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Abstract
The aim of this thesis is to provide the bridging between Bayesian networks and
system identification. Firstly, the literature review and necessary theoretical prereq-
uisites are provided. Secondly, Bayesian network based models of dynamic systems
are introduced. Next, the methodology of Bayesian network based system identifi-
cation is proposed and explored on simulated datasets. In addition, a new approach
to the order selection for a resulting model is proposed and verified. Finally, the
proposed Bayesian network based system identification approach is verified on real
dynamic systems.

Overally, the thesis proposes a new approach to system identification of dynamic
systems influenced by noisy signals. In addition, Bayesian network based models
proposed in this thesis can be used for state estimation, monitoring and control of
dynamic systems.

Keywords: Bayesian networks, system identification, order selection, dynamic sys-
tem

Abstrakt
Cílem této práce je vytvoření spojení mezi Bayesovskými sítěmi a parametrickou
identifikací dynamických systémů. Nejprvé byl zpracován průzkum dostupné liter-
atury a byly zformulovány důležité teoretické základy. Poté jsou uvedeny modely
dynamických systémů na bázi Bayesovských sítí. Těžištěm práce je návrh a ověření
metodologie identifikace dynamických systémů pomocí Bayesovských sítí. Součástí
metodologie je nový přístup k volbě řádu výsledného modelu. Na závěr, byla ověřena
navržená metoda identifikace dynamických systémů pomocí Bayesovských sítí na
fyzikálních modelech dynamických systémů.

Obecně je možno konstatovat, že je disertační práce zaměřena na návrh nového
přístupu k identifikaci dynamických systémů ovlivněných šumem. Uvedené modely
dynamických systémů na bázi Bayesovských sítí mohou být také využité k estimaci
stavu, sledování a řízení dynamických systémů.

Klíčová slova: Bayesovské sítě, identifikace, volba řádu, dynamický systém
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Introduction

Since ancient times, people try to explain phenomena that surround us in the world
and to find regularities in their appearance. Mathematics provided us with compre-
hensive toolbox to fulfill these tasks. In the middle of the previous century one of
the main problems that slowed down scientific research was the necessity in difficult
mathematical calculations. After invention and spread of computers this problem
was eliminated and it gave a great impetus to many scientific fields. Moreover, it
gave the second life to many tools, methods and algorithms that were hard or even
impossible to implement because of their complicatedness. Bayesian networks are
the representatives of such tool.

Bayesian networks allow reasoning about random variables under the influence of
uncertainties. They can provide relatively compact representation of the joint prob-
ability distribution over enormous number of random variables (discrete, continuous
or the mixture of both) and are particularly useful in practice due to their ability
to incorporate expert knowledge in a model and to cope efficiently with partially
observed data [1].

System identification is a scientific field that incorporates methods for discov-
ering appropriate mathematical description of dynamic processes that is crucial for
the simulation of their behavior and for the design of efficient controllers. System
identification as a scientific field separated from control theory in 1960th. Since
then, there have been proposed a lot of identification methods that use distinct
models and approaches to describe the behavior of dynamic systems. It is impor-
tant to point out, that there are no such terms as a “good” or “bad” method, each
of them has certain advantages, disadvantages and restrictions. Hence, it is crucial
to consider the character of a dynamic system, the type of a task the identification
procedure has to be provided for and the precision required to successfully carry out
this task during choosing of the most appropriate method [2].

In system identification field, dynamic systems can be treated as deterministic or
stochastic. In the former case, the output is assumed to be unequivocally determined
by the parameters of a system and by the sequence of input signals. In the latter case,

14



a dynamic system is assumed to be influenced by random noise. Bayesian networks
based algorithms for system identification will broaden the set of stochastic methods
with a new member.

One can ask, why do we need to use stochastic models, which are more com-
plicated to work with? There are three basic reasons why deterministic dynamic
models often do not provide sufficient means of performance. Firstly, no mathe-
matical model is perfect, each one has many sources of uncertainties. Secondly, the
behavior of dynamic systems is influenced not only by control inputs, but also by
disturbances which cannot be modeled deterministically. And last but not the least,
the information about signals comes from sensors that do not provide complete and
perfect data [3]. In addition, Bayesian networks can cope with partially missing
data and with partially known system structure and parameters.

Bayesian networks have been successfully used in control systems engineering for
monitoring [4, 5], system control [6, 7, 8], fault detection and diagnosis [9, 10]. Since
solving of these tasks in many cases requires a model of investigated dynamic system,
the system identification procedures have to be provided as a preliminary step. The
ability of Bayesian networks to serve as a system identification tool was mentioned
in several publications [11, 12, 13], but this task has not yet been addressed in
available literature and research articles. Therefore, solving of this task was chosen
as the main objective of this doctoral thesis.

The potential of Bayesian networks as a tool that can be used in dynamic system
modelling for the description and inference of signal flows was emphasized by Lennart
Ljung, a leading researcher in control theory, in his recent article “Perspectives on
system identification” [14]. He also emphasizes the increasing need of knowledge
exchange between different research areas, that will particularly help to enrich the
set of available system identification tools.

This thesis aims to fill the gap between dynamic systems seen with the perception
of control system engineers and Bayesian network framework. In particular, the
main goal is to discover the performance of Bayesian networks in solving the task of
system identification. As a result, Bayesian networks may be used as a unified tool
for control-related tasks.

Obtained results may also be used for fault diagnosis purposes. As a rule,
Bayesian networks are considered the representatives of data-driven approaches to
fault diagnosis [15]. In contrast, the approach to system modelling considered in
this thesis is model-based. Therefore, the proposed models can be used for im-
plementation of model-based fault diagnosis approaches, e.g. BN-based parameter
estimation. Also, it can be used in combination with other methods to implement
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so-called hybrid approaches to fault diagnosis, refer to [15] for more details on the
topic.

The structure of the thesis is as following. Literature review is presented in the
chapter 1, where the review of system identification methods (section 1.1), short
history of Bayesian networks, the overview of their recent implementations (section
1.2) and the analysis of the state of the art in the interconnection between Bayesian
networks and control systems engineering (section 1.3) are presented. The chap-
ters 2 and 3 provide theoretical preliminaries essential for understanding the further
chapters. The thesis is meant to be understandable for both control engineers and
statisticians, hence the theoretical part contains short introduction to dynamic sys-
tem modelling from the control theory perspective (chapter 2) and to Bayesian
network framework (chapter 3). Models of dynamic systems based on Bayesian
networks that can be used for modelling and system identification are presented in
the chapter 4. The chapter 5 provides the results of practical experiments. The
methodology of Bayesian network based system identification (BNSI) is proposed
in the section 5.1. Detailed description of experiments provided for its verification
and the algorithm of their evaluation are addressed in the section 5.2. Experiments
aimed to find the optimal setting of tuning parameters are described in the sections
5.3, 5.4 and 5.5. The verification of the proposed system identification algorithm
is provided on the simulated responses of stochastic dynamic systems in the section
5.6, order selection approach is presented and verified in the section 5.7. The re-
sults of the implementation of BNSI for identification of real dynamic systems are
presented in the chapter 6.
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1 Literature Review

Since the considered topic of research lies in the overlapping between two different
scientific fields, it was necessary to provide the literature review in both fields and
then present the state of the art in their interconnection.

The section 1.1 is dedicated to the field of system identification. In this section,
the most prominent methods used for the identification of dynamic systems are
reviewed. The section 1.2 is dedicated to Bayesian networks. The section starts
with the historical review that explains why Bayesian networks have become popular
relatively recently. Also, the overview of recent applications in different scientific
areas is provided.

Since interconnection between Bayesian networks and system identification has
not been addressed in available literature, the state of the art in the section 1.3
is presented from the broad perspective of control systems engineering. This view-
point was chosen since system identification is the subfield of control engineering
that provides other subfields (e.g. control, monitoring) with models of dynamic
systems given the measurements provided on those systems.

1.1 Review of Identification Methods
A dynamic system is an object that produces observable signals that depend on the
interactions between different internal variables, previous values of these variables
and external stimuli. Analyzing and usage of dynamic systems require knowing of
their behavior, which is commonly described by a mathematical model [16]. There
are two basic approaches for obtaining the model of a dynamic system: mathematical
modeling (analytical approach) and system identification (experimental approach)
[17]. The former one is based on splitting of the system into subsystems, whose
behavior and properties are known, and on binding these subsystems mathematically
into the model that describes behavior of the entire system [16]. Mathematical
modelling often does not require any measurements on a real system. On the other
hand, this approach may be too complicated for complex systems and it requires
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extensive prior knowledge about a technological process. Mathematical modelling
is not addressed in this thesis, refer to [18] for more details on this topic.

System identification (SI) is the process of building the mathematical model of
a dynamic system based on data observed from a system [16]. These models can
be used for simulation, control systems design, monitoring, fault detection, quality
control, etc. They are highly useful for systems that are difficult to experiment with
(due to the expensiveness of experiments or the danger that they cause) [19]. While
mathematical modeling provides a description that explains underlying essential
mechanisms using physical laws (which may be interesting for physicians), system
identification provides a model that is more useful for practical applications (which
may be interesting for engineers). However, considering the character of an appli-
cation, it is also often required to trade-off model complexity versus accuracy [19].

The challenge of obtaining mathematical model of a technological process from
measurement has interested scientific community for a long time. The term “identi-
fication” for procedures that face this challenge was firstly proposed by Lofti Zadeh
in 1956 [20]. System identification as an independent field separated from control
theory in sixtieth, its development has been constantly supported by the IFAC sym-
posia on Identification that has been organized since 1967 once in three years [2].
The overview of classical system identification methods can be found in [16, 17].
In addition to these iconic books it is also worth to mention further informative
publications, like [21, 22] or more recent ones [2, 23, 24, 25].

The overview of identification methods in modern control theory requires intro-
duction of several important classification criteria. Firstly, we have to choose a type
of mathematical model that will be used in identification procedure. This model
reflects a functional dependence between input and output variables, sometimes in-
ternal variables of a system are also taken into account. Also, this model can be
expressed either in a form of mathematical equations (parametric model) or in the
form of graphs, respectively tables that can be used to build them (non-parametric
model). In the former case, we assume that the behavior of a system can be approxi-
mated by the model of a certain structure with finite number of explicit parameters.
In this case, the identification task reduces to the estimation of the unknown pa-
rameters of a known model. In the latter case, both parameters and a structure
are unknown, parameters of a system are implicitly included in the model. These
models can also be viewed as models with infinite number of parameters [2].

Depending on the amount of inputs and outputs of a dynamic system, one can
distinguish single-input single-output (SISO) systems and multi-input multi-output
(MIMO) systems. Depending on the type of these signals we can analyze continuous-

18



time or discrete-time systems. In simple settings, dynamic systems are assumed
to be linear (meaning that the steady-state of output is a linear function of the
corresponding excitation) and time-invariant (meaning that their parameters are
constant). More sophisticated systems can have non-linear behavior, and/or their
parameters change over time (time-variant systems), and therefore they have to be
treated accordingly.

And last but not the least, the type of interconnection between the process of
our interest (dynamic system) and evaluation unit (typically, computer) influences
the range of identification algorithms that can be used for a considered process. If
a dynamic system is not coupled with a computer, identification procedure requires
gathering of measured data, storing and subsequent evaluation. This type of evalu-
ation is called offline identification. In contrast, when coupling between a dynamic
system and a computer allows real-time evaluation (in parallel with measurements),
we speak about online identification.

Overview of the most prominent identification methods is given below, see
figure 1.1. Since there is no standard classification of system identification methods,
the overview is provided according to the best beliefs of the author based on
available literature. Some methods are described in more details, since they will
be referred to later in the thesis, others are given only in introductory manner for
completeness of the overview.

Non-parametric methods

Fourier analysis is a method that can be used for linear time-invariant SISO or
MIMO dynamic systems in both offline and online settings [2]. This method is used
for obtaining frequency response from the step or impulse response of a dynamic
system. Spectral analysis of non-periodic signals using Fourier transformation
serves for this purpose [16, 17, 2, 26].

Frequency response measurement is a method that can be used for
linear time-invariant SISO or MIMO dynamic systems in offline setting [2]. This
method is based on the measurement of the responses of a dynamic system on
periodic signals with different frequencies. Often measurement procedure for this
identification method is quite time-consuming. For systems with low disturbances
this method works particularly well, in the case of larger disturbances frequency
response measurement with correlation functions can be used for performance
improvement [16, 17, 2, 26].
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Figure 1.1: Overview of identification methods

Correlation analysis is a method that can be used for linear SISO or MIMO
time-variant or time-invariant dynamic systems in both offline and online settings
[2]. This method is provided in time domain, both periodic and stochastic signals
can be used as test signals, the resulting models are correlation functions. In special
case, if pseudo-random binary signals are used as test signals, correlation analysis
allows to directly identify impulse responses [16, 17, 2, 26].

Kernel methods were adopted from machine learning due to their ability to
trade-off model complexity versus accuracy. Considering this problem, often also
called bias/variance trade-off, is crucial for effective implementation of machine
learning algorithms. If algorithm has high variance, it overfits training data and the
resulting estimator performs well on the training data, but fails to generalize over
unseen data (for example, over a cross-validation set). This problem is often caused
by an over-complicated model. On the opposite side, the high bias of an algorithm
mostly is due to an over-simplified model and consequently, an algorithm fails to fit
well even a training set [27]. In system identification, bias/variance problem appears
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when we choose model complexity (e.g. structure, order). Kernel methods offer dis-
tinct approach to the task of system identification than in “traditional” techniques,
e.g. described in [16, 17]. Recent reviews of the usage of Kernel methods in system
identification can be found for example in [28, 29].

Kernel methods bypass difficulties caused by the selection of model structure and
its order by the introducing of a non-parametric form of a utilized model structure.
These models include kernel functions, which determine the hypothesis space for
an estimation problem. The type of kernel function used in identification procedure
defines the amount of prior knowledge that can be incorporated into a model. Newly
introduced kernel functions can incorporate, e.g., smoothness, damping, resonance
behavior, stability, etc. [30]

The model of an estimator can be defined in one of two formulations: deter-
ministic or probabilistic. In the former case we consider regularization perspective
and in the latter case Bayesian perspective [28]. Therefore, system identification
based on kernel methods is often referred to as regularized or Bayesian system
identification [28, 29, 30].

Parametric methods

Determination of characteristic values is the simplest identification
method that can be used for linear SISO time-invariant dynamic systems in
offline setting. Characteristic values (e.g. transport delay, time constant) can
be determined from the step or impulse response of a system with the aid of
diagrams and tables. This method can be used only for simple processes with small
disturbances and it is not precise. However, it can be used as a starting point for
more sophisticated methods, for example for the rough estimate of time constants [2].

Prediction Error Methods (PEMs) is the wide set of parametric methods
that can be used for broad range of dynamic systems (linear or non-linear, SISO or
MIMO, time-invariant or time-variant) in both offline and online settings [2]. These
methods use differential (for continuous-time systems) and difference (for discrete-
time systems) equations that can be extended by a transport delay.

PEMs were the first class of parametric methods used in system identification.
These methods are based on the minimization of error signals by the means of sta-
tistical methods. It was proven, that under the assumption that noise is normally
distributed with zero mean, the Maximum Likelihood estimates (MLEs) of param-
eters can be obtained from noisy measurement by minimization of a cost function
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in the form of the sum of squared errors [31]. This leads to a well-known least
square method for parameter estimation. This type of a cost function is convex and
as a result, has just one (global) minimum. On the other hand, it overemphasizes
outliers (since errors are squared).

Following development of the system identification field contributed to appear-
ance of the further modifications and alternative solutions of the least square pa-
rameter estimation [2]:

• recursive least squares
• least squares with correlation function
• recursive least squares with correlation function
• weighted least squares
• generalized least squares
• extended least squares
• method of bias correction
• total least squares
• instrumental variables
• method of stochastic approximation
• normalized least squares
• least squares for frequency response approximation

The challenging issue in application of PEMs is that of the selection of model
complexity (e.g. choosing an appropriate order for differential/difference equation
of a dynamic system). This issue can be addressed by cross-validation methods
or by penalized criteria. In the former case, the performance of different models
is compared on the cross-validation dataset, a set of measurements from a system
that was not used in identification procedure. In the latter case, the optimal
model is found by the optimization of a chosen penalized goodness-of-fit criterion
[32]: Akaike information criterion (AIC) [33], Bayesian information criterion (BIC)
[34], etc. Resulting estimators are referred in literature as Post-Model-Selection
Estimators [35].

Iterative optimization methods can be used for time-invariant (SISO or
MIMO) dynamic systems in offline setting. These methods can use various cost
functions (including the functions that are not linear in parameters), consequently
they can cope with non-linear systems. Moreover, important constraints (e.g. sta-
bility of a dynamic system) can be included in a cost function. In addition, iterative
methods can be used for optimization problems that do not have solutions in closed
form [2].

22



Although iterative optimization procedures propose a wide range of possible
implementations, they also have certain challenges to face with. The main disad-
vantage is that convergence of these methods cannot be guaranteed. It is caused
by the fact that cost functions are not guaranteed to be convex, consequently they
are susceptible to have local minima. In addition, in many cases iterative methods
are computationally demanding [2].

Subspace methods can be used for linear time-invariant dynamic systems in
offline setting [2]. These methods are based on the state space representation of
dynamic systems, which offers intuitive extension from SISO systems to MIMO
systems. These methods are based on Singular Value Decomposition and Least-
Square techniques and provide semi-automatic model order determination [19, 2].
The most prominent subspace methods for identification are [19]:

• Numerical algorithms for Subspace State Space System IDentification
(N4SID)

• Multivariable output-error state space
• Canonical variate analysis

The implementation of subspace methods can be challenging, since they involve
large computational efforts. In addition, state variables are in most cases immea-
surable and often non-interpretable. Moreover, these methods, by themselves, are
not suitable for identification in closed loop due to correlations between input
and output variables caused by feedback [2]. However, the latter disadvantage
can be addressed by extended subspace methods, for example by orthogonal
decomposition [36], innovation estimation method, whitening filter approach [37],
canonical correlation analysis [38] or others.

Extended Kalman filter (EKF) is a parametric method that can be used for
the wide range of dynamic systems in offline and online identification [25]. Originally
the Kalman filter (KF) [39] was designed as a state space based model that can be
used, depending on a setting, for filtering, smoothing or prediction. The one-step
ahead prediction problem is a typical setting for state variable estimation [2].

The original Kalman filter was designed for time-invariant discrete linear sys-
tems under the assumption that state variables and input variable are normally
distributed [39]. Later the formulation of Kalman filter was extended also for time-
variant systems. Its implementation in continuous-time setting can be provided in
two ways: by discretizing and consequent application of classical discrete Kalman
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filter or by a special continuous-time extension of Kalman filter, called Kalman-Bucy
filter [40].

Kalman filter can be used for system identification either as a state estimator in
combination with subspace methods or directly by application of so-called Extended
Kalman filter. The latter is a re-formulation of ordinary Kalman filter, in which both
states and parameters of a system are calculated. It is important to mention, that
parameters in this case are treated (similarly to state variables) as being influenced
by stochastic disturbances [2].

Application of the KF for non-linear systems can be challenging. One of
the possible ways to solve this task is to use EKF for linearization and apply
traditional linear Kalman filter equations afterwards. The alternative way is to
use so-called Unscented Kalman filter (UKF), a formalism that was designed
specifically for non-linear dynamic systems. The UKF has superior implementation
properties, since it does not require preliminary linearization and there is no
need to calculate Jacobians. In addition, it has higher performance and weaker
initial assumptions (noise is not assumed to be normally distributed) [41]. More-
over, this method can be easily applied for both state and parameter estimation [42].

Set-membership estimation methods are considered as methods of control-
oriented system identification, meaning that they aim to meet requirements of
robust control design [43]. As opposite to the classical (statistical) estimation of
parameters, for which noise is represented as a stochastic signal, in set-membership
estimation it is represented as an unknown but bounded deterministic signal
[44]. While the statistical estimation deals with an average case, deterministic
estimation considers the worst case, meaning that the estimate shows the best
performance in the worst-case setting [45]. Therefore, this approach is also
called the worst-case/deterministic approach to system identification [43]. Review
of these methods and implementation notes can be found, for example, in [44, 45, 43].

Artificial Neural Network (ANN) is a universal approximator for static and
dynamic non-linearities, therefore it is widely used for identification of non-linear
dynamic systems [46]. These models require little to no prior knowledge about the
structure of a model and can be intuitively extended to MIMO case. These models
can be used in both time-invariant [2] and time-variant [47] cases, in both offline [2]
and online [48] settings.

ANN consists of neurons that are connected by links (feedforward, feedback,
recurrent or lateral). Each neuron is represented by an input operator (e.g. scalar
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product, Euclidean distance) and activation function (mostly non-linear, e.g. sig-
moid, tangent hyperbolic, Gauss) connected in series. Neurons are arranged into
layers, a network consists of one input layer, one or more hidden layers and one out-
put layer. The wide range of choices leads to the plenty of possible final structures
and, consequently, the plenty of non-linearities that can be caught by a network [2].

Parameter searching procedure in neural networks consists of two steps: training
and generalization. In the first step, parameters of neural network (also called
weights) are estimated from measured data (this process is often called “learning”).
In the second step, network with obtained parameters is used to simulate new data.
The goal is to obtain a network with the smallest possible error for both training
and generalization [2].

Considerable disadvantage of ANNs in system identification is that the param-
eters of a network often cannot be interpreted in physical sense [2]. However, over-
coming of this restriction is a task addressed in research articles. Refer, for example,
to [49] for an algorithm that transforms neural network with known parameters into
the transfer function of a dynamic system.

The identification task requires special structures of ANN to capture the dy-
namic character of underlying process. The aim is to extend standard static ANNs,
for example Multi Layer Perceptron, Radial Basis Function or NF Neuro-Fuzzy, to
dynamic case. Dynamic neural networks are obtained either by adding external
dynamic elements (neural networks with external dynamics) or by the incorporat-
ing of dynamic elements within the model structure (neural networks with internal
dynamics). In the former case, external cascades of linear filters are used to equip
a static ANN with dynamic behavior. Depending on the type of used filter we can
distinguish the following models [50]:

• Nonlinear models with output feedback: nonlinear autoregressive model with
exogenous input, nonlinear output error model, nonlinear autoregressive mov-
ing average model with exogenous input, nonlinear Box-Jenkins model

• Nonlinear finite impulse response model
• Nonlinear orthonormal basis function Model

Neural networks with internal dynamics are equipped with dynamic elements
inside the model structure. Depending on their type we can distinguish the following
networks [2]:

• Recurrent networks
• Partially recurrent networks
• Locally recurrent globally feedforward models
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Presented classification certainly contains only basic models and is not com-
prehensive. Refer, for example, to [2, 51, 52] for more details on using ANNs for
system identification. An interesting direction of contemporary research aims to ap-
plication of recently flourished approach of deep neural network learning to system
identification, refer to [53, 54] for more details on this topic.

1.2 Review of Bayesian Networks
A Bayesian network (BN) is a probabilistic graphical model that uses a directed
acyclic graph to represent interconnections between random variables. The Bayes
theorem, formulated in 1763 by the English statistician and philosopher Thomas
Bayes [55] represents the central type of reasoning in these models, therefore they
have got the word “Bayesian” in their name [1].

The idea of representation interactions between random variables using a di-
rected acyclic graph originates in works of geneticist Sewal Wright. He formulated
the method of path coefficients that served to analyze linear correlations between
random variables. In addition to mathematical calculations, the method used graphs
to interpret dependencies between multiple variables. The directed edges in a graph
represented causal relationship between two corresponding variables. Wright used
this method to analyze birth weight of guinea pigs and transpiration of plants [56].
This research work, which was published in 1921, is considered the first appearance
of a model which we now call a Bayesian network [1]. More detailed description of
S. Wright’s method and further applications may be found in his later work [57].

The idea of using a directed graph to reflect causal relationships was adopted
in other disciplines. In particular, it appeared in the work of Swedish econometrist
and statistician Herman Wold [58] and in the book of American sociologist Hubert
Blalock Jr. [59].

At the same time, the distinguished statistical geneticist Robert C. Elston and his
colleagues published their results in the research of human heredity [60, 61]. Their
aim was to test specific genetic hypotheses regarding genotypes and phenotypes of
individuals using the pedigree chart represented via a directed acyclic graph. On
the basis of their research, they invented so called Elston-Steward algorithm for
computation the likelihood of observed genotype given a pedigree.

Despite the success of mentioned applications, probabilistic models were widely
rejected by statisticians for decades. The main reason was probably the substantially
low acceptance of Bayesian statistics in research community at that time. The
disagreement between frequentist (also called orthodox) and subjective (also called
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Bayesian) view of probability was the topic of wide discussion [62]. For more details
a reader may refer to further publications, for example to [63, 64] on the frequentist
side and to [65, 66] on the Bayesian side.

In the area of computer science, probabilistic models found their first usage in
the computer-aided medical diagnosis. The idea of using the Bayes’ rule in medical
diagnosis firstly appears in 1959 in the Science journal [67]. Authors suggest that
assessing the probability that a patient has a certain disease given an observed
set of symptoms can be calculated from the probability of appearance of these
symptoms given the disease (that is the reverse to the conditional probability of
our interest) and marginal probabilities of given symptoms and considered disease
in the population from which a patient comes from. The logic behind this choice
of mathematical technique is quite natural: the assessing of symptoms associated
with a disease is the way how medical books are generally written (although, these
assessments are often given by words “rare”, “frequent”, etc.). Moreover, authors
emphasize the necessity of collecting sufficient amount of data for application of such
approach and importance of constant renewing of population statistics to provide
accurate diagnoses. The role of computers in this process and complicatedness of
their implementation were also discussed by the authors in [68]. The idea of using the
Bayes’ rule in medical diagnosis was adopted by several groups of researchers. The
pioneers were Homer Warner and his colleagues, who used it to diagnose congenital
heart disease [69]. Their reasoning included 33 mutually exclusive diagnoses and
50 symptoms that were assumed to be conditionally independent given the disease.
These restrictions correspond to the model of Naïve Bayes classifier, one of the
simplest Bayesian networks. Despite all restrictions, the diagnoses obtained from
the model agreed with actual diagnoses at least as often as did the diagnoses of
three experienced cardiologists.

In the early 1970th the research group from the university of Leeds (departments
of Surgery and Computational Science and the Electronic Computing Laboratory)
conducted extensive work in application of Bayesian rule on medical diagnosis backed
up by results of long-term application in a surgical unit. Their system for computer-
aided diagnosis [70] was applied for 11 months to provide diagnoses in the field of
acute abdominal pain [71]. It contained 35 discrete variables representing symptoms,
previous history and personal information (sex, age etc.). Probabilities of diseases
given all possible combinations of symptoms were early calculated from 600 medical
cases [72]. On the base of the survey that included 304 patients, authors claim quite
impressive results: the system succeeded to gain the correct diagnosis in 91.8%. This
value was compared with the accuracy of diagnosis for different groups of clinicians.
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Even the most senior clinicians who resulted with accuracy of 79.6% were defeated
by the system [71]. In the next study authors also investigate reasons for occasional
mistakes in clinicians’ diagnoses. They stated and approved that clinicians were not
good in estimation of probabilities, particularly when they assessed large series of
similar data. This disadvantage of human reasoning showed itself the most in the
cases of rare diagnoses, when accuracy of clinicians’ estimates of probability differed
significantly from real values [73].

Nonetheless, Bayesian networks fell into disfavor of artificial intelligence com-
munity. One of the main reasons for that was the strong belief that expert systems
should use similar methods to those of human intelligence. Moreover, first proba-
bilistic models used in expert systems had very strong independence assumptions
and thus seemed inflexible and improper for the majority of practical applications.
Furthermore, a lot of other formalisms for reasoning under uncertainty were invented
at that time [1].

Decades had been passed from the first application of the Bayesian network’s
ancestor in 1921 up to the time when the formalism was finally formulated in late
1980th. During that period models that can be considered now as Bayesian net-
works (or models closely related to them) had been used by different groups of
scientists who named them differently: recursive models [58, 74], causal models [59],
causal graphs [75], causal probabilistic networks [76], belief networks [77], causal
networks [78], influence diagrams [79], knowledge maps [80] and so on.

