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Abstract

This habilitation thesis summarizes author's theoretical work related to development of the
Flow123d simulator. This includes especially methods and algorithms for solving Darcy �ow
problems in saturated and unsaturated fractured porous media.

A model with semi-discrete fractures called mixed dimension model is derived at the begin-
ning. Then the abstract model for advection-di�usion equation is applied to the Darcy �ow.

The mixed-hybrid formulation of the Darcy �ow mixed dimension problem is presented fol-
lowed by its discretization using Raviart-Thomas �nite elements. An analytical solution to a
test single fracture problem is supplied which allows veri�cation of the model's implementation.
Finally, the BDDC method is applied to obtain a scalable solver of the linear systems arising
from the problem's discretization.

Subsequently, new developments for the non-conforming mixed meshes are presented. Four
methods with common strategy are used to introduce a coupling between equations living on the
intersecting �nite element meshes of di�erent dimension. Further a family of e�cient algorithms
for computing mesh intersections is presented.

Final chapter is devoted to the Richards' equation and modi�cation of the mixed-hybrid
scheme in order to satisfy discrete maximum principle. This is of particular importance for the
Richards' equation where short time steps are often necessary which leads to strong oscillations
for the schemes that violate DMP.
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Chapter 1

Introduction

Modeling of the groundwater �ow and associated transport processes is important for a wide
range of applications. In particular the long term safety of underground radioactive waste de-
posits depends on slow water �ow in target geological formations which should ensure a slow
transport and a large dilution of the leaking contaminants. For the deposits located in grani-
toids, the compact rock have extremely small permeability. However, in practice, a network of
faults and fractures of very di�erent scale is presented, causing a higher e�ective permeability
and formation of preferential �ow paths through the faults of the largest scale. The water moves
slowly through the micro-scale fractures on the major part of the rock however it moves rapidly
on the small part of the rock occupied by the macro-scale faults. This multi-scale nature have
signi�cant impact on the transport times and dilution of the contaminants. This implies that
explicit description of the fractures is indispensable for a numerical model used for groundwater
�ow predictions for the nuclear waste deposits. The models of fractured porous media can also
be applied in design of enhanced geothermal systems, in remediation technologies, for description
of root zones in the soil and others.

Although the volumetric �ow through the large scale fractures can dominate the �ow through
the bulk volume, the cross-section, even of the largest fractures, is small compared to the diameter
of the whole domain. This di�erence of scales can be treated by intensive mesh re�nement in
vicinity of the fractures but at a price of signi�cantly increased number of mesh elements. An
alternative are models based on mixed meshes. In this case the governing equations are integrated
across the fracture's opening and are discretized by the elements of lower dimension.

The research covered by this thesis is focused mainly on the Darcy �ow with exception of
Chapter 2, which discuss derivation of a continuum-fracture model for a general advection-
di�usion equation. Included paper provides both theoretical and numerical analysis of the
model's error for small fracture cross-sections.

Subsequent Chapter 3 is devoted to the application of these general results in the case of
Darcy �ow. A mixed-hybrid formulation of the resulting problem is presented as well as its
discretization using mixed meshes and RT0 �nite elements. Two papers are included in this
chapter. The �rst is a preprint of just �nished work dealing with derivation of the analytical
solution to a test Darcy �ow problem with a fracture. The second work presents application of
the BDDC method to the linear systems arising from the mixed-hybrid �nite element method
on mixed meshes.

In Chapter 3, only the conforming mixed meshes are treated. That is with assumption of
the fracture elements laying on faces of the bulk elements. Fracture coupling models for non-
conforming mixed meshes are disused in Chapter 4. The reprinted paper presents a family of
e�cient algorithms based on Plücker coordinates for computing intersections of the elements in
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non-conforming meshes .
The �nal Chapter 5 discuss a solution to some peculiarities of the unsteady Darcy �ow in

particular unsaturated �ow described by the Richards' equation when the mixed-formulation is
used. We show that the discrete maximum principle is violated for these numerical schemes
and we introduce the lumped mixed-hybrid scheme and demonstrate its stabilization e�ect. The
included paper provides application of a fully coupled dual permeability Richards' model to for
modeling in�ltration into a soil.

All numerical methods, algorithms and theoretical concepts covered in this work with ex-
ception of the last paper has been implemented as part of the simulator Flow123d [21]. This
inevitably assumes contribution of the other developers and colleagues. For the sake of clarity
the reprinted papers are marked by the continuous line at the margin.
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Chapter 2

Continuum-fracture model

Realistic modeling of subsurface water �ow has to deal with highly heterogeneous and multi-scale
nature of the hydraulic properties of the real rock. The water moves slowly on the majority of the
rock volume through microscopic pores and fractures while it moves rapidly on the small part of
the rock volume occupied by larger fractures that forms preferential �ow paths. These paths may
by highly localized and the volumetric �ow rate in them may be comparable or even dominating
�ow rate in the bulk volume. However, a cross-section of the larger fractures is still very small
compared to the length scale of the whole domain, thus one has to re�ne computational mesh
along the fractures in order to render them properly, which can lead to the meshes that are
intractably larger, especially if the network of fractures is dense enough.

To overcome these di�culties, we integrate the �ow equations across the aperture of the
fractures and derive a system of coupled equations living on domains of di�erent dimension
which we shall call a mixed dimension model.

