
Inferring wall pressure spectral model using
neural networks

Diplomová práce

Studijní program: M2301 – Strojní inženýrství
Studijní obor: 3901T003 – Aplikovaná mechanika

Autor práce: Bc. Jan Bayer
Vedoucí práce: prof. Ing. Karel Fraňa, Ph.D.

Liberec 2021

Zadání diplomové práce

Inferring wall pressure spectral model
using neural networks

Jméno a příjmení: Bc. Jan Bayer
Osobní číslo: S19000211
Studijní program: M2301 Strojní inženýrství
Studijní obor: Aplikovaná mechanika – mechanika tekutin a termodynamika
Zadávající katedra: Katedra energetických zařízení
Akademický rok: 2020/2021

Zásady pro vypracování:

1. Prepare a database of wall pressure spectra and their respective boundary layer parameters
(from experiments or CFD)

2. Select proper boundary layer parameters for the model
3. Use a neural network to predict wall pressure spectra
4. Use a time series neural network to predict wall pressure spectra

Rozsah grafických prací: 15
Rozsah pracovní zprávy: 70
Forma zpracování práce: tištěná/elektronická
Jazyk práce: Angličtina

Seznam odborné literatury:

[1] HIRSCH, Ch. Numerical computation of internal and external flows. Volume 1, Fundamentals of
computational fluid dynamics. 2nd ed. Oxford: Elsevier, 2007. ISBN 978-0-7506-6594-0.
[2] CHUNG, T. J. Computational fluid dynamics. Cambridge: Cambridge University Press, 2002. ISBN
0-521-59416-2.
[3] VERSTEEG, H. K. a W. MALALASEKERA. An introduction to computational fluid dynamics: the finite
volumemethod. 2nd ed. Harlow: Pearson Prentice Hall, 2007. ISBN 978-0-13-127498-3.

Vedoucí práce: prof. Ing. Karel Fraňa, Ph.D.
Katedra energetických zařízení

Datum zadání práce: 1. listopadu 2020
Předpokládaný termín odevzdání: 30. dubna 2022

prof. Dr. Ing. Petr Lenfeld
děkan

L.S.
doc. Ing. Petra Dančová, Ph.D.

vedoucí katedry

V Liberci dne 1. listopadu 2020

Prohlášení

Prohlašuji, že svou diplomovoupráci jsem vypracoval samostatně jako pů-
vodní dílo s použitím uvedené literatury a na základě konzultací s vedou-
címmé diplomové práce a konzultantem.

Jsem si vědom toho, že na mou diplomovou práci se plně vztahuje zákon
č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci nezasahuje domých au-
torských práv užitím mé diplomové práce pro vnitřní potřebu Technické
univerzity v Liberci.

Užiji-li diplomovou práci nebo poskytnu-li licenci k jejímu využití, jsem
si vědom povinnosti informovat o této skutečnosti Technickou univerzi-
tu v Liberci; v tomto případě má Technická univerzita v Liberci právo ode
mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do
jejich skutečné výše.

Současně čestně prohlašuji, že text elektronické podoby práce vložený do
IS/STAG se shoduje s textem tištěné podoby práce.

Beru na vědomí, žemá diplomová práce bude zveřejněna Technickou uni-
verzitou v Liberci v souladu s § 47b zákona č. 111/1998 Sb., o vysokých
školách a o změně a doplnění dalších zákonů (zákon o vysokých školách),
ve znění pozdějších předpisů.

Jsem si vědom následků, které podle zákona o vysokých školách mohou
vyplývat z porušení tohoto prohlášení.

4. května 2021 Bc. Jan Bayer

Inferring wall pressure spectral model using
neural networks

Abstrakt

Tato diplomová práce se zabývá modelováním spektra tlakových
fluktuací u stěny v turbulentní mezní vrstvě založeným na dat-
ech. Současné semi-empirické modely predikují spektrum tlakových
fluktuací u stěny z čistě lokálních veličin mezní vrstvy (přístup
One-to-One). Historie proudění je v těchto modelech reprezen-
tována pouze některými parametry. Nový přístup navrhuje použít
k predikci spektra tlakových fluktuací u stěny v jednom bodě více
bodů proti proudu tekutiny (přístup Many-to-One). Neuronové
sítě jako modely založené na datech jsou navrženy pro model jak
s přístupem One-to-One, tak i Many-to-One. Použitá databáze
se skládá z jednoho experimentálního a tří numerických (proudění
okolo controlled-diffusion profilu) souborů dat. Relevantní parame-
try mezní vrstvy jsou extrahovány z databáze a zpracovány do
bezrozměrného vztahu. Nejprve se natrénují dva One-to-One mod-
ely s dopřednou neuronovou sítí. Oba dobře predikují spektra z
databáze. Jeden z modelů je natrénován pouze na souboru dat
s controlled-diffusion profily, aby byla k dispozici srovnávací ar-
chitektura. Za druhé jsou natrénovány dvě Many-to-One dopředné
neuronové sítě se dvěma a deseti pozicemi v mezní vrstvě. Model
se dvěma pozicemi vylepšuje model One-to-One. Desetipoziční
model takové zlepšení nepřináší. Oba tyto modely však predikují
spektra poměrně dobře. Zatřetí, Many-to-One model konvoluční
neuronové sítě je natrénován se vstupy s proměnným počtem pozic.
Model však na proměnný počet pozic nereaguje dobře. Predikce
modelu tedy nebyla dobrá. Kromě aplikace neuronových sítí je
teoreticky zkoumáno použití modelů Many-to-One. Závěrem lze k
novému přístupu říci, že model Many-to-One se dvěma pozicemi sice
přináší určité zlepšení, ale není tak výrazné. Potvrzuje se, že model
Many-to-One využívá hodnoty, které jsou proti proudu tekutiny a že
modely Many-to-One mohou predikovat spektra tlakových fluktuací
u stěny.

Klíčová slova:

model pro spektra tlakových fluktuací u stěny, turbulentní mezní
vrstva, strojové učení, neuronová síť

Inferring wall pressure spectral model using
neural networks

Abstract

This master thesis deals with a data-driven approach to the turbulent
boundary layer wall pressure spectral modelling. Current wall pres-
sure spectra semi-empirical models predict the spectra from purely
local boundary layer quantities (a One-to-One approach). The flow
history is only represented by some parameters in these models. A
novel approach suggests using multiple upstream points to predict
the wall pressure spectra at one point (a Many-to-One approach).
Neural networks as data-driven models are proposed to build a
model with a One-to-One and Many-to-One approach. A database
of one experimental and three numerical (controlled-diffusion air-
foil) datasets is used. Relevant boundary layer parameters are
extracted from the database and processed into a dimensionless
relation. Firstly, two One-to-One models with a feedforward neural
network are trained. Both of them predict the spectra from the
dataset reasonably well. One of the models is trained only on the
airfoil datasets to have a comparison architecture. Secondly, two
Many-to-One feedforward neural networks are trained with two and
ten positions in the inputs. The two positional model improves
the One-to-One model. The ten positional model does not bring
such improvement. Both of these models predict the spectra rea-
sonably well. Thirdly, a Many-to-One convolution neural network
model is trained with variable-length inputs. However, the model
did not react well on the variable-length inputs. The prediction
of the model was not great. In addition to these models, the use
of the Many-to-One models is investigated in theory. To conclude
the novel approach, the two positional Many-to-One model does
bring some improvement, but it is not that significant. However,
the investigation confirms that the upstream values are used in the
Many-to-One models and that the Many-to-One models can predict
the wall pressure spectra.

Keywords:

wall pressure spectral model, turbulent boundary layer, machine
learning, neural network

Acknowledgements

I would like to thank Ir. Joachim Dominique for providing his time
in guiding my work and for the opportunity and such a challenging
topic. The almost every week session was really enriching, and it
provided me with valuable knowledge.

I would also like to thank Prof. Dr. Ir. Miguel Alfonso Mendez
for the supervision of the work and fruitful discussions, and his
optimism and openness.

Thanks should also be given to Prof. Ing. Karel Fraňa, Ph.D. for
the supervision at the home university.

Contents

List of Figures . 11
List of Tables . 12
List of Symbols and Abbreviations . 13

1 Introduction 16

2 Literature Review and Methods 17
2.1 Wall Pressure Fluctuations . 17

2.1.1 Wall Pressure Spectra . 17
2.1.2 Modelling of Wall Pressure Spectra 18

2.2 Machine Learning . 26
2.2.1 Feedforward Neural Network (FNN) 26
2.2.2 Convolution Neural Network (CNN) 34

3 Database Preparation 37
3.1 Datasets . 37
3.2 Boundary Layer Parameters Selection 47
3.3 Wall Pressure Spectra – Data and Semi-Empirical Models 54
3.4 Model Inputs . 56

4 Results 61
4.1 Feedforward Neural Network Model – One-to-One (FNNM-OtO) . . . 61

4.1.1 FNNM-OtO – All Datasets 61
4.1.2 FNNM-OtO – Airfoil Datasets 65

4.2 History Effects . 68
4.3 Feedforward Neural Network Model – Many-to-One (FNNM-MtO) . . 70

4.3.1 FNNM-MtO – 2 Positions . 70
4.3.2 FNNM-MtO – 10 Positions 72

4.4 Convolution Neural Network Model (CNNM) 74
4.5 Discussion . 77

5 Conclusion and Future Work 80

Bibliography 82

List of Appendices 89

8

List of Figures

2.1 General characteristics of turbulent boundary layer wall pressure
spectra. Different notation is used here, u∗ is uτ . Picture taken from
[18]. 19

2.2 Perceptron. 27
2.3 The example of a feedforward neural network with one input, two

hidden and one output layer. 28
2.4 The example of a feedforward neural network. The red dotted line

illustrates the back-propagation path described in this section. 30
2.5 The activation functions and their derivatives. The Leaky ReLU is

plotted with 0.1x when x ≤ 0. 31
2.6 The example of a curve fit with different degrees of a polynomial.

Picture taken from [34]. 34
2.7 A training and validation loss (error) example. The capacity, in this

case, might be interchanged with the number of epochs. Picture taken
from [34]. 34

2.8 The illustration of convolution calculation. 35

3.1 Salze – test channel. The height is h = 250 mm and the length
is L = 16h. Parameters h1, h2, α1, α2 are changed according to the
sought pressure gradient. Picture taken from [11]. 38

3.2 Salze, ZPG, Uref = 36 m s−1. Boundary layer thickness definition
0.99umax. 38

3.3 Salze – normalized velocity profiles for different pressure gradients. . . 39
3.4 Salze – WPS for different pressure gradients. 39
3.5 Deuse – simulation geometry. Picture taken from [12] 40
3.6 Deuse – average non-dimensional pressure field and mean streamlines,

M = 0.4, DNS results. Picture taken from [12]. 41
3.7 Deuse, xc = −0.4, Uref = 69.438 m s−1. Boundary layer thickness

definition 0.99ups−max. 41
3.8 Deuse – normalized velocity profiles for different airfoil positions. . . . 41
3.9 Deuse – WPS for different airfoil positions. 42
3.10 Wu – instantaneous velocity field and the detail on the leading edge,

3D DNS results. Picture taken from [13]. 43
3.11 Wu, xc = −0.4, Uref = 86.806 m s−1. Boundary layer thickness

definition 0.99ups−max. 43

9

3.12 Wu – normalized velocity profiles for different airfoil positions. 43
3.13 Wu – WPS for different airfoil positions. 44
3.14 Christophe, xc = −0.4, Uref = 16 m s−1. Boundary layer thickness

definition 0.99ups−max. 45
3.15 Christophe – normalized velocity profiles for different airfoil positions. 45
3.16 Christophe – normalized velocity profiles for different angles of attack. 46
3.17 Christophe – WPS for different airfoil positions. 46
3.18 Christophe – WPS for different angles of attack. 46
3.19 The composite mean velocity profile composition. Salze APG (Uref =

38 m s−1) boundary layer point was used for the profile. 51
3.20 Examples of the composite mean velocity profiles for the Salze adverse,

zero and favourable pressure gradient dataset. The profiles are shifted
by u+ = 10. 52

3.21 Examples of the composite mean velocity profiles for the Deuse dataset.
The profiles are shifted by u+ = 10. 52

3.22 Complete Salze’s wall pressure spectra plotted with different scaling. . 55
3.23 Selected Salze’s wall pressure spectra with their respective semi-

empirical models. 55
3.24 Selected Deuse’s wall pressure spectra with their respective semi-

empirical models. 56
3.25 Wall pressure spectra from all datasets. 58
3.26 Histograms of Salze’s wall pressure spectrum frequency points, APG,

Uref = 38 m s−1. 59
3.27 Wall pressure spectra from all datasets – interpolated. 59

4.1 FNNM-OtO – All Datasets – the model architecture. 62
4.2 FNNM-OtO – All Datasets – the training, validation and test points. 62
4.3 FNNM-OtO – All Datasets – the distributions in the input dataset. . 63
4.4 FNNM-OtO – All Datasets – the training and validation loss. 64
4.5 FNNM-OtO – All Datasets – the training and validation losses, mean

values and standard deviation. 64
4.6 FNNM-OtO – All Datasets – the prediction of the WPS for all datasets. 66
4.7 FNNM-OtO – All Datasets – the prediction of the WPS for selected

points. 66
4.8 FNNM-OtO – Airfoil Datasets – the distribution of pressure gradients. 67
4.9 FNNM-OtO – Airfoil Datasets – the training and validation losses,

mean values and standard deviation. 67
4.10 History Effects – the mean velocity profiles with their WPS. 68
4.11 History Effects – the WPS prediction with the FNNM-OtO-Airfoil. . 69
4.12 FNNM-MtO – the model architecture. i is the actual airfoil position,

and n is the number of positions taken into account. 70
4.13 FNNM-MtO – 2 positions – the training and validation losses, mean

values and standard deviation. 71
4.14 FNNM-MtO – 2 positions – the prediction of the WPS for selected

points. 71

10

4.15 FNNM-MtO – 10 positions – the training and validation loss, mean
values and standard deviation. 72

4.16 FNNM-MtO – 10 positions – the prediction of the WPS for selected
points. 73

4.17 FNNM-MtO – 10 positions – the weights in the first layer. 74
4.18 CNNM – the model architecture. i is the actual airfoil position, n is

the number of positions taken into account and k is the number of
kernels. 76

4.19 CNNM – the training and validation loss. 76
4.20 CNNM – the training and validation loss, mean values and standard

deviation. 76
4.21 CNNM – the WPS prediction for 2, 5 and 10 positional data. 77
4.22 Deuse – the semi-empirical models and the FNNM-OtO-Airfoil. . . . 79
4.23 Salze – the prediction with the FNNM-OtO-Airfoil. 79

B.1 Examples of the composite mean velocity profiles for Wu’s dataset.
Profiles are shifted by u+ = 10. 92

B.2 Examples of the composite mean velocity profiles for Christophe’s
case 1 dataset. Profiles are shifted by u+ = 10. 92

C.1 Selected Wu’s wall pressure spectra with their respective semi-empirical
models. 93

C.2 Selected Christophe’s wall pressure spectra with their respective semi-
empirical models. 94

D.1 FNNM-OtO – Airfoil Datasets – training and validation loss. 95
D.2 FNNM-MtO – 2 positions – training and validation loss. 95
D.3 FNNM-MtO – 10 positions – training and validation loss. 96

11

List of Tables

2.1 Four frequency regions – scaling and properties [18]. 18
2.2 The overview of the coefficients for the general semi-empirical wall

pressure spectra model. 23

3.1 Christophe – the angle of attack for each case. 44
3.2 Selected boundary layer parameters. 47
3.3 The obtained boundary layer parameters dataset overview. The

references of the data are Salze et al.(2014) [11], Wu et al.(2018) [13],
Deuse and Sandberg(2020) [12] and Christophe et al.(2014) [14]. . . . 53

3.4 The overview of the models’ inputs. The references of the data are
Salze et al.(2014) [11], Wu et al.(2018) [13], Deuse and Sandberg(2020)
[12] and Christophe et al.(2014) [14]. All variables in this table are
dimensionless. 60

4.1 FNNM-OtO – All Datasets – the results. 65
4.2 FNNM-OtO – Airfoil Datasets – the results. 67
4.3 History Effects – the inputs into the FNNM-OtO-Airfoil. 69
4.4 FNNM-MtO – 2 positions – the results. 71
4.5 FNNM-MtO – 10 positions – the results. 73
4.6 CNNM – the results. 77

12

List of Symbols and Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
AOA Angle of Attack
APG Adverse Pressure Gradient
CD Controlled-Diffusion (airfoil)
CFD Computational Fluid Dynamics
CNN Convolution Neural Network
CNNM Convolution Neural Network Model
DNC Direct Noise Computation
DNS Direct Numerical Simulation
FNN Feedforward Neural Network
FNNM Feedforward Neural Network Model
FPG Favourable Pressure Gradient
LES Large Eddy Simulation
MLP Multi-Layer Perceptron
MtO Many-to-One
OtO One-to-One
RANS Reynolds-Averaged Navier–Stokes eq.
ReLU Rectified Linear Unit
SELU Scaled Exponential Linear Unit
WPF Wall Pressure Fluctuations
WPS Wall Pressure Spectrum/Spectra
ZPG Zero Pressure Gradient

Physics Symbols:

B [1] logarithmic law of the wall coefficient
c0 [m s−1] speed of sound
Cf [1] coefficient of friction
dp/dx [Pa m−1] static pressure gradient
f [Hz] frequency
H [1] shape factor, δ∗/θ
k [rad m−1] wavenumber vector
M [1] Mach number
p, p′, ⟨p⟩ [Pa] pressure, pressure fluctuation, mean pressure

13

P (k, ω) [s] wavenumber frequency spectrum
p+

x [1] dimensionless pressure, (ν/ϱu3
τ) (dp/dx)

q [Pa] dynamic pressure
R [J kg−1 K−1] specific gas constant
Re [1] Reynolds number
RT [1] ratio of timescales
t [s] time
T [K] temperature
Tref [K] referential temperature
u, u′, ⟨u⟩ [m s−1] velocity, velocity fluctuation, mean velocity
u+ [1] dimensionless mean velocity, u/uτ

Ue [m s−1] external velocity
ups [m s−1] pseudo-velocity
Uref [m s−1] referential velocity
uτ [m s−1] friction velocity,

√︂
τw/ϱ

W [1] wake function
xc [1] relative chord position
x,y,z [m] coordinates
y+ [1] dimensionless distance from the wall, yuτ/ν
y+

c [1] dimensionless viscous sublayer thickness

βc [1] Clauser’s parameter, (θ/τw) (dp/dx)
γ [1] heat capacity ratio
δ [m] boundary layer thickness
δ∗ [m] displacement thickness
∆ [1] Zagarola and Smits’s parameter, δ/δ∗

η [1] dimensionless coordinate, y/δ
θ [m] momentum thickness
κ [1] von Kármán’s constant
µ [Pa s] dynamic viscosity
ν [m2 s−1] kinematic viscosity
ξ [m] spatial separation vector
Π [1] Coles’s wake parameter
ϱ [kg m−3] density
τw [Pa] wall shear stress
Φpp [Pa2 s] wall pressure spectrum

(power spectral density of WPF)
ω [rad s−1] angular frequency
ωvor [Hz] vorticity

Machine Learning Symbols:

b bias
f activation function
J cost function

14

kwidth kernel width
L, l layer
m n. of examples
n n. of input connections
nCNNM n. of train. param. in a CNNM
nF NN n. of train. param. in an FNN
nk n. of kernels
nL n. of layers
np n. of input parameters (features)
nu n. of units
w weight
x input
y output
ŷ prediction

15

1 Introduction

Wall Pressure Fluctuations (WPF) beneath a turbulent boundary layer have been
studied primarily for two reasons: to investigate the structure and physical mech-
anisms of the boundary layer turbulence which generates the pressure field and
to find relevant properties of the field which occurs in a large number of practical
engineering problems [1]. Such practical engineering problems can be following: 1)
fatigue loading on structures (e.g. [2]); 2) generation of acoustic radiation into the
flow as a result of fluid interaction with flexible structure (e.g. [3]); 3) generation of
acoustic radiation into the flow as a result of turbulent flow over an extended rigid
surface (aero-acoustics). The last problem is connected to this work.

Wall pressure fluctuations can be obtained by high fidelity simulations, e.g. Direct
Numerical Simulations (DNS) or Large Eddy Simulations (LES). Also, they can
be obtained by an experiment in a wind tunnel. Both these approaches are very
time-consuming. Thus, the modelling of Wall Pressure Spectra (WPS) will be used.

One way to model wall pressure spectra is to use semi-empirical models. These
models take local boundary layer quantities to scale wall pressure spectra. However,
finding the right scaling is not a trivial task. The modern semi-empirical models
are based on the Chase-Howe model [5] and the Goody model [6]. The later models
account for adverse, and zero pressure gradient flows and also use broader datasets –
e.g. Rozenberg et al. [7]. These models are physics-based.

An alternative is to use a data-driven model. Such a data-driven model can be
built with a neural network. Previous work on the neural network modelling of wall
pressure spectra was done by Jan Van den Berghe [10], where he proved that neural
networks could be used to predict the wall pressure spectra. Both the semi-empirical
and the neural network model used local quantities to predict the wall pressure
spectra.

Since the flow is influenced by its history, the wall pressure spectra could also
be influenced by the flow history. Therefore the proposed question for this work is:
Can we use the values upstream the point where we would like to predict the wall
pressure spectra, and is it going to improve the accuracy of such prediction compared
to the existing models? To answer this question, a feedforward neural network and
a convolution neural network will be used to build a wall pressure spectral model.
Four datasets [11, 12, 12, 13] will be used to build the models.

In the following chapter, the basics of the wall pressure fluctuations, the wall
pressure spectra, and machine learning will be described. In chapter 3, the database
of boundary layer parameters is prepared. In chapter 4, the results of the neural
network models together with a theoretical investigation of the history effects is
presented. Chapter 5 concludes the work and proposes new work.