Apparently, the unified framework was missing. This gap was filled in 1980th by
an Israeli-American computer scientist, philosopher and the laureate of A.M. Turing
Award [81], Judea Pearl, who is considered to be the inventor of Bayesian networks.
The name “Bayesian networks” was proposed by him in 1985 [82]. Together with
colleagues, Pearl published a sequence of relevant papers ([83, 82, 77, 84, 85] and
others) that proposed using of Bayesian networks for representation of the joint
probability distribution over a set of random variables using directed acyclic graph
that encodes dependencies and causal relations between those variables. For com-
plete list of Judea Pearl’s publications refer to his homepage [86]. In 1988, Judea
Pearl published his highly recognized book “Probabilistic Reasoning in Intelligent
Systems” that formulated Bayesian network framework [87].

Foundations for efficient reasoning using Bayesian networks were formulated by
Lauritzen and Spiegelhalter in their key paper published in 1988 [78]. Big contri-
bution to complementation of theoretical knowledge was also made in the context
of influence diagrams (this model can be viewed as the generalization of Bayesian
networks that provides, in addition to probabilistic inference, the best decision from
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the possible set of actions) ([79, 88, 89, 90]). Another influential publication that
contributed to formalizing the field of Bayesian networks is the book “Probabilistic
reasoning in Expert Systems” of American mathematician and computer scientist
Richard Neapolitan [91].

Formulation of Bayesian network framework and formation of sufficient theoret-
ical background in the field gave a big impetus to widening of Bayesian networks
in 1990th. Another reason for abruptly increased interest in these models was suc-
cessful implementation of Bayesian networks in practical applications, mostly in the
field of medical diagnosis [1]. Research projects in this area include the Nestor sys-
tem for the diagnosing of endocrine disorders [75], the MUNIN (MUscle and Nerve
Inference Network) system for the diagnosing of muscle and nerve diseases [92],
the QMR-DT (Quick Medical Reference, Decision Theoretic) system (probabilis-
tic reformulation of INTERNIST-1/QMR Knowledge Base) for the diagnosing in
general internal medicine [93, 94] and the Pathfinder system for assisting in the
diagnosing of lymph-node diseases [95]. The last-mentioned diagnosing system was
probably the most visible one. In addition to providing the most probable diag-
noses given a set of observations made by a user, the Pathfinder system suggests
additional tests that may serve to narrow a probability distribution over diseases
and consequently increase diagnostic accuracy. During construction of the system,
researchers firstly implemented rule-based (non-probabilistic) expert system that
appeared to be inflexible and inappropriate for diagnosing. The second modifica-
tion of Pathfinder system used probabilistic approach and had superior performance.
However, similarly to the ancestors, it was based on the Naïve Bayes model with its
strong independence assumptions (all symptoms were assumed to be conditionally
independent given the disease). To overcome this inaccuracy in model formulation,
the system was updated to full Bayesian network that allowed removing incorrect
independencies. Consequently, diagnostic accuracy of Pathfinder increased and was
at least as good as that of the Pathfinder expert [96]. Moreover, during solving of
Pathfinder project, importance of avoiding zero probabilities for events that are very
rare but still possible was proven in practice. Gained knowledge was formulated in
the manner that allows its usage in the arbitrary branch of medical diagnosis [97].

Significant application of BNs beyond the area of medical diagnosis appeared
within the Vista project. This application provided operators at Mission Control
Center in Houston with a decision support system for monitoring of the Space Shut-
tle’s propulsion systems. Former display manager provided raw complex telemetry
data to flight controllers who had to monitor correct functioning of propulsions and
make swift actions in the case of a failure. New system aimed do decrease cognitive
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load on human operators by managing the complexity of information displayed to
them. In addition, in the case of a problem, the system displayed a list of the most
probable disorders (according to probabilities calculated from a Bayesian network)
and their expected time-criticality to assist flight controllers in making time-critical
high-stakes decisions under the influence of uncertainty [98, 99].

And finally, the most widely distributed application based on Bayesian networks
is without a doubt Office Assistant provided with the Microsoft Office 1997. The
well-known paperclip Clippy appeared within the Lumiére project. It predicted the
goals and needs of a user based on the query of his/her recent actions and provided
the most relevant (according to its beliefs) help information [100].

The success of the above mentioned applications considerably reduced skepticism
against Bayesian networks in the statistical and the artificial intelligence scientific
communities. From that time, the Bayesian networks formalism has been spreading
in different scientific areas worldwide.

An increasing interest in Bayesian networks in different scientific areas during
last two decades can be backed up by results from searching engines from four
popular databases of scientific articles: ScienceDirect, IEEE Xplore, Scopus and Web
of Science. The figure 1.2 shows the amounts of research articles about Bayesian
networks included into each of these databases in every year up to 2018. These
results were obtained by searching of query “Bayesian network” in all available
fields of a database (data were gathered on February 14, 2019).

During last two decades Bayesian networks were successfully implemented in
different fields of study. In addition to “classical” areas of implementation, like
genetics, medicine and social sciences, this tool has spread to a plenty of other disci-
plines. Overview of the most common areas of usage and implementation guidelines
for each of them may be found for example in [101].

Recent review that includes latest tendencies in application of Bayesian networks
in genetics can be found in the book of R. Neapolitan [102]. These applications in-
clude, in particular, genotype analysis and discovering of epistatic and non-epistatic
interactions between genes [103, 104, 105, 106] and genetic linkage analysis [107].

Bayesian networks have been widely used in medicine, for guidelines to their
implementation in this area refer to [108, 109, 110, 111]. Typical applications of
Bayesian networks in medicine include: diagnosis of different diseases [112, 113, 114,
115, 116, 117, 118, 119], predicting risk of diseases [120, 121, 122, 123, 124, 125],
predicting specific medical outcomes [126, 127, 128, 129, 130]. Bayesian networks
are used for prediction of the human immunodeficiency virus (HIV) mutations [131].
Even though HIV virus is impossible to cure yet, effective prediction of its muta-
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Figure 1.2: Interest in Bayesian Networks in scientific community

tions can lead to more efficient antiretroviral treatment, and therefore increase life
duration and its quality for HIV-positive patients. Another promising area of appli-
cation is the analysis of functional magnetic resonance imaging data of human brain
activity [132, 133]. These studies have a potential to widen our knowledge about
human brain functionality.

Bayesian networks can be also used to demonstrate risks of different medical
interventions to lay people in comprehensible way. For example, recent paper [134]
presents the medical negligence case initiated by the patient who suffered a stroke
because of invasive diagnostic test. Inappropriateness of this test as compared to
alternative non-invasive test was proven using Bayes theorem. However, this expla-
nation was not clear for lay people, so researchers successfully used decision trees
and Bayesian networks to explain risks of alternative scenarios to jury.

Another perspective area for Bayesian networks is forensic science. Crime in-
vestigation naturally involves uncertainties of different kind together with a lot of
available statistical information from previous similar investigations. These factors
create good environment for application of Bayesian networks. General guidelines
on using Bayesian networks in forensic science can be found in [135]. Applications in
this area include: forensic DNA identification and paternity testing [136], risk assess-
ment of violence manifestations for prisoners with mental health problems [137, 138],
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crime linkage modelling [139], etc.
Bayesian networks are successfully used in environmental science [140], in partic-

ular in ecology [141, 142, 143, 144], in the research of renewable energy sources [145]
and in agriculture [146, 147, 148].

In engineering Bayesian networks are used for monitoring [149], fault detection
and diagnosis [150, 151, 152, 153], risk analysis [154, 155, 156, 157, 158, 159, 160, 161]
and reliability assessment [162, 163, 164].

Relatively unusual, but intriguing domains for application of Bayesian networks
are financial and marketing informatics [165], sport betting [166], educational as-
sessment [167, 168], weather forecasting [169], information retrieval [170] and social
network analysis [171, 172]. Reader may also come across quite unusual appli-
cations, for example the modelling of maritime piracy situation [173], teamwork
improvement [174] or indoor color design [175].

The above-mentioned overview proves that Bayesian networks have approved
themselves as a powerful tool for decision-making under uncertainty in different
fields. Modern tendencies suggest, that this framework will be spreading to further
areas with time.

1.3 Bayesian networks in control systems engineering
Since interconnection between Bayesian networks and system identification was not
closely addressed in available literature and research articles, we present the state of
the art from the broad perspective of control systems engineering. In some subfields
(monitoring, fault detection and diagnosis) BNs have gained popularity while in
others (feedback and stochastic control) they appear rarely. Since system identifi-
cation methods provide these subfields with models of dynamic systems, we believe
that this broad perspective will give not only the insight into the range of applica-
tions of Bayesian networks in control engineering, but also into the scale of possible
applications of system identification methodology proposed in this thesis.

Bayesian networks have started to gain in popularity in the field of control engi-
neering in the 2000s. This late appearance (in comparison with other fields) is caused
mainly by the fact that it is relatively recently that BNs matured for applications
in this field. By the word “maturation” we mean that essential (from the control
engineering point of view) structures were formulated in their context. The most
important ones are the introduction of continuous nodes into network structure and
development of temporal dependencies. The former extension is required since most
of variables of our interest are continuous (in that they can take a value from infinite
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set of values), the latter one is vital due to dynamic nature of controlled systems.
Initially Bayesian networks reasoned exclusively over discrete variables. Nor-

mally distributed variables with linear dependencies were introduced in the context
of influence diagrams (graphical models that can be considered as Bayesian networks
extended by decision making nodes) in 1989 [176], the framework was extended to
the hybrid case (containing both continuous and discrete nodes) in 1994 [177].

The first temporal extension of Bayesian networks was proposed by Dean and
Kanazawa in 1989 [178]. They called this extension dynamic Bayesian networks since
they evolve in time and their current state depends on the states in previous steps.
In contrary, networks that do not change over time are often referred to as static
Bayesian networks. Big contribution to the development of dynamic Bayesian net-
works was made by Kevin Murphy. His Bayes Net Toolbox (BNT) [179, 180] for
MATLAB [181] made Bayesian networks (especially the dynamic subclass) accessi-
ble for the wide community of researchers. Also, K. Murphy provided an extensive
tutorial on dynamic Bayesian networks in 2002 [13]. Murphy showed, that a dynamic
Bayesian network can be viewed as the generalization of Hidden Markov models and
Kalman filter models and his work covers their representation, inference and learn-
ing. In addition, he provided currently the most comprehensive overview of software
packages for modelling of Bayesian networks, influence diagrams and Markov net-
works (probabilistic graphical models described by an undirected graph) [182] that
has been updated by constantly emerging packages.

It is important to mention, that the plenty of methods and research works con-
tain the adjective “Bayesian” in their titles. However, it does not necessarily mean
that they use Bayesian networks. More often, this adjective reflects the fact that
a method is based either on Bayesian statistics or simply on using of Bayes’ rule.
It is worth emphasizing, that Bayesian networks do not necessarily imply Bayesian
statistics. In most applications the parameters of a network are considered unknown
constants and classical statistical approaches (e.g. maximum likelihood estimation)
are used to estimate them. But if unknown parameters have to be treated as ran-
dom variables, Bayesian methods can be used in Bayesian networks. Therefore, it
is important to distinguish between Bayesian methods and Bayesian networks.

For example, a term “Bayesian control” describes Bayes’ rule based control
paradigm. It appears in application of stochastic models of conventional con-
trollers [183] and in the field of statistical process control [184]. The representative of
the former field is [185], where authors proposed to use Bayes’ theorem to estimate
stochastic model of the inverse controller for nonlinear dynamic systems. Repre-
sentation of results in the latter field requires prior introduction since the control
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paradigm is different from the conventional one. Statistical process control (SPC)
is a method of quality control which uses statistical methods for the monitoring and
control of processes. Control chart is a key tool of SPC that reflects the variation in
a process [186]. It is used for tracking a variable using two statistical characteristics:
a measure for centering (the mean for normally distributed variables) and a measure
for spread (the standard deviation for normally distributed variables). The measure
for centering defines desired value and the measure for spread defines permissible
range. An equipment carries on without intervention as long as the value of variable
is in a stable zone, since it is assumed that variation in signal is caused by common
causes (inaccuracy of sensors, influence of noise). If signal shifts to warning zone, it
is a sign that some special causes of variation may have an influence on a process and
operator should consider intervention to a process. If signal moves to action zone, it
alerts that something has gone wrong and intervention to process is required [186].

If design parameters of control chart (e.g. sampling parameters, control limit
parameters) change over time based on values from previous time steps, the con-
trol chart is called adaptive or dynamic. There are two main streams of research
in adaptive statistical process control. The first one is an extension of conven-
tional control chart, in which sample parameters (sampling interval and sample
size) can be changed dynamically whereas other parameters stay fixed. The sec-
ond stream adopts Bayesian approach since the state of a process is updated in
each step using Bayes’ theorem. This approach is more flexible since it allows
dynamical updating of the control limit parameters. Process control with such con-
trol charts is called Bayesian process control and charts themselves are also called
Bayesian [184]. Bayesian control charts have a long history. Introduced in 1952
by Girshick and Rubin [187], they are still the subject of active research in the
present [184, 188, 189].

Another active research area with misleading name is “Bayesian identification”.
As oppose to the conventional approach, where parameters are considered unknown
constants, in Bayesian methods they are treated as random variables. Consequently,
we are looking for probability distributions of unknown parameters. Bayes rule
is used in this context for updating of the posterior distribution based on the prior
distribution of parameters and measurements obtained from a dynamic system. Ba-
sic principles of Bayesian identification are presented, for example, in [190]. These
methods are the adaptation of techniques from Bayesian statistics into the domain
of system identification. In addition, kernel methods for system identification are
often referred to as Bayesian methods for system identification. As it was already
mentioned in the section 1.1, these methods correspond to the adaptation of regu-
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larization techniques from machine learning into system identification domain, refer
to [28, 29] for recent reviews in this field.

In the following text we present the state of the art in the interconnection between
control systems engineering and Bayesian networks. Since we hit misleading titles
quite often during its preparation, we dare to introduce the full name of sources in
the cases when it is crucial to avoid misunderstanding or explain ambiguities.

The subarea of control engineering, in which Bayesian networks have become
particularly popular is the monitoring of dynamic systems. Due to constant in-
creasing of the complexity of controlled processes and growing demand for their
reliability and safety, application of classical dynamic models from control theory
becomes infeasible for sophisticated systems. Simplification of these models for the
task of fault detection and diagnosis is provided by functional redundancy techniques
that use either analytical or topological methods. Analytical methods are based on
algorithms from classic control theory (filtering, state estimation, parameter esti-
mation etc.). In topological methods relations between variables are represented by
a directed graph constructed for system under normal operating conditions and in
faulty modes [191]. Using of hybrid dynamic Bayesian networks in this setting was
proposed by Lerner and his colleagues in 2000 [9]. He provided the introduction
into hybrid dynamic Bayesian networks and carried out extensive research in this
field that includes treatment of non-linearities and development of new inference
algorithms [192]. His research theories are backed up by successful application of
hybrid DBNs for monitoring of the Reverse Water Gas Shift System, the system
designed to produce oxygen from the carbon dioxide atmosphere on Mars [5].

Bayesian networks are widely used for fault diagnosis of dynamic systems, refer
to [193] for closer information on the implementation of both static and dynamic
BNs for this purpose. As the representatives of data-driven approaches to fault
diagnosis, BNs require the large amount of training data. In addition, prior pro-
cess knowledge is essential for defining the structure of a network [15]. These and
other disadvantages may be overcome by the combination of Bayesian networks with
other approaches for detection and isolation of faults in dynamic processes [194].
For example, the combination of Bayesian networks with principal component anal-
ysis [10] and discriminant analysis [7] showed robustness and good performance.
Combinations of data-driven and model-based approaches are referred to as hybrid
approaches to fault diagnosis, the recent review that includes implementations of
BN-based combinations may be found in [15].

Bayesian networks have been successfully used in monitoring of discrete event dy-
namic systems (DEDSs). Extensive guidelines in this area are presented in doctoral
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thesis “Bayesian Networks of Dynamic Systems” [4]. In the simplest case, DEDS
can be represented as an automaton composed by the finite set of states of a system,
the finite set of transitions between those states and the initial state of a system. In
modern manufacturing DEDSs are becoming more and more complex and monitor-
ing becomes demanding. High level of complexity leads to the intractability of these
systems by classical (centralized) approaches to monitoring due to combinatorial ex-
plosions. Overcoming of these limitations can be gained by distributed approaches,
which solve monitoring tasks locally for each component and combine solutions into
the global decision. A distributed dynamic system is obtained by assembling of the
large number of components and hence is often referred to as a network of dynamic
systems. Monitoring of such networks can be provided by Bayesian networks that
leads to the formulation of Bayesian networks of dynamic systems [4].

One of the most popular types of DBNs used in monitoring of dynamic sys-
tems is a Hidden Markov Model (HMM). This probabilistic graphical model was
initially developed for speech and text processing as the extension of a Markov
chain [195, 196] and was later adopted in monitoring and fault detection of dynamic
systems [197, 198]. The state of a system described by a HMM is unobservable (hid-
den), however it can be “guessed” using a variable dependable on the state which can
be measured. The probabilities of transitions between particular states are described
by a transition model. Refer to [199] for a well-prepared introduction to HMMs.
For more demanding applications this simple structure of a graphical model can
be insufficient and one of HMM extensions can be used, e. g. hierarchical hidden
Markov models [200].

In a HMM we consider systems with discrete hidden variables. Probabilistic
graphical model that has the same graph, but consider continuous state variable
is called Linear Dynamical System (LDS) [199] or linear dynamic model [201]. It
is important to point out, that in the Machine learning applications this model
mostly does not have exogenous input [199, 201, 202, 203, 1] and hence is used for
analysis of time series [16]. Due to similarities between LDSs and HMMs, they share
the same structure of inference and learning algorithms [202]. Both types of prob-
abilistic graphical models can be represented by a dynamic Bayesian network [13]
and consequently, inference and learning algorithms designed for dynamic Bayesian
networks can be adopted in HMM-based and LDS-based models [204]. The model
of LDS that includes input signal can be found in the thesis of K. Murphy [13]. He
suggests the principle how to use this model (also referred by him as a state-space
model and a Kalman filter model) for control purposes. This principle is described
in details later in this section.
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In the context of this discussion, it is worth to point out further ambiguity in
nomenclature. It is important to distinguish between Markov models and Markov
networks. A Markov network is a probabilistic graphical model represented by an
undirected graph, hence it does not encode any causal relationship between random
variables [1]. In a Markov model there are causal relationships between variables and
hence the Bayesian network is more appropriate probabilistic graph than Markov
network for this model.

An exciting property of Bayesian networks is their ability to generalize over many
seemingly unrelated models and methods [205]. In addition to already mentioned
HMMs and LDSs, they can also be used to implement e.g. factor analysis, prin-
cipal component analysis and switching linear dynamic systems [206] (also called
jump linear dynamic systems [207]). The generative model that covers all above-
mentioned methods and many others is called a linear Gaussian model [11]. This
generative model can be transformed into a Bayesian network and analyzed using
inference and learning algorithms formalized in the area of probabilistic graphical
models [13]. In addition, basic models can be combined into advanced structures to
solve complex tasks and this gives the extensive area of possible implementations of
Bayesian networks in different engineering branches.

Applications of Bayesian networks in the control of dynamic systems are yet
rare, but this direction has gotten attention of research community recently. For
example, the introductory article of M. Ashcroft “An Introduction to Bayesian net-
works in Systems and Control” published in 2012 [208] gives an insight into the
main properties of Bayesian networks and influence diagrams, into advantages and
disadvantages of utilization of different node types and into inference and learning
procedures. Hidden Markov models and Kalman filters are mentioned as represen-
tatives of dynamic Bayesian networks. However, the article lacks explanation on
how presented models can be used in the context of systems and control. The aim
of this article is to introduce basic principles from Bayesian network framework that
can potentially be used in system design and control.

The main drawback of Bayesian networks in the context of process control
is their disability to represent feedback, since a graph representing Bayesian networks
is by its definition acyclic. More specifically, interconnections between variables in
Bayesian networks are represented by a directed acyclic graph (DAG). This draw-
back can be overcome by introduction of feedback into the structure of a graphical
model, which leads to a model called a directed cyclic graph (DCG) as proposed by
Spirtes [209] or to a model called Dependency networks as proposed by Heckerman
and colleagues [210]. However, this extension will have influence on representation,
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inference and learning of graphical models. Moreover, resulting graphs cannot be
considered as Bayesian networks since one of crucial properties, the acyclicity, is not
preserved.

Figure 1.3: Control strategy proposed by R. Deventer et al.

Another way of introducing feedback into the structure of a Bayesian network
is implicit implementation as proposed by Murphy [13] and implemented by Deven-
ter and colleagues in [6]. Authors in the latter publication use a DBN-based Kalman
filter model to model the behavior of a dynamic system. Implicit feedback is imple-
mented by the special treatment of nodes in a Bayesian network as presented on the
figure 1.3. Specifically, measured values of input and output variables are entered to
a network as evidence for time slices up to the current time, desired values of output
are entered as an evidence for future time slices. The temporal evolving of an input
node is obtained by marginalization and represents the input signal for controlled
system. Application of this control principle in real-time in combination with for-
getting strategy (throwing away the oldest input and output values and adding the
most recent ones at each time step) leads to the implementation of Bayesian adap-
tive controller that shows nearly the same performance as classic control methods
[211]. The advantages of Bayesian controllers compared to classic control algorithms
are the possibility of training the model from examples with partial knowledge re-
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garding system structure and its parameters. Moreover, BNs offer a possibility to
handle missing information that makes them superior to other self-adaptive tools
(for example, neural networks) [6]. A Kalman filter is based on the state space
description of dynamic systems. The resulting process fulfill Markov independence
assumption since values of variables at any time step are independent of all past ob-
servations given values in the previous step. The DBN for this model hence consists
of two adjacent time slices for a system of arbitrary order. An order of a system
has an influence on the amount of state variables that are often unmeasurable and
non-interpretable. Calculation of these variables brings additional computational
burden to control process. Alternative model for representation of dynamic sys-
tems introduced by Deventer is a DBN based on a difference equation [212]. This
network is represented by input and output variables and interconnections between
them. In this case, there is no need to calculate state variables, but the change in
model order changes structure of a DBN. Dynamic network will be represented by
(n+1) time slices, where n is the order of a dynamic system. Designed control algo-
rithms were tested on simulated data and successfully used in practice for control
of hydroforming and injection moulding technological processes [12].

Models proposed in above-mentioned publications of Deventer and colleagues as-
sume that considered dynamic systems have linear behavior. Since many controlled
systems have non-linear behavior, it is important also to define a technique for in-
cluding non-linearities into considered models. Bayesian networks does not put any
restrictions regarding the type of interconnection between random variables. Hence,
non-linear functions for representation of dependence of child nodes on parent nods
can be introduced into the structure of Bayesian network. However, it is important
to take into account that only linear interconnections between random variables are
sufficiently implemented in available software packages. Therefore, the implementa-
tion of non-linear models requires big effort in specification of used non-linearities in
the context of BNs and adaptation of inference and learning algorithms to non-linear
dependencies. Another possible solution is to approximate non-linear behavior of
dynamic systems by hybrid BNs as presented in [213].

Another application of a Bayesian network based controller is presented in the
article of Welch and Smith [8]. Here authors apply a Bayesian network for the task
of nuclear waste remediation, more concretely for the two-position control of a sorter
unit. In contrary to the previous example, the model is designed using topologi-
cal techniques rather than analytical approach. Complete model of technological
process is presented by a relatively sophisticated hybrid Bayesian network. Since
inference in full BN was not sufficiently fast for application in real time, authors
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used the strategy of hierarchical control [214] to reduce irrelevant variables from
consideration. Reduced conditional sub-network consists of variables required for
the most frequent control decisions and can be evaluated using exact methods in
online setting [8].

Bayesian networks were also used for the adaptive control of a printing sys-
tem [215]. The variables under consideration were divided into four groups: sensor
information, control variables, hidden states and target variables. These variables
were connected into a DBN structure according to the expert knowledge. Authors
used DBN for prediction of the paper type based on the estimation of paper weight.
This information is than used by another DBN for adaptive control of engine speed.

Based on this application authors suggest a technique for the construction of
Bayesian networks for linear dynamic systems using expert knowledge regarding the
process under consideration [216]. They describe how topological techniques can be
used to construct diagrams of linear dynamic systems, show the transformation of
these diagrams into state space representation and present the appropriate structure
of a DBN. They suggest three choices for nodes in a network: deterministic, linear
Gaussian and conditional linear Gaussian.

In the field of statistical process control, it was proposed to use a Bayesian
network as a control chart [7]. The authors present an approach that combines
both detection and diagnosing tasks in a single tool (conventional detection and
diagnosing procedures use separate tools for each task). As it has been repeatedly
pointed out, Bayesian networks is an approved tool for diagnosing. This article
proposes solving of detection task by a control chart implemented using a Bayesian
network.

Bayesian networks were also successfully used to solve trajectory optimization
problems in robotics [217]. They provide an alternative interpretation of models
used in motion control and planning that are particularly useful for approximate
probabilistic inference in complex robotic systems.

Presented overview of applications of Bayesian networks in automatic control
proves that this interconnection is not yet well defined but has a big potential for
the wide range of technological processes. Trends in development and broadening
of Bayesian networks suggest that this research area will flourish in the near future.

And finally, the review over available sources shows, that identification of dy-
namic systems was not yet closely addressed and studied in available literature.
Recent overview on system identification perspectives written by Lennart Ljung
backs up this statement [14]. Author suggests Bayesian networks as a perspective
tool for description and calculation of signal flows in dynamic systems that has not
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been used in system identification.
System identification task corresponds in the Bayesian network framework to the

task of parameter learning (parameter estimation) given the structure of a network
and observed values of input and output variables. Some authors have already
noticed this correspondence [11, 12, 13], some authors provided a basic insight on
how this procedure may be implemented for linear dynamic models without external
stimuli [11, 201, 199, 1, 202, 203] and with it [13]. However, the systematic study of
Bayesian network based identification of dynamic systems has not been yet provided.

The only source that has drown our attention as a candidate to fill in this gap
was the article “Bayesian-network-based system identification of spatial distribution
of structural parameters” by S.-H. Lee and J. Song published in 2016 [218]. Au-
thors claim that they provided the first attempt of Bayesian-network-based system
identification. Their research originates from the field of structural engineering.
Prevention of losses of properties and human lives due to deterioration and damage
in civil infrastructures is a crucial task to solve in this field. Implementation of dam-
age monitoring and detection is referred to as Structural Health Monitoring (SHM).
System identification is defined in this context as one of the SHM methods used
for estimation of structural parameters. It is defined as a method that minimizes
the error between measured response of a structure and response calculated from
the assumed model under the same loading conditions. In the article authors use
measurements from sensors located on the structure. The input data for analysis
are organized as the mesh of a given size. Authors propose to use a Bayesian net-
work that contains measured and calculated displacements for each point in a mesh.
For simplification, continuous values of displacement are discretized and a result-
ing Bayesian network is discrete. To make analysis more tractable, they suggest to
analyze spatial distribution of structural parameters (in the form of a bivariate Gaus-
sian) instead of particular values of displacements. By identification authors mean
parameter estimation for spatial distribution of structural parameters based on the
nodes in a designed Bayesian network. The another example of the implementation
of Bayesian networks for identification of structural parameters is presented in the
thesis of T. B. Tran “A Bayesian Network framework for probabilistic identifica-
tion of model parameters from normal and accelerated tests: application to chloride
ingress into concrete” defended in 2015 [219]. Here, a discrete Bayesian network
is constructed from chloride contents at different depth and time and structural
parameters of interest represented as parent nodes. The number of parameters to
be identified depends on a selected model. Both publications are dedicated to es-
timation of material properties in structural engineering [220], the task that is not
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connected with the system identification procedure used in the context of control
systems design.

1.4 Research objectives
After extensive literature review the following research objectives were chosen:

• Design Bayesian network based models of dynamic systems that can be used
for modelling and system identification.

• Propose a methodology of Bayesian network based system identification

• Explore the efficiency and precision of the proposed approach using simulated
responses of the most popular types of dynamic systems.

• Verify the proposed approach to system identification on real dynamic systems
and compare results with traditional methods
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2 Mathematical models of dynamic systems

Solving tasks from control systems engineering often requires knowing of the math-
ematical model of a dynamic system of our interest. These models can be found
analytically, but this approach is complicated and time-consuming, especially for
complex real-world technological processes. More often the models are obtained us-
ing system identification methods which were briefly discussed in the section 1.1.
These methods often assume that the type and the structure of a model for a stud-
ied system are known. The matching of real-world process with a structure that
describes their behavior with sufficient precision may be a challenging issue. Choos-
ing of appropriate model often involves a trade-off between precision and complexity
in the context of the task for which system identification is performed. The oversim-
plified model can provide conclusions that are not valid in the real world, whereas
the overcomplicated model can bring unnecessary computational difficulties.

