 6	131,88	3,52	zub 6	133,98	6	zub 6	128,41	4,63	
zub 7	133,82	11,95	zub 7	137,9	2,67	zub 7	137,28	5,78	zub 7	128,97	3,75	
zub 8	135,29	4,34	zub 8	142,7	4,66	zub 8	133,68	4,46	zub 8	127,62	6,03	
zub 9	140,14	5,75	zub 9	144,31	4,63	zub 9	136,5	4,63	zub 9	124,82	6,52	
zub 10	139,59	4,08	zub 10	143,44	4,35	zub 10	120,27	11,02	zub 10	128,33	4,2	
zub 11	141,47	9,6	zub 11	143,84	5,92	zub 11	134,3	6,66	zub 11	125,01	3,06	
zub 12	133,4	4,79	zub 12	121,65	10,56	zub 12	139,35	5,34	zub 12	123,71	3,94	
zub 13	135,42	5,25	zub 13	113,23	12,01	zub 13	135,75	3,71	zub 13	123,57	5,08	
zub 14	137,57	5,01	zub 14	121,33	11,71	zub 14	135,52	3,3	zub 14	114,36	7,19	
zub 15	137,67	7,04	zub 15	136,38	5,65	zub 15	140,27	5,65	zub 15	123,34	3,69	
zub 16	138,83	4,37	zub 16	143,36	5,17	zub 16	130,24	5,88	zub 16	119,33	11,95	
zub 17	138,29	7,4	zub 17	139,95	4,93	zub 17	137,11	5,43	zub 17	107	4,52	
zub 18	140,16	5,6	zub 18	143,67	5,66	zub 18	137,35	4,83	zub 18	110,18	7,45	
zub 19	141,98	7,7	zub 19	142,94	3,47	zub 19	137,08	4,82	zub 19	122,2	4,25	
zub 20	135,05	9,19	zub 20	140,87	3,08	zub 20	137,75	3,95	zub 20	106,38	10,33	

Na obr. 7.4 je znázorněn graf naměřených hodnot MP pro levý bok naměřených na ozubených kolech (OK) po TZ subdodavatelem A (OK jsou pískována). Tento soubor vzorků byl broušen při řezné rychlosti $v_c = 23$ [m.s⁻¹] a efektivní hloubce jednoho záběru $a_e = 45$ [µm]. Jednalo se o ozubená kola č. 2, 7, 8 a 9. Z grafu je patrné, že ačkoliv byly řezné podmínky shodné, naměřené hodnoty MP se liší. Průměrná hodnota MP činí **131,94** [-] a standardní odchylka se rovná ± **6,07** [-] (vzorec pro výpočet standardní odchylky je uveden v kapitole 7.3). Výsledky poukazují na skutečnost nerovnoměrného rozložení zbytkových napětí na jednotlivých zubech. Naměřené hodnoty jsou vedeny v tabulce č. 7.

Výsledky pro pravý bok zubů stejné skupiny jsou znázorněny na obrázku 6.9. V porovnání s předchozími výsledky došlo k mírnému nárůstu průměrné hodnoty MP na **132,48** [-] a standardní odchylku **± 4,90** [-]. V rámci jednotlivých OK došlo ke zvýšení rozdílů hodnot MP mezi jednotlivými zuby. Příčinou této skutečnosti může být nerovnoměrný úběr materiálu např. vlivem kmitání vzorků během výroby. Díky tomu by mohlo docházet k nerovnoměrnému úběru materiálu u levého a pravého boku. Naměřené hodnoty jsou uvedeny v tabulce č. 8.

Obr. 7.4 Naměřené hodnoty MP levých boků zubů pro skupinu vzorků od subdodavatele A (dávka TZ 224) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Tab. 8 Tabulka naměřených hodnot MP pro snímač č.5912 pro soubor vzorků cementovaných a pískovaných OK (subdodavatel A) z dávky TZ 224 broušených při $v_c = 23 \ [m.s^{-1}] a a_e = 45 \ [\mu m] - pravé boky$

OK 2	23 m/s; 45	5μm	OK 7	23 m/s; 45	μm	OK 8	23 m/s; 45	5μm	OK 9 23 m/s; 45 μm		
subdoda	avatel A dá	vka 224	subdoda	avatel A dá	vka 224	subdoda	avatel A dá	vka 224	subdoda	avatel A dá	ivka 224
pravý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	pravý bok	průměr	st. odch.
zub 1	146,98	5,5	zub 1	142,85	3,32	zub 1	138,86	4,60	zub 1	121,71	13,18
zub 2	143,04	3,76	zub 2	143,66	2,98	zub 2	126,83	11,30	zub 2	117,61	10,97
zub 3	130,26	8,91	zub 3	146,10	2,65	zub 3	135,00	7,64	zub 3	114,93	13,51
zub 4	146,47	4,64	zub 4	142,74	3,12	zub 4	137,40	5,84	zub 4	97,30	14,38
zub 5	141,36	5,78	zub 5	99,79	5,54	zub 5	133,08	2,53	zub 5	115,30	9,54
zub 6	139,8	4,11	zub 6	140,51	3,99	zub 6	134,76	6,04	zub 6	131,98	4,16
zub 7	140,3	3,81	zub 7	142,38	3,83	zub 7	112,98	12,19	zub 7	131,28	11,17
zub 8	138,85	6,09	zub 8	129,58	5,25	zub 8	125,37	9,77	zub 8	127,33	3,71
zub 9	143,45	4,74	zub 9	129,43	4,82	zub 9	138,07	2,37	zub 9	122,08	13,78
zub 10	137,44	3,37	zub 10	134,14	2,81	zub 10	134,20	2,24	zub 10	117,00	14,00
zub 11	134,2	5,64	zub 11	138,27	7,73	zub 11	133,36	1,92	zub 11	133,98	6,72
zub 12	140,63	4,73	zub 12	144,13	3,40	zub 12	136,15	6,09	zub 12	134,38	5,00
zub 13	141,84	6,59	zub 13	134,43	4,34	zub 13	122,07	12,50	zub 13	135,66	2,67
zub 14	136,57	5,81	zub 14	139,96	3,58	zub 14	125,28	6,77	zub 14	128,77	3,18
zub 15	119,88	4,04	zub 15	140,43	6,44	zub 15	132,66	3,75	zub 15	133,53	4,14
zub 16	135,79	5,22	zub 16	119,17	5,64	zub 16	132,82	4,34	zub 16	125,81	3,04
zub 17	107,01	8,3	zub 17	138,20	8,78	zub 17	137,98	2,85	zub 17	133,34	2,83
zub 18	138,36	4,92	zub 18	133,59	10,24	zub 18	136,39	2,52	zub 18	125,91	3,74
zub 19	139,41	4,17	zub 19	142,43	3,61	zub 19	134,10	3,52	zub 19	123,69	3,70
zub 20	143,63	4,53	zub 20	143,38	3,67	zub 20	123,02	7,09	zub 20	125,85	3,39

Obr. 7.5 Naměřené hodnoty MP pravých boků zubů pro skupinu vzorků od subdodavatele A (dávka TZ 224) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Jako další byla hodnocena OK broušená stále při stejných řezných podmínkách, avšak odlišnost byla v subdodavateli TZ. OK dodávaná subdodavatelem B nejsou pískována. Obrázek 7.6 ukazuje, že hodnoty MP se pohybují pod stanovenou hranicí vyřazení 144 (stanovení maximální hranice bylo popsáno výše). Dalším pozitivním výsledkem jsou minimální rozdíly mezi levými a pravými boky zubů hodnocených OK. Výsledky experimentů jsou uvedeny v tabulce č. 9.

Obr. 7.6 Naměřené hodnoty MP pro skupinu vzorků od subdodavatele B (dávka TZ 239B) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Tab.9 Tabulka naměřených hodnot MP pro snímač č.5912 pro soubor cementovaných
vzorků (subdodavatel B) z dávky TZ 239B broušených při v _c = 23 [m.s ⁻¹] a a_e = 45 [μ m] –
levé i pravé boky

OK 13	23 m/s; 45	μm	OK 13	23 m/s; 45	μm	OK 14	23 m/s; 45	iμm	OK 14	23 m/s; 45	iμm		
subdoda	subdodavatel B dávka 239B			subdodavatel B dávka 239B			subdodavatel B dávka 239B			subdodavatel B dávka 239B			
levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.		
zub 1	71,16	2,82	zub 1	63,85	4,02	zub 1	80,64	2,60	zub 1	91,74	3,02		
zub 2	71,47	1,32	zub 2	68,10	3,61	zub 2	84,55	3,87	zub 2	86,52	2,94		
zub 3	70,25	2,05	zub 3	66,98	2,30	zub 3	81,46	3,10	zub 3	91,76	4,26		
zub 4	67,30	2,96	zub 4	73,44	4,32	zub 4	81,84	5,21	zub 4	93,54	2,75		
zub 5	66,42	3,40	zub 5	69,52	2,52	zub 5	88,06	2,50	zub 5	88,94	3,34		
zub 6	63,78	4,18	zub 6	70,34	1,89	zub 6	87,56	4,06	zub 6	93,40	1,62		
zub 7	66,70	3,28	zub 7	74,80	2,75	zub 7	90,71	2,37	zub 7	91,40	4,72		
zub 8	64,05	5,35	zub 8	69,89	3,20	zub 8	92,36	2,70	zub 8	89,48	4,27		
zub 9	68,49	3,47	zub 9	71,64	3,80	zub 9	91,16	2,35	zub 9	90,63	2,74		
zub 10	73,11	1,90	zub 10	73,75	2,29	zub 10	81,10	4,00	zub 10	91,08	5,61		
zub 11	72,29	3,53	zub 11	75,47	2,42	zub 11	85,17	5,99	zub 11	90,99	2,41		
zub 12	73,91	1,93	zub 12	76,83	3,88	zub 12	88,61	3,96	zub 12	84,61	2,43		
zub 13	76,66	1,27	zub 13	72,23	3,14	zub 13	89,26	5,55	zub 13	92,65	2,94		
zub 14	73,09	3,03	zub 14	76,55	3,51	zub 14	83,45	5,10	zub 14	95,27	2,83		
zub 15	70,47	4,65	zub 15	74,68	3,68	zub 15	91,78	2,11	zub 15	93,94	2,68		
zub 16	74,85	2,80	zub 16	80,07	2,84	zub 16	90,03	2,86	zub 16	91,19	3,35		
zub 17	66,68	3,05	zub 17	83,18	3,82	zub 17	89,27	2,10	zub 17	89,00	4,21		
zub 18	73,60	3,22	zub 18	80,83	3,06	zub 18	91,98	2,36	zub 18	93,19	2,12		
zub 19	69,99	4,42	zub 19	79,47	4,14	zub 19	90,15	2,79	zub 19	90,78	3,66		
zub 20	63,41	4,21	zub 20	75,56	2,55	zub 20	88,18	3,56	zub 20	88,47	3,14		

U třetího subdodavatele TZ, označen jako C, jsou OK kola cementována a pískována. Jelikož vzorků od tohoto subdodavatele nebylo dostatečné množství, byl při daných řezných podmínkách broušen vždy jeden vzorek. Na obrázku 7.7 jsou znázorněny naměřené hodnoty MP pro tento vzorek. Průměrná hodnota MP včetně standardní odchylky **142,31 ± 2,69** [-] se pohybuje těsně pod hranicí vyřazení vzorku (144). Pozitivní je však skutečnost, že rozdíly naměřených hodnot MP mezi levým a pravým bokem jsou minimální.

Obr. 7.7 Naměřené hodnoty MP pro vzorek od subdodavatele C (dávka TZ 264B) broušeného při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Naměřené hodnoty pro předchozí vzorek jsou uvedeny v tabulce č. 10.

Tab.10 Tabulka naměřených hodnot MP pro snímač č.5912 pro cementované a pískované OK (subdodavatel A) z dávky TZ 219 broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 55 \ [\mu m] - levý i pravý bok$

OK 27	23 m/s; 55	jμm	OK 27	23 m/s; 55 μm				
subdoda	avatel C dáv	vka 264B	subdodavatel C dávka 264B					
levý bok	průměr	st. odch.	pravý bok					
zub 1	136,31	5,77	zub 1	141,53	3,41			
zub 2	140,61	2,87	zub 2	145,56	2,09			
zub 3	145,89	3,51	zub 3	144,26	3,42			
zub 4	144,71	2,53	zub 4	141,54	2,81			
zub 5	141,56	2,92	zub 5	144,36	2,72			
zub 6	143,53	3,25	zub 6	144,09	2,41			
zub 7	140,73	2,28	zub 7	142,61	3,89			
zub 8	142,41	2,75	zub 8	147,49	3,76			
zub 9	144,45	2,62	zub 9	137,20	5,78			
zub 10	141,67	2,66	zub 10	135,94	2,59			
zub 11	143,24	1,89	zub 11	146,92	3,54			
zub 12	144,57	2,41	zub 12	142,50	2,79			
zub 13	141,26	2,39	zub 13	139,22	2,33			
zub 14	141,60	3,65	zub 14	141,10	3,53			
zub 15	141,00	2,57	zub 15	137,32	2,52			
zub 16	138,81	2,86	zub 16	143,13	2,46			
zub 17	143,45	6,11	zub 17	145,54	2,90			
zub 18	144,13	2,90	zub 18	141,65	3,07			
zub 19	141,39	2,46	zub 19	143,19	3,29			
zub 20	143,86	3,36	zub 20	142,25	3,03			

Další dva obrázky (č. 7.8 a 7.9) ukazují výsledky měření pro skupinu OK, která jsou sice tepelně zpracována u jednoho dodavatele, avšak liší se číslo dávky TZ. Vzhledem k většímu počtu vzorků jsou vytvořeny grafy zvlášť pro levý (obr. 7.8) a pravý (obr. 7.9) bok zubů. Všechny výsledky se sice pohybují pod přípustnou hranicí MP = 144 [-], avšak mezi jednotlivými OK jsou značné rozdíly. Tyto výsledky tedy ukazují na problematiku neshody kvality výrobků mezi jednotlivými dávkami.

Vůči levým bokům popisovaného souboru vzorků (obr. 7.8) jsou rozdíly mezi naměřenými hodnotami MP [-] u pravých boků (obr. 7.9) až 200% a znovu tedy ukazují na neshody v kvalitě výrobků mezi jednotlivými dávkami TZ. Stejně jako u první skupiny vzorky jsou rozdíly mezi hodnotami MP na levém a pravém boku s největší pravděpodobností způsobeny kmitáním vzorku během broušení. Tato skutečnost je však pro zajištění kvality a opakovatelnosti výroby nepřípustná. Naměřené hodnoty pro tento soubor vzorků jsou uvedeny v tabulkách číslo 11 a 12.

Obr. 7.8 Naměřené hodnoty MP levých boků zubů u vzorků od subdodavatele A (různé dávky TZ) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Tab.10 Tabulka naměřených hodnot MP pro snímač č.5912 pro cementované a pískované OK (subdodavatel A) různé dávky TZ 219 broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m] - levý bok$

OK 3	23 m/s; 4	5 µm	OK 20	23 m/s; 4	iμm	OK 22	23 m/s; 4	5 µm	OK 23	23 m/s; 4	5 µm	OK 24	23 m/s; 4	5 µm	OK 25	23 m/s; 4	5 µm
subdoo	lavatel A da	ávka 219	subdod	avatel A da	ávka 223	subdod	avatel A d	ávka 220	subdoo	lavatel A d	ávka 43	subdod	subdodavatel A dávka 116		subdodavatel A dávka 114		
levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.
zub 1	83,95	4,23	zub 1	108,36	2,67	zub 1	88,97	4,99	zub 1	137,28	29,61	zub 1	66,31	3,24	zub 1	72,64	6,26
zub 2	108,91	6,86	zub 2	99,29	3,09	zub 2	83,80	2,56	zub 2	126,06	24,38	zub 2	69,47	1,64	zub 2	62,95	6,19
zub 3	100,12	4,63	zub 3	93,80	9,65	zub 3	96,90	6,34	zub 3	126,54	25,30	zub 3	69,47	2,44	zub 3	75,35	3,94
zub 4	120,82	2,41	zub 4	96,44	4,19	zub 4	101,02	5,49	zub 4	124,93	27,41	zub 4	81,83	4,88	zub 4	61,29	6,42
zub 5	117,24	2,83	zub 5	93,82	5,75	zub 5	107,25	9,12	zub 5	126,32	24,42	zub 5	85,84	5,50	zub 5	73,66	4,16
zub 6	124,17	2,91	zub 6	102,40	3,83	zub 6	113,51	4,07	zub 6	118,76	26,38	zub 6	85,23	5,40	zub 6	72,70	1,92
zub 7	120,32	3,80	zub 7	99,96	3,25	zub 7	109,92	6,33	zub 7	112,06	29,76	zub 7	83,84	6,83	zub 7	83,61	2,99
zub 8	122,44	2,46	zub 8	105,03	3,13	zub 8	101,91	3,02	zub 8	117,51	23,27	zub 8	76,73	7,59	zub 8	69,05	6,56
zub 9	120,69	3,64	zub 9	105,35	17,05	zub 9	112,81	3,69	zub 9	109,79	30,22	zub 9	87,83	3,95	zub 9	81,58	3,33
zub 10	123,42	3,72	zub 10	89,42	6,43	zub 10	105,72	2,71	zub 10	103,01	25,43	zub 10	82,72	1,96	zub 10	83,01	2,28
zub 11	125,96	4,77	zub 11	92,79	3,95	zub 11	111,16	5,42	zub 11	106,21	14,14	zub 11	78,92	7,61	zub 11	69,97	3,57
zub 12	120,88	2,67	zub 12	101,93	10,43	zub 12	99,09	9,84	zub 12	108,00	31,24	zub 12	80,89	3,24	zub 12	75,47	4,94
zub 13	108,11	6,92	zub 13	98,53	2,96	zub 13	106,78	3,61	zub 13	107,72	25,08	zub 13	71,46	8,14	zub 13	71,15	4,31
zub 14	125,58	5,83	zub 14	103,07	2,78	zub 14	108,96	8,85	zub 14	111,80	26,86	zub 14	73,03	7,30	zub 14	84,85	3,40
zub 15	126,64	4,03	zub 15	97,66	3,20	zub 15	99,33	3,30	zub 15	115,08	27,75	zub 15	76,11	5,29	zub 15	65,38	7,08
zub 16	120,69	2,83	zub 16	106,03	3,19	zub 16	94,07	8,59	zub 16	109,25	26,75	zub 16	83,09	3,43	zub 16	76,39	5,79
zub 17	125,30	4,12	zub 17	96,15	7,18	zub 17	107,21	4,94	zub 17	115,95	21,32	zub 17	77,74	4,10	zub 17	74,90	5,28
zub 18	121,06	4,95	zub 18	103,52	4,53	zub 18	97,79	2,86	zub 18	96,15	25,80	zub 18	78,45	3,48	zub 18	80,75	6,08
zub 19	105,74	9,78	zub 19	99,34	10,20	zub 19	95,19	3,19	zub 19	116,09	26,01	zub 19	75,10	8,70	zub 19	66,33	4,13
zub 20	110,28	7,52	zub 20	98,86	9,34	zub 20	99,63	6,51	zub 20	112,47	27,08	zub 20	76,80	3,37	zub 20	68,91	5,29

Jak již bylo uvedeno výše, na následujícím obrázku č. 7.9 jsou vyneseny naměřené hodnoty MP [-] pro pravé boky zubů daného souboru vzorků. Naměřené hodnoty pro tato OK jsou uvedeny pod obrázkem v tabulce č. 11.