16

2 Literature Review and Methods

2.1 Wall Pressure Fluctuations
Pressure fluctuations in an incompressible flow are governed by the Poisson equation
with two source terms [15, 16]

1
ϱ

∇2p′ = −2∂⟨ui⟩
∂xj

∂u′
j

∂xi

− ∂2

∂xi∂xj

(︂
u′

iu
′
j − ⟨u′

iu
′
j⟩
)︂
, (2.1)

where p′ is the fluctuating pressure, ϱ is the constant fluid density, ⟨ui⟩ and u′
i

are the mean and fluctuating components of the flow velocity. The brackets ⟨ ⟩
denote ensemble average. The first source term characterize so-called rapid pressure
fluctuations and the second term characterize slow pressure fluctuations [16]. The
rapid pressure term, also called turbulence–mean flow interaction term [17], responds
immediately to a change in the mean velocity gradients and, in some cases, has a
dominant effect [16]. The slow term, also called turbulence–turbulence interaction
term [17], is not directly driven by the mean velocity gradient and the interaction
between different components is non-linear.

To find the integral solution of Eq. (2.1), one must obtain the velocity in the flow
domain at every point. Moreover, there is no single scaling for the boundary layer
itself. Also, the velocity fluctuations are convected at different speeds according to
the mean velocity profile in the boundary layer. Therefore, a universal scaling with
local length and velocity scales might be cumbersome [1].

See Appendix A for the derivation of Eq. (2.1).

2.1.1 Wall Pressure Spectra
Considering wall pressure fluctuations as p′ = p′(x, z, t) and flow in the x direction
over (x, z) plane, space-time correlation can be defined as [1]

R (ξx, ξz, τ) = ⟨p′ (x, z, t) p′ (x+ ξx, z + ξz, t+ τ)⟩, (2.2)

where ξ = (ξx, 0, ξz) is a two dimensional spatial separation vector.
Reducing the correlation function leads to intermediate correlation functions like

R (ξx, 0, τ), R (0, ξz, τ) in the space-time domain and R (0, 0, τ) in the time domain.
Fourier transform of the last, time domain, correlation function will result in a power
spectral density (Wiener-Khinchin theorem) [1]

Φpp (ω) = 1
2π

∫︂ ∞

−∞
R (0, 0, τ) e−iωτ dτ, (2.3)

17

which is the single-point wall pressure spectrum.

Scaling
Self-similarity is a core principle in fluid mechanics. Proper scaling of experimental
data to collapse it points onto one curve or surface can result in a better under-
standing of the investigated phenomenon and find a universal approximation of the
phenomenon that does not change for a wide variety of conditions.

One characteristic of turbulent boundary layers is a large variety of length, velocity
and pressure scales. Moreover, velocity in all parts of the turbulent boundary layer
influences the wall pressure fluctuations. Therefore, there is no single universal scaling
that would collapse the wall pressure spectra onto a single curve at all frequencies [1,
6].

Traditionally, the wall pressure spectrum has been determined from empirical
curves plotted with dimensionless (scaled) spectral density and dimensionless (scaled)
frequency [18]. Proper scaling has been discussed in the works of several authors, e.g.
Bull [1], Farabee and Casarella [19], Smol’yakov [20] or Goody [6]. The result of this
discussion is to use different scales for different frequency regions to collapse the data
(Fig. 2.1). The resultant four regions are summed up in the Tab. 2.1. In this table,
ω is used for the frequency, δ is the boundary layer thickness, δ∗ is the displacement
thickness, τw is the wall shear stress, uτ =

√︂
τw/ϱ is the friction velocity, ν is the

kinematic viscosity and q = 1/2ϱU2
e is the local dynamic pressure, where Ue is the

free stream velocity. From the low-frequency region to the high-frequency region, the
scaling varies from the outer-layer variable scaling to the inner-layer variable scaling.
For the universal (overlap) region, both of these scalings can be used.

Table 2.1: Four frequency regions – scaling and properties [18].

Region Scaled frequency range Pressure scale Time scale Properties

Low-frequency ωδ

uτ

≤ 5 q or τw δ∗/Ue Varies with ω2

Mid-frequency 5 ≤ ωδ

uτ

≤ 100 τw δ/uτ Peak at ωδ
uτ

≈ 50

Universal (overlap) 100 ≤ ωδ

uτ

≤ 0.3
(︄
uτδ

ν

)︄
τw δ/uτ Varies with ω−0.7 to ω−1.1

High-frequency 0.3 ≤ ων

u2
τ

τw ν/u2
τ Varies with ω−1 to ω−5

2.1.2 Modelling of Wall Pressure Spectra
To obtain the wall pressure spectra, one has to either perform an experiment or a
high fidelity simulation (DNS/LES).

Experimental works were performed mainly in acoustic wind tunnel facilities. In
one group of the experiments (e.g. [21, 19]), the authors measured wall pressure
fluctuations on a flat wall with flush mounted pinhole microphones. In the second
group (e.g. [22, 23]), the authors conducted experiments on the flow around an

18

Figure 2.1: General characteristics of turbulent boundary layer wall pressure
spectra. Different notation is used here, u∗ is uτ . Picture taken from [18].

airfoil, where they measured wall pressure fluctuations on the airfoil and also the
emitted far field noise.

Numerical computations were performed using large eddy simulation, direct
numerical simulation and also a Lattice-Boltzmann method (e.g. [24, 25, 13]). In all
of these works, the wall pressure fluctuations and the far field noise were investigated.
Mostly, the numerical results were also compared to experimental results to assure
the correctness of the computation. Compared to a purely experimental approach,
one of the advantages of numerical computation is that it produces a broader set of
information about the turbulent flow field and its statistics.

Both of these approaches are expensive. Another method is to model the wall
pressure spectra using either a semi-empirical model or a model based on the solution
of the Poisson equation (Eq. (2.1)). With the latter approach, two kinds of models
can be obtained: 1) Model that outputs a spectral solution (wavenumber frequency
pressure spectrum); 2) Model that outputs space-time solution (pressure fluctuation
correlations) [26]. One example of a former model is from Kraichnan [27], where
he expressed the wavenumber frequency spectrum as a double integral over the
wall-normal coordinates [26]. Panton and Linebarger [28] followed the Kraichnan
approach with more realistic flow conditions, which resulted in a five-dimensional
integration. For such integration, they used Monte Carlo method. More recent work
from Slama et al. [26] focused on computing the pressure correlations using a new
model called Kriging-based elliptic extended anisotropic model (KEEAM), where
they used DNS and RANS data as inputs. TNO-Blake family of models also exists.
These models use an approximative solution of the Poisson equation (Eq. (2.1)) to
predict the wall pressure spectra (e.g. [29]).

19

The semi-empirical models are based on an algebraic expression that uses scaling
of the wall pressure spectra to collapse the spectra’ curves. For such scaling, the
models use local quantities. The first attempts in the research on semi-empirical
models date back some 60 years. The earliest model published might be the one
from Maestrello [3]. Unfortunately, these early models are usually single-scale and
covering only some narrow frequency range [18]. This work is entirely devoted to
the semi-empirical modelling approach, and some of the most recent models will be
described in detail in the following sections.

Chase-Howe Model
Howe [5] based his model on the Chase’s [30] expression for the wavenumber frequency
spectrum P (k, ω). He suggested the following expression for the single point wall
pressure spectrum

Φpp (ω)Ue

τ 2
wδ

∗ = 2 (ωδ∗/Ue)2[︂
(ωδ∗/Ue)2 + 0.0144

]︂3/2 , (2.4)

which is the so-called Chase-Howe model. The 2 in the numerator is not in the
original model in the work of Howe [5], since in the original work he described
a double-sided spectrum. As stated by Goody [6], the model does not account the
ω−5 decay at high frequencies (Tab. 2.1).

Goody Model
Goody [6] proposed a model based on the Chase-Howe model. He valued the attractive
functional form of the Chase-Howe model and he also saw it as a compromise between
pure curve fit and a complex expression for the wavenumber frequency spectrum
P (k, ω). In the derivation of the Goody model, following assumptions about the
model were made: 1) A term was added to the denominator so that the spectrum
varies as ω−5 when ω → ∞; 2) Exponents were modified to better agree with the
spectrum at middle frequencies; 3) Multiplicative constant was added to raise the
spectral levels at all frequencies; 4) The Reynolds number trends were reflected. The
model was fitted on experimental, 2D, zero pressure gradient boundary layer data.
The final equation of the model is

Φpp (ω)Ue

τ 2
wδ

= C2 (ωδ/Ue)2[︂
(ωδ/Ue)0.75 + C1

]︂3.7
+ [C3 (ωδ/Ue)]7

, (2.5)

where C1 = 0.5, C2 = 3.0 and C3 = 1.1R−0.57
T . The RT is the ratio of timescales,

which characterizes the Reynolds number effect on the spectrum.
The ratio of timescales RT is defined as

RT = δ/Ue

ν/u2
τ

. (2.6)

20

Rozenberg Model
Rozenberg et al. [7] used the Goody model and modified it to account both zero
pressure gradient and adverse pressure gradient data. To achieve this, they introduced
new parameters and new data into the model. The first parameter is Coles’s wake
parameter Π, the second parameter is Zagarola and Smits’s [31] parameter ∆ = δ/δ∗

and the third parameter is Clauser’s [32] equilibrium parameter βc = (θ/τw)(dp/dx).
They also used δ∗ instead of δ in the time scale as the displacement thickness δ∗ is
more accurate. The maximum shear stress τmax = max [µ (du/dy)] is used instead of
the wall shear stress τw. The final form of the Rozenberg model is

Φpp (ω)Ue

τ 2
maxδ

∗ =

[︂
2.82∆2 (6.13∆−0.75 + F1)A1

]︂
[4.2 (Π/∆) + 1] (ωδ∗/Ue)2[︂

4.76 (ωδ∗/Ue)0.75 + F1
]︂A1 + [C ′

3 (ωδ∗/Ue)]A2
, (2.7)

where A1 = 3.7 + 1.5βc, A2 = min
(︂
3; 19/

√
RT

)︂
+ 7, C ′

3 = 8.8R−0.57
T and F1 =

4.76 (1.4/∆)0.75 (0.375A1 − 1).
The Rozenberg model should provide the same results as the Goody model for

zero pressure gradient flows, but according to Lee’s work [9] it is not true. Moreover,
the Rozenberg model underpredicts the spectra at high frequencies compared to
the Goody model in the case of zero pressure gradient flows. However, there is a
possibility to correct the model using A2 = 7 to fit the Goody model in the case of
zero pressure gradient flows.

In this work, an implementation of the Rozenberg model with τw instead of τmax

is used.

Kamruzzaman Model
Kamruzzaman et al. [8] compared the Chase-Howe, Goody and Rozenberg model
with experimental data from two NACA 0012 airfoil test cases. They noted that
Chase-Howe and Goody model hugely underestimate the experimental data. The
Rozenberg model, compared to the experimental data, predicted the peak of the
spectra reasonably well for lower Reynolds number cases, but had an offset in the
low and high frequencies. With increasing Reynolds number, the difference was even
bigger. Thus, Kamruzzaman et al. wanted to overcome these limitations of the
Rozenberg model. Their proposed model was fitted to a broaden set of non-zero and
zero pressure gradient data (airfoil and flat plate flows). The final form of this model
is

Φpp (ω)Ue

τ 2
wδ

∗ = B2 (ωδ∗/Ue)2

[(ωδ∗/Ue)p +B1] + [B3 (ωδ∗/Ue)]7
, (2.8)

where B1 = 0.27, B2 = 0.45[1.75 (Π2β2
c)m + 15], m = 0.5 (H/1.31)0.3, B3 =

(1.15RT)−r, r = 2/7, p = 1.637 and q = 2.47. The parameter H is the shape
factor H = δ∗/θ. RT (Eq. (2.6)) in this model is defined with δ∗ instead of δ.

21

Hu Model
Hu and Herr [33] proposed a new model from the Goody model. They used experi-
mental non-zero and zero pressure gradient data from flows over a flat plate. The
main difference between the Hu model and the other models is, firstly, instead of
Ue/τ

2
wδ (or δ∗), uτ/q

2θ is used. Secondly, instead of the ω2 increase at low frequencies,
only ω is used. And thirdly, instead of Clauser’s parameter βc, the shape factor
H is used to account for the influence of a zero and non-zero pressure gradient on
the mean velocity profile shape. The authors noted that the local pressure gradient
directly impacts βc. Therefore βc does not account for the history of the flow as good
as H. The final form of the Hu model is

Φpp (ω)uτ

q2θ
= a (ωθ/Ue)1.0[︂

(ωθ/Ue)1.5h1.6 + d
]︂1.13/h0.6

+ [f (ωθ/Ue)]6.0
, (2.9)

where a = (81.004d+ 2.154)×10−7, d = 10−5.8×10−5ReθH−0.35, h = 1.169ln (H)+0.642,
f = 7.645Re−0.411

τ , Reθ = Ueθ/ν and Reτ = uτδ/ν.

Lee Model
Lee [9] wanted to improve the previous models for a better prediction in all of the
observed cases. He proposed new parameters to firstly improve the transition from
the overlap frequency region to the high frequency region and to improve the roll-off
at high frequencies. Secondly, he introduced a correction of the amplitude at low
and middle frequencies for zero and low pressure gradient flows. And thirdly, he
introduced a correction of the spectrum magnitude for high βc cases. The final form
of his model is

Φpp (ω)Ue

τ 2
wδ

∗ = max (a; (0.25βc − 0.52) a) (ωδ∗/Ue)2[︂
4.76 (ωδ∗/Ue)0.75 + d∗

]︂e
+
[︂
8.8R−0.57

T (ωδ∗/Ue)
]︂h∗ , (2.10)

where a =
[︂
2.82∆2 (6.13∆−0.75 + d)e

]︂
[4.2 (Π/∆)+1], d = 4.76 (1.4/∆)0.75 [0.375e− 1],

e = 3.7+1.5βc, d∗ = max (1.0; 1.5d) if (βc < 0.5) and h∗ = min (3; (0.139 + 3.1043βc))+
7.

All the previous models have a common functional form for the wall pressure
spectra [9]

Φpp (ω)SS = a (ωFS)b

[i (ωFS)c + d]e + [(fRg
T) (ωFS)]h

. (2.11)

In this general form, a to i are parameters, RT is the ratio of timescales (Eq. (2.6)),
SS is the spectral scaling and FS is the frequency scaling. Lee [9] summed up in his
article the already used forms for the parameters a to i and for the scaling SS and
FS. Summary of the parameters and the scalings extended with Lee’s model is in
the Tab. 2.2. The simplest case of the parameters occurs when the parameters are
constants. In fact, that is the case of the Goody model.

22

Table 2.2: The overview of the coefficients for the general semi-empirical wall
pressure spectra model.

a b c d

Goody 3.0 2.0 0.75 0.5

Rozenberg
[︂
2.82∆2 (6.13∆−0.75 + d)e

]︂
[4.2 (Π/∆) + 1] 2.0 0.75 4.76 (1.4/∆)0.75 (0.375e− 1)

Kamruzzaman 0.45
[︂
1.75 (Π2βm

c)2 + 15
]︂
;

m = 0.5 (H/1.31)0.3 2.0 1.637 0.27

Hu (81.004d+ 2.154) 10−7 1.0 1.5h1.6 10−5.8×10−5ReθH−0.35

Lee
max (a; (0.25βc − 0.52) a);

a =
[︂
2.82∆2 (6.13∆−0.75 + d)e

]︂
[4.2 (Π/∆) + 1] 2.0 0.75 4.76 (1.4/∆)0.75 (0.375e− 1), or

max (1.0; 1.5d) if (βc < 0.5)

e f g h

Goody 3.7 1.1 −0.570 7.0

Rozenberg 3.7 + 1.5βc 8.8 −0.570 min
(︂
3; 19/

√
RT

)︂
+ 7

Kamruzzaman 2.47 1.15−2/7 −2/7 7.0

Hu 1.13/h1.6 7.645 −0.411 6.0

Lee 3.7 + 1.5βc 8.8 −0.570 min (3; (0.139 + 3.1043βc)) + 7

i SS FS

Goody 1.0 Ue/τ
2
wδ δ/Ue

Rozenberg 4.76 Ue/τ
2
wδ

∗ δ∗/Ue

Kamruzzaman 1.0 Ue/τ
2
wδ

∗ δ∗/Ue

Hu 1.0 uτ/Q
2θ θ/Ue

Lee 4.76 Ue/τ
2
wδ

∗ δ∗/Ue

23

To sum up the applicability of the previous models, the Goody and the Hu model
work well for zero pressure gradient flows [9]. The Goody model does not work for
adverse pressure gradients. The Rozenberg and the Kamruzzaman model work well
for airfoil flows. However, they are not that accurate under some conditions. The
Hu model is the only one that can match Hu and Herr’s test dataset [33]. The Lee
model improves the Rozenberg model to match a broader set of flow cases. The final
applicability range of the Lee model should be flows with 1.4×103 ≤ Reθ ≤ 2.34×104

for zero pressure gradients and with 0.5×103 ≤ Reθ ≤ 1.65×104 for adverse pressure
gradients. Still, there is no semi-empirical model which could fit all the datasets and
all the flow conditions with some acceptable error.

The inputs into every semi-empirical model are always the frequency and com-
bination of boundary layer parameters derived from the mean flow. The output
is always the wall pressure spectrum at one point. Finding the right combination
of the boundary layer parameters is a cognitively challenging task. Therefore, if
there was an approach, or a method, which could find the combinations for us, we
could quickly find different combinations in a reasonable time frame. Moreover,
if there was a method that would search the space of the potential combinations
and somehow choose the best one, it would significantly improve the search for the
best semi-empirical model. Such a method might be neural network modelling or,
generally, data-driven modelling.

Data-Driven Modelling
Data-driven modelling and mainly neural network modelling of wall pressure spectra
is not a total novelty. Previous work on this topic at The von Karman Institute
for Fluid Dynamics was done by Jan Van den Berghe [10]. He asked the question
if neural networks are an interesting tool for building wall pressure spectra models.
To answer such a question, he investigated the behaviour of neural networks. He
proposed a global structure for his models, to use frequency ω and boundary layer
parameters Ue, Cf and βc as inputs and wall pressure spectra Φpp at one point as
output. He applied this structure to two approaches: 1) Using the inputs directly –
so-called brute force approach; 2) Connecting the neural network to the general wall
pressure spectra model (Eq. (2.11)), thus using the output as the coefficients into
the general expression and also restricting the pure neural network model to some
physical boundaries – so-called parametric approach. He concluded that the neural
network can predict the wall pressure spectra and that it will generalize well between
the extremities of the database. Also, training the model on a larger database,
especially using the parametric approach, will result in a more accurate prediction.
He finally noted that it is still not clear how the network predicts with such accuracy.

Other works on the same topic are not known to the author up to this date.
One typical attribute of a boundary layer, or a flow generally, is that the flow

at one point is heavily influenced by what happened upstream this point. It might
be called a history effect. Since the wall pressure spectra are predicted with semi-
empirical models using the quantities from the mean flow, there might be the same
history effect. This results in the already asked question: Can we use the values

24

upstream the point where we would like to predict the wall pressure spectra, and is it
going to improve the accuracy of such prediction compared to the existing models?

Besides the main question, a classical feedforward neural network with different
inputs will be trained on a broader dataset than in the previous work. This approach,
where the parameters at one point are used to predict the spectra at the same point,
will be called a One-to-One model.

To answer the main question of this work, firstly, machine learning and neural
networks have to be introduced and also the possibilities of how to use a neural
network with many inputs and one output (a Many-to-One model) have to be
investigated.

25

2.2 Machine Learning
This section describes the basics of machine learning and some relevant techniques
of supervised learning.

Machine learning is a part of a bigger concept called artificial intelligence (AI). Ar-
tificial intelligence is a general term that encapsulates all computer science techniques
that would be similar to some “intelligent” behaviour or a process.

Machine learning describes the process where the system extracts patterns from a
raw dataset by itself and then acquire knowledge from these patterns [34]. Machine
learning can be divided into supervised, unsupervised and reinforcement learning.
Only the first one will be used in this work. Supervised learning introduces the
inputs and also the outputs (or labels) to the particular algorithm. On the contrary,
unsupervised learning introduces only the inputs to the algorithm and lets the
algorithm decide how the inputs should be adjusted.

In the following lines, the feedforward neural network (FNN) and the convolution
neural network (CNN), as supervised learning techniques, are mentioned.

2.2.1 Feedforward Neural Network (FNN)
Artificial neural networks (ANN) (or simply neural networks), in general, were
mathematically firstly described in the work of McCulloch and Pitts [35]. They
proposed a computational model of the neurons and formulated how the neurons are
working together. From this time, the ANN has gone through several periods of ups
and downs. In the current time, the deep learning is one of the reasons why we are
witnessing the renaissance of the ANN once again. Deep learning allows a model to
learn a very abstract representation of data [36]. Thus, it is nowadays used in many
applications such as image recognition, speech recognition, or large datasets analysis.

The perceptron (Fig. 2.2) is a basic structure of an ANN. The structure is similar
to the actual neuron with its cell body, axon and dendrites. However, the inner
processes are not that similar. The perceptron receives the signals from the inputs
and multiply these inputs with their respective weights. All of these multiplications
are summed up together with a bias (so-called excitation) and input into an activation
function. This process can be described by an equation

y = f

(︄
n∑︂

i=1
xiwi + b

)︄
, (2.12)

where f denotes the activation function, xi are the inputs, wi are the weights, b is
the bias and n is the number of input connections. The weights and biases are called
trainable parameters. What the training means will be described later.

The “original” perceptron [35] used a step function as the activation function

f(x) =
⎧⎨⎩0, if x ≤ 0

1, if x > 0.
(2.13)

The step function is not going to be used in this work, since it does not provide the
required features for this work.

26

The perceptrons, or so-called units, can be stacked in layers and also in rows and
thus creating networks where the units are connected. In the case of a feedforward
neural network (also called multi-layer perceptrons (MLP))1, the connections are
only between each layer and not within the layer. Moreover, there are no feedback
connections to any unit. In graph theory, this is a special case of a directed acyclic
graph [34].

Hornik [37] stated that a multilayer feedforward neural network could approximate
any well-behaved continuous function if sufficiently many hidden units are available
(universal approximation theorem). For this statement, he assumed the activation
function to be continuous, bounded and non-constant. The statement thus makes
the multilayer feedforward neural network a very promising architecture.

∑︁
f

w1

w2

w3

x1

x2

x3

y

b

Figure 2.2: Perceptron.

An example of an FNN is the Fig. 2.3. The network consists of input, output and
hidden layers. The circles denote the same units as in the previous lines (Fig. 2.2).
However, the input layer is an exception because these circles are just used for the
input values, and no real computation is done here. The example network, therefore,
consists of 3 inputs, 5 units in the first hidden layer, 3 units in the second hidden
layer and 1 output unit. All of those units are connected to the layer before and after
the layer, where the units are. The choice of the number of inputs, units, hidden
layers and outputs is purely optional and depends on the application.