Bridging between the real world and mathematical theory can be provided by
the classification of different dynamic systems according to their properties and the
introduction of corresponding mathematical models which describe their behavior.
This chapter provides the description of major classes of dynamic systems (sec-
tion 2.1) and introduces mathematical models used for subclasses considered in this
thesis (sections 2.2 - 2.3). For more detailed description refer, for example, to [221].
State observers are briefly discussed in the section 2.4.

2.1 Classification of dynamic systems
From the viewpoint of control theory mathematical modelling of dynamic systems
can be provided in frequency or time domain. System identification using the former
approach is time-consuming compared to the latter one, but it is however irreplace-
able for systems which demand knowing of system response on the harmonic signal
in a wide frequency spectrum. These methods and mathematical models associ-
ated with them are not in the scope of this thesis. A reader may refer to any of
the following books for more information on this approach to system identifica-
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tion [16, 17, 2, 26].
Mathematical models used for analysis of dynamic systems in time domain de-

scribe relations between an input signal and an output signal by an equation. The
type of this equation depends on the type of a considered system. System identi-
fication for these systems mostly consists in searching for unknown parameters of
pre-defined equation. A powerful extension of this modelling paradigm is a state
space representation, in which we additionally consider the values of internal vari-
ables (called states) of a dynamic system. The original equation is transformed into
the system of equations of the first order, which can be easily adapted for systems
with several inputs and/or several outputs.

The major classes of systems are shown on the figure 2.1. Each division is based
on a distinct feature of a system, hence, each dynamic system can belong to several
different classes [221].

Figure 2.1: The major classes of dynamic systems

In continuous-time systems all signals are functions of time, in discrete-time
systems signals are represented via sequences of values at distinct time instances
with a sample period defined for each system individually. The majority of dynamic
systems has continuous nature, but the majority of modern control systems are dis-
crete. Hence there are two basic principles for coping with this issue: to consider
all control loop as a discrete or to use converters for analog/discrete transforma-
tions of signals. Mathematical models for continuous dynamic systems are based on
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a wide range of differential equations. Discrete systems are described by difference
equations with forward or backward differences.

Non-linear dynamic systems are systems in which the principles of superpo-
sition do not apply. Linear dynamic systems are more of idealization of the real
world since most of systems exhibit non-linear behavior in practice (except the sim-
plest ones). However, many of them can be treated as linear systems, at least for
a range of input values near an operating point. Linear dynamic systems are ana-
lyzed using a linear equation (differential or difference), whereas non-linear systems
include non-linear functions or elements in their description.

Depending on the amount of input and output signals, dynamic systems are
divided into four categories: SISO (single input single output), MIMO (multi
input multi output), SIMO (single input multi output) and MISO (multi input
single output). The amount of input and output signals influences the amount of
equations required to fully describe the behavior of a considered system.

A dynamic system without external input is called a homogeneous system.
The behavior of such system is defined solely by the values of its initial conditions
and is described by a homogeneous equation. A system that does have external
inputs that influence its behavior is called non-homogenous.

Systems with distributed parameters are systems with infinite-dimensional
state space. The typical representative for mathematical description of such systems
is a partial differential equation. Their counterpart, the systems with lumped
parameters, can be analyzed using ordinary differential equations.

Mathematical models that respect the influence of random components on the
behavior of dynamic systems are called stochastic. In contrary, the output from
deterministic systems is unequivocally determined by input signals and the values
of output signal in previous time steps with no randomness engaged.

In time-varying systems parameters change over time, while in time-invariant
systems they remain constant.

One additional class of dynamic systems that did not appear in the classification
on the figure 2.1, but it is worth mentioning in the context of this discussion, is the
class of hybrid dynamic systems. The behavior of hybrid systems is determined by
interacting discrete and continuous dynamics. Mathematical models for this type of
systems include both continuous and discrete variables. The most popular subclass
of hybrid systems is switching affine models defined as a collection of linear (affine)
models enriched by the so-called discrete state (the additional discrete variable which
is used for switching between individual affine models). In the simplest case, this
state is a deterministic variable with the finite set of values and the resulting system
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is called a jump linear model. In more complex case, the discrete state is determined
by a polyhedral partition of the state-input domain. The resulting system, that can
approximate nearly any non-linear dynamics, is called piecewise affine model. For
an extend tutorial into subclasses of hybrid systems and their identification refer
to [222].

Dynamic systems considered in this thesis correspond to the subclass of linear
time-invariant non-homogenous SISO dynamic systems with lumped parameters. In
further text we will let off all epithets for simplification and use simply a “dynamic
system”, unless it is important to name some of them.

Even though the considered subclass may appear limited, it exhibits sufficient
accuracy for many industrial processes [19, 30]. Moreover, the extensions of proposed
approaches, which are presented in the final chapter of this thesis (section 7.3), will
hopefully allow to use Bayesian networks in a wide range of dynamic systems in the
future.

Bayesian network based models of dynamic systems considered in this thesis
correspond to discrete representation. As it was already mentioned, the majority
of dynamic systems have continuous nature, the discrete description appears by
sampling during their usage with discrete circuits (e.g. measurement or control
units). Both types of description are often used in practice, since each of them
has benefits in different tasks. For example, it may be more convenient to sample
continuous models during simulations with different discretization steps since the
coefficients of a mathematical model do not change for various discretization steps
(unlike the discrete model). On the other hand, including of a stochastic component
into a description of discrete systems is more straightforward.

The description of both types of dynamic systems is presented in the following
sections. An overview of mathematical models used for description of dynamic
systems in continuous-time domain is provided in the section 2.2. The section 2.3
is dedicated to the discrete-time models.

2.2 Continuous-time dynamic systems
The behaviour of a continuous-time dynamic system can be in general described by
the following differential equation:

dny(t)

dtn
+ an−1 ·

dn−1y(t)

dtn−1
+ ...+ a1 ·

dy(t)

dt
+ a0 · y(t) =

bm · d
mu(t)

dtm
+ bm−1 ·

dm−1u(t)

dtm−1
+ ...+ b1 ·

du(t)

dt
+ b0 · u(t).

(2.1)
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In the equation (2.1), y(t) is an output signal, u(t) is an input signal, n is the
order of a dynamic system. The condition m ≤ n has to be fulfilled for a considered
system to be causal.

Solving of the differential equation (2.1) requires knowing of the following initial
conditions (given that t0 is initial time):

dn−1y(t0)

dtn−1
,
dn−2y(t0)

dtn−2
, · · · , dy(t0)

dt
, y(t0);

dm−1u(t0)

dtm−1
,
dm−2u(t0)

dtm−2
, · · · , du(t0)

dt
, u(t0).

(2.2)

A transfer function is the ratio of the Laplace transform of the output to the
Laplace transform of the input with the assumption that all of the initial conditions
on the system (2.2) are zero:

G(s) =
Y (s)

U(s)
. (2.3)

The Laplace transform of the output signal can be found as:

Y (s) = L{y(t)} =

∫ ∞

0

y(t) · e−stdt. (2.4)

The Laplace transform of the input signal can be found as:

U(s) = L{u(t)} =

∫ ∞

0

u(t) · e−stdt. (2.5)

Applying the Laplace transform on both sides of the differential equation (2.1)
and respecting the ratio (2.3), we obtain the transfer function in the following form:

G(s) =
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
. (2.6)

The state space representation of dynamic systems is a mathematical model
that describes interconnections between input variables, state variables and output
variables. State variables are internal relatively to an investigated dynamic process.
These variables can but do not have to reflect some physical values in the dynamic
process. The state space model is based on the reorganization of differential (or
difference for discrete systems) equation of a system into a system of the differential
equations of the first order.

A state space representation is not unique for a system, because it depends on the
choice of the state vector. However, all state space models that reflect the behavior
of a certain system can be transformed to unique description (e.g. transfer function
or differential/difference equation).
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State space description of SISO continuous dynamic systems can be defined as:

dX(t)
dt

= A · X(t) + B · u(t),

y(t) = C · X(t) + D · u(t).
(2.7)

In the equation (2.7), A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and D ∈ R1×1 are state
matrices, X(t) ∈ Rn×1 is a state vector:

X(t) =
[
x1(t) x2(t) · · · xn(t)

]T
. (2.8)

The main advantage of state space representation compared to other descriptions
of dynamic systems is its generalizability over SISO and MIMO systems. Descrip-
tion of MIMO systems using differential equations (2.1) or transfer functions (2.3)
requires definition of one equation for each pair of input and output signal. The
state space model equations (2.7) remain the same for the arbitrary amount of input
and output signals, but scalar input and output variables have to be exchanged by
input and output vectors and the dimensions of state matrices have to be modified
accordingly.

The solution of the first equation in (2.7) is:

X(t) = eA(t−t0) · X(t0) + B ·
∫ t

t0

eA(t−τ)u(τ)dτ. (2.9)

In the equation (2.9), X(t0) is the vector of initial conditions for state variables.
If initial conditions (2.2) are equal to zero, then the initial values of states are equal
to zero as well. Otherwise, their values have to be recalculated using the following
formula:

X(t0) = P−1(Y(t0)− SU(t0)). (2.10)

In the equation (2.10) Y(t0) is the vector of initial conditions for the output
signal and U(t0) is the vector of initial conditions for the input signal:

Y(t0) =


y(t0)
dy(t0)
dt

· · ·
dn−1y(t0)
dtn−1

 , U(t0) =


u(t0)
du(t0)
dt

· · ·
dn−1u(t0)
dtn−1

 . (2.11)
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Matrices P and S are composed from the state matrices:

P =


C
CA
· · ·

CAn−1

 , S =


D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0

· · · · · · · · · · · · · · ·
CAn−2B CAn−3B CAn−4B · · · D

 . (2.12)

As it was already mentioned above, matrices of the state space representation
depend on the choice of the state vector. There are several special choices of the
state vector that lead to the so-called canonical forms of the state space representa-
tion. We will consider two of them: the controllable canonical and the observable
canonical.

The controllable canonical form of the state space representation is represented
using the following state matrices:

A =


0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

 , B =


0

0

· · ·
0

1

 ,

C =
[
(b0 − bna0) (b1 − bna1) · · · (bn−1 − bnan−1)

]
,

D =
[
bn

]
.

(2.13)

The observable canonical form of the state space representation is represented
using the following state matrices:

A =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

· · · · · · · · · · · · · · ·
0 0 · · · 0 an−2

0 0 · · · 1 −an−1

 , B =


(b0 − bna0)

(b1 − bna1)

· · ·
(bn−2 − bnan−2)

(bn−1 − bnan−1)

 ,

C =
[
0 0 · · · 0 1

]
, D =

[
bn

]
.

(2.14)

The parameters of state matrices in both equation (2.13) and equation (2.14) are
the coefficients of the original differential equation (2.1), therefore both canonical
representations provide unequivocal descriptions for a dynamic system. Unlike the
canonical forms, general state space model is non-unequivocal, however it can be
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transformed into an unequivocal description, namely the transfer function, using the
following formula:

G(s) = C(sI− A)−1B+ D. (2.15)

In the equation (2.15), I is a unitary matrix. The transfer function (2.15) can be
consequently transformed into the differential equation (2.1) using inverse Laplace
transform.

2.3 Discrete-time dynamic systems
The behaviour of discrete-time dynamic systems can be described by a difference
equation. Depending on the task, for which a model is constructed, a difference
equation with positive or negative shift can be used. In general, difference equation
with positive shift used for description of linear dynamic systems can be written as:

y(k + n) + an−1 · y(k + n− 1) + · · ·+ a1 · y(k + 1) + a0 · y(k) =
bm · u(k +m) + bm−1 · u(k +m− 1) + · · ·+ b1 · u(k + 1) + b0 · u(k).

(2.16)

Difference equation with negative shift can be in general written as:

y(k) + an−1 · y(k − 1) + · · ·+ a1 · y(k − n+ 1) + a0 · y(k − n) =

bm · u(k) + bm−1 · u(k − 1) + · · ·+ b1 · u(k −m+ 1) + b0 · u(k −m).
(2.17)

Here it is important to point out, that the coefficients in the difference equa-
tions (2.16) and (2.17) will be the same for the same dynamic system. However, if
we discretize the differential equation (2.1), these coefficients will differ from those
from the continuous-time description. Moreover, their values are dependable on the
choice of a sampling period.

The initial conditions for discrete-time systems can be formulated as (given that
t0 is initial time instance):

y(t0 − 1), y(t0 − 2), ..., y(t0 − n);

u(t0 − 1), u(t0 − 2), ..., u(t0 −m).
(2.18)

A discrete transfer function is the ratio of the Z-transform of the output to the
Z-transform of the input with the assumption that all of the initial conditions on
the system (2.18) are zero:

G(z) =
Y (z)

U(z)
. (2.19)
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The Z-transform of the output signal is defined as:

Y (z) = Z{y(t)} = Z{y(kT )} =
∞∑
k=0

y(kT ) · z−k. (2.20)

The Z-transform of the input signal is defined as:

U(z) = Z{u(t)} = Z{u(kT )} =
∞∑
k=0

u(kT ) · z−k. (2.21)

In the equations (2.20) and (2.21) k takes zero or positive integers and T is the
sampling period. It is common to drop the sampling period from notions of the
output and the input signal and denote them y(k) and u(k) respectively. We will
use this denotation further in the thesis.

The discrete transfer function can be written as:

G(z) =
bm + bm−1z

−1 + · · ·+ b1z
−m+1 + b0z

−m

1 + an−1z−1 + · · ·+ a1z−n+1 + a0z−n
=

bmz
m + bm−1z

m−1 + · · ·+ b1z + b0
sn + an−1zn−1 + · · ·+ a1z + a0

.

(2.22)

The discrete state space representation can be defined as:

X(k + 1) = A · X(k) + B · u(k),
y(k) = C · X(k) + D · u(k).

(2.23)

The dimensions of state matrices are for discrete-time systems the same as for
continuous-time systems, and the implementation of MIMO systems also requires
only modification of these dimensions, the model itself does not change. The state
vector for discrete state space representation has the following form:

X(k) =
[
x1(k) x2(k) · · · xn(k)

]T
. (2.24)

The state matrices of a system will not be the same in continuous-time and
discrete-time representations. The transformation of the continuous state space
model with state matrices Ac, Bc, Cc, Dc into the discrete state space model with
state matrices Ad, Bd, Cd, Dd can be provided as:

Ad = eAcT , Bd = Bc ·
∫ T

0
eAcτdτ,

Cd = Cc, Dd = Dc.
(2.25)

The solution of the first equation in (2.23) is:

X(k) = Ak · X(t0) +
k−1∑
j=1

Ak−1−jB · u(j). (2.26)
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The vector of initial conditions X(t0) contains zero values, if the initial condi-
tions for input and output signals (2.18) are equal to zero. Otherwise, they can be
recalculated using the formula (2.10). Matrices P and S have the same form as in
the continuous-time case (refer to (2.12)), the vectors of initial conditions for the
output and the input signal have to be adopted for discrete-time description:

Y(t0) =


y(t0 − n)

y(t0 − n+ 1)

· · ·
y(t0 − 1)

 , U(t0) =


u(t0 − n)

u(t0 − n+ 1)

· · ·
u(t0 − 1)

 . (2.27)

The controllable canonical form of the state space representation is described by
the state matrices (2.13), the observable canonical form is described by the state
matrices (2.14).

The transformation of state space representation to the discrete transfer function
can be provided using the following formula:

G(z) = C(zI− A)−1B+ D. (2.28)

2.4 State observers
State observers estimate the values of state variables in cases when they are im-
measurable, but required for certain purposes, for example control or monitoring.
The most natural and easy way is to estimate the values of state vector using in-
put signal and state matrices obtained from the system identification procedure (or
mathematical modelling):

X̂(k + 1) = AE · X̂(k) + BE · u(k). (2.29)

In the equation (2.29) AE and BE are estimated state matrices, u(k) is input
signal and X̂(k) is estimated state vector. This model of state observer does not take
into account neither stochastic nature of considered signals, nor the imperfectness of
state matrices obtained from the identification procedure. In addition, the improper
initial values of the state vector negatively influence the precision of estimated state
variables.

Estimation error can be defined as:

∆X(k + 1) = X(k + 1)− X̂(k + 1) =

A · X(k)− AE · X̂(k) + (B− BE) · u(k).
(2.30)
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Let us assume that the state matrices obtained from the system identification
procedure are correct, i.e. AE = A and BE = B. Than the estimation error (2.30)
simplifies to:

∆X(k + 1) = A · (X(k)− X̂(k)) = A ·∆X(k). (2.31)

If ∆X(k) = X(k) − X̂(k) = 0, then state estimator works properly. However,
if initial values of estimated state vector are not equal to the real values of state
vector, then the estimation error has dynamic behavior described by a matrix A. If
the eigenvalues of this matrix lie inside the unity circle (which is always the case if
the identification was successful), then the steady state of estimation error is equal
to zero and the speed of its convergence to zero value depends only on a matrix A.
If we want to accelerate the convergence of estimation error, take into account the
stochastic nature of considered dynamic system and changes in system behavior,
we have to modify the structure of state observer presented in the equation (2.29).
This leads to different state observers formulated to meet various requirements on
state estimation. Recent overview and the classification of different state observers
can be found, for example, in [223].

The simplest type of state observer is Luenberger observer. It accelerates the
convergence of estimation error by adding additional information about the quality
of estimates. This information is obtained from the difference between measured
and estimated value of the output:

∆y(k) = y(k)− ŷ(k). (2.32)

This difference (multiplied by a constant) is added to the equation (2.29). Re-
specting the dimensions of state vector, we have to multiply it by a vector of con-
stants that is commonly denoted as L and called Luenberger observer gain:

X̂(k + 1) = AE · X̂(k) + BE · u(k) + L ·∆y(k). (2.33)

The estimation error will be in this setting equal to:

∆X(k + 1) = X(k + 1)− X̂(k + 1) =

A · X(k)− AE · X̂(k) + (B− BE) · u(k)− L · C · (X(k)− X̂(k)).
(2.34)

If AE = A and BE = B, then the estimation error simplifies to:

∆X(k + 1) = (A− L · C) ·∆X(k). (2.35)

53



Dynamic properties of the estimation error are therefore given by the eigenvalues
of matrix (A− L ·C). Hence, they can be changed with respect to requirements by
choosing the appropriate values in vector L.

Another well-known and often used type of a state observer is Kalman filter
(refer to the section 1.1 for more information). According to [223], all Kalman filter
based state observers (e.g. UKF, EKF) are representatives of so-called Bayesian
estimators, since they respect the stochastic nature of considered signals and they
are based on the estimation of the probability distribution of state variables. This
is another example of misleading name, since these estimators are not connected with
Bayesian networks. However, in the section 4.3 we propose, how this connection can
be made.

Kalman filter uses the following model of the stochastic discrete state space
representation:

X(k + 1) = A · X(k) + B · u(k) + V · ν(k),
y(k) = C · X(k) + n(k).

(2.36)

In the equation (2.36), A,B and C are state matrices, ν(k) and n(k) are white
noise signals and V describes the influence of white noise on each state variable.

The model presented in the equation (2.36) does not have direct feedthrough. It
corresponds to a traditional Kalman filter as presented by Kalman [39]. There are
modifications of Kalman filter that include matrix D into the structure of underlying
state space representation, but they will not be discussed in this thesis.

In addition to the above mentioned parameters we have to specify matrices M
and N. They are covariance matrices of noise signals ν(k) and n(k) that are assumed
to be uncorrelated with state vector (both real X(k) and estimated X̂(k)):

M = E{ν(k) · ν(k)T},
N = E{n(k) · n(k)T}.

(2.37)

Matrix P is defined as the covariance of states:

P(k) = E{(X̂(k))− X(k)) · (X̂(k))− X(k))T}. (2.38)

The derivation of the algorithm for state estimation using Kalman filter is omit-
ted, it can be found for example in [2]. The resulting algorithm includes two main
steps: prediction of state vector and correction of the predicted value with respect
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to the measured value of the output:

Prediction step
X̂(k + 1|k) = AX̂(k) + Bu(k),

P−(k + 1) = AP(k)AT + VMVT .

Correction step
K(k + 1) = P−(k + 1)CT · (CP−(k + 1)CT + N)−1,

X̂(k + 1|k + 1) = X̂(k + 1|k) +K(k + 1) · (y(k + 1)− CX̂(k + 1|k)),
P(k + 1) = (I−K(k + 1)C) · P−(k + 1).

(2.39)

The main drawback of algorithm presented in (2.39) is high computational ex-
pense, since matrices K(k) and P(k) has to be calculated at each step. The steady-
state Kalman filter is the simplification of traditional Kalman filter that can be used
for linear time-invariant dynamic systems. It was proven that for this subclass of
dynamic systems both K(k) and P(k) tend to constant values as k → ∞. Steady-
state values of these parameters K̄(k) and P̄(k)) can be calculated in advance and
then be used for filtering. The algorithm reduces to the following:

Prediction step
X̂(k + 1|k) = AX̂(k) + Bu(k).

Correction step
X̂(k + 1|k + 1) = X̂(k + 1|k) + K̄(k + 1) · (y(k + 1)− CX̂(k + 1|k)).

(2.40)

This algorithm is considerably less computationally expensive, however compu-
tation of parameters K̄(k) and P̄(k)) brings its own challenges. In particular, com-
putation of the steady-state value of P̄(k) is challenging, since it requires solving of
Riccatti equation. The steady-state gain of Kalman filter K̄(k) is then calculated
using the following formula:

K̄ = P̄−CT · (CP̄−CT + N)−1. (2.41)
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3 Bayesian networks

This chapter introduces the main concepts from Bayesian network framework. Basic
notions are presented using a simple Bayesian network with discrete nodes in the
section 3.1, the most common reasoning patterns are explained on the same net-
work in the section 3.2. All considerations are also valid for Bayesian networks with
continuous nodes, if we use appropriate type of conditional probability distribution
(CPD) instead of conditional probability tables (CPTs) and specify interconnec-
tions between discrete and continuous nodes, refer to the sections 3.3 and 3.4 for
more details. Dynamic Bayesian networks are introduced in the section 3.5. The
introduction to inference and learning is provided in the section 3.6.

The chapter is written in introductory manner. For more information, a reader
may refer to any of numerous books on Bayesian networks, e.g. [1, 87, 91, 102, 224].
Probably, the best introductory book is the one authored by F. V. Jensen and
T. D. Nielsen [224] and the most comprehensive to date is the book authored by
D. Koller and N. Friedman [1].

3.1 Representation and Basic Notions
A Bayesian network is a probabilistic graphical model represented by a directed
acyclic graph. This model provides an opportunity to describe probability distri-
bution over enormous number of variables in a compact way. That’s what the
word “probabilistic” stands for. The word “graphical” reflects the fact that a model
is represented by a graph (that can be also viewed as a network). The word “model”
indicates our attempt to describe a real-world process by a mathematical approxi-
mation. A probabilistic graphical model consists of the nodes that represent random
variables and edges that reflect interconnections between those random variables.
A fact that a graph is “directed” tells us that its edges have defined direction. How-
ever, to avoid misunderstanding, it is important to emphasize, that directed edges do
not imply one-way direction of a probabilistic flow between variables. They reflect
the causality of random variables (this concept will be explained in more details later
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in this chapter). And finally, the word “acyclic” means, that an edge in BN cannot
have the same initial and target node. Moreover, all possible paths in a network has
to connect two different nodes (no cycles are allowed).

As it was already mentioned, BN describes multivariate probability distribution
in a compact way. But how do we get this compactness? It is achieved by using
conditional probability distribution for each variable instead of trying to construct
the joint probability distribution over all variables in a network. The best way to
understand this concept (and further basic notions in Bayesian network framework)
is to use an example.

Figure 3.1: Simple example of a Bayesian network

Consider the following issue (this is a remastered example from [1]): I would like
to reason about my chances to succeed on the defense of my thesis. For simplicity,
let us assume that all variables of our interest are discrete. The variable Defense
describes the result of my defense. This variable is naturally influenced by the
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quality of my thesis represented by a variable Thesis. Now let us consider variables
that may affect the quality of my thesis. Of course, we can think about a lot
of factors that may have influence, but to keep things simple, let us assume that
the quality of my thesis depends on two variables (from some point of view they are
decisive): on the quality of research subject (variable Subject) and on my intelligence
(variable Intelligence). To make things even more interesting, let us add one extra
variable Mark to our network. This variable corresponds to the average mark from
the master’s study. Of course, average mark is a continuous variable, but we can
consider three intervals of average marks that will transform a continuous variable
into a discrete one. For simplicity, let us assume that variables of our interest can
have 2 or 3 possible states. Information about all variables that we will reason about
can be found in the table 3.1.

Table 3.1: Variables in example of a Bayesian network

Variable Label Possible states
Subject S 2(s0 − bad/s1 − good)

Intelligence I 2(i0 − low/i1 − high)

Thesis T 3(t0 − poor/t1 − good/t2 − excellent)

Defense D 2(d0 − fail/d1 − success)

Mark M 3(m0 − low/m1 −medium/m2 − high)

Considering the amount of states for each variable, we can easily calculate that
the joint probability distribution will have 72 rows (it is equal to the amount of
possible combinations of variable states). Therefore, even for such small quantity of
variables we would need a long table to describe the joint probability distribution.
Instead, we will use Bayesian network framework. The BN that corresponds to our
example is on the figure 3.1. Ovals signify nodes (random variables), arrows signify
edges (direction of causal influence). Nodes can be discrete or continuous, depending
on the type of random variable that they represent. Also, nodes can be observed or
non-observed. In the former case, its conditional probability table is replaced by its
value, which is certain (its probability is equal to one), in the latter case, its value
is represented by the corresponding probability distribution. If the node cannot be
observed in a network, it is called hidden.

Now let us look closer at the edges of the acyclic graph on the figure 3.1. Since
the graph is directed, edges are represented by arrows. In contradiction with neural
networks, these arrows do not represent the flow of information, but causal connec-
tions between random variables [225].

The initial node at each edge is said to be a parent of the target node of the same
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edge. For example, the node Subject is a parent of the node Thesis. Logically, node
Thesis is said to be a child of the node Subject. Children are dependent on their
parents in real life and so they are in a Bayesian network. Analogically, we can state,
that the node Defense is a child of the node Thesis, and the node Mark is a child of
the node Intelligence. The node Thesis has two parents: the node Subject and the
node Intelligence.

There are two broader notions that describe probabilistic dependencies between
nodes in a Bayesian network: an ancestor and a descendant. The ancestor is the
parent of a node, the parent of a parent and so on; the descendant is the child of
a node, the child of a child and so on. In our network, nodes Thesis and Defense
are descendants of the node Subject. The node Intelligence is an ancestor for nodes
Thesis, Defense and Mark.

Another very important information regarding relations between random vari-
ables that can be read from the structure of a Bayesian network are independencies
between variables. To understand this concept let us analyze fundamental types of
connections between two nodes that are represented in the table 3.2. More compli-
cated structures can be than divided into these basic structures and treated sepa-
rately.

The first type of connection is the parent-child connection. In our network on
the figure 3.1 this pair is represented, for example by the pair Subject-Thesis. The
better the subject, the higher the probability that the thesis will be good. This
connection is obvious. It properly works also in the other direction, from a child to
its parent. The better the thesis, the higher our beliefs that the subject was good.