2.1 Continuum-fracture model for advection-di�usion processes

The equations modeling a physical process on a manifold as well as its coupling to the model in
the surrounding continuum has to be derived from the model on the 3d continuum. This section
presents such a procedure for the case of the abstract advection-di�usion process inspired by the
paper [13]. This abstract approach can be applied to advection-di�usion processes of di�erent
nature, in particular to Darcy �ow, solute transport, and heat transfer.

Let us consider a fracture as a strip domain

Ωf ⊂ [0, δ]×Rd−1

for d = 2 or d = 3 and surrounding continuum domains

Ω1 ⊂ (−∞, 0)×Rd−1,Ω2 ⊂ (δ,∞)×Rd−1.

Further, we denote by γi, i = 1, 2 the fracture faces common with domains Ω1 and Ω2 respectively.
By x, y we denote normal and tangential coordinate of a point in Ωf . We consider the normal
vector n = n1 = −n2 = (1, 0, 0)>. An advection-di�usion process is given by equations:

∂twi + divji = fi on Ωi, i = 1, 2, f, (2.1)

ji = −Ai∇ui + biwi on Ωi, i = 1, 2, f, (2.2)

ui = uf on γi, i = 1, 2, (2.3)

ji · n = jf · n on γi, i = 1, 2, (2.4)
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where wi = wi(ui) is the conservative quantity and ui is the principal unknown, ji is the �ux of
wi, fi is the source term, Ai is the di�usivity tensor and bi is the velocity �eld. We assume that
the tensor Af is symmetric positive de�nite with one eigenvector in the direction n. Consequently
the tensor has the form:

Af =

(
an 0
0 At

)

Furthermore, we assume that Af (x,y) = Af (y) is constant in the normal direction.
Our next aim is to integrate equations on the fracture Ωf in the normal direction and obtain

their approximations on the surface γ = Ωf ∩ {x = δ/2} running through the middle of the
fracture. For the sake of clarity, we will not write subscript f for quantities on the fracture.
To make the following procedure mathematically correct we have to assume that functions ∂xw,
∂x∇yu, ∂xby are continuous and bounded on Ωf . Here and later on bx = (b ·n)n is the normal
part of the velocity �eld and by = b− bx is the tangential part. The same notation will be used
for normal and tangential part of the �eld q.

We integrate (2.1) over the fracture opening [0, δ] and use approximations to get

∂t(δW )− j2 · n2 − j1 · n1 + divJ = δF, (2.5)

where for the �rst term, we have used mean value theorem, �rst order Taylor expansion, and
boundedness of ∂xw to obtain approximation:

∫ δ

0
w(x,y) dx = δw(ξy,y) = δW (y) +O(δ2|∂xw|),

where

W (y) = w(δ/2,y) = w(u(δ/2,y)) = w(U(y)).

Next two terms in (2.5) come from the exact integration of the divergence of the normal �ux jx.
Integration of the divergence of the tangential �ux jy gives the fourth term, where we introduced

J(y) =

∫ δ

0
jy(x,y) dx.

In fact, this �ux on γ is scalar for the case d = 2. Finally, we integrate the right-hand side to get
∫ δ

0
f(x,y) dx = δF (y) +O(δ2|∂xf |), F (y) = f(δ/2,y).

Due to the particular form of the tensor Af , we can separately integrate tangential and
normal part of the �ux given by (2.2). Integrating the tangential part and using approximations

∫ δ

0
∇yu(x,y) dx = δ∇yu(ξy,y) = δ∇yU(y) +O

(
δ2|∂x∇yu|

)

and
∫ δ

0

(
byw

)
(x,y) dx = δB(y)W (y) +O

(
δ2|∂x(byw)|

)

where

B(y) = by(δ/2,y),
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we obtain

J = −Atδ∇yU + δBW +O
(
δ2(|∂x∇yu|+ |∂x(byw)|)

)
. (2.6)

So far, we have derived equations for the state quantities U and J on the fracture manifold
γ. In order to get a well posed problem, we have to prescribe two conditions for boundaries γi,
i = 1, 2. To this end, we perform integration of the normal �ux jx, given by (2.2), separately for
the left and right half of the fracture. Similarly as before we use approximations

∫ δ/2

0
jx dx = (j1 · n1)

δ

2
+O(δ2|∂xjx|)

and

∫ δ/2

0
bxw dx = (b1 · n1)w̃1

δ

2
+O(δ2|∂xbx||w|+ δ2|bx||∂xw|)

and their counter parts on the interval (δ/2, δ) to get

j1 · n1 = −2an
δ

(U − u1) + b1 · n1w̃1 (2.7)

j2 · n2 = −2an
δ

(U − u2) + b2 · n2w̃2 (2.8)

where w̃i can be any convex combination of wi and W . Equations (2.7) and (2.8) have meaning
of a semi-discretized �ux from domains Ωi into fracture. In order to get a stable numerical
scheme, we introduce a kind of upwind already on this level using a di�erent convex combination
for each �ow direction:

ji · ni =− σi(U − ui)
+
[
bi · ni

]+(
ξwi + (1− ξ)W

)

+
[
bi · ni

]−(
(1− ξ)wi + ξW

)
, i = 1, 2 (2.9)

where σi = 2an
δ is the transition coe�cient and the parameter ξ ∈ [1

2 , 1] can be used to interpolate
between upwind (ξ = 1) and central di�erence (ξ = 1

2) scheme. Equations (2.5), (2.6), and (2.9)
describe the general form of the advection-di�usion process on the fracture and its communication
with the surrounding continuum which we shall later apply to individual processes.