Obr. 7.9 Naměřené hodnoty MP pravých boků zubů u vzorků od subdodavatele A (různé dávky TZ) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Tab.11 Tabulka naměřených hodnot MP pro snímač č.5912 pro cementované a pískované OK (subdodavatel A) pro různé dávky TZ broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m] - pravý bok$

OK 3	23 m/s; 49	5 µm	OK 20	23 m/s; 4	5 µm	OK 22	23 m/s; 4	5 µm	OK 23	23 m/s; 4	5 µm	OK 24	23 m/s; 4	5 µm	OK 25	23 m/s; 49	5μm
subdod	avatel A dá	ivka 219	subdoda	avatel A dá	vka 223	subdod	avatel A dá	ivka 220	subdod	avatel A d	ávka 43	subdodavatel A dávka 116		subdodavatel A dávka 114			
pravý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	pravý bok	průměr	st. odch.
zub 1	115,27	4,68	zub 1	90,81	13,12	zub 1	196,63	14,31	zub 1	149,72	34,15	zub 1	174,27	24,63	zub 1	151,66	23,89
zub 2	100,47	3,57	zub 2	95,77	10,74	zub 2	179,58	10,23	zub 2	137,46	18,99	zub 2	144,11	9,18	zub 2	136,63	32,58
zub 3	107,09	3,65	zub 3	111,43	5,97	zub 3	191,52	12,78	zub 3	142,37	22,14	zub 3	183,71	20,18	zub 3	139,77	26,60
zub 4	112,38	7,03	zub 4	112,39	3,29	zub 4	186,25	8,16	zub 4	166,60	33,19	zub 4	178,67	14,47	zub 4	165,75	10,28
zub 5	108,90	4,48	zub 5	99,55	7,34	zub 5	172,55	8,84	zub 5	161,74	45,63	zub 5	169,16	15,91	zub 5	154,09	18,32
zub 6	109,05	4,75	zub 6	104,65	4,84	zub 6	166,59	10,88	zub 6	146,97	38,68	zub 6	209,29	25,10	zub 6	149,23	13,69
zub 7	107,34	6,76	zub 7	97,51	11,02	zub 7	172,79	9,79	zub 7	132,49	34,23	zub 7	210,98	25,30	zub 7	166,51	8,24
zub 8	87,48	21,56	zub 8	107,71	3,72	zub 8	170,10	10,63	zub 8	125,83	35,52	zub 8	193,56	18,53	zub 8	168,65	12,74
zub 9	108,77	8,72	zub 9	90,40	12,27	zub 9	204,98	10,93	zub 9	141,93	38,04	zub 9	211,64	20,11	zub 9	167,41	15,14
zub 10	106,35	6,56	zub 10	89,32	12,17	zub 10	177,78	9,92	zub 10	130,84	37,07	zub 10	209,42	24,29	zub 10	161,78	12,16
zub 11	110,85	4,90	zub 11	94,82	7,47	zub 11	195,71	8,92	zub 11	116,54	19,58	zub 11	217,19	16,62	zub 11	147,53	16,72
zub 12	115,60	4,11	zub 12	95,69	11,79	zub 12	194,00	9,37	zub 12	133,09	36,97	zub 12	199,51	16,78	zub 12	174,06	12,59
zub 13	111,23	3,09	zub 13	96,31	10,80	zub 13	182,21	9,63	zub 13	125,09	32,96	zub 13	202,72	20,41	zub 13	170,86	15,70
zub 14	119,74	2,53	zub 14	92,90	5,77	zub 14	184,07	13,14	zub 14	126,37	36,29	zub 14	210,23	22,64	zub 14	175,00	9,00
zub 15	115,44	5,67	zub 15	91,69	12,26	zub 15	167,25	13,44	zub 15	154,69	51,65	zub 15	206,40	18,90	zub 15	171,79	12,44
zub 16	119,75	2,85	zub 16	105,32	3,61	zub 16	181,06	9,23	zub 16	161,76	48,76	zub 16	196,25	23,31	zub 16	154,58	15,86
zub 17	115,44	2,06	zub 17	100,75	8,27	zub 17	154,90	6,73	zub 17	131,22	24,49	zub 17	209,49	16,93	zub 17	116,14	19,33
zub 18	114,75	3,24	zub 18	104,77	5,56	zub 18	152,03	4,59	zub 18	158,50	46,02	zub 18	195,08	21,96	zub 18	162,47	11,15
zub 19	107,99	1,71	zub 19	108,19	7,56	zub 19	146,50	5,78	zub 19	145,56	25,23	zub 19	196,50	23,58	zub 19	147,85	17,40
zub 20	108,19	3,47	zub 20	114,84	3,82	zub 20	199,09	14,43	zub 20	171,79	50,01	zub 20	181,97	26,07	zub 20	145,76	21,20

U následujícího vzorku od subdodavatele A (OK bylo cementováno a pískováno) byla v rámci stejné řezné rychlosti $v_c = 23 \text{ [m.s}^{-1}\text{]}$ navýšena efektivní hloubka jednoho záběru na hodnotu $a_e = 55 \text{ [µm]}$. Výsledky zobrazené na obr. 7.10 ukazují na skutečnost, že ačkoliv došlo k nárůstu efektivní hloubky záběru o cca 20%, kvalita povrchu broušeného OK je stále pod stanovenou přípustnou hranicí MP = 144 [-].

V rámci této dávky TZ (OK jsou pískovaná) lze tedy zvýšit a_e a zkrátit tím výrobní čas bez negativního ovlivnění kvality povrchu součástí.

Obr. 7.10 Naměřené hodnoty MP u vzorků od subdodavatele A (dávka TZ 219) broušeného při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 55 \ [\mu m]$

Naměřené hodnoty, ze kterých byl sestrojen předchozí graf (obr. č. 7.10) jsou uvedeny v následující tabulce č. 12.

Tab.12 Tabulka naměřených hodnot MP pro snímač č.5912 pro soubor cementovaných a pískovaných vzorků (subdodavatel A) z dávky TZ 219 broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 55 \ [\mu m] - levý i pravý bok$

ОК 10	23 m/s; 55	iμm	OK 10	23 m/s; 55	μm			
subdod	avatel A dá	ivka 219	subdodavatel A dávka 219					
levý bok	průměr	st. odch.	pravý bok					
zub 1	124,51	4,12	zub 1	102,61	8,41			
zub 2	117,01	3,56	zub 2	102,14	7,49			
zub 3	119,17	1,95	zub 3	114,24	4,37			
zub 4	124,61	2,35	zub 4	122,53	4,22			
zub 5	122,70	3,26	zub 5	127,07	3,47			
zub 6	123,29	3,67	zub 6	117,23	4,73			
zub 7	125,80	5,15	zub 7	127,89	3,41			
zub 8	125,99	2,04	zub 8	124,45	3,88			
zub 9	121,61	2,81	zub 9	129,51	3,27			
zub 10	122,15	3,33	zub 10	126,41	4,02			
zub 11	116,35	2,63	zub 11	119,78	7,27			
zub 12	108,59	6,66	zub 12	114,50	4,38			
zub 13	115,30	6,79	zub 13	113,26	4,98			
zub 14	104,33	14,40	zub 14	121,00	2,77			
zub 15	106,48	4,23	zub 15	121,39	4,60			
zub 16	113,13	2,66	zub 16	109,50	7,42			
zub 17	102,71	4,81	zub 17	123,02	4,09			
zub 18	99,50	4,89	zub 18	117,92	4,63			
zub 19	98,30	8,20	zub 19	125,22	5,78			
zub 20	122,82	2,82	zub 20	110,35	3,91			

V rámci dalšího měření byl hodnocen vzorek od stejného subdodavatele a dávky TZ jako v předešlém případě. Jediným rozdílem řezných podmínek při broušení daného OK je další navýšení efektivní hloubky záběru o téměř 60% na hodnotu $a_e = 71$ [µm]. Na obrázku 7.11 jsou znázorněny naměřené hodnoty MP. Oproti předchozímu vzorku lze pozorovat větší rozdíl naměřených hodnot MP mezi jednotlivými zuby, avšak stále jsou splněny podmínky pro kvalitní výrobu. Výsledky ukazují, že řezné podmínky procesu broušení při výrobě ozubených kol (OK) mohou být optimalizovány za účelem zvýšení produktivity výroby. Pro ověření by bylo potřeba provést další experimenty. Naměřené hodnoty jsou uvedeny v tabulce číslo 13.

Obr. 7.11 Naměřené hodnoty MP u vzorků od subdodavatele A (dávka TZ 219) broušeného při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 71[\mu m]$

Jako další byl hodnocen vzorek od stejného subdodavatele a dávky TZ jako v předešlém případě, avšak řezná rychlost byla oproti původní hodnotě o 126% na $v_c = 52$ [m.s⁻¹]. Na obrázku 7.12 jsou znázorněny naměřené hodnoty MP. Oproti předchozímu vzorku lze pozorovat větší rozdíl naměřených hodnot MP jednak mezi jednotlivými zuby, ale také mezi levým a pravým bokem. Maximální naměřené hodnoty MP dvojnásobně přesahují stanovenou mez vyřazení **MP**_{max} **80**. Tyto výsledky tedy nesplňují kvalitativní požadavky výroby. Naměřené hodnoty jsou uvedeny v tabulce číslo 14.

Problematika velkých rozdílů naměřených hodnot MP mezi levým a pravým bokem se již vyskytla u některých předchozích vzorků. Tyto skutečnosti ukazují na problematiku tuhosti soustavy S-N-O-P. Tyto rozdíly mezi hodnotami MP na levém a pravém boku s největší pravděpodobností způsobeny kmitáním vzorku během broušení.

Obr. 7.12 Naměřené hodnoty MP u vzorku od subdodavatele A (dávka TZ 219) broušeného při $v_c = 52 \ [m.s^{-1}]$ a $a_e = 71 [\mu m]$

Tab.13	Tabulka	naměřených	hodnot	MP	pro	snímač	č.5912	pro	cementovo	ané
a pískov	ané OK (s	ubdodavatel ,	A) z dávk	y TZ	219	broušené	ho při v _c	= 23	[m.s ⁻¹] a c	$a_e =$
71 [µm]	– levý i pr	ravý bok								

OK 6	23 m/s; 71	μm	OK 10	23 m/s; 71	μm					
subdod	avatel A dá	ivka 219	subdodavatel A dávka 219							
levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.					
zub 1	108,99	7,98	zub 1	103,03	7,30					
zub 2	98,27	4,59	zub 2	100,15	6,22					
zub 3	97,54	5,15	zub 3	100,49	7,52					
zub 4	94,00	10,82	zub 4	101,65	7,25					
zub 5	109,43	3,21	zub 5	102,71	3,88					
zub 6	104,54	7,71	zub 6	125,50	5,47					
zub 7	119,49	3,45	zub 7	123,73	4,14					
zub 8	118,51	4,06	zub 8	120,27	6,71					
zub 9	110,58	4,72	zub 9	124,44	3,86					
zub 10	113,19	4,09	zub 10	130,43	3,46					
zub 11	109,30	5,66	zub 11	113,21	7,17					
zub 12	101,36	8,42	zub 12	124,69	3,78					
zub 13	115,13	5,24	zub 13	126,46	3,62					
zub 14	89,77	3,28	zub 14	126,80	4,22					
zub 15	103,11	4,18	zub 15	124,86	3,97					
zub 16	90,94	5,07	zub 16	118,60	4,79					
zub 17	87,84	2,11	zub 17	91,49	8,50					
zub 18	92,87	3,73	zub 18	117,33	5,88					
zub 19	90,07	4,03	zub 19	121,77	2,47					
zub 20	102,40	3,34	zub 20	115,93	7,11					
Tab.14	Tabulka	naměřených	hodnot	MP	pro	snímač	č.5912	pro	cementovo	ané
----------	-------------	---------------	-----------	------	-----	----------	-----------------------	------	--------------------------	------------
a pískov	ané OK (s	ubdodavatel ,	A) z dávk	y TZ	219	broušené	ho při v _c	= 23	[m.s ⁻¹] a a	$\eta_e =$
71 [µm]	– levý i pr	ravý bok								

OK 5	52 m/s; 71	ĺμm	OK 5	52 m/s; 71	Ĺμm
subdod	lavatel A dá	ivka 219	subdod	avatel A dá	ávka 219
levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.
zub 1	182,72	6,46	zub 1	290,56	14,65
zub 2	159,32	8,91	zub 2	246,32	22,51
zub 3	168,55	16,46	zub 3	260,33	15,91
zub 4	200,49	9,14	zub 4	283,58	10,65
zub 5	195,16	8,58	zub 5	289,12	8,01
zub 6	179,68	17,54	zub 6	233,28	14,29
zub 7	163,51	13,52	zub 7	243,66	8,88
zub 8	144,06	13,91	zub 8	270,97	12,76
zub 9	143,61	6,97	zub 9	297,33	9,28
zub 10	198,59	9,66	zub 10	282,72	10,34
zub 11	198,89	14,14	zub 11	285,81	13,11
zub 12	186,36	7,71	zub 12	288,62	11,31
zub 13	194,64	11,92	zub 13	289,77	11,09
zub 14	152,17	7,39	zub 14	249,29	6,07
zub 15	196,78	8,48	zub 15	279,00	9,21
zub 16	195,25	9,54	zub 16	275,77	20,54
zub 17	194,53	12,05	zub 17	247,53	7,09
zub 18	188,74	5,13	zub 18	262,42	6,58
zub 19	198,45	12,50	zub 19	236,74	14,43
zub 20	130,92	7,26	zub 20	251,66	7,69

Pro názornost byly výsledky pro dávku TZ 219 od subdodavatele A, který ozubená kola (OK) pískuje, shrnuty do dvou grafů. První z nich (obr. 7.13) naznačuje vliv efektivní hloubky záběru a_e [µm] na velikost magnetoelastického parametru (MP) po obrobení. Z grafu je patrné, že při nižší řezné rychlosti ($v_c = 23$ [m.s⁻¹]) nedochází s rostoucí efektivní hloubkou záběru k významnému nárůstu hodnot MP. Kvalita povrchu broušených OK je v pořádku a hodnoty MP nepřesahují maximální přípustnou hranici (MP = 144 [-]).

Dalším pozitivním výsledkem jsou minimální rozdíly mezi levým a pravým bokem hodnocených zubů. Odlišné závislosti však vykazují OK broušená při více než dvojnásobné řezné rychlosti $v_c = 52 \text{ [m.s}^{-1}\text{]}$. S rostoucí efektivní hloubkou záběru a_e [µm] narůstají naměřené hodnoty MP. Rozdíly hodnot MP mezi levým a pravým bokem zubů jsou velmi značné a naměřené hodnoty MP dosahují hodnot až dvojnásobku meze vyřazení MP_{max}. Graf na obrázku 7.13 tedy ukazuje, že efektivní hloubka záběru ovlivňuje kvalitu povrchu broušených součástí.

Obr. 7.13 Hodnocení vlivu technologických podmínek na hodnoty MP u cementovaných a pískovaných vzorků od subdodavatele A (dávka TZ 219) broušených při $v_c = 23 a 52 [m.s^{-1}] a a_e = 45; 55 a 71[\mu m]$

Na druhém grafu (obr. 7.14) je znázorněn vliv řezné rychlosti na velikost magnetoelastického parametru (MP). Principiálně graf zobrazuje podobné závislosti jako v předchozím případě. S rostoucí řeznou rychlostí dochází k nárůstu naměřených hodnot MP. Výjimkou je situace při nízké efektivní hloubce záběru a_e = 45 [µm], kde je vliv rostoucí řezné rychlosti minimální. V ostatních případech je dále viditelný velký rozdíl naměřených hodnot MP mezi levým a pravým bokem zubů.

Obr. 7.14 Hodnocení vlivu řezné rychlosti na naměřené hodnoty MP u vzorků od subdodavatele A (dávka TZ 219)

Předchozí výsledky dokazují, že proces obrábění všeobecně není ovlivněn pouze technologickými podmínkami, jak bylo uvedeno v kapitole 6 (viz obr. 6.1.). V případě těchto zkoumaných vzorků (ozubených kol) bylo prokázáno, že nejvíce ovlivňujícím faktorem pro kvalitu broušených OK je tepelné zpracování před operací broušení. Ačkoliv jsou požadavky pro subdodavatele TZ přesně určené, jsou zde značné rozdíly naměřených hodnot magnetoelastického parametru (MP). Toto dokazují obrázky č. 7.15 a 7.16. Na prvním obrázku jsou zobrazeny naměřené hodnoty MP před operací broušení. OK od subdodavatele A (cementování a pískování) a C (cementování a kuličkování) jsou srovnatelná, avšak u OK od subdodavatele B (pouze cementování) naměřené hodnoty MP přesahují stanovenou mez vyřazení MP_{max} = 80. Naměřené hodnoty jsou uvedeny v tabulce 15.

