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Anotace

Predkladand dizertaéni prace se zabyva modelovanim rezonancnich charakteristik
piezoelektrickych rezonatori. Je uveden fyzikalni popis piezolektrickych materidlu
s linedarnimi piezoelektrickymi stavovymi rovnicemi a definovana iloha kmitani piezo-
elektrickych rezonatori. Nasleduje slaba formulace tilohy a jeji diskretizace metodou
konecnych prvku, ktera vede na zobecnénou tilohu vlastnich ¢isel s ridkymi a struk-
turovanymi maticemi. Pro jeji reseni je pouzit implicitné restartovany Arnoldiho al-
goritmus (IRA). Vyresenim algebraické ulohy lze nalézt rezonancni frekvence piezo-
elektrického rezonatoru. Pomoci koeficientu elektromechanické vazby jednotlivych
modu jsou posléze vybrany dominantni médy kmitani.

Implementace modelu zahrnuje vytvoreni geometrie rezonatoru, sestaveni tilohy
vlastnich cisel, jeji reseni a nasledné identifikaci jednotlivych modn a jejich roztridént
dle vyznamnosti. K tvorbé geometrie a sité je pouzit volné dostupny software
GMSH, pro teseni algebraické 1lohy je pouzita implementace metody IRA z volné
dostupné knihovny ARPACK. Ostatni soucasti programové implementace jsou praci
autora.

Program byl testovan na podélném a torznim kmitani piezoelektrické tycinky
(s velmi dobrou shodou s analytickym fesenim) a posléze na realné iloze tloustkove
striznych kmitu planparalelniho kfemenného rezonatoru. Zde byly nalezeny spravné
dominantni médy kmitu, pricemz odchylka od nameérenych rezonanénich frekvenci
¢ini asi 15%. Relativni odstup jednotlvych rezonanénich frekvenci zistal dobie
zachovan.

Motivaci prace bylo navrzeni a implementace kompaktniho softwarového modu-
lu, ktery by mohl slouzit pri procesu navrhu a vyroby piezoelektrickych prvki
s pozadovanymi rezonanénimi vlastnostmi. Uvedenou odchylku od namérenych re-
zonancnch frekvenci lze odstranit kalibraci modelu na danou ulohu a, pri uvéazeni
kvalitativni spravnosti vysledki modelu, 1ze tento v dané oblasti prakticky vuzivat.



List of symbols

Physical symbols and quantities

Symbol, quantity Unit Descripiton
Gkl N.m™2 tensor of elastic modules
C N.m™? tensor of elastic modules
in shortened indexation
d;jk Cm tensor of piezoelectric coefficients
D Cm? tensor of piezoelectric coefficients
in shortened indexation
Eij N.V- m~! permittivity tensor
E N.V-'.m~! permittivity tensor in shortened indexation
0 kg.m™ material density
i Poisson’s ratio
G N.m™? effective torsional modulus
u = (u,uz, uz) m displacement
(u for time dependent displacement)
© 1% electric potential
(¢ for time dependent potential)
Q C electric charge
S strain tensor
i N.m™? stress tensor
E V.m1 electric field
D C.m 2 electric displacement
w Hz circular frequency of oscillation
f z frequency of oscillation
k coefficient of electromechanical coupling
I J mutual energy
Eq4 J dielectric energy
B Jj elastic energy
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Mathematical symbols

Symbol Description

R set of real numbers
C set of complex numbers
i complex unit _
X = (z1, 22, ..., #n)T  column vector (space variable for n = 3)
8 Kronecker delta _
U column vector of nodal values in FEM
A AT matrix, transpose of matrix
Al inverse of matrix A
I identity matrix
A eigenvalue
K (A, x) Krylov subspace generated by matrix A and vector x
Span(xi, ..., X,) linear hull of vectors xy, ..., X,
2 domain in R3
R boundary of domain €2, I' = 0f2
H-"zm Sobolev function space
L, Lebesgue space of square integrable functions
c® space of functions continuous up to k-th derivation
ol scalar product on ()
< LAy scalar product on boundary I'
Il .||« norm induced by scalar product (.,.),
h discretization parameter
O(h) error function proportional to h
g scalar function
%: (91,92, 93) vector function
e % i spatial derivative of g with respect to T;
V= (%‘ % u_jd) gradient operator
)= % time derivative of ¢
g= fﬁ second time derivative of g
Abbreviations
Abbreviation Descripiton
BC boundary conditions
F:EM finite element method
KSM Krylov subspace methods
et " two-, three-dimensiona]
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Introduction

Piezoelectric materials and their usage

An interest in piezoelectric materials dates back to the end of the 19th century, when
brothers Curie discovered the direct piezoelectric effect - compression of a piezoelec-
tric crystal resulted in appearance of an electric charge on its surface. They later
also described the converse piezoelectric effect - deformation caused by the electric
field. During time, many materials, embodying the piezoelectric effect, were dis-
covered, such as crystalline quartz, PZT ceramics, polymer composites (see, e.g.,
136)).

In the 20’s of the last century, the piezoelectric materials started its successful use
in industry. They are used in measurement, inspecting systems, wave generation,
etc... Among these applications, piezoelectric resonators play fundamental role.

Piezoelectric resonators Piezoelectric resonator is the thin stick or wafer made
of the piezoelectric material, with two or more electrodes on its surface (see, e.g.,
[27]). In consequence of harmonic electric loading, the resonator oscillates. The
most important parameters, describing the behavior of the resonator, are its reso-
nant frequencies - frequencies of the oscillations with maximal amplitudes in some
characteristic directions.

Not each of the oscillation modes can be excited with ease, many of them are
partially absorbed due to the material and shape properties of a particular resonator.
It is important to find such oscillation modes, which can be excited much more easily
then the other ones. The resonator’s working area then stands in the frequency
interval about the dominant frequency.

Piezoelectric resonators are used, e.g., as stabilizers of frequencies of electric cir-
cuits, frequency filters, sensors of nonelectric quantities.

Motivation of the thesis

In this paragraph we present motivation for our work. For piezoelectric materials,
resonant frequencies are typically determined by experimental or analytical methods.
Analytical methods are, however, applicable only for some particular, simply posed
problems and simply shaped resonators. The main disadvantage of the experimental
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testing is its high cost.

Mathematical models, depending on their
tioned disadvantages of other methods.
hematical modelling of piezoelectric materials a'md
(FEM) became obvious (although formulation
Allik and Hughes [1] dates back to 1970).

We mention several publications, which have opened dif.ferent areas in t}lu; FEM
computation of piezoelectric problems. In 1990, Lerch published the general formu-
lation for two- and three- dimensional FEM and presgnted the numerical results ff)r
oscillations of piezoeceramic bar. Tzou, Tseng [24] (in 1991), Hwang, Parlf 8] (in
1993) or Samanta, Ray [17] (in 1996) presented the numer.lca.l results for. active con-
trol of vibration of piezoelectric materials, using various higher orde_r finite elemfents
(for more detailed historical overview, see e.g. [15]). Moetakef [13] (in 19951 derived
the higher order tetrahedral element, other higher order elem_ents are described e.g.
in [6]. Nowadays, also the shell elements based on the Mindlin’s higher order plate

theory are used (see e.g [25]).

The role of mathematical modelling
complexity, can bridge over the above men
In last ten or fifteen years, the mat
the use of the finite element method
of the method for piezoelectric materials by

The goal of the thesis In this work, we describe the finite element (FEM) model
of the piezoelectric resonator based on the physical description of the piezoelectric
material. Discretization of the problem then leads to a large sparse linear algebraic
system, which defines the generalized eigenvalue problem. Resonant frequencies are
subsequently found by solving this algebraic problem.

A core of this thesis is related to the particular generalized eigenvalue problem
arising from discretization. Depending on the discretization parameters, this prob-
lem may become large, which may complicate application of standard techniques
known from the literature. It should be pointed out, that typically we are not inte-
rested in all eigenvalues (resonant frequencies). For determining of several of them it
seems therefore appropriate to consider iterative methods.

Based on the finite element discretization of the mathematical model, we wish
to propose, implement and test numerical algorithms for computing several resonant
frequencies of piezoelectric resonators, and compare our results with experimental
measurements.

The main accent was put on the creation of the compact software module, which

wou}d be sujtal?le for solving problems with resonators with various shapes and
finding the dominant resonant frequencies.

The most expensive part (in time and also in money costs) in the design process

o.f new resonators 1s the production of the prototypes and measurement of their ba-
sic resonant behavior. Therefore, the mathematical model can save both time and

money and the results should be suitable :
: in the desi
with requested resonant properties. gn process of the resonators



Structure of the thesis

In the first chapter, the physical description of the piezoelectric materials is de-
scribed, using the governing motion equations accomplished with the linear piezo-
electric state equations. Along them, other necessary physical quantities and piezo-
electric material properties are introduced.

The second chapter describes the mathematical formulation of the problem. The
weak formulation and the use of the finite element method are presented.

Several different types of possible tasks in the area of modelling of the piezoelectric
materials are given in the third chapter. The accent is put on the problem of free
oscillation, governed by the generalized eigenvalue problem, and on the method
for finding the dominant oscillation modes.

The fourth chapter presents the description of Krylov subspace methods (methods
of numerical linear algebra), which would be suitable for solving the large eigenvalue
problems, especially of the used implicitly restarted Arnoldi method.

The computer implementation of the model is a subject of the fifth chapter. It
contains the brief survey of the programming work and the description of pre- and
postprocessing phase of the computation.

The sixth chapter gives the results of experimental testing of the model. In two
model examples of piezoelectric beam oscillation, the computed results showed
a good agreement with the analytically solution.

The application of the model to the real problem of thickness-shear oscillation
of the plan-parallel quartz resonator is included in the seventh chapter. The corre-
spondence with measured results was pretty good in the qualitative way (specifica-
tion of dominant oscillation modes). The total values of the dominant frequencies
differed from the measurement approximately about 15 percents, but the relative
distances of the particular oscillation modes were retained.



Chapter 1

Physical formulation of the
problem

1.1 Physical description of piezoelectric
materials

In this chapter, we mention some basic physical properties of the piezoelectric ma-
terials and then formulate the problem of oscillation of the piezoelectric resonator.
Throughout the thesis, all vectors are considered column vectors.

