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Abstrakt

Simulace v materidlovém inzenyrstvi musi uvazovat slozité fyzikalni jevy,
které maji nelinearni charakter a interaguji na vicero ¢asovych a prostorovych
meritkach. 1 pres bouflivy vyvoj vypocetnich technologii, simulace s pros-
torovym a ¢asovym rozliSenim prostupujici vyznamné rozdilna métitka pocinaje
elektronovou strukturou a konce okem viditelnou jsou i nadale realizovatelné
jen velmi omezené. Tato prace je vénovana vice-Skalové homogenizaci od
matematické formulace az po konstrukci modelu odvozeného z realnych dat.
V prvni ¢asti je predstavena nova implementace periodickych okrajovych
podminek ve smyslu Nitscheho metody a nasledné otestovana na komplexnich
materidlovych strukturdch. V druhé casti je predstavena technika vyhla-
zovani gradientu a jeji vyuziti pro zlepseni konvergencnich vlastnosti metody
koneénych prvku a presnosti odhadu efektivnich materialovych vlastnosti.
Treti ¢ast prace je vénovana efektivni zpétné rekonstrukei vldkennych tex-
tilnich struktur z tomografickych dat véetné odhadu morfologickych parametru.

Klicova slova: periodické okrajové podminky, metoda konecnijch pruki,
vice-skdalové modelovdni, vyhlazeni gradientu, Nitscheho metoda, mikro CT,
obrazovd analyjza

Abstract

Simulations in material engineering must consider complex physical phenom-
ena that have a non-linear character and interact with multiple time and
space scales. In spite of the intensive development of computational tech-
nologies, spatial and temporal simulations penetrating significantly different
scales, starting with the electron structure and visible at the end, can still
be realized only very limited. This work is devoted to multi-scale homoge-
nization starting from mathematical formulation and ends up with the con-
struction of a model derived from real data. The first part introduces a new
implementation of periodic boundary conditions in the sense of the Nitsche’s
method and subsequently tested on complex material structures. The second
part introduces the gradient smoothing technique and its use to improve the
convergence properties of the finite element method and the accuracy of the
estimation of the effective material properties. The third part is devoted
to the effective reconstruction of fibrous textile structures from tomographic
data including the estimation of morphological parameters.

Keywords: periodic boundary conditions, finite element method, multi-scale
modelling, gradient smoothing, Nitsche’s method, micro CT, image analysis
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Goals and Contribution

Scales and complex physic drive the scientific community to develop sophis-
ticated and efficient computational methods. Although we see the intensive
evolution of computer technologies, using them for a ”simple” simulation of
tensile response of ”simple” beam made of ”simple” material is still challeng-
ing and many simplified assumptions on physic and geometry must be made
before. It is a complexity of real world and our limited understanding whose
inspired for developing of the multi-scale approaches. Coupling the different
physics and the different temporal or spatial scales are the attractive pro-
cedures, but requires infeasible amount of computing/time sources, no even
achievable today at many situation. Nevertheless, being so sceptical is not
in place and it must be pointed out that the computational multiscaling or
homogenisation can help us to reduce significantly the computer sources and
still keep the simulations within at least somehow realistic assumptions. The
computational homogenisation/multi-scale sometimes called as FE? is well
established today and provide a powerful framework for simulating the com-
plex non-linear mechanics at several scales. Nevertheless, issues related to
accuracy, model preparation and periodicity must be pointed out. The peri-
odicity is often required on the computational model with complex material
phases and geometry. This is a serious issue as the given geometry and physic
is discretised by finite element method and hence the new formulation of pe-
riodicity constraints in Nitsche’s sense is proposed in this study. Further, the
accuracy of the first order finite element discretisation is often not sufficient
as the speed is preferred. Using a gradient smoothed homogenisation (as
proposed in this study) leads to better accuracy/convergence while main-
taining the efficiency of the first order discretisation. The study provides an
intensive numerical benchmarks including complex geometrical models such
textile material structures or meta-material structure. At the last chapter,
the micro CT-based reconstruction of fibre-like fabric is introduced in order
to get complex, real-geometry based computational model for the homogeni-
sation.

The goal of the study is to develop an efficient and accurate homoge-
nization framework including the intensive numerical tests and algorithms
for extraction of complex fibre-like structures based on micro CT data. The
scientific contribution is highlighted:

e Review of periodicity enforcement on models with non-conformal bound-
ary discretisation.

e Novel periodicity constraints enforcement based on the Nitsche’s method

TECHNICAL UNIVERSITY OF LIBEREC | Faculty of Textile Engineering | Studentské 1402/2 | 46117 Liberecl =l=
tel.: +420 485 353452 | www.ft.tul.cz | IC: 467 47 885 | DIC: CZ 467 47 885 ...



TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Textile Engineering |

including the estimation of stabilisation parameter and its intensive nu-
merical testing.

e Accuracy and convergence improvement of first order homogenisation
method by smoothing the gradient and its extensive testing.

e Novel method for extracting the fibre-like structure from microCT data
tested on woven fabric and yarn structures.

TECHNICAL UNIVERSITY OF LIBEREC | Faculty of Textile Engineering | Studentské 1402/2 | 46117 Liberecl =l=
tel.: +420 485 353452 | www.ft.tul.cz | 1C:467 47 885 | DIC: CZ 467 47 885 ...



Chapter 1

Periodic Boundary Conditions
for Computational
Homogenization

1.1 Introduction

Computational homogenisation is an effective method for incorporating multi-
scale hierarchies into computational models [28]. The simulations of heteroge-
neous materials and their material properties, which are based on micro-scale
data, considerably benefit from computational homogenisation since it can
account for complicated and possibly non-linear structural behaviour [70].
The basic idea behind computational homogenisation is to couple two compu-
tational models (one micro-scale model and a macro-scale model) by solving
an auxiliary micro-scale boundary value problem (BVP) at the macro-scale
model’s integration points. However, the computational cost of this solution
process can be high, meaning that additional work is usually required to find
ways of reducing the computational complexity [39, 66]. With computational

Macro continuum Micro continuum Atom grid

Figure 1.1: A three scale computational model, top-bottom approach-from
macro continuum to atomic model

homogenisation, the associated micro-scale model’s boundaries need to be de-
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fined such that the macro-scale model’s behaviour is correctly captured and
the Mandel-Hill condition is satisfied [59]. This usually means that either
Dirichlet or Neumann boundary condition is applied, but the most impor-
tant issue in terms of ensuring that the model is accurate and effective is
how the boundaries are treated. Traditional uniformly distributed boundary
conditions require the micro-scale model to be larger to correctly capture the
properties at that scale. While periodic boundary conditions (PBCs) can
provide better approximations than uniformly distributed conditions (even
for non-periodic geometries), they require additional effort to be put into the
meshing procedure and treatment of the underlying mathematical solution
[50, 98].

Periodicity constraints require opposite nodes of the representative vol-
ume element (RVE) to match, and Lagrange multipliers, penalty methods or
direct elimination can be used to impose periodicity. However, when there
are pairs of non-conforming opposite nodes (e.g. in non-periodic meshes),
substantially more effort is required to handle the periodicity constraint and
obtain a reasonable solution. Certainly, not restricting the meshing process
offers great flexibility (e.g. homogenisation based on the complex material
structures obtained from micro-computed tomography). In the last decade,
several approaches for maintaining the periodicity of non-conforming meshes
have been proposed.

Tyrus et al. implemented a method that interpolates the periodic con-
straints piecewise in a way that only affects the corresponding degrees of
freedom (DOFs) at the boundaries [100]. This strategy allows the local
finite-element matrices to be reformulated, and no additional treatment is
required. Later, a natural extension of this method was introduced [74],
which avoided the need to know the RVE structure a priori. Larsson et al.
modelled PBCs weakly within an additional finite element (FE) discretisa-
tion process [95]. Another study used a master—slave approach to enforce
PBCs [112]. The so-called mortar approach for weakly enforcing the bound-
ary conditions (discussed later in subsection 1.2.2) was investigated in pre-
vious research [92]. Ouchetto et al. represented the periodicity conditions
in terms of the combined nodal values of opposite faces [80]. A more recent
study [104] presented an interesting approach based on the radial interpo-
lation technique commonly used in meshless methods. Finally, Jacques et
al. handled non-matching faces using a simple approach, which involved an
external grid with local reference points that could possibly be implemented
in commercial software [42].

The above literature review indicates that there is still more work to be
done on enforcing PBCs on non-matching meshes, even though efficient and
accurate implementation is a crucial step for achieving good multi-scale ho-
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mogenisation performance. This study compares several methods in terms
of accuracy, effectiveness and flexibility. In addition, based on Nitsche’s
method, we present a new approach that weakly enforces PBCs on non-
matching faces and compare it with the current methods [49, 108]. We
demonstrate the methods using a linear elastostatic framework using first-
order homogenisation to obtain material effective properties and a nested
two-scale scheme and later extended to 3D.

1.2 Homogenisation on Non-Periodic Meshes

Our goal is to solve the following linear elasticity problem, with primary
variable displacement u and periodicity/anti-periodicity constraints on the
edges.

—-V.-o=0 on €2

oc-n=20 onI'

ur,, — ur,, = £(ry, — Zr,,) on I'y3 and I'y;
Ury, — Ury, = é(l’[‘34 — I’Fm) on F34 and Flg (].].)

Ory3 "Ny = — 0Ty "1y, on I'y;

Ory, "Nry, = — Oy, - Ny, on I'sy

Here, o is the stress tensor and € is the macroscopic small-strain tensor
evaluated at the macroscopic Gauss integration points x9. The geometrical
domain is a simple square € [l x 1] with voids/inclusions and outward nor-
mals n, as shown in Figure 1.2. The edge and point boundaries are denoted
in clockwise order.

’nr34

4 I'34 3
F41 O ©
Dl ()

Nros
el
1 INE 2
nri,

Figure 1.2: Geometrical domain with periodic boundary conditions.
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Under the small-strain assumption, the infinitesimal strain tensor € is
defined as follows:

1
€= §(Vu—|—VTu). (1.2)
The constituent relation for this tensor is expressed as follows:
o=C:e, (1.3)

where the elasticity tensor C for the isotropic material can be written as
follows:

Eu E
- : 5. 1.4
Cijkt 0+ 0 —20) i Ot + T+ ’u5u5jk (1.4)

The variables F and p are Young’s modulus and Poisson’s ratio, respectively,
and ¢;; is the Kronecker delta.

1.2.1 Homogenisation

The macro-scale quantities & and € are related to their micro-scale counter-
parts by the average operator as follows:

1

& —/adQ,
Q Jo

5 l/edQ (1.5)
a : :

The scale transition’s consistency is ensured by the Hill-Mandel condition
which is expressed as follows:

1
&:é:—/azsdQ. (1.6)
Q2 Ja

By decomposing the microscopic displacement field u at the RVE boundary
into macroscopic mean and microscopic fluctuations, we obtain the following
equation:

u(z,x) = €T + upy(x). (1.7)
Where 2,z are macroscopic and sub-scale fluctuation coordinates respec-
tively. To ensure that the Hill-Mandel conditions hold for the decomposition
in Eq. (1.7), we must impose appropriate boundary conditions. Although
the PBCs fulfil these conditions [53], the model is not well posed (the pe-
riodicity constraints still allow rigid translational movements), so we need

to enforce the following additional integral constraints (for more details, see
[74, 75]):

/Fu dr = 0. (1.8)
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1.2.2 Constraint Treatment

The governing constraints for periodic meshes (Eq. (1.1)) can be efficiently
handled by common methods, e.g. direct elimination, penalties and La-
grange approach. However, non-periodic meshes are significantly trickier to
deal with. The constraints are essentially continuity-related and can be re-
formulated as the jump and average operators:

[u] =u; —u_ —g" (1.9)
{o} =10 +(1=1)o, (1.10)

where we have introduced I'g3UT'3y € I'y, TyyUl' o € T and é(zy —2_) = g,.
Furthermore, 7 is a parameter of range 0/1/0.5. The usual average operator
is obtained if v = 0.5 is set up. Taking v = 1 or v = 0 results in the
one-sided mortar method. To make the formulation consistent, the jump
operator includes the macroscopic part of the deformation, but this is then
moved to the right-hand side at Egs. (1.15) and (1.16). There are two
possible approaches for dealing with these operators: interpolation (which
is meshless) and FE discretisation of the weakly enforced constraints. Both
these approaches are discussed below.