The third and the fourth type of connection are a little bit more complicated, but
they are still quite straightforward. However, some interesting change happens after
observing a variable inside the chain of variables. Let us look on the chain Subject-
Thesis-Defense. Does the subject influence the probability to succeed during the
defense? Surely it does. The better the subject, the higher the probability of the
better thesis and consequently, the higher my chances to succeed during the defense
(in fact, we used the parent-child connection twice). Let us check out, how does
it work in the opposite direction, in the chain Defense-Thesis-Subject. If I succeed
during the defense, your beliefs that my thesis is good will grow, so as the beliefs
that I had a good topic (in this case, we used the child-parent connection twice).
Now let us make things more interesting and let us assume that the variable Thesis
is observed (see the second column of the table 3.2 for the third and the fourth types
of connections). If I know the state of the variable Thesis, then there will be no
connection between variables Subject and Defense anymore, in any direction, these

59



Table 3.2: Independencies in Bayesian networks

6)	X	and	Y	are	parents	of	the	same	child	(V	-structure)

X

Y

Y

X

X	and	Y
influence
each	other

Y	and	X
influence
each	other

1)	X	is	a	parent	of	Y 2)	X	is	a	child	of	Y

X

Z

Y

X

Z

Y

X	and	Y
influence
each	other

X	and	Y	are
conditionally
independent

3)	X	is	an	ancestor	of	Y
Z	is	not	observed Z	is	observed

4)	X	is	a	descendant	of	Y
Z	is	not	observed Z	is	observed

Y

Z

X

Y

Z

X

X	and	Y
influence
each	other

X	and	Y	are
conditionally
independent

5)	X	and	Y	are	children	of	the	same	parent
Z	is	not	observed Z	is	observed

Z

X Y

Z

X Y

X	and	Y
influence
each	other

X	and	Y	are
conditionally
independent

Z	is	not	observed
(neither	is	any	of	its	descendants)

Z	is	observed
(or	any	of	its	descendants)

X Y

Z

X Y

Z
X	and	Y	are
independent

X	and	Y	are
conditionally
dependent
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variables become conditionally independent. How did that happen? If you know
that my thesis is bad, you will assume that probably I will fail during defense. And
even if I try to convince you, that my research topic is good, this fact will not make
you change your mind. It works analogously in the opposite direction. This time let
us consider more optimistic scenario. If you find my thesis good, your beliefs that
the subject is good will increase. And information about the result of defense will
not influence these beliefs.

The fifth type of connection shown in the table 3.2 is the child-parent-child
connection. In this case we use the child-parent dependence and then the parent-
child dependence. Let us consider the chain Thesis-Intelligence-Mark. The worse
my thesis, the worse your thoughts about my intelligence. The worse your thoughts
about my intelligence, the less your expectation regarding my average mark. But
if someone tells you that my average mark during master’s study was high, your
thoughts about my intelligence will be better and consequently, the probability of
having a good thesis will increase.

The last type of connection shown in the table 3.2 is a so-called V-structure,
the parent-child-parent connection. Let us consider the chain Subject-Thesis-
Intelligence. The quality of a research subject is independent on my intelligence.
But if we observe the middle variable, things will change. If you know that my
thesis is bad and that I am smart, your beliefs that the subject is bad will increase.
In the opposite direction, if you know that my thesis is bad, and you know that the
research subject was good, then your beliefs in my intelligence will sadly go down.

The joint probability distribution can be found using the chain rule. Usually we
would do it as follows:

P (S, I, T,D,M) = P (S) · P (I|S) · P (T |S, I) · P (D|S, I, T ) · P (M |S, I, T,D). (3.1)

The chain rule for a Bayesian network is derived from a usual chain rule (3.1)
by applying all independencies (conditional and non-conditional) that follows from
the structure of a network. P (I|S) = P (I), because S and I are independent.
P (D|S, I, T ) = P (D|T ), because D is conditionally independent on both S and I

when the variable T is observed. P (M |S, I, T,D) = P (M |I), because M is con-
ditionally independent on all other variables in the network, when the variable I

is observed. The chain rule for Bayesian network can be consequently rewritten
as a product of all conditional probability distributions in the network:

P (S, I, T,D,M) = P (S) · P (I) · P (T |S, I) · P (D|T ) · P (M |I). (3.2)
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3.2 Reasoning in Bayesian Networks
There are the plenty of software packages that are used to create Bayesian networks
and to provide inference and/or learning, refer for example to the list provided by K.
Murphy [182] for the most comprehensive overview available online. Some of these
packages are commercial, others are open-source. Each software has advantages and
disadvantages that specify the type of networks or/and tasks it can be used for.

Examples in this chapter are provided in the Hugin Lite software, free version
of the Hugin software [226]. Hugin software is a user-friendly package with nice dis-
playing properties that can be easily used for reasoning in relatively simple Bayesian
networks. However, due to restrictions in the available types of variables and func-
tions, it cannot be used to solve sophisticated issues (e.g. system identification).
On the figure 3.2 you can find a network for the defense example introduced earlier
in this chapter. This network is used to portray main reasoning patterns used in
Bayesian networks.

Figure 3.2: Example of a Bayesian network in Hugin software

Very important question is how to consider probabilities of random variables
in Bayesian networks. Let us provide some principal calculations in our example
network from the figure 3.1 and compare them with the results from simulation.

There are four essential reasoning patterns that can be applied in a Bayesian
network:

1. Prior reasoning. This pattern allows us to reason about random variables
without any observed evidence.
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2. Causal reasoning. This pattern allows us to assess probabilities of possible
outcomes (provides predictions).

3. Evidential reasoning. This pattern allows us to search for a reason of certain
outcomes (provides diagnosis).

4. Intercausal reasoning. This pattern allows us to update our beliefs about
one of possible reasons of an outcome given information about other possible
reason and outcome that they share.

In the further explanation let us look closer on each pattern.

Prior reasoning
Prior reasoning is applicable when we want to find the probability of the certain

state of a random variable (or the combination of states) without any evidence that
might change our prior beliefs. For example, I would like to know, what my prior
chances to defend my thesis are. To answer this question, we have to calculate
marginal probability P (d1). Using the chain rule for our Bayesian network (3.2), we
get the following probability:

P (d1) =
∑

S,I,T,M

P (S) · P (I) · P (T |I, S) · P (M |I) · P (d1|T ) = 0.5225. (3.3)

Another way to find this value is to look on the prior probability of successful
defense in the network, see figure 3.3.

Figure 3.3: Prior reasoning in the example Bayesian network
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Causal reasoning
In this pattern, we are interested in the consequences of an event. We have

already found out, that my chances to defend the thesis successfully are approxi-
mately 52%. How will our beliefs change, if we discover that a subject is good? To
find this, we can calculate the following conditional probability:

P (d1|s1) = P (d1, s1)

P (s1)
=∑

I,T,M P (s1) · P (I) · P (T |I, s1) · P (M |I) · P (d1|T )
P (s1)

= 0.6615.

(3.4)

We can see that my chances increased. We could also find this value from the
network by entering evidence S = s1 and discovering a posterior marginal probability
of successful defense, see figure 3.4a.

(a) P (d1|s1) (b) P (d1|s1, i1)

(c) P (d1|s0, i0)

Figure 3.4: Causal reasoning in the example Bayesian network

Let us now add one more evidence to the network. Consider the most optimistic
scenario of having a good subject and simultaneously of having a high intelligence. In
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this case we are interested in the calculation of the following conditional probability:

P (d1|s1, i1) = P (d1, s1, i1)

P (s1, i1)
=∑

T,M P (s1) · P (i1) · P (T |i1, s1) · P (M |i1) · P (d1|T )
P (s1, i1)

= 0.77.

(3.5)

My chances again increased. We can find this probability in the network by
adding one more evidence I = i1, see figure 3.4b.

For comparison, let us consider the most pessimistic scenario of my defense. If
my research topic is bad and I am not intelligent, then my chances of successful
defense will considerably decrease. To prove this fact, let us calculate corresponding
conditional probability (results from simulation are on the figure 3.4c).

P (d1|s0, i0) = P (d1, s0, i0)

P (s0, i0)
=

∑
T

P (T |i0, s0) · P (d1|T ) = 0.245. (3.6)

Evidential reasoning
In this pattern, we are interested in reasons of a certain event. Consider the

following example. You concluded that a thesis is excellent, and you are interested
what are the chances that the research topic was good. To answer this question, we
should calculate the following conditional probability:

P (s1|t2) = P (s1, t2)

P (t2)
=∑

I,D,M P (s1) · P (I) · P (t2|s1, I) · P (D|t2) · P (M |I)∑
S,I,D,M P (S) · P (I) · P (t2|S, I) · P (D|t2) · P (M |I)

= 0.84.

(3.7)

Figure 3.5: Evidential reasoning in the example Bayesian network
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The probability of a good research topic given the evidence that the topic was
good is 84% (the prior probability for this event was 60%). Now let us find out what
are my chances to have low intelligence, if my thesis is excellent:

P (i0|t2) = P (i0, t2)

P (t2)
=∑

S,D,M P (S) · P (i0) · P (t2|S, i0) · P (D|t2) · P (M |i0)∑
S,I,D,M P (S) · P (I) · P (t2|S, I) · P (D|t2) · P (M |I)

= 0.595.

(3.8)

My chances to be stupid will be 59.5%. Quite high probability, but it is lower
than the prior one (70%), so the network works properly. Both probabilities can be
found in the network as posterior marginal probabilities given the evidence T = t2,
see figure 3.5.

Intercausal reasoning
This pattern is not as intuitive as other ones, but it is particularly interesting

and useful. Let us see, how two conditionally dependent variables, the Intelligence
and the Subject, influence each other when the variable Thesis is observed. We have
already seen that my chances to be stupid if my thesis is excellent are 59.5%. But
how will these beliefs change, if you discover that the subject was good? To answer
this question, let us calculate the following conditional probability:

P (i0|t2, s1) = P (i0, t2, s1)

P (t2, s1)
=∑

D,M P (s1) · P (i0) · P (t2|s1, i0) · P (D|t2) · P (M |i0)∑
I,D,M P (s1) · P (I) · P (t2|s1, I) · P (D|t2) · P (M |I)

= 0.625.

(3.9)

(a) P (i0|t2, s1) (b) P (i0|t2, s0)

Figure 3.6: Intercausal reasoning in the example Bayesian network
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My chances increased, because the variable Subject has already given you a re-
liable explanation why the thesis is excellent, that’s why the second possible reason
became less probable, see figure 3.6a.

And finally, let us see how this probability will change with the converse obser-
vation of the variable Subject:

P (i0|t2, s0) = P (i0, t2, s0)

P (t2, s0)
=

P (i0) · P (t2|s0, i0)∑
I P (I) · P (t2|s0, I)

= 0.4375. (3.10)

See figure 3.6b for comparison with the result of simulation.

3.3 Bayesian networks with continuous nodes
In the previous sections we dealt with a Bayesian network that contained only dis-
crete nodes described by conditional probability tables. But we often need to add
a continuous node to the structure of a network. Moreover, in some cases we want
to reason about the continuous variables only. Therefore, it is important to formu-
late the description of continuous nodes in a Bayesian network and combinations of
continuous and discrete nodes.

A continuous variable can be represented by probability density function that
depends on the probability distribution of a random variable. In this thesis, we
assume that all continuous variables follow the normal distribution. This assumption
is often used for Bayesian networks with continuous nodes. It is important to point
out, that this assumption does not ruin the generality of proposed approaches. For
variables that are not normally distributed, the mixture of normal distributions can
be used as the approximation of an arbitrary continuous distribution, see section 3.4
for details.

The probability density of the Gaussian distribution is:

f(x) =
1√
2πσ2

· exp−(x− µ)2

2σ2
. (3.11)

In the equation (3.11), µ is the mean or expectation of the distribution and σ2

is the variance.
The shape of Gaussian distribution is fully defined by its mean and variance.

Therefore, for normally distributed variables, it is common to represent probability
distribution using the following notion:

x ∼ N (µ, σ2). (3.12)
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If the variable of our interest is not a scalar, but a vector variable, then its
behavior can be described by multinomial normal distribution. In this case we
consider several variables that are jointly normal, the description of probability
distribution requires knowing of the means of all variables and a covariance matrix.
Multinomial normal distribution can be represented using the following notion:[

x1 x2 · · · xn

]
∼ N (

[
µx1 µx2 · · ·µxn

]
,ΣX). (3.13)

In the equation (3.13), xi are considered random variables, µxi
are corresponding

means and ΣX is a covariance matrix that consists of variances of each random
variable and covariances between each pair of variables:

ΣX =


σ2
x1

σx1x2 · · · σx1xn

σx1x2 σ2
x2

· · · σx2xn

· · · · · · · · · · · ·
σx1xn σx2xn · · · σ2

xn

 . (3.14)

It is also important to define the types of distributions for different type of parent
nodes for a continuous child node (i.e. continuous or discrete), see figure 3.7.

(a) One parent node (b) Several parent nodes

Figure 3.7: Continuous node with one or more parent nodes

Bayesian network framework does not put any restrictions neither on the type
of used probability distribution, nor on the type of interconnections between nodes.
The conditional probability distributions described in this section correspond to
the most frequently used types of distributions that are currently supported by
software packages for Bayesian networks.

Discrete node → continuous node
If a continuous node is a child of a single discrete node (see figure 3.7a), then

depending on the state of a parent node, the parameters of its probability distribu-
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tion vary. For the simplest case of binary discrete node, a continuous node has the
following distribution: Y |X ∼ N (µ1, σ

2
1) if X = 0;

Y |X ∼ N (µ2, σ
2
2) if X = 1.

(3.15)

In general, the amount of possible probability distributions that we have to define
for a continuous node is equal to the amount of possible states of a parent discrete
node.

If a continuous node has several discrete parents (see figure 3.7b), then it will
have the following probability distribution (assuming that all discrete variables are
binary):


Y |X1, X2, · · · , Xn ∼ N (µ1, σ

2
1) if X1 = 0, X2 = 0, · · · , Xn = 0;

Y |X1, X2, · · · , Xn ∼ N (µ2, σ
2
2) if X1 = 0, X2 = 0, · · · , Xn = 1;

· · ·

Y |X1, X2, · · · , Xn ∼ N (µN , σ
2
N) if X1 = 1, X2 = 1, · · · , Xn = 1.

(3.16)

In (3.16) n is the amount of discrete parent nodes and N is the amount of
possible probability distributions that we have to define for a continuous node.
This value is equal to the total amount of combinations of possible states of parent
discrete nodes.

Continuous node → continuous node
If a continuous node is a child of a single continuous node (see figure 3.7a),

then we have to specify the type of function that describes their dependence. The
most common choice is linear dependence. This choice is also supported in software
packages for Bayesian networks. The probability distribution of a child node with
a continuous parent can be written as:

Y |X ∼ N (λ0 + λ1 ·X, σ2
y). (3.17)

If a continuous node has several continuous parents (see figure 3.7b), then its
distribution is represented by the following conditional probability distribution:

Y |X1, X2, · · · , Xn ∼ N (λ0 + λ1 ·X1 + λ2 ·X2 + · · ·+ λn ·Xn, σ
2
y). (3.18)

If a continuous child node has both continuous and discrete parents, then the con-
ditional probability distribution is a combination of (3.16) and (3.18). The amount
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of possible distributions is defined by the amount of possible combinations of dis-
crete parent nodes, and for each of these combinations, the weighted sum of the
values of continuous parent nodes (3.18) with different weights β0, β1, · · · , βn and
different value of variance is specified.

If a considered network has discrete nodes with continuous parents, then the
appropriate type of conditional probability distribution for this type of relations has
to be also specified. The common choices are softmax function (multinomial logit
function) and multi-layer perceptron (neural network node).

3.4 Nodes corresponding to the mixture of normal
distributions

As it has been already mentioned above, for continuous variables, which are not
distributed normally, the mixture of normal distributions can be used as the ap-
proximation of almost any continuous distribution. The basic idea is to divide
a target distribution into parts that can be assumed to be normally distributed and
combine them into one distribution. Fusion of several normally distributed compo-
nents into one probability distribution is provided by the computation of weighted
average with weights ω1, ω2, · · · , ωn that fulfill the following conditions:

ωi ∈ (0, 1);
n∑

i=1

ωi = 1. (3.19)

Weights identify, how strong influence each chosen normal component distribu-
tion has on the target distribution.

Assume that we divided a target distribution into the following distributions:

x1 ∼ N (µx1 , σ
2
x1
),

x2 ∼ N (µx2 , σ
2
x2
),

· · ·
xn ∼ N (µxn , σ

2
xn
)

(3.20)

with weights ω1, ω2, ...ωn. The mixture of normal distributions can be conse-
quently defined as:

y ∼ N (ω1 · µx1 + ω2 · µx2 + · · ·+ ωn · µxn , σ
2
y). (3.21)
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The variance σy can be found as:

σ2
y =

n∑
i=1

ωi · σ2
i +

n∑
i=1

ωi · µ2
i − (

n∑
i=1

ωi · µi)
2. (3.22)

In the Bayesian network framework a node that corresponds to the mixture of
normal distributions can be represented by a combination of a hidden discrete node
and a continuous node (see figure 3.8).

Figure 3.8: A Gaussian mixture node

The amount of possible states for a discrete node is given by the amount of
components in the mixture of normal distributions. The probabilities of each state
are considered to be equal to weights. Probability distributions that are defined in
a continuous node for each state are equal to initial distributions of components that
correspond to appropriate weight in the mixture model.

Since the discrete node is hidden, it can never be observed. Consequently, the
probability distribution of a continuous node is represented by a weighted average
of initial normal distributions.

3.5 Dynamic Bayesian Networks
A Bayesian network that was used as an example in the sections 3.1 and 3.2 is con-
sidered to be a static network. The word “static” used in this context means that
the probability distribution of any random variable depends only on variables at
the same moment in time. But sometimes we are interested not only in the values
of variables at current time step, but also in the previous one, or even in several
previous time steps, i.e. temporal dependencies between random variables. In this
case we have to use the dynamic (temporal) extension of Bayesian networks.

A dynamic Bayesian network (DBN) is a probabilistic graph, in which we
contemplate “copies” of the same variables in different time steps, interconnections
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Figure 3.9: Example of a dynamic Bayesian network

between these variables are described by a unified conditional probability distri-
butions for each “copy” of a variable. If variables in a network depend only on
variables at current time step and the previous one, then this network is said to
be a two-time-slices DBN (2TDBN). In general, if the current state in a network
depends on variables at n previous steps, then this network is a (n+1)TDBN.

Figure 3.10: Example of an unrolled dynamic Bayesian network
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An example of 2TDBN is shown on the figure 3.9. This network has 3 random
variables, A, B and C. Variable A at each time step does not depend on any other
variable, variable C depends only on the value of variable B at the same time step.
The variable B depends on the variable A and also on the previous value of variable
B (except of the first time slice, when it depends only on the variable A). For better
understanding of mutual interconnections between random variables in following
steps it may be useful to draw so-called unrolled (or grounded) Bayesian network
that is a static representation of a DBN. The unrolled BN for the network on the
figure 3.9 for first four time slices is shown on the figure 3.10.

A 2TDBN can be considered a Markovian system that satisfies Markov indepen-
dence assumption [1]:

X(t+1) ⊥ X(0:(t−1))|X(t). (3.23)

This assumption reflects an independence property that can be also formulated
verbally as follows: values of variables at the time step (t+1) are independent of all
previous values given the state at the time t.

Figure 3.11: Example of a 3TDBN

Representation of a 2TDBN requires knowing of the initial values of variables and
interconnections between them and the description of a transition model between
two adjacent time steps.

73



The transition model of a DBN can also represent interconnections between more
than two adjacent time steps. In this BN, values of one or more variables depend
not only on the values in the previous step, but also on “older” values. An example
of a 3TDBN is shown on the figure 3.11. In this network, variable A depends on
its values in two previous steps. Definition of this network requires knowing of
variables in the first and the second time slice. In general, the representation of
(n+1)TDBN contains the definition of variables and interconnections between them
in n first steps and the definition of interconnections between particular steps. Even
though these networks are not Markovian, there are independence assumptions that
simplify inference in these networks. We can formulate them as follows: the values
of variables at the time step (t + n) are independent on all previous values at time
steps up to time step (t− 1) given the state at the time t:

X(t+n) ⊥ X(0:(t−1))|X(t). (3.24)

3.6 Inference and learning in Bayesian networks
The calculation of conditional and marginal probabilities by the means of traditional
probability theory is time-consuming even for small Bayesian network, see examples
in the section 3.2. For Bayesian networks used in practice this type of calculations
is often intractable. Therefore, many algorithms that provide these calculations for
different types of Bayesian networks were designed. These algorithms are also called
inference algorithms and the task itself is often referred to as inference.

By learning in Bayesian network framework we understand solving of one of
two tasks: estimation of parameters of a Bayesian network from a known structure
and evidence on nodes (parameter learning) and choosing of the best structure of
a Bayesian network (structure learning).

Due to the modularity of Bayesian network framework, the techniques for
constructing a Bayesian network, inference and learning are separated and not
task-specific. Therefore, we can use different inference and learning algorithms for
the same Bayesian network. This is very useful, since new algorithms for Bayesian
networks can be easily adopted for different practical applications.

Inference
Inference algorithms for Bayesian networks can be exact or approximate. Exact

inference algorithm can be used in cases, in which the solution in closed form is avail-
able. In other cases, approximate inference has to be implemented. For example,
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Bayesian networks that consists of continuous nodes that are normally distributed
with linear dependence between parent and child nodes can be treated using exact
inference algorithms. Another example is a Bayesian network, in which all hidden
nodes are discrete. For complex Bayesian networks approximate inference can be
more appropriate even if exact inference is possible, since it does not have to be
computationally feasible.

The most popular classes of exact inference algorithms are:

• Variable elimination class. These algorithms exploit the decomposition of the
joint probability distribution using the chain rule for Bayesian networks and
marginalizes out unobserved nodes one by one. The complexity of inference
depends on chosen elimination order.

• Message passing class. In these algorithms the nodes from Bayesian networks
are divided into clusters that pass messages to each other regarding the nodes
which they share in their scope. Using of the tree-structured cluster graph
guarantees the correctness of obtained marginals.

The most popular classes of approximate inference algorithms are:

• Sampling (particle-based) algorithms. These algorithms sample instances from
a target distribution and use them for the calculation of the quantities of our
interest. The distinguished representatives of these algorithm are Markov
Chain Monte Carlo methods, Gibbs sampling methods and the Metropolis-
Hasting algorithm.

• Variational methods. In these methods all nodes are decoupled and a varia-
tional parameter is introduced for each of them. These parameters are updated
iteratively using the procedure that minimizes the cross-entropy between the
real probability distribution and its approximation.

Inference in dynamic Bayesian network can be provided by the unrolling of
a network for the amount of time slices that corresponds to the length of a con-
sidered trajectory and consequent implementation of inference algorithms for static
networks. The using of this approach requires preliminary fixing of parameters (pa-
rameter tying) for the same variables in different time slices. This approach can be
time-consuming or even intractable for long trajectories.

Another way of inference in dynamic Bayesian networks is to use dynamic
implementations of inference algorithms for static Bayesian networks.
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Parameter learning
Unknown parameters in a Bayesian network can be treated as unknown constant

(frequentist approach) or unknown variables (Bayesian approach). In the former
case, we search for point estimate and in the latter case we search for probability
distributions of unknown parameters. If we use the Bayesian approach, then the
parameters are treated as random variables, similarly to other random variables
in a considered network and therefore the learning task corresponds to the task of
inference. If we use frequentist approach, then we search for maximum likelihood
estimates (MLE) or maximum a posteriori (MAP).

If the dataset is partially observed (i.e. there are missing values in a dataset
or hidden variables in the network structure), then the parameter estimation task
becomes more complicated. The exact parameter posterior is in general multimodal
for this setting and hence there is no guarantee to reach the global optimum.
The simplest and the most frequently used algorithm for parameter estimation in
partially observed Bayesian network is expectation maximization (EM) algorithm.
This algorithm is iterative, each iteration has two steps: in the E step the missing
values of random variables are calculated given the current guess of parameters and
in the M step the parameters are calculated given the current guess of missing values
using MLE or MAP. Calculation of missing values can be provided by an exact
or an approximate inference algorithm. The EM algorithm stops when it reaches
the local optimum. It is possible to implement other algorithms for parameter
estimation in partially observed BNs, for example gradient-based methods.

Structure learning
If no information is given neither about parameters of a Bayesian network, nor

about its structure, then the structure learning procedure has to be used. There are
two approaches to structure learning: constrained based and search-and-score. In
the former one, we start from the fully connected graph and remove edges from it
if the corresponding conditional independence between random variable is reveled
from the data. In the latter one, we search over the set of possible structures to find
the one that describes best the joint probability distribution over the variables in the
scope. The fit of the structure to the dataset is assessed using a scoring function, e.g.
likelihood score or Bayesian information criterion (BIC). Searching over all possible
structures is infeasible for the majority of practical applications, since the number of
possible DAGs is super-exponential in the number of considered nodes. Therefore,
it is important to reduce the set of possible DAGs before structure learning using
expert knowledge regarding interconnection between considered random variables.
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4 Modelling of dynamic systems using
Bayesian networks

This chapter provides bridging between the well-known models of dynamic systems
(i.e. difference equation and state space representation) and Bayesian networks. The
resulting networks correspond to stochastic discrete-time description of dynamic
systems. The section 4.1 links difference equation with Bayesian networks. The sec-
tion 4.2 is dedicated to the linkage between state space representation and Bayesian
networks. Available software packages for Bayesian networks have restrictions on
the type of used nodes and structures. To overcome some of these limitations, the
implementation of models with both static and dynamic networks is considered. In
addition, the implementation of multivariate nodes (required for state space model
structure) using the set of univariate nodes is addressed.

The models presented in this chapter can be used for simulation, monitoring and
identification of dynamic systems. The DBN-based state space model of dynamic
systems has been successfully used also in control [6], refer to the section 1.3 for
more details. In principle, all networks presented in this chapter can be used in
control of dynamic systems with implementation of feedback using the paradigm
described in [6].

Bayesian network can also be used as state observers, this task is addressed in
the section 4.3.

4.1 Model structures based on a difference equation
Let us rewrite the difference equation with positive shift (2.16) for the bound case
(m = n). The additional condition ensures that the resulting equation can still be
used for linear dynamic systems with the arbitrary value of m:

y(k + n) + an−1y(k + n− 1) + · · ·+ a1y(k + 1) + a0y(k) =

bnu(k + n) + bn−1u(k + n− 1) + · · ·+ b1u(k + 1) + b0u(k),

bi = 0 for m < i ≤ n.

(4.1)
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The difference equation in (4.1) can be rewritten as:

y(k + n) = bnu(k + n) + bn−1u(k + n− 1) + · · ·+ b1u(k + 1) + b0u(k)

−an−1y(k + n− 1)− · · · − a1y(k + 1)− a0y(k) =

−
n∑

i=1

ai · y(k + n− i) +
n∑

i=0

bi · u(k + n− i),

bi = 0 for m < i ≤ n.

(4.2)

The representation of dynamic systems in the domain of Bayesian networks using
difference equation (4.2) is presented on the figure 4.1. It is worth to mention, that
besides this transition model, we also have to specify the values of variables in the
first n time slices. The resulting DBN is (n+1)TDBN, where n is the order of
a considered dynamic system.

Figure 4.1: Representation of difference equation using dynamic BN

Assuming all variables are Gaussian and all dependencies are linear, the proba-
bility distributions of variables in the network from the figure 4.1 are:

Yk+n|(Yk, Yk+1, · · · , Yk+n−1, Uk, Uk+1, · · · , Uk+n−1) ∼

N (µY −
n∑

i=1

ai · Y (k + n− i) +
n∑

i=0

bi · U(k + n− i), σ2
Y ),

Uk ∼ N (µUk
, σ2

U).

(4.3)

If we set µY = 0, then the probability distribution of Yk+n in (4.3) corresponds
to the difference equation (4.1) enriched by the influence of normally distributed
noise on the input with variance σ2

U and on the output with variance σ2
Y .
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This way of representation is quite natural for dynamic systems, because it
contains all parameters in explicit form. If initial values of input and output variables
are not equal to zero, they can be assigned directly to appropriate variables. On the
other hand, the change of the order of a model requires significant reconstruction of
a DBN (change in the amount of time slices). Moreover, the structures of networks
based on a difference equation in general do not fulfill the Markov independence
assumption (3.23) (except the system of the first order), since they use more than
two time slices to describe system’s dynamics. This type of networks has less support
in software packages for Bayesian networks. For example, Bayes Net Toolbox for
MATLAB used for experiments in this thesis does not support this type of DBNs.

Figure 4.2: Representation of difference equation using static BN

If we want to use difference equation based model for identification, we have to
measure the series of input and output variables and find parameters of a difference
equation using learning algorithms for DBNs with continuous nodes.

The implementation of difference equation based structure using a static
Bayesian network can be provided by the unrolling of a network presented on the
figure 4.1 for T/dt time slices, where T is the length of considered signals and dt

is a discretization step (sampling rate). The resulting structure will slightly differ for
the different values of m and n. For example, the structure of a Bayesian network
for dynamic system of the third order, where m = n is presented on the figure 4.2.

Using of such model for the identification of dynamic systems is possible, if we
define that all corresponding parameters in different time slices are the same (in the
BNT this procedure is called parameter tying).
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4.2 Model structures based on a state space repre-
sentation

Representation of dynamic systems in the domain of Bayesian networks using state
space representation (2.23) is presented on the figure 4.3. Assuming all variables
are Gaussian and all dependencies are linear, the probability distributions of all
variables in this network are:

Xk+1|Xk, Uk ∼ N (µX + A · Xk + B · Uk,ΣX),

Yk|Xk, Uk ∼ N (µY + C · Xk + D · Uk, σ
2
Y ),

Uk ∼ N (µU , σ
2
U).