1.1.1 Piezoelectric equations of state

A crystal made of piezoelectric material represents a structure, in which the deforma-
tion and electric field depend on each other. A deformation (impaction) of the crystal
induces electric charge on the crystal’s surface. On the other hand, subjecting the
crystal to electric field causes its deformation. In linear theory of piezoelectricity,
derived by Tiersten in [22], this process is described by two constitutive equations -
the generalized Hook’s law (1.1) and the equation of the direct piezoelectric
effect (1.2),
Tij = Cijki Sk| — de Ek, .’,J = 1,2‘3, (11}
D = dkli S',j + Ekj Ej, s =15 283 (12)
Here, as in other similar terms throughout the thesis, we use the convention known
as the Einstein’s additive rule (a;;b; = Zj:1 a;;b;, see e.g. [21]). The Hook’s law

(1.1) describes dependence between the stress tensor T, the strain tensor S and
the vector of intensity of electric field E,

1 |0u; Ou;
Sy = 5 |am+ 2|, ii=123,
: 2 [83:1 7 é?;r;lJ ik :
B = @.1 k=ul.2.3
()LI‘.;,‘



e @i = (i, iy, i)" is the displacement vector and ¢ is _the Sleciiie Peter
w:he;e u= (%5].1.”21 : © S and the stress tensor T are symmetric [27]. The equation
tial. Tl?e str ‘a.l.ll' t,e.allaff“.i[‘ etfe('f (12) describes the dependence betW(.een the vector
iy (1tlr?Ctl<fll)' l?z?;c‘:‘l;leﬁi‘; D; the strain and the intensity of eleCt‘l‘lc ﬁ?ld. Quan-
E{i(i:‘iij::cdk::biﬂld £,; represent syminetric material tensarg; describec B GHS Her

paragraph.

1.1.2 Material properties

Properties of the piezoelectric resonator, closely related to the. resonator material,
are characterized by the material tensors. The Sta‘te equations (1.1) a.I']d (1.2)
represent a linear approximation of the thermoFlynamlc state equations, W.lt}? Fen-
SOIS Cijal, diij and e;; playing role of the material constants. From the conditions
of the thermodynamic stability ([18], part II), tensors c¢;z and &;; have to be sym-

metric and positive definite.
The first of them is the tensor of elastic modules:

(Cijki)‘ ij,z = 1,2,3.
It is a four order tensor, but due to its symmetry
Cijkl = Cjiki = Cijik = Cklij, (1.3)

it has generally only 21 independent components. In some cases, it is worth to use the
shortened indexation of its components, which allows to simplify some formulations,
and transform product of two tensors to the multiplication of a matrix and a vector
(see e.g. [26]). Indeed, if we define the indices W, V as

o (1.4)
Ai=gi i

v Bt k=1

M=%k — i kL]

then we can uniquely map the fourth order tensor Cijri Satisfying (1.3) into the matrix
Cuv, and the matrix T;; into the vector it

C;w = C‘ijuv Tj'.a = T‘i_js M,V = 11 sy 6!
which, with the analogous notation
S‘u = Szj if 1= j,
S}‘EQS” if tﬁé‘},
gives

Cijkl St'j = Cuy Su = ((CS)

M

8



where

€1111 C1122 C1133 C1123 Ci1131 C1112
C1122 Ca222 Ca233 C2223 C2231 C2212
= ( ‘-'pv)i ey = C1133 Ca233 C33a3 C3323 (3331 C3312 (1‘5)

: C1123 Ca223 C3323 C2323 C2331 C2312
C1131 C2231 C3331 C2331 C€3131 Cl112
Ci112 Ca212 C3312 C2312 Ci112 Ci1212

S — [Slr SQ! S3s S4v 85‘ Sﬁ]T .

(CS),, denotes p-th component of resulting vector CS. The matrix C is symmetric
and positive definite.
The three order tensor of piezoelectric coefficients

(dee), 4,4,k=1,2,3,
is symmetric in its last two indices,
da?jk = dikj:
and thus has only 18 independent components. The shortened indexation (1.4) gives

dipy = dijk, for j=k=p=1,2,3,
diy = 2d for Ak u=4,5,6,

and the second term on the right side of (1.1) can be written in the form
diji E; = d;, E; = (DTE),,

where

dinn dizz dizz 2di2z 2di3  2dy)o
D= (dip),utl..&,izl,?,:} = | doin doga dozg 2daeg 2day3; 2dayo | . (1‘6)
d3iy dsge dsss 2dsps 2dss;  2dspo

Electric properties are described by the symmetric permittivity tensor
(Ei)s 5,3 =123, Ey=E€Exn:
It can be written as a matrix

€11 €12 €13
E=| €12 € €23 |. Cler)
€13 €23 €33

Similarly to matrix C, under the condition of thermodynamic stability, the matrix £
is positive definite.




1.2 Oscillation and resonance of elastic materials

i ‘ e briefly recall the
i scillati f the piezoelectric system, w. ’
fore we describe an oscillation o ; R
lizeneral principles of oscillation in the case of pure elastic ma'tlt?{)l?lm(fea_ns o i
f,n [4]). When an oscillatory system is skewed from the equilibri

: : serve a fre
is let to oscillate without any further impact of outer .forCEF, W: 01’; oscillati}; €
oscillation. This oscillation can be decomposed to t_he i M-Lllui;(jL is a li -
with some particular frequencies, called eigenfrequencies. Erecpactintion & S e

combination of natural oscillations. .
Consider a system with lumped parameters with n degrees of freedom. Free un-

damped oscillation of this system can be described by the motion equation 4, p. 121]
Mi+Ku=0, (1.8)

where u”' = [uy, ..., u,] is the time dependent displacement vector,_M is the mass
matrix and K is the stiffness matrix (both matrices are symmetric and positive

definite). Assume the solution of (1.8) in the form
u(t) = ve“t,
where v is the vector of amplitudes and w is the angular frequency. Substituting

u(t) in (1.8) gives
(K—AM)v=0 =2 (1.9)

The matrix pencil (K — AM) has n real eigenvalues and set of n linearly independent
eigenvectors. To see this, let M = LL” be the Choleski decomposition of matrix M.
Then (1.9) can be written as

Kv=)LL" v,

which is equivalent to
LKA U v E T

Matrix L™'K(L")~! is symmetric and thus has real eigenvalues and set of n linearly
mdepen;len]t eigenvectors yy,...,y,. So has the matrix MK, with eigenvectors
vi = (L")~! y;. The eigenvectors Y1,.-.,¥n can be chosen to be orthonormal,

[YI! --an]T[YIa sy, y‘n] = ]Il

thus eigenvectors V1, ..., Vp are M-orthonorma],

[vl,...‘vn]T M [v,, N =1
where I is idengity matrix. The eigenvalues Aiy © € 7 of the matrix M~'K are
squares of the eigenfrequencies wi. The eigenvector Vi of the matrix M—'K and

10
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The system can also oscillate in consequence of periodical (usually harmonic)
generation of vibration by inner or outer loading, which is called forced oscillation.
We describe the principle of resonance in the case of forced undamped oscillation.
System with n degrees of freedom from the last example is governed by the motion
equation [4, p. 127],

Mi+Ku=f£(t), (1.10)
where f(t) is the vector of harmonic loading. Let
f(t) = fo coswt.

For steady harmonic loading, system oscillates with the frequency of loading and os-
cillation is called steady oscillation. Equation (1.10) represents the system of differ-
ential equations with a right hand side. Let the eigenvectors vy, ..., v, of the matrix
MK be M-orthonormal. Then vector of amplitudes of steady undamped forced
oscillation is given by [4, p. 128]

n T
ViV;
Ug :ZW fo. (1.11)

=i W

When the frequency w approaches some eigenfrequency w; of the system, the 1 — th
component in (1.11) goes to infinity. This case is called the resonance. Thus,
the eigenfrequencies of the system are also called the resonance frequencies (further
in the text, resonance frequency and eigenfrequency will mean the same). The so-
lution of (1.10) has the form [4, p. 128],

4 a3
ViV
u(t) = Z ;2—’—‘— fo(coswt — cosw;t)

and for the resonance, w — w;, the i-th component of the sum is equal to
sin w;t viv’-rfo,
2{;)1' !

and increases in time.

Computing of oscillation of the pure elastic continuum is solved by analytical
methods or by discretization of the continuum into lumped parameters, for which
motion equations are solved. The finite element method (FEM) represents nowa-
days one of the most important discretization method. It divides the continuum
into finite elements, where values of unknown functions in nodes of division are
approximated with the help of special basis functions. As a result a system sim-
ilar to (1.8) is obtained. For description of widely used methods see e.g. in [4]
or [14]. For piezoelectric continuum, oscillations of simply posed problems are usu-
ally solved by analytical methods (a survey of analytical methods is given in [27]).
Experimental measurements are in many cases too expensive and therefore impracti-
cal. Mathematical modelling of more complicated settings require using of advanced
numerical techniques. That is the motivation for using FEM. Its basic formulation
was published by Allik back in 1970 [1], but the rapid progress in FEM modelling
in piezoeletricity came in the last ten years (see the brief survey in paragraph ).

11




1.3 Oscillation of piezoelectric continuum

i i I ' ity o, characterized
i ¢ soelectric material with densi
Consider resonator made of piezoe .
by material tensors. We denote the volume of. the resonath as ) i"nd its bouE]Uda'iﬂry
as . Behavior of the piezoelectric continuum 1s gove.med, in somed 13118 rangej t, t‘],
by two differential equations: Newton’s law of motion (1.12) an e quasi-static

approximation of Maxwell’s equation (1.13) (see, e.g., [12]),

P s 9 o cp ks i) (112)
ot? a.’fj
vp-Di_, (1.13)
; 6373'

Replacement of T, resp. D in (1.12) and (1.13) with the expressions (1.1), resp: (1.2),

gives

o TH 1 [Ow, Oy op .
T O o AN G 0 R S 114
Qat? g ; (Luk! B [83:1 r 35‘3J +dkj 8.'}3;;) ? ( )
) i (26 o o
e i = |l — 4+ —| —g; — | . 1515
g a.’.{,‘k (dku 2 [313 & 8331:[ Ek'? C?-’L'j) ( )

Initial conditions, Dirichlet boundary conditions and Neumann boundary conditions
are added:

eE - e (1.16)
e =il t8=1,23, zeT,

T =the i=dog e

9(,,0) = o,
® = ¢p, e el

Dine ='g, . el

where
LUl =F FuNTy =, LoP—F, I.NC,=0.

Right-hand side Jfi represents mechanical exci

q c%enotes electrical excitation by imposing surface charge
lations, they are both Zero).