2.2 Meshes of Mixed Dimension

The results of the previous section can be extrapolated to the general case of coupled 1d channels,
2d fractures and 3d continuum in a 3d ambient space. Let Ω3 ⊂ R3 be an open set representing
continuous approximation of porous and fractured medium. Similarly, we consider a set of 2d
manifolds Ω2 ⊂ Ω3, representing the 2d fractures and a set of 1d curves Ω1 ⊂ Ω2 representing
the 1d channels or preferential paths (see Fig 2.1). We assume that Ω2 and Ω1 are polytopic
(i.e. polygonal and piecewise linear, respectively). For every dimension d = 1, 2, 3, we introduce
a triangulation Td of the open set Ωd that consists of �nite elements T id, i = 1, . . . , Nd

E . The
elements are simplices, i.e. lines, triangles and tetrahedra, respectively. The union of the meshes
T = Td is called mixed mesh.
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Figure 2.1: Scheme of a problem with domains of multiple dimensions.

Further more we have to distinguish the conforming and the non-conforming mixed meshes.
The conforming mixed mesh must satisfy the compatibility conditions:

T id−1 ∩ Td ⊂ Fd, where Fd =
⋃

k

∂T kd (2.10)

and

T id−1 ∩ Fd is either T id−1 or ∅ (2.11)

for every i ∈ {1, . . . , Nd−1
E }, j ∈ {1, . . . , Nd

E}, and d = 2, 3. That is, the (d − 1)-dimensional
elements are either between d-dimensional elements and match their sides or they poke out of
Ωd. On the other hand the non-conforming mesh is union of arbitrary intersecting submeshes
Td.

For complex geometries with many fractures it could be di�cult to obtain a conforming mesh
or it can lead to massive locale re�nement and/or to meshes with elements of low quality (with
very acute angles). On the other hand the calculation on non-conforming meshes needs: (i)
algorithms to detect element intersections at least for for 1d-2d, 1d-3d, 2d-2d, 2d-3d cases and
(ii) a method to prescribe coupling between equations living on intersecting elements.

2.3 Analysis of continuum-fracture model

Application of the continuum-fracture model to the Darcy �ow for a general mixed dimension
domain is presented in Section 3.1. The following paper presents both theoretical and numerical
analysis of the error between original continuum model and reduced continuum-fracture model.
Theoretical error estimates are presented for the weak solution of the stationary Darcy �ow
problem and numerical approximation of the error in dependence of the mesh resolution and the
fracture opening is studied.
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Analysis of Model Error
for a Continuum-Fracture Model of Porous

Media Flow

Jan Březina(B) and Jan Stebel

Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
{jan.brezina,jan.stebel}@tul.cz

Abstract. The Darcy flow problem in fractured porous media is con-
sidered. The fractures are treated as lower dimensional objects coupled
with the surrounding continuum. Error estimates for the weak solution
to such continuum-fracture model in comparison to the weak solution of
the full model are derived. Validity of the estimates is inspected on one
simple and one quasi-realistic case numerically.

Keywords: Darcy flow · Fractured media · Reduced model · Error
estimate

1 Introduction

Deep subsurface deposits in a plutonic rock represent one of possible solutions
for the final storage of radioactive waste. The primary reason is small hydraulic
permeability of the bulk rock and thus slow migration of a possible leakage due to
the ground water flow. On the other hand, granitoid formations contain fractures
that may form a network of preferential paths with low volumetric water flow
rate but with high velocity. The preferential paths pose a risk of fast transport of
small amount of contaminant but in potentially dangerous concentrations. The
large scale effect of the small scale fractures is challenging for numerical simula-
tions since direct discretization requires highly refined computational mesh. One
possible solution is to model fractures as lower dimensional objects and intro-
duce their coupling with the surrounding continuum. A model for the saturated
flow in the system matrix-fracture was formally derived in [7] by integrating the
equations across the fracture. It was justified by an error estimate O(max{h, δ}),
h being the mesh size and δ the fracture width, which holds inside the fracture for
the solution of a particular mixed finite element approximation. The approach
was then generalized by others e.g. to the case of curved fractures with variable
width [1], non-matching grids [3] or to other equations or systems [4–6]. While
most papers aim at the analysis or numerical solution of the continuum-fracture
model, the precise statement declaring the relation of the original and reduced
problem on the continuous level is, to our knowledge, missing. The presented
estimates hold for the pressure gradient, which in turn controls the error in the
velocity field which is required for the practical solute transport problems.

c© Springer International Publishing Switzerland 2016
T. Kozubek et al. (Eds.): HPCSE 2015, LNCS 9611, pp. 152–160, 2016.
DOI: 10.1007/978-3-319-40361-8 11
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Analysis of Model Error for a Continuum-Fracture Model 153

In this paper we shall study the Darcy flow model, namely

div q = f in Ω,

q = −K∇p in Ω,

p = p0 on ∂Ω,

⎫
⎪⎬
⎪⎭

(1)

where q is the Darcy flux, f is the source density, K is the hydraulic conductivity
tensor, p is the piezometric head and p0 is the piezometric head on the boundary.
In what follows, Ω ⊂ Rd, d = 2, 3 will be a bounded domain with Lipschitz
boundary (see Fig. 1, left), divided into the fracture

Ωf := Ω ∩
(
(−δ/2, δ/2) × Rd−1

)

with thickness δ > 0, and the surrounding set Ωm := Ω \ Ωf , called the matrix.
The fracture interacts with the matrix on the interfaces

γ1 := Ω ∩
(
{−δ/2} × Rd−1

)
and γ2 := Ω ∩

(
{δ/2} × Rd−1

)
.