(4.4)

Figure 4.3: Representation of state space model using dynamic BN

If we set µY = 0 and µX = 0, then the probability distributions of Yk and Xk+1

in (4.4) correspond to the equation (2.23) enriched by the influence of normally
distributed noise on the input with variance σ2

U , on the output with variance σ2
Y

and on states with covariance matrix ΣX.
Besides the transition model shown on the figure 4.3, we need to specify values

of variables in the first time slice. If initial conditions of input and output variables
are not equal to zero, then the recalculation of the initial values of state vector is re-
quired. Moreover, state space representation has more unknown parameters than
a difference equation of the same order and, as a consequence, numerical complica-
tions during identification can appear. Consequently, for providing sufficient results
of identification more input data are required.
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On the other hand, this representation has considerable advantages. First of all,
the change of a system order does not require significant changes in the structure
of a DBN. For this purpose, we have to modify the dimensions of the state vector
and state matrices accordingly to the system order. This network is a 2TDBN for
an arbitrary system, so it always fulfills Markov independence assumption (3.23).

If we want to use this model for identification, we have to measure the series of
input and output variables. If it is possible to measure the values of state variables,
they have to be also taken into account. However, mostly the state vector is immea-
surable and it does not necessarily reflect real variables. If the state vector cannot
be measured, then the corresponding node is considered to be hidden and searching
of state matrices requires using learning algorithms for DBNs with continuous nodes
that can cope with non-complete datasets.

The implementation of state space representation based structure using a static
Bayesian network can be done by the unrolling of the network presented on the
figure 4.3 for T/dt time slices, where T is the length of considered signals and dt

is a discretization step (sampling rate). The resulting structure is presented on the
figure 4.4.

Figure 4.4: Representation of state space model using static BN

Similarly to the difference equation based model, we have to tie all corresponding
parameters for different time slices to provide system identification using this type
of a structure.

Only a few available software tools for Bayesian networks allow reasoning over
dynamic Bayesian network with multivariate continuous nodes. The overcoming of
this issue is possible by using of n univariate nodes instead of a multivariate node
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with n elements. The covariance matrix of a state vector in both the structure
presented on the figure 4.3 and the structure presented on the figure 4.4 follows
the general structure presented in (3.14). It contains the variances of each state on
the main diagonal and the covariances between all pairs of state variables elsewhere.
A linear Gaussian Bayesian network does not support other than linear dependences
between random variables. Hence, the structure of the resulting network can con-
tain only one from two possible cases: no direct dependence between nodes (an
edge is absent) or linear dependence (an edge is present). Our previous experi-
ments showed that the former choice lead to incorrect calculations and additional
complications with the choice of weights. The latter choice is significantly better
even though the state variables are not in fact independent. However, since the
dependence between them is not linear, it is better to take too strong independence
assumptions, regardless the fact that the information from the covariance matrix
will be partially lost (all covariances between state variables are removed).

Figure 4.5: Representation of state space model using dynamic BN with independent
states

The resulting structure will slightly differ for different system order n. For ex-
ample, the structure of a dynamic Bayesian network for a dynamic system of the
third order is presented on the figure 4.5. For this structure the following general
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form of state matrices was used:x1(k + 1)

x2(k + 1)

x3(k + 1)

 =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 ·

x1(k)

x2(k)

x3(k)

+

β11

β21

β31

 · u(k),

y(k) =
[
γ11 γ21 γ31

]
·

x1(k)

x2(k)

x3(k)

+
[
δ11

]
· u(k).

(4.5)

The structure based on a static Bayesian network can be implemented using the
unrolling of a dynamic Bayesian network (analogously to the structure presented on
the figure 4.4). If we consider a MIMO system, then nodes corresponding to the
output variable and/or input variable (which will be also multivariate in this case)
have to be treated similarly to the state vector node.

Figure 4.6: Controllable canonical form using dynamic BN

In order to improve the performance of learning algorithms, the canonical forms
of the state space representation can be used. These forms are unique for each
dynamic systems and therefore provide unequivocal description of the dynamics of
a considered system. In addition, they explicitly contain the coefficients of a differ-
ence equation that describes a system. Moreover, in the context of system identifica-
tion, the using of the canonical forms reduces the amount of unknown parameters. It
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is expected, that the stability of parameter computation will consequently increase
as well as the precision of resulting estimates.

The amount of unknown parameters in networks based on the canonical forms
of the state space representation is significantly reduced, since state matrices are
partially known. For the networks presented on the figure 4.3 and on the figure 4.4
no changes in the structure of a network are required, only the weights of nodes have
to be defined accordingly to a chosen canonical form, for example the controllable
canonical or the observable canonical. For the Bayesian network with independent
states shown on the figure 4.5 the resulting structure will slightly differ for different
system order n. For example, let us consider the dynamic system of the third
order. The controllable canonical form of the state space representation for the
system of the third order can be expressed using the coefficients from the difference
equation (2.16) as:

x1(k + 1)

x2(k + 1)

x3(k + 1)

 =

 0 1 0

0 0 1

−a0 −a1 −a2

 ·

x1(k)

x2(k)

x3(k)

+

00
1

 · u(k),

y(k) =
[
(b0 − a0b3) (b1 − a1b3) (b2 − a2b3)

]
·

x1(k)

x2(k)

x3(k)

+
[
b3

]
· u(k).

(4.6)

The corresponding network structure is presented on the figure 4.6.

The observable canonical form of the state space representation (2.14) for the
same system can be expressed as:x1(k + 1)

x2(k + 1)

x3(k + 1)

 =

0 0 −a0

1 0 −a1

0 1 −a2

 ·

x1(k)

x2(k)

x3(k)

+

(b0 − a0b3)

(b1 − a1b3)

(b2 − a2b3)

 · u(k),

y(k) =
[
0 0 1

]
·

x1(k)

x2(k)

x3(k)

+
[
b3

]
· u(k).

(4.7)

The corresponding network structure is presented on the figure 4.7.
The structures based on static Bayesian networks can be implemented using the

unrolling of a dynamic Bayesian network (analogously to the structure presented on
the figure 4.4).

We can also construct other canonical form of the state space representation
(e.g. modal form) using similar approach.
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Figure 4.7: Observable canonical form using dynamic BN

All above-mentioned structures are not task-specific and therefore can be used
for any dynamic system. In addition, we can implement any arbitrary structure
of a state space model. The information about dependencies and independencies
between random variables can be obtained from expert knowledge (for example, if
we construct the model of a technological process and state variables correspond
to physical variables). Unlike all structures presented earlier in this section, the
structure of such network would be task-specific, but the including of all a priori
knowledge will reduce the amount of unknown parameters and as a consequence,
the stability of computations and the precision of obtained estimates are expected
to increase.

4.3 Bayesian network based state observers
Bayesian networks can be also used as state observers, i.e. they can be used for
state estimation. Bayesian network based state observers are not in the scope of
this thesis, therefore their structures and basic steps of their implementation are
proposed briefly. However, since this task is closely related to the task of mod-
elling and identification of dynamic systems using state space representation, this
discussion cannot be omitted.

Solving of the state estimation task often requires knowing of the parameters
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of a considered system and the measurements of input and output signals. The
parameters of a system can be obtained either from identification procedure or from
expert knowledge regarding a considered system.

The values of state matrices should be defined as weights in a Bayesian network
and the values of input and output variables in j time steps are added as evidence
to corresponding nodes. The values of state variables in a time step k can be ob-
tained from the Bayesian network by the marginalization of the node corresponding
to the state vector (or several nodes for structures with univariate nodes for each
state variable). Depending on the values of j and k we can distinguish among
three different problems the state estimation can be provided for: filtering (k = j),
smoothing (k < j) or prediction (k > j) [2]. State estimation can be provided using
any structure from those proposed in the section 4.2.

Figure 4.8: Bayesian network based Luenberger state observer

Bayesian networks can be used for state estimation in combination with popular
state observers, e.g. Luenberger observer or Kalman filter (refer to the section 2.4).
The structure that corresponds to a Bayesian network based Luenberger observer
is presented on the figure 4.8. This structure combines a Bayesian network from
the figure 4.3 and Luenberger state observer (2.33). The node Umk represents the
measurement of the input signal. The output variable is presented in this structure
by two different nodes: Y ek for the estimated value of the output and Y mk for
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the measured value of the output. The matrix L is chosen according to desired
dynamics of estimation error (refer to the section 2.4 for more details). The state
vector can be calculated from the Bayesian network presented on the figure 4.8 using
the marginalization of the node Xk.

The structure that corresponds to a Bayesian network based Kalman filter (refer
to the sections 1.1 and 2.4 for more details on Kalman filter) is presented on the
figure 4.9. This structure combines a Bayesian network from the figure 4.3 and
Kalman filter (2.39) or (2.40). The node Uk represents the measurement of the
input signal. The output variable is presented in this structure by two different
nodes: Y ck for the corrected value of the output and Y mk for the measured value of
the output. The state vector is also represented by two nodes: Xpk for the predicted
value of the state vector and Xck for the corrected value of the state vector. The
matrix K can be calculated from the matrix P obtained by the solving of Ricatti
equation (2.41) and then the structure on the figure 4.9 corresponds to a Bayesian
network based steady-state Kalman filter (2.40). The corrected state vector can be
obtained from this structure by the marginalization of the node Xck. If we want
to update the value of the matrix K iteratively, i.e. use the traditional Kalman
filter (2.39), then the value of matrix K has to be calculated at each time step
before the marginalization of the node Xck.

Figure 4.9: Bayesian network based Kalman filter
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5 Identification of dynamic systems using
Bayesian networks

The goal of identification is to find the description of a considered dynamic system
that reflects its behavior with acceptable precision. In the case of parametric iden-
tification, which is considered in this thesis, we assume that the type of a model
is known in advance and hence, the identification task reduces to the estimation of
unknown parameters of a known model. In this thesis, we propose to use Bayesian
networks for this task.

The general methodology of Bayesian network based system identification
(BNSI) is presented in the section 5.1. This methodology is not software-specific,
and hence, any appropriate software package can be used for its implementation.

The structure of a Bayesian network used in practical experiments, corresponds
to a dynamic Bayesian network based state space representation of dynamic systems
(refer to the section 4.2). This choice was made due to several important reasons.
Firstly, the identification of dynamic systems using the model based on a difference
equation (refer to the section 4.1) leads to the estimation of parameters using MLE
(well-studied least square method). Secondly, according to provided review over
identification methods in the section 1.1, only several tools are available for the
identification of state space models (i.e. subspace methods and EKF). Therefore,
A BNSI can be a perspective new tool for this purpose. And finally, the chosen
software package for the implementation of BNSI (BNT for MATLAB) supports
only 2TDBN, therefore it is not possible to implement a difference equation based
model for the dynamic systems of the second or higher order using DBNs in BNT.

The applicability of the proposed approach was validated on the plenty of practi-
cal experiments. The first set of experiments aimed to explore the learning procedure
that would be the most efficient for Bayesian network based system identification.
The efficiency was assessed using both the precision of obtained estimates and nu-
merical properties of a corresponding learning procedure (i.e. computation time,
required amount of iterations and numerical stability). Searching for the optimal
learning procedure and the studying of the influence of different tuning parameters
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on its efficiency was provided on simulated deterministic systems. The proposed
procedure was consequently verified on dynamic systems enriched with simulated
stochastic component and the obtained results were compared with commonly used
method for state space identification of dynamic systems (N4SID). The proposed
order selection procedure was also studied on simulated stochastic dynamic sys-
tems and the obtained results were compared with commonly used order selection
criterion (AIC).

Finally, the proposed approach to system identification was applied for responses
of two real dynamic systems: the aperiodic system and the oscillate system. The
identification procedure was applied on these responses using different discretization
steps. The applicability of scoring functions used in structure learning of Bayesian
networks for order selection was verified. Obtained results of identification were
compared with N4SID and suggested orders were compared with AIC.

The section 5.2 describes how all simulations and experiments were prepared,
provided and evaluated. Searching for the optimal learning procedure using sim-
ulated deterministic responses is described in the sections 5.3, 5.4 and 5.5. The
influence of introduction the expert knowledge into a Bayesian network in the form
of variances of considered variables is explored in the section 5.3. On the basis of
these experiments, the most precise setting was chosen. Further experiments explore
the influence of including the partial knowledge regarding parameters (section 5.4)
and the influence of the type of distribution of initial values of parameters used
by the EM algorithm (section 5.5) on the precision of obtained estimates and the
duration of identification procedure.

The efficiency of Bayesian networks in the identification of stochastic dynamic
systems is explored in the section 5.6. In the section 5.7 the proposed order selection
approach is presented and verified on the simulated stochastic responses. Verification
of proposed approaches on datasets obtained from real dynamic systems is provided
in the chapter 6.

5.1 General methodology of Bayesian network based
system identification

The implementation of Bayesian networks for the identification of dynamic systems
can be provided using one of settings defined by the combination of several design
choices. The most influential design choices are the structure of a Bayesian network
and the type of used learning algorithm.

The choice of a setting depends on the task the identification procedure is pro-
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vided for, on the demands made on algorithm (e.g. computation time, precision)
and on the capabilities of a software package chosen to carry out the identification
task.

The identification of dynamic systems using Bayesian networks can be provided
using the following steps:

1. Definition of a Bayesian network structure that describes the behavior of a dy-
namic system

2. Including of any expert knowledge available for a considered system (e.g. vari-
ances of random variables, independencies between them or partial knowledge
regarding the parameters of a system)

3. Introduction of identification measurement into a considered model (providing
evidence to a Bayesian network)

4. Identification of a dynamic system (learning parameters of a Bayesian network)

A setting used for Bayesian network based system identification is dependable
on several design choices:

1. Choice of the structure of a considered network (refer to the chap-
ter 4). The structure can be based on a difference equation or on a state space
representation. Using of the canonical forms of a state space representation
considerably reduces the amount of unknown parameters, especially for higher
order systems. It positively influences the numerical properties of learning al-
gorithm and reduces the amount of input data required for obtaining successful
results.

2. Choice of the type of a used network: static or dynamic. If the
static network is used, then the structure chosen in the previous step has
to be unrolled for T/dt time slices, where T is the duration of identification
measurement and dt is a discretization step (refer to the chapter 4 for the ex-
amples of the unrolling of a DBN). The choice of a network type depends on
the capabilities of used software package. Some packages do not support dy-
namic Bayesian networks and hence unrolling the network is the only option.
Also, the amount of supported inference algorithms (required for learning net-
works with a non-complete dataset) for static networks is often higher than
for dynamic networks. Therefore, the static network can be used to employ
them for the identification task. On the other hand, inference algorithms for
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dynamic systems are often faster and require less main memory (unless an
algorithm requires the unrolling of the network into T/dt time slices). More-
over, in dynamic Bayesian network based models the parameter tying (the use
of the same parameters for the same variables in different time slices) is imple-
mented as a part of the definition of a network structure. In static networks,
the parameters of a network have to be tied manually.

3. Choice of the type of required estimates. If the goal of identification
is to find the distributions over unknown parameters, then the procedures for
Bayesian estimation have to be chosen. On the other hand, if we are interested
in the point estimates of unknown parameters, then we search for maximum
likelihood estimate (MLE). The latter option has more support in available
software packages.

4. Choice of the type of inference algorithm for networks with non-
complete data. Non-completeness of data may appear if there are missing
data (variables that could not be measured occasionally) or hidden nodes
(variables that are unmeasurable, e.g. state variables). In this situation, it
is not possible to apply the learning procedure until the dataset is complete.
The algorithm that can cope with this issue is an Expectation Maximization
(EM) algorithm, in which the missing values are computed in E step given
the current estimates of parameters and then the parameters are computed
in M step given the current estimates of missing values. The chosen inference
algorithm provides the estimation in E step, whereas the M step is provided
using classical maximum likelihood estimation.

The resulting setting is often modular, i.e. the same learning algorithm can be
used for different network structures or the same network structure can be learned
using different algorithms (e.g. we can use different inference algorithm in E step of
EM algorithm). This property does not hold in specific cases, e.g. we cannot use the
algorithm designed for dynamic Bayesian networks for learning of a static Bayesian
network. However, in such cases, we can always find the equivalent algorithm for
static case.

5.2 Preparation of experiments and their evaluation
The experiments provided to study Bayesian network based system identification
(BNSI) aimed to explore the applicability of different settings, the influence of differ-
ent tuning parameters on the learning procedure and the consequences of including
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partial knowledge regarding a considered system. For the generalizability of ob-
tained results it was necessary to apply system identification procedure on different
dynamic systems with different length of input signals. The exploration of the most
suitable learning scenario and the influence of different parameters was provided
for deterministic systems, whereas the precision of obtained results and the order
selection methodology were assessed on stochastic dynamic systems.

The datasets obtained from identification measurement provided on two dynamic
systems were used for the verification of the applicability of the proposed approach
to system identification and the proposed approach to order selection.

5.2.1 Implementation of system identification procedure
Experiments described in this chapter were implemented in MATLAB [181] using
BNT [180]. The general algorithm for parameter learning in Bayesian networks
using BNT is presented on the figure 5.1. The network structures used in system
identification experiments are shown on the figure 5.2, where the red circles represent
the numbers of corresponding nodes in the structure of a Bayesian network. The
numeration strategy for nodes in BNT yields that each parent node must have
smaller number than its child nodes. Both structures fulfill this requirement.

Figure 5.1: General algorithm of parameter learning in BNT

The majority of considered systems do not have direct feedthrough (state matrix
D is equal to zero) and for such cases the structure from the figure 5.2a is sufficient.
However, the identification of a dynamic system with direct feedthrough was also
included into provided experiments for the generalizability of obtained results. For
this system the structure from the figure 5.2b was used. It was not possible to unify
identification trials by using only the latter structure due to the limitations of BNT
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(it would not be possible to fix the value D = 0 during learning for systems without
direct feedthrough without fixing the values in matrix C).

Implementation of both structures is almost identical, the changes that have to
be done for systems with direct feedthrough will be described in comments.

(a) Systems without direct feedthrough (b) Systems with direct feedthrough

Figure 5.2: Bayesian network structures used for identification

The definition of Bayesian networks in experiments was provided according
to the algorithm presented on the figure 5.1. First, we have to define the type of
all nodes (discrete or continuous) and their size (scalar or vector). We consider
SISO dynamic systems and hence variables U and Y are scalars, the size of state
vector is equal to the order of considered dynamic system, all nodes of our interest
are continuous:

n = 3; %the order of a considered dynamic system
N = 3; %the number of nodes
X = 1; U = 2; Y = 3; %alliases for all nodes

%specify the size and type of each node
discrete_nodes = [ ]; %all nodes are continuous
node_sizes = [n 1 1]; %X is a vector, U and Y are scalars
observed_nodes = [U Y]; %input U and output Y are observed at each time slice

The definition of structure in static Bayesian networks is provided by a N ×N

matrix (where N is the number of nodes in a network) that consists of ones and
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zeros. Each unity corresponds to a directed edge that goes from a node with
a number equal to the number of a row to the node with a number equal to the
number of a column. In dynamic Bayesian networks the structure of a graph
is described by two N × N matrices. One of them represents all edges inside the
same time slice and another one represents all edges that goes from nodes in one
time slice to nodes in the next time slice:

%intra - connections between nodes in the same slice
intra = zeros(N);
intra(X, Y) = 1; %arc from X(k) to Y(k)
%intra(U, Y) = 1; %this row has to be added for systems with direct feedthrough

%inter - connections between nodes in different time slices
inter = zeros(N);
inter(X, X) = 1; %arc from X(k) to X(k+1)
inter(U, X) = 1; %arc from U(k) to X(k+1)

Also, we have to define, which parameters are tied (a parameter is called tied,
if it does not change for different time instances). For dynamic Bayesian networks
tying of the parameters for the same variables in different time slices is implemented
automatically, however, we have to define, which nodes have different distributions
in the first time slice and the consequent slices. In the considered structure such
node is a state vector. In the first time slice it has no parent nodes and the values of
its elements correspond to the values of initial conditions. In further time slices the
value of state vector depends on the value of input and state vector in the previous
time slice. Due to this reason, state vectors in the structures on the figure 5.2a and
on the figure 5.2b have two different numbers in different time slices. Remaining
nodes (input and output variables) stay tied, since they do not change:

eclass1 = [1 2 3]; %CPDs of U and Y stay the same at each time slice
eclass2 = [4 2 3]; %CPD of X in the second time slice is different

Now we can create a dynamic Bayesian network:

bnet = mk_dbn(intra, inter, node_sizes, ’discrete’, discrete_nodes, ...
’observed’, observed_nodes, ’eclass1’, eclass1, ’eclass2’, eclass2);

After this step, we have to specify CPDs for all nodes. In BNT the only
supported type of distribution that can be used for continuous nodes is normal
distribution. Other software packages mostly use the same representation of
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continuous nodes or support discretization of continuous nodes and consequently
treat them as discrete. Normal distribution for continuous nodes is in general
defined in BNT as:

bnet.CPD{1} = gaussian_CPD(bnet, 1);
bnet.CPD{2} = gaussian_CPD(bnet, 2);
bnet.CPD{3} = gaussian_CPD(bnet, 3);
bnet.CPD{4} = gaussian_CPD(bnet, 4);

This definition implies that means, covariance matrices (or variances in the case
of scalar nodes) and weights are sampled from the standard normal distribution.
Their values can be defined using arguments ‘mean’, ‘cov’ and ‘weights’ respectively.
If we define these values and start the learning procedure, they will be taken as ini-
tial values of parameters and will be updated by EM learning procedure. We can
avoid updating of parameters by using appropriate binary argument: ‘clamp_mean’,
‘clamp_cov’ or ‘clamp_weights’. In addition, we can set the covariance matrix to
a diagonal form by setting of argument ‘cov_type’ to the value ‘diag’ (the default
value of this parameter is ‘full’, which corresponds to the unconstrained form of the
covariance matrix).

The values of weights correspond to the parameters of a dynamic system that
are unknown during system identification. For each node, ‘weights’ is represented
by a vector (for univariate nodes) or a matrix (for a multivariate nodes). The
parameters associated with a parent node with smaller number will appear in the
columns with a smaller number. When the ‘clamp_weights’ argument is used, the
values of weights associated with all parents have to be specified, since it is not
possible in BNT to set the values of weights partially.

The next step is to define inference engine for incomplete datasets. Since state
vector is in most cases unmeasurable, dataset in the identification of considered sys-
tems will be technically incomplete (state vector is represented by a hidden node).
Therefore, we have to choose appropriate engine for the calculation of state vector
in the E step of EM algorithm. There are several inference algorithms for dynamic
Bayesian networks. From preparatory experiments we found out, that only three
of them can be used for learning of networks with the structure corresponding to
the state space representation: junction tree algorithm, unrolled junction tree algo-
rithm and Pearl algorithm. Unfortunately, Pearl algorithm provided considerably
worse estimates than both of junction tree based algorithms. Therefore, it was not
used in experiments described in this thesis. The Kalman inference algorithm that
is available in BNT was not used as well, since it is designed for state space models
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without external input.
Obviously, junction tree algorithm and unrolled junction tree algorithm use the

same inference method with one difference: unrolled junction tree unrolls a dynamic
network and provides inference in a static network, whereas junction tree provides
inference on pairs of neighboring slices in a dynamic network. The latter algorithm
is therefore faster, but the former one is more stable in computations. However,
the usability of unrolled junction tree depends on the amount of time slices in
considered network and on the capacity of main memory of a computer used for
learning. The inference algorithm is defined as:

%engine = jtree_dbn_inf_engine(bnet);
engine = jtree_unrolled_dbn_inf_engine(bnet, len);

Variable len is the length of a dataset, i.e. the amount of time slices for which
the engine has to unroll a dynamic network. The datasets for learning were loaded
from corresponding external files. Input data used for identification are stored in
a cell array with the following structure:

data = cell(1, 1);
data{1} = cell(N, len);

for i = 1:len
data{1}([U Y], i) = num2cell([data_u(i); data_y(i)]);
end

Now we can apply the EM algorithm for the learning of parameters in a Bayesian
network:

[bnet2, loglike, engine2] = learn_params_dbn_em(engine, data);

The learning algorithm has several arguments, which influence its behavior. The
most crucial ones are threshold (‘thresh’) for stopping the EM (the default value
is 0.001) and maximum number of iterations (‘max_iter’) that will be performed,
if the algorithm will not reach defined threshold (the default value is 10 for static
and 100 for dynamic Bayesian networks). The threshold is a bound for the frac-
tional change in the value of log likelihood function. Reaching of this threshold
is considered by the algorithm as reaching the optimum of log likelihood function.
Preliminary experiments have shown that decreasing of this argument does not have
significant influence on the precision of obtained results and prolong an identification
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trial. Therefore, in all experiments, the threshold was not changed. The experiments
have also shown that in some settings the learning algorithm does not have enough
time to converge and therefore, the maximum number of iterations was set to the
value 1000.

After parameter learning, it is important to correctly interpret obtained results.
The values of parameters are stored in the weights of each node. To get the access
to this information we have to break the structure’s privacy by the following code:

%Access node structures
s1 = struct(bnet2.CPD{1});
s2 = struct(bnet2.CPD{2});
s3 = struct(bnet2.CPD{3});
s4 = struct(bnet2.CPD{4});

Assuming that all means are set to zero values during identification (which was
the case for all experiments described in this thesis), the state matrices can be
obtained as:

A = s4.weights(:, 1:n);
B = s4.weights(:, end);
C = s3.weights(:, 1:n);
D = 0; %D = s3.weights(:, end); %for systems with direct feedthrough

Further evaluation can be provided using common tools for analysis of systems,
e.g. the functions from Control System Toolbox in MATLAB.

5.2.2 Experiment setups
For analysis of different settings and different learning scenarios, the behavior of six
dynamic systems was simulated in MATLAB, see table 5.1. Chosen types of transfer
functions for considered systems correspond to the most frequently used types for
system identification of linear dynamic systems. The parameters of transfer function
were chosen in such way that they have similar time required to achieve the steady
state and similar time constants. As a consequence, the unified input signals with
unified discretization step can be used for their simulations. It was important to
choose the efficient value of discretization step to assure identifiability of simulated
responses. The Nyquist-Shannon sampling theorem [227] suggests that the minimum
value of sampling frequency is twice the highest frequency of a dynamic system.
The value of discretization step dt = 0.5s satisfies this theorem for all considered
dynamic systems in the table 5.1, except the system of the first order. However, for
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Table 5.1: Considered dynamic systems

The system of the first order 

 

Transfer function (continuous): 

 

𝐺(𝑠) =
2

2𝑠 + 1
 

Transfer function (discrete, 𝑑𝑡 = 0.5 𝑠): 

 

𝐺(𝑧) =
0.4424

𝑧 − 0.7788
 

The system of the second order (aperiodic) 

 

Transfer function: 

 

𝐺(𝑠) =
6

𝑠2 + 3𝑠 + 2
 

Transfer function (discrete, 𝑑𝑡 = 0.5 𝑠): 

 

𝐺(𝑧) =
0.4645𝑧 + 0.2817

𝑧2 − 0.9744𝑧 + 0.2231
 

The system of the second order (oscillate) 

 

Transfer function: 

 

𝐺(𝑠) =
10

𝑠2 + 2𝑠 + 5
 

Transfer function (discrete, 𝑑𝑡 = 0.5 𝑠): 

 

𝐺(𝑧) =
0.8342𝑧 + 0.5907

𝑧2 − 0.6554𝑧 + 0.3679
 

The system of the second order (with direct feedthrough) 

 

Transfer function: 

 

𝐺(𝑠) =
𝑠2 + 7𝑠 + 10

𝑠2 + 5𝑠 + 4
 

Transfer function (discrete, 𝑑𝑡 = 0.5 𝑠): 

 

𝐺(𝑧) =
𝑧2 − 0.07313𝑧 − 0.07632

𝑧2 − 0.7419𝑧 + 0.08208
 

The system of the third order (aperiodic) 

 

Transfer function: 

 

𝐺(𝑠) =
12

𝑠3 + 6𝑠2 + 11𝑠 + 6
 

Transfer function (discrete, 𝑑𝑡 = 0.5 𝑠): 

 

𝐺(𝑧) =
0.1218𝑧2 + 0.2374𝑧 + 0.02718

𝑧3 − 1.198𝑧2 + 0.4406𝑧 − 0.04979
 

The system of the third order (oscillate) 

 

Transfer function: 

 

𝐺(𝑠) =
6

0.25𝑠3 + 𝑠2 + 1.9𝑠 + 3
 

Transfer function (discrete, 𝑑𝑡 = 0.5 𝑠): 

 

𝐺(𝑧) =
0.2959𝑧2 + 0.7052𝑧 + 0.11

𝑧3 − 1.062𝑧2 + 0.7529𝑧 − 0.1353
 

 

this system slightly lower value of a discretization step than the one suggested by
the Nyquist-Shannon theorem did not cause problems during identification due to
the simple structure of a considered model.