Equations ( 1.14)-(1.15) define the problem of harmonic oscillation of the piezo-

electric continuum under given condit;
‘ _ tions (1.16). We will discretis
using FEM. The discretization is the subject of the chapter 2 -

12
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1.4 Static deformation of piezoelectric
continuum

The oscillation of the piezoelectric continuum is not the only problem solved in the
area of piezoelectric materials. In addition to the problem (1.14)-(1.16) one can
solve the static problem (not depending on time) of resonator loaded by constant
electric field (actuating) or by constant outer forces (sensing),

d 1 a'U,k a'b'.g (?Lp :
L (o e R e BRI e ‘
9z, (‘ i [a:m aa,-,,] LOuEER) L = (Lt
d 1 [Bu; = Ouy Oy
T = e =Pl s

Tur, = f a=1L23 vzel s
@ = Ok S Ftp!
Eeng = g, zel.
This class of problems is solved, e.g., for actuators — piezoelectric devices, which

react on changes of electric field. Problem (1.17)-(1.18) is special case of problem
(1.14)-(1.16) and can be discretized in the same way.

13



Chapter 2

Weak formulation and
discretization of the problem

Discretization of the problem (1.14)-(1.16) and the use of the finite element method
is based on so called weak formulation. Its idea is following. Equations (1.14),
resp. (1.15) represent energy, resp. electric flux conservation. These equations
are elliptic partial differential equations and its exact solution must be an element
of C?(Q) N CO(Q). In fact, the requirements to the functions smoothness is too
strong. Usually, the energy conservation laws are described with integral princi-
ples known from theoretical physic (see, e.g., [21]). So the idea is to transform
equations (1.14), (1.15) "back” to the integral form, containing derivations of lower
orders than in original equations. This process, described in next paragraph, is called
weak formulation. Then we require the weak solution to fulfil integral equations in
certain functional sense.

The other possible process, resulting in integral equalities, is use of the variational
formulation and the Hamilton principle of energy conservation (see [1]).

2.1 Weak formulation

2.1.1 Functional spaces

We briefly sketch the functional spaces used in our weak formulation. We deal
with the weak formulation derived in [16], chapters 28-35. For more details we rec-
ommend the reader to this book. We consider bounded domain €2 with Lipschitzian
boundary I'. Let Ly(£2) be the Lebesgeue space of functions square integrable in €2,
Jo |fI* < 400, with scalar product (f, g)q = [;, f9dQ. Further, let C>)(Q) be func-
tions, which, including derivatives of all orders, are continuous in . The subspace
C,[]w) Q) c C’“"Jj(ﬁ) contains the functions with compact support. If for a function
u € Lo(Q) exists some function u' € Ly(§2), for which holds the integral equality

/u%‘)dﬂz —/u ,dw dQY Yy € C’l{)m)(ﬂ), (2.1)
Ja a O

T
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we call u' the generalized derwative of u (for function from C)(QY), its gener i
assical derivative). Sobolev space Wz(”(Q) is made of fupe.
ave generalized derivatives square integrable in ().

ction u € WSP(Q) on the boundary T, the trace of func.
16]; for function from C (*)(Q), its trace is determine

derivative equals to its cl
tions from Lg(€2), which h

To express values of fun
tion u is established (see [
by its values on the boundary).

Now, we establish

V(Q) = {v|ve W2(”(Q)‘ v|r, = 0 in the sense of traces},

the subspace of WL,(I](Q), made of functions, which traces fulfil the homogenoys

boundary conditions.

2.1.2 Integral equalities

We will discretize the problem in spatial variables. We derive the weak formulation

in the? standard way ([16], chapter 31). We multiply the equations (1. 14) with testin

functions w; € V(Q],‘summarize and integrate them over 2. As well, we multi lg

gle equfa,tlonl(l.15) with testing function ¢ € V() and integrate it over ) Usipng
reen formula, we obtain the integral lities ' ‘

i il gral equalities (boundary integrals are denoted

iy 1 [Ou O
0= Wi 35 iikl = =k ._E awi
( ot? )Q (C’“ 2 {33:; i B{gk] ’a_%)“ (2.2)
09 Ow;
g BN e
(s 32.5) (s,

G du;  Ou 0 ~
(djik 5 [5{; gl -a?k:I ] 8—‘@—) - (Eji .8_@‘ Qf = < )
i el dz;’ 0z; / 7 r, (2.3)

Due to the s :
ymmetry of material tensors, equations (2.2) and (2.3) are equivalent

to
0%u; : 3
(Qm’w‘) + (Cijkt L [?E‘i i ou] 1 ow;  dw,
? 210z " 02|’ 2 |3z, T Ba (2.4)
+ (dhj 9% 1[0w; | dw, v
8.'5';,_.’ 2 a:[;j = EEJ)Q — <f1','(b‘;'>r ,
f
1[0a; @4
djix [__"_ Oug | O¢ o
(j 9 al'k—i-ax%}!‘a_x_) ‘_(Ejt 281% :< Qﬁ
Let us denote i Oz; Oz; Q 9, r, (2.5)

P 1 3?1)1- y
R—z}“é‘[a——ﬁ—éﬂ T
Z; d.’L’,‘ : h = 13213.
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Substituting these terms into equalities (2.4) and (2.5) gives simplified forms of in-
tegral equalities,

0, 0%
bl R A s . SR s A o = w; : 26
(Q a2 “"L) - t+ ((-uh! Skt R«))Q + (dkt_j Dz ) R»U)ﬂ <fn w >I"; ( }

. 0¢ op 0
Sie : SR = r: m—— — = . 27
(dﬂk Sik 8:173-)9 (EJ‘ oz;’ (‘).?:_,)ﬂ <q, ¢>rq (2:0)

Weak solution. Let
ip € ((WV(Q)FF,CP(0,T)), ¢p € (W5 (), AC(0, T))
satisfy the Dirichlet boundary conditions (in the weak sence). Further, let
i € (WD), C?(0,T)), po € (W5 (), AC(0,T))

be functions, for which equalities (2.6) and (2.7) are observed for all choices of testing
functions
W = (wl,wg,u;3) = [V(Q)]a, 65 = V(Q)

Then we define the weak solution of the problem (1.14)-(1.16) as
u=up+u, $=¢@p+ Po

Weak solution, on the contrary to the classical solution, does not necessarily have
continuous spatial derivatives of the 2nd order.The weak solution has generalized
spatial derivatives (2.1) and satisfies the integral identities (2.6), (2.7).

2.2 Discretization of the problem

Finite element method constructs the finite dimensional approximation of the weak
solution. The domain §) is decomposed into a set of finite elements, where spe-
cial basis functions are established. Then, weak solution as the linear combination
of these basis functions is looked for. The parts up,¢p of the weak solution, sat-
isfying the Dirichlet boundary conditions, can be explicitly expressed in the linear
system, resulting from discretization of the problem (2.6), (2.7), and are introduced
in the Paragraph 2.3.

In our case, we use the following FEM approximation. In two steps, we decompose
the domain © (which is the volume of the resonator) into the finite set E* of dis-
joint tetrahedral elements (the first step - shown in the Fig. 2.1 - means the division
into the layers and prismatic elements, the second part the division of the pris-
matic elements into the tetrahedrons - Fig. 2.2). The domain 2 is approximated
by the union of these tetrahedrons,

Qn~ Q= Ue, Ue:-ﬁ,

ecEh ec Eh

; 3
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Figure 2.2: Division of a prismatic element into three tetrahedrons 0125, 0153
and 1534

where h denotes the discretization parameter (diam(e) < h Ve € E "). The boun-
dary T is approximated as

On the union 0", we construct the finite dimensiona] approximation V*((Q)
of the function space V(). Functions from VMQ) are piecewise linear and con-
tinuous on 0" and are zere on the boundary, For each element ¢ ¢ g ", we define
set W*(e) of four basis functions,

w%q:qwﬂaanﬁ=LzsAL
For tetrahedrons, we choose the basis functions to be the linear multinominals,
Yi(@,y,2) = of, + T + a5y + af, 2. (2.8)

Con.sider an element ¢ — {ahm? 43 s'}. Its jth node s’ hag coordinates (z;, Y5 2j)-
Basis functions can be uniquely defined by its values at
and have to satisfy

Yilon_e =0, 1=1,234.

18




63

Q)
mn-
ne

The coefficients a; in (2.8) can be computed by inverting the matrix of node’s
coordinates:

1z an 2 0 Qafs 0f3 Gy
1 22 Y2 2 05, 05 0fs Oy
1 z3 ys 23 | o o5 ass a5y
1 74 ys 24 a5 Qfy gy Oy

For each tetrahedron, the basis is made of four these linear multinominals. They
generate the functional space V" (e),

Vi(e) = {¢"|supp(y”) Ce, ¢" € Wi(e), ¥"|a_.=0}.

The union
Q) = | ¥e)
ec Eh

forms the basis of function space

Ve — L icien

ec Eh

which is the finite dimensional approximation of the space V(2)!. The global ap-
proximations of the electric potential and displacement, lying in the space V"(Q),
are:

B =, . uotE), W 0TI R, xe Qo — 128 8 (20)
lﬁ'jleq’h

') = Y POYE, ¢:0T)-R, xeq
A

and for its derivatives holds

ou
dx i

oy 7o Oyl
L LN 10 = L £
()= 3 dt)5 20, 5=(x)= 3 POz, (210)
vheoh Pheph
Let the nodes of the division and the global basis functions be numbered, (¢, ..., ¥").
We denote

UT = (u(t), up(t), ug(t), ui(t), uz(t), ui(t), ., ui(t), us(t), ui(t)), ~ (2.11)
T = (pi(t), pa(t), p3(t), ¥1(t), P3(t), P3(2), ..., K1 (E), 05 (2), £5(2)). (2.12)

U and @ are values of displacement and electric potential at the nodes of the mesh
in time t. The approximations (2.9) are piecewise linear on Q" approximations

'The basis functions defined on nearby elements, which belong to the same node i of division,
form together one global basis function for i-th node. This function is normalized to have value
one in the node .
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of derivatives are piecewise constant (in the spatie.ml variable). We substityte ap-
proximations (2.9) and (2.10) into integral equalities (2.6) and (2.7). We require

to them to be fulfilled for all basis functions ¥, s € 7,

ol g i
(cijw SEI,RL})Q <t (9 5 ,ij}f)n i (dkz'j E:Rﬁ % = <f“ws>r!, (2.13)

ot o F\ . | h
h 8 = e s ek =
(dﬁk 5 )Q (eﬁ 8z; ' 0z; ) o <q, ¥s >rq' (2.14)

b —=
i 52: j
For harmonic oscillation, the system of ordinary differential equations for values
of displacement and potential in the nodes of division results, having block structyre

MU + KU + P"® = F, (2.15)
PU - E® = Q. (2.16)

The submatrix K is the elastic matrix. It has a block structure

Kin Kz ... Ki )
Ko Ki ... Ko,

R e L (217

k)

