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Abstract

The paper is devoted to the parallel solution of the two-dimensional stationary
reaction-diffusion problem. By the usage of parallel approach to the linear algebra representa-
tion we create the parallel algorithm for computing a numerical solution of the
two-dimensional stationary reaction-diffusion problem. We compare calculation times
of computing the approximate solution of the system of (linear) difference equations for
different sizes of the system matrix by the numerical conjugate gradient method on 1, 2, 3,
and 4 processors, respectively.

Keywords: Stationary reaction — diffusion problem, parallel linear algebra, finite difference
method, conjugate gradient method.

Introduction

Our model problem is represented by the stationary reaction-diffusion equation, which dis-
cretization via the finite difference method leads to the system of linear algebraic equations.

We choose the numerical conjugate gradient method for solving the system of linear al-
gebraic equations in this paper and we try to apply this method in parallel algorithm imple-
mented in Fortran. The aim of this paper is to find how we save the calculating time compu-
ting the system of linear algebraic equations on 2, 3, or 4 processors instead of on one proces-
sor. We perform our calculation in numerical experiment in which we compute the vector of
the approximate solution (for different mesh sizes of the grid) of the system of linear differ-
ence equations by the conjugate gradient method.

We have discussed the analogous problem using the method of steepest descent in [1].

1. Setting of Stationary Reaction-Diffusion Problem

We consider the two-dimensional boundary value problem in this chapter. It is the analogy
of a one-dimensional boundary value problem mentioned in [2].
The task is to find a function u: Q — R fulfilling the stationary reaction-diffusion equation
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where f: Q — R is the given function and where g: 6 Q — R represents a Dirichlet boundary
condition.



For mneN we bring up (m+1)x(n+1) of evenly spaced points X, =|x,»,|=
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For every regular knot X, ;we use three-point stencil for approximation the second deriv-
atives, i.e.
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Applying this to (1) we obtain the difference equations for the regular knots X, , = [xi, ij, it
means we have the equations of the form
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This is the standard five-point scheme. The approximate values of the sought function u
in knots of the given grid are represented by the numerical solution of the system of (linear)
algebraic equations

AU =F (3)
with an unknown vector
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and a matrix A, which we can write in the following way
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| is the identity matrix, and O is the zero matrix. As well as the vector of the right side of the
mentioned system of (linear) difference equations we can write as follows
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According to (2) we consider the following Dirichlet boundary conditions:
U,=2(X,) U,=gx,,) Yi=1,2,....,m—1,
U, =g(X,,) U,,=gx,,) Yj=12..,n-1.

2. Parallel approach to the solution of the system of linear algebraic equations
2.1. Matrix mapping in parallel linear algebra

The way, in which the matrix is mapped on the net of processors, determines efficiency and
elegance of an algorithm in most the cases. We have chosen the striped mapping cyclically by
rows of a matrix for our stationary reaction-diffusion problem.

2.2. The striped mapping of the matrix cyclically by rows

In this paragraph we describe how we map a matrix using MPI in parallel algorithms.

Let us assume that there is given the matrix A of the mentioned shape and of the type
(n, n). In the parallel algorithm we work generally on p processors. The first task is to map the
matrix A onto the particular processors. The matrix A will be mapped by the striped mapping
cyclically by rows onto the particular processors. The striped mapping assumes that the pro-
cessors are connected into the linear virtual array and that they are numbered 0, 1,2, ..., p—1,
where p is the number of used processors, in general. The matrix A (denoted A_global) is
generated and known only by so called master processor. The master processor distributes
data (the row vectors of the matrix A) into the particular processors. We obtain new matrices
(denoted A_local) of the type ( n/p1, n), where n is the number of rows of original matrix and
where p is the number of used processors, by the data distribution. Matrices “A_local” consist
of the appropriate rows of the matrix A.



The analogous situation is true for mapping the vector F (of the right side of the system
of linear algebraic equations). There is one small difference, only one element (not the whole
row) is sent in every step of the distribution.

2.3. Product of a matrix and of a vector in parallel algorithm

We use the iterative methods for solving the system of linear algebraic equations. Part of eve-
ry iterative method is the product of a matrix and of a vector. That is why we describe product
of a matrix A and of a vector U from the matrix equation

AU =F
using MPI in parallel algorithms in this paragraph.

Every processor knows only a part of the vector U, with whom we want to multiply the
matrix A, on the basis of the previous mapping of a vector onto the particular processors. (We
assume that the given vector U is mapped in the same way in which the vector F was
mapped). That is the reason why every processor has to find the rest part of the vector U,
which it does not know. Every processor can call the command “MPI_ALLGATHER” by
which it can find the missing information about the rest parts of the vector U.

If all the processors know all the elements of the vector U, we can perform dot product
and calculate the appropriate element of the result vector.

2.4, Scalar product of two vectors in parallel algorithm

Except of the product of a matrix and of a vector, the scalar product of two vectors occurs in
the iterative methods, too. In this paragraph we describe process of computing a scalar pro-
duct of two vectors in parallel algorithms.

Every processor knows only a part of the vector U as well as of the vector V (which we
want to multiply scalarly) on the basis of the previous mapping (the striped mapping cyclical-
ly by rows) of a vector onto the particular processors. That is why we firstly multiply scalarly
the appropriate elements of the vectors U, V. Secondly, we call the command
“MPI_ALLREDUCE” that sums over all processors and distributes the resulting sum onto all
the processors. All the processors finally know value of the scalar product of the vectors U, V.