The computations in the neural network can be divided into two processes: 1)
forward-propagation and 2) back-propagation.

Forward-Propagation
Forward-propagation is a deterministic process, which provides the whole computation
from the input layer to the output layer. It can also be called a prediction. The
process for one layer can be written in a matrix form. Thus, e.g. for the second layer
in the neural network in the Fig. 2.3 the relation is

z(2) = W(1)x(1) + b(1),

a(2) = f
(︂
z(2)

)︂
,

(2.14)

where W, x and b are the same weights, inputs and biases as in the Eq. (2.12), but
for the whole layer. The vector z is the input into the activation function, and a is

1A feedforward neural network is a special case of an artificial neural network, but those terms
are sometimes interchanged.

27

the output from the whole layer. The superscript describes the layer to which the
variable belongs, which means that the weights and biases belong to the first layer
and the output belongs to the second layer. The advantage of the matrix form is
that it is possible to use various numerical techniques to solve the matrix equation.
Putting all these computations for each layer together, one can finally obtain the
output (predicted) value from the neural network.

input
layer

x1

x2

x3

y

hidden
layers

output
layer

1 2 3 4

1

2

3

5

4

3

2

1
1

2

3

4

1

Figure 2.3: The example of a feedforward neural network with one input, two
hidden and one output layer.

Back-Propagation
In the computation of forward-propagation, the weights w and biases b were used.
This requires the knowledge of these values. The weights and biases are initialized
to some value before the first forward pass. Usually, the initialization is random.
This makes the process of obtaining and improving the weights and biases a non-
deterministic process.

The weights and biases need to be optimized to improve the future prediction
of the model. The process of calculation of the new weights and biases is called
back-propagation.

Firstly, the computed output of the whole neural network needs to be compared
with the desired values. A cost function2 is used for such comparison. The output
of the cost function is some error between the output (predicted) values and the
desired values. The choice of the cost function depends on the task for which the
neural network is used. In the case of a regression task, the cost function is usually
the mean squared error

J = 1
2m

m∑︂
i=1

(ŷi − yi)2 , (2.15)

where J denotes the cost function, ŷ is the output (or prediction), y is the desired
value, and m is the number of examples. Sometimes, the mean absolute error is
used instead as the cost function. The number of examples for computing the cost
function can vary, and a set of such examples is called a batch. A batch size is one of
the parameters that can be set for the neural network.

2A cost function is sometimes called a loss function or an error function.

28

After obtaining the loss with the cost function, the main part of back-propagation
arises. The goal is to compute the gradients, which are then used in an optimization
algorithm. In other words, it is necessary to compute the change of the cost function
according to some particular weight or bias. The optimization algorithm then
improves the weights and biases to better predict the desired values. An example of
such an optimization algorithm is the gradient descent

wi+1 = wi − α
∂J

∂wi

, (2.16)

which optimizes, in here, some particular weight. The parameter α is the learning
rate, which defines how big the optimization step should be.

The main relation used for back-propagation is the chain rule

∂a

∂d
= ∂a

∂b

∂b

∂c

∂c

∂d
, (2.17)

where a-d are some arbitrary variables. With this chain rule, one can “go backwards”
the neural network and calculate the gradients. Again, the gradient calculation can
be illustrated by an example. The sought gradient can be in the second layer, in the
first unit in the Fig. 2.4. It is possible to write, with the help of the chain rule,

∂J

∂w
(2)
11

= ∂J

∂a
(4)
1

∂a
(4)
1

∂z
(4)
1

∂z
(4)
1

∂a
(3)
1

∂a
(3)
1

∂z
(3)
1

∂z
(3)
1

∂w
(2)
11
. (2.18)

The notation here, w(L)
ji , is following. The index i is the number of the input unit, j

is the number of the output unit and (L) denotes the layer. The red dotted line in
the Fig. 2.4 illustrates the back-propagation path described by the Eq. (2.18).

With the previous process, it possible to calculate all the weights and biases in
the neural network.

The combination of forward-propagation and back-propagation might be called
learning or training. One pass of forward- and back-propagation improves the weights
and biases and also calculates the loss (or the cost) with the cost function. As it
was said, there is a possibility to specify the batch size. The batch size specifies
the number of examples that are input into the network before the gradients are
updated. A small batch size results in quick but oscillating learning. A large batch
size results in smooth but slow learning. LeCun recommended [38] to use a batch
size smaller than 32.

Once forward- and back-propagation is done on the input dataset exactly once,
the process is called an epoch. The neural networks are usually trained with many
epochs.

In the following sections, some parts of the neural networks (relatable to this
work) will be described in more detail.

29

x1

x2

x3

y

1 2 3 4

1

2

3

5

4

3

2

1
1

2

3

4

1

Figure 2.4: The example of a feedforward neural network. The red dotted line
illustrates the back-propagation path described in this section.

Activation Functions
The activation function was already mentioned in the Eq. (2.12). Most hidden
units are distinguished from each other by the choice of the activation function [34].
The activation function in most of the cases introduces the non-linearity into the
output of the unit. Without the non-linearity, the neural network would put several
linear combinations together and thus introduce another linear combination [38].
Also, the non-linear activation function is an important difference between machine
learning and the biological neuron [39]. Brief overview [40] of the currently used
activation functions and their derivatives is in the Fig. 2.5. From the top left corner,
the following activation functions are mentioned:

• Linear – f(x) = x,

• Logistic (sigmoid) – f(x) = 1
1 + e−x

,

• Tanh – f(x) = ex − e−x

ex + e−x
,

• Rectified Linear Unit (ReLU) [39] – f(x) = max (0;x),

• Leaky ReLU [41] – f(x) =
⎧⎨⎩x, if x > 0

0.01x, if x ≤ 0
,

• Scaled Exponential Linear Unit (SELU) [42] –

f(x) = λ

⎧⎨⎩x, if x > 0
α (ex − 1) , if x ≤ 0

, α = 1.6733, λ = 1.0507.

30

2

0

2

Linear
Linear der.

Logistic
Logistic der.

Tanh
Tanh der.

5.0 2.5 0.0 2.5 5.0
2

0

2

ReLU
RELU der.

5.0 2.5 0.0 2.5 5.0

Leaky ReLU
Leaky RELU der.

5.0 2.5 0.0 2.5 5.0

SELU
SELU der.

Figure 2.5: The activation functions and their derivatives. The Leaky ReLU is
plotted with 0.1x when x ≤ 0.

The linear activation function, by its definition, does not introduce non-linearity
to the output. However, it might be used in the output layer for regression tasks.
The logistic function and the hyperbolic tangent introduce the non-linearity to the
output, but there might be problems with the vanishing or exploding gradient. These
phenomena are the consequences of the shape of these functions. When the inputs
to these functions are very large or very small, then the derivatives (e.g. ∂a(3)

1 /∂z
(3)
1

in the Eq. (2.18)) will saturate extremely close to zero and the unit will “die”. This
“dead” unit will also affect the units in the previous layers since they also use the
same gradient in back-propagation. The exploding gradient is mainly visible in the
recurrent neural networks.

New activation functions were proposed to solve the vanishing/exploding gradient
problem. The ReLU [39] partially solves the vanishing gradient problem because the
function gradient is equal to one when the unit is active. However, when the unit is
initialized as non-active, the gradient will always be zero during the optimization.
However, the simplicity of the ReLU makes the computation of the function easier.
The ReLU was improved by Mass et al. [41], who introduced the Leaky ReLU. This
function has a non-zero gradient in the case of a non-active unit. Klambauer et al.
[42] introduced the self-normalizing neural network, which is based on the SELU
activation function. This function assures self-normalizing properties like variance
stabilization, which avoids exploding and vanishing gradients [42]. The function also
needs to be used together with a proper initialization.

Géron [38] recommends using activation functions in the following descending
order: SELU, Leaky ReLU, ReLU, tanh, logistic.

Initialization
Before the weights and biases can be optimized, they first need to be initialized. The
first most straightforward way would be to initialize the weights and biases with
zeros. However, given units in one layer, this approach would make all the units

31

equal, and the back-propagation will also affect them equally. Therefore, the random
initialization is used to break such symmetry in the layer [38].

Random initializers might have a uniform or a normal distribution [43]. Glorot
and Bengio [44] proposed a way, how to maintain approximately equal activation
variances and variances of back-propagation gradients as one moves up or down the
network. Their initializer is called the Glorot initializer (or the Xavier initializer)
and uses the previous and actual layer size as inputs. This initializer is also one of
the tricks that led to the current success of deep learning [38].

Glorot and Bengio did not account for the ReLU in their derivation, and their
initializer might cause problems in some deeper models. Therefore, there is another
method proposed by He et al. [45] which works well together with the ReLU and its
variants.

Klambauer et al. [42] proposed zero mean and unit variance for the initialization
together with their SELU activation function to satisfy the self-normalizing neural
network. The initializer also takes the previous layer size as an argument. This
initializer was already proposed by LeCun [46]. Thus it is referenced as the LeCun
initializer.

Optimization
Gradient descent, as an optimizer, was already mentioned in the Eq. (2.16). Several
techniques can be used to improve default gradient descent [38]. The first one
is adding a momentum to the optimization algorithm. The momentum takes the
previous gradients into account and increases the actual gradient. The behaviour is
similar to the physical momentum. The main advantage of this technique is that it
accelerates optimization.

The second technique uses Nesterov Accelerated Gradient, which instead of
computing the gradient of the cost function at the local position, it computes the
gradient slightly ahead in the direction of the momentum. This technique, again,
results in a faster reaching of the optimum and also reduces the oscillations.

The third technique used by AdaGrad and RMSProp [38] is to scale down the
gradient vector along the steepest dimensions (the so-called adaptive gradient). In
other words, this technique decays the learning rate faster for steep dimensions than
for dimensions with gentler slopes [38].

In this work, the Adam [47] and the Nadam [48] optimizers are used. The Adam
is a stochastic gradient-based optimizer (stochastic, as it randomly selects a subset of
data for the computation). The name Adam stands for adaptive moment estimation.
It combines the momentum technique and the RMSProp. The Nadam adds the
Nesterov Accelerated Gradient technique to the Adam. Dozat [48] in his report
compared different optimizers on some experiments, where one can see that the
choice of an optimizer is highly data-dependent, and sometimes the Adam performs
better than the Nadam and vice versa.

The optimization of the weights and biases might lead, for some optimizers more
or less, to a local minimum. It happens in the case of a very irregular cost function
[38]. However, it is assumed that the reached local minima are sufficiently near the

32

global minima. In the case of larger neural networks, the problem of poor local
minima becomes gradually less important [49].

Train, Validation and Test Split
The key attribute of a neural network is the ability to generalize to new cases.
Therefore, it is necessary to take out a subset of data to evaluate the ability to
generalize. However, in practice, the whole default dataset is divided into three
groups:

• A training set – This dataset is used for the training of the model.

• A validation set – This dataset is taken out prior to the training, and then
the model is evaluated with this dataset. Also, the dataset is used to compare
different models between each other.

• A test set – This dataset is taken out prior to the training and is used purely
to evaluate the final model.

The main reason to use both a validation and a test set is that the validation set is
used to compare of different models. Thus the validation dataset projects itself to
the model, and the generalization verification would not be that strong.

To obtain the training, validation and test set, the whole default dataset is usually
divided into 60 %, 20 % and 20 % sets (depending on the data amount). Also, each
dataset should have a similar representation of the data as the default dataset.

Overfitting, Underfitting and Regularization
The neural network model might suffer from overfitting or underfitting. Overfitting
occurs when the model is too complex, and thus the model fits the data perfectly.
But the prediction of new values is bad. On the other hand, underfitting occurs
when the model is very simple and the model does not represent the training data.
It can be said that an overfitting model has a high variance and low bias, and an
underfitting model has a low variance and high bias. An illustration of overfitting
and underfitting is in the Fig. 2.6, where the ideal state is somewhere between. The
ideal state is a compromise between a good representation of the training data and
generalization.

Looking at the Fig. 2.7, the point where the fit is optimal can be observed as the
minimum of the validation loss. To the left to this point, the model underfits and to
the right, the model overfits.

Overfitting can be cured by simplifying the model, e.g., using less trainable
parameters or using fewer features in the dataset. The cost function can include
regularization in form of a “penalty” (e.g. ℓ1 and ℓ2 norm). Another possibility is to
use a dropout layer or increase the amount of data.

To cure underfitting, it is necessary to increase model complexity, add more
features or decrease regularization in the cost function.

33

Lastly, it is possible to stop the learning of the model when the validation loss
starts to increase. Such a technique is called early stopping.

Figure 2.6: The example of a curve fit with different degrees of a polynomial.
Picture taken from [34].

Figure 2.7: A training and validation loss (error) example. The capacity, in this
case, might be interchanged with the number of epochs. Picture taken from [34].

2.2.2 Convolution Neural Network (CNN)
The proposed Many-to-One model in the subsection 2.1.2 is partially investigated
with the convolution neural network. The CNN and the convolution layer have been
used extensively in, e.g. image processing. The reason is that the CNN is inspired by
the real processes in the visual cortex [38]. The work of Fukushima [50] was inspired
by the visual cortex, and thus he formulated the current form of the CNN. Mainly
2D or 3D CNNs are used in image processing. However, only the 1D CNN will be
mentioned in this work, as it is suitable for 1D signals.

The use of the 1D CNN was described, e.g. by Kiranyaz et al. [51], where they
surveyed how the 1D CNN can be used in classification tasks. They concluded that
the 1D CNNs are relatively easier to train than the 2D CNNs, and with such minimal
computational complexity, the 1D CNNs still achieve state-of-the-art performance.
Another example of the use of 1D CNNs is the work by Malek et al. [52]. They used

34

the 1D CNNs for regression tasks with application to spectroscopic signal regression.
Both of the previous works emphasize the use of 1D CNNs as feature extractors.

The convolution layer is the basis of the CNN. The discrete form of the convolution
is described in the Fig. 2.8. Here, the matrix I denotes the input matrix, where,
e.g. the columns are timesteps or spatial positions and the rows are parameters for
each timestep/position. This matrix is step-by-step element-wise multiplied with the
kernel (or the filter) K. Each step (also called a stride), those multiplications are
summed up and stored in an output vector. The step length and kernel width are
arbitrary.

In image processing, it is usual to create very deep models with many convolution
layers. However, it is rare to use the convolution layers solely. Pool layers are used
in many cases after those convolution layers in order to downsample the model [38].
The pool layers can also be used to fix the size of the output from the convolution
layer. After the convolution layers (and pool layers), the feedforward neural network
can be connected, as it helps to improve the abstraction and regression/classification
ability of the model.

Similar rules and practices apply for training the convolution neural network as
for the feedforward neural network. Thus it is not mentioned here again.

1 1 2 5 1 2 1
2 3 1 6 2 4 2
3 2 2 1 4 2 1
4 1 4 2 3 3 1

I

∗

1 0
0 1
1 0
2 0

K

= 15 10 18 12 15 12

I ∗ K

1 0
0 1
1 0
2 0

×1 ×0

×0 ×1

×1 ×0

×2 ×0

Figure 2.8: The illustration of convolution calculation.

Conclusion
Two neural network architectures were proposed and described in the previous
sections. The first one is the FNN which is a great candidate for the One-to-One
model. In that case, the boundary layer parameters can be used as inputs into the
FNN, and the output can be the wall pressure spectrum for one frequency point.

The FNN is also a great candidate for the Many-to-One model. In that case, the
model can use the boundary layer parameters from several boundary layer points
next to each other. The model’s output can be the wall pressure spectrum for the
last point in the series of boundary layer points for one frequency point.

The CNN can also be used for the Many-to-One model. Here, the inputs and
outputs can be the same as in the FNN Many-to-One model. The difference is
that the CNN can use variable-length inputs. Connecting the CNN with the pool
layer and the FNN results in a model that takes variable-length inputs, extracts the
features via the CNN, subsamples the features to some fixed size via the pool layer
and then performs the regression task via the FNN.

35

A challenging aspect in training the proposed models is the setup of the model’s
architecture, such as choosing the number of hidden layers, the number of hidden
units, the activation function, the initialization or the number of kernels. In the
machine learning field, these parameters are called hyper-parameters. The proposed
models, in this work, will be trained with different hyper-parameter setups.

Nowadays, the industry-standard in machine learning is to prototype neural
network models with the help of some machine learning library. In this work, mainly
the Tensorflow [53] together with the Keras [54] will be used. The reason for the use
of these libraries is that they are Python-based and open-source.

In the next chapter, the database preparation will be described together with the
selection of boundary layer parameters and model inputs.

36

3 Database Preparation

In order to train neural network model, a database of relevant boundary layer
parameters is needed. In this work, four different data sources were chosen:

• Salze et al. [11] – an experiment, in a wind tunnel test channel, on a flat plate

• Deuse and Sandberg [12] – LES, CD airfoil,

• Wu et al. [13] – DNS, CD airfoil,

• Christophe et al. [14] – LES, CD airfoil,

where all of them will be described in the following sections.
All datasets used here are already preprocessed from the raw signal outputs or data

stored in a mesh. Therefore, only time-averaged and, in the case of airfoils, spanwise
averaged data are available. Concretely, each dataset is divided into boundary layer
points stored in a JSON format (JavaScript Object Notation). In each of these
boundary layer points, the following values are specified: points on the y-coordinate
(perpendicular to the surface), a velocity vector for each y point, a pressure gradient
for each y point, a wall pressure spectrum and its frequency points and referential
values (a referential temperature, pressure, length and velocity). Moreover, in the
numerical datasets, static pressure and vorticity in each y point are specified.

3.1 Datasets
In this section, all datasets are described. Each dataset description also contains
basic preprocessing of the raw boundary layer points. The BLtools Python package
[55] is here used for the processing of each boundary layer point. To unify the
notation, the x-coordinate in the following description is tangent to the boundary
surface, and y-coordinate is perpendicular to the boundary surface.

Salze
Salze et al. [11] conducted an experiment where they investigated the wall pressure
wavenumber frequency induced by a turbulent boundary layer in the presence of
mean pressure gradient. The experiment was performed in an anechoic chamber in a
subsonic wind tunnel with a test channel (Fig. 3.1). The wind tunnel was equipped
with a proper acoustic treatment. Variable mean pressure gradient was accomplished

37

by changing the ceiling angle of the wind tunnel. The velocity profiles were measured
by the hot-wire anemometry, and the wall pressure fluctuations were measured by a
1/8 inch microphone with a pinhole cap.

The Salze dataset yields 17 boundary layer points. Six points have a zero pressure
gradient, seven points have an adverse pressure gradient, and four points have a
favourable pressure gradient. All of the 17 points are used for the database.

The mean velocity profile data points are already stored in each of the boundary
layer points. In this experimental dataset, the external velocity (the velocity at
the edge of the boundary layer) Ue is defined as Ue = umax. The boundary layer
thickness δ describes a position where the mean velocity u asymptotically reaches
the free-stream flow velocity U∞. In this experimental dataset, the boundary layer
thickness is defined as δ = y (0.99umax) (Fig. 3.2).

It is now possible to plot the velocity profiles with Ue and δ used as scaling
(Fig. 3.3). In all of those 17 boundary layer points, the boundary layer stays attached.
Therefore, there are no limitations in using these points for future model design. The
Fig. 3.4 shows the wall pressure spectra for the same set of points as in the Fig. 3.3.

Figure 3.1: Salze – test channel. The height is h = 250 mm and the length is
L = 16h. Parameters h1, h2, α1, α2 are changed according to the sought pressure
gradient. Picture taken from [11].

0.2 0.4 0.6 0.8 1.0 1.2
u/Uref [1]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

y
[m

]

velocity profile

Figure 3.2: Salze, ZPG, Uref = 36 m s−1. Boundary layer thickness definition
0.99umax.

38

0.4 0.5 0.6 0.7 0.8 0.9 1.0
u/Ue [1]

0.0

0.2

0.4

0.6

0.8

1.0

y/
 [1

]

2014_salze_case_zpg_U_36
2014_salze_case_apg_U_38
2014_salze_case_fpg_U_32

Figure 3.3: Salze – normalized velocity profiles for different pressure gradients.

102 103 104

f [Hz]

50

40

30

20

10
lo

g 1
0 (

pp
) [

Pa
2 /

Hz
]

2014_salze_case_zpg_U_36
2014_salze_case_apg_U_38
2014_salze_case_fpg_U_32

Figure 3.4: Salze – WPS for different pressure gradients.

Deuse
Deuse and Sandberg [12] investigated the self-noise of an isolated CD airfoil using
direct noise computation (DNC) (Fig. 3.5). The DNC consists of numerical simulation
of the full compressible turbulent flow, including the acoustic field. Specifically, they
conducted four large eddy simulations and one direct numerical simulation using a
high-order finite difference solver HiPSTAR. The LES was performed for a constant
angle of attack 8◦, a constant chord-based Reynolds number 105 and for four free-
stream Mach numbers [0.2; 0.3; 0.4; 0.5]. The DNS was performed only for M = 0.4
to validate the LES results. In this work, only the results with free-stream Mach
number M = 0.2 are considered.

Under the previous conditions, a separation bubble forms at the airfoil leading
edge on the suction side (Fig. 3.6). Therefore, in this place, a laminar boundary
layer separates, transits to a turbulent boundary layer and then reattaches. On the
pressure side, the boundary layer is fully laminar until the trailing edge.

39

This dataset yields 20 boundary layer points in total. The points vary with
the chord position, where the origin of the chord coordinate is at the trailing edge.
The first point is positioned at the relative chord xc = 0.02 and the last point is at
xc = 0.95.

The mean velocity profile datapoints are already stored in each of the boundary
layer points as in Salze dataset. However, different definition of the external velocity
Ue is used here. Since the flow is not constant outside of the boundary layer, using
the umax definition for the external velocity might lead to an overestimation of the
resultant boundary layer thickness. A pseudo-velocity ups is defined instead. Firstly,
the vorticity is

ωvor = ∇ × u =
(︄
∂uz

∂y
− ∂uy

∂z

)︄
i +

(︄
∂ux

∂z
− ∂uz

∂x

)︄
j +

(︄
∂uy

∂x
− ∂ux

∂y

)︄
k. (3.1)

The index vor is added here to distinguish the vorticity from the angular frequency.
Then, considering only a 2D boundary layer and neglecting the term ∂uy/∂x, the
pseudo-velocity ups can be determined as

ups (y) = −
∫︂ y

0
ωvor,z dy. (3.2)

Thus, the boundary layer thickness δ is calculated as δ = y (0.99ups−max) and the
Ue is then defined as Ue = ux (y = δ) /0.99 (Fig. 3.7). The advantage of the pseudo-
velocity is that the vorticity goes to zero when reaching the outside of the boundary
layer (irrotational flow).

