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Abstract 

The paper is devoted to the parallel solution of the two-dimensional stationary  

reaction-diffusion problem. By the usage of parallel approach to the linear algebra representa-

tion we create the parallel algorithm for computing a numerical solution of the  

two-dimensional stationary reaction-diffusion problem. We compare calculation times  

of computing the approximate solution of the system of (linear) difference equations for  

different sizes of the system matrix by the numerical conjugate gradient method on 1, 2, 3, 

and 4 processors, respectively.       

Keywords: Stationary reaction – diffusion problem, parallel linear algebra, finite difference 

method, conjugate gradient method. 

Introduction 

Our model problem is represented by the stationary reaction-diffusion equation, which dis-

cretization via the finite difference method leads to the system of linear algebraic equations. 

 We choose the numerical conjugate gradient method for solving the system of linear al-

gebraic equations in this paper and we try to apply this method in parallel algorithm imple-

mented in Fortran. The aim of this paper is to find how we save the calculating time compu-

ting the system of linear algebraic equations on 2, 3, or 4 processors instead of on one proces-

sor. We perform our calculation in numerical experiment in which we compute the vector of 

the approximate solution (for different mesh sizes of the grid) of the system of linear differ-

ence equations by the conjugate gradient method. 

 We have discussed the analogous problem using the method of steepest descent in [1].  

 

1. Setting of Stationary Reaction-Diffusion Problem 

We consider the two-dimensional boundary value problem in this chapter. It is the analogy  

of a one-dimensional boundary value problem mentioned in [2].  

The task is to find a function u: R  fulfilling the stationary reaction-diffusion equation 

    fuku   in dcba ,,  , Rdcba ,,, , a  b, c  d,    0, Rk  (1) 

  gu 


 on  ,  (2) 

where f: R  is the given function and where g: R  represents a Dirichlet boundary 

condition. 
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 For Nnm,  we bring up    11  nm  of evenly spaced points   jiji yxX ,,  

 hjchia  , , where mi ,,1,0  , nj ,,1,0   and where h is the spatial step. We 

denote jiU ,  the approximate solution at the points jiX , , i. e.    jijiji XuyxuU ,, ,  , and we 

put    jijiji XfyxfF ,, ,  . 

For every regular knot jiX , we use three-point stencil for approximation the second deriv-

atives, i.e.  
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Applying this to (1) we obtain the difference equations for the regular knots  jiji yxX ,,  , it 

means we have the equations of the form  

   jijijijijiji F
h

UUUhkUU ,

2

1,,1,

2

1,,1 4


  , 121  m,,,i  ,  

  1,,2,1  nj  , 

  .Rk  

 This is the standard five-point scheme. The approximate values of the sought function u 

in knots of the given grid are represented by the numerical solution of the system of (linear) 

algebraic equations 

 FAU    (3) 

with an unknown vector  

     11

1,11,11,21,21,11,1 ,,,,...,,,...,, 

  nm

nmmnn UUUUUUU R
T

  

and a matrix A, which we can write in the following way 
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L  

I is the identity matrix, and 0 is the zero matrix. As well as the vector of the right side of the 

mentioned system of (linear) difference equations we can write as follows 
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According to (2) we consider the following Dirichlet boundary conditions: 

  0,0, ii XgU  ,  nini XgU ,,    1,,2,1  mi  , 

  jj XgU ,0,0  ,  jmjm XgU ,,    1,,2,1  nj  . 

2. Parallel approach to the solution of the system of linear algebraic equations  

2.1. Matrix mapping in parallel linear algebra 

The way, in which the matrix is mapped on the net of processors, determines efficiency and 

elegance of an algorithm in most the cases. We have chosen the striped mapping cyclically by 

rows of a matrix for our stationary reaction-diffusion problem. 

2.2. The striped mapping of the matrix cyclically by rows 

In this paragraph we describe how we map a matrix using MPI in parallel algorithms. 