Obr. 7.15 Naměřené hodnoty MP vzorků od tří subdodavatelů před operací broušení

Stejná OK od různých subdodavatelů měřená před operací broušení byla broušena za stejných řezných podmínek, a to při řezné rychlosti $v_c = 23 \text{ [m.s}^{-1}\text{]}$ a efektivní hloubce záběru $a_e = 45 \text{ [}\mu\text{m}\text{]}$. Po operaci broušení bylo provedeno další měření a výsledky jsou znázorněny na obrázku č. 7.16. Na první pohled je opět viditelný rozdíl mezi jednotlivými subdodavateli TZ. Avšak při detailnějším porovnání s předešlým grafem č. 7.15 jsou patrné odlišnosti v pořadí subdodavatelů. Zatímco subdodavatel A, kde se ozubená kola pískují, dosahuje hodnot MP podobných jako před broušením u zbylých dvou je tomu jinak. U subdodavatele C jsou OK kuličkována a po operaci broušení došlou k mírnému nárůstu naměřených hodnot magnetoelastického parametru (MP). Nejvyšší rozdíly naměřených hodnot MP vykazuje OK od subdodavatele B, kde nedochází ani k pískování ani ke kuličkování. Hodnoty MP před operací broušení jsou sice jednoznačně nejvyšší, avšak po broušení jsou výsledky nejpříznivější. Pískování se používá pro odstranění části na povrchu OK vzniklých oxidací po kalení. Pískování ovlivní hodnoty zbytkových napětí do hloubky cca 50 ÷ 70 µm. U kuličkovaných OK

jeovlivněna povrchová vrstva do hloubky cca 500 μm [19]. Vše může být právě způsobeno zmiňovanou mezioperací kuličkování, případně pískování. Naměřené hodnoty jsou uvedeny v tabulce číslo 16.

Obr. 7.16 Naměřené hodnoty MP vzorků od tří subdodavatelů po broušení za řezných podmínek $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Tab.15 Tabulka	naměřených i	hodnot MP pro s	nímo	ač č.5912 pro OK (od s	ubdodavatele	A
(cementování,	pískování),	subdodavatele	В	(cementováno)	а	dodavatele	С
(cementováno,	kuličkováno) p	ořed operací brou	šeni	– levý i pravý bo	k		

OK 3	před brou	išením	OK 3	před brou	išením	OK 14	před brou	išením	OK 14	před brou	ıšením	OK 27	před brou	ušením	OK 27	před brou	šením
subdod	lavatel A da	ávka 219	subdod	avatel A da	ávka 219	subdoda	avatel B dá	vka 239B	subdoda	vatel B dá	vka 239B	subdodavatel C dávka 264B		B subdodavatel C dávka 264		vka 264B	
levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.
zub 1	128,45	4,03	zub 1	130,77	7,25	zub 1	174,74	14,15	zub 1	184,88	4,84	zub 1	108,78	5,63	zub 1	128,23	5,01
zub 2	120,29	5,54	zub 2	133,41	10,67	zub 2	162,45	19,20	zub 2	185,56	7,98	zub 2	111,92	8,73	zub 2	127,64	6,18
zub 3	119,67	6,83	zub 3	125,76	5,12	zub 3	141,88	17,04	zub 3	186,90	5,24	zub 3	103,84	9,02	zub 3	125,64	4,77
zub 4	123,71	5,44	zub 4	129,58	7,73	zub 4	184,52	5,99	zub 4	187,85	5,47	zub 4	123,98	8,22	zub 4	121,94	10,39
zub 5	129,64	3,86	zub 5	128,24	6,33	zub 5	162,47	16,93	zub 5	186,81	5,43	zub 5	120,36	4,98	zub 5	128,39	4,89
zub 6	141,64	5,88	zub 6	118,05	5,90	zub 6	181,75	9,20	zub 6	183,65	5,99	zub 6	99,79	11,47	zub 6	127,67	3,91
zub 7	138,50	2,53	zub 7	111,54	14,18	zub 7	182,05	11,46	zub 7	188,23	6,24	zub 7	117,32	10,62	zub 7	122,84	4,37
zub 8	129,00	5,26	zub 8	95,63	9,40	zub 8	189,51	4,98	zub 8	188,48	5,02	zub 8	116,62	5,35	zub 8	107,52	2,90
zub 9	116,60	6,12	zub 9	113,26	8,26	zub 9	173,73	15,99	zub 9	182,47	4,58	zub 9	117,90	5,69	zub 9	127,11	4,23
zub 10	121,68	4,25	zub 10	138,44	2,28	zub 10	181,78	13,20	zub 10	189,93	4,99	zub 10	119,69	5,75	zub 10	128,29	4,98
zub 11	123,98	3,74	zub 11	121,13	9,16	zub 11	170,09	21,25	zub 11	181,05	5,70	zub 11	108,90	7,91	zub 11	124,08	4,90
zub 12	127,72	3,47	zub 12	135,17	6,99	zub 12	161,39	10,22	zub 12	183,68	11,21	zub 12	121,40	6,59	zub 12	119,01	7,65
zub 13	125,01	3,82	zub 13	150,67	15,19	zub 13	184,71	7,52	zub 13	184,78	8,70	zub 13	113,41	6,56	zub 13	106,39	6,94
zub 14	126,48	4,21	zub 14	154,19	11,62	zub 14	183,70	5,33	zub 14	189,49	6,46	zub 14	117,15	5,67	zub 14	127,41	4,62
zub 15	120,18	3,00	zub 15	144,00	7,26	zub 15	185,25	6,27	zub 15	166,33	10,88	zub 15	107,62	6,57	zub 15	126,53	4,77
zub 16	113,50	3,78	zub 16	136,35	2,92	zub 16	163,96	23,16	zub 16	188,28	4,88	zub 16	113,13	6,40	zub 16	124,11	4,87
zub 17	112,62	2,65	zub 17	129,37	10,84	zub 17	172,51	12,23	zub 17	185,84	3,74	zub 17	119,72	7,85	zub 17	122,00	5,24
zub 18	139,13	6,87	zub 18	134,25	12,83	zub 18	182,27	6,61	zub 18	186,29	4,95	zub 18	122,09	7,71	zub 18	128,10	6,83
zub 19	146,18	3,68	zub 19	111,59	8,59	zub 19	186,76	5,44	zub 19	177,18	5,65	zub 19	119,13	3,79	zub 19	127,13	3,44
zub 20	138,52	4,05	zub 20	122,83	8,88	zub 20	174,11	4,79	zub 20	184,71	4,34	zub 20	124,46	7,46	zub 20	129,84	5,51

Tab.16 Tabulka naměřených hodnot MP pro snímač č.5912 pro OK od subdodavatele A (cementování, pískování), subdodavatele B (cementováno) a dodavatele C (cementováno, kuličkováno) po operaci broušení při $v_c = 23 \text{ [m.s}^{-1}\text{] a } a_e = 45 \text{ [}\mu\text{m}\text{]} - \text{levý}$ i pravý bok

OK 3	23 m/s; 45	5μm	OK 3	23 m/s; 45	iμm	OK 14	23 m/s; 4	5µm	OK 14	23 m/s; 4	5µm	OK 27	23 m/s; 4	5µm	OK 27	23 m/s; 45	5μm
subdod	avatel A dá	ivka 219	subdod	avatel A dá	ivka 219	subdoda	avatel B dá	vka 239B	subdoda	vatel B dá	vka 239B	subdodavatel C dávka 264B		3 subdodavatel C dávka 264B		vka 264B	
levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.	levý bok	průměr	st. odch.	pravý bok	průměr	st. odch.
zub 1	83,95	4,23	zub 1	115,27	4,68	zub 1	80,64	2,60	zub 1	91,74	3,02	zub 1	136,31	5,77	zub 1	141,53	3,41
zub 2	108,91	6,86	zub 2	100,47	3,57	zub 2	84,55	3,87	zub 2	86,52	2,94	zub 2	140,61	2,87	zub 2	145,56	2,09
zub 3	100,12	4,63	zub 3	107,09	3,65	zub 3	81,46	3,10	zub 3	91,76	4,26	zub 3	145,89	3,51	zub 3	144,26	3,42
zub 4	120,82	2,41	zub 4	112,38	7,03	zub 4	81,84	5,21	zub 4	93,54	2,75	zub 4	144,71	2,53	zub 4	141,54	2,81
zub 5	117,24	2,83	zub 5	108,90	4,48	zub 5	88,06	2,50	zub 5	88,94	3,34	zub 5	141,56	2,92	zub 5	144,36	2,72
zub 6	124,17	2,91	zub 6	109,05	4,75	zub 6	87,56	4,06	zub 6	93,40	1,62	zub 6	143,53	3,25	zub 6	144,09	2,41
zub 7	120,32	3,80	zub 7	107,34	6,76	zub 7	90,71	2,37	zub 7	91,40	4,72	zub 7	140,73	2,28	zub 7	142,61	3,89
zub 8	122,44	2,46	zub 8	87,48	21,56	zub 8	92,36	2,70	zub 8	89,48	4,27	zub 8	142,41	2,75	zub 8	147,49	3,76
zub 9	120,69	3,64	zub 9	108,77	8,72	zub 9	91,16	2,35	zub 9	90,63	2,74	zub 9	144,45	2,62	zub 9	137,20	5,78
zub 10	123,42	3,72	zub 10	106,35	6,56	zub 10	81,10	4,00	zub 10	91,08	5,61	zub 10	141,67	2,66	zub 10	135,94	2,59
zub 11	125,96	4,77	zub 11	110,85	4,90	zub 11	85,17	5,99	zub 11	90,99	2,41	zub 11	143,24	1,89	zub 11	146,92	3,54
zub 12	120,88	2,67	zub 12	115,60	4,11	zub 12	88,61	3,96	zub 12	84,61	2,43	zub 12	144,57	2,41	zub 12	142,50	2,79
zub 13	108,11	6,92	zub 13	111,23	3,09	zub 13	89,26	5,55	zub 13	92,65	2,94	zub 13	141,26	2,39	zub 13	139,22	2,33
zub 14	125,58	5,83	zub 14	119,74	2,53	zub 14	83,45	5,10	zub 14	95,27	2,83	zub 14	141,60	3,65	zub 14	141,10	3,53
zub 15	126,64	4,03	zub 15	115,44	5,67	zub 15	91,78	2,11	zub 15	93,94	2,68	zub 15	141,00	2,57	zub 15	137,32	2,52
zub 16	120,69	2,83	zub 16	119,75	2,85	zub 16	90,03	2,86	zub 16	91,19	3,35	zub 16	138,81	2,86	zub 16	143,13	2,46
zub 17	125,30	4,12	zub 17	115,44	2,06	zub 17	89,27	2,10	zub 17	89,00	4,21	zub 17	143,45	6,11	zub 17	145,54	2,90
zub 18	121,06	4,95	zub 18	114,75	4,24	zub 18	91,98	2,36	zub 18	93,19	2,12	zub 18	144,13	2,90	zub 18	141,65	3,07
zub 19	105,74	9,78	zub 19	107,99	1,71	zub 19	90,15	2,79	zub 19	90,78	3,66	zub 19	141,39	2,46	zub 19	143,19	3,29
zub 20	110,28	7,52	zub 20	108,19	3,47	zub 20	88,18	3,56	zub 20	88,47	3,14	zub 20	143,86	3,36	zub 20	142,25	3,03

Tab. 17 Ukázka výsledků měření a určení čísla zubů, které budou podrobeny dalším analýzám (OK 7 z dávky TZ 224)

Hodpoty	Ιοννί	Dravý	rozdíl MP mezi
MP	bok	bok	levým a pravým
	DON	box	bokem
1. zub	134,8	149,9	-15,1
2. zub	146,9	149,0	-2,1
3. zub	156,6	151,4	5,2
4. zub	148,3	148,7	-0,4
5. zub	148,4	111,5	36,9
6. zub	140,9	151,7	-10,8
7. zub	143,5	149,4	-5,9
8. zub	151,2	138,7	12,5
9. zub	152,7	139,2	13,5
10. zub	160,1	142,6	17,5
11. zub	153,4	148,2	5,2
12. zub	139,9	151,4	-11,5
13. zub	130,0	140,6	-10,6
14. zub	141,3	146,3	-5,0
15. zub	146,3	150,3	-4,0
16. zub	154,9	131,9	23,0
17. zub	147,1	153,3	-6,2
18. zub	152,4	149,1	3,3
19. zub	148,0	148,7	-0,7
20. zub	146,7	151,9	-5,2

7.1.3. Hodnocení hloubkových profilů magnetoelastického parametru

V rámci dalšího kroku byly hodnoceny hloubkové profily magnetoelastického parametru (MP). Jelikož má každé ozubené kolo 20 zubů, bylo nutné přistoupit k výběru zubů, které budou podrobeny dalším analýzám. Metodika výběru zubů je uvedena v kapitole 7.4. V tabulce 17 je ukázka tohoto procesu. Pro další výzkum byly vybrány vždy dva zuby z každého ozubeného kola (OK). Kritériem byla minimální (označeno zeleně) a maximální (označeno červeně) absolutní hodnota rozdílu naměřených hodnot MP mezi levým a pravým bokem zubu. V případě OK číslo 7 se jednalo o zuby číslo 4 a 5. Vybrané zuby byly odděleny za použití rozbrušovací pily DELTA (viz. metodika experimentů).

7.1.3.1. Návrh a výroba speciálního přípravku pro hodnocení hloubkových profilů

Pro experiment měření hloubkových profilů magnetoelastického parametru a zbytkových napětí bylo nutné vymyslet způsob upínání jednotlivých zubů vybraných dle metodiky z rozřezaného ozubeného kola. Každý zub bude v tomto přípravku upnut po celou dobu experimentu. Pro optimální měření by se vzorek neměl vyjímat z přípravku před dokončením měření hloubkového profilu.

Parametry profilu nástroje a zubu								
Normalizovaný nástroj		DIN 867						
Výška hlavy nástroje	ha0*	1,400	[modul]					
Výška paty nástroje	hf0*	1,200	[modul]					
Poloměr zaoblení hlavy	ra0*	0,400	[modul]					
Poloměr zaoblení paty	rf0*	0,000	[modul]					
Zkoseni paty	cha*	0,000	[modul]					
Zkoseni paty	chb*	0,000	[modul]					
Výška protuberance	δ0*	0,056	[modul]					
Úhel protuberance	αnp	7,000	[°]					
Min. jednotková hlavová vůle	ca*min	0,1000	[modul]					
Jednotková hlavová vůle	ca*	0,1000	[modul]					
Zadání modulu a geometrie ozubení								
Počty zubů pastorku / kola	Z	20						
Normálný úhel záběru	α	20	[°]					
Základní úhel sklonu zubů	β	0	[°]					
Pracovní šířka ozubení	bw	62	[mm]					
Korekce geometrie ozubení								
Jednotkové posunutí	x	0,6680	[modul]					
Součet jednotkových posunutí min.hodnota	Σχ	2,3600	[modul]					

Tab. 18 Parametry profilu nástroje a zubu ozubeného kola

Lucie Schmidová

K tvorbě 3D návrhu a výrobní dokumentace upínacího přípravku byl použit software Solidworks 2012. Z důvodu vygenerování 3D modelu ozubeného kola s možností zadání korekcí geometrie byl použit výpočetní program MITCalc verze 1.60. s propojením na Solidworks. Vstupní parametry pro vygenerování 3D modelu ozubeného kola byly dosazeny z výkresové dokumentace dodané od ČZUB (viz. tabulka 18).

Po vygenerování 3D modelu již lze v Solidworksu odebrat materiál dle vytvořeného náčrtu z Mitcalcu (viz. obrázek 7.17).

Obr. 7.17 Náčrt generovaný programem MITCalc verze 1.60

Přípravek je koncipován tak, aby jeho rozměry vyhovovaly založení do všech přístrojů, které budou potřeba k vytvoření hloubkového profilu dle zvolené metodiky. Přípravek je vyroben ze dvou částí pro rychlejší modifikaci i na jiné projekty. Měřený zub je upnut pomocí šroubu s ovládacím rýhovaným kolečkem. Na obrázku č. 7.18 je zobrazen 3D modelu z programu Solidworks.

Obr. 7.18 Ukázka 3D modelu navrhovaného přípravku s vloženým hodnoceným zubem a přiloženým univerzálním snímačem

K fixaci vzorku dochází utáhnutím šroubu. Na vzorku je dále připevněna podpěra pro **univerzální snímač** č.5910 tak, aby bylo měření provedeno v kolmém dotyku se vzorkem. Reálná podoba vzorku je zobrazena na obrázku č. 7.19.

Obr. 7.19 Vzorek upnutý ve speciálně vyrobeném přípravku zaručujícím přesnost a opakovatelnost měření.

Výkres sestavy a výrobní výkresy jednotlivých částí jsou uvedeny v příloze č. 2

7.1.3.2. Vlastní hodnocení hloubkových profilů MP

Metodika hodnocení hloubkových profilů je popsána v kapitole 7.6. Po každém odleptání povrchu a změření hloubky odleptané vrstvy bylo provedeno měření velikosti magnetoelastického parametru (MP). Díky těmto měřením pak bylo možné sestavit hloubkové profily. Na obrázku 7.20 jsou znázorněny hloubkové profily hodnot MP pro ozubená kola (OK) od různých subdodavatelů, která byla broušena za použití řezné rychlosti $v_c = 23$ [m.s⁻¹] a efektivní hloubce záběru $a_e = 45$ [µm].

Obr. 7.20 Naměřené hloubkové profily hodnot MP vzorků od tří subdodavatelů broušených za řezných podmínek $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Pro měření magnetoelastického parametru byl v tomto případě z důvodu omezené plochy měření použit univerzální snímač. Jelikož se jedná o jiný typ snímače, nejsou naměřené hodnoty, i přes stejné nastavení přístroje, shodné jako u zubového snímače. Nelze tedy porovnávat absolutní hodnoty měření, ale lze porovnávat trend měření. Stejně jako u měření na povrchu součástí bylo měřením hloubkových profilů prokázáno, že cementovaná a kuličkovaná ozubená kola od subdodavatele C dosahují nejvyšších hodnot MP. Naměřené výsledky viz. tabulka 19. Naopak nejlepší výsledky vykazují stejně jako při měření na povrchu ozubená kola od subdodavatele B (cementovaná). Z grafu je také patrné, že směrem od povrchu k jádru součásti dochází k nepatrnému snižování hodnot MP u všech vzorků. Tento jev souvisí se snižováním hodnot zbytkových napětí směrem k jádru zubu.