If we denote the deformation matrix B for the p-th basis function as

[ Vi) 0 e
3 Bzzwg(x) 0
B’ = 0 Y (x)
L0 3 ykx) |
2953 ¥p (X) 0 19 yh(x)
\ l_@_wh(x) 18 % 28z, 7p
28z, ¥p Qarlwp(x) 0 }

then, for p, qET,itis

= qT
Koq /Q JBICBaQ, K, e R3S,
wh i . :
ere C is the matrix of elastic modules (1.5). The mass matrix M has the block

structure
(Mu My .. M,
M21 Mgg M?r

M=
e (2.18)

M, )
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2.15)
2.16)

2.17)

lock

and consists of diagonal submatrices Ml,,,

p

(Mpq)ie' = /h .I',-',fl.{“-f-,él(fﬂ} i = l’ 2, 3‘ Mpq = R3,3‘
(9]

Piezoelectric part of the system matrix has the block structure
Py Pz ... Py
Py P ... Py
e : : g ¢ X (2.19)
Prl ]F'r‘,! IPrr
where (ID is the matrix of piezoelectric coefficients (1.6))

B, — / BITD(V)dQ, P, € R
Oh

The electric matrix is

En .. Ey
Eo1 ... Eo

E=| & (2.20)
]Erl Err

where

q

E,, — f (VOMTE(VYHAQ, Eyy € R.
ol

£ is the permittivity matrix (1.7). Matrices K, M, E are symmetric. Vectors F and Q
represent the mechanical and electrical excitation, respectively. F are nodal forces,
resp. (Q nodal charges,

Fi
Fy
o ) : (2.21)

F,

where
B = [ (o fal03dT, Fp e RV,
rh
resp.
Q=100

where

Q= [ avpar, QeR.
A

21



2.3 Boundary conditions

We deal with Dirichlet boundary conditions (1-1'6.) for. dlSpla"eI{?ent and ?IethiC
potential. The introduction of the boundary_c_on(itthHS_IS sketched on the Fig, 2.3,
First case is the homogenous boundary condition for’ displacement u. Let there be
in some nodes prescribed zero displacements (0.“ the Fig.2.3 marked with 8ray color).
Then proper columns of the matrix (marked with gray _COIOF) A multiplied by zeros
and can be eliminated. So can be eliminated the prescribed variables from the vector
of unknowns. Now, the number of equation is bigger than the number _of unknowns,
thus the rows (marked with gray color) belonging to the known variables can be
eliminated. The resulting submatrices K and M are symmetric and positive definite
(due to the positive definiteness of material tensors, see e.g. [11], chapter 20).

The similar situation occurs, when the zero electric potential is prescribed?.
Proper columns and rows can be eliminated and submatrix E becomes positive
definite.

In the case of nonhomogeneous Dirichlet boundary conditions for electric poten-
tial, there are some differences. The part of the vector with prescribed values is
marked with the grid. The proper columns of the matrix are multiplied by pre-
scribed values and the resulting vector can be set to the right-hand side of the linear
system. The rows (marked with the grid) belonging to the known variables can
be eliminated. Resulting matrix E is symmetric and positive definite. The linear
system with different right-hand side results, with deflated martrix,

MU+KU+PT¢=F+F¢, (2.22)
PU-E® = Q + Q,. (2.23)

F, represents generated electric force, Q, generated surface charge.

bl

L

Figure 2.3: i
& 3: Introduction of boundary conditions into the linear system

2 e .
It is possible to prescribe here th

; . : € nonhomoge 5 di i '
dlsggcelllent 1S established, e.g. dye to resouatorgnel::l:f::? displacement, but in practice, the zero
8. by the grounding of the resonator (e
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2.4 Input errors of the model

In the process of derivation of the model, we have made some simplifications on the
physical reality. Further, we must deal with other errors resulting from the used meth-
ods.

We use the linear approximation u”" € V() of the weak solution u € W«j”{ﬂh).
The theory of approximation error is introduced e.g. in [3], we only mention here,
that for our problem the global approximation estimate is proportional to h,

”u — uhHWQm foud O(h)

The same holds for approximation error for the weak solution of the potential ¢.

Using the numerical integration of constant, linear or quadratic functions on the
tetrahedral elements, we don’t generate other error.

First simplification was made in establishing the piezoelectric equations of state.
In the Hook’s law, resp. Maxwell’s equation, we used the linear dependance of the
strain on the deformation - in the reality, this dependance is nonlinear and material
tensors of higher orders must be used (see e.g. [27]), multiplied by the higher
derivatives of displacement and potential. By this simplification, the error of order
O(h?) is generated, which is less then the error made by linear approximation in weak
solution.

2.5 Dimension of the problem

The size of the matrices in (2.15) depends on the number of the nodes in the mesh,
say r. From (2.17)-(2.20) can be seen that the sizes of the submatrices are

EMcR 5 Ec R BE=R0"

The submatrices are sparse. The blocks K, M, E,, P, (according to the terms
(2.17)-(2.20)), p,q € 7, are nonzero only if p = ¢ or if nodes s” and s? have com-
mon edge. For our scheme of discretization, the number of nonzero blocks in each
submatrix is proportional to 12r (in the worst case).

When Dirichlet boundary conditions are prescribed, the dimension of the subma-

trices decreases, ! ’
KMe R, E€R™>™, PERP,

where r, is number of the nodes, where no Dirichlet BC for the displacement are
precribed, ry is number of the nodes with no prescribed Dirichlet BC for the poten-

tial.
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Chapter 3

Points of interest

Let us write the system (2.22), (2.23) with introduced boundary conditions as

MU + KU + PT® = F, (3.1)
PU — E® = Q, (3.2)

where on the right-hand side are sums of external and generated forces and charges.
The submatrices (here written without hats) have the properties described in Para-
graph 2.3. This system describes the general oscillation of piezoelectric element,
with mechanical or electrical excitation.

3.1 Free oscillation

The core of the behavior of the oscillating piezoelectric continuum lies in its free
oscillation. Free oscillations (and computed eigenfrequencies) tells, when the system
under external excitation can get to the resonance. There are two kinds of free
oscillation of a piezoelectric system.

In the first type, electrodes are short-circuited, and for thin layers we can assume
the electric potential to be zero in the whole volume (® = 0). The problem reduces
to the standard elastic oscillation case (compare with Paragraph 1.2),

MU + KU = 0.

Eigenfrequencies of the system can be found by solving the generalized eigenvalue
problem,

(K — w®M)U = 0.

Matrix M is positive definite (say of order n), so the problem has n eigenvalues and
eigenvectors as solution (see paragraph 1.2).
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d type, the electrodes are open, i..e. external charges inCOming
In chle stecc(iin a,fepz;w (Q = 0). Eigenfrequencies of the system can be foung
to the electrodes

by solving the eigenvalue problem,
(K—WZM JPT)(U)Z(S)_ -
P -E ¢
: : from the first type of oscillation g
. Sometimes, frequencies wy, ..., Wy : ‘ .
Cﬁ:;nrleeszatrwnce frequencies. In resonance frequency, the system oscillates wit}, min-
ca

imal impedance. Eigenfrequencies of the second type are c‘a.lled ar?,tireslonance fre-
;Tencz'es In antiresonance frequency, the system oscillates with maximal impedance.

Widely used method in general oscillations of piezoelectric continuum is so called
static condensation: substituting the potential from the second equation

¢ =E(PU-Q) (3.4)

into the first equation to get one equation for the displacement,
MU +K*U = F + PTE-1Q),

where

K*=K - PTEP.
Static condensation gives 3

MU + K*U = 0.

The equation is similar to a pure elastic case, only elastic matrix K* contains the term
representing the electromechanical coupling. Eigenfrequencies can be found by soly-
ing the eigenvalue problem

(K* — w*M)U = 0.
An other way is to solve the generalized eigenvalue problem
AX = )\BX
with
o f K PT
ey

being symmetric anq
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3.2 Damped oscillation

If we deal with the structural damping of the piezoelectric material, the first gov-
erning equation extends of the damping term (see e.g. [24]),

MU + HU + KU + P"® = F,
where H is the structural damping matrix

H=aM+ 3K, a,0€(0,1], a+p8=1.

3.3 Static problem

For the static case, the problem reduces to solving the system of linear equations,

KU + PT® = F, (3.5)
PU - E® = Q.

It is the saddle point problem.

3.4 Controlled oscillation

The most general case is sketched on Fig. 3.1. It describes the smart plate consisting
of two piezoelectric layers and one elastic layer in the middle (published e.g. in [24]).
The elastic part is oscillating under the outer mechanical excitation (with force F).
The voltage output, generated by the oscillation, is driven from the sensing layer
to the amplifier and sent back to the actuating layer (charge Q). With proper
amplifying, we want to control the oscillations of the system. Governing equations
are [24]
MU + HU + KU + PT® = F, (3.6)
PU-E® = Q. (3.7)

From (3.7) we have the sensor output,
® = E}(PU - Q).

In the sensing layer, usually Q = 0. The generated voltage is sent to the amplifier.
Feedback voltage (charge) from the amplifier is chosen to oppose the current motion

of the plate, : :
Q=-Gd=-GE'PU,

where G is the feedback gain. It is sent back to the actuating level. Substituting
above terms in (3.7) and then in (3.6) gives motion equation,

MU + (H + P'E"'G E"'P)U + (K — PTE"'P)U = F. (3.8)
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Figure 3.1: Scheme of composite plate with active control

3.5 Selection of dominant modes

In practice, one would produce resonators, where particular oscillation mode can be
excited easily than the others. Such oscillation modes are called dominant.

3.5.1 Electromechanical coupling coefficients

The measure of excitation of particular mode can be expressed by its electromechan-
wcal coupling coefficient k, which is defined by the relation [10]

k.‘Z — E?n
EstEd,
where .
En =5 (U'PQ)

is the mutual energy,

is the elastic energy and
1
iy — 5 (@T]E(I))
is the diglect_ric energy. The higher is the value of k, the better is the possibility
of an excitation of the oscillation mode.
All computed eigenvalues and ej

are sorted according to their electr
with highest those coefficients can

genvectors define the oscillation modes. They

omechanical coupling coefficients and the modes
be easily found.
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Chapter 4

Numerical methods for solving
algebraic problems
and their properties

There are two basic approaches to solve the eigenvalue problems. At first, we can
solve the complete eigenvalue problem, which involves to transform the original
problem to simpler forms and then compute all the eigenvalues (e.g. the QR algo-
rithm which is looking for the Schur factorizations of the matrices). This approach
is impossible (practically) for large eigenproblems due to its high memory costs.

When we are not interested in all eigenvalues, we can solve the partial eigenvalue
problem, which means to find only several eigenvalues, that we are interested in.
For this case, we can use Krylov subspace method.