 Let us assume that there is given the matrix A of the mentioned shape and of the type  

(n, n). In the parallel algorithm we work generally on p processors. The first task is to map the 

matrix A onto the particular processors. The matrix A will be mapped by the striped mapping 

cyclically by rows onto the particular processors. The striped mapping assumes that the pro-

cessors are connected into the linear virtual array and that they are numbered 0, 1, 2, …, p – 1, 

where p is the number of used processors, in general. The matrix A (denoted A_global) is 

generated and known only by so called master processor. The master processor distributes 

data (the row vectors of the matrix A) into the particular processors. We obtain new matrices 

(denoted A_local) of the type (n/p, n), where n is the number of rows of original matrix and 

where p is the number of used processors, by the data distribution. Matrices “A_local” consist 

of the appropriate rows of the matrix A. 
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       xyyxyxyxu  1164,

 The analogous situation is true for mapping the vector F (of the right side of the system 

of linear algebraic equations).  There is one small difference, only one element (not the whole 

row) is sent in every step of the distribution. 

2.3. Product of a matrix and of a vector in parallel algorithm 

We use the iterative methods for solving the system of linear algebraic equations. Part of eve-

ry iterative method is the product of a matrix and of a vector. That is why we describe product 

of a matrix A and of a vector U from the matrix equation  

FAU   

using MPI in parallel algorithms in this paragraph. 

 Every processor knows only a part of the vector U, with whom we want to multiply the 

matrix A, on the basis of the previous mapping of a vector onto the particular processors. (We 

assume that the given vector U is mapped in the same way in which the vector F was 

mapped). That is the reason why every processor has to find the rest part of the vector U, 

which it does not know. Every processor can call the command “MPI_ALLGATHER” by 

which it can find the missing information about the rest parts of the vector U.  

 If all the processors know all the elements of the vector U, we can perform dot product 

and calculate the appropriate element of the result vector. 

2.4. Scalar product of two vectors in parallel algorithm 

Except of the product of a matrix and of a vector, the scalar product of two vectors occurs in 

the iterative methods, too. In this paragraph we describe process of computing a scalar pro- 

duct of two vectors in parallel algorithms.  

 Every processor knows only a part of the vector U as well as of the vector V (which we 

want to multiply scalarly) on the basis of the previous mapping (the striped mapping cyclical-

ly by rows) of a vector onto the particular processors. That is why we firstly multiply scalarly 

the appropriate elements of the vectors U, V. Secondly, we call the command 

“MPI_ALLREDUCE” that sums over all processors and distributes the resulting sum onto all 

the processors. All the processors finally know value of the scalar product of the vectors U, V.  

3. Numerical experiment of stationary reaction-diffusion problem  

We consider the two-dimensional stationary reaction-diffusion problem 

 fuku   in  210, , (4) 

 0


u  on   . (5) 

We set 1,1  k  and cover the domain   by the grid of knots with the spatial step h in the 

direction of both the coordinate axes x and y. We choose function f in the problem (4)  

so that the function 

                     (6) 

is the exact solution.  

 The approximate values of the solution u in all the inner regular knots of the given grid 

are the numerical solution of the problem (4) – (5). We find the numerical solution by the 

conjugate gradient method with prescribed tolerance 10
-5

 for the norm of residue. 
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 Table 1 illustrates the development of calculation times according to the number of used 

processors with respect to spatial step. 

 

Tab. 1. Calculation times needed for computing the vector U of the approximate solution for 

different mesh sizes of the grid on one, two, three, and four processors 
 

Step 
Number 

of knots 

Number of 

iterations 

Condition 

number 
1 processor 2 processors 3 processors 4 processors 

h = 1/25 576 56 260 1 s 1 s 1 s 1 s 

h = 1/49 2 304 110 963 15 s 10 s 7 s 5 s 

h = 1/73 5 184 163 2 112 2 min 35 s 1 min 13 s 49 s 35 s 

h = 1/97 9 216 217 3 704 13 min 01 s 5 min 50 s 3 min 45 s 2 min 57 s 

Source: Own based on computations on the cluster 

 

 There is shown the graph of the exact solution of the problem (4) – (5) in Fig. 1a  

and there are drawn the contours of the exact solution of the problem (4) – (5) in Fig. 1b.   