The Fig. 3.8 illustrates the mean velocity profiles scaled with Ue and δ for several
boundary layer points along the airfoil chord. The profiles with relative chord position
xc up to 0.85 indicate that the boundary layer stays attached. However, nearer
to the leading edge, the separation bubble occurs, and the mean velocity profile
at the xc = 0.90 has an opposite direction (near the wall) to the free-stream flow.
This is in agreement with the Fig. 3.6. In the default dataset, there are no other
boundary layer points available between the xc = 0.85 and xc = 0.90. The flow in
the separation bubble will not be investigated nor used for the wall pressure spectra
model. In consequence, the number of used boundary layer points is reduced to 17.

In the Fig. 3.9 the raw wall pressure spectra are illustrated.

Figure 3.5: Deuse – simulation geometry. Picture taken from [12]

40

Figure 3.6: Deuse – average non-dimensional pressure field and mean streamlines,
M = 0.4, DNS results. Picture taken from [12].

0.0 0.5 1.0 1.5
u/Uref [1]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

y
[m

]

velocity profile
0.99umax

pseudo-velocity profile

Figure 3.7: Deuse, xc = −0.4, Uref = 69.438 m s−1. Boundary layer thickness
definition 0.99ups−max.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
u/Ue [1]

0.0

0.2

0.4

0.6

0.8

1.0

y/
 [1

]

2020_deuse_case_CD_xc_0.02
2020_deuse_case_CD_xc_0.40
2020_deuse_case_CD_xc_0.80
2020_deuse_case_CD_xc_0.85
2020_deuse_case_CD_xc_0.90

Figure 3.8: Deuse – normalized velocity profiles for different airfoil positions.

41

103 104 105

f [Hz]

50

40

30

20

10

0

10

10
lo

g 1
0 (

pp
) [

Pa
2 /

Hz
]

2020_deuse_case_CD_xc_0.02
2020_deuse_case_CD_xc_0.40
2020_deuse_case_CD_xc_0.80

Figure 3.9: Deuse – WPS for different airfoil positions.

Wu
Wu et al. [13] conducted a 3D compressible DNS of a CD airfoil in a wind-tunnel flow
at a constant angle of attack 8◦, constant chord-based Reynolds number 1.5 × 105

and constant free-stream Mach number 0.25. The simulation accounted for the
aerodynamic installation effects of the wind tunnel by setting proper inflow boundary
profiles. The simulation was also compared to particle-image velocimetry and hot-wire
measurements to assure the correctness of the DNS results.

The flow state is similar to the Deuse case, as a separation bubble forms at the
airfoil leading edge on the suction side and on the pressure side, the flow is laminar.

The Wu dataset yields 20 boundary layer points across the airfoil chord. As in
Deuse dataset, the origin of the chord coordinate is at the trailing edge, and the
relative chord position varies from xc = 0.02 to xc = 0.95.

The same method as in Deuse dataset is used for obtaining Ue and δ. The raw
velocity and pseudo-velocity profiles and their respective δ are illustrated in the
Fig. 3.11.

The Fig. 3.12 describes the mean velocity profiles scaled with Ue and δ. As in
the Deuse dataset, due to the separation bubble, there is a mean velocity profile,
where the flow has an opposite direction near the wall. This one point at xc = 0.95
is not going to be used. This reduces the total number of Wu dataset boundary layer
points to 19.

In the Fig. 3.13 the raw wall pressure spectra are illustrated. The spectrum
contains a hump at middle frequencies at the point near the separation bubble. There
is also a hump in the spectrum at high frequencies at the point near the leading edge.
This high frequency hump was observed for the first time in such a flow case by Wu
et al. [13], and it is suspected that the near wake influences it. Deuse and Sandberg
[12] also observed the high frequency hump but for higher Mach numbers.

42

Figure 3.10: Wu – instantaneous velocity field and the detail on the leading edge,
3D DNS results. Picture taken from [13].

0.0 0.5 1.0 1.5
u/Uref [1]

0.000

0.001

0.002

0.003

0.004

y
[m

]

velocity profile
0.99umax

pseudo-velocity profile

Figure 3.11: Wu, xc = −0.4, Uref = 86.806 m s−1. Boundary layer thickness
definition 0.99ups−max.

0.0 0.2 0.4 0.6 0.8 1.0
u/Ue [1]

0.0

0.2

0.4

0.6

0.8

1.0

y/
 [1

]

2020_wu_case_CD_xc_0.02
2020_wu_case_CD_xc_0.40
2020_wu_case_CD_xc_0.90
2020_wu_case_CD_xc_0.95

Figure 3.12: Wu – normalized velocity profiles for different airfoil positions.

43

104 105 106

f [Hz]

100

80

60

40

20

10
lo

g 1
0 (

pp
) [

Pa
2 /

Hz
]

2020_wu_case_CD_xc_0.02
2020_wu_case_CD_xc_0.40
2020_wu_case_CD_xc_0.90

Figure 3.13: Wu – WPS for different airfoil positions.

Christophe
Christophe et al. [14] applied an uncertainty quantification framework to the
broadband trailing edge noise of a CD airfoil. One part of this study was to
prepare LES of the CD airfoil embedded in the potential core of the jet in the
anechoic wind tunnel. The airfoil chord length is 0.1356 m, the free stream velocity
is 16 ms−1, therefore resultant chord-based Reynolds number is 1.6 × 105. The angle
of attack is varied and thus yield eight different cases (Tab. 3.1).

Cases 1 to 6 are very similar to the Deuse and Wu CD airfoil simulations. Again,
there is a laminar separation bubble at the leading edge on the suction side of the
airfoil. This triggers the transition to the turbulent boundary layer, which stays
attached until the trailing edge. At larger angles of attack, the recirculation bubble
increases, but the flow stays attached. In case 7, the previous separation at the
leading edge is weaker, and this phenomenon only applies for some narrow span. In
case 8, the angle of attack is small enough that the separation moves beyond the
mid chord (near the trailing edge).

Table 3.1: Christophe – the angle of attack for each case.

1 2 3 4 5 6 7 8

AOA [◦] 6.00 5.86 5.42 4.76 4.00 3.24 2.58 2.14

The Christophe dataset yields 18 points along the airfoil chord for each angle of
attack, which means 144 boundary layer points in total. The boundary layer points
vary from xc = 0.05 to xc = 0.90, where the origin is, again, at the trailing edge.

The same method as in the previous numerical datasets is used for obtaining
Ue and δ. The raw velocity and pseudo-velocity profiles and their respective δ are
illustrated in the Fig. 3.14.

The Fig. 3.15 describes the mean velocity profiles scaled with Ue and δ for the
case 1. The available boundary layer points in cases 1 to 7 do not contain any point

44

in the separation bubble at the leading edge. Thus it is not necessary to remove any
point in these cases. However, in case 8 (Fig. 3.16), the separation is beyond the
mid chord, and the only boundary layer points available are after the separation.
Therefore, case 8 is not going to be used for the wall pressure spectra model. This
reduces the number of boundary layer points to 126.

In the Fig. 3.17 and Fig. 3.18 the raw wall pressure spectra are illustrated. As
seen in the previous numerical datasets, there is a hump in the high frequency region
near the trailing edge.

0.0 0.5 1.0 1.5
u/Uref [1]

0.000

0.005

0.010

0.015

0.020

0.025
y

[m
]

velocity profile
0.99umax

pseudo-velocity profile

Figure 3.14: Christophe, xc = −0.4, Uref = 16 m s−1. Boundary layer thickness
definition 0.99ups−max.

0.0 0.2 0.4 0.6 0.8 1.0
u/Ue [1]

0.0

0.2

0.4

0.6

0.8

1.0

y/
 [1

]

2010_christophe_case_1_xc_0.05
2010_christophe_case_1_xc_0.40
2010_christophe_case_1_xc_0.80
2010_christophe_case_1_xc_0.90

Figure 3.15: Christophe – normalized velocity profiles for different airfoil positions.

45

0.0 0.2 0.4 0.6 0.8 1.0
u/Ue [1]

0.0

0.2

0.4

0.6

0.8

1.0

y/
 [1

]

2010_christophe_case_1_xc_0.25
2010_christophe_case_5_xc_0.25
2010_christophe_case_7_xc_0.25
2010_christophe_case_8_xc_0.25

Figure 3.16: Christophe – normalized velocity profiles for different angles of attack.

102 103 104

f [Hz]

160

140

120

100

80

60

40

20

10
lo

g 1
0 (

pp
) [

Pa
2 /

Hz
]

2010_christophe_case_1_xc_0.05
2010_christophe_case_1_xc_0.40
2010_christophe_case_1_xc_0.80

Figure 3.17: Christophe – WPS for different airfoil positions.

102 103 104

f [Hz]

150

125

100

75

50

25

0

10
lo

g 1
0 (

pp
) [

Pa
2 /

Hz
]

2010_christophe_case_1_xc_0.25
2010_christophe_case_5_xc_0.25
2010_christophe_case_7_xc_0.25

Figure 3.18: Christophe – WPS for different angles of attack.

46

3.2 Boundary Layer Parameters Selection
In the previous section, the selected datasets were introduced and discussed. This
section continues with these datasets and also continues in further processing.

The main question in this further processing of the boundary layer datasets is:
What boundary layer parameters to select to compose a new data-driven model? The
answer to this question might be found in the subsection 2.1.2. There is a wide
collection of parameters that can be somehow extracted from the boundary layer.
Firstly, only the dimensional ones (with one exception) are extracted. The resultant
selection is collected in the Tab. 3.2.

The Ue and δ were already introduced in the previous sections. To sum it up,
the definition of Ue is, for the experimental results, the umax, and for the numerical
results, the ux (y = δ) /0.99. The definition of δ is, for the experimental results, the
y (0.99umax), and for the numerical results, the y (0.99ups−max).

To calculate the boundary layer displacement thickness δ∗ and momentum thick-
ness θ, the following definitions are used

δ∗ =
∫︂ δ

0

1 − u (y)
Ue

dy, (3.3)

θ =
∫︂ δ

0

u (y)
Ue

(︄
1 − u (y)

Ue

)︄
dy. (3.4)

Table 3.2: Selected boundary layer parameters.

Parameter Symbol Where to obtain

External velocity Ue Velocity profile
Boundary layer thickness δ Velocity profile
Displacement thickness δ∗ Velocity profile
Momentum thickness θ Velocity profile
Wake parameter Π Velocity profile
Wall shear stress τw Velocity profile
Pressure gradient dp/dx Dataset
Kinematic viscosity ν Sutherland’s law
Fluid density ϱ Ideal gas law
Speed of sound c0 Speed of sound id. gas

The pressure gradient dp/dx is taken as a gradient in the x direction at the first
y point in the boundary layer.

The fluid density ϱ is computed from the ideal gas law

ϱ = p

RTref

, (3.5)

47

where the specific gas constant is R = 287.058 and the pressure is considered as the
atmospheric pressure patm = 101325 Pa.

The speed of sound c0 is calculated for ideal gas as

c0 =
√︂
γRTref , (3.6)

where the heat capacity ratio for ideal gas is γ = 1.4.
The kinematic viscosity can be obtained from the dynamic viscosity µ and the

Sutherland’s law [56]
ν = µ

ϱ
, (3.7)

µ = µ0

(︃
Tref

T0

)︃3
2 T0 + S

Tref + S
, (3.8)

where µ0 = 1.711 × 10−5 Pa s, T0 = 273.15 K and S = 110.4 K.
The remaining parameters are the Coles’s wake parameter Π [57] and the wall

shear stress τw, where both of them are directly connected to the mean velocity
profile. The τw is defined as [16]

τw = ϱν

(︄
d⟨u⟩
dy

)︄
y=0

. (3.9)

Since there are no data in our dataset that would contain τw, it has to be somehow
derived from the mean velocity profile. One way could be to compute the discretized
derivative in the definition for the first set of points along the y coordinate in the
boundary layer. However, this approach can lead to a strong error when the boundary
layer is not adequately discretised. In this work, another way of computing τw is
used. Moreover, instead of computing τw directly, the friction velocity uτ is the one
sought. τw and uτ are connected through the definition

uτ =
√︄
τw

ϱ
. (3.10)

The problem now switched to finding the wake parameter Π and the friction velocity
uτ . Both of them are connected to the mean velocity profile. Therefore, to find them,
it is necessary to introduce the self-similar (non-dimensionalized) form of the mean
velocity profile and see how are those parameters connected to it.

Self-Similar Mean Velocity Profile
The mean velocity profile near the wall can be scaled to its self-similar form. However,
there is no universal scaling for the whole velocity profile since different physical
phenomena influence each part of the velocity profile. In other words, some particular
scales are only valid for some part of the velocity profile. Nonetheless, it is possible
to merge a set of scaling laws to build a composite mean velocity profile [58, 59]. In

48

the following lines, the definition of the scaled distance from the wall y+ and the
scaled mean velocity u+ is

y+ = yuτ

ν
, (3.11)

u+ = ⟨u⟩
uτ

. (3.12)

The mean velocity profile can be divided into the following layers [16]:

• Inner layer – Location: y/δ < 0.1. Determined mainly by viscous scales.

• Overlap region – Location: y+ > 50; y/δ < 0.1. Covers the end of the inner
layer and the beginning of the outer layer.

• Outer layer – Location: y+ > 50. The effect of viscosity on the velocity
profile is negligible.

It is good to note that there is no sharp boundary between the layers/regions, and
they partially overlap.

The law of the wall [60] u+ = f (y+) is applicable in the inner layer. The inner
layer can be further divided into the viscous sublayer, buffer region and log-law
region, where the following relations apply

u+ = y+ (viscous sublayer – linear law, y+ < 5), (3.13)

u+ = f
(︂
y+
)︂

(buffer region, 5 < y+ < 30), (3.14)

u+ = 1
κ

ln
(︂
y+
)︂

+B (log-law region, y+ > 30), (3.15)

where the log-law was firstly derived by Kármán [61]. The coefficients κ and B are
generally considered as constants κ = 0.41 and B = 5.2 [16] for canonical flows. But
it will be shown that the coefficients are dependent on the pressure gradient.

A single formula law of the wall is also possible. The first such formulation was
introduced by Spalding [62]. Musker [63] wanted to overcome the implicit form of
Spalding’s law and also wanted to improve the satisfaction of the boundary conditions,
which resulted in a new single formula law of the wall. The dimensionless velocity
gradient of the latter model is

du+

dy+ = κ+ Cy+ 2

κ+ Cy+ 2 + Cκy+ 3 , (3.16)

where C is the constant of proportionality. To obtain the final algebraic form of the
law, one has to integrate this equation with some values for κ and C. The constant
C is found by minimizing the difference (e.g. by trial and error) between the Musker
law and the log-law as y+ → ∞.

49

In the outer layer, the law of the wall differs from the actual mean velocity profile
with the increasing distance from the wall. Coles [57] suggested a correction in the
form

u+ = f
(︂
y+
)︂

+ Π
κ

W
(︃
y

δ

)︃
, (3.17)

where the term (Π/κ) W is the law of the wake, Π is the wake parameter and W is
the wake function.

Chauhan et al. [59] suggested an exponential wake function

Wexp =
1 − exp

[︃
−1

4 (5a2 + 6a3 + 7a4) η4 + a2η
5 + a3η

6 + a4η
7
]︃

1 − exp [− (a2 + 2a3 + 3a4) /4] ×

×2
(︃

1 − 1
2Π ln (η)

)︃
, (3.18)

where η = y/δ, a2 = 132.8410, a3 = −166.2041 and a4 = 71.9114. This wake function
should also assure that the slope d⟨u⟩/dy → 0 at the boundary layer edge.

As it was said previously, the coefficients κ and B may not be independent of
the pressure gradient. Nickels [64] investigated the effects of pressure gradient on
the inner region of turbulent wall-bounded flows and came up with a relationship

κ

κ0
=
√︄

1
1 + p+

x y
+
c

, (3.19)

where κ0 is the coefficient κ for zero pressure gradient flows, p+
x = (ν/ϱu3

τ) (dp/dx) is
the dimensionless pressure and the y+

c is the dimensionless viscous sublayer thickness
or it may be called a critical distance, where the viscous sublayer becomes turbulent.
With a reference to Nickels [64], the y+

c may be considered as similar to the critical
Reynolds number Rec. From his investigation, the y+

c is around 11 to 12 for zero
pressure gradient flows. He considered the κ0 = 0.39 for zero pressure gradient. The
model (Eq. (3.19)) then suggests the κ is less than 0.39 for strong adverse pressure
gradient flows and the κ is more than 0.39 for strong favourable pressure gradient
flows.

Chauhan et al. [65] described the dependency of κB on B for different pressure
gradient data. Nagib and Chauhan [66] took this dependency and fitted a functional
form

κB = 1.6 [exp (0.1663B) − 1] . (3.20)
With this relation, one can find the coefficient B with a known κ.

In this work, to find the wake parameter Π and the friction velocity uτ , a self-
similar composite mean velocity profile has to be fit on each velocity profile in
the complete dataset. The composite profile (Fig. 3.19) consists of Musker profile
(integrating the Eq. (3.16)) and the law of the wake with an exponential wake
function (Eq. (3.18)).

u+
Comp = u+

Musker

(︂
y+
)︂

+ u+
exp (η) . (3.21)

50

The main parameter governing the fit is uτ . The coefficients κ and B are calculated
from the Eq. (3.19) and the Eq. (3.20).

The wake parameter Π is used to correct the last velocity point to assure that it
will be equal to 0.99Ue

Π =
(︃0.99Ue

uτ

− u+
log−law

)︃
κ

W
. (3.22)

10 1 100 101 102 103 104

y +

0

5

10

15

20

25

u
+

lin-log, = 0.41, B = 5.2
Composite profile
Musker
Exp. wake

Figure 3.19: The composite mean velocity profile composition. Salze APG (Uref =
38 m s−1) boundary layer point was used for the profile.

The composite mean velocity profiles for the previously mentioned three points
from the Salze dataset are in the Fig. 3.20. The wake correction is almost similar for
the zero and adverse pressure gradient case. However, for the favourable pressure
gradient, the wake is rather weak. Anyway, all the fits follow the data points.

The composite mean velocity profiles for the selected Deuse’s data points are
in the Fig. 3.21. The correction in the wake region due to the pressure gradient is
strong in this case. Especially at the trailing edge, there is a large adverse pressure
gradient. The pressure gradient is rather mild at the middle part of the airfoil, where
the pressure gradient is evolving from the favourable to the adverse pressure gradient.
Thus the wake correction is also small. The composite profiles, again, fit the data
points successfully. In the Christophe and Wu dataset, the fit of the composite
profiles is similar to the Deuse dataset. Therefore the illustrations are collected in
the Appendix B.

In the previous lines, the process, how the selected boundary layer parameters
(Tab. 3.2) are obtained was described. To sum up the obtained values, the ranges
for each parameter are in the Tab. 3.3. The wake parameter Π cannot be zero as
the parameter is in the denominator in the Eq. (3.18). Therefore, the minimum of
the wake parameter is set to 1 × 10−6. It is worth noting that these parameters are
not directly used as inputs into the oncoming neural network wall pressure spectra
models.

51

10 1 100 101 102 103 104

y +

0

10

20

30

40
u

+

lin-log, = 0.41, B = 5.2
2014_salze_case_zpg_U_36
2014_salze_case_apg_U_38
2014_salze_case_fpg_U_32

Figure 3.20: Examples of the composite mean velocity profiles for the Salze adverse,
zero and favourable pressure gradient dataset. The profiles are shifted by u+ = 10.

10 1 100 101 102 103

y +

0

10

20

30

40

50

60

u
+

lin-log, = 0.41, B = 5.2
2020_deuse_case_CD_xc_0.40
2020_deuse_case_CD_xc_0.80
2020_deuse_case_CD_xc_0.02

Figure 3.21: Examples of the composite mean velocity profiles for the Deuse dataset.
The profiles are shifted by u+ = 10.

52

Table 3.3: The obtained boundary layer parameters dataset overview. The references of the data are Salze et al.(2014) [11], Wu
et al.(2018) [13], Deuse and Sandberg(2020) [12] and Christophe et al.(2014) [14].

Dataset
N. of

boundary
layer

points

Ue

[m s−1]
δ

[mm]
δ∗

[mm]
θ

[mm]
Π
[1]

τw

[Pa]

dp

dx
[Pa m−1]

ν × 106

[m2 s−1]
ϱ

[kg m−3]
c0

[m s−1]

Salze

ZPG 6 10.9 to 75.9 19.451 to 28.103 2.709 to 3.554 2.064 to 2.684 0.232 to 0.514 0.284 to 8.937 0 15.107 to 15.262 1.193 to 1.200 343.8 to 344.8

APG 7 8.3 to 76.7 29.486 to 69.682 4.790 to 8.173 3.445 to 5.837 0.194 to 0.822 0.138 to 7.219 13 to 1128 14.735 to 15.408 1.187 to 1.217 341.4 to 345.8

FPG 4 10.3 to 63.1 15.205 to 18.992 1.617 to 2.006 1.305 to 1.600 1 × 10−6 to 0.007 0.313 to 7.657 −2518 to −69 14.591 to 15.225 1.195 to 1.224 340.5 to 344.6

Wu

Case 1 19 91.2 to 116.9 0.301 to 1.345 0.058 to 0.469 0.039 to 0.219 1 × 10−6 to 2.306 6.335 to 56.367 −776650 to 307515 15.643 1.177 347.2

Deuse

Case 1 17 72.5 to 97.5 1.027 to 3.388 0.232 to 1.096 0.162 to 0.518 0.141 to 2.265 3.145 to 22.644 −24686 to 230708 15.643 1.177 347.2

Christophe

Case 1 18 16.7 to 22.1 3.156 to 11.329 0.641 to 3.133 0.444 to 1.700 1 × 10−6 to 1.416 0.305 to 1.541 −314 to 2225 14.835 1.212 342.1

Case 2 18 16.7 to 22.1 3.135 to 11.035 0.608 to 3.027 0.424 to 1.640 1 × 10−6 to 1.402 0.313 to 1.565 −325 to 2113 14.835 1.212 342.1

Case 3 18 16.9 to 21.8 2.670 to 1.000 0.515 to 2.671 0.350 to 1.466 1 × 10−6 to 1.283 0.348 to 1.638 −413 to 2115 14.835 1.212 342.1

Case 4 18 16.9 to 21.7 2.229 to 7.978 0.394 to 2.242 0.269 to 1.209 1 × 10−6 to 1.333 0.361 to 1.757 −686 to 2141 14.835 1.212 342.1

Case 5 18 17.1 to 21.8 1.616 to 6.509 0.290 to 1.926 0.194 to 1.012 1 × 10−6 to 1.432 0.367 to 1.866 −2223 to 2169 14.835 1.212 342.1

Case 6 18 17.3 to 21.9 1.190 to 5.355 0.243 to 1.631 0.144 to 0.850 1 × 10−6 to 1.421 0.395 to 1.944 −1988 to 2180 14.835 1.212 342.1

Case 7 13 17.4 to 22.1 0.938 to 4.743 0.247 to 1.078 0.112 to 0.628 0.673 to 1.520 0.621 to 1.381 −1009 to 2793 14.835 1.212 342.1

All 174 8.3 to 116.9 0.301 to 69.682 0.058 to 8.173 0.039 to 5.837 1 × 10−6 to 2.306 0.138 to 56.367 −776650 to 307515 14.591 to 15.643 1.177 to 1.224 340.5 to 347.2

53

3.3 Wall Pressure Spectra – Data and Semi-Empirical
Models

This section is devoted to a brief description of the obtained wall pressure spectra,
scaling, and semi-empirical models.