3. Numerical experiment of stationary reaction-diffusion problem

We consider the two-dimensional stationary reaction-diffusion problem

—sAu+k-u=finQ=[0,1], 4)
u|m =0 on Q. (5)

We set ¢ =1, k=1 and cover the domain Q by the grid of knots with the spatial step h in the
direction of both the coordinate axes x and y. We choose function f in the problem (4)
so that the function

u(x, y)=64-x-y-(1-x)-(1-p)-(y—x) (6)
is the exact solution.

The approximate values of the solution u in all the inner regular knots of the given grid
are the numerical solution of the problem (4) — (5). We find the numerical solution by the
conjugate gradient method with prescribed tolerance 107 for the norm of residue.



Table 1 illustrates the development of calculation times according to the number of used
processors with respect to spatial step.

Tab. 1. Calculation times needed for computing the vector U of the approximate solution for
different mesh sizes of the grid on one, two, three, and four processors

Step Number l\_Iumb_er o | Camliion 1 processor | 2 processors | 3 processors | 4 processors
of knots iterations number

h=1/25 576 56 260 1s 1s 1s 1s

h=1/49 2 304 110 963 15s 10s 7s 5s

h=1/73 5184 163 2112 2min35s 1min13s 49s 35s

h =1/97 9216 217 3704 13 min01s 5min50s 3min45s 2min57s

Source: Own based on computations on the cluster

There is shown the graph of the exact solution of the problem (4) — (5) in Fig. la
and there are drawn the contours of the exact solution of the problem (4) — (5) in Fig. 1b.

Source: Own based on exact solution of (6)

Fig. 1a. Exact solution
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Source: Own based on exact solution of (6)

Fig. 1b. Contours of the exact solution

Furthermore, there are drawn the graphs of the approximate solutions of the problem
(4) — (5) for the different mesh sizes in Fig 2a — 2d. The graph of the approximate solution for

the mesh size h =1

=1

is sketched in Fig. 2a, for the mesh size h =

1

size h = L in Fig. 2c, and finally for the mesh size h = % in Fig. 2d.

Source: Own based on numerical experiment

Fig. 2a. Approximate solution,
mesh size h =4
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in Fig. 2b, for the mesh

Source: Own based on numerical experiment

Fig. 2b. Approximate solution,
mesh size h =;




Source: Own based on numerical experiment Source: Own based on numerical experiment

Fig. 2c. Approximate solution, Fig. 2d. Approximate solution,
mesh size h=; mesh size h =4
Conclusion

We discussed the two-dimensional stationary reaction-diffusion problem. We described the
striped mapping of a matrix cyclically by rows in parallel programming. We showed the pos-
sibilities of applying the basic principles of linear algebra — product of a matrix and of a vec-
tor, scalar product of two vectors — in parallel algorithm. Finally, we commented the numeri-
cal experiment in which the mentioned theory is applied in practice.

We can summarize on the basis of the numerical experiment results that computing the
approximate solution of the system of linear difference equations is approximately two times
(three times, resp. four times) quicker, if we calculate the system of equations on two (three,
resp. four) processors instead of on one processor. Mentioned results are best seen from the
calculation times for bigger mesh sizes of the grid. The results are written in the Tab. 1.
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PARALELNI PRISTUP K RESENI STACIONARNIHO
REAKCNE-DIFUZNIHO PROBLEMU

Clanek je vénovan paralelnimu fe$eni dvoudimenzionalniho staciondrniho reakéng-difazniho
problému. Pomoci paralelniho pfistupu k reprezentaci linedrni algebry vytvoiime paralelni
algoritmus pro vypocet numerického feSeni dvoudimenzionalniho stacionarniho reakéné-
difazniho problému. Porovname Casy potiebné k vypoctu ptiblizného feSeni systému (linear-
nich) diferencidlnich rovnic pro rizn¢ velkou matici soustavy numerickou metodou sdruze-
nych gradienttina 1, 2, 3 a 4 procesorech.

PARALLERER ANSATZ ZUR LOSUNG EINES STATIONAREN
REAKTIONSDIFFUSEN PROBLEMS

Dieser Artikel beschéftigt sich mit der parallelen Lésung eines zweidimensionalen stationdren
reaktionsdiffusen Problems. Mit Hilfe eines parallelen Ansatzes zur Représentation linearer
Algebra bilden wir einen parallelen Algorithmus fiir die Berechnung einer numerischen Lo-
sung eines zweidimensionalen stationdren reaktionsdiffusen Problems. Wir vergleichen die
Zeiten, die zur Berechnung einer anndhernden Losung des Systems (linearer) differenzialer
Gleichungen einer grofBen Matrix eines Systems durch die numerische Methode dualer Gradi-
enten auf 1, 2, 3 und 4 Prozessoren nétig sind.

PARALELNE PODEJSCIE DO ROZWIAZYWANIA STACJONARNEGO
PROBLEMU REAKCYJINO-DYFUZYJNEGO

Artykut poswigcony jest paralelnemu rozwiazywaniu dwuwymiarowego stacjonarnego pro-
blemu reakcyjno-dyfuzyjnego. Przy pomocy podejscia paralelnego do reprezentacji algebry
liniowej stworzymy algorytm rownoleglty do wyliczenia numerycznego rozwigzania
dwuwymiarowego stacjonarnego problemu reakcyjno-dyfuzyjnego. Poréwnamy czasy
niezb¢dne do wyliczenia przyblizonego rozwigzania uktadu réwnan rézniczkowych (lini-
owych) dla macierzy uktadu o réznej wielkosci przy pomocy metody numerycznej gradi-
entdOw sprzezonych na 1, 2, 3 1 4 procesorach.