Interpolation Method

The interpolation-based methods mainly differ in terms of the type of inter-
polation scheme used. The simplest scheme uses global Lagrange polynomials
and yields surprisingly good results [100, 74]. Although we recommend using
more stable polynomials, e.g. Hermite polynomials or B-splines, there are
essentially no restrictions on which ones can be selected. The main idea is
to express the displacement field u at the boundaries I' using the following
expansions:

u_(s) :iqiNi(s), (1.11)

w () =D aN'(s) + g (1.12)

Here, N, is the interpolation order and N’ is the interpolation shape func-
tion. Additionally, the unknown coefficient vector q must be computed. To
incorporate these expansions into the FE framework, we can augment the
FE matrix (e.g. the stiffness matrix K.) with the constraint matrix M, and
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load vector g¥ as follows at element level:
Ne Ne
[U MZKeMe} {l(;} - U MZ(Fe - Kegg>’ (113)
e=1 e=1

where F. represents the original load vector (e.g. volume force) and N,
is the number of elements. The details of how to construct the constraint
matrix M, and load vector g° can be found in previous research [100, 75, 74].
The big cup |J represents the assembling operator of FE element matrices.
Restriction of the rigid body movement and removing redundant constraints
can be made either by Eq. (1.8) or by equating the corner displacement u
to corner coefficients q. This leads to the following relations:

¢ = uy g = Uz (1.14)

Mortar Discretisation

Mortar discretisation is generally the favoured method and has optimal prop-
erties, but it requires us to devise a stable scheme as Lagrange multipliers are
the core components of the approach. To enforce continuity, we introduce the
idea of mortar and non-mortar edges. Incorporating the jump and average
operators defined above leads to the following weak PBC formulation: Find
(u, A) € U x A such that

/Qs(u):o'(v) dQ+/F+{)\}'[[v]] dr+

A {a} - [u] dI'= [ {a}-g, dI, (1.15)

Iy

for all (v,q) € V x Q. The discretisation of the mixed space is P1/P1, as
proposed in a previous study [92].

Nitsche’s Method

Nitsche’s method is a convenient way to weakly enforce constraints without
additional DOFs. The Lagrange multipliers are replaced by the boundary
flux (in the weak mortar form defined in (1.15)), a penalty term parame-
terised by 3 is added to stabilise the solution'. Reformulating the PBCs

!'Depending on whether the symmetrisation terms are included, we can obtain sym-
metric (o = 1), asymmetric (a = 0) and skew-unsymmetric (o« = —1) formulations.
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according to Nitche’s method, we obtain the standard form used in the lit-
erature [76]:

e o) [ (¥en) o) ar-

Iy

1
oz/m([[u]] ®@n) :{o(v)} dl'+ 3 /m[[u]] A[v]dl' = — (1.16)

a/r g ({o(v)} - n) dﬂ% g vl ar

1.2.3 Estimating the Stability of Nitsche’s form

The estimated stabilisation parameter 8 must ensure a coercive bilinear form.
The final weak form comprises two parts:

a(u,v) =a(u,v)+a*(u,v), . (1.17)
—_—— N —
bulk Nitsche

Supposing the bulk component is coercive and restricts translational rigid
movement, we need to estimate the stabilisation parameter £ in such a way
that there is a problem-dependent constant, ¢, satisfying

a(u,u) > c|[ul|. (1.18)

Equation (1.16) can be rewritten as follows:
1 _
a(u? Ll) = d(“? 11) + E / [[u]] : [[u]] dI’ — (1 + a)([[u]],t)+, (119)
+

where t is a boundary flux. By applying Young’s inequality, which is ex-
pressed as

1 €
< —[hul]* + =||v|]? 1.20
(0,v) < ol + SV, (1.20)
we obtain the following inequality:
— 1 9 €112
([ul, B < o I+ IR (1.21)

Here, € is a positive parameter. Combining (1.19) and (1.21) yields the
inequality:

o) > atuw) + (5 - 5 Yl - CEER 22)
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Next, the only task that remains is to bound the boundary flux by a mesh-
dependent constant, C2, such that

IR < C2afu,u). (1.23)

By substituting (1.23) into (1.22), we obtain the final inequality as follows:

a(u, 1) > <1 - “*Tom)a(u,u) + (% - 1;0‘) iz .24)

This relation must hold for all € > 0, so the three situations in which it holds
can be obtained from the following inequalities:

1 2

1— % >0, (1.25)
1 1+«
i >0 1.26
15} 2¢  — ( )

The final inequality (1.24) thus holds in the following three situations.

e o = 1. This leads to a symmetric Nitsche variant. By taking ¢ < é
and hence % > (2, both inequalities are fulfilled, yielding a unique

solution.

e o = (. This leads to an unsymmetric variant. By taking € < % and
1

5> %2, both inequalities are fulfilled, yielding a unique solution.
e o = —1. This leads to a skew-unsymmetric variant that has a unique
solution for € > 0, irrespective of the stabilisation parameter .

The global stabilisation parameter § can be estimated from the auxiliary
generalised eigenvalue problem:

Hu = \Ku, (1.27)

where the matrices K and H are discrete versions of the bulk and average
fluxes in (1.23), respectively. The stabilisation parameter /5 should then be
chosen based on the largest eigenvalue A,.. [78]. Here, we only consider
the symmetric Nitsche variant with a global estimated stabilisation parame-
ter. In order to overcome the limitation of global estimation of stabilisation
for multimaterial domain, the approach based on the weighted average flux
operator will be applied [4].
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1.3 FE Discretisation

Now that as we defined weak PBCs using Nitsche’s terms, we can use the
Galerkin FE scheme to approximate the solution of Eqs. (1.1). First, we
define the test (U) and trial (V) spaces on € as follows:

U=u(r) € H(Q)|umug on T, (1.28)
V = v(z) € H(Q)|v=0 on T, (1.29)

Here, H' is a usual FE space of piecewise continuous functions. Now, the
task is to find u € U for Vv € V. For convenience, we adopt the widely used
Voigt notation, which is expressed as follows:

EQDZ[EI:L‘ Eyy QExy]T7€3D: [exx Eyy Ezz 2€yz 2€CL‘Z 2€$y:|T (130)

T T
0-2D:[O-mm Oyy Ury] ,O3D = [Uzz Oyy Ozz Oyz Ogz ny] (131)

n 0 n ng 0 0 0 n, n,
nop = [ N y} ,ngp=10 n, 0 n, 0 n, (1.32)
0 ny n 0 0 n, ny, n, O

We use the standard P1 Lagrange shape function space to discretise the
displacement field and geometry. The discrete bulk stiffness is as follows:

Ky = / BYCB dq, (1.33)
Q
where the strain—displacement matrix B, at element level is written as fol-
lows:
won B
BPX = |0 2u o 22 .. (1.34)

9y
ON1  ON1 9Nz ONa
oy ox dy ox

B O

0 & 0 0 %2 0
3D 0 0 8{;\;1 0 0 8{;\;2
B." = 0 @M N g aNy BN,

d F) F)

v g N AN g oM,

Oz oz Oz oz

IN1 ON1 0 INo ONo 0

| Oy Ox oy ox ]

where N; is i*' shape function associated with element e. The size of N, B,
depends on the type of element and the space dimension. The matrix C is
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an elasticity matrix for a linear isotropic material (under the plane stress
assumption), which is defined according to (1.4) and represented using Voigt
notation. For the other terms, the jump and average operators are as follows:

[u] = N"a, —N"u_, (

[v] = N*v, - Nv_, (
{o(u)} =yC*B*u, + (1 —v)C "B i, (1.37
{o(v)} =19C" BV, +(1-7)C B v_. (

Here, the matrices N and N_ at element level have the arbitrary structure:

Ny 0 0 Ny 0 O
. 7Ne - 0 Nl 0 0 N2 0
2D 0 0 N 0 0 Ny

[N 0 Ny 0
Ne=1o N 0 N

‘13D

(1.39)

The vectors @ and v represent the trial and test nodal unknowns, respectively.
By substituting the discretisations (1.32), (1.34), (1.39) and (1.35) into (1.16)
and grouping the terms, we obtain the final matrix form of the scheme:

T —
Kbulk — KNitsche - aKNitsche + _ernalty u = _aGNitsche + EGpenaltya

B
(1.40)

where the vector G represents load given by g and u the global vector of
unknown displacement. The bulk stiffness Ky, is further decomposed to
original problem stiffness K,,;, and contribution of constrain integral of Eq.
(1.8) K-

1.4 Computational Framework and Solvers

The positive indefinite system is obtained upon the Lagrange multiplier’s are
present and thus the direct solver MUMPS was used [2]. Handling constraints
by the penalty or Nitsche’s methods leads to symmetric positive definite sys-
tem that was used by conjugate gradient method preconditioned by algebraic
multigrid HYPRE [19]. The linear algebra and framework is based on the
Scipy/PETSc libraries [45, 5]. The generalized eigenvalue problem defined
in Eq. (1.27) was solved by the LOBPCG methods [38, 56]. The coding
language is the Python/C with parallelisation library MPT [30].
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1.5 Integration on Non-Matching Meshes

The main difficulties for both Nitsche’s and mortar methods arise as a re-
sult of performing integration on non-matching meshes. The most common
approaches are the segment- and element-based methods. The idea behind
the segment-based method is to introduce an intermediate integration line
(surface) on which we integrate the interface fields, as shown in Figure 1.3.
The segmentation process requires a computationally demanding procedure

) | Project the elements €(I'y,T"_) onto I'; |
non-mortar side: T'} (
¢ | Define the virtual segments by clipping |
)

29D 59D
S A _ | Define the integration points 29¢ w |
y i Py w :
X...;..*..*..--::-lt:h-x ..... !.
Vwiadl T
| Map the integration points Z9%Ponto I" ;. |

C )

—

. | Project the integration points 9P w onto I'_ |
mortar side: T'_

/

|Eva1uate the shape functions N (&), M(€) and N(((g))l

Figure 1.3: Example intermediate mortar surface with two Gauss integration
points projected onto the non-mortar/mortar elements. The shape functions
M(¢) are associated with Lagrange’s multipliers on the non-mortar side.
Details of the method used to build the virtual segments I'; are given in 1.6.

(mainly in 3D) comprising point projection, search and clipping algorithms.
In contrast, the element-based method only requires the integration points
to be projected onto the non-mortar side. These two approaches are compre-
hensively compared in previous research [20]. After constructing the virtual
segments, it is useful to introduce the segment coordinate system w € [—1, 1]
and map the integration points into a coordinate system &.

1.6 Projection Strategy for Creating the Vir-
tual Integration Surface

Since the vertex-wise normals for the linear geometry approximation are not
unique, we must make some type of approximation to compute unique nor-
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mals. One approach is to simply average adjacent values (after first ensuring
the cell-wise normals are consistent), as follows:

Nadj. e
n, — 2oesl Mo (1.41)

where Ngyq;. is the number of adjacent cells. The projection method used
in this study is based on an idea proposed in [109] and the JuliaFEM FE
method package”. This strategy is based on setting up the continuous normal
field in such a way that the following holds:

[N1(Q)x5, + No(€)x2,] X myy = 0, (1.42)
[N (€)X + Na(€)Xi = Xm] X [N1(E)0, + No(E)ny, ] =0, (1.43)

where the first equation must be solved to project the points on the non-
mortar cell defined by the normals n,,,, onto the mortar sides defined by the
vertices X,,. The latter equation projects each point x,, on the mortar cell
onto the non-mortar cell defined by the vertex-wise normals n! and n? and
the vertices x! ~and x2 . This equation is generally non-linear (n! # n?),
except in the case of straight edges (RVEs with no holes that intersect their
boundaries).