As it was described in the subsection 2.1.1, and especially in the Tab. 2.1, various
scalings are used to collapse the wall pressure spectra. Concretely, the scaling is
varying from outer to inner variable scaling with increasing frequency. This ensures
that the spectra should collapse in each frequency region. In the Fig. 3.22 all the
wall pressure spectra from the Salze dataset are plotted with different scaling. In
the Fig. 3.22a the time scale δ∗/Ue and the pressure scale τw are used. This scaling
should collapse the spectra in the lower frequencies. This collapse is visible for
the zero pressure gradient data, and the spectra also collapse partially in the mid
frequencies. The collapse is also visible for the adverse pressure gradient (except
one boundary layer point), and it is less visible for the favourable pressure gradient.
The complete dataset, however, does not collapse to one curve. The same, as in the
previous scaling, applies to the Fig. 3.22b. Here, the time scale δ/Ue and the pressure
scale τw are used. In the last, outer variable scaling, in Fig. 3.22c the complete
dataset almost collapses to one curve. The best collapse is again achieved with the
zero pressure gradient dataset. Here, the time scale ν/u2

τ and the pressure scale τw

are used.
Comparing the wall pressure spectra with the semi-empirical models referenced

in the subsection 2.1.2, the following conclusions can be made.
Salze’s wall pressure spectra for the zero pressure gradient agrees with almost

all the semi-empirical models (Fig. 3.23a), except the Kamruzzaman model does
not respect the shape in the low and in the high frequencies. The best prediction
here seems to be from the Hu model and the Lee model. The Rozenberg model, in
the case of zero pressure gradient, should collapse to the Goody model. Indeed, the
Rozenberg model collapses to the Goody model. For Salze’s wall pressure spectra
in the adverse pressure gradient (Fig. 3.23b), the prediction is still good. The best
ones are probably from the Hu model and the Goody model. In the latter, the
good prediction is surprising since the model was not built on adverse pressure
gradient data. In the case of favourable pressure gradient, none of the semi-empirical
models predicts the spectra as in the previous cases. It is not surprising since the
favourable pressure gradient data were sparsely used in building these models. The
best prediction here is probably by the Hu model, where some favourable pressure
gradient data were used to build the model.

Looking at Deuse’s wall pressure spectra in Fig. 3.24, it can be seen that with
increasing distance from the trailing edge, the semi-empirical models are getting
worse. This is, in fact, true for this whole airfoil. At least the shape of the obtained
spectra is respected at the trailing edge, but the amplitude is not.

The airfoil wall pressure spectra from Wu and Christophe (see the Appendix C)
show similar bad predictions from the semi-empirical models. Moreover, there are
some humps visible that are described in section 3.1.

54

10 1 100 101

* /Ue

20

0

10
lo

g 1
0[

pp
U

e/
2 w

*]
ZPG
APG
FPG

(a)

100 101 102

/Ue

40

20

0

10
lo

g 1
0[

pp
U

e/
2 w

]

ZPG
APG
FPG

(b)

10 2 10 1 100

/u2

20

0

20
10

lo
g 1

0[
pp

u2 /
2 w

]

ZPG
APG
FPG

(c)

Figure 3.22: Complete Salze’s wall pressure spectra plotted with different scaling.

10 1 100 101

* /Ue

30

20

10

0

10

10
lo

g 1
0[

pp
U

e/
2 w

*]

(a) Salze, ZPG, Uref = 36 m s−1

10 1 100 101

* /Ue

40

20

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

(b) Salze, APG, Uref = 38 m s−1

10 1 100 101

* /Ue

20

10

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

Data
Goody
Rozenberg
Kamruzzaman
Hu
Lee

(c) Salze, FPG, Uref = 32 m s−1

Figure 3.23: Selected Salze’s wall pressure spectra with their respective semi-
empirical models.

55

10 1 100 101

* /Ue

75

50

25

0

25

10
lo

g 1
0[

pp
U

e/
2 w

*]

(a) Deuse, xc = −0.02

10 1 100

* /Ue

20

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

(b) Deuse, xc = −0.40

10 1 100

* /Ue

40

20

0

20

10
lo

g 1
0[

pp
U

e/
2 w

*]

Data
Goody
Rozenberg
Kamruzzaman
Hu
Lee

(c) Deuse, xc = −0.80

Figure 3.24: Selected Deuse’s wall pressure spectra with their respective semi-
empirical models.

3.4 Model Inputs
As it was stated in the subsection 2.1.1, the self-similarity is a core principle in fluid
mechanics. To satisfy the similitude feature in the proposed models, there has to be
a way, how to find a relation consisting of dimensionless (or scaled) parameters. One
of the ways is to use the Buckingham Π-Theorem [67].

The default set of parameters was obtained in the section 3.2. The set can be
written in the following implicit relation

f

(︄
δ, δ∗, θ, Ue, ν, ρ, τw,

dp
dx, c0,Π,Φpp, ω

)︄
= 0 (3.23)

where all of the parameters are dimensional, except the Coles’s wake parameters Π.
Now, it is possible to write down the dimensions of those parameters

[δ] = m = L,

[δ∗] = L,

[θ] = L,

[Ue] = L1T−1,

[ν] = L2T−1,

[ϱ] = ML−3,

[τw] = ML−1T−2,

[︄
dp
dx

]︄
= ML−2T−2,

[Φpp] = M2L−2T−3,

[c0] = LT−1,
[ω] = T−1,

[Π] = 1,

(3.24)

56

where L, M and T denote the common length, mass and time scale, or so-called
fundamental units. It can be assumed that those units are e.g. meter, kilogram and
seconds, respectively. The Π-Theorem states, that it is possible to find an unknown
function of dimensionless parameters and that the number of such dimensionless
parameters is

i = n− k, (3.25)
where n is, in here, the number of dimensional parameters from the Eq. (3.23) and k
is, in here, the number of independent fundamental units. Thus, in this case, n = 11
and k = 3 results in i = 8. Therefore, the unknown function is going to have 8 + 1
dimensionless parameters (together with the wake parameter Π)

ψ (Π1,Π2,Π3,Π4,Π5,Π6,Π7,Π8,Π) = 0, (3.26)

where Πi denote each dimensionless parameter. Now, in order to find those parame-
ters, three dimensionally independent quantities as fundamental units have to be
selected to scale the rest of the dimensional parameters. In this work, δ∗, τw and
Ue are selected. The combination of these three parameters and some particular
dimensional quantity must have dimension equal to one. Illustrated on an example,
to find the scaling of Φpp, one must find the exponents in

LαMβL−βT−2βLγT−γM2L−2T−3 = 10. (3.27)

This will result in a set of equations

L: α− β + γ − 2 = 0,
M : β + 2 = 0,

T : − 2β − γ − 3 = 0.
(3.28)

By calculating the exponents α, β and γ, one can find the combination of those
three parameters and Φpp and thus produce the dimensionless wall pressure spectra
Π1 (Φpp) = ΦppUe

δ∗τ 2
w

. With this same process, it is possible to find all the dimensionless

parameters in the Eq. (3.26). This will result in a relation

ΦppUe

δ∗τ 2
w

= ϕ

(︄
ωδ∗

Ue

,
δ∗

τw

dp

dx
,
ν

δ∗Ue

,
ρU2

e

τw

,
θ

δ∗ ,
δ

δ∗ ,
c0

Ue

,Π
)︄
. (3.29)

The previous equation could be directly used to design the model for wall pressure
spectra. However, the Π-Theorem does not state anything about the physics in
this relation. Therefore, the Eq. (3.29) can be adjusted to contain previously used
(and historically proven) physical quantities. Such adjustment can be done simply
by combining different dimensionless parameters in the Eq. (3.29). This modified
equation is

ΦppUe

δ∗τ 2
w

= κ

(︄
ωδ∗

Ue

, βc, RT , Cf ,H,∆,M,Π
)︄
. (3.30)

57

The final modification is made to the output of the relation, where 10 log10 is
applied on the output, in order to shift the dimensionless spectra into reasonable
ranges. Thus the final relation is

10log10

(︄
ΦppUe

δ∗τ 2
w

)︄
= ζ

(︄
ωδ∗

Ue

, βc, RT , Cf ,H,∆,M,Π
)︄
. (3.31)

Interpolation
The wall pressure spectra from all datasets are not equally distributed along the
frequency in logarithmic scale. Particularly, in the low frequency region there is a
lower frequency point density compared to the higher frequency region (Fig. 3.25).
Also, it is not that simple to set some chosen number of frequency points for some set
using only default frequency points. Therefore, the complete set of frequency points
is interpolated with SciPy.interpolate.splrep function, where B-splines are used
for the interpolation. The vector x in the interpolator is the scaled frequency ωδ∗

Ue

and

the vector y is the scaled wall pressure spectra in logarithmic scale 10log10

(︄
ΦppUe

δ∗τ 2
w

)︄
.

10 2 10 1 100 101

* /Ue

80

60

40

20

0

20

40

10
lo

g 1
0[

pp
U

e/
2 w

*]

Salze
Wu
Deuse
Christophe

Figure 3.25: Wall pressure spectra from all datasets.

To perform the interpolation, one has to specify the vector x, where the values
should be obtained. The vector is specified as logarithmically spaced between the
minimum and the maximum of the scaled frequency in logarithmic scale. The number
of points in this vector is then calculated as

N. of points = Round
(︄
Dens×

(︄
log10

(︄
ωδ∗

Ue

)︄
max

− log10

(︄
ωδ∗

Ue

)︄
min

)︄)︄
. (3.32)

It is some specified frequency point density multiplied by the frequency range in the
logarithmic scale and rounded to the nearest integer. Different densities are used

58

for each author’s dataset to achieve the same number of frequency points for each
dataset. After several experiments, the number of frequency points for each dataset
was set to 28000.

By the definition, for one wall pressure spectrum (in one boundary layer point),
the spectrum should have a uniform distribution in a histogram with logarithmic bins.
That is, in fact, true and it can be seen in the Fig. 3.26a. Of course, a histogram
with linear bins looks accordingly (Fig. 3.26b).

The interpolated wall pressure spectra for all datasets are in the Fig. 3.27.

10 1 100 101

* /Ue

0

10

20

30

N.
 o

f d
at

a
po

in
ts

(a)

0 10 20 30
* /Ue

0

200

400

600

N.
 o

f d
at

a
po

in
ts

(b)

Figure 3.26: Histograms of Salze’s wall pressure spectrum frequency points, APG,
Uref = 38 m s−1.

10 2 10 1 100 101

* /Ue

80

60

40

20

0

20

40

10
lo

g 1
0[

pp
U

e/
2 w

*]

Salze
Wu
Deuse
Christophe

Figure 3.27: Wall pressure spectra from all datasets – interpolated.

In the previous lines, the route to the final relation (Eq. (3.31)) was described.
Also, the complete wall pressure spectra dataset was interpolated. The summary of
values for the final relation is in the Tab. 3.4. These values are almost ready for the
wall pressure spectra modelling. In the next chapter, the final data adjustments, the
neural network models, and their results will be described.

59

Table 3.4: The overview of the models’ inputs. The references of the data are Salze et al.(2014) [11], Wu et al.(2018) [13], Deuse
and Sandberg(2020) [12] and Christophe et al.(2014) [14]. All variables in this table are dimensionless.

Dataset
N. of

boundary
layer

points

xc 10 log10

(︄
ΦppUe

δ∗τ 2
w

)︄
ωδ∗

Ue

βc RT Cf × 103 H ∆ M Π

Salze

ZPG 6 - −36.843 to 5.481 0.067 to 23.104 0 4.278 to 18.536 2.484 to 4.013 1.288 to 1.354 6.904 to 8.331 0.032 to 0.220 0.232 to 0.514

APG 7 - −30.538 to 10.645 0.080 to 42.159 0.418 to 0.691 7.597 to 29.975 2.070 to 3.309 1.318 to 1.436 5.658 to 10.663 0.024 to 0.222 0.194 to 0.822

FPG 4 - −21.780 to 6.093 0.030 to 12.642 −0.460 to −0.338 3.372 to 11.471 3.219 to 4.798 1.230 to 1.291 9.083 to 10.411 0.030 to 0.183 1 × 10−6 to 0.007

Wu

Case 1 19 0.02 to 0.90 −85.458 to −1.680 0.014 to 34.501 −0.542 to 6.223 1.421 to 2.249 1.295 to 7.828 1.445 to 2.145 2.865 to 7.690 0.263 to 0.337 1 × 10−6 to 2.306

Deuse

Case 1 17 0.02 to 0.80 −33.601 to 32.286 0.013 to 24.272 −0.215 to 15.590 2.196 to 3.545 1.017 to 4.368 1.393 to 2.116 3.093 to 6.484 0.209 to 0.281 0.141 to 2.265

Christophe

Case 1 18 0.05 to 0.90 −0.546 to 27.866 0.005 to 4.683 −0.098 to 7.947 2.087 to 3.476 1.799 to 5.468 1.314 to 1.843 3.616 to 8.425 0.049 to 0.065 1 × 10−6 to 1.416

Case 2 18 0.05 to 0.90 −0.898 to 26.299 0.005 to 4.514 −0.094 to 7.431 2.104 to 3.399 1.838 to 5.559 1.312 to 1.846 3.645 to 8.456 0.049 to 0.064 1 × 10−6 to 1.402

Case 3 18 0.05 to 0.90 0.167 to 23.601 0.004 to 3.955 −0.098 to 6.325 1.915 to 3.130 2.016 to 5.796 1.328 to 1.822 3.743 to 8.810 0.049 to 0.064 1 × 10−6 to 1.283

Case 4 18 0.05 to 0.90 1.194 to 21.704 0.003 to 3.305 −0.114 to 5.246 1.650 to 2.810 2.074 to 6.292 1.358 to 1.855 3.559 to 8.671 0.050 to 0.063 1 × 10−6 to 1.333

Case 5 18 0.05 to 0.90 1.473 to 21.675 0.002 to 2.810 −0.253 to 4.502 1.302 to 2.373 2.064 to 6.801 1.416 to 1.903 3.379 to 8.142 0.050 to 0.064 1 × 10−6 to 1.432

Case 6 18 0.05 to 0.90 0.199 to 28.087 0.002 to 2.355 −0.188 to 3.787 1.027 to 2.068 2.174 to 7.217 1.513 to 1.919 3.283 to 7.655 0.051 to 0.064 1 × 10−6 to 1.421

Case 7 13 0.05 to 0.75 −0.985 to 40.345 0.002 to 1.548 −0.082 to 1.934 0.864 to 2.205 2.698 to 4.868 1.717 to 2.249 3.432 to 4.401 0.051 to 0.065 0.673 to 1.520

All 174 0.02 to 0.90 −85.458 to 40.345 0.002 to 42.159 −0.542 to 15.590 0.864 to 29.975 1.017 to 7.828 1.230 to 2.249 2.865 to 10.663 0.024 to 0.337 1 × 10−6 to 2.306

60

4 Results

There were two goals specified in the subsection 2.1.2: 1) To train a feedforward
neural network on a broader dataset to predict wall pressure spectra (a One-to-One
model); 2) To investigate the history effects and the possibilities to build a model,
that would use the upstream values to predict wall pressure spectra (a Many-to-One
model).

To fulfil the first goal, the preprocessed dataset from the previous chapter is used
to build an FNN model. The model is built with several different architectures to
find the one that predicts the spectra reasonably well and is also computationally
efficient.

To fulfil the second goal, firstly, the history effects are investigated in principle.
Then, to confirm those investigations, FNN models with a fixed number of airfoil
positions are trained. To generalize the Many-to-One model, a CNN is trained with
variable-length inputs. A One-to-One FNN model is also trained only on the airfoil
data to have some relevant model for comparison. For the description of the basics
of the proposed models’ architectures, see section 2.2.

4.1 Feedforward Neural Network Model – One-to-One
(FNNM-OtO)

4.1.1 FNNM-OtO – All Datasets
A general architecture of the Feedforward Neural Network Model – One-to-One
(FNNM-OtO) is described in the Fig. 4.1. The input parameters were already chosen
and preprocessed in the section 3.4. Specifically, the model takes the parameters for
one boundary layer point and one scaled frequency point to predict the wall pressure
spectrum at one point for one scaled frequency. The final number of examples is
111956 (≈ 28000 frequncy points × 4 datasets).

The default dataset was divided into a training (60 %), validation (20 %) and test
set (20 %). Each of these sets are similarly distributed along the frequency (Fig. 4.2
and Fig. 4.3c). As it was said, the number of frequency points was fixed to 28000
per dataset. This agrees with the distribution in the Fig. 4.3b. In the Fig. 4.3a,
it can be seen that the adverse pressure gradient is much more represented in the
input dataset than the favourable and the zero pressure gradient. The reason is that
the zero pressure gradient is only represented by the Salze dataset. There are no
points from other datasets that would be at least near the zero pressure gradient.

61

The favourable pressure gradient is also heavily represented by the Salze dataset.
However, there are also some points from the airfoil datasets. It is needed to note
that the pressure gradient is similarly represented in the training, validation and test
set.

Finally, the input dataset and the output wall pressure spectra were normalized
to the range (0; 1) to improve the training of the neural network.

Feedforward
neural

network

βc, RT , Cf , H,∆,M,Π,
ωδ∗

Ue

10 log10

(︄
Φpp (ω)Ue

δ∗τ 2
w

)︄

Figure 4.1: FNNM-OtO – All Datasets – the model architecture.

10 1 101

75

50

25

0

25

10
lo

g 1
0[

pp
U

e/
2 w

*]

Whole set

10 1 101

Train set

10 1 101

Val set

10 1 101

Test set

* /Ue

Figure 4.2: FNNM-OtO – All Datasets – the training, validation and test points.

The neural network used the Nadam optimizer, the mean squared error as the
cost function, the SELU activation function for each unit and the LeCun initializer
for the weights. The biases were initialized to zeros. The learning rate was scheduled
so that for the first 50 epochs, the learning rate was 0.001, and after the 50 epochs,
the learning rate was set to 0.0001. This approach partially damped the oscillations
in training. The batch size was set to 32. With smaller batch size, the validation
loss was highly oscillating.

The neural network was trained for one and two hidden layers and six different
numbers of units in a hidden layer (Tab. 4.1). In the case of two hidden layers, each
hidden layer has the same number of units. The training was done for 5000 epochs.
In most of the cases, the 5000 epochs were enough for the losses to converge to some
value. To account the non-deterministic behaviour of the training, each setup was
trained with three tryouts.

The resultant training and validation loss curves for one tryout are in the Fig. 4.4.
Overfitting does not occur as the validation loss is not rising. Rather it is constant at
some level. Therefore no regularization technique was used. The training loss curves
are smooth, but the validation loss curves are oscillating. Moreover, the oscillation
increases with the increasing number of parameters. The oscillations might be caused

62

APG FPG ZPG
Pressure gradient

0

25000

50000

75000

N.
 o

f d
at

a
po

in
ts Whole set

Train set
Val set
Test set

(a) The distribution of pressure gradients.

salze wu christ. deuse
Dataset name

0

10000

20000

N.
 o

f d
at

a
po

in
ts

(b) The distribution of dataset names.

10 2 100

* /Ue

0

2000

4000

N.
 o

f d
at

a
po

in
ts Train set

Val set
Test set

(c) The distribution of scaled frequency
points (stacked histogram).

Figure 4.3: FNNM-OtO – All Datasets – the distributions in the input dataset.

by the computation of the validation loss, as it is computed only for some small
batch from the validation set at each epoch.

The last training and the last validation losses are summed up in the Fig. 4.5.
Each point contains the mean value and the standard deviation denoted by the error
bars. The standard deviation describes, in this case, the distribution of the last
losses from the tryouts. As the number of hidden units is increasing, the losses are
decreasing. Both the training losses and the validation losses are converging to some
constant value. It is not surprising that this constant value is greater in the case of
one hidden layer than in the case of two hidden layers since neural networks with
two hidden layers contain more trainable parameters. The validation loss is rising in
the case of a higher number of units. This might be a sign of overfitting when the
architecture has such a number of units. However, since the values in these plots
are taken as the last values of their respective loss curves, it might be caused by the
increasing oscillations of the validation loss curves.

The results of the FNNM-OtO with all datasets are in the Tab. 4.1 (already
illustrated in the Fig. 4.5). The number of trainable parameters (or just parameters)
in this table is calculated as

nF NN =
nL−1∑︂
l=1

n(l+1)
u +

nL−1∑︂
l=1

(︂
n(l)

u n
(l+1)
u

)︂
, (4.1)

where nF NN is the number of trainable parameters of the FNN, nL is the number of
layers in the FNN and n(l)

u is the number of units in the layer l. The number of units
in the first (input) layer is equal to the number of parameters of the input dataset.
Thus, in this case of the FNNM, the number of units in the first layer is eight.