Normal vectors on these interfaces are denoted ni, i = 1, 2 with the orientation
out of Ωm. Further, we introduce the reduced geometry (see Fig. 1, right) where
the fracture is represented by the manifold γ := Ω ∩

(
{0} × Rd−1

)
in its center.

For a point x ∈ Rd, we shall write x = (x,y)�, y ∈ Rd−1. For functions defined
in Ωf we define the tangent gradient along the fracture

∇yv := (0, ∂y1
v, . . . , ∂yd−1

v)�,

and the average of v across the fracture:

v̄ :=
1

δ

∫ δ/2

−δ/2

v(x, ·) dx.

We shall study the relation of (1) to the so-called continuum-fracture model
on the reduced geometry:

−div(K∇pm) = f in Ωm,

pm = p0 on ∂Ω ∩ ∂Ωm,

−K∇pm · ni = qi(pm, pf ) on γi, i = 1, 2,

−div(δK∇ypf ) = δf̄ +

2∑

i=1

qi(pm, pf ) in γ,

pf = p0 on γ ∩ ∂Ω.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

Fig. 1. The domain of the full model (left) and the reduced geometry (right).
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154 J. Březina and J. Stebel

The fluxes q1, q2 between the fracture and the matrix are given as follows:

qi(v, w) :=
2K|γni · ni

δ
(v|γi

− w|γ), i = 1, 2,

where v and w are defined on Ωm and γ respectively. Our goal is to justify (2)
as an approximation of (1) in the case of small δ. In particular, we shall prove
that

ū − uf ≈ δ and u|Ωm
− um ≈ δ3/2

in a suitable sense.
The organization of the paper is as follows. In the next section we formulate

and prove the main theoretical result on the error analysis. Then, in Sect. 3 we
show numerical results which confirm the error estimates.

2 Asymptotic Properties of Continuum-Fracture Model

In what follows we assume that K is uniformly positive definite, bounded in Ω
and has the following form:

K =

⎧
⎪⎨
⎪⎩

Km in Ωm,

Kf =

(
kx 0

0 Ky

)
in Ωf ,

where Kf (x,y) = Kf (y). Further we consider right hand side f ∈ L2(Ω). As the
problem is linear, we can set p0 ≡ 0 without loss of generality.

2.1 Weak Formulation

The ongoing analysis will be done in the framework of weak solutions. By Lq(B)
we denote the Lebesgue space on a measurable set B endowed with the norm
‖ · ‖q,B , q ∈ [1,∞], H1(B) is the Sobolev space and H1

0 (B) its subspace of
functions with vanishing trace. We say that p ∈ H1

0 (Ω) is the weak solution of
(1) if for every v ∈ H1

0 (Ω):
∫

Ω

K∇p · ∇v =

∫

Ω

fv. (3)

Introducing the space

H1
bc(Ωm) := {v ∈ H1(Ωm); v|∂Ωm∩∂Ω = 0},

we analogously define the weak solution of (2) as the couple (pm, pf ) ∈
H1

bc(Ωm) × H1
0 (γ) that satisfies

∫

Ωm

Km∇pm · ∇vm + δ

∫

γ

Ky∇ypf · ∇yvf

+

2∑

i=1

∫

γi

qi(pm, pf )(vm|γi
− vf ) =

∫

Ωm

fvm + δ

∫

γ

f̄vf (4)

for all (vm, vf ) ∈ H1
bc(Ωm) × H1

0 (γ).
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Let us remark that under the above assumptions on K and f , problems (3)
and (4) have unique solutions.

2.2 Error Analysis of Asymptotic Model

Let σ(A) denote the spectrum of a matrix A. We use the following notation:

Km := inf
x∈Ωm

σ(Km(x)), Ky := inf
x∈Ωf

σ(Ky(x)),

kx := inf
y∈γ

kx(y), kx := sup
y∈γ

kx(y).

The main result of this section is the following error estimate.

Theorem 1. Let δ > 0, and assume in addition that the unique solution to (3)
satisfies

∂2
xp ∈ Lq(Ωf ) for some q ∈ [2,∞].

Then there is a constant C := C(Ω, γ) > 0 independent of δ, K and f such that

‖∇y(p̄ − pf )‖2,γ ≤ C

√
kx

Ky

‖∂2
xp‖q,Ωf

δ1− 1
q , (5a)

‖∇(p − pm)‖2,Ωm
≤ C

√
kx

Km

‖∂2
xp‖q,Ωf

δ
3
2 − 1

q , (5b)

2∑

i=1

‖p̄ − p|γi
+ pm|γi

− pf‖2,γ ≤ C

√
kx

kx

‖∂2
xp‖q,Ωf

δ2− 1
q , (5c)

where (pm, pf ) is the solution of (4).