1.7 Integration of Gradient Operator on Man-
ifold with Double Coordinate Mapping

To evaluate Nitsche’s terms in the weak form (1.16), one must make addi-
tional effort to properly formulate the gradient operators defined on manifold
as the transformation matrix is not squared [14, 47, 85]. Having the local
orthonormal(possibly curvilinear) coordinate systems &, one can transform
covariant components of the gradient operator V to contravariant ones in
local system. Having covariant base, defined as the isoparametric transform:

N
ON, . . .
i = E xy, ] <1 (1.44)
n=1

oxs

where X/ is the j* component of local coordinate system & and the z¢ is i

coordinate component of m*” vertex. From the covariant base can be defined
the covariant metric tensor in usual manner

h=a'a (1.45)

Zyww. juliafem.org
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The gradient operator in global coordinate system is formulated with con-
travariant metric tensor:

V=h'V (1.46)

Following the Voigt notation, the matrix of differential operators with con-
travariant components is defined by contravariant gradient:

B = VNT = ah 'VN' (1.47)
dQ =+/det(h) dQ (1.48)

In this case the double transformation x < £ < w of gradient operator has
the following structure:

4
2

T

- 1
V=Ax-A{-50, (1.49)
where the Ax, A¢ are the coordinate differences, the [,, ¢ are the lengths of

the non-mortar cell and virtual segment respectively. The matrix B has the
following structure:

) 9 —Ax 0 Az 0
B=VN'=_"10 -Ay 0 Ay (1.50)

2
Lzl —Ay —Azx Ay Az
and differential line:
~ 1
dQ = Zlml5 (1.51)

The usual way is to introduce extra coordinate mapping according to Figure
1.4. The mapping T; must be linked to proper element’s edge and then
the edge Gauss points can be mapped onto reference triangle. Using global
position of the gauss point X,, one can avoid the extra maps and rather
directly remap the gauss point onto local coordinate system of the triangle.
The following non-linear equations in a residual form need to be solved:

R(x,{,..) = XN(,..) - X, =0 (1.52)

where x, £, ... are nodal coordinates and local coordinate system of an element
respectively. Further, X, IN(&, ...) are a matrix of coordinates x and interpo-
lations functions associated with an element. To solve the system of above
equations, simple Newton-Rhapson scheme could be used. The analytical Ja-
cobi matrix needed in the iteration scheme can be derived straightforwardly
from 1.44. Initial estimate can be placed into barycentric of the element
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Figure 1.4: Integration on element edges by introducing the extra mapping
T; : [-1,1] — 9Ty, i = 1,2,3. The orange stars are integration points on
reference edge.

£ ... = {%, ...} can be used to get the scheme converged after one two iter-
ations to get local coordinates &, .... Although the scheme works well and
quickly goes to results, it is quite expensive as it needs solving the linear
system at least once on many element.

The proposed formulation based on the covariant/contravariant transforms
offers a consistent way to treat complicated boundary integrals as well as in-
terior integrals for Nitsche’s forms (particular discontinuous Galerkin). The
3D formulation is shown in Figure 1.5. It is a natural generalization of 2D
case except the second coordinate transform, which is straightforward and
will not be discussed further. Again, computing non-squared Jacobian matrix
J, of the mapping x < £ is given by set of linear parametrization functions
N and number m of local coordinate derivatives in 3D at nodal points x:

T

o o |0 1 0 0| _[Am A
Jnxm — 2 Y2 2 — Aym Ay31 (153)
g T3 Ys =z3 0 0 1 0 Az Az

Ty Y 2 o o0 o 1| 2= 7

~
xXT VN for T3

Keeping in mind the generalization of covariant metric tensor h from Eq.
(1.45), we obtain:

h=1JJ, (1.54)
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The gradient with respect to global coordinates can be expressed as:
VN = VNh™'J7 (1.55)

The differential is expressed according to expression (1.48). A generaliza-
tion and prove of the validity of transformation the differential volume on
hypersurface / hypervolume are given in [48].

A" A

3

n

VN"(n,¢,0)

«— —
4i-\ > MAPPING
/. UNT(n,6,0) 2 Tl e—

0

Figure 1.5: Evaluation of gradients on 2D manifold represented as finite
element tetrahedral simplex immersed in 3D.

1.8 Numerical Benchmarks 2D

1.8.1 General Setup

The methods discussed in Section 1.2.2 were tested using several benchmarks
that focused on robustness, accuracy and efficiency. For the interpolation
method, we used Hermite polynomials with 3-10 segments. For the mortar
and Nitsche methods, we used the formulation described above by integrating

the virtual segments at three Gauss integration points x% = {— %, 0, %}
with corresponding weights w% = {2,5,2}. The number of integration

points at the interface is the same for both mortar and Nitsche methods. Due
to material discontinuities, higher number of integration points is somehow
needed (especially for mortar method) to get sufficient accuracy of integration
scheme. This observation is obtained from extensive numerical tests and is
consistent with findings in [20]. The rigid translational constraints (1.8) were

TECHNICAL UNIVERSITY OF LIBEREC | Faculty of Textile Engineering | Studentské 1402/2 | 46117 Liberecl =l=
tel.: +420 485 353452 | www.ft.tul.cz | IC: 467 47 885 | DIC: CZ 467 47 885 ...



19 TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Textile Engineering |

addressed via the penalty method. The Nitsche’s term stabilisation penalty
parameter was derived locally according to [4] for multi-material RVE?, or
globally with respect to single material RVE [78]. The symmetric variant
of Nitsche’s method was considered at all examples. The penalty parameter
value for (1.8) was in the range 1-100 estimated by means of the extensive
numerical tests for RVE employed in this study. The mortar method was
taken as a reference method because it has been proven to achieve optimal
convergence properties [88, 89, 22, 90, 9, 54, 86, 107, 87] and has been suc-
cessfully used in homogenization framework [92]. The homogenized elasticity
tensor was computed from the response of RVE for unitary fundamental loads
defined by macro strains in 2D:

1 1 0] » [oo0 2 [0 05
€ {0 0},5 [O 11 and & {0‘5 01, (1.56)

The homogenized elasticity constants were computed as:

A 1 i
where  is the domain of RVE with area/volume V' and €, ekl are funda-
mental load combinations [40, 72].

1.8.2 Convergence Analysis of Nitsche’s Method

The Nitsche’s method convergence behaviour was tested using a squared
RVE, Q € [Lef X Liof] mm, containing a circular hole of radius r = 0.35 mm
at the centre. The material constituting the RVE were described by their
Young’s moduli, namely E = 1 GPa and Poisson’s ratio of 0.3. The homog-
enized shear stress was used as an equivalent measure of the H' convergence
,which is arbitrary defined as a semi-norm:

By = / ()P de (L58)

and allows us to analyse the convergence of a stress quantity at a given FE
space. We calculated the error e by comparing the results with a reference
solution obtained using the mortar method:

a,ref -5
e fo Zl (1.59)
Uzy

3Well known global estimation based on the maximal eigenvalue is not suitable for
multi phase material model.

TECHNICAL UNIVERSITY OF LIBEREC | Faculty of Textile Engineering | Studentské 1402/2 | 46117 Liberecl =l=
tel.: +420 485 353452 | www.ft.tul.cz | IC: 467 47 885 | DIC: CZ 467 47 885 ...



20 TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Textile Engineering |

To demonstrate the convergence of solution, the micro-model was loaded
according to the macro-strain defined as a simple shear load:

. [0.00 0.01
0.01 0.00]"

Further, the jump operator [-] was analysed in the L? norm:

1 By = / (2 40 (1.60)

in order to check the convergence of the jump operator within mesh refine-
ment and for different values of stabilisation parameter /3.

1.8.3 Size Convergence of Homogenized Properties

The size effect on the homogenized elasticity was investigated on a two phase
composite RVE in 2D with reference size Q2 € [lef X Lof] mm (Figure 1.6).
The materials constituting the RVE were described by their Young’s moduli,
namely Eijcusion = 100 GPa and Ep.i.ix = 10 GPa, with a Poisson ratio of
0.3 in both cases.

B atrix inclusion

a) b) c)
Figure 1.6: Examples of three of the eleven particle scales used for the RVEs:
a)ﬁ =1, b)ﬁ =2 and c)ﬁ = 3. The particle distribution was generated

according to [15].

1.8.4 Two-Scale Beam Analysis

We also evaluated the methods’ performance on another test case, namely a
loaded beam made from materials with both macro- and micro-scale prop-
erties, as shown in Figure 1.7. We used a parallel FE? approach based on a
scheme proposed in previous research [52, 53]. This test focused on the pro-
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micro-scale

B trix

inclusion

11041041117

Figure 1.7: Loaded beam fixed at the left edge (ug = 0 [mm] € T'}) and

loaded by a traction pressure p =0.1 [2-] € I'y. Here, ﬁ = 1000 and
% = 100. The macro-mesh and RVE-mesh sizes are % and ir&fj, respectively.

posed method’s overall accuracy and efficiency and used the nested iteration
scheme shown in Figure 1.8. The solution was considered to have converged
when the norm of residual force Ar was less than 173:

Ne N?
Ar=| JB"o. d0 - f. d». (1.61)
e=1 e=1

The tangent (macro-elasticity matrix C) was computed by efficiently com-
bining matrix factorisation and a complex-step derivative in a parallel frame

[51]:

oo
= . 1.62
C 0e (1.62)
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macro micro
e=1

initiate both models

initialize macro load

eassemble tangent e assemble tangent
esolve system efactorize tangent matrix

eapply boundary conditions

e (assemble tangent)
o (factorize tangent matrix)

_ e compute homogenized o

E e compute tangent C

pozifo[eredooe

loop over increments
loop over integration points

eassemble internal forces
echeck convergence Ar

Figure 1.8: Nested iteration scheme used for the two-scale homogenisation
analysis. When the RVE geometry and material distribution are constant
over the macro-model (micro-periodicity), the efficient factorisation is used.
Otherwise, the full-model RVE is generated and solved.
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1.8.5 Extension to 3D Analysis

The two dimensional formulation can be, without excessive reformulation,
be arbitrarily extended to 3D dimensional space. The integration on non-
matching is slightly different from the 2D scheme and hence is shown in
Figure 1.9. The clipping algorithm returns a triangulated clipped area based
on its centroid. The pre-search algorithm is applied first. The mortar ele-
ments’ centroids are partitioned by hyper-spheres to get the potential neigh-
bourhoods quickly [79]. Further, the set of potentially intersecting mortar
elements is found for an actual non-mortar element by looking at the neigh-
bourhoods in a radius r, which was usually three to five multiple of element’s
circumradius. In a next step, the mortar elements in the pairing set are tested
for the intersection with actual non-mortar element. The 3D periodicity con-
straints in this study are enforced on the coincident surfaces and hence the
virtual interface plane I can be defined on both mortar/non-mortar sides. In
this study, the non-mortar element’s vertices are projected to mortar element
(the projection is associated with a pair of parameters ¢, nym, which repre-
sents the non-mortar centroid and outer normal, respectively). The potential
intersection is evaluated by a clipping algorithm [23]. If the number N of
shared vertices is > 2 and the clipped area A is non-zero, the newly created
polygon is triangulated. In this study a simple triangulation constructed by
creating the i® sub-triangle €; along the polygon centroid z. [92, 20]. In
the next step, Gauss-Radau integration points defined by quadrature coor-
dinates and associated weights x9% w9 are generated for each sub-triangle.
The integration points are subsequently mapped back into a parametrized
domain of non-mortar and mortars elements. The contribution from each
polygonal intersection is a sum over the sub-triangles. Surface interpolation
based on the Coon patch was employed so as to maintain periodicity in the
case of the interpolation method [74]. Gradient needed for Nitche’s term
is evaluated in the same manner as for 2D within Gauss-Radau integration
points for triangular elements. Surface interpolation based on the B-spline
tensor product was used to maintain the periodicity in case of interpolation
method. In order to test the mentioned methods on a complex geometrical
characteristics, three RVEs based on the:

e Poly-crystal grain Structure - RVE3D-CR
e Composite with randomly seed inclusions - RVE3D-I
e Two phase composite-based meta-material unit - RVE3D-META

e Geometrically ideal woven fabric unit - RVE3D-TEX
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1. Define a virtual plane I by centroid z¢ and normal ng from the non-mortar
element

/2. Project the non-mortar element vertices on plane I
3. Project the mortar element vertices on plane I

4. Clip the projected vertices and check the enclosing area A and number N
of the shared vertices of the new polygon

5.if A>0and N > 3:

&
.