63

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

8_8_1_t_loss_try_1
8_16_1_t_loss_try_1
8_32_1_t_loss_try_1
8_64_1_t_loss_try_1
8_128_1_t_loss_try_1
8_256_1_t_loss_try_1

(a) 1 hid. layer, train. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

8_8_1_v_loss_try_1
8_16_1_v_loss_try_1
8_32_1_v_loss_try_1
8_64_1_v_loss_try_1
8_128_1_v_loss_try_1
8_256_1_v_loss_try_1

(b) 1 hid. layer, val. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

8_8_8_1_t_loss_try_1
8_16_16_1_t_loss_try_1
8_32_32_1_t_loss_try_1
8_64_64_1_t_loss_try_1
8_128_128_1_t_loss_try_1
8_256_256_1_t_loss_try_1

(c) 2 hid. layers, train. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

Lo
ss

8_8_8_1_v_loss_try_1
8_16_16_1_v_loss_try_1
8_32_32_1_v_loss_try_1
8_64_64_1_v_loss_try_1
8_128_128_1_v_loss_try_1
8_256_256_1_v_loss_try_1

(d) 2 hid. layers, val. loss.

Figure 4.4: FNNM-OtO – All Datasets – the training and validation loss.

0 50 100 150 200 250
N. of nodes

10 4

Lo
ss

Train. loss
Val. loss

(a) 1 hid. layer.

0 50 100 150 200 250
N. of units

10 4

4 × 10 5

6 × 10 5

2 × 10 4

3 × 10 4

Lo
ss

Train. loss
Val. loss

(b) 2 hid. layers.

Figure 4.5: FNNM-OtO – All Datasets – the training and validation losses, mean
values and standard deviation.

64

Table 4.1: FNNM-OtO – All Datasets – the results.

Mean val. loss
×106 Hidden layers Units Parameters Mean val. loss2× Par.

×106

467.394 1 8 81 17.695
242.003 1 16 161 9.429
142.067 1 32 321 6.479
83.803 1 64 641 4.502
83.439 1 128 1281 8.918
76.690 1 256 2561 15.062

252.974 2 8 153 9.791
89.505 2 16 433 3.469
64.075 2 32 1377 5.653
51.624 2 64 4801 12.795
44.941 2 128 17793 35.936
45.234 2 256 68353 139.856

Comparing the different architectures, the architecture with the least mean
validation loss is the one with 2 hidden layers and 128 units in each hidden layer.
The one with 256 units has a similar mean validation loss, but its validation loss
curve is more oscillating, and it might be a sign of overfitting. However, these
architectures are not the computationally efficient ones. To find the computationally
efficient architecture that would also have low validation loss, a simple measure was
introduced. The measure, which multiplies the number of trainable parameters with
the validation loss squared, has the minimum when the number of parameters is
low and also the validation loss is low. This approach brings out the most efficient
architecture with the measure value 3.469 × 10−6. The most efficient architecture
thus has 2 hidden layers and 16 units in each hidden layer.

The predictions of the FNNM-OtO with 2 hidden layers and 16 units in each
hidden layer are in the Fig. 4.6. The predictions are made for every dataset and
every boundary layer point in this work. It can be observed that the predictions are
good, and they reasonably fit the default data. In the Fig. 4.7 there are only the
predictions for the specific points mentioned in the previous chapter. The predictions
for these points are, again, pretty good.

4.1.2 FNNM-OtO – Airfoil Datasets
The proposed Many-to-One models are only valid for the airfoil datasets (Deuse,
Wu, Christophe), where there are boundary layer points stacked next to each other.
Therefore, the FNNM-OtO is trained only for the airfoil datasets to have a One-to-One
model for comparison with the proposed Many-to-One models.

65

10 2 10 1 100 101

* /Ue

75

50

25

0

25

10
lo

g 1
0[

pp
U

e/
2 w

*]

All data
All prediction

Figure 4.6: FNNM-OtO – All Datasets – the prediction of the WPS for all datasets.

10 2 10 1 100 101

* /Ue

80

60

40

20

0

20

10
lo

g 1
0[

pp
U

e/
2 w

*]

2014_salze_case_apg_U_38
2014_salze_case_apg_U_38_pred
2020_wu_case_CD_xc_0.40
2020_wu_case_CD_xc_0.40_pred
2020_deuse_case_CD_xc_0.40
2020_deuse_case_CD_xc_0.40_pred
2010_christophe_case_1_xc_0.40
2010_christophe_case_1_xc_0.40_pred

Figure 4.7: FNNM-OtO – All Datasets – the prediction of the WPS for selected
points.

The architecture of the model is the same as in the Fig. 4.1. The final number of
examples is, in this case, 83956 (≈ 28000 frequncy points × 3 datasets).

The default dataset was divided into the training (60 %), validation (20 %) and
test set (20 %) and scaled to the range (0; 1). The distribution of the frequency
points for the airfoil datasets is similar as in the Fig. 4.2. The distribution of the
pressure gradients is changed accordingly to the airfoil datasets (Fig. 4.8). Therefore,
there are no zero pressure gradient data because the Salze dataset is not contained.

The setup of the model is the same as in the previous section. However, this
model is only trained for two numbers of hidden layers and three numbers of units in
a hidden layer. The reason is that this model will be used purely for comparison with
the Many-to-One model, and it is not necessary to investigate the best architecture
in detail.

The results of this model are in the Tab. 4.2 and in the Fig. 4.9. The architecture
with the lowest mean validation loss is, again, the one with the highest number of
parameters – 2 hid. layers and 128 units in each hid. layer. The best architecture
according to the introduced measure is, again, the one with 2 hid. layers and 16
units in each hid. layer.

The original loss curves are in the Appendix D.
This model’s resulting mean validation losses are similar to the mean validation

66

losses of the FNNM-OtO in the previous section. This might be surprising since this
model should have more homogeneous wall pressure spectra in the input dataset.

APG FPG
Pressure gradient

0

20000

40000

60000

N.
 o

f d
at

a
po

in
ts Whole set

Train set
Val set
Test set

Figure 4.8: FNNM-OtO – Airfoil Datasets – the distribution of pressure gradients.

Table 4.2: FNNM-OtO – Airfoil Datasets – the results.

Mean val. loss
×106 Hidden layers Units Parameters Mean val. loss2× Par.

×106

156.435 1 16 161 3.940
98.604 1 64 641 6.232
82.513 1 128 1281 8.722
90.242 2 16 433 3.526
60.152 2 64 4801 17.371
47.986 2 128 17793 40.971

25 50 75 100 125
N. of units

10 4

8 × 10 5
9 × 10 5

Lo
ss

Train. loss
Val. loss

(a) 1 hid. layer.

25 50 75 100 125
N. of units

4 × 10 5

5 × 10 5

6 × 10 5
7 × 10 5
8 × 10 5
9 × 10 5

Lo
ss

Train. loss
Val. loss

(b) 2 hid. layers.

Figure 4.9: FNNM-OtO – Airfoil Datasets – the training and validation losses,
mean values and standard deviation.

67

4.2 History Effects
Before the work is moved onto the Many-to-One models, it would be good to
investigate a priori the history effects resulting in the Many-to-One model.

It is assumed that the wall pressure spectrum at one point is predicted from the
mean velocity profile parameters at that one point. This results in a question: If
there are any scaled mean velocity profiles that are very similar, are their respective
scaled wall pressure spectra also similar, or not? If the wall pressure spectra are
similar, it will signify that the mean velocity profile at that one point is sufficient for
the prediction of the wall pressure spectrum. In other words, it would mean that the
local velocity profile contains everything it needs for the prediction of the spectrum.
On the other hand, if the wall pressure spectra are different, it would mean that
there is something else influencing the spectra. In this case, it might be, e.g. the
history effect.

To answer the question, firstly, one has to find similar scaled mean velocity
profiles. Since this investigation is devoted to the history effects, only the airfoil
datasets are considered.

The boundary layer points on the airfoil are only available in sparse discrete
points along the airfoil. To find similar mean velocity profiles, the mean squared
error was used. The most similar profiles were found in the Deuse and Wu dataset.
Specifically, the Deuse velocity profile is at xc = −0.55, and the Wu velocity profile
is at xc = −0.35 on the airfoil. The mean squared error between these profiles is
equal to 0.3827.

The scaled mean velocity profiles are in the Fig. 4.10 together with their respective
wall pressure spectra. The velocity profiles are similar except for a small difference in
the wake region. However, the wall pressure spectra are different. This may signify
that this difference is caused by something else than by the mean velocity profiles
solely. Since the velocity profiles are at different positions on the airfoil and thus
they have a different history of the flow, the difference between the spectra might be
caused by the history of the flow.

10 1 100 101 102 103 104

y +

0

10

20

u
+

lin-Log, = 0.41, B = 5.2
deuse_case_CD_xc_0.55
wu_case_CD_xc_0.35

(a) The mean velocity profiles.

10 2 10 1 100 101

* /Ue

75

50

25

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

deuse_case_CD_xc_0.55
wu_case_CD_xc_0.35

(b) The wall pressure spectra.

Figure 4.10: History Effects – the mean velocity profiles with their WPS.

However, as was observed in the section 4.1, the FNNM-OtO predicts the spectra

68

reasonably well. For the two investigated boundary layer points, the FNNM-OtO
predictions are in the Fig. 4.11. The result is the same. The FNNM-OtO predicts the
spectra reasonably well. But, what accounts for the difference in the input to output
such different wall pressure spectra? To answer this question, the inputs into the
FNNM-OtO need to be extracted. The summary of the FNNM-OtO inputs together
with their normalized values and ranges is in the Tab. 4.3. Here, only the normalized
values are the actual inputs into the model. In this table, the difference is calculated
between the normalized values. The bold differences denote the parameters, where
the difference is bigger than 0.1 and vice versa. It is believed that the parameters
with the bold differences are the reason for the difference in the wall pressure spectra.
In other words, the difference in these inputs might cause the difference in the
spectra. This would mean that it is unnecessary to use the upstream values and
use the Many-to-One model. However, this statement should be compared with the
sensitivity of the model.

Unfortunately, the sensitivity analysis is not performed in this work. Therefore
the investigation remains open.

So far, there is one argument pro the Many-to-One model and one argument
against the Many-to-One model. The analysis of the FNNM-OtO inputs, so far,
suggest that the Many-to-One model is not necessary. Still, the previous investigations
should be compared with some experiments on the Many-to-One models to confirm
the observations. Thus, in the following sections, the Many-to-One FNN model and
the Many-to-One CNN model will be described.

10 2 10 1 100 101

* /Ue

75

50

25

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

wu_case_CD_xc_0.35
wu_case_CD_xc_0.35_pred
deuse_case_CD_xc_0.55
deuse_case_CD_xc_0.55_pred

Figure 4.11: History Effects – the WPS prediction with the FNNM-OtO-Airfoil.

Table 4.3: History Effects – the inputs into the FNNM-OtO-Airfoil.

M βc RT Cf H ∆ Π

Wu xc_0.35 0.31648 0.90579 2.12382 0.00424 1.59457 5.28370 0.41979
Deuse xc_0.55 0.26790 0.69996 3.13994 0.00437 1.39296 6.42837 0.15887

Wu xc_0.35_norm 0.93003 0.08973 0.46980 0.47319 0.30136 0.40681 0.18202
Deuse xc_0.55_norm 0.76121 0.07697 0.84884 0.49204 0.08611 0.59937 0.06889

Difference 0.16882 0.01276 0.37904 0.01885 0.21525 0.19256 0.11314

Range Wu and Deuse 0.209
to 0.337

−0.542
to 15.590

1.421
to 3.545

0.0010
to 0.0078

1.393
to 2.145

2.865
to 7.690

1 × 10−6

to 2.306

69

4.3 Feedforward Neural Network Model – Many-to-
One (FNNM-MtO)

4.3.1 FNNM-MtO – 2 Positions
The feedforward neural network can be trained with multiple airfoil positions as
inputs. This approach is more straightforward than the CNN. However, the number
of positions in the input layer has to be fixed.

The architecture of the Feedforward Neural Network Model – Many-to-One
(FNNM-MtO) is in the Fig. 4.12. The model takes multiple positions on the airfoil
and predicts the wall pressure spectra at one point. The rule is that the position
of the spectrum and the position of the first point in the input is the same. For 2
positions, the n is 2. To give the neural network some sense of the position on the
airfoil, the airfoil chord position xc is added to the parameters.

Feedforward
neural

network
xc, βc, RT , Cf , H, ∆, M, Π,

ωδ∗

Ue

10 log10

(︄
Φpp (ω)Ue

δ∗τ 2
w

)︄
xc, βc, RT , Cf , H, ∆, M, Π

xc, βc, RT , Cf , H, ∆, M, ΠPOS[i − n]

POS[i − 1]

POS[i]

POS[i]

Figure 4.12: FNNM-MtO – the model architecture. i is the actual airfoil position,
and n is the number of positions taken into account.

The FNNM-MtO uses only the airfoil datasets. The number of examples is
reduced compared to the FNNM-OtO. As this FNNM-MtO uses 2 positions on the
airfoil for the prediction, there is no possibility of predicting the spectra for the first
position on the airfoil. This results in the number of examples equal to 79218.

Again, the dataset was normalized to the range (0; 1). The setup of the model is
the same as in the FNNM-OtO.

The model was trained for one and two hidden layers and four different numbers
of units in a hidden layer. One architecture was trained purely for comparison
with the FNNM-OtO-Airfoil. This architecture has the same number of trainable
parameters as the most efficient architecture from the FNNM-OtO-Airfoil, which
means 430 parameters.

The results are in the Fig. 4.13 and in the Tab. 4.4. The number of trainable
parameters can be calculated by the Eq. (4.1), where the input layer has a size of 171.
The lowest validation loss is achieved, again, with the highest number of parameters.
According to the introduced measure, the most efficient architecture is the one with

1There are eight parameters for the first position, eight parameters for the second position and
one scaled frequency. These parameters create one example together.

70

430 parameters (the one used for comparison). Compared to the FNNM-OtO with
airfoil datasets, the measure is lower. Thus, the Many-to-One approach seems to be
performing better. However, that might be caused by the introduction of the new
parameter xc into the input of the model.

The original loss curves are in the Appendix D.
The prediction of the wall pressure spectra is in the Fig. 4.14. As in the previous

models, the prediction is very good.

Table 4.4: FNNM-MtO – 2 positions – the results.

Mean val. loss
×106 Hidden layers Units Parameters Mean val. loss2× Par.

×106

113.252 1 16 305 3.912
78.041 1 64 1217 7.412
73.233 1 128 2433 13.048
69.983 2 13 430 2.106
66.944 2 16 577 2.586
46.278 2 64 5377 11.516
47.537 2 128 18945 42.810

25 50 75 100 125
N. of units

10 4

7 × 10 5

8 × 10 5

9 × 10 5Lo
ss

Train. loss
Val. loss

(a) 1 hid. layer.

25 50 75 100 125
N. of units

5 × 10 5

6 × 10 5

7 × 10 5

Lo
ss

Train. loss
Val. loss

(b) 2 hid. layers.

Figure 4.13: FNNM-MtO – 2 positions – the training and validation losses, mean
values and standard deviation.

10 2 10 1 100 101

* /Ue

50

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

2020_wu_case_CD_xc_0.40
2020_wu_case_CD_xc_0.40_pred
2020_deuse_case_CD_xc_0.35
2020_deuse_case_CD_xc_0.35_pred
2010_christophe_case_1_xc_0.40
2010_christophe_case_1_xc_0.40_pred

Figure 4.14: FNNM-MtO – 2 positions – the prediction of the WPS for selected
points.

71

4.3.2 FNNM-MtO – 10 Positions
The same model as in the previous section was trained for 10 positions on the airfoil.
Thus, the total number of examples is reduced to 41314.

This model aims to see how the neural network reacts to a larger number of
positions. It would be a nice empirical result to see if the neural network improves
the prediction and validation loss.

The model was trained for one and two hidden layers and four different numbers
of units in a hidden layer. One architecture was, again, trained purely for comparison
with the FNNM-OtO-Airfoil. This architecture has a similar number of trainable
parameters as the most efficient architecture from the FNNM-OtO-Airfoil, which
means 446 parameters.

The results are in the Fig. 4.15 and in the Tab. 4.5. The number of trainable
parameters can be calculated by the Eq. (4.1), where the input layer has a size of
812. The validation losses are, in most of the architectures, lower compared to the
the 2 positional model. However, the validation loss of the comparison architecture
with the 446 trainable parameters is worse. The measure’s value is worse in most
of the architectures, which means the 10 positional model is not that efficient. The
worse result of the comparison architecture might be caused by the under-sampling
in the first layer, where the input has 81 parameters, and the first hidden layer has
only 5 units.

The original loss curves are in the Appendix D.
Comparing the 10 positional model with the FNNM-OtO-Airfoil, the measure’s

value is very similar or worse. Moreover, the 10 positional model requires more
complicated preprocessing. Also, thanks to the 10 positional division of the boundary
layer points, the number of examples is decreased. Therefore, the 10 positional
FNNM-MtO is worse than the FNNM-OtO-Airfoil, as the 10 positional FNNM-MtO
does not bring any advantage.

The predictions of the wall pressure spectra are in the Fig. 4.16. The predictions
are still good.

25 50 75 100 125
N. of units

6 × 10 5

7 × 10 5

Lo
ss

Train. loss
Val. loss

(a) 1 hid. layer.

25 50 75 100 125
N. of units

3.6 × 10 5

3.8 × 10 5
4 × 10 5

4.2 × 10 5
4.4 × 10 5
4.6 × 10 5

Lo
ss

Train. loss
Val. loss

(b) 2 hid. layers.

Figure 4.15: FNNM-MtO – 10 positions – the training and validation loss, mean
values and standard deviation.

2There are ten positions with eight parameters and one scaled frequency. These parameters in
all of the positions create one example together.

72

Table 4.5: FNNM-MtO – 10 positions – the results.

Mean val. loss
×106 Hidden layers Units Parameters Mean val. loss2× Par.

×106

66.742 1 16 1329 5.920
56.663 1 64 5313 17.059
63.402 1 128 10625 42.710
87.376 2 5 446 3.405
45.280 2 16 1601 3.283
40.592 2 64 9473 15.608
37.882 2 128 27137 38.943

10 2 10 1 100 101

* /Ue

50

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

2020_wu_case_CD_xc_0.40
2020_wu_case_CD_xc_0.40_pred
2020_deuse_case_CD_xc_0.35
2020_deuse_case_CD_xc_0.35_pred
2010_christophe_case_1_xc_0.40
2010_christophe_case_1_xc_0.40_pred

Figure 4.16: FNNM-MtO – 10 positions – the prediction of the WPS for selected
points.

To find if the 10 positional FNNM-MtO uses the values upstream or not, it is
possible to plot the weights in the first layer of the neural network. Such plot is
in the Fig. 4.17. On the horizontal axis are the parameters. In the 10 positional
FNNM-MtO, there are 81 input parameters (features). The number 81 is the result
of 10 positions with 8 parameters + 1 scaled frequency. The scaled frequency is not
included in the figure since it has different ranges of weights. The input parameters
are stacked in a row, where the one particular parameter is grouped together with
its historical (upstream values). Therefore, e.g. xc [POS0] is next to xc [POS − 1],
xc [POS − 2] and so on. The parameters in the Fig. 4.17 are in the following order:
xc, M , βc, RT , Cf , H, ∆, Π. On the vertical axis are the units in the following layer
(16 units in this case).

If the weight is near zero, the input is not or very little used. Unfortunately, in
the Fig. 4.17, there is no visible pattern. Some actual values are not used, and some
upstream values are not used. Therefore, the conclusion is that the neural network
uses some of the upstream values, but there is no sharp pattern in the data.

73

0 10 20 30 40 50 60 70

Input parameters

02468101214

Ne
xt

 la
ye

r u
ni

ts

0.50

0.25

0.00

0.25

0.50

Figure 4.17: FNNM-MtO – 10 positions – the weights in the first layer.

4.4 Convolution Neural Network Model (CNNM)
A CNN is a network that extracts the inputs’ features and has a high level of
abstraction. The CNN is usually composed of convolution layers, pool layers and
FNNs. The illustration of such architecture is in the Fig. 4.18. The global max pool
layer takes the maximum value from each output vector of the convolution layer and
sub-samples it. This approach can be used to fix the number of inputs into the FNN.
As the length of the input to the CNN varies, the only thing that varies in the model
is the length of the output vector of the convolution layer.

The CNN applied to our dataset is called the Convolution Neural Network Model
(CNNM). The same applies here as for the previous Many-to-One models, which
means several positions on the airfoil are used as inputs, and the output is the wall
pressure spectra at one position. However, the CNNM can take variable-length
inputs, which is the main difference from the previous Many-to-One models.

The input dataset from the section 3.4 was divided for several numbers of positions.
Each division for some number of positions generated a different number of input
examples. With an increasing number of positions on the airfoil, the number of
examples decreases. In this model, the number of positions varied from 2 to 19
positions. Only the airfoil from the Wu dataset was included in the 19 positional
division since it is the maximum number of boundary layer points on one airfoil.
This means, in this case, that the whole airfoil was used to predict the wall pressure
spectra at the trailing edge.

The complete dataset was normalized to the range (0; 1).
Two different architectures were trained. Both architectures used 16 kernels, a

fixed kernel width equal to two and a stride (step) equal to one. The 16 kernels
imply that the length of the global pool layer is 16. The changing part was the FNN.
The first architecture used two hidden layers and 16 units in each hidden layer. The
second architecture was adjusted to be comparable with the 433 parameters in the
FNNM-OtO-Airfoil. The nearest was the architecture with two hidden layers and
five units in each hidden layer, which created 425 parameters.

The architectures were trained with variable-length inputs. In other words,
during the training, one architecture was firstly optimized to two positional data,

74

then three positional data, then four positional data, and so on. The architecture
hyper-parameters were fixed.

The CNNM used the Adam optimizer with the default learning rate and the mean
squared error as the cost function. The convolution layer used the Glorot initializer
and the linear activation function. The FNN layer used the SELU activation function
together with the LeCun initializer. The biases were initialized to zeros. The batch
size was 32. The number of epochs for one positional dataset was set to 280. With
18 positional datasets, this results in 5040 epochs in total.

The number of trainable parameters of the CNNM can be calculated as

nCNNM = nknpkwidth + nk +
nL−1∑︂
l=1

n(l+1)
u +

nL−1∑︂
l=1

(︂
n(l)

u n
(l+1)
u

)︂
, (4.2)

where nCNNM is the number of trainable parameters in the CNNM, nk is the number
of kernels (filters), np is the number of input parameters in one position, kwidth is
the kernel width, nL is the number of layers in the FNN and n(l)

u is the number of
units in the layer l.