Tab.	19	Naměřené	hodnoty	MP	při	hodnocení	hloubkových	profilů	ОК	od	tří
subdo	odav	atelů brouše	ených za ře	znýci	h po	dmínek v _c = 2	23 [m.s⁻¹] a a _e	= 45 [μn	ן [ו		

subdodavate	l A dávka 224	subdodavatel	B dávka 239B	subdodavatel C dávka 264B		
levý	bok	levý	bok	levý bok		
hloubka [mm]	ΜР	hloubka [mm]	MP	hloubka [mm]	MP	
0,000	47,57	0,000 23,67		0,000	73,97	
0,006	44,03	0,005	23,10	0,006	71,68	
0,011	44,80	0,011	26,32	0,010	70,00	
0,023	41,90	0,019	27,74	0,024	59,52	
0,050	39,93	0,048	26,00	0,052	58,74	
0,119	34,23	0,085	22,74	0,099	56,00	
0,167	32,40	0,138	24,98	0,154	52,88	
prav	ý bok	prav	ý bok	prav	ý bok	
hloubka [mm]	МР	hloubka [mm]	MP	hloubka [mm]	ΜР	
0,000	49,13	0,000	27,40	0,000	67,07	
0,006	49,33	0,005	23,84	0,006	65,26	
0,013	43,70	0,010	24,14	0,011	71,72	
0,022	42,77	0,022	25,30	0,023	62,18	
0,051	44,90	0,053	24,14	0,046	60,72	
0,095	45,60	0,095	23,58	0,097	47,28	
0,126	45,60	0,126	24,58	0,147	40,48	

Dále byly porovnány hloubkové profily hodnot MP pro vzorky z jedné dávky TZ 219 od subdodavatele A (cementováno, pískováno) broušené při použití efektivní hloubky záběru a_e = 55 [µm] a odlišnými řeznými rychlostmi v_c [m.s⁻¹].

Výsledky zobrazené na obrázku 7.21 ukazují, že s rostoucí řeznou rychlostí jsou hodnoty MP na povrchu nepatrně vyšší. U nižší řezné rychlosti $v_c = 23$ [m.s⁻¹] se lišil průběh hloubkového profilu mezi levým (LB) a pravým bokem (PB). Zatímco hodnoty MP u pravého boku se sjednocují se vzorkem broušeným za použití vyšší řezné rychlosti, u levého boku MP kulminuje na hodnotě 40 [-]. Naměřené hodnoty jsou uvedeny v tabulce č. 20

Obr. 7.21 Vliv řezné rychlosti na velikost MP v rámci hloubkových profilů u vzorků subdodavatele A broušených při $a_e = 55 \ [\mu m]$

Tab. 20 Naměřené hodnoty MP při hodnocení hloubkových profilů u vzorků subdodavatele A broušených při $a_e = 55 \ [\mu m] a v_c = 23 a 35 \ [m.s^{-1}]$

	23 m/s; 55 μm		35 m/s; 55 μm			
subdodavate	l A dávka 219	subdodavate	l A dávka 219			
levý	bok	levý	bok			
hloubka [mm]	MP	hloubka [mm]	МР			
0,000	43,00	0,000	36,20			
0,004	44,40	0,038	41,43			
0,019	43,97	0,078	38,20			
0,038	46,53	0,099	37,20			
0,068	44,73	0,168	48,90			
0,099	47,47	0,215	38,60			
0,169	47,73	0,305	43,77			
0,248	46,75	0,384	55,20			
-	-	0,468	46,47			
pravy	ý bok	pravý bok				
hloubka [mm]	MP	hloubka [mm]	MP			
0,000	41,10	0,000	117,97			
0,007	34,60	0,005	109,37			
0,029	39,17	0,010	57,67			
0,049	37,70	0,030	33,57			
0,093	36,18	0,058	36,30			
0,173	38,20	0,077	37,33			
0,206	39,47	0,122	36,90			
0,255	38,17	0,185	32,70			
0,303	44,23	0,248	33,33			

Následující graf na obrázku č. 7.22 znázorňuje hloubkové profily MP pro vzorky od subdodavatele A z dávky TZ 219 broušených za použití efektivní hloubky záběru a_e =

71 [µm]. Byl hodnocen vliv řezné rychlosti v_c [m.s⁻¹] na průběh hodnot MP. Z grafu je na první pohled patrný velký rozdíl mezi naměřenými hodnotami MP. S rostoucí řeznou rychlostí v_c [m.s⁻¹] dochází ke značnému nárůstu hodnot MP. Použitím vysoké řezné rychlosti a velké hloubky efektivního záběru dochází k negativnímu ovlivnění povrchové vrstvy do značné hloubky. Naměřené hodnoty jsou uvedeny v tabulce č. 21.

Obr. 7.22 Vliv řezné rychlosti na velikost MP v rámci hloubkových profilů u vzorků subdodavatele A broušených při $a_e = 71 \ [\mu m]$

Tab.	21	Naměřené	hodnoty	MP p	oři hodno	ocení h	loubkov	ých profilu	ů

	23 m/s; 71 μm		52 m/s; 71 μm			
subdodavate	l A dávka 219	subdodavatel A dávka 219				
levý	bok	levý bok				
hloubka [mm]	MP	hloubka [mm]	MP			
0,000	37,13	0,000	70,53			
0,006	43,23	0,006	92,83			
0,013	43,37	0,012	96,18			
0,026	39,10	0,022	73,76			
0,060	30,17	0,055	66,08			
0,104	31,17	0,107	55,32			
0,147	27,03	0,140	44,38			
		0,190	43,78			
pravy	ý bok	pravý bok				
hloubka [mm]	MP	hloubka [mm]	MP			
0,000	37,36	0,000	99,53			
0,005	43,50	0,005	102,82			
0,011	42,33	0,009	106,38			
0,022	44,16	0,018	99,20			
0,046	38,87	0,045	86,76			
0,083 35,17		0,086	76,48			
0,114	36,00	0,121	60,06			

7.2. Hodnocení zbytkových napětí

Další podkapitola je věnována hodnocení zbytkových napětí pomocí rentgenové difrakční analýzy (RTG) metodou $sin^2\psi$ (viz podkapitola 3.3.2). Měření zbytkových napětí bylo provedeno v laboratořích Technické univerzity v Tampere (Finsko) za použití mobilního difraktometru Xstress 3000 (obr. 6.24) od firmy Stresstech Oy. Metodika experimentů je popsána v podkapitole 7.5.

Na obrázku č. 7.23 je zachyceno měření zubu z ozubeného kola OK 2 upnutého ve speciálním přípravku pomocí RTG difrakce.

Obr. 7.23 Ukázka měření vzorku upnutého ve speciálním přípravku pomocí mobilního difraktometru Xstress 3000

7.2.1. Hodnocení vlivu technologických podmínek

Hodnocení vlivu technologických podmínek na velikost zbytkových napětí (ZN) bylo provedeno na jednotlivých oddělených zubech. Metodika výběru zubů, které byly vybrány pro další analýzy, je uvedena v podkapitole 7.4. Stejně jako u hodnocení magnetoelastického parametru (MP) bylo z důvodu přehlednosti vypracováno více grafů vždy pro jednotlivé subdodavatele tepelného zpracování (TZ), případně pro stejnou dávku TZ.

Na obrázku 7.24 je znázorněn graf naměřených hodnot zbytkových napětí (ZN) pro ozubená kola (OK) od subdodavatele A (OK jsou cementována a pískována) a to jak ve směru osy OK (σ_x), tak ve směru kolmo na zub (σ_y). Tento soubor vzorků byl broušen při řezné rychlosti $v_c = 23$ [m.s⁻¹] a efektivní hloubkou jednoho záběru $a_e = 45$ [µm]. Stejně jako u měření MP (viz obr. 7.4 a 7.5) byly i v tomto případě zjištěny odlišnosti naměřených hodnot mezi jednotlivými zuby. Příčinou může být nerovnoměrný úběr materiálu, kde pak dochází k nerovnoměrnému rozložení sil při broušení. Nejvyšší rozdíl mezi hodnotami ZN na levém (LB) a pravém (PB) boku zubu byl zaznamenán u OK 2.

Obr. 7.24 Naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele A (dávka TZ 224) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

V následující tabulce č. 22 jsou uvedeny naměřené hodnoty ZN včetně standardní odchylky pro výše zmiňovaný soubor vzorků.

Tab. 22 Naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele A (dávka TZ 224) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

v_c = 23 m/s; a_e = 45 μ m, subdodavatel A dávka 224,									
levý bok	σ_x [MPa]	σ_y [MPa]	pravý bok	σ_x [MPa]	σ _y [MPa]				
ОК 2	-767,6 ± 29,7	-524,4 ± 19,2	ОК 2	-232,5 ± 35,0	-474,9 ± 16,9				
ОК 7	-292,3 ± 26,8	-501,9 ± 22,2	ОК 7	-261,2 ± 17,1	-485,6±24,8				
OK 8	-258,6 ± 24,9	-480,0 ± 18,9	ОК 8	-269,5 ± 17,7	-473,2 ± 27,5				
ОК 9	-264,6 ± 24,6	-499,6 ± 21,3	ОК 9	-282,1 ± 20,2	-487,7 ± 23,0				

Jako další byly analyzovány vzorky broušené za stejných řezných podmínek jako v předešlém případě (tj. $v_c = 23 \text{ [m.s}^{-1}\text{]}$ a $a_e = 45 \text{ [µm]}$), avšak OK byla tepelně zpracována u subdodavatele B (OK nejsou pískována). Naměřené hodnoty ZN (znázorněné na obr. 7.25) potvrzují výsledky měření metodou analýzy Barkhausenova šumu (viz obr. 7.6), kde bylo zjištěno, že rozdíly mezi jednotlivými boky zubů jsou minimální. Naměřené hodnoty jsou uvedeny v tabulce č. 23.

Poslední skupina vzorků broušená za stejných řezných podmínek jako v předešlých případech byla tepelně zpracována u subdodavatele C (OK jsou kuličkována). Naměřené výsledky jsou zobrazeny na obrázku 7.26. Oproti zbylým dvěma subdodavatelům TZ (A a B) došlo k poklesu naměřených hodnot zbytkových napětí.

Tato skutečnost potvrzuje výsledky měření Barkhausenova šumu (viz obr. 7.7), kde došlo k nárůstu hodnot magnetoelastického parametru (MP). Tento jev může být způsoben mezioperací kuličkování před procesem broušení. Kuličkováním sice do obrobku dostaneme potřebná tlaková zbytková napětí, avšak zpravidla do hloubky 0,12 – 0,50 mm [19]. Jelikož radiální přídavek na broušení je 0,5 mm, je zpevněná vrstva odebrána právě procesem broušení.

Obr. 7.25 Naměřené hodnoty zbytkových napětí pcro skupinu vzorků od subdodavatele B (dávka TZ 239B) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

V následující tabulce č. 23 jsou uvedeny naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele B (dávka TZ) 239B.

Tab. 23 Naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele B (dávka TZ 239B) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

	v _c = 23 m/s; a _e = 45 μm, subdodavatel B dávka 239B							
levý bok	σ_x [MPa]	σ_y [MPa]	pravý bok	σ_x [MPa]	σ_y [MPa]			
OK 13	-305,3 ± 22,4	-521,2 ± 23,2	OK 13	-277,9±21,1	-499,8±21,8			
OK 14	-312,4 ± 22,1	-522,2 ± 16,4	OK 14	-292,9 ± 20,6	-501,5 ± 20,8			

Tabulka č. 24 znázorňuje naměřené hodnoty pro výše popsanou skupinu vzorků od subdodavatele C (dávka TZ 264B).

Tab. 24 Naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele C (dávka TZ 264B) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

v _c = 23 m/s; a _e = 45 μm, subdodavatel C dávka 264B								
levý bok	σ_x [MPa]	σ _y [MPa]	pravý bok	σ_x [MPa]	σ _y [MPa]			
ОК 27	-207,9 ± 19,8	-442,4 ± 24,5	ОК 2	-202,0 ± 18,2	-433,4 ± 21,5			

Lucie Schmidová

Obr. 7.26 Naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele C (dávka TZ 264B) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Následující obrázek 7.27 zobrazuje naměřené hodnoty zbytkových napětí pro soubor vzorků od subdodavatele A, avšak liší se čísla jednotlivých dávek (číslo dávky TZ je v grafu uvedeno v závorce za číslem OK). Výsledky prokazují značné rozdíly mezi jednotlivými analyzovanými zuby. U levých boků zubů činí maximální rozdíl 217 [MPa], zatímco u pravých boků je to 128 [MPa]. Nejnižší hodnoty tlakových zbytkových napětí byly naměřeny u ozubených kol číslo 23 (dávka TZ 43) a 24 (dávka TZ 116). Výsledky tedy ukazují na problematiku neshody kvality výrobků mezi jednotlivými dávky. Ostatně tyto odlišnosti již byly zjištěny při měření metodou analýzy Barkhausenova šumu (viz obr. 7.8 a 7.9).

Obr. 7.27 Naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele A (různé dávky TZ) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

v _c = 23 m/s; a _e = 45 μm, subdodavatel A, různé dávky TZ									
levý bok	σ_x [MPa]	σ_y [MPa]	pravý bok	σ_x [MPa]	σ _y [MPa]				
ОК З (219)	-311,1 ± 24,6	-562,2 ± 28,8	ОК 3 (219)	-297,5 ± 26,4	-535,2 ± 26,4				
OK 20 (223)	-309,0 ± 20,8	-544,5 ± 20,9	ОК 20 (223)	-302,3 ± 22,4	-529,7 ± 20,3				
OK 22 (220)	-249,0 ± 22,0	-466,0 ± 23,3	ОК 22 (220)	-278,8 ± 23,5	-503,2 ± 17,7				
OK 23 (43)	-109,3 ± 41,3	-372,4 ± 35,3	ОК 23 (43)	-203,7 ± 32,0	-425,6±34,1				
OK 24 (116)	- 102,8 ± 33,5	-345,3 ± 25,8	ОК 24 (116)	-226,7 ± 28,6	-407,9 ± 27,6				
ОК 25 (114)	-279,4 ± 17,5	-399,4 ± 20,4	OK 25 (114)	-279,4 ± 17,5	-450,8 ± 23,2				

Tab. 25 Naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele A (různé dávky TZ) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

U následujícího vzorku od subdodavatele A byla v rámci stejné řezné rychlosti $v_c = 23 \text{ [m.s}^{-1}\text{]}$ navýšena efektivní hloubka jednoho záběru na hodnotu $a_e = 55 \text{ [µm]}$. Výsledky zobrazené na obr. 7.28 ukazují, že nárůst efektivní hloubky záběru o cca 20% téměř neovlivnil hodnoty zbytkových napětí (v porovnání s OK 3 ze stejné dávky TZ). Tyto výsledky tedy ukazují, že zvýšením efektivní hloubky jednoho záběru a_e [µm] nedochází k negativnímu ovlivnění kvality integrity povrchu součástí a lze tedy zkrátit výrobní čas. Naměřené hodnoty jsou uvedeny v tabulce č. 26.

Obr. 7.28 Naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele A (dávky 219) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 55 \ [\mu m]$

V rámci stejné dávky TZ (tj. 219) od subdodavatele A (tzn., že OK jsou cementována a pískována) byla u dalšího vzorku navýšena efektivní hloubka jednoho záběru o téměř 60% (oproti původní hodnotě 45 [µm]) na hodnotu a_e = 71 [µm]. Co se týče zbytkových napětí, došlo k velice mírnému poklesu hodnot, což je pozitivní výsledek. Toto měření ukazuje, že proces broušení lze v tomto případě zefektivnit použitím vyšších efektivních

hloubek jednoho záběru a_e [µm]. Výsledky měření zbytkových napětí zobrazené na grafu č. 7.29.

Obr. 7.29 Naměřené hodnoty zbytkových napětí pro skupinu vzorků od subdodavatele A (dávky 219) broušených při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 71 \ [\mu m]$

Tab. 26 Naměřené hodnoty zbytkových napětí pro OK od subdodavatele A (dávka TZ 219) broušeného při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 55 \ [\mu m]$

	v _c = 23 m/s; a _e = 55 μm, subdodavatel A dávka 219								
levý bok	σ_x [MPa]	σ _y [MPa]	pravý bok	σ_x [MPa]	σ _y [MPa]				
ОК 10	-320,2 ± 22,8	-558,5 ± 20,2	OK 10	-319,0 ± 25,8	-549,7 ± 19,1				

V tabulce č. 27 jsou uvedeny naměřené hodnoty pro OK od subdodavatele A (dávka TZ 219) broušeného při v_c = 23 [m.s-1] a a_e = 71 [µm].

Tab. 27 Naměřené hodnoty zbytkových napětí pro OK od subdodavatele A (dávka TZ 219) broušeného při $v_c = 23 \ [m.s^{-1}]$ a $a_e = 71 \ [\mu m]$

v _c = 23 m/s; a _e = 71 μm, subdodavatel A dávka 219							
levý bok	σ_x [MPa]	σ _y [MPa]	pravý bok	σ_x [MPa]	σ _y [MPa]		
ОК 6	-281,1 ± 27,8	-514,9 ± 25,5	ОК 6	-287,2 ± 27,0	-520,8 ± 26,3		

Z přechozích měření analyzovaných zubů z ozubených kol (OK) od subdodavatele A (OK jsou pískována) pro dávku TZ 219 byly vytvořeny grafy (obr. 7.30 – 7.33), které naznačují vliv velikosti řezné rychlosti v_c [m.s⁻¹] a efektivní hloubky jednoho záběru a_e [µm] na velikost zbytkových napětí [MPa]. Na prvním grafu (obr. 7.30) je znázorněn vliv velikosti efektivní hloubky záběru na velikost zbytkových napětí pro levý bok (LB)

analyzovaných zubů. Z grafu je patrné, že při navyšování efektivní hloubky jednoho záběru a_e dochází k mírnému poklesu tlakových zbytkových napětí, což je nežádoucí jev. U řezné rychlosti $v_c = 23$ [m.s⁻¹] není pokles zbytkových napětí natolik značný, což prokazuje možnost optimalizace procesu obráběním navýšením efektivní hloubky jednoho záběru na hodnotu $a_e = 71$ [µm].

Obr. 7.30 Hodnocení vlivu efektivní hloubky jednoho záběru na velikost zbytkových napětí při použití řezné rychlosti $v_c = 23 a 52 [m.s^{-1}] - levé boky zubů (LB)$

V tabulce č. 28 jsou uvedeny naměřené hodnoty ZN pro levé i pravé boky zubů OK z dávky TZ 219 od subdodavatele A (OK jsou pískována), z nichž byly vytvořeny grafy (obr. 7.30 – 7.31).