                   

Source: Own based on exact solution of (6) Source: Own based on exact solution of (6) 

Fig. 1a.  Exact solution Fig. 1b. Contours of the exact solution 
 

 Furthermore, there are drawn the graphs of the approximate solutions of the problem  

(4) – (5) for the different mesh sizes in Fig 2a – 2d. The graph of the approximate solution for 

the mesh size h =
9
1  is sketched in Fig. 2a, for the mesh size h =

21
1  in Fig. 2b, for the mesh 

size h = 
41
1 in Fig. 2c, and finally for the mesh size h = 

61
1

 
in Fig. 2d. 

                              
Source: Own based on numerical experiment Source: Own based on numerical experiment 

Fig. 2a. Approximate solution,  Fig. 2b. Approximate solution,  

              mesh size h =
9
1                             mesh size h =

21
1  
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Source: Own based on numerical experiment Source: Own based on numerical experiment 

Fig. 2c. Approximate solution,  Fig. 2d. Approximate solution,  

              mesh size h =
41
1                               mesh size h =

61
1  

Conclusion 

We discussed the two-dimensional stationary reaction-diffusion problem. We described the 

striped mapping of a matrix cyclically by rows in parallel programming. We showed the pos-

sibilities of applying the basic principles of linear algebra – product of a matrix and of a vec-

tor, scalar product of two vectors – in parallel algorithm. Finally, we commented the numeri-

cal experiment in which the mentioned theory is applied in practice.   

 We can summarize on the basis of the numerical experiment results that computing the 

approximate solution of the system of linear difference equations is approximately two times 

(three times, resp. four times) quicker, if we calculate the system of equations on two (three, 

resp. four) processors instead of on one processor. Mentioned results are best seen from the 

calculation times for bigger mesh sizes of the grid. The results are written in the Tab. 1. 
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 PARALELNÍ PŘÍSTUP K ŘEŠENÍ STACIONÁRNÍHO  

REAKČNĚ-DIFÚZNÍHO PROBLÉMU  

Článek je věnován paralelnímu řešení dvoudimenzionálního stacionárního reakčně-difúzního 

problému. Pomocí paralelního přístupu k reprezentaci lineární algebry vytvoříme paralelní 

algoritmus pro výpočet numerického řešení dvoudimenzionálního stacionárního reakčně-

difúzního problému. Porovnáme časy potřebné k výpočtu přibližného řešení systému (lineár-

ních) diferenciálních rovnic pro různě velkou matici soustavy numerickou metodou sdruže-

ných gradientů na 1, 2, 3 a 4 procesorech. 

PARALLERER ANSATZ ZUR LÖSUNG EINES STATIONÄREN  

REAKTIONSDIFFUSEN PROBLEMS 

Dieser Artikel beschäftigt sich mit der parallelen Lösung eines zweidimensionalen stationären 

reaktionsdiffusen Problems. Mit Hilfe eines parallelen Ansatzes zur Repräsentation linearer 

Algebra bilden wir einen parallelen Algorithmus für die Berechnung einer numerischen Lö-

sung eines zweidimensionalen stationären reaktionsdiffusen Problems. Wir vergleichen die 

Zeiten, die zur Berechnung einer annähernden Lösung des Systems (linearer) differenzialer 

Gleichungen einer großen Matrix eines Systems durch die numerische Methode dualer Gradi-

enten auf 1, 2, 3 und 4 Prozessoren nötig sind. 
 

PARALELNE PODEJŚCIE DO ROZWIĄZYWANIA STACJONARNEGO  

PROBLEMU REAKCYJNO-DYFUZYJNEGO 

Artykuł poświęcony jest paralelnemu rozwiązywaniu dwuwymiarowego stacjonarnego pro-

blemu reakcyjno-dyfuzyjnego. Przy pomocy podejścia paralelnego do reprezentacji algebry 

liniowej stworzymy algorytm równoległy do wyliczenia numerycznego rozwiązania 

dwuwymiarowego stacjonarnego problemu reakcyjno-dyfuzyjnego. Porównamy czasy 

niezbędne do wyliczenia przybliżonego rozwiązania układu równań różniczkowych (lini-

owych) dla macierzy układu o różnej wielkości przy pomocy metody numerycznej gradi-

entów sprzężonych na 1, 2, 3 i 4 procesorach. 

 

 
 