Compute the centroid vertex x.

Build the centroid along the i*" virtual element with area ©;

th

Build the Gauss-Radau integration scheme for the " virtual element,
fined by the integrati ints and associated weights 292, w9P. j =

defined by the integration points and associated weights z T Wi J =

1.N,

Remap the integration points z9” onto the mortar and non-mortar

elements

Evaluate the shape functions N*(&,7), N~ (¢, <)

mortar side: I'_ -

Figure 1.9: Integration on 3D non-conforming mesh boundaries

A linear elastic material model was used as given by one or more material
phases. Although the linear approximation of the interface was applied,
a greater number of integration points is usually required so as to obtain
sufficient precision due to the material discontinuities; hence, the 5-point
Gauss integration rule was employed in this sub-study to get accurate integral
evaluation [20].The homogenized elasticity tensor was obtained by solving the
RVE equilibrium for six fundamental unitary load cases:

100 000 0 0 0]
s =10 0 0[,62=101 0|é¥=10 0 0, (1.63)
000 000 00 1
0 0 0 0 0 05 0 05 0]
E® =10 0 05[,6%=]0 0 0|é®=1]05 0 0 (1.64)
0 05 0 05 0 0 0 0 0

The coefficients of homogenized elasticity tensor were computed according

(1.57).

Small Deformation of Grain-like Structure

The Figure 1.10 shows a typical RVE used for simulating of crystal plasticity
consisting in grains of material phases. The geometrical characteristic is
unique, as there are many crystals with different volumes. It is an important
task, where the homogenization constraint plays important role and thus it
is included in a simplified form in benchmark. In this sub-study, only the
geometry is used and the linear elastic properties are computed, although
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the crystal plasticity is highly important topic in computational material
engineering, but it is over the scope of this study. The grain-like structure
was generated on the RVE unit of characteristic length [1 x 1 x 1] mm.
The RVE contains 250 grain cells with mesh resolution 0.05 and isotropically
oriented. The grain size is sampled from uniform distribution as the material
properties. The grain interface is expected to be ideal and infinitely stiff.

Young's modulus (MPa)
s 1.0e+00 100 2.56+02 2 % 176405 2.1e+05

domain index

Figure 1.10: The snapshot of crystal model; left-computational mesh and
domain index of each crystal, right: two phases(austenitic(blue), ferritic(red).
The distribution of characteristic grain size is normal A/(0.15, 0.01) for both
phases. The model was generated by by library Neper 3.0 [91].

Soft particle-matrix Composite

The particle composite RVE shown in Figure 1.11 has a dimension 1x1x1
mm with hard spherical inclusions of defined size/position distribution with
small overlaps defined as 10% of characteristic particle distance (see details in
library Mote3D [94]). Each composite phase is defined by Young’s modulus
(Figure 1.11:left) and Poisson’s ratio, which is same for both phases and has
value 0.3.

Two Phase soft Metamaterial

The state-of-the-art so-called ”soft” composite with soft matrix and hard
auxetic structure is shown in Figure 1.12. Metamaterials have unusual me-
chanical properties hardly seen in nature. The auxetic structures is famous
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Particle distribution Computational mesh

2 Young's modulus [MPa]
, 20e+03 5000 1.0e+04

Figure 1.11: The RVE of particle composite with normal distribution defined
by N (0.1, 0.03) of particle radius. The targeted number of particles is 250,
but it varies from 245 - 251 per realization. The particle positions and radius
are generated in library Mote3D [94].

for its negative Poisson’s ratio and increased shear capacity. Adding more
material phases together is highly promising area of composites structure
engineering (see some last recent results in [58, 43]). This sub-study test
very base soft composite with reentrant structure. Poisson’s ratio and nor-
mal/shear modules are studied in sense of different periodic boundary condi-
tions implementation. The geometrical structure has a dimension [1 x 1x0.5]
mm. The thickness of wall is 0.3 mm and reentrant angle 74°.

Woven Textile Composite

The textile composite cell is defined by woven fabric with three layers with
simple structure shown in Figure 1.13. The yarn length is 1 mm with height
0.25 within three layers. The matrix material is a resin with Young’s modulus
5000 MPa and Poisson’s ratio 0.3. The yarn structure is of material defined
by Young’s modulus of value 100 MPa and Poisson’s ratio 0.3 The RVE has
a dimension [1 x 1 x 0.25] mm.
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Geometry Computational mesh

Yz I
X

Figure 1.12: The RVE composite with meta-material structure defined by
auxetic pattern.

* Young's modulus (MPa)
2.0e+03 5000 1.0e+04

Fibres structure Computational mesh

Domain index
f 1.0e+00 1.5 2.0e+00

\d I

Figure 1.13: The textile composite RVE defined with simple woven structure.
The geometry and mesh were created in the software TexGen [10].
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1.9 Results

1.9.1 Convergence Analysis of Nitsche’s Method

The convergence analysis for the Nitche method (Figure 1.14) shows consid-
erable errors in the jump operator norm L? and shear stress H'. Refining
the mesh reduces these errors for a suitably chosen stabilisation parameter,
B. The optimal stabilisation parameter value must be estimated for Nitche’s
method. Otherwise, we may obtain unstable, suboptimal solutions or poorly
conditioned systems. The latter can deteriorate the convergence rate if the
stabilisation parameter is too high. Figure 1.15 shows the stress distribu-

Condition number Jump norm L2 Shear stress error
9]e .
S LN 10724 A /
.\\\\\ E P ///2;, 1071 i /;/
105 SO 1072 4 27 7
o W0 g ] — /
. DR = o F = 4
~ AARY — - o
<107 AN F 10 4 20102 /
\‘»\\ \\‘___.. = ) /,//;// 9 /
6 AN AN gﬂ 1074 /%7 &=
10° 4 \o---9| —~ /2 N
. 57 10-3 4 AN
| 107°4g¥ N
10~ 107 1077 1079 10~ 107
1 1
log 3 log % log 5

Figure 1.14: Convergence and condition number analyses of the symmetric
Nitche method for the shear stress and jump operator norms, including the
go term, using h-refinement. The blue, orange and green data are for 1211,
19300 and 53694 DOFs, respectively. The vertical lines show the parameter
value estimated via a global eigenvalue-based analysis.

tions for all three methods as we h-refine the boundary mesh three times on
the positive sides. The maximum displacement difference found between the
mortar and Nitsche solutions is 0.0001%. Nitche’s method shows the high-
est stress difference (0.016%), while the polynomial model shows the lowest
stress difference (0.0038%).

1.9.2 Evaluation of Size Effect on Homogenised Elas-
ticity Matrix

The homogenised constant elasticity tensors for the three approaches are

listed in Table 1.1. Again, Nitsche’s method shows the highest error differ-

ence (0.18% for Ci192), while the polynomial model shows the smallest error
difference (0.005% for Cao9).
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— Mortar (ref.) Polynomial
E] 0.0076 0.0076 . 0.0076
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0.0068 0.2 0.0068 0.2 0.0068
0.0064 0.0064 0.0064
0.0 0.0
0.0060 0.0060 0.0060
0.0056 02 0.0056 02 0.0056
0.0052  —0.4 0.0052  —0.4 0.0052
0.0048 _ 0.0048 e 0.0048
~050 —025 000 025 050 ~050 —025 000 025 050 050 —025 000 025 050
233.4 230.6 233.5
2048 04 202.5 204.8
176.1 1744 176.1
0.2
7.5 146.4 147.4
189 00 1183 118.7
90.3 90.2 90.0
~02
61.6 62.2 61.4
330 04 34.1 32.7

6.0 4.0

—0.50 —0.25 0.00 025 0.50

—0.50 —0.25 0.00 025 0.50 —0.50 —0.25 0.00 025  0.50

Figure 1.15: Effect of uniform mesh refinement of the positive boundaries on

the displacement and von Mises stress distributions. The initial mesh size is

l%f and the final size is l{gé. The stabilisation parameter was 5.0175.

Table 1.1: Homogenised isotropic elasticity tensors C for the three methods.

Mortar (ref.) Nitsche Polynomial
15489.11  6536.23 0.01 15482.36  6524.21 0.01 15487.87  6535.33 0.02
6536.23 15488.81  0.02 6524.21 15480.87  0.02 6535.33 15487.93  0.02
0.01 0.02 4475.01 0.01 0.02 4479.02 0.02 0.02 4476.68

Figure 1.16 shows how all three methods’ elastic properties converged,
indicating that the elasticity tensor values usually stabilise after the RVE
scale has been increased three times.

1.9.3 Two-Scale Analysis Results

The stresses on the loaded beam at both the micro- and macro-scales are
shown in Figure 1.17. This indicates that the jump operator error is lower
for Nitsche’s method than for the reference mortar method, while the stress
error is up to 0.007%. The micro-scale stress error distributions were similar,
with errors of around 0.001%-0.007% (not shown).

1.9.4 Evaluation of 3D Models

The Von mises stress distributions for shear unit macro load (the same as
for 2D analysis) of 3D linear models is shown in Figure 1.18 at random re-
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Figure 1.16: Convergence of the elasticity constants with respect to the RVE
model scale. These are computed 50 times per scale to obtain average values
for the elasticity tensor C.

alization if possible. No visual artefacts on boundaries caused by Nitsche
discretisation are seen. The stress values are in range 0.3-1400 MPa, al-
though could not be physically representative because of too high macro
load (for linear models such those it is even irrelevant because the linear-
ity assumption causes the resultant homogenized properties independent on
macro load). The poly-crystal structure RVE3D-CR stress magnitudes are
correctly the highest as its material phases are highly stiff with respect to the
other models. The RVE3D-I stress distribution is mostly located around
the inclusions with the maximal values of stress 77 MPa. The minimal values
of stress are located at matrix and has value 9.9 MPa. The meta-composite
model RVE3D-META contains complex stress pattern inside the auxetic
structure. The maximum stress value is located on boundaries of auxetic
structure and has value 37 MPa. The minimum value of stress is again
at matrix phase and has value 6.1 MPa. The last textile composite model
RVE3D-TEX contains the lowest stress (0.3 MPa) inside of woven fabric as
it less stiff than matrix phase. The maximum stress is on the matrix phase
boundary and has value 37 MPa. The homogenized elasticity constants de-
pending on the number of cells XY-repetitions are showed in Figure 1.19
for each 3D model. The homogenized elasticity components converge after
3-5 scale magnification. The sufficient number of realisation for the RVEs
RVE3D-CR and RVE3D-I was 100 to get convergent mean and standard
values. The models RVE3D-CR and RVE3D-I show an isotropic material
orientation unlike the RVEs RVE3D-META and RVE3D-TEX which are
highly anisotropic as elasticity constant are highly scattered (see Table 1.2).
With respect to the other methods (ie, mortar and polynomial), the resul-
tant differences at homogenized properties are at most 0.91% for the between
polynomial and Nitsche’s methods on elasticity member Cogos.
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Table 1.2: The homogenized isotropic elasticity tensor C for 3D RVEs

RVE3D-CR RVE3D-I

[254412 108882 108886 —24 8 -9 [9201.25 3708.53 3701.36  1.29 2.85 2.89
108882 254268 108853 —29 4 7 3708.53 9153.84 3681.99 4.23 3.74 3.22
108886 108853 254330 25 -3  —22 3701.36 3681.99 9123.63 421  —025  1.03
24 —29 25 72753 -7 -5 1.29 4.23 421 272536 —12.45 145
8 4 -3 —7 72739 —16 2.85 3.74  —0.25 —12.45 2720.01 3.76
-9 7 —22 -5 —16 72747 2.89 3.22 1.03 1.45 3.76  2722.78

RVE3D-META RVE3D-TEX

[4808.19 —1829.17 2018.14 —1.03 —0.46 —2.06 [842.11 240.99 137.87 —2.66 —0.14 1.18
—1829.17 5969.72 2340.74 —2.76 —0.01  0.36 240.99 842.64 138.62 —348 043 139
2018.14  2340.74 6921.14 —0.24 —0.80 0.24 137.87 138.62 411.32 —1.64 027 0.42
—~1.03 —276  —0.24 1288.13 —0.20 1.08 —2.66 —348 —1.64 22850 —0.59 0.62
—0.46 —0.01 —0.80 —020 1876.7 0.87 —0.14 043 027 —059 11265 048

| —2.06 0.36 0.24 103 087 150501 [ 118 1.39 042  0.62 048 11049

1.9.5 Evaluation of Boundary Flux with Generalized
Gradient Mapping

The norm of difference of normal flux computed by standard mapping method
and the proposed in section 1.7 is show in Table 1.3. The mesh size density
was the same for all models as the results are mesh size dependent and with
refining the mesh, the norm difference decreases. The resultant norm of
difference is in range from 5.171% to 8.977. Except RVE2D-H,2SC2D-BI,
RVE3D-META and RVE3D-TEX, the results are mean values as comm
from multiple stochastic realizations. Nevertheless, the 2SC2D-BI has no
statistical meaning, as it is only spatial average on macro-scale model related
to Figures 1.7 and 1.17.