The results are in the Fig. 4.20 and in the Tab. 4.6. Compared to the FNNM-
OtO-Airfoil, the measure of the CNNM with 425 parameters is worse than the
FNNM-OtO-Airfoil with a similar number of parameters. So is the validation loss.
The CNNM with 425 parameters is also worse than the FNNM-MtO with 2 and 10
positions. Even with an increased number of parameters, the CNNM has a worse
value of the measure than the FNNM-OtO-Airfoil with 433 parameters. Considering
the difficulty of training the CNNM, where the preprocessing of the data takes a
long time, the CNNM is not performing well.

Looking at the Fig. 4.19, there is the reason for the bad performance. As the
CNNM was trained with the variable-length inputs and fixed hyper-parameters, there
are visible humps in the loss curves, where the input length changed. The losses are
decreasing until some 4200 epochs. At this point, the dataset with 16 positions was
trained. After that, the weights were scattered, and the losses increased.

The predictions of the wall pressure spectra for different positional datasets are
in the Fig. 4.21. The architecture with 865 parameters performed all the predictions.
The predictions are bad except for the 10 positional dataset prediction, which is the
most similar to the original data. This may signify that the proper weights were still
in the CNNM for a higher number of positions, but the proper weights were forgotten
for the lower number of positions. This also concludes that with this setup of the
CNNM, the same weights cannot be used together with, e.g. 2 positional dataset
and 10 positional dataset. Increasing the number of parameters and the number of
CNN layers might solve this problem.

75

xc

βc

RT

Cf

H
∆
M
Π

ωδ∗

Ue

xc

βc

RT

Cf

H
∆
M
Π

ωδ∗

Ue

xc

βc

RT

Cf

H
∆
M
Π

ωδ∗

Ue

POS
[i]

POS
[i − 1]

POS
[i − n]

F
N
N

10 log10

(︂Φpp (ω) Ue

δ∗τ2
w

)︂
POS[i]

k output vectors

k different kernels

global
pool
layer

Figure 4.18: CNNM – the model architecture. i is the actual airfoil position, n is
the number of positions taken into account and k is the number of kernels.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

CNN_5_5_1_t_loss_try_1
CNN_16_16_1_t_loss_try_1

(a) Training loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

CNN_5_5_1_v_loss_try_1
CNN_16_16_1_v_loss_try_1

(b) Validation loss.

Figure 4.19: CNNM – the training and validation loss.

5.0 7.5 10.0 12.5 15.0
N. of units

10 4

6 × 10 5

2 × 10 4

Lo
ss

Train. loss
Val. loss

Figure 4.20: CNNM – the training and validation loss, mean values and standard
deviation.

76

Table 4.6: CNNM – the results.

Mean val. loss
×106 Kernels Kernel width FNN

hidden layers Units Parameters Mean val. loss2× Par.
×106

121.062 16 2 2 5 425 6.229
64.935 16 2 2 16 865 3.647

10 1 100

* /Ue

50

0

50

10
lo

g 1
0[

pp
U

e/
2 w

*]

deuse_case_CD_xc_0.35
deuse_case_CD_xc_0.35_pred_2pos
deuse_case_CD_xc_0.35_pred_5pos
deuse_case_CD_xc_0.35_pred_10pos

Figure 4.21: CNNM – the WPS prediction for 2, 5 and 10 positional data.

4.5 Discussion
Different neural network models were trained in the previous sections. The measure,
combining the mean validation loss and the parameters, was introduced. The models
were compared with this measure and with the mean validation loss. The best
Many-to-One model is the feedforward neural network model with 2 positions in the
input. This model outperforms the FNNM with 10 positions and the CNNM. The
worst is the CNNM, which also takes a long time to train, and the preprocessing of
the input dataset is more complicated than for the rest of the models. The overall
results from the Many-to-One approach suggest that choosing too many positions
for the model inputs will not improve the model.

Also, the One-to-One feedforward neural network models were trained. One
of the models was trained on the whole dataset, including the experimental Salze
dataset. This model performs well, and the fit is almost perfect. Another model was
trained only on the airfoil datasets. This model was built mainly for comparison of
the One-to-One approach and the Many-to-One approach.

Comparing the 2 positional FNNM-MtO and the FNNM-OtO-Airfoil, the fol-
lowing can be stated. The 2 positional FNNM-MtO has a lower measure and thus
performs better in the case of the model with a similar number of trainable pa-
rameters (433 and 430). The difference in the mean validation loss is, in this case,
20.259 × 10−6, and the difference in the measure is 1.420 × 10−6. The measure in the
2 positional FNNM-MtO is also lower for some other architectures. The validation
losses are lower in all of the architectures in the 2 positional FNNM-MtO. However,
this might be caused by the introduction of a new parameter into the input dataset;
the airfoil chord coordinate xc.

The reason for the use of the Many-to-One approach was also investigated. The

77

analysis of the difference between the mean velocity profiles and their respective wall
pressure spectra suggested that there is something more influencing the spectra than
just the local values solely. However, the neural network trained only on the local
values suggested that the local values are enough to predict the spectra. Thus, the
Many-to-One approach might not be necessary. Still, a sensitivity analysis is needed
in this case.

The Many-to-One approach can be compared with the One-to-One approach by
how significant improvement a change in the model architecture brings. The default
One-to-One model is the FNNM-OtO-Airfoil with two hidden layers and 16 units
in each hidden layer. Holding the number of parameters and including one more
position into the input of the default model, the measure is improved by 1.420 × 10−6

and the mean validation loss is improved by 20.259 × 10−6. Increasing the number
of units by 48 in each hidden layer of the default model, the measure is worsened
by 13.845 × 10−6 and the mean validation loss is improved by 30.090 × 10−6. By
holding the number of units and adding a hidden layer to the FNNM-OtO-Airfoil
with one hidden layer and 16 units in a hidden layer, the measure is improved by
0.414 × 10−6 and the mean validation loss is improved by 66.193 × 10−6.

From the previous results, it can be concluded that adding units and hidden
layers in the One-to-One model improves the mean validation loss significantly, but
it costs the computational efficiency. However, adding one upstream position into
the model input dataset and holding the number of parameters fixed can improve
the mean validation loss (less than in the One-to-One model), but it also improves
computational efficiency. Thus, changing the One-to-One model to the Many-to-
One model can be, under some situations, better than modifying the One-to-One
model architecture. If computational efficiency is not requested, then modifying the
One-to-One model architecture is better and easier.

The One-to-One and the 2 and 10 positional Multi-to-One models predict the
wall pressure spectra reasonably well. An illustration of such prediction is in the
Fig. 4.22. The prediction was made with the FNNM-OtO-Airfoil. The predictions
from the other models are very similar.

Comparing the semi-empirical predictions and the neural network predictions,
the semi-empirical models do not fit the dataset as good as the neural network.
The neural network will predict the wall pressure spectra reasonably well inside the
input values ranges (see Tab. 3.4) because the neural network is partially able to
interpolate. However, the problem is the extrapolation and the generalization of the
purely data-driven model.

An example is in the Fig. 4.23. The prediction is made with the FNNM-OtO-
Airfoil, where the Salze dataset was not introduced to the model during the training.
The resultant predicted spectra in the Fig. 4.23 do not have any physical meaning,
and the shape includes some humps that were never seen in the wall pressure spectra.
That is one of the main disadvantages of the neural network, and the neural network
should never be asked to extrapolate.

Finally, the test sets were evaluated for the best models’ architectures. The FNNM-
OtO with all datasets, 16 units, two hidden layers has the final loss 85.079 × 10−6.
The FNNM-OtO with airfoil datasets, 16 units, two hidden layers has the final loss

78

96.301 × 10−6. And the 2 positional FNNM-MtO, 13 units, two hidden layers has
the final loss 69.409 × 10−6.

10 1 100

* /Ue

20

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

deuse_case_CD_xc_0.40_data
Goody
Rozenberg
Kamruzzaman
Hu
Lee
deuse_case_CD_xc_0.40_FNNM

Figure 4.22: Deuse – the semi-empirical models and the FNNM-OtO-Airfoil.

10 1 100 101

* /Ue

0

50

10
lo

g 1
0[

pp
U

e/
2 w

*]

2014_salze_case_apg_U_38
2014_salze_case_apg_U_38_pred

Figure 4.23: Salze – the prediction with the FNNM-OtO-Airfoil.

79

5 Conclusion and Future Work

In this work, some neural networks used local quantities to predict wall pressure
spectra at one point. However, not all the local quantities account for the history of
the flow. The main question in this work thus is: Can we use the values upstream
the point where we would like to predict the wall pressure spectra and is it going
to improve the accuracy of such prediction compared to the existing models? This
question implicates the Many-to-One model, where many inputs from the boundary
layer are used to predict the wall pressure spectra at one point.

Besides this main question, another goal was to train a feedforward neural network
model, as a One-to-One model, on a broader dataset. This model used the local
quantities to predict the spectra.

A database of relevant boundary layer parameters and wall pressure spectra
was build. Data from one experimental (Salze [11]) and three numerical (Deuse
and Sandberg [12], Wu et al. [13], Christophe et al. [14]) works were used for this
database. All the numerical works investigated a flow around a controlled-diffusion
airfoil. A self-similar mean velocity composite profile was used to fit the raw velocity
profiles. The boundary layer parameters and the wall pressure spectra were then
processed into a dimensionless relation, which specified the inputs and the output
for the proposed models. The dimensionless input parameters thus were ωδ∗/Ue, βc,
RT , Cf , H, ∆, M , Π and the dimensionless output was 10 log10 ((ΦppUe) / (δ∗τ 2

w)).
Two One-to-One feedforward neural network models were trained. The first was

trained on the whole dataset and the second one was trained only on the airfoil
dataset to have a comparison with the proposed Many-to-One models. Both of
these models predicted the wall pressure spectra reasonably well. A mean validation
loss and a measure were used to evaluate the models. The measure represents
computational efficiency together with the validation loss. The best architecture for
both One-to-One models was the one with two hidden layers and 16 units in each
hidden layer.

Two Many-to-One feedforward neural network models were trained. The first
used 2 airfoil positions and the second one used 10 airfoil positions. The 2 positional
Many-to-One model had lower mean validation loss and lower measure then the
One-to-One model for the same number of trainable parameters. The 2 positional
model also had lower mean validation loss with all other architectures compared to
the One-to-One model. The 10 positional Many-to-One model was computationally
inefficient but had lower mean validation losses for some architectures compared to
the 2 positional model. Therefore, the increase of the positions in the input did not
guarantee better results. Both, the 2 positional and 10 positional model predicted

80

the spectra reasonably well.
A Many-to-One convolution neural network model was trained with variable-

length inputs. This approach, where the architecture is fixed and the model is trained
on variable-length data was not performing well. The reason is that with newly
input dataset with different length, the previous weights were scattered. Increasing
the number of parameters and the number of convolution layers might solve this
problem. To conclude, the convolution neural network model performed worse than
the other Many-to-One models.

Besides the neural networks, a theoretical investigation was done on the history
effects in the prediction of wall pressure spectra. It was observed that similar mean
velocity profiles had different wall pressure spectra. However, the result is that for
the One-to-One model the local quantities were sufficient to predict those different
wall pressure spectra.

Therefore, the answers to the main question are following:

• It is possible to use the values upstream to predict the wall pressure spectra at
one point.

• Some Many-to-One neural network models can improve the prediction of the
One-to-One models. But the improvement is not that significant. It should be
considered if the extra preprocessing pays off the improvement of the accuracy.

• Still, both the One-to-One models and Many-to-One models predict the wall
pressure spectra sufficiently well.

The neural network, as a universal approximator, is a powerful tool. As it was
observed, the neural network is capable of predicting the wall pressure spectra. The
development of a semi-empirical model has to go through a complicated investigation.
Now, it is possible to train a neural network to obtain a similar or better fit than to
the semi-empirical models. However, it is still needed to account for the interpolation
and extrapolation abilities of the neural network.

The use of multiple positions to output wall pressure spectra is, in principle,
a brilliant idea as the spectra are predicted from the flow, which is influenced by
its history. This work shed light on the use of multiple positions with the help of
feedforward and a convolution neural network. It is needed to note that only a small
part of this idea was enlightened. There might be many other options where the
improvement of the Many-to-One model will be more significant.

How to improve the Many-to-One model can be revealed from a deep analysis of
the inputs to the neural network to see what upstream values are actually used. As
the convolution neural network was very shallow in this work, there is a possibility
to use some of the deep learning models that would utilize more feature extraction.
A conjunction of a data-driven Many-to-One model and a physical model should be
considered to enable the model to more generalize and respect the physics in the
investigated cases.

81

Bibliography

1. BULL, M.K. Wall-Pressure Fluctuations Beneath Turbulent Boundary Layers:
Some Reflections on Forty Years of Research. Journal of Sound and Vibration.
1996, vol. 190, no. 3, pp. 299–315. issn 0022-460X. Available from doi: 10.
1006/jsvi.1996.0066.

2. BLEVINS, R. D.; HOLEHOUSE, I.; WENTZ, K. R. Thermoacoustic loads and
fatigue of hypersonic vehicle skin panels. Journal of Aircraft. 1993, vol. 30, no.
6, pp. 971–978. Available from doi: 10.2514/3.46441.

3. MAESTRELLO, L. Radiation from and panel response to a supersonic turbulent
boundary layer. Journal of Sound and Vibration. 1969, vol. 10, no. 2, pp. 261–
295. issn 0022-460X. Available from doi: 10.1016/0022-460X(69)90200-4.

4. AMIET, R.K. Noise due to turbulent flow past a trailing edge. Journal of Sound
and Vibration. 1976, vol. 47, no. 3, pp. 387–393. issn 0022-460X. Available from
doi: 10.1016/0022-460X(76)90948-2.

5. HOWE, M. S. Acoustics of Fluid-Structure Interactions. Cambridge: Cambridge
University Press, 1998. isbn 9780521633208. Available from doi: 10.1017/
CBO9780511662898.

6. GOODY, Michael. Empirical Spectral Model of Surface Pressure Fluctuations.
AIAA Journal. 2004, vol. 42, no. 9, pp. 1788–1794. issn 0001-1452. Available
from doi: 10.2514/1.9433.

7. ROZENBERG, Yannick; ROBERT, Gilles; MOREAU, Stéphane. Wall-Pressure
Spectral Model Including the Adverse Pressure Gradient Effects. AIAA Journal.
2012, vol. 50, no. 10, pp. 2168–2179. issn 0001-1452. Available from doi:
10.2514/1.J051500.

8. KAMRUZZAMAN, M.; BEKIROPOULOS, D.; LUTZ, Th.; WÜRZ, W.; KRÄMER,
E. A Semi-Empirical Surface Pressure Spectrum Model for Airfoil Trailing-Edge
Noise Prediction. International Journal of Aeroacoustics. 2015, vol. 14, no. 5-6,
pp. 833–882. issn 1475-472X. Available from doi: 10.1260/1475-472X.14.5-
6.833.

9. LEE, Seongkyu. Empirical Wall-Pressure Spectral Modeling for Zero and Ad-
verse Pressure Gradient Flows. AIAA Journal. 2018, vol. 56, no. 5, pp. 1818–
1829. issn 0001-1452. Available from doi: 10.2514/1.J056528.

10. BERGHE, Jan Van den. Inferring wall pressure spectral model using data driven
approach. Brussels, 2020. Master thesis. Vrije Universiteit Brussel.

82

https://doi.org/10.1006/jsvi.1996.0066
https://doi.org/10.1006/jsvi.1996.0066
https://doi.org/10.2514/3.46441
https://doi.org/10.1016/0022-460X(69)90200-4
https://doi.org/10.1016/0022-460X(76)90948-2
https://doi.org/10.1017/CBO9780511662898
https://doi.org/10.1017/CBO9780511662898
https://doi.org/10.2514/1.9433
https://doi.org/10.2514/1.J051500
https://doi.org/10.1260/1475-472X.14.5-6.833
https://doi.org/10.1260/1475-472X.14.5-6.833
https://doi.org/10.2514/1.J056528

11. SALZE, Edouard; BAILLY, Christophe; MARSDEN, Olivier; JONDEAU, Em-
manuel; JUVE, Daniel. An experimental characterisation of wall pressure
wavevector-frequency spectra in the presence of pressure gradients: AIAA AVI-
ATION Forum. In: 20th AIAA/CEAS Aeroacoustics Conference. American
Institute of Aeronautics and Astronautics, 2014. isbn 978-1-62410-285-1. Avail-
able from doi: 10.2514/6.2014-2909.

12. DEUSE, Mathieu; SANDBERG, Richard D. Different noise generation mecha-
nisms of a controlled diffusion aerofoil and their dependence on Mach number.
Journal of Sound and Vibration. 2020, vol. 476, p. 115317. issn 0022-460X.
Available from doi: 10.1016/j.jsv.2020.115317.

13. WU, Hao; SANJOSE, Marlene; MOREAU, Stephane; SANDBERG, Richard
D. Direct Numerical Simulation of the Self-Noise Radiated by the Installed
Controlled-Diffusion Airfoil at Transitional Reynolds Number: AIAA AVIA-
TION Forum. In: 2018 AIAA/CEAS Aeroacoustics Conference. American Insti-
tute of Aeronautics and Astronautics, 2018. isbn 978-1-62410-560-9. Available
from doi: 10.2514/6.2018-3797.

14. CHRISTOPHE, J.; MOREAU, S.; HAMMAN, C. W.; WITTEVEEN, J. A. S.;
IACCARINO, G. Uncertainty Quantification for the Trailing-Edge Noise of a
Controlled-Diffusion Airfoil. AIAA Journal. 2014, vol. 53, no. 1, pp. 42–54. issn
0001-1452. Available from doi: 10.2514/1.J051696.

15. CHOU, P. Y. On velocity correlations and the solutions of the equations of
turbulent fluctuation. Quarterly of Applied Mathematics. 1945, vol. 3, no. 1,
pp. 38–54. Available from doi: 10.1090/qam/11999.

16. POPE, S. B. Turbulent flows. Cambridge: Cambridge University Press, 2000.
isbn 9780521598866.

17. GRASSO, G.; JAISWAL, P.; WU, H.; MOREAU, S.; ROGER, M. Analytical
models of the wall-pressure spectrum under a turbulent boundary layer with
adverse pressure gradient. Journal of Fluid Mechanics. 2019, vol. 877, pp. 1007–
1062. issn 0022-1120. Available from doi: 10.1017/jfm.2019.616.

18. HWANG, Y.F.; BONNESS, William K.; HAMBRIC, Stephen A. Comparison
of semi-empirical models for turbulent boundary layer wall pressure spectra.
Journal of Sound and Vibration. 2009, vol. 319, no. 1, pp. 199–217. issn 0022-
460X. Available from doi: 10.1016/j.jsv.2008.06.002.

19. FARABEE, Theodore M.; CASARELLA, Mario J. Spectral features of wall
pressure fluctuations beneath turbulent boundary layers. Physics of Fluids A:
Fluid Dynamics. 1991, vol. 3, no. 10, pp. 2410–2420. issn 0899-8213. Available
from doi: 10.1063/1.858179.

20. SMOL’YAKOV, A. V. Calculation of the spectra of pseudosound wall-pressure
fluctuations in turbulent boundary layers. Acoustical Physics. 2000, vol. 46, no.
3, pp. 342–347. issn 1562-6865. Available from doi: 10.1134/1.29890.

83

https://doi.org/10.2514/6.2014-2909
https://doi.org/10.1016/j.jsv.2020.115317
https://doi.org/10.2514/6.2018-3797
https://doi.org/10.2514/1.J051696
https://doi.org/10.1090/qam/11999
https://doi.org/10.1017/jfm.2019.616
https://doi.org/10.1016/j.jsv.2008.06.002
https://doi.org/10.1063/1.858179
https://doi.org/10.1134/1.29890

21. BLAKE, William K. Turbulent boundary-layer wall-pressure fluctuations on
smooth and rough walls. Journal of Fluid Mechanics. 1970, vol. 44, no. 4, pp. 637–
660. issn 0022-1120. Available from doi: 10.1017/S0022112070002069.

22. BROOKS, T.F.; HODGSON, T.H. Trailing edge noise prediction from measured
surface pressures. Journal of Sound and Vibration. 1981, vol. 78, no. 1, pp. 69–
117. issn 0022-460X. Available from doi: 10.1016/S0022-460X(81)80158-7.

23. ROGER, Michel; MOREAU, Stephane. Trailing Edge Noise Measurements
and Prediction for Subsonic Loaded Fan Blades: Aeroacoustics Conferences. In:
8th AIAA/CEAS Aeroacoustics Conference & Exhibit. Breckenridge, Colorado:
American Institute of Aeronautics and Astronautics, 2002. isbn 978-1-62410-
119-9. Available from doi: 10.2514/6.2002-2460.

24. WANG, Meng; MOREAU, Stephane; IACCARINO, Gianluca; ROGER, Michel.
LES Prediction of Wall-Pressure Fluctuations and Noise of a Low-Speed Airfoil.
International Journal of Aeroacoustics. 2009, vol. 8, no. 3, pp. 177–197. issn
1475-472X. Available from doi: 10.1260/147547208786940017.

25. MOREAU, Stephane; SANJOSÉ, Marlène; PEROT, Franck; KIM, Min-Suk.
Direct self-noise simulation of the installed Controlled Diffusion airfoil. In: 17th
AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference).
American Institute of Aeronautics and Astronautics, 2011. Available from doi:
10.2514/6.2011-2716.

26. SLAMA, Myriam; LEBLOND, Cédric; SAGAUT, Pierre. A Kriging-based ellip-
tic extended anisotropic model for the turbulent boundary layer wall pressure
spectrum. Journal of Fluid Mechanics. 2018, vol. 840, pp. 25–55. issn 0022-1120.
Available from doi: 10.1017/jfm.2017.810.

27. KRAICHNAN, Robert H. Pressure Fluctuations in Turbulent Flow over a Flat
Plate. The Journal of the Acoustical Society of America. 1956, vol. 28, no. 3,
pp. 378–390. issn 0001-4966. Available from doi: 10.1121/1.1908336.

28. PANTON, Ronald L.; LINEBARGER, John H. Wall pressure spectra calcu-
lations for equilibrium boundary layers. Journal of Fluid Mechanics. 1974,
vol. 65, no. 2, pp. 261–287. issn 0022-1120. Available from doi: 10.1017/
S0022112074001388.