4.1 Krylov subspace methods

We focus on methods which are suitable for solving large eigenproblems, especially
on algorithms called Krylov subspace projection methods (KSM). Their idea is to look
for an approximation of the eigenvector as linear combination of certain power se-
quence (successive vectors from power method), which, hopefully, may contain addi-
tional information not only about the eigenvector with largest magnitude (this does
the power method), but also about the eigenvectors with other directions. Such
linear combination form the Krylov subspace,

Ki(A,v) = Span{vy, Avy, Alv,... A vk (4.1)

It is not suitable to use the explicit basis of the Krylov subspace from (4.1), because
the vectors from the Krylov sequence become linearly dependent for increasing k.
Basis of Krylov subspace is usually formed by orthogonalizing the Krylov sequence
(the power sequence above) by virtue of certain decomposition. They are called
Arnoldi decompositions for non-Hermitian matrices and Lanczos decompositions

for Hermitian matrices.
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4.1.1 Arnoldi factorization

1di factorization builds the orthonormal basis of Krylov subspace. The relatioy
i facto

Arno :
AV = Vi Hi, (4.2)

= R (k+1) has orthonormal columns and Iﬁlk is unre-
is called Arnoldi decomposition of order k (if H is
1di factorization reduced). For the detailed descrip-
e e.g. [20] or [9].

where Vi = (vl,v-z,...,vk) ‘
duced upper Hessenberg matrix,
reduced, then we called the Amc_) oriz
tion of the algorithm for Arnoldi factorization, se

Let us write upper Hessenberg matrix Hy as

A H,
B ( Brer

Then Arnoldi decomposition (4.2) can be rewritten to

AV}, = ViHi + Biviia€; - (4.3)

If we compute the eigenpair (A,s) of the matrix Hy,
Hs = As,
then for the vector x = Vs the relation
IAx — Ax|| = [|(AVk — ViHy)s|| = |Breis| (4.4)

holds. The Ritz pair (\,x) is an approximate eigenpair of the matrix A and for A
being Hermitian, the value (4.4) gives rigorous bound on the residual of the eigen-
values of Hj. as approximations to eigenvalues of A. As k increases, some of these
Ritz pairs will hopefully converge to the eigenpairs of A.

Comment - Arnoldi algorithm and eigenvalues. Theorem [23]: As long
the Arnoldi algorithm does not break down (i.e., K, is of full rank n), the problem

Find polynomial p" € P" such that ||p"(A)b|| = minimum.

has a unique solution, which is the characteristic polynomial of H,.

An eﬁec.:tive means to get the polynomial p”, for which p™(A) is small, is to take p"
such that it has zeros close to the eigenvalues of A. Due to the fact, that we do not

compute ti}e exact eigenvalues of Hy,, the resulting polynomial and eigenvalues of A
are approximate.

The problem is, that we don’t kn
proximation. On the other hand, the
is limited by the amount of compute
to restart the Arnoldi process, whe
techniques to restart the Arnoldi me

ow, how many steps we need to get good ap-
number of iterations of the Arnoldi algorithm
I memory to store V. The fall-back can be
n the k becomes too large. There are more
thod. We will use an implicit restarting.
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4.1.2 Implicitly restarted Arnoldi algorithm

Let us suppose, that we are interested in first k eigenpairs. The restarting is made
trough the polynomial filtering of the starting vector. We want to damp the un-
wanted components and have the new starting vector lying in the k-dimensional
invariant subspace (made of those Ritz vectors we are interested in). Implicit restart-
ing continually compresses the interesting information into this subspace. The pro-
cess uses the implicitly shifted QR algorithm.

Polynomial filtering Let us have matrix A with complete system of n eigenpairs
(Ai,x;) and suppose, that we are interested in first k eigenpairs. Any vector v, can

be written as
k 7
Wl = E YiXi + E YiXi.
i |

i=k+1

Then for any polynomial ¥ we have

k n
YAV =D vpN)xi+ Y w(h)x.
1=1

i=k+1

If 7 is such, that values ©(\;) are large for i = 1, ...,k and small for i = k+1,...,n,
we call ¥ the filter polynomial.

When we have computed (anyhow) the Ritz values pu,,...,,, and we are not
interested in the part of the spectrum corresponding to fig41, ..., lim, We can take

Y(t) = (t — pr1)--(t — tim)-

Implicit restarting It is too expensive to use filter polynomial directly in the form
written above, but we can easily compute the Krylov decomposition of application
of the filter polynomial to the vector. This is the implicit restarting technique.

At first, we compute the Arnoldi factorization of length m =k + p,

: T
Avm = VmHm iF .‘rjmvm—Hem'. (45)
where m is chosen such large, that the decomposition can be stored in the memory.
Then filter polynomial ¢ of order p is chosen as
Y(t) = (¢ — £1)..(t — )
and we use the implicit restarting to reduce the decomposition (4.5) of order m
to a decomposition of order k,
AV, = ViHj + BiVis1€y (4.6)
with starting vector ¥ (A)v,. The shift &y, ..., K are selected as unwanted directions

from the spectrum of matrix Hy,.
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accomplished by the implicitly shifted QR algo-

ess 1S i :
proc (4.6) without explicitly using of filter

The above mentioned 1p
duced decomposition

rithm. We can get the re

polg:wmila-l- s T o computed QR factorization of the shifted decom-
epwise, i Ve K p Ly

position (A - n'J-]I)Vm =N ﬁ:jﬂ) &1 /B‘rnvm—i-leE}

which 18

(A — £ D)V = VnQR; + Ben Vi€
After postmultiplying by Q; we get
(A - 51)(VnQy) = (Vm Q) (R;Q5) + BmVima (enQ)).
If we denote
()T

Vf(%) - vm@ja ]HI(,}?;] = RJ‘Q} i "{'Ji][’ bm+1 = eZtQj’

we finally have _ raf G
AVE‘] = VE]H(,;’-‘) IF ﬁmv1n+lb731+l'
Accomplishing all the steps results in

AV; = V;LH:,; a5 .gmvm+lb:1r-rl-la

where
Vi =V,Q H}=Q'H,Q Q=0Q;.Q,.

First k columns of this decomposition can be written as
AV, = VHy + GiVisief,
where
B = hesrpvi,, + L
(lresy: ka1 T Okldm k Vit |2, Virah — Br (hk+1,kv,‘:_+} + Brgm kVm+1)-

Hy 'Il‘il Fh? lea,dililg submatrix of H,\, and Vi consists of first k& columns of V..
is is nothing less then the k-order Arnoldi decomposition with starting vector

being proportional to (A — k1)
1)...(A — k,1), e.g. the starti
by ¥(A). So we get the reduced decompogition %4.6). ik

4.2 Generalized eigenvalue problem

AX = \BX, (4.7)
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go-
ter

where, in general,

_ (K PT M 0
A—(PHE), B:(OU), xz(g), (4.8)

with positive semi-definite matrix B or, by using static condensation,
A=K -P'E'P, B = M, X =1, (4.9)

with positive definite matrix B.

4.2.1 B-Arnoldi method

For the generalized eigenvalue problem, a modification of the Arnoldi method can
be used. Using a shift &, the equation

AX = ABX

is equivalent to
(A - rkB)X = (X — £)BX

and we can write

(A~ kB)"'BX = (A — k)"'X.

If we set

C=(A-sB)'B, u=(A-—xr)},
we obtain the ordinary eigenproblem
CX = uX.

Matrix C is called the generalized shift-and-invert transform.
During the Arnoldi process, we must compute the product v = Cu. This can be

accomplished in two steps,

1. w = Cu
2. solve (A —kB)v=w

Thus we have to provide (somehow) solving of the linear system in step 2.

B-inner product For positive definite matrix B, the B-inner product is defined

by
(x,y)s =y Bx.

B-norm or B-orthogonality are defined as usual, using the B-inner product.
The B-Arnoldi method computes the Arnoldi decomposition

CV, = Vi H + BiVit1€p,
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- I],Cltly Festa.rtlng teChnique can be used
i honormal. The 1mp
where Uy is now B-ort
without any changes.
Although we have

can apply the above algori

defined the B-inner product for positive deﬁniFe matrix B, we

efin thm also for B being positive semi-definite (now we yse

= roduct instead of inner product). The p0831b.le problems can be

the Seml"ngerfait that this semi-inner product does not recognize th(? vectors lying

Fal:;ed 2{1t5peme o} the matrix B. Potentially, the error 1n direction lying in the ny]|
i the 1

: 5
space of B can increase.

4.3 Comments - :
reducing size of algebraic problem

4.3.1 Necessity to have large matrices

As was mentioned before in this chapter, the area of practicability of the numerical
methods is restricted mostly by the amount of computer memory. Therefore, we
cannot use too large matrices (that is why we use implicit restart).

Towards this argument stays the need of mesh being as fine as possible, to obtain
good approximation of the weak solution. Moreover, not every oscillation mode can
be expressed by the use of arbitrary mesh. The mathematical model itself behaves
as frequency filter - it is able to compute only some frequencies and corresponding
oscillation modes, depending up the fineness of the mesh. Particular mode with very
complicated shape can be approximated with linear (base) functions only for very
dense distribution of nodes and elements. This problem is not described for general
case, but in practice this strategy seems to be satisfactory [4]: when we want to com-
pute some particular oscillation mode, we have to use 3 elements for its wavelength.

For computation of complicated mode, we need to have the mesh, which is fine

enough to catch the shape of the mode. Therefore we look for other ways to decrease
size of used matrices.

4.3.2 Using static condensation

Qne of them already introduced is the static condensation. For the generalized
eigenvalue problem (4.7) with matrices defined by case (4.9), the matrix B is sym-

n'mtric and positive definite, and the problem can be transformed to the standard
eigenvalue problem trough the Choleski factorization of matrix M,

M=LLT.

Then ei ; A
Ll}fgfigre’;n"zlﬁs fqr the matrix penci (A,M) are the same as for matrix A =
€ eigenvectors can be computed by solving LTx = X, where 7 is an

SFor the problem (4.8), the null s
whereas the components o

Pace directions are those which belong to electric potential @,

f displacement U stay unharmed.

34



1 be
Ying
nu]

ical

eigenvector of A (see paragraph 1.2). Implementation of factorization methods are
available e.g. in Lapack library [32]. This approach we used in (37).

The dimension of the problem decreased to 3ry (see paragraph 2.5). But -
in the process of static condensation (3.4), we lost the sparseness of matrix A due
to the inverting of matrix E. During the IRA process we deal with still symmetric,
but dense matrix, not much smaller than the original one (and have to solve the
linear system with this matrix in each IRA step). Following numerical experiments
and arguments in the last paragraph (in our case, we can use the B-Arnoldi method
for original matrix pencil), we stay loyal to the original eigenproblem (4.8).