Tab. 28 Naměřené hodnoty zbytkových napětí pro OK od subdodavatele A (dávka TZ 219) broušeného při $v_c = 23$ a 52 [m.s⁻¹] a $a_e = 45$, 55 a 71 [µm]

			subdodavate	el A dávka 219	•	-
	levý bok	σ_x [MPa]	σ _y [MPa]	pravý bok	σ_x [MPa]	σ _y [MPa]
رم ا	<mark>a _e = 45 μm</mark> (OK 3)	-311,1 ± 24,6	-562,2 ± 28,8	<mark>α _e = 45 μm</mark> (OK 3)	-297,5 ± 26,4	-535,2 ± 25,6
^{,c} = 23 m/	<mark>α _e = 55 μm</mark> (OK 10)	-320,2 ± 22,8	-558,5 ± 20,2	<mark>α _e = 55 μm</mark> (OK 10)	-319,0 ± 25,7	-549,7 ± 19,1
Ň	<mark>α _e = 71 μm</mark> (OK 6)	-281,1 ± 27,8	-514,9 ± 25,5	<mark>α _e = 71 μm</mark> (OK 6)	-287,2 ± 27,0	-520,8 ± 26,3
2 m/s	<mark>a _e = 45 μm</mark> (OK 4)	-230,0 ± 16,9	-440,4 ± 26,0	<mark>α _e = 45 μm</mark> (OK 4)	-100,4 ± 17,3	-323,6 ± 27,4
Vc = 5	<mark>α _e = 71 μm</mark> (OK 5)	-142,3 ± 28,8	-328,3 ± 30,6	<mark>α_e = 71 μm</mark> (OK 5)	-119,6 ± 17,8	-320,2 ± 27,8

Následující obrázek č. 7.31 znázorňuje principiálně stejné informace jako předchozí, avšak jedná se o naměřené hodnoty zbytkových napětí (ZN) pro pravé boky zubů (PB). V porovnání s předešlými výsledky je patrné, že hodnoty ZN se spolu s rostoucí efektivní hloubkou jednoho záběru příliš nemění, avšak celkově jsou oproti LB naměřené hodnoty ZN vyšší. Tato skutečnost, stejně jako u měření magnetoelastického parametru, ukazuje na nerovnoměrný úběr materiálu. Naměřené hodnoty jsou uvedeny v tabulce č. 28.

Obr. 7.31 Hodnocení vlivu efektivní hloubky jednoho záběru na velikost zbytkových napětí při použití řezné rychlosti v_c = 23 a 52 [m.s⁻¹] – pravé boky zubů (PB)

Podobný způsob hodnocení byl aplikován ke klasifikaci vlivu řezné rychlosti na velikost zbytkových napětí. Hodnocení těchto veličin pro levý bok (LB) zubů z OK je znázorněno na obrázku 7.32. Výsledky ukazují, že s rostoucí řeznou rychlostí dochází k nežádoucímu poklesu tlakových zbytkových napětí.

Průběh měření pro pravý bok zubů je zobrazen na obrázku 7.33. Stejně jako u LB bylo zjištěno, že s rostoucí řeznou rychlostí dochází k nežádoucímu poklesu zbytkových napětí. Pro řeznou rychlost $v_c = 52 \text{ [m.s}^{-1}\text{]}$ se jedná o pokles v řádu stovek MPa. Jak již bylo uvedeno dříve, hodnoty ZN pro pravý bok jsou v důsledku nerovnoměrného úběru materiálu odlišné od levého boku. Naměřené hodnoty zbytkových napětí pro levý i pravý bok zubů jsou uvedeny v tabulce č. 29.

Výsledky analýz pro levý i pravý bok zubů ukazují, že pro zefektivnění operace broušení lze navýšit řeznou rychlost v_c [m.s⁻¹].

Obr. 7.32 Hodnocení vlivu řezné rychlosti na velikost zbytkových napětí při použití efektivní hloubky jednoho záběru $a_e = 45$, 55 a 71 [µm] – pravé boky zubů (LB)

Tab.	29 Naměřené	hodnoty zl	bytkových	napětí	pro OK	od suba	lodavatele A	(dávka	ΤZ
219)	broušeného př	i a _e = 45, 55	5 a 71 [μm]] a v _c = 2	23, 35 a	52 [m.s	⁻¹]		

		•	subdodavate	el A dávka 219	•	•
	levý bok	σ_x [MPa]	σ_y [MPa]	pravý bok	σ_x [MPa]	σ_y [MPa]
15µm	v _c = 23 m/s (OK 3)	-311,1 ± 24,6	-562,2 ± 28,8	v _c = 23 m/s (OK 3)	-297,5 ± 26,4	-535,2 ± 25,6
ae = 4	v _c = 52 m/s (OK 4)	-230,0 ± 16,9	-440,4 ± 26,0	v _c = 52 m/s (OK 4)	-100,4 ± 17,3	-323,6 ± 17,3
55µm	v _c = 23 m/s (OK 10)	-320,2 ± 22,8	-558,5 ± 20,2	v _c = 23 m/s (OK 10)	-319,0 ± 25,7	-549,7 ± 19,1
ae II	v _c = 35 m/s (OK 11)	-248,4 ± 23,2	-468,0 ± 17,1	v _c = 35 m/s (OK 11)	-257,7 ± 26,1	-454,2 ± 169
11µm	v _c = 23 m/s (OK 6)	-281,1 ± 27,8	-514,9 ± 25,5	v _c = 23 m/s (OK 6)	-287,2 ± 27,0	-520,8 ± 26,3
ae = 7	v _c = 52 m/s (OK 5)	-142,3 ± 28,8	-328,3 ± 30,6	v _c = 52 m/s (OK 5)	-119,6 ± 17,8	-320,2 ± 27,8

Obr. 7.33 Hodnocení vlivu řezné rychlosti na velikost zbytkových napětí při použití efektivní hloubky jednoho záběru $a_e = 45$, 55 a 71 [µm] – pravé boky zubů (PB)

Stejně jako u měření MP (viz obr. 7.16) bylo pro měření zbytkových napětí provedeno hodnocení vlivu subdodavatelů na hodnoty zbytkových napětí po broušení (viz obr. 7.34), a to při řezné rychlosti $v_c = 23 \text{ [m.s}^{-1}\text{]}$ a efektivní hloubce záběru $a_e = 45 \text{ [µm]}$. Na první pohled je opět viditelný rozdíl mezi jednotlivými subdodavateli TZ. U subdodavatele A, kde jsou ozubená kola pískována, jsou hodnoty tlakových zbytkových napětí (ZN) nejvyšší. Hodnoty ZN pro subdodavatele B, kde nedochází ani k pískování, ani ke kuličkování jsou však srovnatelné. Nejnižší hodnoty tlakových ZN byly naměřeny u OK od subdodavatele C, kde jsou OK kuličkována. U kuličkovaných OK je ovlivněna povrchová vrstva do hloubky cca 500 µm [19]. V rámci operace broušení je však tato zpevněná povrchová vrstva odebrána. Naměřené hodnoty jsou uvedeny v tabulce 30.

Tab. 30 Naměřené hodnoty zbytkových napětí pro OK od všech subdodavatelů broušených při $a_e = 45 \ [\mu m]$ a $v_c = 23 \ [m.s^{-1}]$

subo	dodavatel A dá	vka 219	subd	odavatel B dáv	ka 23 9B	subdodavatel C dávka 264B		
lewí bok	σ_x [MPa]	σ_y [MPa]	levý bok	σ_x [MPa]	σ_y [MPa]	levý bok	σ_x [MPa]	σ_y [MPa]
IEVY DOK	-311,1 ± 24,6	-562,2 ± 28,8	levybok	-312,4 ± 22,1	-522,2 ± 16,4	levybok	-207,9 ± 19,8	-422,4 ± 24,5
pravý bok	σ_x [MPa]	σ_y [MPa]	pravý bok	σ_x [MPa]	σ_y [MPa]	pravý bok	σ_x [MPa]	σ_y [MPa]
pravy bok	-297,5±26,4	-535,2 ± 25,6	μιανγυοκ	-292,9±20,6	-501,5 ± 20,8		-202,0 ± 18,2	-433,4±21,5

Obr. 7.34 Hodnocení vlivu subdodavatele TZ při použití efektivní hloubky jednoho záběru $a_e = 45 \ [\mu m]a \ v_c = 23 \ [m.s^{-1}]$

7.2.2. Hodnocení hloubkových profilů zbytkových napětí

Dalším krokem experimentů bylo vyhodnocení hloubkových profilů zbytkových napětí (ZN). Měření zbytkových napětí bylo provedeno současně s hodnocením hloubkových profilů magnetoelastického parametru v rámci odleptávání povrchu analyzovaných vzorků.

Obr. 7.35 Naměřené hloubkové profily hodnot zbytkových napětí vzorků od tří subdodavatelů broušených za řezných podmínek $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$ - levé boky (LB)

Na obrázku 7.35 jsou znázorněny hloubkové profily hodnot ZN pro ozubená kola (OK) od různých subdodavatelů, která byla broušena za použití řezné rychlosti $v_c = 23$ [m.s⁻¹] a efektivní hloubce záběru $a_e = 45$ [µm]. Stejně jako u měření na povrchu součástí bylo měřením hloubkových profilů prokázáno, že kuličkovaná ozubená kola od subdodavatele C vykazují nízké hodnoty tlakových ZN. Tato skutečnost je nežádoucí. Naopak nejlepší výsledky vykazují stejně jako při měření na povrchu ozubená kola od subdodavatele B. Z grafu je také patrné, že směrem od povrchu k jádru součásti dochází ke sjednocení hodnot ZN u všech vzorků.

V tabulce č. 31 jsou uvedeny naměřené hodnoty zbytkových napětí pro hodnocení hloubkových profilů daných zubů. V grafu jsou uvedeny hodnoty pro levý i pravý bok zubů.

subd	odavatel A dávk	ka 224	subdo	odavatel B dávka	a 239B	subdo	odavatel C dávka	264B
	levý bok			levý bok			levý bok	
hloubka [mm]	σ_x [MPa]	σ _y [MPa]	hloubka [mm]	σ_x [MPa]	σ _y [MPa]	hloubka [mm]	σ_x [MPa]	σ_y [MPa]
0,000	-308,5 ± 23,7	-488,3±23,3	0,000	-307,9±23,2	-532,3 ± 21,9	0,000	-128,8±13,2	-402,4 ± 26,4
0,006	-73,2 ± 19,0	-71,2 ± 7,1	0,005	-151,8±30,8	-233,3±3,9	0,006	-61,8±17,0	-130,3 ± 13,3
0,011	-82,7 ± 21,2	-85,3 ± 30,2	0,011	-96,0±7,3	-156,9±22,5	0,010	-46,9±15,2	-94,0±7,7
0,023	-69,1±8,5	-50,2 ± 9,5	0,019	-89,4 ± 31,7	-86,6 ± 7,7	0,024	-70,0±28,1	-75,1±17,9
0,050	-94,8±17,5	-70,0±37,3	0,048	-104,7 ± 19,9	-88,6±11,3	0,052	-62,4±21,0	-73,5±16,1
0,119	-97,2 ± 12,3	-68,5±19,6	0,085	-104,3 ± 13,2	-108,9±6,5	0,099	-71,1±23,6	-94,5 ± 10,4
0,167	-74,9 ± 12,0	-98,4±6,4	0,138	-110,9±3,9	-101,1 ± 14,4	0,154	-65,3±7,9	-70,0 ± 11,8
	pravý bok			pravý bok				
hloubka [mm]	σ_x [MPa]	σ _y [MPa]	hloubka [mm]	σ_x [MPa]	σ _y [MPa]	hloubka [mm]	σ_x [MPa]	σ_y [MPa]
0,000	-257,1±13,1	-493,1 ± 22,5	0,000	-288,9 ± 20,5	-504,4±18,5	0,000	-190,9±10,9	-419,5 ± 11,6
0,006	-96,6 ± 15,9	-142,3 ± 22,9	0,005	-221,7 ± 10,9	-336,6±11,4	0,006	-44,6 ± 19,1	-107,7±15,1
0,013	-84,2 ± 11,6	-88,1 ± 10,4	0,010	-107,1±8,9	-133,1±11	0,011	-48,0±11,1	-62,3±6,9
0,022	-70,8±16,5	-112,0 ± 14,7	0,022	-94,4 ± 7,6	-117,3±11,7	0,023	-78,3±18,9	-93,2±7,6
0,051	-73,4 ± 20,2	-93,0 ± 25,9	0,053	-89,2 ± 14,2	-118,1 ± 10,8	0,046	-50,0 ± 8,0	-82,7 ± 18,9
0,095	-91,9 ± 18,2	-81,1 ± 18,3	0,095	-83,9 ± 19,2	-104,8 ± 28,9	0,097	-90,0 ± 10,8	-86,4 ± 19
0,126	-112,9 ± 23,5	-101,7±13,7	0,126	-96,9±11,5	-115,0 ± 12,7	0,147	-77,7±10,8	-89,9±16,8

Tab. 31 Naměřené hodnoty zbytkových napětí pro hloubkové profily vzorků od tří subdodavatelů broušených za řezných podmínek $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

Graf na obrázku 7.36 pak znázorňuje hloubkové profily hodnot ZN pro pravé boky zubů OK popsaných v předchozím odstavci. Výsledky jsou stejného charakteru jako v předchozím případě, tzn., že kuličkovaná ozubená kola od subdodavatele C vykazují nízké hodnoty tlakových ZN. Naopak nejvyšší hodnoty tlakových zbytkových napětí byly naměřeny u ozubených kol od subdodavatele B. Z grafu je také patrné, že směrem od povrchu k jádru součásti dochází ke sjednocení hodnot ZN u všech vzorků.

Obr. 7.36 Naměřené hloubkové profily hodnot zbytkových napětí vzorků od tří subdodavatelů broušených za řezných podmínek $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$ - pravé boky (LB)

Dále bylo provedeno hodnocení vlivu řezné rychlosti v_c [m.s⁻¹] na průběh hodnot zbytkových napětí u hloubkových profilů v rámci jedné dávky tepelného zpracování (TZ) od subdodavatele A při použití efektivní hloubky záběru $a_e = 45$ [µm]. Výsledky na levých bocích (viz. obr. 7.37) ukazují, že s rostoucí řeznou rychlostí jsou hodnoty zbytkových napětí (ZN) na povrchu dochází k poklesu hodnot tlakových zbytkových napětí, což je pro kvalitu a životnost součásti nepříznivé. V hloubce cca 0,1 [mm] dochází ke sjednocení hodnot zbytkových napětí u všech vzorků.

Obr. 7.37 Vliv velikosti řezné rychlosti na velikost zbytkových napětí v rámci hloubkových profilů u vzorků subdodavatele A broušených při $a_e = 45 \ [\mu m] - levé boky$

Stejné vyhodnocení bylo použito pro pravé boky zubů, jejichž výsledky jsou znázorněny na obrázku 7.38. Oproti levým bokům zubů daných OK (obr. 6.39) je v tomto případě znatelnější vliv řezné rychlosti na hodnoty zbytkových napětí (ZN). S rostoucí řeznou rychlostí totiž došlo ke vzniku tahových zbytkových napětí těsně pod povrchem součásti. Tato situace je pro integritu součásti velmi nepříznivá, protože již při lehkém namáhání OK může dojít ke vzniku a šíření trhlin. V hloubce cca 0,1 [mm] znovu došlo ke sjednocení naměřených hodnot ZN. Rozdíl hodnot ZN mezi levým a pravým bokem daných zubů znovu ukazuje na nerovnoměrný úběr materiálu.

Naměřené hodnoty zbytkových napětí pro danou skupinu vzorků, ze kterých byly vytvořeny grafy 7.37 a 7.38 jsou uvedeny v následující tabulce č. 32.

Tab. 32 Naměřené hodnoty zbytkových napětí pro hloubkové profily vzorků od subdodavatele A z dávky TZ 219 broušených za řezných podmínek $v_c = 23$ a 52 [m.s⁻¹] a $a_e = 45$ [μ m]

subd	odavatel A dávk	a 219	subdodavatel A dávka 219			
	levý bok		levý bok			
hloubka [mm]	σ _× [MPa]	σ _y [MPa]	hloubka [mm]	σ _x [MPa]	σ _y [MPa]	
0,000	-307,6 ± 21,8	-549 ± 17	0,000	-186,4 ± 14,1	-384,0 ± 17,4	
0,004	-206,0 ± 25,6	-228,1 ± 18,6	0,038	-106,0 ± 17,6	-77,1±17,3	
0,019	-103,4 ± 12,1	-115,6 ± 12,7	0,078	-135,8 ± 16,8	-84,2 ± 6,7	
0,038	-95,3 ± 22,5	-144,0 ± 27,5	0,099	-113,8 ± 15,5	-99,0 ± 8,9	
0,068	-125,3 ± 21,4	-120,3 ± 12,5	0,168	-93,9 ± 17,5	-126,7 ± 14,8	
0,099	-113,6 ± 15,1	-125 ± 13,2	0,215	-86,8 ± 16,8	-101,9 ± 18,2	
0,169	-100,5 ± 25,3	-104,7 ± 10,8	0,305	-100,5 ± 31,4	-96,3 ± 15,3	
0,248	-103,8 ± 18,8	-79,7 ± 15,8	0,384	-126,1 ± 21,1	-101,1 ± 13,7	
-	-	-	0,468	-109,3 ± 12,5	-121,2 ± 19,5	
	pravý bok		pravý bok			
hloubka [mm]	σ _× [MPa]	σ _y [MPa]	hloubka [mm]	σ _x [MPa]	σ _y [MPa]	
0,000	-291,2 ± 25	-554,0 ± 13,7	0,000	-112,1 ± 16,2	-335,1 ± 28,9	
0,007	-211,8 ± 8,5	-278,0 ± 19,2	0,005	112,8 ± 10,4	86,3±19,4	
0,029	-108,8 ± 15,1	-135,2 ± 5,3	0,008	45,9 ± 12,1	70,4 ± 10,6	
0,049	-117,7 ± 12,9	-139 ± 7,8	0,010	-30,6 ± 15,9	-2,1 ± 16,8	
0,093	-120,9 ± 11,7	-144,4 ± 19,7	0,030	-69,8 ± 16,2	-54,2 ± 7,5	
0,173	-107,9 ± 29,3	-146,9 ± 16,8	0,058	-125,1 ± 20,0	-77,7 ± 13,1	
0,206	-125,6 ± 20,7	-153,1 ± 11,2	0,077	-115,9 ± 15,3	-131,2 ± 9,6	
0,255	-117,3 ± 20,0	-125,6 ± 12,8	0,122	-134,4 ± 15,3	-138,7 ± 32,7	
0,303	-99,3 ± 18,3	-124,7 ± 16,6	0,185	-124,4 ± 25,8	-98,4±6,6	
-	_	-	0,248	-115,9 ± 10,0	-76,6 ± 22,9	

Obr. 7.38 Vliv velikosti řezné rychlosti na velikost zbytkových napětí v rámci hloubkových profilů u vzorků subdodavatele A broušených při $a_e = 45 \ [\mu m] - pravé boky$

Jako další bylo provedeno hodnocení vlivu řezné rychlosti na hloubkové profily zbytkových napětí pro OK od subdodavatele A z dávky TZ 219 při použití efektivní hloubky záběru $a_e = 55$ [µm]. V grafu číslo 7.39 jsou zobrazeny hloubkové profily u levých boků zubů. Hodnocení pravých boků zubů je zobrazeno na obrázku č. 7.40. V případě použití $a_e = 55$ [µm] nemá zvyšování řezné rychlosti vliv na velikost zbytkových napětí.