Proof. For any ε ∈ (0, δ/2) we define the sets

Ωfε := {(x,y) ∈ Ω; − δ/2 + ε < x < δ/2 − ε},

Ω−
fε := {(x,y) ∈ Ωf ; x < −δ/2 + ε},

Ω+
fε := {(x,y) ∈ Ωf ; x > δ/2 − ε}

and an auxiliary operator Πε : L2(Ωm) × L2(γ) → L2(Ω):

Πε(vm, vγ)(x,y) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

vm(x,y) in Ωm,

vγ(0,y) in Ωfε,
1
ε (x + δ

2 )vγ(0,y) − 1
ε (x + δ

2 − ε)vm(− δ
2 ,y) in Ω−

fε,

− 1
ε (x − δ

2 )vγ(0,y) + 1
ε (x − δ

2 + ε)vm( δ
2 ,y) in Ω+

fε.

10
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156 J. Březina and J. Stebel

Note that Πε maps H1
bc(Ωm) × H1

0 (γ) into H1
0 (Ω). We use vε := Πε(vm, vf ),

vm ∈ H1
bc(Ωm), vf ∈ H1

0 (γ) as a test function in (3):
∫

Ωm

Km∇p · ∇vm +

∫

Ωfε

Ky∇yp · ∇yvf +

∫

Ωf \Ωfε

kx∂xp∂xvε

+

∫

Ωf \Ωfε

Ky∇yp · ∇yvε =

∫

Ωm

fvm +

∫

Ωfε

fvf +

∫

Ωf \Ωfε

fvε. (6)

Next we shall perform the limit ε → 0+. Due to continuity of the integral we
have:

∫

Ωfε

Ky∇yp · ∇yvf →
∫

Ωf

Ky∇yp · ∇yvf = δ

∫

γ

Ky∇y p̄ · ∇yvf , (7)

∫

Ωf \Ωfε

Ky∇yp · ∇yvε → 0, (8)

∫

Ωfε

fvf →
∫

Ωf

fvf = δ

∫

γ

f̄vf , (9)

∫

Ωf \Ωfε

fvε → 0, ε → 0 + . (10)

The remaining term can be rewritten as follows:
∫

Ωf \Ωfε

kx∂xp∂xvε =
1

ε

∫

Ω−
fε

kx∂xp(vf − vm|γ1
) − 1

ε

∫

Ω+
fε

kx∂xp(vf − vm|γ2
)

→
2∑

i=1

(−1)1+i

∫

γ

kx∂xp|γi
(vf − vm|γi

), ε → 0 + . (11)

Let y ∈ Rd−1 be fixed and define

P (x) :=
1

δ

∫ x

−δ/2

p(t,y) dt.

Using the Taylor expansion

P (x) = P (−δ/2) + (x +
δ

2
)P ′(−δ/2) +

(x + δ
2 )2

2
P ′′(−δ/2)

+
(x + δ

2 )2

2

∫ ξ(x,y)

−δ/2

P ′′′(t) dt, ξ(x,y) ∈ (−δ/2, x), (12)

we can show that

p̄(y) = P (δ/2) = p(−δ/2,y) +
δ

2
∂xp(−δ/2,y) +

δ

2

∫ ξ(δ/2,y)

−δ/2

∂2
xp(t,y) dt.

By a similar argument we obtain:

p̄(y) = p(δ/2,y) − δ

2
∂xp(−δ/2,y) +

δ

2

∫ δ/2

η(−δ/2,y)

∂2
xp(t,y) dt, η(x,y) ∈ (x, δ/2).
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From this we can deduce that

∂xp|γi
= (−1)1+i

(
2

δ
(p̄ − p|γi

) − δgi

)
, i = 1, 2, (13)

where

|gi(y)| ≤ 1

δ

∫ δ/2

−δ/2

|∂2
xp(·,y)|. (14)

Summing up, (6)–(13) yields:

∫

Ωm

Km∇p · ∇vm + δ

∫

γ

Ky∇y p̄ · ∇yvf +

2∑

i=1

∫

γi

qi(p, p̄)(vm|γi
− vf )

=

∫

Ωm

fvm + δ

∫

γ

f̄vf + δ

2∑

i=1

∫

γ

kxgi (vm|γi
− vf ). (15)

Now we use vm := p− pm, vf := p̄− pf as test functions in (15) and (4), and
subtract the resulting identities. We obtain:

∫

Ωm

Km∇(p − pm) · ∇(p − pm) + δ

∫

γ

Ky∇y(p̄ − pf ) · ∇y(p̄ − pf )

+
2∑

i=1

∫

γ

2kx

δ
|p|γi

− pm|γi
− p̄ + pf |2 = δ

2∑

i=1

∫

γ

kxgi (p|γi
− pm|γi

− p̄ + pf ).