4.3.3 Reducing the oscillation to some direction

One way to decrease the dimension of the problem can be used, when we are inter-
ested in the oscillation in particular direction or in some plane. Then we can easily
reduce the size of the eigenproblem.

Let us imagine a model example of an oscillating system, whose eigenfrequencies
are found by solving of the generalized eigenvalue problem

AX = MX.

It involves information of general spatial oscillation modes. Let’s say, that we want
to find particular oscillation mode in only one direction (e.g. in the case of longitudi-
nal oscillation). So, let this problem have the eigenpair (A, U), where the eigenvector
has nonzero components in one direction and zero (or considerably small) compo-
nents corresponding to other directions. Without a detriment to commonness, let
the eigenvector have a structure U = (Uy, [})T. The eigenpair satisfies the relation

A Axp 0 Mz My 1 9
and therefore (A, U;) must be also the eigenpair of the smaller problem

A]]X = )\I\Tl]X

We can solve the smaller problem, and if its solution (A, U) satisfies (at least approx-
imately) A;2U = AM;,U, then (A, (U, 0)T) is the solution of the original problem.
Many basic oscillation modes are restricted to one direction or to one plane, so we
can use the spatial reduction in many occasions. As follows, e.g. for one dimensional
oscillation modes, we can decrease the dimension of the problem to one half.




Chapter 5

Computer implementation of the
model

The realization of the model consists of three parts: preprocessing, processing and
postprocessing (Fig. 5.2). The pre- and postprocessing parts include use of the free

Preprocessing 1. Geometry of resonator GMSH
2. Setting boundary conditions  manually
3. Building mesh GMSH

*.msh file boundary_conditions.dta file

N /

Computation 1. Computation of global matrices
2. Introduction of boundary conditions c++ code
3. Solving the eigenvalue problem Arpack & c++ code

freq.dta file *.pos file \

coupling_coefficient.dta file

l

Postprocessing 1. Text output

Use of shift

1. Selection of dominant modes c++ code | proper modes not found
2. Vizualization of selected modes GMSH

|

2. Graphic output
Figure 5.2: Scheme of computer implementation of the model and its stages.

software GMSH [33] for mesh generation and visualization of the results. For build-
ing the global matrices, we developed our own code written in C++ language.
For solving the generalized eigenvalue problem, we use the Arpack [28] implemen-
tation of implicitly shifted Arnoldi method (in Fortran code), which is completed
with our C++ code. All parts are debugged under Windows XP.
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L4 Sh
5.1 Preprocessing - geometry and me

e the three dimensional mesh of the users like geo-
ade by defining points, oriented lines, oriented sur-
of geometrical entities can be defined, based
By the particular components, we can build

the whole geometry of the resonator. An example of the geomet{riylis slhown on the
Fig. 5.3 (beam resonator). Information of the geometry 1s :?tore in the *.geo file.
The geometry file corresponding to the defined geometry is shown below on the
Fig. 5.3. Component h is the discretization parameter. ' ‘

The mesh consists of elementary geometrical elements of various shapes (in Gmshs
case: lines, triangles, quadrangles, tetrahedra, prisms, hexahedra and pyramids),
arranged in such a way that if two of them intersect, they do so along a face,
an edge or a node, and never otherwise [34]. The mesh is unstructured. We use
tetrahedral elements. Information of the mesh is stored in the *.msh file. The mesh
and corresponding mesh file are shown on the Fig. 5.4. All the other examples
in this chapter use this mesh. Dirichlet boundary condition are prescribed per text
file diskr.par. We specify the geometrical entities with zero displacement (where
the resonator is mounted) and areas, where are located the electrodes. Example
of the Dirichlet boundary conditions is shown on the Fig. 5.5 - resonator is fixed
on lateral sides and electrodes are placed on the upper and bottom sides.

GMSH software allows to mak
metry [34]. The geometry is m
faces and volumes. Compound groups
on these elementary geometric entities.

5.2 Global matrices

The files with mesh and boundary conditions are used by the next programme mod-
ule (written on C++ language), which produces global matrices A and B (from (4.8))
as thfe results. The Dirichlet boundary condition are introduced in this stage. The
matrices are saved in standard sparse column format (SSC). An example of result-
Ing matrix A is listed on the Fig. 5.6. In this stage, the possible reduction to some
direction can be performed (it is not the case of our example)

9.3 Numerical solution of eigenvalue problem

The algebraic modules work with matrix files described above.

9.3.1 ARPACK

ARPACK : ; :
(28] module is an implementation of implicitly shifted Arnoldi algorithm.

It is wri i ;

L ;‘;fetlllléﬂhi?(rilganklanguage. Application of the ARPACK procedures is de-

eralized eigenvalye ?21_1[9]' It ?‘HOWS_ to use several computation routine for gen-
problem, which differ ip used mode of shift invert transform
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Of‘the II.lﬂ.t;I'iX pencil (see Paragraph 4.2.1). We use the shift invert mode® for gener-
alized eigenvalue problem in double precision (the DSAUPD routine, see [9)).

Parameters needeq for computation are transmitted trough the file geneig.par
(see upper part of Fig. 5.7). Resulting Ritz pairs (approximate eigenvalues and
eigenvectors) are described on the Fig. 5.8.

5.3.2 SKYPACK

As we have mentioned in paragraph 4.2.1, in each IRA step we have to provide
solving of linear system with sparse symmetric indefinite matrix. We use the SKY-
PACK [31] module. It is the direct solver for symmetric indefinite linear systems.
It requires the upper triangle of matrices A and B, stored in so called skyline form.
Then it provides the LDL” factorization of the matrix pencil (A — kB) (see Para-
graph 4.2.1) and solution of the system (A — kB)v = w during the IRA step.
For detailed description of the computational routines and about the skyline form
of the matrix, see [30].

Comment. In initiatory stage of compiling the whole software modul, we use
here the implementation of SYMMLQ [29] algorithm, which is an iterative solver
for symmetric indefinite linear systems. But, for bigger shifts, it had very slow
convergence (if at all) and results were inaccurate” and we decided to use the direct
solver instead.

5.4 Postprocessing - identification of vibrational
modes

5.4.1 Sorting of oscillation modes

In the next step, we compute the coefficients of electromechanical coupling for each
oscillation mode. Graph of electromechanical coupling coefficients for first ten os-
cillation modes in our model example are pictured on the Fig. 5.9. Further, if we
want to compute successive (or other) part of the spectra, we can use shift and
come back to the solving of eigenvalue problem. If we find several oscillation modes
with high values of electromechanical coupling coefficient, we can use them as shifts

and recompute the whole process for finer mesh.

61t equals to the process described in Paragraph 4.2.1 ‘ . ‘ .
?F‘rcquencies corresponding to the same modes, computed with different shifts, were consider-

ably different.
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5.4.2 Visualization of results

Selected oscillation modes can be visualized in GMSH software. Using the computed
Ritz vectors from results.dta file, we write out the *.pos file, which is the collection
of nodes coordinates and values of displacement in each individual direction. Such
file and its visualization, compiled for the third computed mode of our example, are

shown on Fig. 5.10.
GMSH software allows to open #.geo file (geometry) and *.msh file (mesh) along

with the *.pos file. All introduced figures include the geometry. GMSH software
allows to see the results spatially and manipulate with the visualized objects. It

also provides the creation of animations.
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g

e

h=0.35;
Point(1) = {0,0,0,h};
Point(2) = {0,1,0,h};
Point(3) = {0,0,1,h};
Point(4) = {0,1,1,h};
Point(5) = {10,1,0,h};
Point(6) = {10,1,1,h};
Point(7) = {10,0,1,h};
Point(8) = {10,0,0,h};
Line(1) = {4,2};
Line(2) = {2,1};
Line(3) = {1,3};
Line(4) = {3,4};
Line(5) = {6,5);
Line(6) = {5,8},
Line(7) = {8,7};
Line(8) = {7,6);
Line(9) = {3,7});
Line(10) = {4,6});
Line(11) = {2,5};
Line(12) = {1,8);
Line Loop(13) = {4,1,2,3}; \
Plane Surface(14) = {13};

Line Loop(15) = {8,5,6,7};

Plane Surface(16) = {15},

Line Loop(17) = {-9,-3,12,7};
Plane Surface(18) = {17};

Line Loop(19) = {-8,-9,4,10};
Plane Surface(20) = {19},

Line Loop(21) = {-11,-1,10,5};
Plane Surface(22) = {21},

Line Loop(23) = {-12,-2,11,6};
Plane Surface(24) = {23};
Surface Loop(25) = {20,16,22,24,18,14},
Volume(26) = {25};

definition

d

—___—— discretization parameter

of points

definition of|lines

> definition of surfaces

efinition of whole volume

Figure 5.3: Geometry and *.geo file of the piezoelectric beam.
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1D elements

2D elements

3D elements

3

—

F1 111240 ¢ .
2111292  element number; type of the element - 1 = line, 2 = triangle, 3 = tetraghedron;

{
{
!

2;‘5 B number of nodes . :
1000 node number (the numbering may not start from 1) and its X, y, z coordingtes
2010

3001

¢ 609
612 6.652253355392612 0.5051134969503318 0.77296910429

613 1.982461835165782 0.2247649463461817 0.451403733503034
614 1.256197302270417 0.5004742451630535 0.7956230899769142
$ENDNOD

$ELM
2971 number of all elements (1D, 2D, 3D)

number of the elementary entity to which the element belongs;

312227210 s number of the physical entity to which the element belongs;
' / number of nodes of this element; list of node numbers for this elems

1281121221248

129214143101 126
130214143124 127
131214143210 128

916224 24 3514 377
917 4 26 26 4 15 545 130 133
9184 26 26 4 9 567 125 128
9194 26 26 4 44 493 45 244

2970 4 26 26 4 161 509 166 458

29714 26 26 4 528 199 218 518
SENDELM

=1
=

Figure 5.4: Example of the megh and corresponding *.msh file.
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surfaces 2 # element type for U_Dirichlet (1 = 1D, 2 = 2D)

2 # number of geometrical entitities, where zero displacement is prescribed
numbers 14, 16 # numbers of those‘geometrical entitites

2 # element type pro FI_Dirichlet (1 = 1D, 2 = 2D)
of surfaces 2 # number of geometrical entitities, where electrodes are located

18, 22 # numbers of those geometrical entitites

Figure 5.5: Example of the boundary conditions and corresponding text file.

dimension of the whole matrix

number of nonzero elements
in the upper tringular
part of the matrix A

row index; column index e—

:&@31

1906 .
1599 dimension of the submatrix C

307 dimension of the submatrix E
42511
1600 1600 -0.00000000000001560724
1600 1605 0.00000000000000335397