Obr. 7.39 Vliv velikosti řezné rychlosti na velikost zbytkových napětí v rámci hloubkových profilů u vzorků subdodavatele A broušených při $a_e = 55 \ [\mu m] - levé boky$

Obr. 7.40 Vliv velikosti řezné rychlosti na velikost zbytkových napětí v rámci hloubkových profilů u vzorků subdodavatele A broušených při $a_e = 55 \ [\mu m] - pravé boky$

Naměřené hodnoty zbytkových napětí pro danou skupinu vzorků, ze kterých byly vytvořeny grafy 7.37 a 7.38 jsou uvedeny v následující tabulce č. 33.

Tab. 33 Naměřené hodnoty zbytkových napětí pro hloubkové profily vzorků od subdodavatele A z dávky TZ 219 broušených za řezných podmínek $v_c = 23$ a 35 [m.s⁻¹] a $a_e = 55$ [μ m]

subdodavatel A dávka 219			subdodavatel A dávka 219			
levý bok			levý bok			
hloubka [mm]	σ _x [MPa]	σ _y [MPa]	hloubka [mm]	σ _x [MPa]	σ _y [MPa]	
0,000	-302,4 ± 24,0	-531,3 ± 14,7	0,000	-116 ± 18,1	-329,4 ±24,6	
0,006	-72,4 ± 13,4	-80,7 ± 20,3	0,006	-9,5 ± 4,8	-32,7 ±28,4	
0,013	-84,2 ± 20,2	-101,6 ± 21,3	0,012	12 ± 8,7	-29,4 ±4,2	
0,026	-79,2 ± 14,9	-81,8 ± 12,4	0,022	-21,7 ± 28,4 -30,3 ±		
0,060	-85,1 ± 9,8	-50,4 ± 20,0	0,055	0,055 -77,8±7,4		
0,104	-83,8 ± 10,6	-61,9 ± 23,6	0,107	-66 ± 20,9	-94,4 ±22	
0,147	-60,8 ± 18,0	-74,9 ± 11,9	0,140	-97,8 ± 9,2	-98,1 ±10,5	
-			0,190	-118,9 ± 18,9	-90,3 ±19,9	
pravý bok			pravý bok			
hloubka [mm]	σ_x [MPa]	σ _y [MPa]	hloubka [mm]	σ_x [MPa]	σ _y [MPa]	
0,000	-286,4 ± 24,1	-529,3 ± 15,8	0,000	-130,9 ± 19,1	-342,7 ±12,6	
0,005	005 -112,3 ± 16,2 -133,0 ±		0,005	35,1 ± 10,3	-34,1 ±14,2	
0,011	-89,0 ± 18,3 -82,3 :		0,009	27,1 ± 14,3	5,1 ±13,7	
0,022	-70,7 ± 12,9	-101,3 ± 12,6	0,018	7,9 ± 19,6	-3,1 ±22,2	
0,046	-133,4 ± 17,8	-130,5 ± 25,7	0,045	-53,7 ± 11,3	-27,3 ±16,1	
0,083	-154,3 ± 29,1	-163,2 ± 22,3	0,086	-90,9 ± 8,8	-74,3 ±20,3	
0,114	-146,9 ± 13,4	-162,9 ± 16,5	0,121	-128,4 ± 26,4	-60,3 ±18,5	
		-	0,148	-77,1 ± 21,8	-78,7 ±14,4	

Poslední hodnocení vlivu velikosti řezné rychlosti na hloubkové profily zbytkových napětí bylo provedeno pro OK od subdodavatele A z dávky TZ 219 při použití efektivní hloubky záběru $a_e = 71$ [µm]. V tomto případě je nutné podotknout, že již samotné použití vyšší hodnoty efektivní hloubky jednoho záběru negativně ovlivňuje velikost zbytkových napětí. Výsledky ukazují, že s rostoucí řeznou rychlostí dochází ke vzniku tahových zbytkových napětí pod povrchem součásti a to jak u levých boků zubů – viz obr. 7.41, tak u pravých boků zubů, jejichž výsledky jsou zobrazeny na grafu 7.42.

Obr. 7.41 Vliv velikosti řezné rychlosti na velikost zbytkových napětí v rámci hloubkových profilů u vzorků subdodavatele A broušených při $a_e = 71 \ [\mu m] - levé boky$

Obr. 7.42 Vliv velikosti řezné rychlosti na velikost zbytkových napětí v rámci hloubkových profilů u vzorků subdodavatele A broušených při $a_e = 71 \ [\mu m] - pravé boky$

Naměřené hodnoty zbytkových napětí pro poslední skupinu vzorků, ze kterých byly vytvořeny grafy 7.37 a 7.38 jsou uvedeny v následující tabulce č. 34.

Tab. 34 Naměřené hodnoty zbytkových napětí pro hloubkové profily vzorků od subdodavatele A z dávky TZ 219 broušených za řezných podmínek $v_c = 23$ a 52 [m.s⁻¹] a $a_e = 71$ [μ m]

subdodavatel A dávka 219			subdodavatel A dávka 219			
levý bok			levý bok			
hloubka [mm]	σ _× [MPa]	σ _y [MPa]	hloubka [mm]	σx [MPa]	σy [MPa]	
0,000	-333,8 ± 20,6	-566,3 ±18,2	0,000	-262,7 ± 12,5	-495,9 ± 24,1	
0,004	-122,9 ± 8,8	-173,7 ±6,2	0,003	-96,2 ± 23,0	-113,3 ± 22,4	
0,010	-75,6±13,2	-91,6 ±12,9	12,9 0,014 -92,2 ±		-104,6 ± 20,4	
0,019	-102,6 ± 16,0	-101,7 ±13,9	0,027	-77,5 ± 15,5	-95,6±9,3	
0,045	-111,5 ± 17,6	-67,9 ±16,1	0,074 -103,6±15,6		-100,0 ±n14,8	
0,094	-93,7 ± 15,9	-69,3 ±2,8	0,117	0,117 -89,8 ± 28,4		
0,125	-81,4 ± 14,0	-78,3 ±16,6	0,195	-98,4 ± 11,8	-74,1 ± 18,6	
pravý bok				pravý bok		
hloubka [mm]	σx [MPa]	σy [MPa]	hloubka [mm] σx [MPa] σу		σy [MPa]	
0,000	0,000 -311,7±21,4 ·		0,000	-267,0 ± 16,2 -490,1 ± 1		
0,005	-100,6 ± 19,9	-139 ±8,1	0,007 -86,4 ± 10,0		-102,0 ± 23,3	
0,012	0,012 -102,5±22		0,012 -70,7 ± 16,2		-91,5 ± 15,8	
0,023	0,023 -92,9±14,2 -		0,027 -89,8 ± 18,0		-110,5 ± 18,9	
0,053	0,053 -86,3 ± 11,7 -101,8 ±23,2		0,054	-75,7 ± 16,1	-102,1 ± 12,1	
0,085	-80,0 ± 5,2	-94,3 ±21,2	0,090	-78,5 ± 11,6	-106,9 ± 13,0	
0,101	0,101 -90,5 ± 16,8 -130,2 ±22,2		0,131	-103,8 ± 20,3	-115,2 ± 16,3	

7.3. Verifikace schopnosti detekce podpovrchových trhlin

Jedním z cílů disertační práce byla verifikace schopnosti detekce podpovrchových trhlin. Projevem předchozích výsledků, kdy s rostoucí řeznou rychlostí a efektivní hloubkou jednoho záběru docházelo ke snižování hodnot tlakových zbytkových napětí, je možnost vzniku trhlin na povrchu, případně v podpovrchových vrstvách vlivem změny smyslu zbytkových napětí z tlakových na takové. Již při měření povrchu zubu OK 26, broušeného za použití řezné rychlosti $v_c = 44 \text{ [m.s}^{-1}]$ a efektivní hloubky záběru $a_e = 83 \text{ [µm]}$, metodou analýzy Barkhausenova šumu byl zjištěn defekt, který se projevuje vysokou hodnotou magnetoelastického parametru. Oproti tomu měření zbytkových napětí rentgenovou difrakcí na povrchu součásti jednoznačně nedetekovalo daný defekt (trhlinu). K potvrzení přítomnosti trhliny pomocí rentgenové difrakce vedlo až další měření po odstranění povrchové vrstvy elektrolytickým odleptáním, kde došlo k výraznému nárůstu hodnot tahových zbytkových napětí (viz obr. 7.43). Naměřené hodnoty jsou uvedeny v tabulce č. 35.

Obr. 7.43 Porovnání výsledků mezi rentgenovou difrakcí a metodou analýzy Barkhausenova šumu

Na obrázcích 7.44 a 7.45 jsou zobrazeny detekované podpovrchové trhliny. První trhlina byla zjištěna již v hloubce 0,006 mm a byla pozorovatelná až do hloubky 0,051 mm. Podle těchto výsledků se metoda analýzy Barkhausenova šumu jeví jako výhodnější pro rychlé a spolehlivé hodnocení kvality broušených součástí. Těmito měření byla prokázána schopnost detekovat podpovrchové trhliny metodou analýzy Barkhausenova šumu bez porušení broušené povrchové vrstvy.

Obr. 7.44 Detekce trhlin při elektrolytickém odleptávání

Obr. 7.45 Detekce trhlin při elektrolytickém odleptávání

Tab. 35 Naměřené hodnoty zbytkových napětí pro hloubkové profily OK 26 od subdodavatele C z dávky TZ 264 B broušeného za řezných podmínek $v_c = 44 \ [m.s^{-1}]$ a $a_e = 83 \ [\mu m]$

ν _c = 44 m/s; a _e = 83 μm, subdodavatel C dávka 264B							
levý bok							
hloubka [mm]	σ_x [MPa]	σ _y [MPa]	MP [-]				
0,000	-31,2 ± 13,6	-227,6 ± 25,3	163,1 ± 16,3				
0,006	125,4 ± 12,5	29,9 ± 8,4	149,3 ± 3,9				
0,013	96,4 ± 11,8	$30,9 \pm 9,6$	128,3 ± 2,9				
0,022	19,3 ± 20,1	-31,4 ± 5,0	115,0 ± 1,2				
0,051	-1,3 ± 7,1	-28,2 ± 10,0	75,8 ± 2,4				
0,100	-72,4 ± 19,6	-82,1 ± 25,5	67,7 ± 0,6				
0,149	-82,4 ± 11,2	-97,7 ± 13,9	62,4 ± 1,2				
0,205	-86,3 ± 19,8	-83,9 ± 9,8	57,6 ± 1,6				
0,252	-94,7 ± 14,6	-95,8 ± 9,0	61,7 ± 0,8				
0,306	-125,9 ± 18,7	-115,1 ± 12,2	51,9 ± 2,2				
pravý bok							
hloubka [mm]	σx [MPa]	σу [MPa]	MP [-]				
0,000	242,2 ± 20,5	0,4 ± 26,2	223,8±8,3				
0,005	654,8 ± 25,3	493,2 ± 44,0	211,1±6,3				
0,011	793,1 ± 17,5	643,2 ± 47,6	227,0±4,3				
0,023	$686,8 \pm 22,2$	61,0 ± 22,6	236,5 ± 7,1				
0,052	313,5 ± 22,9	291,4 ± 15,3	205,2 ± 3,9				
0,105	98,9 ± 18,8	20,7 ± 25,5	145,6±2,9				
0,145	-41,0 ± 11,7	-45,2 ± 9,5	114,6 ± 3,4				
0,230	-91,4 ± 21,0	-86,1 ± 22,3	103,5 ± 3,1				
0,308	-102,8 ± 12,4	-119,1 ± 14,8	78,6±1,6				
0,357	-112,6 ± 23,1	-151,9 ± 9,6	72,4 ± 2,4				

7.4. Porovnání výsledků analýzy Barkhausenova šumu a rentgenové difrakce

Již v předchozí podkapitole 7.3. bylo nastíněno porovnání výsledků získaných metodou analýzy Barkhausenova šumu a metodou rentgenové difrakce. Na následujícím obrázku č. 7.46 je zobrazeno porovnání výsledků pro OK 27 od subdodavatele C (OK jsou cementována a kuličkována) z dávky TZ 264Bbroušeného a použití řezné rychlosti $v_c = 23 \text{ [m.s}^{-1}\text{]}$ a efektivní hloubky jednoho záběru $a_e = 45 \text{ [µm]}$. I v tomto případě je viditelný společný trend výsledků jak u metody analýzy Barkhausenova šumu, tak u metody rentgenové difrakce. Výsledky jsou viditelně ovlivněny hloubkou průniku "signálu" u jednotlivých metod (viz. obr. 3.2). Jelikož je průnik signálu Barkhausenova šumu vyšší, je již měření na povrchu zubu ovlivněno stavem podpovrchové vrstvy. Naměřené hodnoty jsou uvedeny v tabulce č. 36.

Obr. 7.46 Porovnání výsledků mezi rentgenovou difrakcí a metodou analýzy Barkhausenova šumu pro OK 26 od subdodavatele C broušeného při v_c = 23 [m.s⁻¹] a $a_e = 45 [\mu m]$

Další porovnání bylo provedeno pro OK 28 ze stejné dávky TZ (tj. 264B) od subdodavatele C, kde jsou OK cementována a kuličkována. Při broušení byla použita použití řezná rychlost $v_c = 23 \text{ [m.s}^{-1}\text{]}$ a efektivní hloubka jednoho záběru byla navýšena na hodnotu $a_e = 71 \text{ [}\mu\text{m}\text{]}$. Naměřené hodnoty jsou uvedeny v tabulce č. 37. Stejně jako v předešlých případech je viditelná souvislost mezi naměřenými hodnotami MP a ZN. Jednotlivá měření tedy ukazují, že metodou analýzy Barkhausenova šumu lze spolehlivě a hlavně rychle hodnotit integritu povrchu.

Tab. 36 Naměřené hodnoty zbytkových napětí pro hloubkové profily OK 27 od subdodavatele C z dávky TZ 264 B broušeného za řezných podmínek $v_c = 23 \ [m.s^{-1}]$ a $a_e = 45 \ [\mu m]$

v _c = 23 m/s; a _e = 45 μm, subdodavatel C dávka 264B								
	levý bok							
hloubka [mm]	σ_x [MPa]	σ_y [MPa]	MP [-]					
0,000	-128,8 ± 13,2	-402,4 ± 26,4	74,0 ± 4,3					
0,006	-61,8 ± 17,0	-130,3 ± 13,3	71,7 ± 1,1					
0,010	-46,9 ± 15,2	-94,0 ± 7,7	70,0 ± 0,9					
0,024	-70,0 ± 28,1	-75,1 ± 17,9	59,5 ± 2,0					
0,052	-62,4 ± 21,0	-73,5 ± 16,1	58,7 ± 2,4					
0,099	-71,1 ± 23,6	± 23,6 -94,5 ± 10,4						
0,154	-65,3 ± 7,9	-70,0 ± 11,8	52,9 ± 1,8					
	prav	ý bok						
hloubka [mm]	σx [MPa]	σy [MPa]	MP [-]					
0,000	-190,9 ± 10,9	-419,5 ± 11,6	67,1±3,8					
0,006	-44,6 ± 19,1	-107,7 ± 15,1	65,3 ± 2,1					
0,011	-48,0 ± 11,1	-62,3 ± 6,9	71,7 ± 3,2					
0,023	-78,3 ± 18,9	-93,2 ± 7,6	62,2 ± 2,1					
0,046	-50,0 ± 8,0	-82,7 ± 18,9	60,7 ± 4,8					
0,097	-90,0 ± 10,8	-86,4 ± 19,0	47,3 ± 2,7					
0,147	-77,7 ± 10,8	-89,9 ± 16,8	40,5 ± 1,8					

Obr. 7.47 Porovnání výsledků mezi rentgenovou difrakcí a metodou analýzy Barkhausenova šumu pro OK 28 od subdodavatele C broušeného při v_c = 23 [m.s⁻¹] a a_e = 71 [μ m]

Tab. 37 Naměřené hodnoty zbytkových napětí pro hloubkové profily OK 28 od subdodavatele C z dávky TZ 264 B broušeného za řezných podmínek $v_c = 23 \ [m.s^{-1}]$ a $a_e = 71 \ [\mu m]$

$v_c = 23 \text{ m/s}; a_e = 71 \mu\text{m}$, subdodavatel C dávka 264Blevý bokhloubka [mm] $\sigma_x [MPa]$ $\sigma_y [MPa]$ $MP [-]$ 0,000-190,5 ± 19,9-396,2 ± 16,964,7 ± 3,90,004-130,0 ± 17,6-185,8 ± 15,556,0 ± 1,30,009-74,5 ± 11,8-116,9 ± 8,059,7 ± 1,80,019-87,1 ± 18,9-113,7 ± 13,159,2 ± 0,90,047-88,5 ± 9,9-96,8 ± 20,359,2 ± 2,1									
	levý bok								
hloubka [mm]	σ _x [MPa]	σ _y [MPa]	MP [-]						
0,000	-190,5 ± 19,9	-396,2 ± 16,9	64,7±3,9						
0,004	-130,0 ± 17,6	-185,8 ± 15,5	56,0 ± 1,3						
0,009	-74,5 ± 11,8	-116,9 ± 8,0	59,7 ± 1,8						
0,019	-87,1 ± 18,9	-113,7 ± 13,1	59,2±0,9						
0,047	-88,5 ± 9,9	-96,8 ± 20,3	59,2 ± 2,1						
0,086	-100,4 ± 23,9	-93,1 ± 4,2	59,8 ± 2,2						
0,118	-102,9 ± 16,2	-112,4 ± 17,4	59,5 ± 7,4						
pravý bok									
hloubka [mm]	σx [MPa]	σy [MPa]	MP [-]						
0,000	-176,6 ± 16,5	-408,3 ± 2,4	72,6 ± 7,9						
0,005	-68,5 ± 7,4	-126,2 ± 18,8	63,3 ± 2,9						
0,011	-18,0 ± 12,2	-92,3 ± 18,7	59,9 ± 1,8						
0,022	-76,1 ± 16,1	-76,2 ± 10,1	59,8 ± 1,7						
0,05	-78,7 ± 9,6	-70,9 ± 10,8	58,6 ± 1,4						
0,098	-64,8 ± 8,9	-79,8 ± 11,6	58,9 ± 2,1						
0,122	-86,3 ± 17,5	-91,6 ± 29,3	51,2 ± 2,9						