Table 1.3: Norm of normal flux difference for common and generalized map-
ping scheme for three periodicity directions .A. Norm is computed at the

mesh density(%) of RVE.

2D 3D
A | RVE2D-H | RVE2D-I | 2SC2D-BI | RVE3D-CR | RVE3D-I | RVE3D-META | RVE3D-TEX
X 1.1°8 2.579 3.1°8 0.278 5.1710 3.679 5.1°8
y 8.9°7 8.1°8 3.4°8 3.67° 5.178 2.779 6.278
z - - - 9.478 7178 1.378 4.7°8

1.9.6 Penalty/Nitsche Stabilization Parameters Inter-
action

For more complex bilinear forms arising from complex underlying physics, a
mix of Nitsche, Lagrange multipliers or penalty terms can occur. Although
the Nitsche method is well documented, studies usually do not treat more
terms and their interaction to the author’s knowledge. In this sub-study the
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only numerical evaluation of penalty/Nitsche terms is introduced’. Recall
the bilinear form split up to bulk and Nitsche terms:

a(u, v) = [a(u, V)pur + B10(0, V)] + [a(W, V) Nitsche + B2a(0, V) pen] (1.65)

From stability analysis we already know that bulk form must be already co-
ercive to get meaningful bound for Nitsche term. Bulk form is not well posed
unless the rigid body translation is removed. Injecting the penalty term
that ensures the average displacement fluctuation is zero, we can assume a
relation o = f(f1,...). Consider the 3D RVE with one material phase for
reference and model RVE3D-META. The load is the same as in section
1.8. The stabilisation parameter % is of range 1 — 10'°. The response of
a reference 3D model is given on the Figure 1.20. The homogenised shear
stress value is stable up to 10°, after quickly deteriorates. Jump norm is the
lowest (also the visual distribution has a regular pattern) for small values of

penalty parameter ,8% up to value 103, after that threshold, the jump norm

is increasing. The eigen-value representing the stabilisation parameter é

starts with value 107 at lowest values of parameter in figure % The eigen-

value gradually decrease up to values 102. The conditions number of stiffness
matrix decreases with increasing the % up to value 10°, where start increas-
ing. Considering more complex model RVE3D-META | we get its response
for different /8% on Figure 1.21. The shear stress of value 15.27 MPa is stable
with small fluctuation up to limit value 10°. The displacement field jump
tends to increase with increasing the stab. parameter unlike the estimated
eigenvalue and condition number which decrease. Nevertheless, material in-
homogeneities and mesh anisotropy deteriorate the efficiency of the globally
estimated mesh dependent constant based on the eigenvalue analysis. More
likely, the stability parameter can be estimated as an estimate weighted by
the material constants. Having the constant strain triangle/tetrahedra, the
local estimate of stab. parameter at closed form can be estimated [105], later
extended for non constant Jacobian by Owens in [81]. To overcome the ma-
terial heterogeneities an approach based on the work of Annavarapu [4] is
introduced. Recall the weighting parameter v from section 1.2.2 and notice
that v_ + v, = 1,7 = . The stabilisation parameter C? can be estimated
with help of characteristic measures (operator meas(-)) on interface I'; and

4Numerical results should be interpreted in a more rigorous mathematical way, never-
theless it is over the scope of the purpose of this study.
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adjacent cells €Q.:

C? —meas(T ( Ce()? | IICEI(02)? > (1.6

meas( meas(Q )

meas( Q
i lIC]|
76 -

meas(Q1) + meas(Q2) =12 (167)

(] lIcZ]]

Characteristic measures are defined by the length/area/volume of an inter-
face and interior cells. Combining the expressions in 1.66 we segregate the
weighting factors 4¢. The local estimate is used for both normal and tangen-
tial components of stabilisation terms in 1.65. Estimating the stabilisation
parameter by the weighted sum introduced 1.66, the homogenised material
parameters of RVE3D-META were correctly computed.

1.9.7 Note on Energy Equivalence and Symmetry of
Homogenized elasticity Tensor

Computing components of homogenized elasticity via the average stress oper-
ator defined in (1.5) leads to a small asymmetry of the resultant homogenized
elasticity tensor. Moreover, the energy equivalence is also maintained less ac-
curately than with (1.57). The homogenized stress tensor computed by (1.5)
somehow does not exactly respect the RVE equilibrium due to discretization
and hence violates the symmetry of the homogenized elasticity tensor. Nev-
ertheless, the level of symmetry is also somehow influenced by the method
used for PBC treatment. The energy equivalence condition defined in (1.6) is
most precisely recovered by mortar method, following the interpolation and
Nitsche’s methods (Table 1.4). The mortar method provides the most accu-
rate recovery of symmetry, followed by interpolation method (Table 1.5). The
Nitsche’s method accuracy is dependent on the penalty parameter according
to auxiliary extensive numerical tests. In comparison with arbitrary com-

Table 1.4: The level of fulfilment for Hill-Mandel conditions for tested meth-
ods with C computed with average stress operator (1.5).

Method subsection 1.8.2 subsection 1.8.4 section 1.8.5
Polynomial 177 277 377
Mortar 1-8 578 28
Nitsche 17 4-8 477

puted homogenization tensor according (1.57), the energy equivalence across
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Table 1.5: The level of asymmetry expressed as an absolute difference of shear
terms |Cly — Co| for 2D and |Cy3 — Csa| for 3D in homogenized elasticity

tensors.
Method subsection 1.8.2 subsection 1.8.4 section 1.8.5
Polynomial 1.02 0.89 4.2
Mortar 0.01 0.01 2.3
Nitsche 0.92 0.81 5.1

the scales is accurately maintained for all tested PBC treatment methods
(the total energy density difference was 171¢). Further, the symmetry of
homogenized tensor is maintained absolutely.
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Figure 1.17: Convergence of the jump operator and von Mises stress dis-

tributions for the two-scale beam analysis. The stabilisation parameter for
Nitsche’s method was 7.377.
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RVE3D-CR RVE3D-I RVE3D-META RVE3D-TEX
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Figure 1.18: An evaluation of stress distribution for 3D RVEs models. The
deformation is magnified 30 times.
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Figure 1.19: The evaluation of elasticity constant for different 3D RVE mod-
els with estimated mean and standard values where was is possible. The grey
fill expresses the 95 % confidence intervals.
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Figure 1.20: Dependency of important variables defined (reference model
with homogeneous geometry and material distribution) on the penalty pa-
rameter associated with the constraint integral removing the rigid transla-
tions. Eigenvalue corresponds to a maximal value given by the global stabili-
sation estimate from subsection 1.2.3. The zero parameter is not considered.
Quick shots of the Von mises stress and displacement norm fields are shown
for sudden penalty parameters.
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Figure 1.21: Dependency of important variables defined (RVE3D-META)
on the penalty parameter associated with the constraint integral removing
the rigid translations. Eigenvalue corresponds to a maximal value given by
the global stabilisation estimate from subsection 1.2.3. The zero parameter is
not considered. Quick shots of the Von mises stress and displacement norm
fields are shown for sudden penalty parameters.

TECHNICAL UNIVERSITY OF LIBEREC | Faculty of Textile Engineering | Studentské 1402/2 | 46117 Liberecl =l=
tel.: +420 485 353452 | www.ft.tul.cz | 1C:467 47 885 | DIC: CZ 467 47 885 ...



39 TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Textile Engineering |

1.10 Discussion on Implementation of Peri-
odic Boundary Conditions

Periodicity conditions play important roles in micro-mechanical analyses and
the multi-scale approach. Although these constraints can be trivially ful-
filled for periodic meshes, the non-periodic case is far less straightforward.
For complicated morphologies (e.g. geometry CT-based data) the conformal
mesh boundaries present a challenge. Most of the methods developed to en-
force PBCs are either meshless or mesh-based. This study considered one
meshless method (interpolation with Hermite polynomials) and two weak
mesh-based methods. Table 1.6 summarises the performance of the tested
methods. Although our evaluation could be seen as somewhat subjective,
we have nevertheless tried to objectively examine and highlight the meth-
ods’ most important properties and provide recommendations to support
the decision-making process. Our convergence analysis focused on the jump

Table 1.6: Overall evaluation of the tested methods.

Method  Convergence Accuracy Addnl. DOFs Solver Addnl. params Impl. complexity
Poly. Good Good No Regular Order Good
Mortar Good Good Yes* Direct* Inf-sup** Average
Nitsche Good Good No Regular***  Stab. param.****  Average

* Can be eliminated to obtain a purely displacement-based formulation.

*x A stable mixed scheme must be provided.

kokk
kokskok

The form can be unsymmetric, in which case the regular conjugate gradient method fails.
Stabilisation parameter estimation requires potentially an additional solution step.

operators, showing that all the methods converge under optimal conditions.
The interpolation method’s accuracy is bounded by the particular method
used. For example, higher-order interpolation may be required if the bound-
ary deformation is complex (i.e., the RVE geometry is complex), in which
case the oscillations of Lagrange polynomials cause a loss of accuracy. On
the other hand, using a low-order Lagrange polynomial again leads to a loss
of accuracy up to first order, recovering linear displacement boundary con-
ditions. Given that Lagrange polynomials are not suitable for higher-order
interpolation, alternatives, such as splines or the Hermite polynomials used
in this study, may be preferable.

From an efficiency point of view, the interpolation method augments the
underlying FE formulation. It requires cell-wise construction of specific trans-
formation matrices and multiplication during the assembly process. This
additional step decreases computational efficiency and hence requires con-
siderable effort to achieve good model performance. On the other hand the
constrained DOFs can be replaced by a few global DOFs, considerably re-
ducing the size of the system to be solved. While it has a negative impact
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on FE matrix sparsity pattern, this effect is not significant to the best of
our knowledge (which is consistent with the findings of [74]). Solver time
of the linear system originates from interpolation method was up to 8 %
higher than the solver time for Nitsche’s method in our examples. An ad-
vantage of this method is that maintains periodicity for boundaries contain-
ing voids. Nitsche’s method omits the Lagrange multipliers, replacing them
with the boundary flux. This means the system can be efficiently solved by
the conjugate gradient method and without additional DOFs, in contrast to
the mortar approach where the final matrix has zero values on its diagonal
and contains additional DOF's in terms of Lagrange multipliers. However,
Nitsche’s method still involves computing the gradient on the boundary. Al-
though this can be automated by algorithmic differentiation, it potentially
increases the implementation complexity.