The further choice was the type of input signal for considered dynamic systems.
One of the most common types of input signals used for system identification in
practice is the unity step, since the response on this signal is very informative. The
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Table 5.2: Types of used input signals

Type Properties Plot 

‘1 step’ Length:  

𝑇 = 35 𝑠 
Discretization step:  

𝑑𝑡 = 0.5 𝑠 
The amount of points in a 

dataset: 71 

  

‘2 steps’ Length:  

𝑇 = 50 𝑠 
Discretization step:  

𝑑𝑡 = 0.5 𝑠 
The amount of points in a 

dataset: 101 

  

‘3 steps’ Length:  

𝑇 = 65 𝑠 
Discretization step:  

𝑑𝑡 = 0.5 𝑠 
The amount of points in a 

dataset: 131 

  

‘4 steps’ Length:  

𝑇 = 80 𝑠 
Discretization step:  

𝑑𝑡 = 0.5 𝑠 
The amount of points in a 

dataset: 161 

  

‘5 steps’ Length:  

𝑇 = 95 𝑠 
Discretization step:  

𝑑𝑡 = 0.5 𝑠 
The amount of points in a 

dataset: 191 

  
 

prominent modifications of this signal are non-unity step and the sequence of steps
with different height. Since it was required to explore the influence of increasing
the amount of input data on results of identification, the latter type of signal was
chosen with various amount of steps, see table 5.2. It is worth to point out, that
increasing of dataset by decreasing a discretization step would not be informative,
since it can lead to additional numerical issues due to the small values of resulting
parameters.

The deterministic responses (without the influence of noise) of dynamic systems
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described in the table 5.1 on input signals described in the table 5.2 were simulated
in Simulink with discretization step dt = 0.5s. The resulting 30 datasets were used
for identification experiments described in the sections 5.3, 5.4 and 5.5.

For experiments described in the sections 5.6 and 5.7, the behavior of stochastic
dynamic systems had to be simulated. The models used for previous simulations
were enriched by a random noise (sampled from normal distribution with zero mean),
which was added to the output variable and to each variable in the state vector. The
chosen values of the variance of random noise were σ2

ϵ = 0, 0.01, 0.02, 0.05, 0.1. The
simulation procedure with mentioned settings lead to 150 datasets used in these
experiments.

5.2.3 Evaluation of results
Since the result of parameter learning using EM algorithm strongly depends on the
initial values of parameter estimates, it was required to provide sufficient amount of
identification trials to get reasonable results of Bayesian network based identifica-
tion. Therefore, for each setting considered in this thesis, the bunch of 100 identifica-
tion trials were provided. For preserving the repeatability of conducted experiments,
the random number generator used for random sampling of initial parameter values
was seeded by an integer corresponding to the number of identification trial.

The results that were considered successful for each type of a dynamic system and
each type of input signal are presented on the figure 5.3. Magenta crosses represent
the output signal used for identification, the blue line corresponds to the response of
the identified model of a dynamic system (a dynamic system with parameters equal
to those obtained from estimation).

Due to the numerous amount of conducted experiments it was necessary to design
the evaluation procedure that can be informative. For each bunch of identification
trials, the values of resulting state matrices were stored to the external file for further
evaluation of obtained estimates. In addition, information about the duration of
learning procedure and the amount of iterations required for convergence of EM
algorithm for each trial was stored for further evaluation of numerical properties of
each considered setting.

Some of identification trials had numerical problems caused by singular matrices
or matrices that are close to singularity. It often resulted in the inappropriate
estimates of parameters (non-stable descriptions or zero-valued state matrices). In
some cases, however, the algorithm did not manage to overcome the numerical issues
and failed. The information about the amount of fails for each bunch of identification
trials was therefore stored to external file as well.
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Figure 5.3: Successful results of identification for deterministic systems

The evaluation of results was consequently provided for each bunch of identifi-
cation experiments. The mean squared error (MSE) was chosen as the cost function
used for assessing the goodness of fit:

J =
1

mid

·
mid∑
i=1

(yidi − ysimi
)2. (5.1)

In the equation (5.1), mid is the length of a dataset used for identification, ysimi

are simulated values of output used for identification, yidi are values of the response
of the identified model of a dynamic system. The cost function therefore represents
the average squared residual of the response of identified system from the original
dataset.

In the experiments provided on deterministic dynamic systems (sections 5.3, 5.4
and 5.5), each of identification trials was assigned to one of four classes according
to the value of the cost function:

• Class 1: J ≤ 0.005;

• Class 2: 0.005 < J ≤ 0.01;

• Class 3: 0.01 < J ≤ 0.05;

• Class 4: J > 0.05.

The bounds of each class was chosen by visual comparison of resulting responses
with original data. The first class corresponds to the perfect fit of identified system
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(a) Perfect fit (b) Good fit (c) Acceptable fit

Figure 5.4: Examples of results from classes 1 - 3

to the original data, refer to the figure 5.4a for the example of such result. The
second class has slightly worse goodness of fit, which, however, can be still considered
as good, refer to the figure 5.4b for the example of such result. The residuals for
the third class are more distinguishable, but the response of identified system is still
relatively close to the original dataset and therefore these results are considered
acceptable, refer to the figure 5.4c for the example of such result. The fourth class
contains unsuccessful results of identification that include zero-valued parameters
and other unreasonable results. These results appear when the EM algorithm faces
numerical issues or gets stuck in local optima of log likelihood function, refer to the
figure 5.5 for the examples of such results.

Figure 5.5: Examples of results from class 4

The amounts of results in each class were calculated for each bunch of identifi-
cation trials. Plots were chosen as a tool for their appropriate representation. The
horizontal axis represents 5 bunches of identification trials with different type of
input signal (’1 step’, ’2 steps’, ’3 steps’, ’4 steps’, ’5 steps’) and is used to assess
the influence of increasing the amount of input data. The vertical axis represents
the amount of corresponding results. The figure 5.6a represents the results of such
evaluation. The magenta crosses correspond to the amount of results in class 1
(perfect fit), the blue crosses correspond to the amount of results in class 2 (good
fit), the green crosses correspond to the amount of results in class 3 (acceptable fit),
the black crosses correspond to the amount of results in class 4 (bad fit).
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To increase the readability of plots, it was decided to connect points on the plot
on the figure 5.6a with lines. The results classified as bad were connected with a dash
line to distinguish them from successful results (perfect, good and acceptable), see
figure 5.6b for the example of a resulting plot.

(a) Original plot (b) Modified plot

Figure 5.6: Evaluation of results from a bunch of identification trials

For stochastic dynamic systems, the proposed evaluation procedure is not appli-
cable, in particular for systems with higher value of noise, since it is unlikely to get
the value of cost function smaller than the value of noise. Therefore, the bounds
of classes for stochastic dynamic systems are modified with respect to the noise
variance σ2

ϵ :

• Class 1: J ≤ σ2
ϵ ;

• Class 2: σ2
ϵ < J ≤ 2 · σ2

ϵ ;

• Class 3: 2 · σ2
ϵ < J ≤ 10 · σ2

ϵ ;

• Class 4: J > 10 · σ2
ϵ .

Further properties of different learning settings that were evaluated for each
bunch of identification trials were the average duration of learning procedure and the
average amount of iterations required for EM algorithm to converge. These values
are also represented on plots for each experiment. The horizontal axis corresponds
to the different length of input signal used in simulations (’1 step’, ’2 steps’, ’3 steps’,
’4 steps’, ’5 steps’). There are two vertical axes on plots (since represented values are
in different range): the left one represents the average amount of iterations and the
right one represents the average duration of learning procedure in a corresponding
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bunch (in seconds). Analogously to the previous case, the representation with points
is badly readable, see figure 5.7a. Therefore, it was decided to connect the points
with lines, see figure 5.7b for the example of a resulting plot.

(a) Original plot (b) Modified plot

Figure 5.7: Evaluation of the numerical properties of a learning algorithm

5.3 Analysis of different learning scenarios
The conditional probability distributions of nodes in a considered Bayesian network
structure for systems with direct feedthrough were already defined in (4.4). For
systems without direct feedthrough the direct influence of input signal on the output
signal should be removed:

Xk+1|Xk, Uk ∼ N (µX + A · Xk + B · Uk,ΣXk
),

Yk|Xk ∼ N (µY + C · Xk, σ
2
Y ),

Uk ∼ N (µU , σ
2
U).

(5.2)

During system identification procedure, the values of input and output signals
are introduced to a Bayesian network as evidence. The learning task is to find the
unknown state matrices A,B,C and D. In addition, there are unknown parameters
of distribution for each node: means µU , µY , µX, variances σ2

U , σ
2
Y and covariance

matrix
∑

X. The covariance matrix
∑

X (3.14) is a symmetric matrix that represents
variances of state variables and the power of their dependencies expressed by the
covariances between all pairs of states.

During all experiments described in this thesis, the values of means were set to
zero values. It is possible to provide identification procedure without this setting,
but the resulting matrices will not correspond to the state matrices of a dynamic
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system. If the goal of a learning procedure is to find these matrices, then updat-
ing of means in learning procedure brings additional complications, since the state
matrices have to be recalculated from the resulting weights. However, if a Bayesian
network with learned parameters is used for further tasks (e.g. monitoring, control),
then setting of means to zero values is not necessary. However, this setting brings
additional unknown parameters that have to be estimated by the learning procedure
and therefore more input data is required.

Since variances and covariance matrix are unknown in most practical applica-
tions, the most natural way to implement Bayesian network based system identifi-
cation is to calculate them simultaneously with unknown parameters of a dynamic
system. However, the implementation of this approach was connected with distinct
numerical issues, in particular for considered systems of the third order the identi-
fication procedure failed in more than 80% of provided experiments. Even in cases,
in which it succeeded to end properly, the precision of obtained estimates was low
in many identification trials. This experiment is described in more details in the
subsection 5.3.1.

We decided to consider variances and covariance matrix as tuning parameters
in the effort to overcome the above mentioned issues. Even though their values
are in most cases unknown, it is important to keep in mind that they represent
the variance of noise in dynamic systems. This value can be roughly assessed from
identification measurement. Fixing of the values of variances and covariance matrix
during learning reduces the amount of parameters updated by the learning procedure
that should have a positive effect on numerical properties.

To check this hypothesis, several learning settings, which will be referred to
as scenarios, were designed:

• Scenario 1 - variances σ2
U , σ

2
Y are not fixed, covariance matrix ΣX is not fixed.

• Scenario 2 – variances σ2
U , σ

2
Y are fixed to a certain value, covariance matrix

ΣX is assumed to be diagonal and the variances of individual state variables
σ2
x1
, σ2

x2
, · · · , σ2

xn
are fixed to a certain value.

• Scenario 3 – variances σ2
U , σ

2
Y are fixed to a certain value, covariance matrix

ΣX is not fixed.

• Scenario 4 - variances σ2
U , σ

2
Y are not fixed, covariance matrix ΣX is assumed

to be diagonal and the variances of individual state variables σ2
x1
, σ2

x2
, · · · , σ2

xn

are fixed to a certain value.
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• Scenario 5 - variances σ2
U , σ

2
Y are not fixed, covariance matrix ΣX is assumed

to be diagonal and the variances of individual state variables σ2
x1
, σ2

x2
, · · · , σ2

xn

are not fixed.

• Scenario 6 - variances σ2
U , σ

2
Y are fixed to a certain value, covariance matrix

ΣX is assumed to be diagonal and the variances of individual state variables
σ2
x1
, σ2

x2
, · · · , σ2

xn
are not fixed.

The amount of unknown parameters updated by the learning procedure in each
scenario for each considered type of a dynamic system can be found in the table 5.3.
The character of behavior of a dynamic system (whether it is aperiodic or oscillate)
does not influence the amount of unknown parameters, and therefore, they are
unified to a single column in the table.

Table 5.3: Amount of unknown parameters in different learning scenarios

The type of a 

learning 

scenario 

The type of a considered system 

A system of the 

1st order 

A system of the 

2nd order 

without direct 

feedthrough 

A system of the 

2nd order with 

direct 

feedthrough 

A system of the 

3rd order 

without direct 

feedthrough 

Scenario 1 

(without fixed 

parameters) 

𝐴 ∈ ℝ1×1, 𝐵 ∈ ℝ1×1, 
𝐶 ∈ ℝ1×1, 

𝜎𝑢
2, 𝜎𝑦

2, 

Σ𝑥(𝜎𝑥1

2 ) 

Total: 6 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 

𝜎𝑢
2, 𝜎𝑦

2, 

Σ𝑥(𝜎𝑥1

2 , 𝜎𝑥2

2 ,  𝜎𝑥1𝑥2
) 

Total: 13 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 𝐷 ∈ ℝ1×1, 

𝜎𝑢
2, 𝜎𝑦

2, 

Σ𝑥(𝜎𝑥1

2 , 𝜎𝑥2

2 ,  𝜎𝑥1𝑥2
) 

Total: 14 

𝐴 ∈ ℝ3×3, 𝐵 ∈ ℝ3×1, 
𝐶 ∈ ℝ1×3, 

𝜎𝑢
2, 𝜎𝑦

2, 

Σ𝑥(𝜎𝑥1

2 , 𝜎𝑥2

2 , 𝜎𝑥3

2 , 

𝜎𝑥1𝑥2
, 𝜎𝑥1𝑥3

, 𝜎𝑥2𝑥3
) 

Total: 23 

Scenario 2 

(fixed 𝜎𝑢
2, 𝜎𝑦

2, 

Σ𝑥) 

𝐴 ∈ ℝ1×1, 𝐵 ∈ ℝ1×1, 
𝐶 ∈ ℝ1×1 

Total: 3 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2 

Total: 8 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 𝐷 ∈ ℝ1×1 

Total: 9 

𝐴 ∈ ℝ3×3, 𝐵 ∈ ℝ3×1, 
𝐶 ∈ ℝ1×3 

Total: 15 

Scenario 3 

(fixed 𝜎𝑢
2, 𝜎𝑦

2 ) 

𝐴 ∈ ℝ1×1, 𝐵 ∈ ℝ1×1, 
𝐶 ∈ ℝ1×1, 

Σ𝑥(𝜎𝑥1

2 ) 

Total: 4 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 

Σ𝑥(𝜎𝑥1

2 , 𝜎𝑥2

2 ,  𝜎𝑥1𝑥2
) 

Total: 11 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 𝐷 ∈ ℝ1×1, 

Σ𝑥(𝜎𝑥1

2 , 𝜎𝑥2

2 ,  𝜎𝑥1𝑥2
) 

Total: 12 

𝐴 ∈ ℝ3×3, 𝐵 ∈ ℝ3×1, 

𝐶 ∈ ℝ1×3, 
Σ𝑥(𝜎𝑥1

2 , 𝜎𝑥2

2 , 𝜎𝑥3

2 , 

𝜎𝑥1𝑥2
, 𝜎𝑥1𝑥3

, 𝜎𝑥2𝑥3
) 

Total: 21 

Scenario 4 

(fixed Σ𝑥) 

𝐴 ∈ ℝ1×1, 𝐵 ∈ ℝ1×1, 
𝐶 ∈ ℝ1×1, 

𝜎𝑢
2, 𝜎𝑦

2 

Total: 5 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 

𝜎𝑢
2, 𝜎𝑦

2 

Total: 10 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 𝐷 ∈ ℝ1×1, 

𝜎𝑢
2, 𝜎𝑦

2 

Total: 11 

𝐴 ∈ ℝ3×3, 𝐵 ∈ ℝ3×1, 
𝐶 ∈ ℝ1×3, 

𝜎𝑢
2, 𝜎𝑦

2 

Total: 17 

Scenario 5 

(Σ𝑥 is diagonal) 

𝐴 ∈ ℝ1×1, 𝐵 ∈ ℝ1×1, 
𝐶 ∈ ℝ1×1, 

𝜎𝑢
2, 𝜎𝑦

2 

𝜎𝑥1

2  

Total: 6 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 

𝜎𝑢
2, 𝜎𝑦

2, 

𝜎𝑥1

2 , 𝜎𝑥2

2  

Total: 12 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 𝐷 ∈ ℝ1×1, 

𝜎𝑢
2, 𝜎𝑦

2 

𝜎𝑥1

2 , 𝜎𝑥2

2  

Total: 13 

𝐴 ∈ ℝ3×3, 𝐵 ∈ ℝ3×1, 
𝐶 ∈ ℝ1×3, 

𝜎𝑢
2, 𝜎𝑦

2 

𝜎𝑥1

2 , 𝜎𝑥2

2 , 𝜎𝑥3

2  

Total: 20 

Scenario 6 

(fixed 𝜎𝑢
2, 𝜎𝑦

2, 

Σ𝑥 is diagonal) 

𝐴 ∈ ℝ1×1, 𝐵 ∈ ℝ1×1, 
𝐶 ∈ ℝ1×1, 

𝜎𝑥1

2  

Total: 4 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 

𝜎𝑥1

2 , 𝜎𝑥2

2  

Total: 10 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 𝐷 ∈ ℝ1×1, 

𝜎𝑥1

2 , 𝜎𝑥2

2  

Total: 11 

𝐴 ∈ ℝ3×3, 𝐵 ∈ ℝ3×1, 
𝐶 ∈ ℝ1×3, 

𝜎𝑥1

2 , 𝜎𝑥2

2 , 𝜎𝑥3

2  

Total: 18 
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Since experiments were provided on deterministic systems, the value of variance
is, in fact, equal to zero. Since it is not possible in BNT to set the value of variance
to zero, this parameter should be set to a small value. The range of values for all
experiments was the following:

σ2
exp =

[
0.1 0.01 0.001 0.0001 0.00001

]
. (5.3)

Experiments consisted of identification using datasets from 6 dynamic systems
with 5 different input signals (refer to the subsection 5.2.2). Therefore, for learning
scenarios 1 and 5 (where values of variances were not fixed) 30 bunches of iden-
tification experiments with 100 identification trials in a bunch were provided for
each scenario. For learning scenarios 2, 3, 4 and 6 each bunch of identification ex-
periments was provided for 5 different values of fixed variance σ2

exp, therefore 150
bunches of experiments with 100 identification trials in a bunch were provided for
each scenario.

5.3.1 Analysis of the learning scenario 1
The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.8a. The average
iteration amount required for EM algorithm to converge and the average duration
of identification trial for each bunch are presented on the figure 5.8b.

Table 5.4: Amount of fails during calculation in learning scenario 1

The system of the 

first order 

The system of the 

second order 

(aperiodic) 

The system of the 

second order 

(oscillate) 

# of steps # of steps # of steps 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 1 1 0 0 23 20 24 20 20 72 66 71 61 70 

The system of the 

second order (with 

direct feedthrough) 

The system of the 

third order (aperiodic) 

The system of the 

third order (oscillate) 

# of steps # of steps # of steps 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 2 2 3 3 89 84 86 86 85 91 89 95 93 93 

 

This learning scenario was the most numerically unstable. The amount of fails
during execution of identification scripts is presented in the table 5.4. One of reasons
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(a) The results of identification (b) Numerical properties

Figure 5.8: Analysis of learning scenario 1

for such instability is the high amount of unknown parameters (state matrices, vari-
ances and covariance matrix). Therefore, it was unusable for systems of the third
order. For the oscillate system of the second order more than a half of identification
trials failed. In addition, from the trials which succeeded to finish properly, the
majority did not cope to distinguish an oscillation from the influence of noise and
hence resulted in aperiodic descriptions.

For the aperiodic system of the second order the percentage of non-fail results
was considerably better. The majority of experiments had successful results, but for
the ’4 steps’ and ’5 steps’ input signals there were many results that were classified
as bad, but actual values of mean squared errors were slightly higher than the
predefined bound for bad results J = 0.05 (refer to the figure 5.9 for the examples
of such responses obtained for ‘4 steps’ input signal). However, changing of this
bound to higher value would bring additional complications to the evaluation of
other scenarios, since for most of them this bound was optimal. Therefore, we kept
the same value of this bound for all learning scenarios to make analysis consistent.

The scenario provided similar behavior for the aperiodic system of the third order
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Figure 5.9: Examples of identification results classified to class 4

in successful identification trials. However, the amount of fails during identification
make this scenario unusable for this type of dynamic systems.

The systems for which this scenario was relatively successful was the system of
the first order and the system of the second order with direct feedthrough. For these
systems the learning scenario succeeded to get more than half of perfect results of
system identification.

The average duration of an identification trial was for most bunches equal to
10− 20 seconds. In some cases, it was slightly higher, up to 50 seconds.

5.3.2 Analysis of the learning scenario 2
The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.10. The average
iteration amount required for EM algorithm to converge and the average duration
of identification trial for each bunch are presented on the figure 5.11.

Figure 5.10: Results of identification provided using scenario 2

For the system of the first order the results were successful in the majority of
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cases. For the values of fixed variance σ2
exp < 0.1 all results were perfect, for the

value σ2
exp = 0.1 the majority of results were successful, but the value of cost function

increased with increasing amount of input data. The computation was stable, there
were no fails and only 2 identification trials from 2500 were classified as bad. The
average duration of an identification trial for σ2

exp < 0.1 was only 1–2 seconds. Hence
for the system of the first order this learning scenario can be recommended for usage
with sufficiently low value of fixed variance.

Figure 5.11: Numerical properties of scenario 2

For other systems this scenario was not as promising. For the aperiodic system
of the second order the percentage of bad results (with high value of a cost function)
did not exceed 50% for all bunches of identification trials. The amount of successful
results decreased with increasing duration of simulated identification datasets and
with decreasing value of fixed variance σ2

exp.
For other dynamic systems the amount of unsuccessful results for σ2

exp < 0.01

was higher than 50%, therefore we do not recommend the using of this scenario with
such small value of fixed variance. It is also important to mention, that unsuccessful
results are far from the original descriptions of dynamic systems. A lot of them are
unstable and they sometimes lead to the oscillate description for aperiodic systems.
The amount of unreasonable results increases with decreasing σ2

exp and it does not
get better with the increasing the amount of input data.

Further disadvantage of this scenario is related to its low ability to properly
identify oscillate systems. It is not often seen from the value of the cost function,
but visual comparison of input data and response of resulting system shows that
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the learning algorithm succeeded to include oscillate component into the description
of identified dynamic systems in only half of cases. In other cases, it considered
oscillations as the influence of noise.

The computation process in identification trials provided using scenario 2 was
stable. Regardless numerical difficulties with calculations caused by appearance of
singular matrices or matrices that are close to singular, the program succeeded to
provide 15 000 identification trials with only one fail (during identification of the
system of the second order with direct feedthrough for ’1 step’ input signal and
σ2
exp = 0.1).

The average duration of an identification trial did not exceed 5 seconds for set-
tings σ2

exp < 0.1. For the setting σ2
exp = 0.1 this value was a little bit higher, up to

20 seconds.

5.3.3 Analysis of the learning scenario 3
The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.12. The average
iteration amount required for EM algorithm to converge and the average duration
of identification trial for each bunch are presented on the figure 5.13.

Figure 5.12: Results of identification provided using scenario 3

For the system of the first order this learning scenario succeeded to obtain per-
fect results for the value of fixed variance σ2

exp < 0.1. For σ2
exp = 0.1 there were

several bad results (one in each bunch) and several descriptions which were clas-
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sified as good. Therefore, for the system of the first order this scenario can be
recommended.

Big ratio of successful results was also obtained for the system with direct
feedthrough in setting σ2

exp = 0.1, the majority of results were classified as perfect
or good.

Figure 5.13: Numerical properties of scenario 3

For other systems the results were ambiguous, in particular for aperiodic sys-
tems of the second and the third order. Analogously to the previous scenario, the
significant amount of bad results was obtained for σ2

exp < 0.1. But unlike scenario
2, in which the estimates that were classified as bad corresponded to unreasonable
responses distant from the original datasets, in this scenario the bad results often
corresponded to the appropriate behavior of considered dynamic systems, but the
value of a cost function was slightly higher than pre-defined bound 0.05. (refer to
the figure 5.9 for the examples of such responses). There were not more than sev-
eral truly inappropriate results per a bunch of identification trials. Unfortunately,
this was not the case for a dynamic system with direct feedthrough, where a lot
of unreasonable results appeared. Therefore, this scenario can be recommended for
aperiodic systems without direct feedthrough with relatively low demands on the
precision of obtained results.

For oscillate systems this scenario cannot be recommended, since it failed to catch
the oscillate nature of identified systems in the majority of cases. These systems
were in most cases identified by the state space that corresponded to a dynamic
system with aperiodic behavior. Therefore, even the results classified as successful
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often correspond to the inappropriate description of a considered dynamic system.
Another issue of this scenario is numerical stability. The amount of fails in each

bunch of identification trials is presented in the table 5.5.

Table 5.5: Amount of fails during calculation in learning scenario 3

 The system of the 

first order 

The system of the 

second order 

(aperiodic) 

The system of the 

second order 

(oscillate) 

# of steps # of steps # of steps 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

𝜎2 = 0.1 0 0 0 0 0 3 1 1 0 1 8 5 5 3 4 

𝜎2 = 0.01 0 0 0 0 0 2 4 1 0 0 3 3 0 0 0 

𝜎2 = 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

𝜎2 = 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

𝜎2 = 0.00001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 The system of the 

second order (with 

direct feedthrough) 

The system of the 

third order (aperiodic) 

The system of the 

third order (oscillate) 

# of steps # of steps # of steps 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

𝜎2 = 0.1 4 4 1 0 0 49 25 7 7 8 36 40 28 19 22 

𝜎2 = 0.01 1 0 1 0 0 6 6 0 1 0 7 5 2 1 1 

𝜎2 = 0.001 0 0 0 0 0 1 1 0 0 1 2 0 1 0 0 

𝜎2 = 0.0001 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

𝜎2 = 0.00001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

In particular, for setting σ2
exp = 0.1 the algorithm failed to converge for dynamic

systems of the third order in many cases. However, the increasing of input dataset
had positive effect on numerical stability. Decreasing of the value of fixed variance
σ2
exp also decreased the amount of fails up to zero. Hence, it can be concluded that

in this scenario there is a trade-off between numerical stability and the precision of
obtained estimates.

The advantage of this scenario is its speed. In most cases, the average duration
of an identification trial was only several seconds.

5.3.4 Analysis of the learning scenario 4
The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.14. The average
iteration amount required for EM algorithm to converge and the average duration
of identification trial for each bunch are presented on the figure 5.15.

113



Figure 5.14: Results of identification provided using scenario 4

The implementation of this scenario was accompanied with the high amount
of numerical problems caused by the singularity of matrices used for estimation
of parameters. In some cases, the algorithm still managed to converge, but for
some systems (e.g. the system of the second order with direct feedthrough) these
problems persisted even with increasing of input dataset. The information about
fails in each bunch of identification trials is presented in the table 5.6.

Figure 5.15: Numerical properties of scenario 4
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However, the precision of obtained results was in average better than in the
previous scenarios. For the value of fixed variance σ2

exp = 0.1 the algorithm succeeded
to obtain more than 50% of successful results, from which the majority had low value
of mean squared error and hence is considered perfect. The amount of unsuccessful
results increased with increasing amount of input data and decreasing value of fixed
variance σ2

exp. In this scenario, similarly to scenario 2, decreasing of the value of
fixed variance lead to the increasing amount of inappropriate responses of systems
with identified parameters (e.g. oscillate responses for aperiodic systems or unstable
responses).