(16)

Using Hölder’s and Young’s inequality we can estimate the right hand side of
(16):

δ

2∑

i=1

∫

γ

kxgi (p|γi
− pm|γi

− p̄ + pf )

≤ δ
3
2√
2

2∑

i=1

∫

γ

√
kx|gi|

√
2kx

δ
|p|γi

− pm|γi
− p̄ + pf |

≤ δ3

4
kx

2∑

i=1

‖gi‖2
2,γ +

1

2

2∑

i=1

∫

γ

2kx

δ
|p|γi

− pm|γi
− p̄ + pf |2. (17)

From (14) and Hölder’s inequality it follows that

‖gi‖2
2,γ ≤ δ− 2

q |γ| q−2
q ‖∂2

xp‖2
q,Ωf

. (18)

Finally, (16), (17), (18) and the uniform positive definiteness of K yields:

Km‖∇(p − pm)‖2
2,Ωm

+ δKy‖∇y(p̄ − pf )‖2
2,γ

+
1

δ
kx

2∑

i=1

‖p̄ − p|γi
+ pm|γi

− pf‖2
2,γ ≤ kx

2
|γ| q−2

q ‖∂2
xp‖2

q,Ωf
δ3− 2

q , (19)

from which the estimates (5) follow.
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158 J. Březina and J. Stebel

3 Numerical Experiments

In this section we present computational results that demonstrate the relevance
of the continuum-fracture model in the discrete setting, in particular we study
the dependence of the error between the full and the reduced model on the
fracture thickness δ. For the numerical computation we used the mixed-hybrid
FEM implemented in the code Flow123d [2].

For each δ, the solution to the continuum-fracture model computed on a
sequence of meshes with different step h was compared either against the ana-
lytical solution of the full model or against a reference solution of the full model
on a sufficiently fine mesh. This approach allows to distinguish the discretization
error and the error of the reduced model.

3.1 Test 1 - Analytical Solution and Virtual Fracture

As the first, we consider a problem with the fixed constant conductivity K = I
admitting the exact solution pδ(x, y) = ex sin y in the domain Ω := (−1, 1) ×
(0, 1) with a virtual fracture Ωδ

f := (−δ/2, δ/2) × (0, 1). In Fig. 2, we display

the L2 norm of the error in the pressure and in the velocity separately for the
matrix and for the fracture domain. Numerical solution to the reduced model
using h ∈ {0.04, 0.02, 0.01, 0.005, 0.0025} is compared to the analytical solution.
Estimated orders of convergence are consistent with the estimate (5), namely
the convergence in the matrix domain is faster then in the fracture domain. All
numerically estimated orders of convergence are higher then predicted by Theo-
rem 1 since the solution is perfectly regular. Let us also note that ‖∂2

xpδ‖∞,Ωf
,

which stands on the right hand side of (5), is close to 1 for all δ. Unfortunately,
the discretization error of the velocity on the matrix domain is only of the first
order with respect to h which makes the numerical estimate of the order of
convergence with respect to δ less precise.

3.2 Test 2 - Highly Permeable Fracture

In the second test we investigated more realistic case, with Km = 1 and
Kf = 100. We prescribed harmonic Dirichlet boundary condition pδ(x, y) =
cos(x) cosh(y) on the boundary of the domain Ω := (0, 2) × (−0.5, 0.5) with the
fracture along the line x = 1. Actually, we exploited symmetry of the problem,
computing only on the top half and prescribing the homogeneous Neumann con-
dition on the bottom boundary. In this case, no analytical solution is available, so
for each δ we solved the full model on a mesh locally refined around the fracture
and especially around its endpoint [1, 0.5], where the solution exhibits singular-
ities. The corresponding continuum-fracture model was solved on a sequence of
meshes for h ∈ {0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.0025}.

As in the previous case, Fig. 3 displays the L2–norm of the error in the pres-
sure and in the velocity separately for the matrix and for the fracture domain.
However, unlike in the previous case, the error is not consistent with the the-
oretical estimate. The error in the matrix domain is only of the order 1 with
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Fig. 2. Test 1 - virtual fracture Km = Kf = 1, L2 norm of the error in the pressure
(p) and in the velocity (v), comparison against analytical solution. Each line connects
values for the same h, darker colors correspond to smaller h.
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domain γ

v p
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10−2

10−1
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domain Ωm

Fig. 3. Test 2 - permeable fracture, Km = 1, Kf = 100, L2 norm of the error in the
pressure (p) and in the velocity (v), comparison against solution to the full model on
refined mesh. Each line connects values for the same h, darker colors correspond to
smaller h.

respect to δ and the error in the fracture domain stagnates. The main reason for
this situation is the high and possibly unbounded value of the norm ‖∂2

xpδ‖∞,Ωf

as well as the norm ‖∂2
xpδ‖2,Ωf

, whose numerical estimates uniformly grow with
decreasing h. On the other hand even if the norm of the second derivative is
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not bounded, we observe relatively good approximation of the pressure in both
domains and good approximation of the velocity in the matrix domain.

4 Conclusions

We analyzed theoretically and numerically the error of the continuum-fracture
model for the Darcy flow in a domain containing a fracture. The obtained error
rates are related to the regularity of the solution to the full model and are
in agreement with the result of [7]. Unfortunately, in applications the solu-
tion exhibits singularities at the intersection of the fracture boundary with
the domain boundary which may lead to inaccuracy in the continuum-fracture
model. Refinement or dedicated model may be necessary in order to obtain
descent flux error at the fracture boundary.
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Chapter 3

Numerical methods for conforming

mixed meshes

In this chapter we present the Darcy �ow mixed dimension model and its discretization using
mixed-hybrid �nite elements in particular RT0 elements. We present the model and the dis-
cretization as it is implemented in the Flow123d simulator [21]. Section 3.1 describes the model
at continuous level. The discretization is covered in Section 3.3. Two papers follows: �rst de-
voted to the derivation of the analytical solution to the test fracture problem, second dealing
with application of BDDC method for scalable parallel solution of the stationary problems.