29. BERTAGNOLIO, Franck; FISCHER, Andreas; ZHU, Wei Jun. Tuning of turbu-
lent boundary layer anisotropy for improved surface pressure and trailing-edge
noise modeling. Journal of Sound and Vibration. 2014, vol. 333, no. 3, pp. 991–
1010. issn 0022-460X. Available from doi: 10.1016/j.jsv.2013.10.008.

30. CHASE, D.M. Modeling the wavevector-frequency spectrum of turbulent bound-
ary layer wall pressure. Journal of Sound and Vibration. 1980, vol. 70, no. 1,
pp. 29–67. issn 0022-460X. Available from doi: 10.1016/0022-460X(80)90553-
2.

31. ZAGAROLA, Mark V.; SMITS, Alexander J. Mean-flow scaling of turbulent
pipe flow. Journal of Fluid Mechanics. 1998, vol. 373, pp. 33–79. issn 0022-1120.
Available from doi: 10.1017/S0022112098002419.

84

https://doi.org/10.1017/S0022112070002069
https://doi.org/10.1016/S0022-460X(81)80158-7
https://doi.org/10.2514/6.2002-2460
https://doi.org/10.1260/147547208786940017
https://doi.org/10.2514/6.2011-2716
https://doi.org/10.1017/jfm.2017.810
https://doi.org/10.1121/1.1908336
https://doi.org/10.1017/S0022112074001388
https://doi.org/10.1017/S0022112074001388
https://doi.org/10.1016/j.jsv.2013.10.008
https://doi.org/10.1016/0022-460X(80)90553-2
https://doi.org/10.1016/0022-460X(80)90553-2
https://doi.org/10.1017/S0022112098002419

32. CLAUSER, Francis H. Turbulent Boundary Layers in Adverse Pressure Gra-
dients. Journal of the Aeronautical Sciences. 1954, vol. 21, no. 2, pp. 91–108.
Available from doi: 10.2514/8.2938.

33. HU, Nan; HERR, Michaela. Characteristics of Wall Pressure Fluctuations for a
Flat Plate Turbulent Boundary Layer with Pressure Gradients: Aeroacoustics
Conferences. In: 22nd AIAA/CEAS Aeroacoustics Conference. American Insti-
tute of Aeronautics and Astronautics, 2016. Available from doi: 10.2514/6.
2016-2749.

34. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning
[online]. MIT Press, 2016 [visited on 2021-05-01]. isbn 978-0262035613. Available
from: http://www.deeplearningbook.org.

35. MCCULLOCH, Warren S.; PITTS, Walter. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics. 1943,
vol. 5, no. 4, pp. 115–133. issn 1522-9602. Available from doi: 10.1007/
BF02478259.

36. LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature. 2015, vol. 521,
no. 7553, pp. 436–444. issn 1476-4687. Available from doi: 10.1038/nature14539.

37. HORNIK, K. Approximation capabilities of multilayer feedforward networks.
Neural Networks. 1991, vol. 4, no. 2, pp. 251–257. issn 0893-6080. Available
from doi: 10.1016/0893-6080(91)90009-T.

38. GÉRON, Aurélien. Hands-on machine learning with Scikit-Learn and Tensor-
Flow: concepts, tools, and techniques to build intelligent systems. 1st ed. Boston:
O’Reilly, 2017. isbn 978-1-491-96229-9.

39. GLOROT, X.; BORDES, A.; BENGIO, Y. Deep Sparse Rectifier Neural Net-
works. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics: PMLR 15. 2011, pp. 315–323. Available also from:
http://proceedings.mlr.press/v15/glorot11a.html.

40. Built-in activation functions [online] [visited on 2021-05-01]. Available from:
https://www.tensorflow.org/api_docs/python/tf/keras/activations.

41. MAAS, Andrew L.; HANNUN, Awni Y.; NG, Andrew Y. Rectifier nonlin-
earities improve neural network acoustic models. In: Proceedings of the 30th
International Conference on Machine Learning. 28th ed. Atlanta, Georgia, USA,
2013. Available also from: http://ai.stanford.edu/~amaas/papers/relu_
hybrid_icml2013_final.pdf.

42. KLAMBAUER, G.; UNTERTHINER, T.; MAYR, A.; HOCHREITER, S. Self-
Normalizing Neural Networks. In: Advances in Neural Information Processing
Systems 30 (NIPS 2017). 2017. Available also from: https://arxiv.org/abs/
1706.02515.

43. Module: tf.keras.initializers [online] [visited on 2021-05-01]. Available from:
https://www.tensorflow.org/api_docs/python/tf/keras/initializers.

85

https://doi.org/10.2514/8.2938
https://doi.org/10.2514/6.2016-2749
https://doi.org/10.2514/6.2016-2749
http://www.deeplearningbook.org
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/0893-6080(91)90009-T
http://proceedings.mlr.press/v15/glorot11a.html
https://www.tensorflow.org/api_docs/python/tf/keras/activations
http://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1706.02515
https://www.tensorflow.org/api_docs/python/tf/keras/initializers

44. GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. 2010, pp. 249–256. Available
also from: http://proceedings.mlr.press/v9/glorot10a.html.

45. HE, K.; ZHANG, X.; REN, S.; SUN, J. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification: Surpassing Human-
Level Performance on ImageNet Classification. In: 2015 IEEE International
Conference on Computer Vision (ICCV). 2015, pp. 1026–1034. issn 2380-7504.
Available from doi: 10.1109/ICCV.2015.123.

46. LECUN, Y.; BOTTOU, L.; ORR, G.; MULLER, K. Efficient BackProp. In:
Neural Networks: Tricks of the trade. Springer, 1998. Available also from: http:
//yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf.

47. KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. In:
3rd International Conference for Learning Representations. San Diego, 2015.
Available also from: https://arxiv.org/abs/1412.6980v9.

48. DOZAT, T. Incorporating Nesterov Momentum into Adam. Stanford, 2015.
Available also from: http://cs229.stanford.edu/proj2015/054_report.
pdf.

49. CHOROMANSKA, A.; HENAFF, M.; MATHIEU, M.; AROUS, G. B.; LECUN,
Y. The Loss Surfaces of Multilayer Networks. In: Proceedings of the Eighteenth
International Conference on Artificial Intelligence and Statistics. 38th ed. San
Diego, California, USA: PMLR, 2015, pp. 192–204. Available also from: http:
//proceedings.mlr.press/v38/choromanska15.html.

50. FUKUSHIMA, K. Neocognitron: a self organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics. 1980, vol. 36, no. 4, pp. 193–202. Available from doi: 10.1007/
BF00344251.

51. KIRANYAZ, S.; AVCI, O.; ABDELJABER, O.; INCE, T.; GABBOUJ, M.;
INMAN, D. J. 1D convolutional neural networks and applications: A survey.
Mechanical Systems and Signal Processing. 2021, vol. 151, no. 107398. issn
0888-3270. Available from doi: 10.1016/j.ymssp.2020.107398.

52. MALEK, S.; MELGANI, F.; BAZI, Y. One-dimensional convolutional neural net-
works for spectroscopic signal regression. Journal of Chemometrics. 2018/05/01,
vol. 32, no. 5. issn 0886-9383. Available from doi: 10.1002/cem.2977.

53. ABADI, Martín et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems [online]. 2015 [visited on 2021-04-25]. Available from:
https://www.tensorflow.org/.

54. CHOLLET, François et al. Keras [online]. 2015 [visited on 2021-04-25]. Available
from: https://keras.io/.

55. CHRISTOPHE, Julien; SCHRAM, Christophe; DOMINIQUE, Joachim. BLtools:
Turbulent Boundary Layer Processing toolbox. Ver. 0.1. Von Karman Institute
for Fluid Dynamics, 2020. In-house Python package.

86

http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/ICCV.2015.123
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/abs/1412.6980v9
http://cs229.stanford.edu/proj2015/054_report.pdf
http://cs229.stanford.edu/proj2015/054_report.pdf
http://proceedings.mlr.press/v38/choromanska15.html
http://proceedings.mlr.press/v38/choromanska15.html
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1002/cem.2977
https://www.tensorflow.org/
https://keras.io/

56. SUTHERLAND, William. The viscosity of gases and molecular force. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.
1893, vol. 36, no. 223, pp. 507–531. issn 1941-5982. Available from doi: 10.
1080/14786449308620508.

57. COLES, D. The law of the wake in the turbulent boundary layer. Journal of
Fluid Mechanics. 1956, vol. 1, no. 2, pp. 191–226. issn 0022-1120. Available
from doi: 10.1017/S0022112056000135.

58. COLES, D. The young person’s guide to the data. In: AFOSR-IFP Stanford
Conference: Computation of Turbulent Boundary Layers. Stanford University,
1968.

59. CHAUHAN, Kapil; NAGIB, Hassan; MONKEWITZ, Peter. On the Composite
Logarithmic Profile in Zero Pressure Gradient Turbulent Boundary Layers:
Aerospace Sciences Meetings. In: 45th AIAA Aerospace Sciences Meeting and
Exhibit. American Institute of Aeronautics and Astronautics, 2007. Available
from doi: 10.2514/6.2007-532.

60. PRANDTL, L. 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz.
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik. 1925, vol. 5, no. 2, pp. 136–139. issn
0044-2267. Available from doi: 10.1002/zamm.19250050212.

61. KÁRMÁN, Th. von. Mechanische Ähnlichkeit und Turbulenz. Nachrichten von
der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische
Klasse. 1930, pp. 58–76. Available also from: http://resolver.sub.uni-
goettingen.de/purl?PPN252457811_1930.

62. SPALDING, D. B. A Single Formula for the “Law of the Wall”. Journal of
Applied Mechanics. 1961, vol. 28, no. 3, pp. 455–458. issn 0021-8936. Available
from doi: 10.1115/1.3641728.

63. MUSKER, A. J. Explicit Expression for the Smooth Wall Velocity Distribution
in a Turbulent Boundary Layer. AIAA Journal. 1979, vol. 17, no. 6, pp. 655–657.
issn 0001-1452. Available from doi: 10.2514/3.61193.

64. NICKELS, T. B. Inner scaling for wall-bounded flows subject to large pressure
gradients. Journal of Fluid Mechanics. 2004, vol. 521, pp. 217–239. issn 0022-
1120. Available from doi: 10.1017/S0022112004001788.

65. CHAUHAN, Kapil A.; NAGIB, Hassan M.; MONKEWITZ, Peter A. Flow
Development in Boundary Layers with Pressure Gradient. In: Advances in
Turbulence XI: Springer Proceedings Physics. Vol. 117. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 239–241. isbn 978-3-540-72604-3. Available
from doi: 10.1007/978-3-540-72604-3_76.

66. NAGIB, Hassan; CHAUHAN, Kapil. Variations of von Kármán coefficient
in canonical flows. Physics of Fluids. 2008, vol. 20, no. 10, p. 101518. issn
1070-6631. Available from doi: 10.1063/1.3006423.

87

https://doi.org/10.1080/14786449308620508
https://doi.org/10.1080/14786449308620508
https://doi.org/10.1017/S0022112056000135
https://doi.org/10.2514/6.2007-532
https://doi.org/10.1002/zamm.19250050212
http://resolver.sub.uni-goettingen.de/purl?PPN252457811_1930
http://resolver.sub.uni-goettingen.de/purl?PPN252457811_1930
https://doi.org/10.1115/1.3641728
https://doi.org/10.2514/3.61193
https://doi.org/10.1017/S0022112004001788
https://doi.org/10.1007/978-3-540-72604-3_76
https://doi.org/10.1063/1.3006423

67. BUCKINGHAM, E. On Physically Similar Systems; Illustrations of the Use of
Dimensional Equations. Phys. Rev. 1914, vol. 4, no. 4, pp. 345–376. Available
from doi: 10.1103/PhysRev.4.345.

88

https://doi.org/10.1103/PhysRev.4.345

List of Appendices

Appendix A – Pressure Fluctuations Equation 90
Appendix B – Selected composite mean velocity profiles of Wu and Christophe 92
Appendix C – Selected WPS of Wu and Christophe 93
Appendix D – Training and Validation Loss Plots 95

89

Appendix A – Pressure Fluctuations Equation
The derivation of the pressure fluctuations equation from the Navier-Stokes equation
is described in the following lines.
Reynolds-Averaged continuity and Navier-Stokes equation (RANS) are:

∂⟨uj⟩
∂xj

= 0, (A.1)

∂⟨ui⟩
∂t

+ ⟨uj⟩
∂⟨ui⟩
∂xj

= −1
ϱ

∂⟨p⟩
∂xi

− 1
ϱ

∂

∂xj

(︂
ϱ⟨u′

iu
′
j⟩
)︂

+ ν∇2⟨ui⟩. (A.2)

Incompressible continuity and Navier-Stokes equation are:

∂uj

∂xj

= 0, (A.3)

∂ui

∂t
+ uj

∂ui

∂xj

= −1
ϱ

∂p

∂xi

+ ν∇2ui. (A.4)

Reynolds decomposition of a general variable X is:

Xi = ⟨Xi⟩ +X ′
i. (A.5)

Reynolds decomposition of the incompressible continuity and Navier-Stokes equation
is:

∂⟨uj⟩
∂xj

+
∂u′

j

∂xj

= 0, (A.6)

∂⟨ui⟩
∂t

+ ∂u′
i

∂t
+
(︂
⟨uj⟩ + u′

j

)︂(︄∂⟨ui⟩
∂xj

+ ∂u′
i

∂xj

)︄
=

= −1
ϱ

(︄
∂⟨p⟩
∂xi

+ ∂p′

∂xi

)︄
+ ν∇2 (⟨ui⟩ + u′

i) . (A.7)

Subtracting RANS from the Eq. (A.6) and (A.7) will result in:

∂u′
j

∂xj

= 0, (A.8)

∂u′
i

∂t
+ ⟨uj⟩

∂u′
i

∂xj

+ u′
j

∂⟨ui⟩
∂xj

+ u′
j

∂u′
i

∂xj

= −1
ϱ

∂p′

∂xi

+ ν∇2u′
i + ∂

∂xj

⟨u′
iu

′
j⟩. (A.9)

Divergence of Eq. (A.9) is:

1
∂

∂xi

∂u′
i

∂t
+

2
∂

∂xi

(︄
⟨uj⟩

∂u′
i

∂xj

)︄
+

3
∂

∂xi

(︄
u′

j

∂⟨ui⟩
∂xj

)︄
+

4
∂

∂xi

(︄
u′

j

∂u′
i

∂xj

)︄
=

=
5

−1
ϱ

∂2p′

∂x2
i

+
6

ν
∂3

∂x3
i

u′
i +

7
∂2

∂xi∂xj

⟨u′
iu

′
j⟩. (A.10)

90

Using the continuity Eq. (A.8), the 1st and the 6th term in Eq. (A.10) will be zero.
The 2nd, the 3rd and the 4th term can be written together as:

1
∂⟨uj⟩
∂xi

∂u′
i

∂xj

+
2

⟨uj⟩
∂2u′

i

∂xi∂xj

+
3

∂u′
j

∂xi

∂⟨ui⟩
∂xj

+
4

u′
j

∂2⟨ui⟩
∂xi∂xj

+
5

∂u′
j

∂xi

∂u′
i

∂xj

+
6

u′
j

∂2u′
i

∂xi∂xj

. (A.11)

Using the continuity Eq. (A.8) and (A.1), the 2nd and the 4th term in Eq. (A.11)
will be zero. However, the 6th term should also be zero, but it will be used for writing
a more neat form of the pressure fluctuations equation. Therefore, the 5th and the
6th term can be rewritten, by adding a zero term, as:

∂u′
j

∂xi

∂u′
i

∂xj

+ u′
j

∂2u′
i

∂xi∂xj

= ∂

∂xi

(︄
u′

j

∂u′
i

∂xj

)︄
= ∂

∂xi

(︄
u′

j

∂u′
i

∂xj

+ u′
i

∂u′
j

∂xj

)︄
=

= ∂

∂xi

(︄
∂

∂xj

(︂
u′

iu
′
j

)︂)︄
=
∂2u′

iu
′
j

∂xi∂xj

. (A.12)

Putting all the terms back together into Eq. (A.10) will result in:

∂⟨uj⟩
∂xi

∂u′
i

∂xj

+
∂u′

j

∂xi

∂⟨ui⟩
∂xj

+
∂2u′

iu
′
j

∂xi∂xj

= −1
ϱ

∂2p′

∂x2
i

+ ∂2

∂xi∂xj

⟨u′
iu

′
j⟩. (A.13)

Rewriting the Eq. (A.13) will introduce the final form of the pressure fluctuations
equation:

1
ϱ

∇2p′ = −2∂⟨ui⟩
∂xj

∂u′
j

∂xi

− ∂2

∂xi∂xj

(︂
u′

iu
′
j − ⟨u′

iu
′
j⟩
)︂
. (A.14)

91

Appendix B – Selected composite mean velocity profiles
of Wu and Christophe

10 1 100 101 102 103

y +

0

10

20

30

40

50

60

u
+

lin-log, = 0.41, B = 5.2
2020_wu_case_CD_xc_0.40
2020_wu_case_CD_xc_0.90
2020_wu_case_CD_xc_0.02

Figure B.1: Examples of the composite mean velocity profiles for Wu’s dataset.
Profiles are shifted by u+ = 10.

10 1 100 101 102 103 104

y +

0

10

20

30

40

50

u
+

lin-log, = 0.41, B = 5.2
2010_christophe_case_1_xc_0.40
2010_christophe_case_1_xc_0.80
2010_christophe_case_1_xc_0.05

Figure B.2: Examples of the composite mean velocity profiles for Christophe’s case
1 dataset. Profiles are shifted by u+ = 10.

92

Appendix C – Selected WPS of Wu and Christophe

100 101

* /Ue

80

60

40

20

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

wu_case_CD_xc_0.02
Goody
Rozenberg
Kamruzzaman
Hu
Lee

(a)

10 1 100

* /Ue

80

60

40

20

0

10
lo

g 1
0[

pp
U

e/
2 w

*]

wu_case_CD_xc_0.40
Goody
Rozenberg
Kamruzzaman
Hu
Lee

(b)

10 1 100

* /Ue

50

40

30

20

10

0

10

10
lo

g 1
0[

pp
U

e/
2 w

*]

wu_case_CD_xc_0.90
Goody
Rozenberg
Kamruzzaman
Hu
Lee

(c)

Figure C.1: Selected Wu’s wall pressure spectra with their respective semi-empirical
models.

93

10 1 100

* /Ue

10

0

10

20

10
lo

g 1
0[

pp
U

e/
2 w

*]

christophe_case_1_xc_0.05
Goody
Rozenberg
Kamruzzaman
Hu
Lee

(a)

10 2 10 1 100

* /Ue

20

15

10

5

0

5

10

10
lo

g 1
0[

pp
U

e/
2 w

*]

christophe_case_1_xc_0.40
Goody
Rozenberg
Kamruzzaman
Hu
Lee

(b)

10 2 10 1

* /Ue

20

10

0

10

10
lo

g 1
0[

pp
U

e/
2 w

*]

christophe_case_1_xc_0.80
Goody
Rozenberg
Kamruzzaman
Hu
Lee

(c)

Figure C.2: Selected Christophe’s wall pressure spectra with their respective semi-
empirical models.

94

Appendix D – Training and Validation Loss Plots

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

8_16_1_t_loss_try_1
8_64_1_t_loss_try_1
8_128_1_t_loss_try_1

(a) 1 hid. layer, train. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

Lo
ss

8_16_1_v_loss_try_1
8_64_1_v_loss_try_1
8_128_1_v_loss_try_1

(b) 1 hid. layer, val. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

8_16_16_1_t_loss_try_1
8_64_64_1_t_loss_try_1
8_128_128_1_t_loss_try_1

(c) 2 hid. layers, train. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

8_16_16_1_v_loss_try_1
8_64_64_1_v_loss_try_1
8_128_128_1_v_loss_try_1

(d) 2 hid. layers, val. loss.

Figure D.1: FNNM-OtO – Airfoil Datasets – training and validation loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

10 1

Lo
ss

2pos_16_1_t_loss_try_1
2pos_64_1_t_loss_try_1
2pos_128_1_t_loss_try_1

(a) 1 hid. layer, train. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

Lo
ss

2pos_16_1_v_loss_try_1
2pos_64_1_v_loss_try_1
2pos_128_1_v_loss_try_1

(b) 1 hid. layer, val. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

2pos_16_16_1_t_loss_try_1
2pos_64_64_1_t_loss_try_1
2pos_128_128_1_t_loss_try_1

(c) 2 hid. layers, train. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

Lo
ss

2pos_16_16_1_v_loss_try_1
2pos_64_64_1_v_loss_try_1
2pos_128_128_1_v_loss_try_1

(d) 2 hid. layers, val. loss.

Figure D.2: FNNM-MtO – 2 positions – training and validation loss.

95

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

10pos_16_1_t_loss_try_1
10pos_64_1_t_loss_try_1
10pos_128_1_t_loss_try_1

(a) 1 hid. layer, train. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

10pos_16_1_v_loss_try_1
10pos_64_1_v_loss_try_1
10pos_128_1_v_loss_try_1

(b) 1 hid. layer, val. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

10 2

Lo
ss

10pos_16_16_1_t_loss_try_1
10pos_64_64_1_t_loss_try_1
10pos_128_128_1_t_loss_try_1

(c) 2 hid. layers, train. loss.

0 1000 2000 3000 4000 5000
Epochs

10 4

10 3

Lo
ss

10pos_16_16_1_v_loss_try_1
10pos_64_64_1_v_loss_try_1
10pos_128_128_1_v_loss_try_1

(d) 2 hid. layers, val. loss.

Figure D.3: FNNM-MtO – 10 positions – training and validation loss.

96

	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	Introduction
	Literature Review and Methods
	Wall Pressure Fluctuations
	Wall Pressure Spectra
	Modelling of Wall Pressure Spectra

	Machine Learning
	Feedforward Neural Network (FNN)
	Convolution Neural Network (CNN)

	Database Preparation
	Datasets
	Boundary Layer Parameters Selection
	Wall Pressure Spectra – Data and Semi-Empirical Models
	Model Inputs

	Results
	Feedforward Neural Network Model – One-to-One (FNNM-OtO)
	FNNM-OtO – All Datasets
	FNNM-OtO – Airfoil Datasets

	History Effects
	Feedforward Neural Network Model – Many-to-One (FNNM-MtO)
	FNNM-MtO – 2 Positions
	FNNM-MtO – 10 Positions

	Convolution Neural Network Model (CNNM)
	Discussion

	Conclusion and Future Work
	Bibliography
	List of Appendices