7.5. Diskuze výsledků experimentálního výzkumu

V rámci experimentální části této disertační práce byly hodnoceny vlivy řezných podmínek při operaci broušení ozubených kol na vybrané parametry integrity povrchu, a to magnetoelastický parametr a zbytková napětí. Na obrázku 7.48 je znázorněn graf naměřených hodnot magnetoelastického parametru (MP) pro soubor vzorků broušených při řezné rychlosti $v_c = 23 \text{ [m.s}^{-1}$ a efektivní hloubce jednoho záběru $a_e =$ 45 [µm]. Jedná se o vzorky tepelně zpracované u různých subdodavatelů, případně o různé dávky tepelného zpracování (TZ). Z grafu je viditelný velký rozsah naměřených hodnot MP, což je z hlediska integrity povrchu negativní výsledek. Odlišné hodnoty MP byly naměřeny jednak mezi různými subdodavateli TZ, ale také mezi jednotlivými dávkami TZ od stejného subdodavatele. Požadavky na kvalitu TZ jsou pro všechny subdodavatele stejné, ale odlišnost se týká použití operace kuličkování ,případně pískování, po samotném tepelném zpracování u jednotlivých subdodavatelů TZ. V případě subdodavatele B nejsou ozubená kola (OK) ani kuličkována, ani pískována a naměřené hodnoty MP jsou v porovnání se zbylými subdodavateli nejnižší, což z hlediska integrity povrchu kladný výsledek. Z grafů 7.48 a 7.49 je patrné, že naměřené hodnoty MP u tohoto subdodavatele mají podobný průběh pro levý i pravý bok zubů. Na základě experimentů bylo zjištěno, že použitím operace zpevnění povrchu (tj. kuličkování a pískování) před broušením nedochází ke zlepšení výsledných parametrů integrity povrch, což dokazují grafy 7.48 a 7.49. Zpevněná povrchová vrstva je totiž během procesu broušení odebrána.

Obr. 7.48 Vliv tepelného zpracování od různých subdodavatelů (příp. různých dávek TZ) na velikost magnetoelastického parametru při řezných podmínkách v_c = 23 [m/s] a $a_e = 45$ [μ m] – levé boky

Obr. 7.49 Vliv tepelného zpracování od různých subdodavatelů (příp. různých dávek TZ) na velikost magnetoelastického parametru při řezných podmínkách v_c = 23 [m/s] a $a_e = 45$ [µm] – pravé boky

Naměřené hodnoty magnetoelastických parametrů pro sadu vzorků, jejichž výsledky jsou znázorněny na obr. 7.48 a 7.49, jsou uvedeny v tabulkách č. 38a – 38c. Výsledky ukazují, že v některých případech se vyskytují velmi značné rozdíly naměřených hodnot MP mezi levým a pravým bokem. Jelikož se tato problematika vyskytuje u většího množství vzorků, lze předpokládat, že tuhost soustavy stroj-nástroj-obrobek-přípravek není dostačující. Důsledkem pak může být kmitání broušených ozubených kol upnutých na upínacím trnu.

Tab. 38a Naměřené hodnoty magnetoelastických parametrů pro hloubkové profily OK
od různých subdodavatelů a dávek TZ broušeného při řezné rychlosti $v_c = 23 \ [m.s^{-1}]$ a a_e
= 45 [μm] - 1. část

ОК 2	23 m/s; 45 μm		ОК 3	23 m/s; 45	μm	ОК 7)K 7 23 m/s; 45 μm OK 8		23 m/s; 45 μm		
subdodavatel A dávka 224		subdod	avatel A dá	ávka 219	subdod	avatel A dá	ivka 224	subdod	lavatel A da	ávka 224	
levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.
zub 1	137,02	3,79	zub 1	83,95	4,23	zub 1	119,92	10,79	zub 1	127,04	6,55
zub 2	136,43	12,01	zub 2	108,91	6,86	zub 2	138,23	3,31	zub 2	131,48	8,46
zub 3	136,34	6,63	zub 3	100,12	4,63	zub 3	143,96	5,76	zub 3	130,4	6,79
zub 4	134,77	6,96	zub 4	120,82	2,41	zub 4	140,7	3,24	zub 4	124,81	5,45
zub 5	134,51	3,45	zub 5	117,24	2,83	zub 5	142,48	2,77	zub 5	130,21	3,29
zub 6	111,82	5,92	zub 6	124,17	2,91	zub 6	131,88	3,52	zub 6	133,98	6
zub 7	133,82	11,95	zub 7	120,32	3,8	zub 7	137,9	2,67	zub 7	137,28	5,78
zub 8	135,29	4,34	zub 8	122,44	2,46	zub 8	142,7	4,66	zub 8	133,68	4,46
zub 9	140,14	5,75	zub 9	120,69	3,64	zub 9	144,31	4,63	zub 9	136,5	4,63
zub 10	139,59	4,08	zub 10	123,42	3,72	zub 10	143,44	4,35	zub 10	120,27	11,02
zub 11	141,47	9,6	zub 11	125,96	4,77	zub 11	143,84	5,92	zub 11	134,3	6,66
zub 12	133,4	4,79	zub 12	120,88	2,67	zub 12	121,65	10,56	zub 12	139,35	5,34
zub 13	135,42	5,25	zub 13	108,11	6,92	zub 13	113,23	12,01	zub 13	135,75	3,71
zub 14	137,57	5,01	zub 14	125,58	5,83	zub 14	121,33	11,71	zub 14	135,52	3,3
zub 15	137,67	7,04	zub 15	126,64	4,03	zub 15	136,38	5,65	zub 15	140,27	5,65
zub 16	138,83	4,37	zub 16	120,69	2,83	zub 16	143,36	5,17	zub 16	130,24	5,88
zub 17	138,29	7,4	zub 17	125,3	4,12	zub 17	139,95	4,93	zub 17	137,11	5,43
zub 18	140,16	5,6	zub 18	121,06	4,95	zub 18	143,67	5,66	zub 18	137,35	4,83
zub 19	141,98	7,7	zub 19	105,74	9,78	zub 19	142,94	3,47	zub 19	137,08	4,82
zub 20	135,05	9,19	zub 20	110,28	7,52	zub 20	140,87	3,08	zub 20	137,75	3,95
pravý bok			pravý bok			pravý bok			pravý bok		
zub 1	146,98	5,5	zub 1	115,27	4,68	zub 1	142,85	3,32	zub 1	138,86	4,6
zub 2	143,04	3,76	zub 2	100,47	3,57	zub 2	143,66	2,98	zub 2	126,83	11,3
zub 3	130,26	8,91	zub 3	107,09	3,65	zub 3	146,1	2,65	zub 3	135	7,64
zub 4	146,47	4,64	zub 4	112,38	7,03	zub 4	142,74	3,12	zub 4	137,4	5,84
zub 5	141,36	5,78	zub 5	108,9	4,48	zub 5	99,79	5,54	zub 5	133,08	2,53
zub 6	139,8	4,11	zub 6	109,05	4,75	zub 6	140,51	3,99	zub 6	134,76	6,04
zub 7	140,3	3,81	zub 7	107,34	6,76	zub 7	142,38	3,83	zub 7	112,98	12,19
zub 8	138,85	6,09	zub 8	87,48	21,56	zub 8	129,58	5,25	zub 8	125,37	9,77
zub 9	143,45	4,74	zub 9	108,77	8,72	zub 9	129,43	4,82	zub 9	138,07	2,37
zub 10	137,44	3,37	zub 10	106,35	6,56	zub 10	134,14	2,81	zub 10	134,2	2,24
zub 11	134,2	5,64	zub 11	110,85	4,9	zub 11	138,27	7,73	zub 11	133,36	1,92
zub 12	140,63	4,73	zub 12	115,6	4,11	zub 12	144,13	3,4	zub 12	136,15	6,09
zub 13	141,84	6,59	zub 13	111,23	3,09	zub 13	134,43	4,34	zub 13	122,07	12,5
zub 14	136,57	5,81	zub 14	119,74	2,53	zub 14	139,96	3,58	zub 14	125,28	6,77
zub 15	119,88	4,04	zub 15	115,44	5,67	zub 15	140,43	6,44	zub 15	132,66	3,75
zub 16	135,79	5,22	zub 16	119,75	2,85	zub 16	119,17	5,64	zub 16	132,82	4,34
zub 17	107,01	8,3	zub 17	115,44	2,06	zub 17	138,2	8,78	zub 17	137,98	2,85
zub 18	138,36	4,92	zub 18	114,75		zub 18	133,59	10,24	zub 18	136,39	2,52
zub 19	139,41	4,17	zub 19	107,99	1,71	zub 19	142,43	3,61	zub 19	134,1	3,52
zub 20	143,63	4,53	zub 20	108,19	3,47	zub 20	143,38	3,67	zub 20	123,02	7,09

Lucie Schmidová
Tab. 3	8b Naměřené hodnoty magnetoelastických parametrů pro hloubkové profily Ok	(
od růz	ných subdodavatelů a dávek TZ broušeného při řezné rychlosti v _c = 23 [m.s ⁻¹] a a	е
= 45 [ım] - 2. část	

ОК 9	23 m/s; 45 μm		OK 13	23 m/s; 45 μm		OK 14	23 m/s; 45	μm	OK 20 23 m/s; 45 μm		
subdod	odavatel A dávka 224		subdoda	avatel B dávka 239B		subdoda	subdodavatel B dáv		subdod	subdodavatel A dá	
levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.
zub 1	119,34	3,89	zub 1	71,16	2,82	zub 1	80,64	2,6	zub 1	108,36	2,67
zub 2	121,92	7,21	zub 2	71,47	1,32	zub 2	84,55	3,87	zub 2	99,29	3,09
zub 3	125,16	4,87	zub 3	70,25	2,05	zub 3	81,46	3,1	zub 3	93,8	9,65
zub 4	126,77	3,53	zub 4	67,3	2,96	zub 4	81,84	5,21	zub 4	96,44	4,19
zub 5	126,03	3,7	zub 5	66,42	3,4	zub 5	88,06	2,5	zub 5	93,82	5,75
zub 6	128,41	4,63	zub 6	63,78	4,18	zub 6	87,56	4,06	zub 6	102,4	3,83
zub 7	128,97	3,75	zub 7	66,7	3,28	zub 7	90,71	2,37	zub 7	99,96	3,25
zub 8	127,62	6,03	zub 8	64,05	5,35	zub 8	92,36	2,7	zub 8	105,03	3,13
zub 9	124,82	6,52	zub 9	68,49	3,47	zub 9	91,16	2,35	zub 9	105,35	17,05
zub 10	128,33	4,2	zub 10	73,11	1,9	zub 10	81,1	4	zub 10	89,42	6,43
zub 11	125,01	3,06	zub 11	72,29	3,53	zub 11	85,17	5,99	zub 11	92,79	3,95
zub 12	123,71	3,94	zub 12	73,91	1,93	zub 12	88,61	3,96	zub 12	101,93	10,43
zub 13	123,57	5,08	zub 13	76,66	1,27	zub 13	89,26	5,55	zub 13	98,53	2,96
zub 14	114,36	7,19	zub 14	73,09	3,03	zub 14	83,45	5,1	zub 14	103,07	2,78
zub 15	123,34	3,69	zub 15	70,47	4,65	zub 15	91,78	2,11	zub 15	97,66	3,2
zub 16	119,33	11,95	zub 16	74,85	2,8	zub 16	90,03	2,86	zub 16	106,03	3,19
zub 17	107	4,52	zub 17	66,68	3,05	zub 17	89,27	2,1	zub 17	96,15	7,18
zub 18	110,18	7,45	zub 18	73,6	3,22	zub 18	91,98	2,36	zub 18	103,52	4,53
zub 19	122,2	4,25	zub 19	69,99	4,42	zub 19	90,15	2,79	zub 19	99,34	10,2
zub 20	106,38	10,33	zub 20	63,41	4,21	zub 20	88,18	3,56	zub 20	98,86	9,34
pravý bok			pravý bok			pravý bok			pravý bok		
zub 1	121,71	13,18	zub 1	63,85	4,02	zub 1	91,74	3,02	zub 1	90,81	13,12
zub 2	117,61	10,97	zub 2	68,1	3,61	zub 2	86,52	2,94	zub 2	95,77	10,74
zub 3	114,93	13,51	zub 3	66,98	2,3	zub 3	91,76	4,26	zub 3	111,43	5,97
zub 4	97,3	14,38	zub 4	73,44	4,32	zub 4	93,54	2,75	zub 4	112,39	3,29
zub 5	115,3	9,54	zub 5	69,52	2,52	zub 5	88,94	3,34	zub 5	99,55	7,34
zub 6	131,98	4,16	zub 6	70,34	1,89	zub 6	93,4	1,62	zub 6	104,65	4,84
zub 7	131,28	11,17	zub 7	74,8	2,75	zub 7	91,4	4,72	zub 7	97,51	11,02
zub 8	127,33	3,71	zub 8	69,89	3,2	zub 8	89,48	4,27	zub 8	107,71	3,72
zub 9	122,08	13,78	zub 9	71,64	3,8	zub 9	90,63	2,74	zub 9	90,4	12,27
zub 10	117	14	zub 10	73,75	2,29	zub 10	91,08	5,61	zub 10	89,32	12,17
zub 11	133,98	6,72	zub 11	75,47	2,42	zub 11	90,99	2,41	zub 11	94,82	7,47
zub 12	134,38	5	zub 12	76,83	3,88	zub 12	84,61	2,43	zub 12	95,69	11,79
zub 13	135,66	2,67	zub 13	72,23	3,14	zub 13	92,65	2,94	zub 13	96,31	10,8
zub 14	128,77	3,18	zub 14	76,55	3,51	zub 14	95,27	2,83	zub 14	92,9	5,77
zub 15	133,53	4,14	zub 15	74,68	3,68	zub 15	93,94	2,68	zub 15	91,69	12,26
zub 16	125,81	3,04	zub 16	80,07	2,84	zub 16	91,19	3,35	zub 16	105,32	3,61
zub 17	133,34	2,83	zub 17	83,18	3,82	zub 17	89	4,21	zub 17	100,75	8,27
zub 18	125,91	3,74	zub 18	80,83	3,06	zub 18	93,19	2,12	zub 18	104,77	5,56
zub 19	123,69	3,7	zub 19	79,47	4,14	zub 19	90,78	3,66	zub 19	108,19	7,56
zub 20	125,85	3,39	zub 20	75,56	2,55	zub 20	88,47	3,14	zub 20	114,84	3,82

Tab. 38c Naměřené hodnoty r	magnetoelastických	parametrů pro l	hloubkové profily OK
od různých subdodavatelů a do	ávek TZ broušeného	při řezné rychlos	sti v _c = 23 [m.s ⁻¹] a a _e
= 45 [μm] - 3. část			