3.1 Darcy Flow Model

This section presents a formulation for steady and unsteady Darcy �ow problems on a mixed
dimension domain. We apply general theory from Chapter 2 and provide physical context and
realistic boundary conditions.

Let us start with the simplest model for the velocity of the steady or unsteady �ow in porous
and fractured medium given by the Darcy �ow:

w = −K∇H in Ωd, for d = 1, 2, 3. (3.1)

Here and later on, we drop the dimension index d of the quantities if it can be deduced from the
context. In (3.1), w [ms−1] is the super�cial velocity, Kd is the conductivity tensor, and H [m]
is the piezometric head. The velocity wd is related to the �ux qd [m4−ds−1] through

qd = δdwd,

where δd [m3−d] is the cross section coe�cient, in particular δ3 = 1, δ2 [m] is the thickness of a
fracture, and δ1 [m2] is the cross-section of a channel. The �ux qd ·n is the volume of the liquid
(water) that passes through a unit square (d = 3), unit line (d = 2), or through a point (d = 1)
per one second. The conductivity tensor is given by the product Kd = kdAd, where kd > 0 [ms−1]
is the hydraulic conductivity and Ad is the 3 × 3 dimensionless anisotropy tensor which has to
be symmetric and positive de�nite. The piezometric-head Hd is related to the pressure head hd
through

Hd = hd + z (3.2)

assuming that the gravity force acts in the negative direction of the z-axis. Combining these
relations, we get the Darcy law in the form:

q = −δkA∇(h+ z) in Ωd, for d = 1, 2, 3. (3.3)
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Next, we employ the continuity equation for a saturated porous medium and apply abstract
mixed dimension model from Chapter 2, we obtain

∂t(δdSd hd) + divqd = Fd in Ωd, for d = 1, 2, 3, (3.4)

where Sd [m−1] is the storativity and Fd [m3−ds−1] is the source term. In our setting the principal
unknowns of the system (3.3, 3.4) are the pressure head hd and the �ux qd.

The storativity (or the volumetric speci�c storage) Sd > 0 can be expressed as

Sd = γw(βr + ϑβw), (3.5)

where γw [kgm−2s−2] is the speci�c weight of water, ϑ [−] is the porosity, βr is compressibility
of the bulk material of the pores (rock) and βw is compressibility of the water, both with units
[kg−1ms−2]. For steady problems, we set Sd = 0 for all dimensions d = 1, 2, 3. The source term
Fd on the right hand side of (3.4) consists of the volume density of the water source fd[s−1] and
�ux from the from the higher dimension. Precise form of Fd slightly di�ers for every dimension
and will be discussed presently. In Ω3 we simply have F3 = f3 [s−1].

For unsteady problems one has to specify an initial condition in terms of the initial pressure
head h0

d [m] or the initial piezometric head H0
d [m].

3.1.1 Coupling on mixed meshes

In the set Ω2 ∩ Ω3 the fracture is surrounded by at most one 3d surface from every side. On
∂Ω3 ∩ Ω2 we prescribe a boundary condition of the Robin type:

q3 · n+ = q+
32 = σ3(h+

3 − h2), (3.6)

q3 · n− = q−32 = σ3(h−3 − h2),

where q3 · n+/− [ms−1] is the out�ow from Ω3, h
+/−
3 is a trace of the pressure head in Ω3, h2

is the pressure head in Ω2, and σ3 [s−1] is the transition coe�cient, compare with (2.7 − 2.8),
given by:

σ3 = σ32
2K2 : n2 ⊗ n2

δ2
.

Here n2 is the unit normal to the fracture (sign does not matter). On the other hand, the sum
of the interchange �uxes q+/−

32 forms a volume source in Ω2. Therefore F2 [ms−1] on the right
hand side of (3.4) is given by

F2 = δ2f2 + (q+
32 + q−32). (3.7)

The communication between Ω2 and Ω1 is similar. However, in the 3d ambient space, a 1d
channel can join multiple 2d fractures 1, . . . , n. Therefore, we have n independent out�ows from
Ω2:

q2 · ni = qi21 = σ2(hi2 − h1),

where σ2 [ms−1] is the transition coe�cient integrated over the width of the fracture i:

σ2 = σ21
2δ2

2K1 : ni1 ⊗ ni1
δ1

.
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Here ni1 is the unit normal to the channel that is tangential to the fracture i. Sum of the �uxes
forms a part of F1 [m2s−1]:

F1 = δ1f1 +
n∑

i=1

qi21. (3.8)

We remark that the direct communication between 3d and 1d (e.g. model of a well) is not
supported yet. The transition coe�cients σ32 [−] and σ21 [−] are independent scaling parameters
which represent the ratio of the crosswind and the tangential conductivity in the fracture. For
example, in the case of impermeable �lm on the fracture walls one may choice σ32 < 1.