Table 5.6: Amount of fails during calculation in learning scenario 4

 The system of the 

first order 

The system of the 

second order 

(aperiodic) 

The system of the 

second order 

(oscillate) 

# of steps # of steps # of steps 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

𝜎2 = 0.1 5 5 3 2 1 4 1 2 1 2 4 1 2 2 2 

𝜎2 = 0.01 5 5 3 2 1 4 1 2 4 3 5 1 1 1 4 

𝜎2 = 0.001 3 5 3 1 1 6 2 2 1 3 5 2 4 1 4 

𝜎2 = 0.0001 4 5 3 0 1 6 2 3 2 3 6 2 3 3 2 

𝜎2 = 0.00001 4 6 3 2 1 7 2 4 2 2 6 4 4 3 5 

 The system of the 

second order (with 

direct feedthrough) 

The system of the 

third order (aperiodic) 

The system of the 

third order (oscillate) 

# of steps # of steps # of steps 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

𝜎2 = 0.1 10 11 10 12 10 1 3 1 1 1 1 3 0 1 0 

𝜎2 = 0.01 12 12 12 12 13 1 5 1 1 1 1 6 1 0 2 

𝜎2 = 0.001 13 17 15 13 14 6 7 2 0 1 7 7 3 0 1 

𝜎2 = 0.0001 14 15 17 14 15 5 7 3 1 1 7 8 2 2 2 

𝜎2 = 0.00001 14 15 15 15 17 9 8 5 2 4 12 11 7 4 4 

 

The system, for which this scenario provided distinctively worse estimates was
the system of the first order, in particular for higher amounts of input steps and
lower values of fixed variance.

During identification of oscillate systems, the learning scenario managed to catch
their oscillate behavior in more than the half of successful identification trials, which
is considerably better result than during the application of scenario 3.

The average duration of an identification trial was several minutes in almost each
bunch of experiments. It was particularly long for responses on ’2 steps’ input signal.
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5.3.5 Analysis of the learning scenario 5
The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.16a. The average
iteration amount required for EM algorithm to converge and the average duration
of identification trial for each bunch are presented on the figure 5.16b.

(a) The results of identification (b) Numerical properties

Figure 5.16: Analysis of learning scenario 5

The settings of this learning scenario are similar to the settings of scenario 1
(variances σ2

U , σ
2
Y are not fixed, the covariance matrix ΣX is not fixed) with the only

difference in the type of the covariance matrix. In this scenario it is assumed to be
diagonal that corresponds to the case of independent state variables. Consequently,
the algorithm has less values to update at each iteration since it does not have to
calculate covariances between state variables.

For the system of the first order, the identification procedure was analogous to
the one used in scenario 1, since the covariance matrix for the system of the first
order is represented by the variance of a single state variable.

This scenario provided the most successful results among all scenarios. The
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amount of perfect results in different bunches was impressive in comparison with
other learning scenarios. For example, for dynamic systems of the third order perfect
results were obtained in more than 80% of cases. For other systems this value was
slightly worse, but it was higher than 60% in all bunches of identification trials. The
increasing of the length of input dataset slightly improved the amount of successful
results for the majority of considered dynamic systems.

Identification of oscillate dynamic systems was provided without noticeable com-
plications. In some cases, the learning scenario approximated the data with aperiodic
response, but this situation was rather rare.

For the majority of considered dynamic systems this learning scenario provided
the best results of identification. But even for those systems for which it did not (the
system of the first order and the system of the second order with direct feedthrough)
the amount of perfect results was relatively high in all identification bunches. There-
fore, this learning scenario is recommended for any type of identified dynamic sys-
tems.

The shortcoming of this learning scenario is its duration. In most cases, it took
EM algorithm 1 up to 3 minutes to converge. This duration was lower for the system
of the first order and the system of the second order with direct feedthrough (up to
45 seconds), but at the same time, the worse ratio of perfect results was obtained
for these systems.

The learning algorithm had stable behavior. Only 3 identification trials ended
up with fails among 3000 trials provided using this scenario. They all appeared
during identification of the system of the first order (1 for ’1 step’ input signal, 1
for ’2 steps’ input signal and 1 ’3 steps’ input signal).

This scenario was chosen for system identification in all further experiments since
it provided the best estimates of unknown parameters among all learning scenarios.

5.3.6 Analysis of the learning scenario 6
The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.17. The average
iteration amount required for EM algorithm to converge and the average duration
of identification trial for each bunch are presented on the figure 5.18.

The settings of this learning scenario are similar to the settings of scenario 3
(variances σ2

U , σ
2
Y are fixed, the covariance matrix ΣX is not fixed) with the only

difference in the type of the covariance matrix. In this scenario it is assumed to be
diagonal that corresponds to the case of independent state variables. Consequently,
the algorithm has less values to update at each iteration since it does not have to
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Figure 5.17: Results of identification provided using scenario 6

calculate covariances between state variables.
For the system of the first order the identification procedure was analogous to

the one used in scenario 3, since the covariance matrix for the system of the first
order is represented by the variance of a single state variable.

Figure 5.18: Numerical properties of scenario 6

This algorithm was considerably more stable, there was not a single fail among
all 15 000 identification trials. The implementation of this scenario also resulted in
better estimates of parameters. Analogously to the scenario 2, many results that
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were classified as bad have reasonable responses, but slightly higher value of the
cost function. In this scenario, the ratio of reasonable results was higher than in
scenario 3.

Similarly to scenario 3, this learning scenario had issues during identification of
oscillate dynamic systems, but for this scenario the ratio of successful results was
considerably higher. In particular, it was the highest for the setting σ2

exp = 0.1 and it
increased with increasing length of a dataset. Therefore, unlike the scenario 3, this
scenario can be used for oscillate dynamic systems. To increase chances to obtain
proper estimates of parameters, we recommend not to use too small value of fixed
variance σ2

exp.
The average duration of an identification trial was in most cases only several

seconds. For the setting σ2
exp = 0.1 it was slightly higher (up to 30 seconds), but at

the same time, this setting ended up with the most precise estimates.

5.4 Influence of reducing the amount of unknown pa-
rameters

In the previous section, we experimented with the reducing of the amount of un-
known parameters by the setting of variances and the covariance matrix to differ-
ent values. The learning scenario that was chosen based on provided experiments
was the one in which the covariance matrix is set to have a diagonal form and all
variances (for state variables, input and output signals) are not fixed and hence up-
dated simultaneously with unknown parameters of a dynamic system (refer to the
section 5.3.5). Reducing of the amount of unknown parameters can be also achieved
by the setting of weights for some nodes in a corresponding Bayesian network. This
setting can be used, if the prior knowledge about a dynamic system is known.

The best way how to reduce the amount of unknown parameters is to use canon-
ical forms of the state space representation. The resulting state matrices provide
unequivocal description of a dynamic systems and they explicitly contain the coef-
ficients of the corresponding difference equation. Unfortunately, it was not possible
to explore this setting using BNT, since it is not possible to fix separate weights
using this tool. However, it is possible to fix all weights for a node. Therefore,
the influence of the reducing the amount of unknown parameters was studied for
a Bayesian network with fixed weights of the node that corresponds to the output
signal, i.e. the matrix C and the matrix D for a system with direct feedthrough
(for other systems, its value is automatically fixed to zero). The resulting amount
of unknown parameters after reduction can be found in the table 5.7.
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Table 5.7: The amount of unknown parameters in different settings

The type of a 

learning 

scenario 

The type of a considered system 

A system of the 

1st order 

A system of the 

2nd order 

without direct 

feedthrough 

A system of the 

2nd order with 

direct 

feedthrough 

A system of the 

3rd order 

without direct 

feedthrough 

Learning with 

no fixed 

weights 

𝐴 ∈ ℝ1×1, 𝐵 ∈ ℝ1×1, 
𝐶 ∈ ℝ1×1, 

𝜎𝑢
2, 𝜎𝑦

2 

𝜎𝑥1

2  

Total: 6 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 

𝜎𝑢
2, 𝜎𝑦

2, 

𝜎𝑥1

2 , 𝜎𝑥2

2  

Total: 12 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝐶 ∈ ℝ1×2, 𝐷 ∈ ℝ1×1, 

𝜎𝑢
2, 𝜎𝑦

2 

𝜎𝑥1

2 , 𝜎𝑥2

2  

Total: 13 

𝐴 ∈ ℝ3×3, 𝐵 ∈ ℝ3×1, 
𝐶 ∈ ℝ1×3, 

𝜎𝑢
2, 𝜎𝑦

2 

𝜎𝑥1

2 , 𝜎𝑥2

2 , 𝜎𝑥3

2  

Total: 20 

Learning with 

partially fixed 

weights 

(matrices 𝐶 and   

𝐷) 

𝐴 ∈ ℝ1×1, 𝐵 ∈ ℝ1×1, 
𝜎𝑢

2, 𝜎𝑦
2 

𝜎𝑥1

2  

Total: 5 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 

𝜎𝑢
2, 𝜎𝑦

2, 

𝜎𝑥1

2 , 𝜎𝑥2

2  

Total: 10 

𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 
𝜎𝑢

2, 𝜎𝑦
2 

𝜎𝑥1

2 , 𝜎𝑥2

2  

Total: 10 

𝐴 ∈ ℝ3×3, 𝐵 ∈ ℝ3×1, 
𝜎𝑢

2, 𝜎𝑦
2 

𝜎𝑥1

2 , 𝜎𝑥2

2 , 𝜎𝑥3

2  

Total: 17 

 

We used two settings for fixed weights. In the first setting, it was assumed that
the values of parameters in matrices are known from expert knowledge regarding
a considered dynamic system. In the second setting, we assumed that there is no
prior information regarding the parameters and therefore, their values are sampled
from the standard normal distribution and fixed to this sampled value. Conse-
quently, these values are not updated by the learning procedure.

Additional experiments consisted of identification using datasets from 6 dynamic
systems with 5 different input signals (refer to the subsection 5.2.2) for each setting.
Therefore, 60 bunches of identification experiments with 100 identification trials in
a bunch were provided for this experiment. The comparison of results with a setting
with no fixed parameters (obtained in experiment described in the subsection 5.3.5)
are presented on the figure 5.19 and the figure 5.20. The values of matrices C and
D are shown in the titles above plots on the figures.

The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.19. The average
iteration amount required for EM algorithm to converge and the average duration
of identification trial for each bunch are presented on the figure 5.20.

For the setting with assumed presence of expert knowledge, we succeeded to get
undoubtable increasing in the efficiency of system identification for two out of six
considered systems: the system of the first order and the system of the second order
with direct feedthrough. For the system of the first order this setting provided
perfect estimates of parameters in all identification trials. The behavior of the
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Figure 5.19: Results of identification with reduced amount of parameters

system of the second order with feedthrough was perfectly identified in 99% of
cases. For other systems the influence is not as unambiguous. The precision of
obtained estimates evidentially decreased, however the amount of bad results also
decreased in the majority of bunches of identification experiments. In addition, this
setting considerably decreased the amount of unreasonable results (e.g. non-stable
results, zero-valued parameters) for all dynamic systems. Hence, the majority of
identification trials classified as bad had slightly higher value of the associated mean
squared error.

Another advantage, which followed from the reducing of the amount of unknown
parameters, was the decreasing of the duration of identification trial for all consid-
ered systems. In many bunches, identification trials were several times faster with
reduced amount of parameters (up to 5 times) than identification with no fixed
weights.

The performance of the setting with fixing the parameters to values sampled
from the standard normal distribution was similar to the previous setting. The
precision of obtained results decreased, but the ratio of bad results and unreason-
able responses of resulting models also decreased. Their ratio was approximately
the same, as in the setting with included expert knowledge. The only system, for
which these statements were not true, was the system of the second order with
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direct feedthrough. In these bunches of identification trials, the amount of unrea-
sonable responses considerably increased comparing with the setting without fixed
parameters, refer to the figure 5.21 for the examples of such responses.

Figure 5.20: Numerical properties of identification with reduced amount of param-
eters

The numerical properties of two settings with reduced number of parameters
were comparable. The average duration of an identification trial and the average
amount of required iterations were in the same range.

Figure 5.21: Examples of unreasonable results for the system with direct feedthrough
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5.5 Influence of initial parameters on the results of
identification

For the cases, in which a Bayesian network does not have hidden nodes and the
dataset used for learning is complete, the maximum likelihood estimation of pa-
rameters is used for learning. In this setting, the estimates converge to the global
optimum regardless the initial values of unknown parameters. This is applicable,
for example, a Bayesian network based difference equation model.

For state space model, however, the unknown values of state variables have to
be calculated simultaneously with the parameters of a considered dynamic system
and therefore, the EM algorithm has to be used. It looks for the maximum of log
likelihood function iteratively. Since the log likelihood function tends to have local
optima, the choice of initial values of parameters is a key challenge in the learning
procedure. If the initial values are close to true values of parameters, then the
EM algorithm will converge fast to the global optimum. In other cases, however,
reaching of the global optimum cannot be guaranteed.

Zero values of initial parameters are not the appropriate choice, since for most
types of dynamic systems they provided zero estimates after several iterations, refer
to the figure 5.22 for results from such setting. Only for the system of the second
order with direct feedthrough the resulting estimates were not equal to zero, but
they were far from the parameters of a considered system.

Figure 5.22: Results of identification for zero initial values of parameters
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By default, the initial values of parameters in BNT are sampled from the stan-
dard normal distribution. The value from a standard normal distribution is assigned
not only to the weights of a node, but to means, variances and covariance matrix,
if they are not specified explicitly during description of a node’s CPD. The goal of
experiments described in this section was to explore, if we can obtain better per-
centage of successful results with initial values of parameters sampled from different
type of probability distribution. In the first experiment, initial values were sampled
from a normal distribution with different values of variances: σ2 = 0.5, 1, 2. For each
value of variance identification experiments were provided for 6 considered dynamic
systems and 5 considered input signals. In total, 90 bunches of identification trials
were provided, each bunch contained 100 trials.

In the second experiment, the type of used distribution was changed. Initial
parameters were sampled from a uniform distribution with comparable range. The
histograms of the values obtained from a random generator of normally distributed
values are presented on the figure 5.23 (100 values in each case).

Figure 5.23: Values from random generator with different variances

The intervals of uniform distribution, which were chosen for further experiments,
were: < −1; 1 >, < −2; 2 > and < −4; 4 >. For these experiments, 90 bunches of
identification trials were provided, each bunch contained 100 trials. The histograms
of the values obtained from a random generator of uniformly distributed values are
presented on the figure 5.24 (100 values in each case).

Figure 5.24: Values from random generator with different ranges
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The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.25. The average
iteration amount required for EM algorithm to converge and the average duration
of identification trial for each bunch are presented on the figure 5.26.

Figure 5.25: Results of identification for different types of distribution from which
initial parameters were sampled

The results of identification for the oscillate system of the second order did not
differ remarkably for different types of probability distributions and for different
ranges. For other dynamic systems the percentage of perfect results slightly differed
in different settings, but these results cannot be generalized over all considered types
of dynamic systems, since each of them had best results in different settings.

In most cases, increasing of the range of variables caused notable increasing both
in average iteration amount and in the average duration of the identification trial.
Changing of the type of probability distribution used for sampling of initial values
of parameters did not have remarkable effect on numerical properties of the learning
algorithm.

Taking into account the impossibility of generalization, the non-remarkable
changes in precision and the increase in both the amount of iterations and the av-
erage duration, we can conclude, that the changing of the type of used distribution
and the range do not improve the learning procedure used for system identification.

The aim of the next experiment was to explore the influence of the mean of prob-
ability distribution used for sampling. Since there was almost no difference in the
ratio of successful results between different types of considered distributions (nor-
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Figure 5.26: Numerical properties of identification with different types of distribu-
tion from which initial parameters were sampled

mal or uniform), in this experiment only normal distribution with different values
of mean (µ = −2,−1, 0, 1, 2) was used for sampling the initial values of parame-
ters. For this experiment, 150 bunches of identification trials were provided, each
bunch contained 100 trials. The histograms of the values obtained from a random
generator of normally distributed values with different means are presented on the
figure 5.27 (100 values in each case).

Figure 5.27: Values from random generator with different means

The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.28. The average
iteration amount required for EM algorithm to converge and the average duration
of identification trial for each bunch is presented on the figure 5.29.

For the system of the first order, the change of mean for distribution used for
sampling of initial values of parameters remarkably improved the amount of perfect
results. In particular, for settings µ = 1 and µ = 2 the ratio of perfect results was
higher than 90% for each identification bunch, whereas with the default setting it
was only slightly higher than 60%. Increasing of mean had also positive effect on
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Figure 5.28: Results of identification for different means of distribution from which
initial parameters were sampled

the amount of perfect results in all dynamic systems without direct feedthrough.
For a system with direct feedthrough the default setting provided the most precise
results of identification.

Figure 5.29: Numerical properties of identification with different means of distribu-
tion from which initial parameters were sampled

However, the obtained results cannot be generalized over all dynamic systems,
since only one representative from each type was considered in this thesis. But
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this experiment proves that changing of the mean of distribution from which initial
parameters are sampled is a perspective step to increase the ratio of successful
identification results.

The disadvantage of non-default settings for a mean is worse numerical prop-
erties. For all dynamic systems without direct feedthrough moving of mean away
from zero caused notable increasing in both the average amount of iterations and
the average duration of an identification trial.

5.6 Identification of stochastic systems
Unlike theoretical responses, practical measurements provide noisy signals. There-
fore, it is crucial to explore the efficiency of Bayesian networks in the identification
of stochastic systems for their implementation in practical applications.

For the purposes of this experiment, the responses of the considered dy-
namic systems was enriched by noise with the different value of variance: σ2

ϵ =

0, 0.01, 0.02, 0.05, 0.1. The noise was generated from a generator of normally dis-
tributed values with zero value of mean and the corresponding value of variance.
The noise was added both to the output signal and to each state variable. Result-
ing datasets were used for identification of 6 considered systems (table 5.1) with 5
types of input signal (table 5.2). In total, 150 bunches of identification trials were
provided in this experiment, with 100 identification trials in a bunch.

The amounts of results classified to 4 different classes based on the mean squared
error (refer to the subsection 5.2.3) are presented on the figure 5.30.

Figure 5.30: Results of identification for stochastic systems
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Figure 5.31: Results of BNSI for ’1 step’ input signal

For stochastic systems a trial was considered perfect if the mean squared error
was smaller than the variance of noise σ2

ϵ . The good results had slightly higher
value of mean squared error that did not exceed 2 · σ2

ϵ . For the acceptable results
the value of MSE lies in the range from 2 · σ2

ϵ to 10 · σ2
ϵ . For deterministic systems

(the case in which σ2
ϵ = 0), the same boundaries as in the previous experiments

were considered.

Figure 5.32: Results of BNSI for ’2 steps’ input signal
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The learning procedure had the high ratio of successful experiments in all con-
sidered settings. It can be observed from the figure 5.30 that the precision decreased
for higher value of variance, i.e. σ2

ϵ = 0.05 and σ2
ϵ = 0.1. However, increasing of the

length of dataset used for identification increased the ratio of perfect results to the
values comparable with the settings with lower variance of noise signal.

The best results from each identification bunch for the ’1 step’ input signal are
shown on the figure 5.31. In most cases, the result of identification is perfect, except
the aperiodic system of the third order, where learning algorithm approximated the
dataset by an oscillate response. However, it should be pointed out that the dataset
used in this setting for identification did not provide the unequivocal information
regarding the behavior of the considered system (whether it is aperiodic or oscillate),
even by visual assessment. Moreover, taking into account the small amount of
available data (71 points), the high amount of unknown parameters and the high
value of the variance of stochastic signal (σ2

ϵ = 0.1), this result is not unusual. For
longer sequences of input signal this problem did not persisted.

Table 5.8: Comparison of precision for deterministic systems

 The system of the first order The system of the second order 

(aperiodic) 

BN based SI N4SID BN based SI N4SID 

1 step 1.6846 ∙ 10−6 7.2862 ∙ 10−32 1.0730 ∙ 10−5 7.2621 ∙ 10−30 

2 steps 1.1600 ∙ 10−6 2.2260 ∙ 10−31 4.9689 ∙ 10−6 2.2068 ∙ 10−30 

3 steps 1.3308 ∙ 10−6 1.2098 ∙ 10−31 6.6435 ∙ 10−6 9.3426 ∙ 10−31 

4 steps 4.0755 ∙ 10−7 2.4033 ∙ 10−31 6.4319 ∙ 10−6 5.8767 ∙ 10−30 

5 steps 5.1982 ∙ 10−7 8.6436 ∙ 10−32 5.4625 ∙ 10−6 3.2214 ∙ 10−30 

 The system of the second order 

(oscillate) 

The system of the second order 

(with direct feedthrough) 

BN based SI N4SID BN based SI N4SID 

1 step 2.8115 ∙ 10−6 3.3286 ∙ 10−31 2.0803 ∙ 10−5 1.0565 ∙ 10−31 

2 steps 1.7922 ∙ 10−6 9.6402 ∙ 10−32 2.3647 ∙ 10−5 6.1462 ∙ 10−29 

3 steps 1.6120 ∙ 10−6 3.3417 ∙ 10−30 5.8756 ∙ 10−6 9.8368 ∙ 10−31 

4 steps 1.6862 ∙ 10−6 1.1421 ∙ 10−30 2.5839 ∙ 10−5 9.8784 ∙ 10−28 

5 steps 1.6942 ∙ 10−6 3.3883 ∙ 10−31 2.4796 ∙ 10−5 5.1030 ∙ 10−28 

 The system of the third order 

(aperiodic) 

The system of the third order 

(oscillate) 

BN based SI N4SID BN based SI N4SID 

1 step 1.3708 ∙ 10−5 4.4769 ∙ 10−27 5.1663 ∙ 10−5 5.5612 ∙ 10−31 

2 steps 1.1922 ∙ 10−5 5.9595 ∙ 10−30 1.4074 ∙ 10−5 2.7441 ∙ 10−31 

3 steps 1.5818 ∙ 10−5 1.2911 ∙ 10−28 3.0291 ∙ 10−5 4.1082 ∙ 10−30 

4 steps 1.5898 ∙ 10−5 4.7526 ∙ 10−29 2.6119 ∙ 10−5 4.1969 ∙ 10−30 

5 steps 1.5750 ∙ 10−5 3.2338 ∙ 10−27 2.5658 ∙ 10−5 2.0989 ∙ 10−30 
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For the ’2 steps’ input signal (the dataset with 101 points) the algorithm coped
with learning task for all bunches. The best results from these identification exper-
iments are presented on the figure 5.32. The results of identification using longer
sequences of input and output signals were very similar to those obtained for the
’2 steps’ input signal and therefore their closer analysis will be omitted.

The results from identification were compared with the most commonly used
method for identification using state space model, the N4SID. The comparison of
mean squared errors for models obtained using both approaches for the deterministic
setting (σ2

ϵ = 0) can be found in the table 5.8. Even though the BN based SI provided
successful results for all considered cases, the precision of obtained responses was
considerably lower than for the N4SID method.

Table 5.9: Comparison of precision for stochastic systems

 The system of the first order The system of the second order 

(aperiodic) 

BN based SI N4SID BN based SI N4SID 

1 step 0.016414 0.020074 0.019648 0.037743 

2 steps 0.019700 0.021140 0.027212 0.027258 

3 steps 0.017567 0.018105 0.038318 0.038361 

4 steps 0.016818 0.016829 0.025598 0.025852 

5 steps 0.017852 0.018026 0.025548 0.025667 

 The system of the second order 

(oscillate) 

The system of the second order 

(with direct feedthrough) 

BN based SI N4SID BN based SI N4SID 

1 step 0.034306 0.035553 0.013471 0.013444 

2 steps 0.044670 0.044772 0.019570 0.019451 

3 steps 0.045825 0.045890 0.021429 0.021184 

4 steps 0.035270 0.035282 0.017429 0.017398 

5 steps 0.041043 0.041324 0.016693 0.016747 

 The system of the third order 

(aperiodic) 

The system of the third order 

(oscillate) 

BN based SI N4SID BN based SI N4SID 

1 step 0.012876 0.017054 0.031797 0.032348 

2 steps 0.018935 0.019362 0.043625 0.044276 

3 steps 0.016925 0.017193 0.028796 0.029184 

4 steps 0.016942 0.016946 0.051995 0.052035 

5 steps 0.019684 0.019720 0.057377 0.057405 

 

However, for stochastic systems with the highest considered value of the noise
variance (σ2

ϵ = 0.1), the results obtained with BN based SI were more precise than
N4SID for almost all considered cases, except the system with direct feedthrough, re-
fer to the table 5.9. For other values of the noise variance, the BN based SI provided
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more precise results in many cases. In those, in which it did not, the precision was
comparable to the one obtained with N4SID. Therefore, we can conclude that for
considered simulated stochastic systems BN based SI provides the estimates which
were at least comparable to those obtained with N4SID, but in many cases they
were more precise, in particular for higher values of noise.

Therefore, we can conclude that Bayesian networks are an appropriate tool for
identification of stochastic dynamic systems. While their behavior in experiments
on deterministic systems was sometimes unpredictable, in the case of stochastic
signals, it provides appropriate estimates and their precision can be improved by the
increasing of the amount of data in a dataset used for identification. The chances to
reach global optimum of log likelihood function can be increased remarkably by the
several iterations of the learning procedure with different initialization values, the
approach often used for iterative algorithms that optimize functions with multiple
optima. The important question to solve in this context is the required amount of
iterations, since the size of a bunch equal to 100 considered in all experiments in
this thesis may be too high for practical applications. This question is addressed in
the chapter 6.

Figure 5.33: Numerical properties of identification for stochastic systems

An important thing to assess are the numerical properties of the learning pro-
cedure during identification of stochastic dynamic systems. The average iteration
amount required for EM algorithm to converge and the average duration of identi-
fication trial for each bunch are presented on the figure 5.33. As it can be observed
from plots, both the average duration and the average amount of iterations de-
creased with increasing variance of noise for the majority of cases. In particular, for
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values of noise variance σ2
ϵ = 0.05 and σ2

ϵ = 0.1, this values drastically decreased
for almost all considered dynamic systems. This unusual behavior indicates, that
Bayesian networks can flourish the most in the identification of stochastic systems
with higher noise.

5.7 Searching for the optimal system order
The simulated responses of stochastic systems were also used for exploring the pro-
posed approach to order selection. In identification experiments provided so far in
the thesis, it was assumed that the order of a considered system is known (we used
the same order as the order of a transfer function from which a corresponding dataset
was obtained). In many practical applications the appropriate order is not known
in advance and therefore it has to be chosen during identification. The common
approach to deal with this task is to use a penalized goodness-of-fit criterion, for
example Akaike information criterion (AIC). We propose to use scoring functions
from Bayesian network framework that are used for the choice of the most appro-
priate structure of a network in structure learning procedures. These scores assess
how well the graph with estimated parameters fit training data. Consequently, the
order selection approach is consistent with the parameter estimation approach.

Verifying of the proposed approach was provided for all previously considered
stochastic dynamic systems. For this purpose, we used the available responses on the
‘3 steps’ input signal with different influence of noise. The identification procedure
was provided with three different values of system order for each case. For the
aperiodic dynamic systems, the values of orders were set to n = 1, 2, 3, for the
oscillate dynamic systems they were set to n = 2, 3, 4.

Table 5.10: Amount of independent parameters

The order of a 

dynamic system 
The amount of unknown parameters (𝐷𝑖𝑚) 

Unknown parameters # 

1 order 𝐴 ∈ ℝ1×1, 𝐵 ∈ ℝ1×1, 𝐶 ∈ ℝ1×1 3 

2 order 𝐴 ∈ ℝ2×2, 𝐵 ∈ ℝ2×1, 𝐶 ∈ ℝ1×2 8 

3 order 𝐴 ∈ ℝ3×3, 𝐵 ∈ ℝ3×1, 𝐶 ∈ ℝ1×3 15 

4 order 𝐴 ∈ ℝ4×4, 𝐵 ∈ ℝ4×1, 𝐶 ∈ ℝ1×4 24 

 

We considered two most common scoring functions: likelihood (LL) score and
Bayesian information criterion (BIC). The LL score is the value of log likelihood
function for a graph accompanied with appropriate maximum likelihood estimate
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of parameters given a dataset. In BNT, this value is the last value of log likelihood
stored by the EM algorithm.

When the likelihood score is used for learning of Bayesian network structure, it
has in general the tendency to overfit training data. This results in the most com-
plicated structure allowed by constraints (the structure with all allowed connections
between nodes). The task of order selection is a little bit different, since we pick
the most appropriate length of the state vector with the unchanged structure of
underlying Bayesian network and therefore this behavior does not necessarily have
to manifest itself.