The accuracies of the mortar and Nitsche methods are excellent (again
under optimal conditions). Both of these methods need an accurate integra-
tion scheme for non-matching interfaces. This is an even more challenging
requirement in 3D space, where polygon clipping and further triangulation of
the projected polygon are needed [92, 20]. There is an alternative approach
that only projects the non-mortar Gauss integration points onto mortar side,
but this may involve a possible loss of accuracy [108]. The mortar method
requires a stable discretisation scheme that fulfils inf-sup conditions [106], so
it depends on the nature of the underlying partial differential equations and
fields computed. Another drawback is that the Lagrange multipliers increase
the number of DOF's that must be solved. Fortunately, discretising the La-
grange multipliers using a bi-orthonormal basis allows them to be effectively
eliminated from the system solution, although the inf-sup conditions are still
required [92, 33].

This most significant drawback of Nitsche method is that it usually re-
quires an estimated stabilisation parameter in order to achieve a coercive
bilinear form. As we have noted in this study, however, this can be partly
avoided by considering an unsymmetric variant of the method or by estimat-
ing the stabilisation parameter [4, 78]. Although this variant is consistent
with the form used in previous studies [32, 13, 49], we have only focused on
the symmetric one in this study, as it is better known. In addition, Nitsche’s
method is central to cut FE/multimesh methods, which have great potential
for alleviating the mesh burden as they allow the background (matrix) and
inclusion meshes to be generated separately [11, 69].

All the methods tested in this study provide excellent accuracy and no
one method significantly outperforms the others. The mortar and Nitsche
methods are well known and widely used in contact mechanics and domain
decomposition techniques [108, 106]. To the best of our knowledge, however,
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only the interpolation method has been used for second-order homogenisation
[75]. There are no documented examples of the mortar or Nitsche methods
being used to enforce periodicity in second-order homogenisation, but we can
see no obvious limitations to their use in this area.

One drawback of this study is that the methods were only tested using
simple benchmarks, which might not have revealed all the details. Studying
the application of these methods to high-order/XFEM discretisation [6, 7] or
the complicated multi-physical phenomena needed for multi-scale simulations
can be challenging, and using them to enforce complex field periodicity is
not well documented, although the mortar and Nitsche methods have been
studied for high-order discretisation and multi-physical coupling [17, 44, 21,
96]. This, however, lies beyond the scope of this study, which was to review
interpolation- and mesh-based methods and propose a new approach based
on Nitsche’s method.

Apparently, the globally estimated stabilisation parameter for the Nitsche’s
method is not robust. In the case of multi-material structures such were
tested in this study, the maximal eigen-value overestimates systematic the
optimal stabilisation parameter, especially with larger material contrast. It
leads to badly conditioned system hardly solvable with inaccurate output.
Fortunately, locally estimated material coefficient-weighted estimation of sta-
bilisation parameter can be applied (see 1.66 explored in study [4]). Includ-
ing the additional constraint to remove rigid body translation via the penalty
method, a specific interaction between two stabilisation parameters occurred,
not described in the literature. Numerical experiments show that small val-
ues of ,8% negatively influence the conditioning of the system and increasing
the estimated Bi? parameter, nevertheless the macro stress, tangent and jump
norm are of good accuracy and relative stable up to some limit point (for
homogeneous material box it was 10) at small values of % close to zero.
Moreover, the macro stress and tangent stiffness are computable at zero val-
ued ,B% Interaction of two stabilisation parameters at one bilinear form form
is not linear and contains some critical points (see the Figure 1.20, 1.21). To
solve complex engineering tasks, no one can expect simple PDEs with only
one constraints and hence a robust estimation of stabilisation parameters
should be provided.

Despite the discussed limitations of Nitche’s method, the fact is it an
intensively studied, and definitely yet not completely explored method to
consistently, with a posterior error estimate, treat the constraints.

The implementation highlight for Nitche’s method is an integration on the
skeleton. Integrating of the primal variable on the boundary is straightfor-
ward and technically well treatable algorithm. Nevertheless the integration
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of the gradient is usually treated by the additional mapping on between
the given element topology objects (tetras-jtriangles-;edges). The standard
isoparametric mapping is now well defined, as it maps at two objects of dif-
ferent dimensions. Exploiting the curvilinear formulation ad proper defining
the covariant/contravariant metric one can elegantly transform the gradient
in a common way known for isoparametric mapping with no loss of accuracy.
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Chapter 2

Gradient Smoothed
Homogenisation

2.1 Introduction

Modern materials contain precisely designed microstructures with one or
more constituent phases. Controlled and tuneable microstructures allows us
to produce materials with multifunctionality, light weight and high mechan-
ical performance. The key step to achieve high-performance materials is the
design of the microstructures. However, it is difficult to find the most effec-
tive structure and evaluate it by either an experimental or a computational
approach. Investigating the material effective properties has been of great
interest in the scientific community for decades. One of the first attempts
related to the analysis of a composite material was to obtain its analytical
material bounds (Hashin—Shtrikman bounds) [34]. Although this is effective,
in an analytical model, the geometrical characteristics of the material are not
incorporated.

Computational homogenisation is a popular method for computing the
effective properties of media, including composite materials [40, 1, 25, 71, 3]
or for other multiphysics of fluids [97, 55] or heat transfer [83, 82]. A com-
putational model is represented by representative volume elements (RVEs)
or unit cells. The model is repeated, and periodicity is often required. Ho-
mogenisation is based on rigorous mathematical theory and allows for the
design of a material from its microstructure [31, 8]. The FE method is often
used in computational homogenisation, which is significantly used in compos-
ite microstructural design [40, 1, 25, 71, 3]. Conformal displacement-based
FE is commonly used because of its computational efficiency as the regular
low-order FE method suffers from overly stiff results [115], mesh distortion
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sensitivity and poor gradient reconstruction accuracy, which is approximated
via piecewise linear functions [64, 65]. These issues certainly deteriorate the
performance and accuracy of micromechanical FE mode RVEs, which were
used to compute the mechanical response herein. To overcome the afore-
mentioned limitations, the gradient (strain)-smoothing technique is studied
herein. The basic idea of the method is that the compatible strain is replaced
by its smoothed counterpart. The computational domain now contains do-
main subdivisions based on the FE mesh topology. The main feature is that
gradient evaluation is no longer performed at nodal points but on the subdo-
main boundaries. This has been made possible by the divergence theorem. In
fact, the method originated from the stabilised conforming nodal integration
(SCNI) introduced in previous research [12]. Depending on the construction
of the smoothing subdomains, we recognise the following: cell (CS-FEM),
face (FS-FEM), edge (ES-FEM) and node (NS-FEM)-based smoothed
FE method [60, 61, 77, 63, 62, 35, 36]. These variants provide unique prop-
erties that superior to those of the regular FE method:

1. Accuracy

2. Upper/lower bound on material properties
3. Mesh quality insensitivity

4. Spurious energy mode suppressions

5. Soft response (less stiff)

We only considered the ES-FEM variant as it is more suitable for the ho-
mogenisation method in mechanical engineering (this decision has been sup-
ported in a previous study [57]). Although homogenisation on linear elastic
frameworks has been investigated in previous research [57] with good ex-
amples of the importance of S-FEM in homogenisation, more complex com-
putational models involving the important periodicity constraints on non-
matching boundaries should be established. This study aimed to improve
the standard homogenisation method by smoothing the gradient field dis-
cretised by the linear FE method, including various formulations of periodic
boundary conditions. A conformal mesh cannot be always obtained because
of geometrical and material complexity, and therefore, tying the opposite
boundaries of the RVEs is generally required. To treat the periodicity condi-
tions in non-conformal RVEs, we implement Mortar and Nitsche’s methods
and discuss their interaction with smoothed FE formulation.
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2.2 Smoothing Gradient Formulation

Considering the elasticity problem formulated in sections 1.2 and 1.3, we
select strain € and smooth it over the smoothing domain Q* as follows:

&(z) = /Q e(2)B(x) A (2.1)

The weighting function ®(x) can be chosen as

b(z) = {(7 z Z SZ (2.2)

where Ay is the area of the smoothing subdomain. Furthermore, the weight-
ing function should fulfil the compactness and

/ O(x) dQ = 1, > 0. (2.3)
Qp,

By employing the divergence theorem, we can rewrite Eq. (2.1) in terms of
outer normals n; and primal variable displacement uy

1
E=— n; @ uy dr’ (24)
Ak Fk

on the boundaries of the smoothing subdomain. The divergence trick allows
us to generalise smoothing by n-sided polygonal elements. To continue, the
smoothing subdomains must be constructed. In Figure 2.1, a 2D triangular
RVE mesh is shown. Based on the mesh topology, the triangle midpoints
cp and edge intersection points 7p of the smoothing domains are built. The
computational mesh now contains the triangle midpoints cpé? . The index k
describes the smoothing subdomain, index j and its subdomain. Interior
smoothing domains contain two adjacent subdomains ng inferred from the
two adjacent triangles. The boundary edges contain only one adjacent trian-
gle and therefore only one smoothing subdomain. The smoothed edge always
contains two nodal points p;, 7 < i.

Having defined the smoothing domains on the domain edges, common
P1 approximation functions ¢ (x) are defined on the edges in a matrix form
N(z). On employing the Voigt notation, we can write the k'"-smoothed
gradient matrix as

S
B — Aik Zl 04 ()N () . (2.5)
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Figure 2.1: Geometrical domains and ES-/CS-FEM smoothing subdomains.

where the variable [; is the subdomain edge length. The summation is per-
formed over all boundary edges of the subdomains; thus, the interior S = 4

and the RVE boundary S = 2. The final bulk stiffness matrix is assembled
as

N
K = | B, CB;A; (2.6)
k=1
over the all domain edges Ny. The shape functions 1(x) are evaluated at
Gauss points on the edges of the smoothing subdomains. Replacing the
strain—displacement matrix B by a smoothed one from the ES-FE method,
we can obtain a more accurate solution with suitable properties for the first-
order linear discretisation on the triangular irregular mesh. When a con-
stant strain triangular elements are used, the following alternative form of
smoothed gradient matrix can be used

Se

N ) P

Br= - > 34,8, (2.7)
p=1

where S is the number of elements sharing the edge k, Aj is the are of the
triangular element associated with edge k and B is the standard compatible
strain-displacement matrix of triangular element. The alternative formula-
tion is called ”average” in the results.
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2.3 Benchmark Setup

The benchmark in this chapter shows that the elasticity constant obtained
from homogenisation converges faster to the nominal values and that the
overall model is not too sensitive to mesh distortion. Special attention is
given to the dynamic properties of the structure and wave propagation be-
cause according to the literature, they are the fields wherein ESFEM gives
significantly better results than a standard formulation of the FE method
[110, 37]. Consider the microscale model defined as a square (1 mm x 1
mm) reference cell with a hole of radius r (0.2-0.45 mm). The material is
linear elastic described by the Young’s modulus E = 1000 MPa and Pois-
son’s ratio of 0.3 [-]. To demonstrate better convergence with the dynamic
application of the smoothed formulation, modal analysis was performed with
structural density p = 1000:7%. The generalised eigenvalue problem was
solved using a consistent mass matrix. The Krylov—Schur method, together
with the spectral shift transform, was used to find the five lowest deformable
modes. Spectral transformation was solved by auxiliary defined factorisation
using the MUMPS solver (PETSc/SLEPc libraries [5, 38, 2]). All modes were
normalised with respect to the mass matrix. Only the bulk form was used,
as a full periodicity formulation was not required to be obtained along with
the rigid constraints. The convergence of Young’s modulus E; with respect
to reference one was also studied.

