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Abstract

The residual vibrations originating from a finite stiffness of the motion control system
influence the positioning accuracy of machine working members. This paper deals with the
dynamic behavior modelling of a motor load composed of seismic mass supported by two flat
springs. Two linear models presented in the paper comprise a continuous model based on the
prismatic beam bending vibration theory with appropriated boundary conditions and a discrete
model with lumped parameters and a single degree of freedom. Both models were used to
simulate the motion of oscillating system with various displacement laws and the results were
compared with experimental data measured on a real system.
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Introduction

The production machines and machine tools with linear drives produce residual vibrations,
which unfavorably influence the positioning accuracy of working members. The spurious
vibrations originate from a finite stiffness of the linear motor-working member system. To
increase the positioning accuracy special control methods as input shaping, load model (SEM)
or controllers with inverse dynamics are employed [1].

The thesis [2] introduces a theoretical and experimental analysis of linear motor loaded on its
output by a flexibly mounted mass. The secondary load system consists of a seismic mass m
supported by two flat steel springs with rectangular cross-section byx h and length L (Fig. 1).
The mass m can move only in the direction of motor slider without rotation about a normal

axis.
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Fig. 1. Design of dynamic mechanical load system (left), flat spring cross-section (right)

This mechanical load system was used to verify various control algorithms and methods for
measurement and evaluation of motor and mass kinematic quantities. One of the problems
was the substitution of the secondary oscillating system by a suitable mechanical model and
its control circuit implementation. Several simple models were successively created, in this
paper two possible methods of linear modelling by means of a distributed parameter system
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and asingle mass system with lumped parameters are presented. Two parallel springs are
substituted by one spring with a thickness b = 2b,. The calculated frequency response
functions and time responses are compared with experimental data.

1 Distributed Parameter Model (Continuous Model)

The flexible mounted mass is modelled as a laterally vibrating cantilever beam with a discrete
mass at the free end (Fig. 2). The system is excited by a base motion of the clamped end [3].
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Fig. 2: Distributed parameter model

The general equation of motion for the lateral vibration of a uniform beam is [4]
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where E is the Young’s modulus, J, = % is the area moment of inertia of the beam cross-

section, p the density and S = bh is the cross-section area. We consider the steady-state
solution in the form

y(x,t) = [C; cosh Bx + C, sinh Bx + C3 cos Bx + C, sin fx]el®t = y(x)el®t,  (2)

where C; are unknown amplitudes, w is angular frequency and g is normalized frequency.
The system is excited by a harmonic displacement y,e*t at the clamped end x = 0, the rigid
mass m moves in direction y without rotation at the free end x = L. The boundary conditions
have then a form

y(0) = 7, 2(0) = 0,2 (1) = 0,52(1) = - £y (1), ®3)

Substituting the solution (2) into boundary conditions (3) we obtain the relations for unknown
coefficients C;
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C3 = _C1 + yo, C4_ = _Cz.
The denominator in expressions (4) is the frequency equation (5)

1 — cosh BL cos L — é% (cosh BL sin BL + cos fLsinh BL) = 0 (5)



with roots BL. The eigenfrequencies of bending vibration can easily be obtained from

equation
(BL?* |E]
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The frequency response function of the system (a ratio between displacements at the free and
clamped end) is calculated from Eqgs. (2) and (4) as
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Using the inverse Fourier transform we get the impulse response function h(t) =
FFT 'H(w). The displacement at the free end is defined by a convolution of base motion

y(0, t) and impulse function h(t)

y(L,t) = y(0,t) * h(t). (8)

2 Lumped Parameter Model (Discrete Model)

The flexible mounted mass is approximated by a discrete mass-spring-damper system (Fig. 3).
This system is excited by a base motion y; and has a single degree of freedom.
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Fig. 3: Lumped parameter model

The equation of motion of a system excited through elastic support is

myJ,(t) + b1y, (t) + k1Y, (t) = byy1(t) + k1y1(t) 9)

and model parameters are given by [4]
12E]
my=m+mg, k; = o by = 2&\ym k4, (10)

where mg = gpSL is the reduced mass of flat spring and ¢ is the viscous damping ratio. The
system eigenfrequency is expressed as

foz =5 |— (11)
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The frequency response function H(w) can be obtained by substituting y;(t) = y;el*t for y;
into Eq. (9). The displacement time course y,(t) is a solution of wave equation (9) with
exciting waveform y; (t) and its derivative y, (t) on the right-hand side.



3 Simulation Results

The theoretical models were used to simulate the seismic mass motion excited by motor
slider. The calculation was carried out using real values of mass m = 0.56 kg, supported by
two flat steel springs of length L = 0.04 m and cross-section area byxh = 25x0.4 mm® The
system eigenfrequency f,, = 17.5 Hz and the viscous damping ratio & = 0.005 were
determined from measured transient vibration excited by a force pulse [5]. As the spring
mounting at both ends is not perfectly stiff, the constants E and k; were substituted by
effective values E* and k7,

E* = E(1+ijn) (%)2 ki =k (%)2 (12)

where the original eigenfrequencies fy,, fo> are given by (6) and (11) and n = 2¢ is the
hysteretic damping loss factor. The model viscoelastic behavior is described by the complex
Young‘s modulus E*.

Fig. 4 shows the frequency response function of the continuous model calculated using Eq.
(7). The maximum of amplitude characteristics corresponds to the lowest bending
eigenfrequency. The frequency response function of the discrete model calculated using Eq.
(9) is virtually identical in the given frequency range.
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Fig. 4: Frequency response function of the oscillating system

The time response of oscillating system was successively assessed for various motor
displacement laws. Fig. 5 (top) depicts an example of three periods of measured slider
displacement y(0,t), which corresponds to the displacement law labeled F1. The seismic
mass displacement y(L, t) calculated using Eq. (8) is shown in Fig. 5 (bottom).