-8730146.168755605800000
-20476604.246511355000000
-8875186.132442213600000

1632
1633

\ component of the ma*rix

15650012.765984835000000
-48922.832459397279000
-724340.345938723420000

31 31
3132
3133

1598 1906 0.00000691227193149397
1599 1906 -0.00001350621522321992

Figure 5.6: Example of the matrix A stored in SSC format.
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number of eigenvalues ———{ 10 # pocet viastnich

cisel (parametr NEV, funkce DSAUPD)

. 20 # pocet Arnoldiho vektoru (parametr NCV, funkce DSAUPD)

number of Arnoldi __—. 0.0D+00 # shift (parametr SHIFT, funkce DSAUPD)
vectors shift = _| 1E-15 # tolerance (parametr TOL, funkce DSAUPD)

] 5000 # max. pocet iteraci (parametr MAXITR, funkce DSAUPD)

tolerance /’ LM # cast spektra (parametr WHICH, funkce DSAUPD)

maximum number poc
of iterations 1E-15 # relativni tole

0 # skalovani

. pocet iteraci (parametr ITNLIM, funkce SYMMLQ)
=0 & mev B rance (parametr RTOL, funkce SYMMLQ)

Start
Parametry kompilace: /
Max. rozmer matice 30000 —_~"
Max. pocet nenul = 300000
Max. pocet Ritzovych hodnot =
Max. pocet Arnoldiho vektoru =
Parametry z geneig.par:

Pocet vlastnich cisel - 10
Pocet Arnoldiho vektoru = 20
Shift = 0.000000000000000E+000
Tolerance = 1.000000000000000E-015
Max. pocet iteraci = 5000
Pozadovana cast spektra =LM
Max. pocet iteraci SYMMLQ = 5000

Dalsi parametry:

Velikost matice 1906

Pocet vlastnich cisel (Ritz. hod.) 10
Pocet Arnoldiho vektoru 20
Cast spektra LM

Figure 5.7 Example of the input parame
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Rel. tolerance SYMMLQ = 1.000000000000000E-015

Strojova presnost = 1.110223024625157E-016
Nacitam matice
Matice A
Rozmer = 1906
Velikost bloku (1,1) = 1599
Velikost bloku (2,2) = 307
Pocet nenul = 42511
Matice B
Rozmer = 1906
. Pocet nenul = 10167

upper bounds for:

dimension of|the matrices
number of ngnzero components
number of Ritz values to compute

100 Sl number of Arnoldi vectors
150~

parameters from geneig.par

machine precision

dimensions of maFrices

number of converged

Pocet Zkonvergovanych Ritzovych hodnot 10 - Ritz values
Pocet implicitnich Amoldiho updaty 3
Tolerance 1.000000000000000E-015 e number of implicit restarts

ters for the DSAUPD routine.




Ritzovy hodnoty a relativni rezidua

Row
Row
Row
Row
Row
Row
Row
Row
Row
Row 10:

80 00/ SUBRER-P 0 Y =

Col 1
9.51964D+10
1.17279D+11
5.13087D+11
7.01999D+11
7.21888D+11
1.46182D+12
2.24451D+12
2.75842D+12
2.94235D+12
3.07894D+12

Vlastni vektory

Row 1:
Row 2:

Col 1

Col 2
1.77586D-25
1.40514D-25
2.75714D-26
2.26705D-26
2.13353D-26
1.31115D-26
6.93901D-27
4.54832D-27
5.28766D-27

5.66904D-27

Col 2

computed Ritz values:

reziduum

3rd Ritz vector corregponding

to the 3d Ritz value

gt

Col 3 Col 4

1.29955D-10 9.08269D-12 7.72257D-11 3.83205D-13
9.59517D-11 1.10533D-10 1.01575D-10 -1.52232D-10
Row 3: -9.45286D-11 1.00189D-10 -9.01768D-11 -1.67111D-10

é0w1597t 8.55298D-11 -1.90631D-10 3.06927D-11 -2.40357D-13

Row1598:
Row1599:
Row1600:
Row1601:
Row1602:

Row1904:
Row1905:
Row1906:

Row 1:

4.88884D-10
-4.25678D-10
-3.78565D-03
-8.05594D-03
-3.20044D-03

-3.51180D-02
2.26115D-03
6.82805D-02

Col 5

-1.49106D-12 -4.68680D-11

5.80693D-10 4.08843D-10 -2.92072D-10
6.40944D-10 -3.42333D-10 4.67244D-11
-2.17863D-01 -8.68224D-02 -1.45936D-01
2.16058D-01 7.30836D-02 -1.43367D-01
2.17957D-01 -7.66967D-02 1.59120D-01

4.36897D-02 -1.68907D-02 4.32437D-02
1.07630D-02 5.08145D-03 -1.99669D-02
-7.04041D-02 6.97185D-02 -5.19662D-02

Col 7 Col 8
1.26920D-12 2.57289D-12

Col 6

h0w1906: 7.45599D-02 -5.06541D-02 6.42443D-02 3.45120D-02

Row 1:

6.42397D-11

Col 9

Col 10

2.69093D-11

Row1906: 4.93351D-03 2.03325D-02

SANG

part belonging
to displacement

part belonging
to potential

Figure 5.8: Computed Ritz values (above) and Ritz

vectors.




resonance frequency, mutual energy Em, elastic energy Est, dielectric energy Ed, electromechanical coupling coefficient k

it =7.683855E-015 Est = 3.770966E-012 Ed = 7.683850E-015  k = 0.04514019848229772200
; ff= ;9510?4?'2532592093 fnT = 8,097010E-015 Est=1.109414E-011 Ed = 8.097021E-015 k = 0.02701563828431043400
" f= 114002.83127 Em = 7.306534E-015 Est= 2.585680E-012 Ed = 7.306537E-015  k = 0.05315794628831177500
- 1=133348.57479 Em = 6.161322E-015 Est=5221013E-012 Ed = 6.161323E-015 k = 0.03435259269592815700
: 1=135224.39371 Em = 8.145016E-015 Est=8.090586E-012 Ed = 8.145016E-015 k = 0.03172896975416886900
: 1= 192427.47509 Em = 7.22451E-015 Est= 2209906E-012 Ed = 7.229454E-015 k = 0.05719600189045234700
- 1=238440.98321 Em = 8.047827E-015 Est = 6.391846E-012 Ed = 8.047829E-015 k = 0.03548347261693336100
: f=264332.35679 Em = 6 496615E-015 Est= 5.702803E-012 Ed = 6.496613E-015 k = 0.03375199429819311000
: f=273002.92338 Em = 4.850743E-015 Est =7.170305E-012 Ed = 4.859746E-015 k = 0.02603380818148812500 ‘
0:f=279267.72332 Em =7.358814E-015 Est=2.076271E-012 Ed = 7.358810E-015 k = 0.0595335869530805860

3
omw e NS S _ L _“

L=l I N U Y

W o -4

-

0,02

0,01 4

o 18 =

g 100000 i
frequency (Hz) J

Fi : .
gure 5.9: Illustration of the electromechanical coupling coefficients.
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g111e10

B8.512e-10

7912e-10

7.313e-10

6.713e-10

6. 113e-10

5 514e-10

4914e-10

4 315e-10

3 715e-10

8 3115810

2516810

1916e-10

1.317e-10

T170e-11

1 174e-11

& vector map

nodal coordinates nodal values of displacement
s A

| View"a vector map"{ /

VP(0.000357,0.000000,0.001000){0.00000000007722570000,0.00000000010157500000,-0.00000000009017680000};
VP(0.000714,0.000000,0.00100040.00000000011732000000,0.00000000021972200000,-0.00000000018601200000};

\I"P{D,Dm 256,0.000500,0.000796){0.00000000003069270000,0.00000000040884300000,-0.00000000034233300000};

Figure 5.10: Illustration of the *.pos file and example of visualization of computed
oscillation mode.
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Chapter 6

Testing and calibrating of the
model

6.1 Vibration of beam quartz resonator

First testing of the complete model® was made on the oscillation modes of beam
quartz resonator. In this case, the basic oscillation modes can be computed analyt-
ically. For the analytic solution, we use formulas presented in [26]. We chose two
basic types oscillation modes — longitudinal and torsional modes, due to their easy
discriminability. :

Material properties. Material coeflicients for used quartz resonator are listed
below.

[ 86.740000 0.059173  18.840827 15.447720 0.000000  0.000000
0.059173 113.573454 14.543072 —9.437720 0.000000  0.000000
18.840827 14.543072 75.100402 1.996143  0.000000  0.000000
15.447720 —9.437720 1.996143 60.573072 0.000000  0.000000
0.000000  0.000000  0.000000  0.000000 53.203411 19.592742

| 0.000000  0.000000 0.000000  0.000000 19.592742 44.616585 |

C=10°

0.002307 —0.000043 —0.002210 0.000941 0.000000  0.000000
0.000000 0.000000  0.000000 0.000000 0.001458 —0.000875 |,
0.000000 0.000000  0.000000 0.000000 —0.003774  0.002159

=]
Il

39.210000 0.000000  0.000000
£=10""1 0.000000 40.826035 0.574121
0.000000 0.574121 39.413965

5The testing of particular physical parts of the model (separate elastic part or separate electric

part) was made e.g. in [37].
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Matrix of elastic coefficients S = C~! is equal to
© 1976986  0.013604 —0.314674 —0.313175 0 3
00136044 0.916211 —0.184699  0.145369 0 0
0314674 —0.184699 1.446160  0.003815 0 :
S=10"| (313175 0145369 0.003815  1.753290 0 .
0 0 0 2242175  —0.984619
! D 0 0 —0.984619  2.6737)

Let us suppose these dimensions of the resonator:
1=001m, a,b=0.001m.

The beam was fixed at both sides (see Fig. 6.2). The geometry and the mesh are

shown on Fig. 5.3 and Fig. 5.4°.

+
/ b

electrodes

& a
[

Figure 6.1: Piezoelectric beam with electrodes exciting odd longitudinal oscillation.
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The number sy is the first elastic coefficient and is equal to S,,. Tt ion i
efficient enough for beams, whose longitudinal dimension is lar“. o0 g
cross-section. If we take into account the correction to lthe g€ ;(l)mpf&red to the
(dimensions a and b), we obtain better results using the more cil;ﬁpl?cgtesllfelzsgxrl

1

el
where the Poisson ratio g can be computed from
| e 1

So the spectrum of the harmonic oscillation is thickening for increasing h, while the ba-
sic relation (6.1) supposes the higher resonance frequencies as integer ml;ltiples of the
first frequency.