2.4 Results

2.4.1 High Porosity Ratio

Having a unit cell with a large hole radius (Figure 2.2 - right/top), the peri-
odic boundary conditions together with the smoothed formulation provided a
much more accurate solution (error: ~10%). However, the kinematic bound-
ary conditions greatly overestimated the Young’s modulus. There is a critical
necessity to estimate the most efficient number of reference cell replications
(i.e. size effect). In Figure 2.2 left /top, the kinematic boundary condition re-
sults are more accurate as the number of cells increases. However, depending
on cell structure, the number of repetitions grows significantly (5 to obtain
sufficient results in our case; Figure 2.2 middle/bottom). With decreasing
hole radius (Figure 2.2 left/right/middle), the results of the kinematic BCs
converge with a bias smaller than that in the case of high porosity.
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2.4.2 Smoothed vs Regular Periodicity

A comparison of the results for the PBCs shows that the smoothed formu-
lation converges faster and needs fewer repetitions (two versus three) of the
reference cells (Figure 2.2). Both formulations are much less sensitive to the
number of cells than kinematic BCs. The results differ in the worst case by
~11% (Figure 2.2 bottom). Similar patterns can also be found for the shear
stress, where the values differ even less (=7%, Figure 2.3).

EN
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configurations of the RVE model.
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Figure 2.3: Convergence of G5 for specific configurations of the RVE model.

2.4.3 Eigenvalues

The convergence of the eigenfrequencies is shown in Figure 2.4. The first
two shapes are bending-/shearing-like modes. The third and fourth shapes
are some combination of the first two and are symmetric. The last shape is
a torsion-like mode. The corresponding eigenfrequencies converge faster and

to a less ‘stiff’ solution for the smoothed formulation. The highest difference
(5%) is at mode 4.

2.5 Discussion

The smoothed FE method provides a robust platform in computational ho-
mogenisation as it allows for accurate gradient solutions within the linear FE
space. The use of ESFEM in the homogenisation mechanics community is
seen quite rarely, although ESFEM evidently provides a significant increase
in the accuracy of the resultant homogenised parameters (both static and
dynamic properties). In all tested cases, ESFEM outperforms the regular
FE method. The advantages of ESFEM can be even more significant within
a multiscale framework, e.g. FE?. Nevertheless, this assumption has not yet
been tested and can be a basis for future research. All tested methods (mor-
tar and Nitsche at different variants) work well with the smoothed gradient,
and additional treatment is usually not required. However, building com-
plex models with mixed FE spaces and smoothing requires inf-sup stability
and a coercive final bilinear/semi-linear form. The stabilisation parameter
of Nitsche’s method was only estimated numerically and globally by com-
puting the maximal eigenvalue associated with the discretised bulk stiffness

TECHNICAL UNIVERSITY OF LIBEREC | Faculty of Textile Engineering | Studentské 1402/2 | 46117 Liberecl =l=
tel.: +420 485 353452 | www.ft.tul.cz | IC: 467 47 885 | DIC: CZ 467 47 885



50 TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Textile Engineering |

and the norm of the boundary flux (see section 1.2.2). Nevertheless, com-
pared with standard FE method formulation, the stabilisation parameter is
slightly lower and thus the condition number of the resulting bilinear form
is also lower. Periodic boundary conditions were treated by the mortar and
Nitsche’s methods which are is described in the section 1. Although not
rigorous from a mathematical point of view, no substantial compatibility is-
sues were found using the mentioned periodicity implemented together with
the smoothed gradient method. Smoothing the gradient would be beneficial
for both the mortar and Nitsche’s methods as the boundary flux is part of
the variational forms. The superior accuracy of ES-FEM is evident, but its
efficiency can be somewhat worse or of a magnitude same as that of the
regular FE method (see Figure 2.5). In any case, comparing efficiencies is
rather subjective and depends on the implementation details. This study fo-
cused on a homogenisation analysis in 2D. For comparison, the analogous 3D
analysis results should be discussed. The main difference in the 3D analysis
can be seen in the more difficult maintenance of periodicity conditions (see
the formulations in [20]). Projection of the boundary mesh and integrating
on non-matching boundaries require more computational resources ([93] and
see subsection 1.8.5). Additionally, in the 3D smoothed model, edge averag-
ing is replaced by face averaging, which does not require additional model
corrections with respect to 2D analysis. Computing the boundary flux by
introducing Lagrange multipliers on the boundary is known to be inaccurate
as the flux is lumped into the nodes; therefore, smoothing the boundary gra-
dient must lead to improved accuracy of the boundary flux. Investigating the
smoothed flux only on the boundary within the context of homogenisation
and non-matching mesh connections will be studied in future research.
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Figure 2.4: First five deformable eigenshapes close to zero of the RVEs and
their convergence for different values of mesh resolution. Only bulk form with
average-based smoothing is shown. The edge- and average- based smoothing
relative difference is 0.0001%.
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Figure 2.5: Sparsity patterns for standard FEM and edge smoothed:
(a)comparison of initial sparsity patterns, (b) optimised sparsity pattern of
standard FE method, and (c) optimised sparsity pattern of ES-FEM (reverse
Cuthill-Mckee algorithm is used to optimise the sparsity patterns [29]). The
number of non-zero entries within ES-FEM is ~ 1.3x higher the number of
non-zero entries in the standard FE method.
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Chapter 3

Individual Yarn Fibre
Extraction from
Micro-Computer Tomography:
A Multilevel Machine Learning
Approach

3.1 Introduction

Extracting the geometrical and topological features of complex fibrous struc-
tures, e.g. yarn, from micro-structural tomographic data is challenging.
Hence, understanding the internal structure of yarn is a crucial step for
determining how macro-mechanical parameters are influenced by inter-fibre
mechanics and other physical effects. Using an adequately defined micro-
structural model of yarn, a computational model can be established to find
out the yarn micro-mechanics concerning full-resolution models [16, 73] or
more efficient multi-scale models [101, 114, 102]. Nevertheless, prior to any
computational modelling, an accurate geometry representation of the yarn
structure must be provided. A few studies have focused on the tracing the
individual fibres. Geisselmann et al. used a combination of the distance
transform and skeletonisation methods to separate fibres individually. How-
ever, owing to noise and irregularity in the three-dimensional (3D) data,
the fibres might not be continuous and the skeletonisation algorithm may
generate the so-called ‘H’ connectivity (Figure 3.1) [26, 27]. The challenging
step is to properly connect the disconnected part to obtain the original fibres.
Hence, a suitable criterion must be met to connect the appropriate segments.
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Geiselmann et al. proposed the use of stochastic models wherein the angle
and length of the interconnecting segment were utilised to control the actual
connection probability [26, 27]. Hu et al. used a multilevel tracing algorithm
that simplified the decision criteria of pair selection [41]. Another method,
which enjoys the benefits of popular geometrical structures (e.g. cylindrical
structures), employed the Hessian eigenvalues to extract fibres [99]. Jerome
et al. proposed another skeleton-based method suitable for low-density mate-
rials [67]. Viguié et al. used a local orientation map combined with dilatation
operations to extract fibres and their contacts [103]. This chapter aims to
describe the novel method for extracting the geometrical data of microCT
scanned fibre like structures. The following challenges are introduced and
part of them solved in next section. The fibre like structures in micro-CT
posses several challenges for segmentation algorithms:

e random orientation and length of fibres
e severally overlapped fibres

e spatially inhomogeneous cross-section

segment #1

segment #2

artificial connection

Figure 3.1: H-type connection occurring during skeletonisation of a noisy
structure.

Although fibre-like structures are specific structures from the perspective of
segmentation algorithms, geometrical extraction can be significantly simpli-
fied by reusing several specific properties provided by a certain fibre model.
The simplest extraction can be observed in long and almost homogeneously
oriented fibres. This is the case of a wide range of composite fibres and algo-
rithms used the regularity and strength fibre assumption were proposed (a
more enhanced approach has been presented in previous research [18]). The
strength fibres allow us to extract centres from individual computer tomog-
raphy (CT) stack cross sections by employing regular Hough-like methods.
However, even in these simple cases, the computational cost can be min-
imised and more effective methods should be explored. Most algorithms use
at least the basic morphological methods to extract useful information from
3D images. A very effective combination can be observed when the distance
map and skeletonisation are used to extract the fibre centres [27]. Highly

TECHNICAL UNIVERSITY OF LIBEREC | Faculty of Textile Engineering | Studentské 1402/2 | 46117 Liberecl =l=
tel.: +420 485 353452 | www.ft.tul.cz | IC: 467 47 885 | DIC: CZ 467 47 885 ...



55 TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Textile Engineering |

enhanced methods, e.g. Hessian eigenvalues-based method, can be used for
further extraction of structure-based information [99]. Herein, we propose a
new method based on an efficient combination of regular 3D image analysis
and a machine learning technique to efficiently extract individual fibres from
micro-CT data.

3.2 Materials and Methods

The general workflow of image analysis on CT data is illustrated in Figure
3.2. The analysis involves optimal de-noising of raw data up to the final
step that involves resampling and accurate tracking of fibre segments. The
detailed steps are discussed in the following subsections.

original ideal extracted

_

scanned disconnected parts

N
\ @noisy evectorization )A\osplme curyes J
dartefacts edenoising eclustering Tracking Tales écross sections

eskeletonisingshinarisation

edistance map X
eerosion & dilatation

Figure 3.2: Workflow of fibre extraction from micro-CT data.

3.2.1 Fibre-like Structures

The tested fibre structures are planar textile labelled as TEX-2DW and yarn
labelled as TEX-Y. The planar structure is made of polyamide material with
a density of 420 [tex] and a thread count of 16/22 [1/cm]. Meanwhile, the
yarn structure is made of polyester with a fibre diameter of ~12 um, package
diameter of ~131 um and density of 25 [tex]. Both structures are presented
in Figure 3.3. These images show an array with orthogonal indices wherein
each member represents a grey value in the range 0-255. An example of raw
grey-structure slices is shown in Figure 3.4.

3.2.2 Scanner Settings

The micro-CT scanner Rigaku nano3DX was used with a tube voltage rang-
ing from 20 to 50 kV and a current up to 30 mA. The data array size of
TEX-Y is 1427 x 1442 x 1250 with a voxel spacing of 0.528 ym x 0.528 pm
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Figure 3.3: Electron microscopy slice of the woven structure TEX-2DW in
which the region of interest (yellow window) is used for 3D scanning (a). A
slice cut of yarn TEX-Y with visible cross sections of the individual fibre
obtained using light microscopy.

a)

Figure 3.4: Grey z-slice example of TEX-2DW (a) and TEX-Y (b).

x 0.528 pm. Meanwhile, the data array size of TEX-2DW is 204 x 1201 x551
with a voxel resolution of 1 ym x 1 ym x 1 pm.

3.2.3 Image Preprocessing

First, the stacks of the resultant CT were converted to a 3D array and the
histogram was equalised. Second, the noise was removed using a median
filter with a spherical structure element. Third, binarisation based on the
threshold and Otsu’s method was performed. After obtaining the binary
structure, the Euclidean distance map was computed. Euclidean distance
benefits from the circular cross section of individual fibres. Thus, at the fi-
bre centre, the distance is minimal with respect to the background and peak
occurs. Optimally, the peak has a value that is half of the fibre diameter.
However, owing to uncertain observation, the peak filter works in the range
4.7-6.3 pm for TEX-Y and in the range 4.5-7 um for woven TEX-2DW.
The fibre diameter is provided by the manufacturer (see subsection 3.2.1) or

TECHNICAL UNIVERSITY OF LIBEREC | Faculty of Textile Engineering | Studentské 1402/2 | 46117 Liberecl =l=
tel.: +420 485 353452 | www.ft.tul.cz | 1C:467 47 885 | DIC: CZ 467 47 885 ...



57 TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Textile Engineering |

can be estimated from the distance map histogram. Moreover, the crossing
fibres can be separated by the distance peaks; thus, no additional step is
required (Figure 3.5). The new binarised data were obtained from the filter
of the distance peaks based on the previously mentioned range. The mor-
phological dilatation with a small structuring element was used to close the
small gaps in the peaks. Finally, skeletonisation was applied on the binary
array and one-pixel centres of the fibre parts were obtained. To remove ‘H’-
like connections and other crossings, the pixel was tested by 26 connectivity
for the neighbourhoods and pixels with more than two neighbourhoods were
removed. Thus, the disconnected parts were labelled and sorted in ascending
order based on the length of the fibre parts.