Table 5.11: Values of likelihood score for different systems

System order The likelihood score 

𝜎2 = 0 𝜎2 = 0.01 𝜎2 = 0.02 𝜎2 = 0.05 𝜎2 = 0.1 

The system of the first order 

1 order -42.4009 -44.0396 -46.2502 -74.0217 -133.6388 

2 order -34.2469 -34.2257 -36.9023 -72.4196 -133.5091 

3 order -35.6872 -50.3238 -42.1659 -87.6672 -131.2771 

The system of the second order (aperiodic) 

1 order -163.0102 -162.8812 -165.1009 -168.8811 -191.2833 

2 order -41.2098 -43.6975 -49.4952 -93.9581 -161.7276 

3 order -42.5962 -45.8280 -52.4308 -96.6489 -160.7066 

The system of the second order (oscillate) 

2 order -34.7784 -38.9446 -51.0174 -107.3522 -187.6088 

3 order -39.5889 -55.1811 -56.4349 -115.3526 -187.5080 

4 order -36.3149 -44.9766 -54.8316 -104.5780 -185.4907 

The system of the second order (with direct feedthrough) 

1 order -34.2857 -36.6002 -40.8416 -77.4575 -144.3546 

2 order -38.1817 -40.0226 -44.1678 -77.2657 -140.4928 

3 order -31.9562 -33.9289 -38.8882 -75.2022 -143.5438 

The system of the third order (aperiodic) 

1 order -165.4095 -165.6204 -165.1444 -173.0079 -188.3180 

2 order -37.1941 -39.5093 -45.3383 -71.1908 -131.8939 

3 order -38.8759 -40.7717 -44.6917 -76.6351 -129.1940 

The system of the third order (oscillate) 

2 order -83.3480 -86.4709 -97.4722 -128.1858 -182.5234 

3 order -56.3998 -52.2547 -59.4173 -105.9906 -159.4327 

4 order -40.1203 -50.9019 -61.1608 -110.0141 -159.3487 

 

The BIC score is a penalized modification of the likelihood score. It is used
more often for structure learning of Bayesian networks than the likelihood score
due to its ability to trade-off model complexity versus accuracy using regularization
techniques. The score penalizes the structures with higher amount of independent
parameters, and asymptotically approaches the underlying structure of a considered
Bayesian network for big training sets (M → ∞). However, for small training sets
the BIC score tends to underfit the dataset, because it penalizes the structure too
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hard. Therefore, it often chooses the simplest structure allowed by constraints The
BIC score can be calculated using the following formula:

BIC = LL− logM

2
·Dim. (5.4)

In the equation (5.4) LL is the value of the likelihood score, M is the number of
training examples and Dim is the dimension of a graph expressed by the number of
independent parameters in a graph. In the context of the system identification task,
the dimension of a graph can be expressed by the number of unknown parameters in
the state space model of a corresponding order. The amount of unknown parameters
for SISO systems without direct feedthrough is listed in the table 5.10. For systems
with direct feedthrough, we have to add one additional parameter for a dynamic
system of arbitrary order (D ∈ R(1×1)). For MIMO systems, the amount of unknown
parameters should be adjusted appropriately.

Table 5.12: Values of BIC score for different systems

System order The BIC score 

𝜎2 = 0 𝜎2 = 0.01 𝜎2 = 0.02 𝜎2 = 0.05 𝜎2 = 0.1 

The system of the first order 

1 order -49.7137 -51.3524 -53.5630 -81.3345 -140.9516 

2 order -53.7477 -53.7265 -56.4031 -91.9204 -153.0099 

3 order -72.2512 -86.8878 -78.7299 -124.2311 -167.8411 

The system of the second order (aperiodic) 

1 order -170.3230 -170.1940 -172.4137 -176.1938 -198.5961 

2 order -60.7106 -63.1983 -68.9960 -113.4589 -181.2284 

3 order -79.1602 -82.3920 -88.9948 -133.2129 -197.2705 

The system of the second order (oscillate) 

2 order -54.2792 -58.4453 -70.5182 -126.8530 -207.1096 

3 order -76.1529 -91.7451 -92.9989 -151.9166 -224.0720 

4 order -94.8173 -103.4789 -113.3339 -163.0804 -243.9931 

The system of the second order (with direct feedthrough) 

1 order -44.0361 -46.3506 -50.5920 -87.2078 -154.1050 

2 order -60.1201 -61.9609 -66.1062 -99.2041 -162.4312 

3 order -70.9578 -72.9305 -77.8898 -114.2038 -182.5454 

The system of the third order (aperiodic) 

1 order -172.7223 -172.9332 -172.4572 -180.3207 -195.6308 

2 order -56.6949 -59.0101 -64.8391 -90.6916 -151.3947 

3 order -75.4399 -77.3357 -81.2557 -113.1991 -165.7580 

The system of the third order (oscillate) 

2 order -102.8488 -105.9717 -116.9730 -147.6866 -202.0242 

3 order -92.9638 -88.8187 -95.9812 -142.5546 -195.9967 

4 order -98.6227 -109.4042 -119.6631 -168.5165 -217.8511 

 

The values of the likelihood score for the best result from each bunch of iden-
tification experiments are shown in the table 5.11. The maximum value of the
likelihood score for each considered setting is highlighted with bold font. As it was
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already mentioned, when used for structure learning, the likelihood score tends to
overfit a dataset and choose the most complicated structure allowed by constraints.
In the context of order selection task, however, this behavior did not manifest.

The values of BIC score for the best result from each bunch of identification
experiments are shown in the table 5.12. The maximum value of BIC score for
each considered setting is highlighted with bold font. As it was already mentioned,
when used for structure learning, the BIC score tends to underfit a dataset. In the
context of order selection task, however, this behavior did not manifest. Moreover,
the BIC score suggested to use the same order, as the order of the transfer function
from which a dataset was generated for the system of the first order, both aperiodic
and oscillate systems of the second order and the oscillate system of the third order
for all considered values of the variance of noise signal. For the system of the second
order with direct feedthrough and the aperiodic system of the third order, the BIC
score managed to approximate the responses with the transfer functions of the or-
der one less than the original value of an order (the first and the second respectively).

Table 5.13: Orders suggested by scoring functions and AIC

 System of the first 

order 

System of the 

second order 

(aperiodic) 

System of the 

second order 

(oscillate) 

LL 

score 

BIC 

score 

AIC 

score 

LL 

score 

BIC 

score 

AIC 

score 

LL 

score 

BIC 

score 

AIC 

score 

𝜎2 = 0 2 1 1 2 2 2 2 2 3 

𝜎2 = 0.01 2 1 1 2 2 3 2 2 2 

𝜎2 = 0.02 2 1 1 2 2 2 2 2 2 

𝜎2 = 0.05 2 1 2 2 2 2 4 2 2 

𝜎2 = 0.1 3 1 1 3 2 2 4 2 2 

 System of the 

second order (with 

direct feedthrough) 

System of the third 

order (aperiodic) 

System of the third 

order (oscillate) 

LL 

score 

BIC 

score 

AIC 

score 

LL 

score 

BIC 

score 

AIC 

score 

LL 

score 

BIC 

score 

AIC 

score 

𝜎2 = 0 3 1 2 2 2 3 4 3 3 

𝜎2 = 0.01 3 1 3 2 2 3 4 3 3 

𝜎2 = 0.02 3 1 2 3 2 3 3 3 3 

𝜎2 = 0.05 3 1 2 2 2 3 3 3 3 

𝜎2 = 0.1 2 1 2 3 2 3 4 3 3 
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The efficiency of scoring functions was compared with Akaike’s information cri-
terion (AIC). This criterion was implemented using aic function from the System
identification toolbox in MATLAB.

The comparison of orders suggested by scoring functions from Bayesian network
framework and from AIC are shown in the table 5.13. It can be seen that while the
LL score was prone to overfitting, the BIC score chose smaller value of system order
for two out of six considered dynamic systems. In other settings, the behaviour
of the latter was similar to the behaviour of AIC. However, in some settings, AIC
tended to choose higher order than the order of a transfer function from which
a corresponding dataset was generated.
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6 Verification of the proposed approach on
real systems

All experiments described so far in the thesis were provided on simulated responses
of dynamic systems. The noise signals were generated using a random number
generator of normally distributed variables. The generated sequences were added to
the output signal and each state variable.

Verification of the proposed approach to system identification required datasets
influenced by real noise that does not necessarily come from normal distribution
in practical measurements. Therefore, we searched for physical systems (aperiodic
and oscillate) that can be used for verification. The main requirements were: the
linearity of considered systems, the presence of noticeable noise and easy manipu-
lation. The laboratory equipment used for teaching control theory classes at the
Technical university of Liberec fulfilled all these requirements. The first equipment
is a heating device, the second equipment is a DC motor connected to a dynamo
with an elastic clutch. Both dynamic systems have linear behavior in the proximity
to an operational point and therefore the tools for analysis of linear dynamic systems

(a) Aperiodic system (b) Oscillate system

Figure 6.1: Identification measurements provided on laboratory equipment
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can be used if the appropriate preprocessing (excluding of the response representing
the transfer to an operational point and moving of remaining responses to an op-
erational point) is provided. The identification measurement for the first dynamic
system is shown on the figure 6.1a, the behavior of a system is aperiodic. The iden-
tification measurement for the second dynamic system is shown on the figure 6.1b,
the system has noticeable oscillations.

Table 6.1: Design choices in identification procedure

Dynamic system Considered sampling rates Considered orders 

The aperiodic system 𝑑𝑡 = [1 2 5 10 20] 𝑛 = [1 2 3] 

The oscillate system 𝑑𝑡 = [0.05 0.1 0.2 0.5 1] 𝑛 = [2 3 4] 

 

The efficiency of Bayesian network based approach to system identification for
different values of sampling rate was explored. For this purpose, five different sam-
pling rates were chosen for each dynamic system. We assume that no prior informa-
tion regarding the order of considered dynamic systems is available and therefore the
identification using state space representation of different orders is provided. The
information regarding considered sampling rates and system orders can be found
in the table 6.1. Identification measurements were reduced with respect to chosen
sampling rates. Resulting datasets for the aperiodic system are shown on the fig-
ure 6.2 and for the oscillate system on the figure 6.3. These datasets were used in
the identification experiments described in the following sections.

Figure 6.2: Datasets used for identification of the aperiodic system
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The efficiency of Bayesian network tools for order selection was explored in look-
ing for the most appropriate order of a final description. For this purpose, two
scoring functions (likelihood score and BIC score) were utilized.

Figure 6.3: Datasets used for identification of the oscillate system

For this experiment, 15 bunches of identification trials with 100 identification
trials in each bunch were provided for each considered dynamic system. The iden-
tification procedure was provided according to the learning scenario 5 (refer to the
subsection 5.3.5) with initial values of parameters sampled from the standard nor-
mal distribution (the default setting, refer to the section 5.5). For each bunch of
identification trials, the best result was chosen, i.e. the one with the lowest value of
the mean squared error.

6.1 Identification of the aperiodic dynamic system
Results of Bayesian network based system identification for the aperiodic dynamic
system are presented on the figure 6.4. The corresponding value of a mean squared
error can be found in the title of each plot. The results of identification using
N4SID method are presented on the figure 6.5. These results were obtained using
the function n4sid from System Identification Toolbox in MATLAB. Identification
with default arguments ended up with several unsuccessful results and therefore the
stability of resulting systems was enforced.

The comparison of mean squared errors for Bayesian networks and N4SID shows
that the precision of obtained estimates using Bayesian networks is comparable with
N4SID and in particular cases (for higher values of a sampling rate) is slightly better.

The disadvantage of Bayesian networks in comparison with N4SID is the dura-
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Figure 6.4: Results of BNSI for the aperiodic system

tion of identification procedure. Since initialization of initial values of parameters
is required for the EM algorithm used for learning of Bayesian networks, it is im-
portant to explore the required amount of initializations. For this purpose, for each
considered setting the minimal value of the cost function J (mean squared error)
was calculated for different amount of initializations. The resulting plots are pre-
sented on the figure 6.6. It can be seen, that for the considered system the minimum

Figure 6.5: Results of identification using N4SID for the aperiodic system
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Figure 6.6: Precision of results for different amount of initializations for the aperiodic
system

value of the cost function was quite low even for the small amount of initializations.
However, the increasing of the amount of initializations provided slightly better
estimates. Therefore, it can be concluded that the amount of required iterations
depends on the precision requirements.

Table 6.2: Values of scoring functions for the aperiodic system

Order Sampling rate 

𝑑𝑡 = 1 𝑑𝑡 = 2 𝑑𝑡 = 5 𝑑𝑡 = 10 𝑑𝑡 = 20 

The likelihood score 

1 order 184.8600 93.8935 37.8029 19.8160 9.1741 

2 order 185.0481 93.2992 37.9647 19.8892 8.9427 

3 order 193.5730 93.1944 37.6531 19.8426 8.7602 

The BIC score 

1 order 175.3284 85.3991 30.6855 13.7253 4.1232 

2 order 159.6307 70.6474 18.9850 3.6475 -4.5265 

3 order 145.9153 50.7222 2.0661 -10.6108 -16.4946 

 

Order selection was provided using likelihood score and BIC score, their values
are given in the table 6.2. The maximum values of scores for each considered case
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are highlighted with bold font. The likelihood score suggested to use higher order
for smaller sampling rate, but did not have the general tendency to overfit training
data. The BIC score suggested to use the description of the first order for each
considered sampling rate.

Table 6.3: Suggested orders for the aperiodic system

System order Orders suggested by scores 

𝑑𝑡 = 1 𝑑𝑡 = 2 𝑑𝑡 = 5 𝑑𝑡 = 10 𝑑𝑡 = 20 

Likelihood score 3 2 2 2 1 

BIC score 1 1 1 1 1 

Common scores 3 3 2 2 1 

 

The system orders suggested by scoring functions were compared to the orders
suggested by the AIC, refer to the table 6.3. The AIC proposed to use the description
of the third order for lower values of sampling rate, and the value of suggested order
decreased with increasing sampling rate.

Figure 6.7: Comparison between BNSI and N4SID with optimal order for the ape-
riodic system

To access the efficiency of system identification procedure including order selec-
tion, the comparison between results obtained from BNSI with optimal order and
N4SID with optimal order was provided. Responses from corresponding models for
each considered sampling rate are shown on the figure 6.7. In the legend, the values
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of mean squared error are listed. It can be seen, that responses obtained from the
learning procedure using both scoring functions provided slightly worse, but compa-
rable results with N4SID method in all settings except the one with sampling rate
dt = 20s, in which BNSI provided more precise model.

6.2 Identification of the oscillate dynamic system
Results of Bayesian network based system identification for the oscillate dynamic
system are presented on the figure 6.8. The corresponding value of a mean squared
error can be found in the title of each plot.

Figure 6.8: Results of BNSI for the oscillate system

In general, the oscillate dynamic systems are more complicated to identify than
the aperiodic systems and are more prone to unsuccessful results. In particular,
the issues are caused by the fact that the identification procedure has to distinguish
between the natural oscillations of considered system and the influence of noise. If it
fails in this task, it approximates the oscillate behavior by the aperiodic description
of dynamic systems. This issue becomes more challenging if the chosen sampling
rate is not appropriate. Too high value of sampling rate causes the identification
procedure to misclassify oscillations as noise (see results of different order for dt = 1

on the figure 6.8), too low value sampling rate may cause numerical problems since
the original discrete description of dynamic systems contains very small values of
coefficients (their value may even be comparable with the magnitude of a noise
signal).
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Figure 6.9: Results of identification using N4SID for the oscillate system

The learning algorithm succeeded to get appropriate behavior for all dynamic
systems with sampling rate dt < 1. The N4SID method was not as successful,
see figure 6.9. During identification procedure, the stable behavior of resulting
descriptions was enforced to eliminate non-stable results obtained from the N4SID
algorithm. The precision of obtained estimates in the terms of mean squared error
for Bayesian networks was better for all considered settings.

Analogously to the aperiodic system, the amount of iterations required to ob-
tain satisfying precision was analyzed. The minimum value of the cost function for
different amount of initializations in each setting is shown on the figure 6.10. Anal-
ogously to the aperiodic system, the precision of obtained results was good even
for the small amount of iterations, and it was decreasing with increasing amount of
initializations.

The last task that had to be addressed for the oscillate system was the selection
of the optimal order of resulting description. Analogously to the aperiodic system,
order selection was provided using likelihood score and BIC score. Their values for
each considered case are shown in the table 6.4, the maximal values of scores for
each sampling rate are highlighted with bold font. They correspond to the suggested
value of system order.

The likelihood score did not show the general tendency to overfit the training
data. For three out of five sampling rates it suggested to use the highest considered
order (fourth order), but for sampling rate dt = 0.1s the optimal order was the
lowest one (second order), and for the sampling rate dt = 0.2s the likelihood score

145



Figure 6.10: Precision of results for different amount of initializations for the oscillate
system

indicated, that the third order is the best one to pick. The BIC score proposed to
use the description of the second order in all cases except the one with sampling
rate dt = 0.2s, in which the description of the third order was suggested.

Table 6.4: Values of scoring functions for the oscillate system

Order Sampling rate 

𝑑𝑡 = 0.05 𝑑𝑡 = 0.1 𝑑𝑡 = 0.2 𝑑𝑡 = 0.5 𝑑𝑡 = 1 

The likelihood score 

2 order -323.4572 -208.7061 -111.7674 -202.4485 -187.2146 

3 order -307.8886 -208.7803 -57.7851 -198.1311 -187.2997 

4 order -303.9422 -218.8368 -63.1477 -198.0896 -186.8842 

The BIC score 

2 order -353.3992 -235.8755 -136.1687 -223.1981 -205.2138 

3 order -364.0298 -259.7228 -103.5375 -237.0365 -221.0483 

4 order -393.7681 -300.3449 -136.3515 -260.3382 -240.8819 

 

The system orders suggested by scoring functions were compared to the orders
suggested by AIC, refer to the table 6.5. Similarly to the LL and BIC scores, the
AIC proposed to use different values of system order for different sampling rates.
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Table 6.5: Suggested orders for the oscillate system

System order Orders suggested by scores 

𝑑𝑡 = 0.05 𝑑𝑡 = 0.1 𝑑𝑡 = 0.2 𝑑𝑡 = 0.5 𝑑𝑡 = 1 

Likelihood score 4 2 3 4 4 

BIC score 2 2 3 2 2 

Common scores 4 2 4 3 3 

 

To access the efficiency of system identification procedure including order selec-
tion, the comparison between results obtained from BNSI with optimal order and
N4SID with optimal order was provided. Responses from corresponding models
for each considered sampling rate are shown on the figure 6.11. The responses are
reduced for better visualization. In the legend, the values of mean squared error
are listed. It can be seen that responses obtained from the learning procedure us-
ing both scoring functions provided more precise results than N4SID method in
the terms of mean squared error in all considered settings. Although, BNSI failed
to distinguish oscillate behavior of a considered system for sampling rate dt = 1s,
N4SID completely failed to properly identify the system in this setting.

Figure 6.11: Comparison between BNSI and N4SID with optimal order for the
oscillate system
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7 Contributions of the thesis and directions
for further research

On the basis of provided experiments, it can be concluded, that the presented ap-
proaches to parameter estimation and order selection using Bayesian networks can
be used for system identification of dynamic systems. The thesis contributes both
to a scientific field (section 7.1) and to practice (section 7.2). The directions for
further research are proposed in the section 7.3.

7.1 Contributions to a scientific field
The thesis brings the following contributions to a scientific field:

• A new approach to the identification of dynamic systems, Bayesian network
based system identification (BNSI), was proposed and verified in this thesis
(refer to the chapter 5 and the chapter 6).

• The new approach was enriched by the order selection procedure proposed
and verified in the section 5.7).

• Models of dynamic systems based on difference equation (section 4.1) and state
space representation (section 4.2) were formulated using Bayesian network
framework.

• Bayesian network based state observers were proposed in the section 4.3.

• Extensive literature review is provided in the chapter 1. It includes the
overview of the most prominent system identification techniques (section 1.1),
the synopsis of the genesis and development of Bayesian networks with the
overview of their recent implementations (section 1.2) and the state of the
art in the interconnection between Bayesian networks and control systems
engineering (section 1.3).

148



7.2 Contributions to practice
The thesis brings the following contributions to practice:

• A general software-independent methodology of Bayesian network based sys-
tem identification is formulated in the section 5.1. Implementation of BNSI
for state space model of dynamic systems in BNT is discussed in details in the
subsection 5.2.1.

• The Bayesian network based models of dynamic systems presented in the
chapter 4 can be used for system identification, monitoring, state estimation
and control of technological processes

• The literature review contains references to the plenty of practical implemen-
tations of Bayesian networks in control systems engineering (section 1.3) and
beyond (section 1.2).

7.3 Directions for further research
Since this thesis proposes a new approach to system identification, we can suggest
many directions for further research in this area. Some of them follow from the
experiments provided in the scope of this thesis, other suggestions are more general.

The suggestions that follow from the conducted experiments aim to decrease
the time of identification cycle and the amount of required initializations of initial
parameters. The former challenge can be addressed by the implementation of the
learning procedure using context-specific functions in other programming language
than MATLAB for providing more efficient code (e.g. C/C++). For the latter
issue, more systematic study of the influence of the mean of distribution for initial
parameters in the EM algorithm can be beneficial. Another way for addressing
this issue is the implementation of different algorithms for parameter estimation in
Bayesian networks.

General suggestions for further research are connected with the extensions of
Bayesian network based models of dynamic systems presented in this thesis.

One of the strong assumptions made for models of dynamic systems discussed
in this thesis was the linearity of considered systems. It is important to point out,
that Bayesian networks do not put any restrictions on the type of used connec-
tions between random variables [1]. However, available software packages mostly
support only linear type of interconnection and hence using of other (possibly non-
linear) functions requires the adaptation of inference and learning algorithms. Less
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demanding way to incorporate nonlinear dependencies between random variables
is linear approximation. This approach to modelling of BN-based dynamic models
was proposed by R. Deventer et al. [213]. Authors show, how a hybrid Bayesian
networks (a network with both discrete and continuous nodes) designed on the ba-
sis of a piecewise linear approximation with several base points can serve for this
purpose. For more information on this approach refer to [12].

The normality of all considered variables is another strong assumption made for
models in this thesis. Since it may not be always fulfilled in practical applications, it
is important to discuss, how it can be relaxed. Analogously to the previous assump-
tion, this one was also caused by the software restrictions and not by the limitations
of Bayesian networks. Theoretically, Bayesian networks can describe random vari-
ables with arbitrary distribution, however the representatives of exponential family
will be the easiest for implementation, refer to [1]. For less demanding approach
we can again use approximations. Since nearly any continuous distribution can be
approximated by the mixture of sufficient amount of Gaussian distributions [27], we
can use mixtures instead of normally distributed variables. The mixture of Gaussian
distributions can be elegantly implemented by a hybrid Bayesian network, but this
approach can bring additional computational burden.

Models presented in this thesis can be enriched to model wider range of dy-
namic systems. For example, continuous-time dynamic systems can be modelled
by a continuous time Bayesian network (CTBN), presented by U. Nodelman et
al. [228, 229]. A CTBN is an extension of a DBN based on continuous-time Markov
processes that describe a model evolving over continuous time. In addition, this
model does not put any restrictions on acyclicity and hence feedback loop can be
implemented explicitly. The combination of a continuous-time and a discrete-time
dynamic Bayesian network, called a hybrid-time Bayesian network, was proposed
by M. Liu et al. [230].

For demanding technological processes further extensions of the DBN structure
can be used, e.g. adaptive BNs [231], time-varying BNs [232], infinite BNs [233].

Another way to cope with the complexity of considered dynamic systems mod-
elled by a dynamic Bayesian networks is to divide their structure into factors that
are treated separately. This approach is used particularly for efficient tracking of
technological processes. The decomposition of a BN structure can be provided by
Boyen-Koller algorithm [234], distributed decentralized extended Kalman filter [235],
heuristic techniques [236], factored particle filtering [237] or factoring using struc-
tural observability [238].
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8 Conclusion

Bayesian networks have become one of the main tools for reasoning under the in-
fluence of uncertainties in artificial intelligence community. They are particularly
useful for situations that incorporate partial expert knowledge and partially ob-
served data. Their further advantages are modularity and the ability to generalize
over a wide set of models. The former follows from the separation of representation
(principles of model composition) and reasoning (inference and learning algorithms)
and the latter allows implementation of well-known models and their combinations
using Bayesian networks framework. In combination, these advantages create the
huge field of potential implementations for Bayesian networks. Most of the algo-
rithms in Bayesian network framework are not application-specific and hence they
can be used for broad range of practical applications. Since the framework is con-
stantly evolving, new techniques can be adopted in control systems engineering,
provided that the bridging between them has been created.

The review over available literature (section 1.3) has proven, that the providing
of this bridging is the ongoing topic of research. In particular, Bayesian networks
were successfully used for monitoring and control of dynamic systems. The in-
terconnection between Bayesian networks and system identification, however, was
not addressed in available literature, and therefore, bridging of these two scientific
branches was the main aim of this thesis.

Using of Bayesian networks for reformulation of difference equation and state
space representation of dynamic systems was proposed by R. Deventer [12]. This
modelling paradigm was adopted in this thesis. On its basis, models of dynamic
systems based on static and dynamic Bayesian networks were designed (section 4).
In addition, the potential of state space based Bayesian network structures as the
new type of state observers was discussed in the section 4.3. These structures can be
used separately or in combination with traditional state observers (i.e. Luenberger
observer and Kalman filter).

The thesis proposes a new approach to system identification using algorithms
from the Bayesian network framework in the section 5.1. The efficiency of Bayesian
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network based system identification procedure was studied for the state space based
Bayesian network structure using the simulated deterministic responses of the most
popular types of dynamic systems. The influence of different settings in the learning
procedure on the required computation time and the precision of resulting estimates
was explored (sections 5.3, 5.4 and 5.5).

Firstly, the influence of incorporating the expert knowledge in the form of vari-
ances of input and output signals and correlation matrix for state variables was
explored in the section 5.3. The precision, duration and numerical stability of cal-
culations differed depending on a setting and the type of a dynamic system. The
optimal setting, which was chosen for further experiments, was the one with diago-
nal type of covariance matrix (refer to the subsection 5.3.5). Although, this setting
was not the fastest and was not the most precise for some types of dynamic sys-
tems (i.e. the system of the first order and the system with direct feedthrough), it
was numerically stable and its precision did not depend on the amount of available
data. For all considered systems it provided perfect results in more than a half of
iterations.

Secondly, the influence of incorporating the expert knowledge in the form of
partial information regarding parameters was explored in the section 5.4. The fixing
of parameters had positive effect on the precision for the system of the first order and
the system with direct feedthrough. For other systems, the precision of obtained
estimates decreased. The other approach explored in this section was to sample
some parameters from standard normal distribution and fix them (exclude them
from learning). The increase in precision was observed only for the system of the
first order in this setting.

Finally, the influence of initial values of parameters was explored (section 5.5).
Setting of their values to zero did not provide correct parameter estimates for all
considered dynamic systems and therefore they were sampled from a random gen-
erator. Two types of generators (uniform and normal) with different parameters
(mean, variance and range) were used. Experiments showed, that the type of used
generator and the value of variance (for normal distribution) or range (for uniform
distribution) had little to no effect on the precision of obtained estimates. The influ-
ence of mean on the precision of obtained estimates was more noticeable, however,
it differed for the different types of dynamic systems and could not be generalized.
Therefore, the type of chosen distribution was standard normal distribution.

Verifying of the designed Bayesian network based system identification proce-
dure was provided on simulated responses of considered dynamic systems enriched
by the influence of white noise with different variance (section 5.6). The precision

152



of obtained results was compared with traditional method used for system identifi-
cation of state space models (N4SID). For deterministic systems, Bayesian network
based system identification was less precise than N4SID, but for stochastic systems
its precision was at least comparable and in many cases better than the precision of
N4SID.

Order selection approach based on the tools from Bayesian network framework
was proposed and verified in the section 5.7. The efficiency of two scoring functions
was explored. Likelihood score had a tendency to choose higher order, than the order
of system from which data were simulated, but its penalized modification, Bayesian
information score, suggested the same order for the majority of considered dynamic
systems. The exceptions were the system of the second order with direct feedthrough
and the aperiodic system of the third order. In both cases, Bayesian information
score suggested to use the description of order one less than the original value.
Obtained results were compared to the orders suggested by Akaike’s information
criterion.

The proposed approach to system identification including proposed order selec-
tion technique was verified on the responses of real dynamic systems (section 6).
The efficiency of BNSI was explored for different values of sampling time. For the
aperiodic dynamic system the precision of obtained models was comparable with the
models estimated using N4SID. For the oscillate dynamic system, BNSI overcame
N4SID in precision of obtained estimates for all considered values of sampling rate.
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