The assessment of oscillating system vibrations from diagrams shown in Fig. 5 is not
illustrative. Therefore, the relative seismic mass displacement with respect to slider
displacement Ay = y(L) —y(0) was further evaluated. Fig. 6 depicts the relative
displacements of continuous (steady-state) model (top), of discrete model (Ay =y, — y;)
(middle) and the measured course for comparison (bottom). The response of the continuous
model calculated using convolution (8) has three periods of steady-state vibrations, the
solution of the discrete model from Eq. (9) includes also the initial transient state. After the
transient motion disappears (approximately from the third period) the results of both models
are in good agreement as is clear from Fig. 7.
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Fig. 5: Measured motor slider displacement (top) and calculated displacement of oscillating

system (bottom) for displacement law F1

y(L)-y(0) [mm]
4
2

”r.u‘ Hw‘ I “” ,."”_‘u‘ hl'.!"l‘”‘l ”“ i “'”JUL i ‘lv:!“ﬂ “H“'l' - t[s]

-2 )

-4

Y2=y1 [mm]

4
2

et ALLAANY ;Waaanlith ARG 1 MW aanlith AAMAN
5 ',"' ” lrn ll'!‘I"’ ” WYV j IILEV"‘ ”" k t[S]
-4
Ay, [mm]
3
_2_ PoLELL [ i .f'”..lh h.u" I ALY i ‘!'”"“l TTIT ':”.,,., [l f Y t[s]
-4
-6

Source: Own
Fig. 6: Relative displacement of oscillating system (top — continuous model, middle —

discrete model, bottom — measured time course)
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Fig. 7: Difference of relative displacements Ay of continuous and discrete model

The comparison of one period of continuous model steady-state vibrations (red) with
measured time course (green) is shown in Fig. 8. The theoretical time course fairly coincides
with measurement, only in the last part of the cycle (motor at standstill) the calculated
vibrations have approximately half amplitude. The main reason for this difference are phase
shifts of summands in relative displacement.
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Fig. 8: Relative displacement of oscillating system (red — discrete model, green — measured
time course)

Conclusion

Several linear models of oscillating system were created within the design process of control
algorithm for linear motor loaded on its output by flexibly mounted mass. In the paper the
continuous model based on the prismatic beam bending vibration theory and the discrete
lumped parameter model with a single degree of freedom were introduced.

Both models were used to simulate the motion of oscillating system with various
displacement laws and the results were compared with experimental data. The differences
between model results and measured values are small in terms of control requirements. After
model implementation into control algorithm and using the input shaping method almost two
orders of magnitude suppression of unwanted vibrations was achieved [6].
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MODEL MECHANICKE ZATEZE LINEARNIHO MOTORU

Residualni kmitani zptisobené poddajnostmi v soustaveé linearniho pohonu a zatéze ovliviiuje
pfesnost vysledné polohy pracovniho &lenu. Clanek se zabyva modelovanim dynamického
chovani zatéze tvotrené seismickou hmotou uloZzenou na dvou plochych pruzinach. Uvedeny
jsou dva linearni modely — spojity model odvozeny na zdkladé teorie ohybovych kmiti
prizmatického nosniku s odpovidajicimi okrajovymi podminkami a diskrétni model se
soustfedénymi prvky o jednom stupni volnosti. Oba modely byly pouzity k simulaci pohybu
piipojené soustavy pro rtuzné prabehy zdvihovych funkci motoru a porovnany s pribehy
naméfenymi na realné soustave.

MODELL DER MECHANISCHEN BELASTUNG DES LINEARMOTORS

Die Residualschwingungen, die von einer im System des Linearmotors und der Belastung
auftretenden Nachgiebigkeit verursacht werden, beeinflussen die Zielpositionsgenauigkeit des
Arbeitsglieds. Der Artikel befasst sich mit der Modellierung des dynamischen
Motorverhaltens bei einer Belastung, die von einer iiber zwei Blattfedern gelagerten
seismischen Masse erzeugt wird. Es werden zwei Linearmodelle angegeben, ein
kontinuierliches Modell, das auf der Basis der Biegeschwingungstheorie vom prismatischen
Balken mit entsprechender Randbedingungen abgeleitet ist, und ein diskretes Modell mit
konzentrierten Parametern und einem Spielraumgrad. Beide Modelle wurden fiir eine
Simulation der Strukturbewegung bei verschiedenen Motorbewegungsgesetzen verwendet
und mit den auf dem realen System gemessenen Verldaufen verglichen.

MODEL MECHANICZNEJ WYTRZYMALOSCI SILNIKA LINIOWEGO

Drgania resztkowe spowodowane sztywno$cig uktadu napgdu liniowego oraz obcigzenia
wplywaja na dokladno$¢ ostatecznego polozenia elementu roboczego. Artykut poswiecony
jest modelowaniu dynamicznego zachowania pod obcigzeniem tworzonym przez masg
sejsmiczng utozong na dwoch plaskich sprezynach. Przedstawiono dwa modele liniowe —
model ciaggly opracowany na podstawie teorii drgan zginajacych preta pryzmatycznego
z odpowiednimi warunkami skrajnymi oraz model dyskretny ze skupionymi elementami
0 jednym stopniu swobody. Oba modele zostang wykorzystane do symulacji ruchu
przytaczonego uktadu dla réznych przebiegéw funkcji skokowej silnika oraz poréwnane
Z przebiegami zmierzonymi na rzeczywistym ukladzie.