OK 22	22 23 m/s; 45 μm		OK 23	23 m/s; 45 μm		OK 24	K 24 23 m/s; 45 μm		OK 25 23 m/s; 45 μm			OK 27 23 m/s; 45 μm		
subdod	subdodavatel A dávka 220		subdod	davatel A dávka 43		subdod	avatel A dávka 116		subdod	subdodavatel A dávka 114		subdodavatel C dávka 264		vka 264B
levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.	levý bok	průměr	st. odch.
zub 1	88,97	4,99	zub 1	137,28	29,61	zub 1	66,31	3,24	zub 1	72,64	6,26	zub 1	136,31	5,77
zub 2	83,8	2,56	zub 2	126,06	24,38	zub 2	69,47	1,64	zub 2	62,95	6,19	zub 2	140,61	2,87
zub 3	96,9	6,34	zub 3	126,54	25,3	zub 3	69,47	2,44	zub 3	75,35	3,94	zub 3	145,89	3,51
zub 4	101,02	5,49	zub 4	124,93	27,41	zub 4	81,83	4,88	zub 4	61,29	6,42	zub 4	144,71	2,53
zub 5	107,25	9,12	zub 5	126,32	24,42	zub 5	85,84	5,5	zub 5	73,66	4,16	zub 5	141,56	2,92
zub 6	113,51	4,07	zub 6	118,76	26,38	zub 6	85,23	5,4	zub 6	72,7	1,92	zub 6	143,53	3,25
zub 7	109,92	6,33	zub 7	112,06	29,76	zub 7	83,84	6,83	zub 7	83,61	2,99	zub 7	140,73	2,28
zub 8	101,91	3,02	zub 8	117,51	23,27	zub 8	76,73	7,59	zub 8	69,05	6,56	zub 8	142,41	2,75
zub 9	112,81	3,69	zub 9	109,79	30,22	zub 9	87,83	3,95	zub 9	81,58	3,33	zub 9	144,45	2,62
zub 10	105,72	2,71	zub 10	103,01	25,43	zub 10	82,72	1,96	zub 10	83,01	2,28	zub 10	141,67	2,66
zub 11	111,16	5,42	zub 11	106,21	14,14	zub 11	78,92	7,61	zub 11	69,97	3,57	zub 11	143,24	1,89
zub 12	99,09	9,84	zub 12	108	31,24	zub 12	80,89	3,24	zub 12	75,47	4,94	zub 12	144,57	2,41
zub 13	106,78	3,61	zub 13	107,72	25,08	zub 13	71,46	8,14	zub 13	71,15	4,31	zub 13	141,26	2,39
zub 14	108,96	8,85	zub 14	111,8	26,86	zub 14	73,03	7,3	zub 14	84,85	3,4	zub 14	141,6	3,65
zub 15	99,33	3,3	zub 15	115,08	27,75	zub 15	76,11	5,29	zub 15	65,38	7,08	zub 15	141	2,57
zub 16	94,07	8,59	zub 16	109,25	26,75	zub 16	83,09	3,43	zub 16	76,39	5,79	zub 16	138,81	2,86
zub 17	107,21	4,94	zub 17	115,95	21,32	zub 17	77,74	4,1	zub 17	74,9	5,28	zub 17	143,45	6,11
zub 18	97,79	2,86	zub 18	96,15	25,8	zub 18	78,45	3,48	zub 18	80,75	6,08	zub 18	144,13	2,9
zub 19	95,19	3,19	zub 19	116,09	26,01	zub 19	75,1	8,7	zub 19	66,33	4,13	zub 19	141,39	2,46
zub 20	99,63	6,51	zub 20	112,47	27,08	zub 20	76,8	3,37	zub 20	68,91	5,29	zub 20	143,86	3,36
pravý bok			pravý bok			pravý bok			pravý bok			pravý bok		
zub 1	196,63	14,31	zub 1	149,72	34,15	zub 1	174,27	24,63	zub 1	151,66	23,89	zub 1	141,53	3,41
zub 2	179,58	10,23	zub 2	137,46	18,99	zub 2	144,11	9,18	zub 2	136,63	32,58	zub 2	145,56	2,09
zub 3	191,52	12,78	zub 3	142,37	22,14	zub 3	183,71	20,18	zub 3	139,77	26,6	zub 3	144,26	3,42
zub 4	186,25	8,16	zub 4	166,6	33,19	zub 4	178,67	14,47	zub 4	165,75	10,28	zub 4	141,54	2,81
zub 5	172,55	8,84	zub 5	161,74	45,63	zub 5	169,16	15,91	zub 5	154,09	18,32	zub 5	144,36	2,72
zub 6	166,59	10,88	zub 6	146,97	38,68	zub 6	209,29	25,1	zub 6	149,23	13,69	zub 6	144,09	2,41
zub 7	172,79	9,79	zub 7	132,49	34,23	zub 7	210,98	25,3	zub 7	166,51	8,24	zub 7	142,61	3,89
zub 8	170,1	10,63	zub 8	125,83	35,52	zub 8	193,56	18,53	zub 8	168,65	12,74	zub 8	147,49	3,76
zub 9	204,98	10,93	zub 9	141,93	38,04	zub 9	211,64	20,11	zub 9	167,41	15,14	zub 9	137,2	5,78
zub 10	177,78	9,92	zub 10	130,84	37,07	zub 10	209,42	24,29	zub 10	161,78	12,16	zub 10	135,94	2,59
zub 11	195,71	8,92	zub 11	116,54	19,58	zub 11	217,19	16,62	zub 11	147,53	16,72	zub 11	146,92	3,54
zub 12	194	9,37	zub 12	133,09	36,97	zub 12	199,51	16,78	zub 12	174,06	12,59	zub 12	142,5	2,79
zub 13	182,21	9,63	zub 13	125,09	32,96	zub 13	202,72	20,41	zub 13	170,86	15,7	zub 13	139,22	2,33
zub 14	184,07	13,14	zub 14	126,37	36,29	zub 14	210,23	22,64	zub 14	175	9	zub 14	141,1	3,53
zub 15	167,25	13,44	zub 15	154,69	51,65	zub 15	206,4	18,9	zub 15	171,79	12,44	zub 15	137,32	2,52
zub 16	181,06	9,23	zub 16	161,76	48,76	zub 16	196,25	23,31	zub 16	154,58	15,86	zub 16	143,13	2,46
zub 17	154,9	6,73	zub 17	131,22	24,49	zub 17	209,49	16,93	zub 17	116,14	19,33	zub 17	145,54	2,9
zub 18	152,03	4,59	zub 18	158,5	46,02	zub 18	195,08	21,96	zub 18	162,47	11,15	zub 18	141,65	3,07
zub 19	146,5	5,78	zub 19	145,56	25,23	zub 19	196,5	23,58	zub 19	147,85	17,4	zub 19	143,19	3,29
zub 20	199,09	14,43	zub 20	171,79	50,01	zub 20	181,97	26,07	zub 20	145,76	21,2	zub 20	142,25	3,03

8. ZÁVĚR

Předkládaná disertační práce je věnována problematice hodnocení parametrů integrity povrchu a jejich využití pro zefektivnění obrábění ozubených kol. Hodnocení integrity povrchu bylo provedeno především sledováním hodnot magnetoelastických parametrů získaných metodou analýzy Barkhausenova šumu. Dalšími sledovanými parametry byla zbytková napětí měřená metodou rentgenové difrakce. Předmětem experimentů byla ozubená kola z oceli 18CrNiMo-7 používaná ve větrných elektrárnách, kde je kladen velký důraz na kvalitu a životnost součástí. Rozsáhlou experimentální činností za použití nedestruktivních metod bylo získáno značné množství naměřených dat (cca 3000 hodnot MP). Tato data byla statisticky zpracována a vznikl tak soubor dat pro hodnoty magnetoelastického parametru a dále zbytkových napětí.

Během experimentů byly použity různé technologické podmínky a také byl hodnocen vliv tepelného zpracování. S rostoucí řeznou rychlostí a efektivní hloubkou jednoho záběru dochází k nárůstu teplot ve styku mezi obrobkem (tj. ozubeným kolem) a brousicím kotoučem a zvětšuje se tak tepelně ovlivněná oblast obrobku. Důsledkem je pak nárůst zbytkových napětí v povrchové vrstvě. Pro hodnocení hloubkových profilů měřených veličin byl v rámci disertační práce navržen, zkonstruován a vyroben speciální přípravek, zaručující hodnocení vzorků vždy ve stejné oblasti a opakovatelnost měření. Výsledky ukazují, že proces broušení lze zefektivnit především použitím vyšších efektivních hloubek jednoho záběru a_e [µm]. Při zvýšení efektivní hloubky jednoho záběru o téměř 60% (oproti původní hodnotě 45 [μm]) na hodnotu $a_e = 71 \ [\mu m]$, došlo k velice mírnému poklesu hodnot zbytkových napětí, což je pozitivní výsledek. V rámci experimentů byly dále zjištěny rozdíly hodnocených veličin mezi levým a pravým bokem, které ukazují na problematiku nerovnoměrného úběru materiálu během procesu broušení. Tyto skutečnosti ukazují na problematiku tuhosti soustavy stroj-nástroj-obrobek-přípravek. Rozdíly mezi hodnotami MP na levém a pravém boku s největší pravděpodobností způsobeny kmitáním vzorku upnutého na trnu během broušení. Dále je na základě výsledků analýz doporučeno neprovádět procesy vedoucí ke zpevňování povrchu, tj. kuličkování či pískování, před operací broušení. Tento postup výroby může negativně ovlivnit finální kvalitu výrobků.

8.1. Přínosy předložené práce pro vědu

Na základě analýzy dat získaných z realizovaného experimentálního studia problematiky integrity povrchové vrstvy po broušení ozubených kol byly formulovány následující závěry:

• Především byla potvrzena schopnost metody analýzy Barkhausenova šumu a aplikovaných přístrojů spolehlivě stanovit parametry integrity povrchu.

- Bylo opakovaně potvrzeno, že tato metoda poskytuje spolehlivé výsledky i při opakování měření.
- Dále se ukázalo, že metoda analýzy Barkhausenova šumu je schopna identifikovat podpovrchové vady (např. trhliny) ve zkoumaných vzorcích.

8.2. Přínosy pro průmyslovou praxi

Přínosy této disertační práce pro průmyslovou praxi jsou následující:

- Metodou analýzy Barkhausenova šumu lze spolehlivě a především rychle hodnotit kvalitu povrchu broušených součástí (např. ozubených kol) i v průmyslových podmínkách.
- Pro analyzování účinků speciálních dokončovacích metod obrábění a tváření lze využít metodu analýzy Barkhausenova šumu.
- Procesy vedoucí ke zpevňování povrchu, tj. kuličkování či pískování, prováděné před operací broušení, kde je zpevněná vrstva v rámci přídavku na broušení odebrána, mohou v některých případech negativně ovlivnit finální kvalitu výrobků.
- Metoda analýzy Barkhausenova šumu je schopna nedestruktivně detekovat podpovrchové vady (např. trhliny) přímo v průmyslových podmínkách.

8.3. Návrhy dalšího výzkumu

V rámci dalšího výzkumu by přicházela v úvahu možnost zopakování experimentů v laboratorních podmínkách, při kterých by zajištěna především tuhost soustavy a rovnoměrný úběr materiálu u levého a pravého boku zubů. Pro odstranění kmitání vzorků by bylo vhodné realizovat modelový výzkum procesu broušení evolventní plochy při rovinném broušení obvodem tvarového brousicího kotouče. Modelové vzorky obrobku by bylo možné snadněji a především s menšími náklady připravit dle strategie výzkumu.

Disertační práce dokazuje, že metodu analýzy Barkhausenova šumu lze využít pro zefektivnění procesu broušení ozubených kol z hlediska technologických podmínek. Získané poznatky ukazují, že tato nedestruktivní metoda je schopna rychle a spolehlivě hodnotit integritu povrchu přímo v průmyslových podmínkách. Spolehlivost měření byla prokázána na základě porovnání výsledků s metodou rentgenové difrakce.

SEZNAM POUŽITÉ LITERATURY

- BAKALOVA, T. Vliv materiálových a technologických parametrů obrábění v povrchové vrstvě a vlastnosti dynamicky namáhaných strojních součástí. Disertační práce. Technická univerzita v Liberci, Fakulta strojní, Katedra obrábění a montáže, Liberec 2010
- BORKOWSKI, C., SZYMAŇSKI, A. Usis of Abrasives and Abrasive Tools. 1.
 Edition. London, Ellis Horwood 1992. 281 pp.
- [3] BOZORTH, R. M. Feromagnetism. Van Nostrad Company Inc. 1951
- [4] BUMBÁLEK, B.: Integrita povrchu a její význam pro posouzení vhodnosti dané plochy pro její funkci, VUT Brno
- [5] ČEP, R., BRYCHTA, J., NOVÁKOVÁ, J. aj. Technologie II 2. díl. Dostupné
 z: http://homel.vsb.cz/~cep77/PDF/skripta_Technologie_II_2dil.pdf [cit. 2014-04-09]
- [6] DAVIS, J. R. Gear materials, properties and manufacture. ASM INTERNATIONAL, 2005, pp. 339, ISBN 978-0-87170-815-1
- [7] DÖMÉNY, T. Analýza vlivu parametrů procesu broušení na integritu obrobené plochy se zaměřením na zbytková napětí. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2009. 65 s, příloh. 2. Vedoucí diplomové práce: Ing. Ildikó Putzová, Ph.D.
- [8] DOUBRAVA, K. Excentricita otvoru a její zohlednění při vyšetřování zbytkových napětí pomocí odvrtávací metody, disertační práce, FS ČVUT, Praha 2006
- [9] DRIML,B. Výroba ozubení. Dostupné z: http://spssbrnosokolska.jakubsvestka.cz/files/nas_DROPBOX/STT/Ro%E8n%EDk%201%20-%204,%20kompletn%ED%20skripta%20-%20z%20nich%20u%E8%ED%20Ing.%20Zden%ECk%20Voj%E1%E8ek/R3/ OZUB_KOLA.pdf [cit. 2014-01-23]
- [10] Hodnocení nepříznivých parametrů obrobeného povrchu a technologie metodou analýzy Barkhausenova šumu. *Interní zpráva*, Praha 2007
- [11] HONNER,M. Úvod do měření ve fyzikálních technologiích. Dostupné z: http://ttp.zcu.cz/files/pdf/MFT_PR08_mechanicka_mereni.pdf [cit. 2014-02-15]
- [12] HOSFORD, W. F. Ressidual Stresses. In: *Mechanical Behavior o Materials*, pp. 308 321, Cambridge University Press, 2005, ISBN 978-0-521-84670-7
- [13] https://www.ndeed.org/EducationResources/CommunityCollege/MagParticle/Physics/Hysteresis Loop.htm [cit. 2013-11-20]

- [14] JERMOLAJEV, Š. Kontinuální odvalovací broušení čelního ozubení. Diplomová práce. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav strojírenské technologie, 2013. 106 s.
- [15] JERSÁK, J., POPOV, A. Speciální metody obrábění přednáška č. 4. Dostupné z: http://www.techno-mat.cz/data/katedry/kom/KOM_SMO_PR_04_CZE_Popov-Jersak_Teorie_brouseni_II.pdf [cit. 2014-05-23]
- [16] JILES, D. C. Introduction to Magnetism and Magnetic Materials. Champan and Hall, 1991
- [17] KARPUSCHEWINSKY,B. Introduction to micromagnetic techniques. *Proceeding of an ICBM 1* (CD)
- [18] KLOCKE, F. Modeling and Simulation of Grinding processes. Dostupné z: http://www.wzl.rwthaachen.de/de/f786439a4c53fb78c125709f0055702f/v10_grinding_ii.pdf [cit. 2013-08-08]
- [19] KRAUS, I. GANEV, N.: Difrakční analýza mechanických napětí, Vydavatelství ČVUT, Praha 1995, ISBN 80-01-01366-9
- [20] KRAUS, I. GANEV, N.: Technické aplikace difrakční analýzy, vydavatelství ČVUT, Praha 2004, ISBN 80-01-03099-7
- [21] KRAUS, V. *Tepelné zpracování a slinování*. 2. Vyd. Plzeň: Západočeská univerzita, 2000, 274 s. ISBN 80-7082-582-0
- [22] KŘÍŽ, A. *Integrita povrchu v oblasti tepelného zpracování*. Dostupné z: http://www.ateam.zcu.cz/download/Integrita_prednaskaTZ.pdf [cit. 2013-10-18]
- [23] KŘÍŽ, A. Vliv povrchu na užitné vlastnosti povrchu. Dostupné z: http://www.ateam.zcu.cz/download/kriz_prispevek_technologie_2011.pdf [cit. 2013-10-18]
- [24] LINDGREN, M., LEPISTÖ, T. Effect of prestraining on Barkhausen noise vs. Stress relation. NDT&E International, 34 (5), 2001, ISBN 337-334
- [25] LUKS, M. Dokončovací operace ozubení. Dostupné z: http://mlgeardesigns.blog.cz/1310/dokoncovaci-operace-ozubeni [cit. 2014-01-18]
- [26] MÁDL, J. a kol. Technologie obrábění 3. díl. ČVUT Praha, 2001,81s., ISBN 80-01-02091-6
- [27] Magnetické materiály, Vysoká škola báňská Technická univerzita Ostrava dostupné z: http://www.person.vsb.cz/archivcd/FMMI/ETMAT/animace%20SWF/4_Magnet icke_materialy.swf [cit. 2014-06-02]

- [28] MALEC, J.: Hodnocení nepříznivých parametrů obrobeného povrchu a technologie metodou analýzy Barkhausenova šumu, září 2007, interní zpráva
- [29] MALEC, J. Některé nepříliš známé pojmy. *Strojírenská technologie*, ročník XI, 3/2006, s. 4-5. ISSN 1211-4162.
- [30] *Mechanical, Industrial and Technical Calculations* (online) dostupné z: http://www.micalc.cz [cit. 2012-05-22]
- [31] NECKÁŘ, F., KVASNIČKA, I.: *Vybrané statě z úběru materiálu*, Vydavatelství ČVUT, Praha 1991, ISBN 80-01-00696-4
- [32] NESLUŠAN, M. aj.: *Experimentálne metody v triskovom obrábaní*, Vydavatelstvo ŽU 2007, ISBN 978-80-8070-711-8
- [33] NIKL, M. Moderní metody dokončování ozubení. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2008. 46 s. Vedoucí bakalářské práce Ing. OSKAR ZEMČÍK, CSc.
- [34] NOVÁK, M., HOLEŠOVSKÝ, F. Studium integrity obrobeného povrchu. Dostupné z: http://web.tuke.sk/fvtpo/journal/pdf08/2-str-11-13.pdf [cit. 2013-10-18]
- [35] OCHODEK, V. Residual stress evaluation in spirally welded pipes for gas pipeline. In: 6th International Conference on Barkhausen Noise and Micromagnetic Testing, ICBM 6, 9-10 July 2007, Valenciennes, University of Valenciennes, France, ISBN 951- 98400-7-9
- [36] ROSSINI, N. S., DASSISTI, M., BENYOUNIS, K. Y., & Olabi, A. G. (2012). Methods of measuring residual stresses in components. *Materials & Design*, 35, 572-588.
- [37] STEFANITA, C. G., CLAPHAM, L., ATHERTON, D. L. Subtle changes in magnetic Barkhausen noise before the macroscopic elastic limit. Journal of Material Science, 42 (12), 2001, ISSN 2675-2681
- [38] ŠALAMOUN, Č. Čelní a šroubová soukolí s evolventním ozubením. Praha: SNTL, 1990. 467 s. ISBN 80-030-0532-9
- [39] ŠVERCL, J. Technické kreslení a deskriptivní geometrie, pro školu a praxi. 1. Vydání. Praha: SCIENTIA, 2003. ISBN 80-7183-297-9
- [40]Techmania-magnetickélátky.Dostupnéz:http://www.techmania.cz/edutorium/art_exponaty.php?xkat=fyzika&xser=456c656b74f8696e612061206d61676e657469736d7573h&key=444[cit. 2014-03-18]
- [41] VLK, M., HOUFEK, L., HLAVOŇ, P. aj.: Experimentální mechanika, Vydavatelství VUT, Brno 2003

- [42] VOLEK, F. Základy konstruování a částí strojů I. 1. Vydání, Zlín: Univerzita Tomáše Bati ve Zlíně, 2009, 167 s., ISBN 978-80-7318-654-8
- [43] VRKOSLAVOVÁ, L. GANEV. N., SANTA-AHO, S. aj. Comparative Study of Case-hardened and Nitrided Samples by Using Barkhausen Noise Analysis and X-Ray Diffraction. Rec. -, In: 9th International Conference on Barkhausen Noise and Micromagnetic Testing, str. 105 - 114, ISBN 978-952-67247-4-4
- [43] WOJTAS, A. Analysis of residual stresses after shotpeening. *Strojírenská technologie*, roč. 11, č. 3, ISSN 1211-4162

SEZNAM PŘÍLOH

- Příloha 1 výrobní výkres ozubeného kola
- Příloha 2 výrobní výkresy přípravku

Příloha 1

- složený výkres je zasunut na vnitřní straně desek této práce

Příloha 2

Lucie Schmidová