——

touching fibres standard skeletonisation euclidian distance map skeletonisation

Figure 3.5: Regular skeletonisation issue (middle) with two fibres (left). The
distance map disconnecting two fibres.

3.2.4 Vectorisation

For further work with disconnected discrete part of the fibres, the transfor-
mation into continuous representation is useful. We called the disconnected
parts of the fibres ‘segments’, and each segment represented by a structure
containing an unsorted pixel number but with identified ends is approximated
by the b-spline curve (Figure 3.6). After the two candidates to be merged are
identified, the b-spline curve is also used to connect them by approximating
the missing coordinates between the candidates. The spline approximation
quality is carefully investigated using the weighted squared residuals (Table
3.1) dependent on the smoothing factor s. The smoothing factor influences
a compromise of the accuracy between interpolation and smoothness. The
smoothing parameter in the range 0.01-0.05 often provides good results with
respect to accuracy and smoothness. The spline is of the cubic order, and
the first and second derivatives are used to determine the tangents and fibre
curvatures, respectively. Moreover, each segment structure involves the eval-
uation method of the spline, control points, knots, residuals, end tangents
and curvatures. Additional details on spline interpolation construction are
described in [46].
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segment #2
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fibre segment

Figure 3.6: Fibre segment with cubic spline approximation (a). Merging of
the two segments using the spline curve with smooth transition (b).

Table 3.1: Weighted squared sum of the residuals of the b-spline interpolation
for various smoothing parameters s and both tested models.

residuals
TEX-2DW | TEX-Y | s
177 28 0
54 175 0.1
372 72 1
6! 9-1 10
6.25 8.13 100

3.2.5 Fibre Tracking

The fibres are disconnected and presented by segments. The manner of
connecting the segments to obtain the original fibre is inspired from the
work of Geiselmann [27, 26] (see Figure 3.7). Consider two segments: i and
J. Each segment contains two end points that can be potentially connected to
the other end points of another segment. We are looking for the potential pair
described by inter-segments with length [;;. With an inter-segment defined
as a simple line joining the ends of the segments, we test a potential pair by
verifying whether the inter-segments belong to a certain cone defined by the
angles o;; and «j;. The angles are measured between the inter-segment and
end tangents of the segments. By introducing the weighting factor w, and
maximal values [,,,4, and 4., we can the criterion function as the weighted
sum of normalised partial members can be expressed as follows:

b, 2% (3.1)

lmacc amax

cij = (1 —w,)

Every segment pair satisfying the above criterion is regarded as a potential
candidate. The final pair is selected according to the smallest ¢;; value and
must pass the quality selection defined in the following section. Increasing
the maximal distance between the fibre ends leads to a decrease in maximal
angles (but still depends on the measured angles «;; and «j;). Thus, the
geometrical relation is clear [27]. However, we will not use this relation for
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Figure 3.7: Example of the distance and angle measurement between poten-
tial candidates for pairing.

the criterion. Instead, we will maintain them separately. Various connec-
tivity scenarios are shown in Figure 3.8. The optimal values of parameters
o, 0y, l;; as well the directions of similar segment ends should be as small
as possible. Nevertheless, if the fibre ends are close and slightly excentered,
then the angles can be close to 90° with a decrease in distance. After per-
forming the tracking, the results were evaluated. The new spline curve of
the inter-segment was discretised onto the original CT data space and di-
lated with a small structuring element sphere. The mean of the grey values
corresponding to the inter-segment spline was used as the quality evaluator.
When determining whether the given inter-segment is correctly identified,
the Gaussian mixture cluster classifier was trained on the original CT data
[84].

3.2.6 Algorithms and Implementation Details

Image algorithms often work with large data collections, and they are even
a highly demanding issue in 3D. In the proposed algorithms shown in Figure
3.9, the main steps required for the effective segmentation of fibres are intro-
duced. The input required by the algorithm is composed of the distance map
field and raw CT data. Both arrays are encoded in hdf5 format [24] with
uint8/float64 data type. Vectorisation is one of the most computationally
intensive tasks because it requires to implement filtering, binarisation, skele-
tonisation and segment separation. After obtaining the initial segments, they
are resampled to have a consistent resolution. The initial control parameters
are set by the user and are defined by following Python dictionary.

® "lax” [oseenye.] 1s @ list of maximal distance parameters

b}

® "ana: [oonyeny.] 18 a list of alpha angles
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N
Qg >> Qg

Figure 3.8: Different fibre connection scenarios. The angles are measured
from both sides depending on the fibre orientation. Dotted line expresses
the fibre end direction. Orange line expresses the inter-fibre segment. The
angle a;; is approaching 90 “when the projected inter-fibre length l_ij goes to
inter-fibre length [;;.

e "w,”: [...,...,...] is a list of weighting constants

The parameters are referenced to the previous sections to mainly discuss
the algorithm. Now, a segment is represented by an object that allows for
recursive merging of segments and respecting the parent—child relationship.
Given that the segment connectivity is defined by the spatial coordinates
of the segment end points, the binary search graph (Kd tree) is constructed
before the main loop starts. At the current point, the pairing of the segments
runs on two queues: finished and unfinished. Once a pair of two matching
segments is obtained, these segments are merged and the partial segments
are dropped out from the unfinished queue and the new segment is pushed
to the finished queue. Once the unfinished queue is empty, the resultant
segments are further evaluated. If necessary, the matching criteria can be
adapted and the new level can continue. The main code is developed in
Python language, with the critical parts (e.g. graph construction, searching,
merging and b-spline interpolation) written in C++. The code is written in
an objective manner.

3.3 Results

The model parameters 1.y, max and w, are experimentally estimated based
on the parametric approach and careful investigation of the initial and level-
based potentially matched pair of segments. The mean values of the grey data
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initialise distance map and raw data
vectorise

resample and sort initial segments

set the initial control parameters

[FOR] levels

compute graph search tree

[WHILE] unfinished

get actual segment
match segment according to control parameters

merge segments

drop it out from unfinished queue and put to finished objects
evaluate global properties

adapt global criteria and filter new segments

put all finished segments to unfinished

Figure 3.9: Algorithm scheme of fibre segmentation.

for both models were estimated by Gaussian mixed clustering. The clusters
corresponding to the fibre structure were identified as follows: mean value
of 90 and variance of + 61 for TEX-2DW, whereas mean value of 198 and
variance of + 51 for TEX-Y (see Figure 3.10). The trained classifier is used
to decide whether the newly created segment corresponds to the grey values.
The pairs that did not pass the quality criteria are excluded. The optimal
model parameters are defined in Table 3.2. To decide whether to start a new
level, the algorithm verifies the number of new pairs for the previous control
parameter set. If the result is non-zero, then it continues to another level
using the same parameters. Meanwhile, if the number of new pairs is zero,
then the algorithm increases the control parameters and starts a new pairing
level. In addition, the control parameters can be interactively manipulated
but are not efficient. However, in several cases, manual correction may be
required or the weighting parameter w, can be corrected to obtain more fine
control. The segmentation results of TEX-Y are shown in Figure 3.11. The
main characteristics, i.e. fibre diameter and length, are spatially shown in
Figure 3.12. With the given level-controlled parameters, the resultant fibres
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Figure 3.10: Gaussian mixture cluster classification [84, 113] for woven fabric
and yarn CT data. Two clusters of grey values are identified. The red part
corresponds to a mask of clustered data. The decision accuracy of the trained
cluster classification is evaluated via a cross-validation test/trained threefold
testing scheme with the resultant prediction accuracy within the range 81—
97% [84].

Table 3.2: Optimal control parameters and number of levels for both models.
The weighting parameter w, is set to 0.5. A couple of numbers are present:

the first one is 1, [mm], whereas the second one is apax [°]-
TEX-2DW 0.01, 10 0.01, 10 0.03, 30 0.03,30 0.05,40 0.08,40 0.1, 40
TEX-Y 0.01, 50 0.01, 50 0.01, 50 0.015, 50 0.015, 50

are correctly identified with 100% success. In total, 136 fibres are present.
The mean length of the fibre is 0.734 mm, and the diameter is 0.0051 mm.
The initial number of the fibres and their length are shown at the upper right-
hand side of the images in Figure 3.11. Owing to a large number of fibre parts,
the length distribution is significantly changed to lower values (mean: 0.33)
with high variance scatter (0.21). The results of fibre extraction for highly
noisy (and lower contrast - Figure 3.10) and corrupted (inter-fibre impurity)
CT data for the TEX-2DW model are shown in Figure 3.13. Meanwhile,
the fibre length distribution is shown in Figure 3.12. Owing to the two
orthogonal directions of fibre bundles, one family of fibres has a mean length
of 0.783 mm with a perpendicularity of 1.253 mm. However, only 63% of
the fibres was correctly identified (at total of 255 fibres are present based on
the careful observation of the CT data). This was caused by large corrupted
parts, where uniquely guessing the pairs using a deterministic approach is
not possible. Further, the fibre mean radius of TEX-2DW was 0.0057 mm.
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Figure 3.11: Segmented yarn with 100% success in all available fibres (left
and middle). The right picture contains the initial distribution length of the
fibres.
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Figure 3.12: Final length distribution for both models.

3.4 Discussion

Developing complex and physically relevant models establishes a significant
interest in scientific community. Fibre-like structures are observed in many
material structures, and inspection of their physics is an important task.
CT can provide an important view of fibre structures, often more than the
requirements, particularly in computational models, wherein the geometry
becomes the focus. Owing to the complexity of fibre structures with many
contact bonds and overlapping parts, accurate individual fibre identification
is a challenging task. Although a few studies have focused on fibre extraction,
a consistent family of methods is not well developed. We propose a simple
extraction algorithm connected with standard morphological operations to
extract individual fibres from the CT data with sufficient accuracy and speed.
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Figure 3.13: Extracted woven fibres and their properties obtained from highly
noisy and corrupted micro-CT data: (middle) final fibre length distribution;
(right) initial fibre length distribution.

The algorithm relies on the multilevel strategy, where at each level, a pair of
fibres is searched to ensure that it matches with the given control criteria and
quality. Using a multilevel strategy allows us to adaptively change the criteria
and fine tune the results. This advantage is one of the main differences that
is not observed in the multilevel strategy used in a previous study [41]. The
extraction quality can be further influenced by practical use of morphological
operations and more advanced filtering techniques. Nevertheless, the most
critical part is to obtain a sufficient quality of CT data. This is apparent
in our results. The individual yarn model TEX-Y proceeded with 100%
accuracy. All fibres were properly separated, and the fibre diameter was
accurately identified. As a demonstration, the second model of the woven
fabric with low data contrast corrupted by noise, referred to as TEX-2DW,
was correctly identified only at 63% with respect to the total number of
fibres.

The computational sources necessary for fibre segmentation are relatively
low (136 and 186 fibres identified in 2 and 5 s, respectively) in comparison
with those required by the stochastic algorithm (83 min for 903 fibres) pro-
posed in previous research [27]. However, these sources may depend on fibre
structure complexity and segment end proximity. The critical part is the
quick nearest neighbour lookup, which should be efficiently implemented by
constructing an optimal graph, e.g. a Kd tree algorithm [68]. The initial raw
data, e.g. Euclidean distance field or field from skeletonisation algorithm,
required as the input are already implemented in an efficient way in library
[46]. Processing these data do not usually pose performance bottlenecks.

Evidently, the proposed algorithm can be improved in control parameter
evaluation. The current model relies on the simple deterministic criteria,
which commonly need a user initial setup and can be adapted during level
iteration owing to the multilevel approach. Nevertheless, the unique decision
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regarding the best suited segment pair is not always detectable (particularly
in the case of noisy CT data), and hence, mismatches occur. Although
mismatches are detected by evaluating the newly created segment, which may
lead to this segment deletion, still, several mismatched segments propagate
up to the end of level iteration or some potentially connectible segments
with long proximity are not accurately detected. Thus, using more advanced
criteria can aid in improving decision sensitivity and should be supported
by the probabilistic approach proposed in previous research [27] or by some
other approaches, e.g. machine learning classifiers or Fuzzy logic [111].
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