One side of the resonator was fixed. For the parameters mentioned above, the
frequencies of the longitudinal vibrations (computed analytically) are

fi = 271803 Hz
fa = 543606 Hz
fs = 815409 Hz
fi = 1087212 Hz
fs 1359015 Hz
fo 1630818 Hz

Computed frequencies First six computed modes are shown on the Fig. 6.3, 6.4
and 6.5. Appropriate frequencies are listed below.

frequency relative difference (%)
fi=  286205Ha +5.3
f,= 572561 Hz +5.3
fa= 859212 Hz +5.4
fo= 1146292 Hz +5.4
fs = 1433952 Hz +5.5
fo= . 17122952 Hz +5.6

Parameters of the computation were'’:

Mesh: number of nodes = 4258, number of element
Matrices: matrix A 7476 X 7476, 102446 n0neertie
matrix B 21326 nonzero elements in upper tringular part

s = 21326
lements in upper tringular part,

0T he spatial reduction to the z-direction was used.
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6.1.2 Torsional oscillation par

: ; s, where the proper boundary Ve
; computing of torsional modes, w : : Me
fsﬁsxilgozriie:lls fiiefioir;)m [26]. For h-th eigenfrequency holds the basic relation Ma
ma
f _ﬂ g_ﬁ_ 1_EX(E), W=l-2:3. = (6.2)
Pl e 1+ () b= \b =
The effective torsional modulus G can be approximated according to x-'iSl;i
b? a? Of t
e + —_—
e ’ acco
Es a?+ b

and for our case is G = 40973043485.312064. The term x(3) can be expressed as

5
a 4\” 3 T )
—)={—-] — | tanh — + 0.00452
& (b) (ﬂ') 16 ( gl
and for our case is equal to x (%) = 0.5777787. }
Analytically computed frequencies are

fi = 180668 Hz

f» = 361336 Hz

f3 = 542004 Hz

fi = 722672 Hz

fs = 903340 Hz

fo = 1084008 Hz

fr = 1264676 Hz '
fs = 1445344 Hz .

fo = 1626012 Hz

Co_mputed frequencies First eight computed modes are shown on the Fig. 6.6
- Fig. 6.9. Appropriate frequencies are listed below.

frequency relative difference (%)

= 171615 Hz —5

fr= 356761 Hz =1l
T = 532879 Hz —-1.7
Ja= 707107 Hz =22
= 853750 Hy, -5.5
s = 1024242 Hy, =00
= 1189933 Hy —6

fo= 1361634 Hy ~5.8
fo= " 1627816 Hy +0.1
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parameters of the computation were!!:

Mesh: number of nodes = 4258, number of elements — 223087
Matrices: matrix A 8606 x 8606, 223087 nonzero eleme

nts in upper triangular part,
matrix B 49026 nonzero elements in upper

tringular part

Comment - visualized results of testing examples. Presented pictures are

visualized in the GMSH software. The scale representative the absolute values

of the displacement is here only illustrative, because the eigenvectors are normalized
cording to [9]

“ UTMU = 1.

""Full spatial problem was solved.
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Figure 6.4: Second couple of longitudinal oscill
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Chapter 7

Application on the real problem -
vibration of plan parallel quartz

resonator

The model was applied on the thickness-shear oscillation of the plan parallel quartz
resonator. This resonator is manufactured in the company Krystaly, a.s., resident
in Hradec Kralové [35]. We looked for dominant modes in x direction.

The geometry and the illustrative mesh of the resonator are shown on the Fig. 7.1.
It is a circular wafer with radius R including two circular electrodes with radius r
placed in the middle of upper and bottom side. The resonator is fixed in two opposite
spots in z direction. The thickness of the resonator is h. All parameters are listed

in the Tab. 7.1.

The resonator is made form quartz AT — cuts; 250 The material constants are

C = 10°

0.002307 —0.000043
D = | 0.000000 0.000000
0.000000  0.000000

86.74
—8.25
27.15
—3.66
0.0
0.0

£ = 1p*

—8.25

129.77

—7.42
5.7
0.0
0.0

27.15 -3.66 0.0 0.0

—7.42 5.7
102.83 9.92
392 38.61
0.0 0.0
0.0 0.0

—0.002210 0.000941
0.000000
0.000000  0.000000

39.210000  0.000000

0.000000
0.000000

40.826035
0.574121
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0.0 0.0
0.0 0.0
0.0 0.0
68.81 2.53
2.53 29.01 |
0.000000

0.000000  0.001458

—0.003774

0.000000
0.574121
39.413965

0.000000
—0.000875
0.002159




h (mm)

Table 7.1: Proportions of resonator sample.

- ed (kHz) | Computed (kHz) | Relative difference |
Resonaaz::s il;equency Mea:al;l;éz( 1570.843 15.1%
1. harmonic 5067.5 = 1.02 J1 | 4246.481 = 1.01 /y 167 —
2. harmonic 51025 = 1.03 f1 | 4331.652 = 103 / 1%

Table 7.2: Comparison of measured and computed dominant resonant frequencies

of thickness-shear vibrational modes.

: 13.
For listed results, parameters of the computation were

Mesh: number of nodes = 7360, number of elements =31860

Matrices:

matrix A 9771 x 9771, 100430 nonzero elements of upper tringular part,
matrix B 47038 nonzero elements of upper tringular part

Computational time:

preprocessing part ~ 3 min, processing part (for 400 eigenvalues) ~ 55 min,
postprocessing part ~ 1 min

Memory demands (for 400 eigenvalues) ~ 0.8 GB
Computer equipment: PC, Celeron CPU 2.6 GHz, 1 GB RAM

Experimental measured results were obtained from the development department
of Krystaly, a.s. The measurement output (shown on Fig. 7.2) describes the phase

and shift phase dependance on the excitation frequency, with marked resonant fre-
quencies.

7.1 Results

Table 7.2 shows the comparison between measured and computed three dominant
resonant frequencies of thickness-shear vibration. The average deviation of com-
S':Jted results form thg measurement is rather high, about 15%, but the relative
1sgmces between particular frequencies are well-kept.
rz’mph of electrornechaanal coupling coefficients, from which the dominant fre-
quencies can be located easily, is shown on the Fig. 7.3
On the next several pages, th |

. e visualized experin 3 ¢ >
ideal theoretical state. Each ti : e e

: me, first page shows the ideal state: active vibrational
The spatial reduction to the z-direction was used
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sections, amplitudes distribution on axis y at the uppe

’ : r plate of the res - g
vertical cut. Aside from this, the Doty e o

second page shows the meas results:
L e _ shows t asured results: whole
resonator “1‘th displayed amplitudes, schematic amplitudes distribution on axis y
at the upper plate of the resonator and vertical cut :
Tl¥e pr;*.sell)lted results were obtained from the computation with the parameters
mentioned above. For ﬁ-ner l'ne.shes (leading to larger dimension of the eigenvalue
plo.blem}, the comput‘at.lonal time considerably increases, which is caused by the
limited memory capacity. This fact can be partially avoided e.g. by several repetition
of computations for a smaller number of eigenvalues.
The computed modes contain certain amount of the computational noise (mostly

evident in the third dominant mode), but their types can be uniquely identified
with the ideal states. :

Possible use of the results in the design process. The model allows to follow
up the resonators behavior depending on the changes in its shape properties. As an
example, the graph on the Fig. 7.13 shows the dependance of the resonant frequen-
cies on the change of the resonator thickness and the separation of the particular
frequencies. The dependance of the resonant frequencies on the thickness should be
linear. This fact is well represented by the model.

Such results can be used in the design process of the resonator, e.g. in the
optimization process, when we look for such shape of the resonator, that would
have the large distances between particular dominant resonant frequencies.
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Figure 7.1: i
gure 7.1: Geometry and illustrative mesh of plan parallel resonator
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Figure 7.4: Schematic draft of theoretical shape of the first dominant mode and
distribution of the amplitudes (in the z-direction) on the axis y (left curve) and
in the yz-plane median cut.
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Figure 7.5: Computed first dominant mode.

Figure 7.6: Curve of the amplitudes (

| in the z-direction) on the axis T
and in the yz-plane median cut.

left curve)
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yz-plane median cut.

Figure 7.7: Schematic draft of theoretical shape of the second dominant mode and
curve of the amplitudes (in the z-direction) on the axis y (left curve) and in the
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Figure 7.8: Computed second dominant mode.

Figure 7.9: Curve of the amplitudes (in the z-direction) on the axis y (left curve)
and in the yz-plane median cut.
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Figure 7.10: Schematic draft of theoretical shape of the third dominant mode and
curve of the amplitudes (in the z-direction) on the axis y (left curve) and in the

yz-plane median cut.
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Figure 7.11: Computed third dominant mode.

Figure 7.12: Curve of the amplitudes (

s in the z-direction) on the axi e
and in the yz-plane median cut. ) axis y (left curve)
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Conclusion

The thesis presents the results in modelling of the resonant characteristic of piezo-
electric resonators. Discretization of the physical model, based on the finite element
method, leads to the generalized eigenvalue problem with large dimension, which
is solved by using the iterative Krylov subspace methods, namely the implicitly
restarted Arnoldi method.

The computer implementation of the model brings the comprehensive programme
module, which is suitable for determination of the dominant resonant frequencies
in real oscillation problems, including the various shaped resonators.

The testing problems confirm the applicability of the model, with computed re-
sults corresponding to the analytic solutions. The model, applied to the real task
of the thickness-shear oscillation of the plan-parallel quartz resonator, brings qua-
litatively demonstrable agreement with the measurement and keeps the frequency
separation in the right proportions. The shift between computed and measured
dominant resonant frequencies shows the limitations of the model, but after the
calibration to a reference instant, the implementation of the model can be used
for practical computations. The model embodies accurate response to the change
of the input parameters (e.g., it records the linear dependance of the resonant fre-
quencies on the resonator’s thickness).

There are some areas of interest for the future work. The main incoming task
is to develop the optimization programme module, which would be suitable for the
use in shape design process of new resonators. This involves to repeat the solution
of the eigenvalue problems many times. With this objective, the need of a computer
implementation running faster than the present-day one may arise - e.g. with the
help of parallel computation.

As was mentioned in the paragraph 4.3.1, towards the quickness of computation
stays the need of very fine meshes to express the complicated oscillation modes.
This fact leads to algebraic problems with very large dimensions. The numerical
algebraic methods, used in the model, have a good computational performance, but
are limited by the memory size on the PC. The possible way to solve more extensive
algebraic problems with keeping the good computational performance is using the
implementation of multilevel eigenvalue methods (see, e.g., [2], [5] or [7]).
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