3.1.2 Boundary conditions

In order to obtain unique solution we have to prescribe boundary conditions. Currently we
consider a disjoint decomposition of the boundary

∂Ωd = ΓDd ∪ ΓTFd ∪ ΓSpd ∪ ΓRid

where we support the following types of boundary conditions:
Dirichlet boundary condition

hd = hDd on ΓDd ,

where hDd [m] is the boundary pressure head. Alternatively one can prescribe the boundary
piezometric head HD

d [m] related to the pressure head through (3.2).
Total �ux boundary condition (combination of Neumann and Robin type)

−qd · n = δd
(
qNd + σRd (hRd − hd)

)
on ΓTFd ,

where qNd [ms−1] is the surface density of the water in�ow, hRd [m] is the boundary pressure head
and σRd [s−1] is the transition coe�cient. As before one can also prescribe the boundary piezo
head HR

d to specify hRd .
Seepage face condition is used to model a surface with possible springs:

hd ≤ hSd and − qd · n ≤ δdqNd (3.9)

while the equality holds in at least one inequality. The switch pressure head hSd [m] can alterna-
tively be given by switch piezometric head.

The �rst inequality in (3.9) with the default value hSd = 0 disallows non-zero water height on
the surface, the later inequality with default value qNd = 0 allows only out�ow from the domain
(i.e. spring). In practice one may want to allow given water height hSd or given in�ltration (e.g.
precipitation-evaporation) qNd .

River boundary condition models free water surface with bedrock of given conductivity. We
prescribe:

−qd · n = δd
(
σRd (Hd −HD

d ) + qNd
)
, for Hd ≥ HS

d , (3.10)

−qd · n = δd
(
σRd (HS

d −HD
d ) + qNd

)
, for Hd < HS

d , (3.11)

where Hd is piezometric head. The parameters of the condition are given by similar �elds of
other boundary conditions: the transition coe�cient of the bedrock σRd [s−1], the piezometric
head of the water surface given as boundary piezometric head HD

d [m], the head of the bottom of
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the river given as the switch piezometric head HS
d [m]. The boundary �ux qNd is zero by default,

but can be used to express approximation of the seepage face condition (see discussion below).
The piezometric heads HS

d and HR
d may be alternatively given by pressure heads hSd and hRd ,

respectively.
The physical interpretation of the condition is as follows. For the water level Hd above the

bottom of the river HS
d the in�ltration is given as Robin boundary condition with respect to the

surface of the river HD
d . For the water level below the bottom the in�ltration is given by the

water column of the river and transition coe�cient of the bedrock.
The river could be used to approximate the seepage face condition in the similar way as

the Robin boundary condition with large σ can approximate Dirichlet boundary condition. We
rewrite the condition as follows

−qd · n = δd
(
σRd (hd − hDd ) + qNd

)
, for − qd · n ≥ δd

(
σRd (hSd − hDd ) + qNd

)
, (3.12)

−qd · n = δd
(
σRd (hSd − hDd ) + qNd

)
, for hd < hSd . (3.13)

Now if we take hSd = hDd , we obtain

−qd · n = δd
(
σRd (hd − hSd ) + qNd

)
, for − qd · n ≥ δdqNd , (3.14)

−qd · n = δdq
N
d , for hd < hSd , (3.15)

where the �rst equation approximates hd = hSd if σRd is su�ciently large.

3.1.3 Water balance

The equation (3.4) represents a conservation law for the volume of the liquid. In particular
integrating over Ωd for every d = 1, 2, 3, we obtain balance of the total liquid volume V :

V (t) = V (0) +

∫ t

0
s(τ) dτ +

∫ t

0
f(τ) dτ,

for any time point t in the computational interval [0, T ]. Other variables are: the total liquid
volume [m3],

V (t) :=
3∑

d=1

∫

Ωd

(δSh)(t,x) dx,

the total of volume sources [m3s−1] in time t,

s(t) :=
3∑

d=1

∫

Ωd

F (t,x) dx,

and the boundary �ux [m3s−1] of the liquid at time t,

f(t) := −
3∑

d=1

∫

∂Ωd

q(t,x) · n(x) dx.

Flow123d simulator can compute the volume, the source total and the on every geometrical
region for every output time. In addition the cumulative �ux and source can be provided. These
information are essential for usage for real world problems.
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3.2 Mixed formulations with conforming fractures

Discretization of the mixed dimension Darcy �ow problem in Flow123d use mixed-hybrid for-
mulation using zero order Raviart-Thomas elements. The formulation we shall describe follows
and extends ideas and results from the previous works [6], [10], [11], [19] from the origin of the
Flow123d simulator.

3.2.1 Mixed formulations on mixed meshed

The unsteady Darcy �ow problem introduced in Section 3.1 allows straight forward mixed-hybrid
formulation. We shall present mixed-hybrid formulation to a steady problem as a single time
step of the problem already discretized in time.

Let Pd = {Ωi
d}, i ∈ Id, d = 2, 3 be a decomposition of Ωd into disjoint open sets such that

lower dimension domain is on its boundary:

Γd =
⋃

i∈Id
∂Ωi

d = ∂Ωd ∪ Ωd−1 ∪ ΓId, (3.16)

where the decomposition on the right hand side contains outer boundary, fracture internal inter-
faces and proper internal interfaces, respectively.

Further we denote
Ωu
d =

⋃

i∈Id
Ωi
d

Assuming that all indices are unique, we denote a common index set I = I1 ∪ I2 ∪ I3. We
introduce the velocity spaces:

V d =
∏

i∈Id
H(div,Ωi

d), V = V 1 × V 2 × V 3. (3.17)

then the pressure spaces:

Qd = L2(Ωd), Q = Q1 ×Q2 ×Q3. (3.18)

the pressure trace spaces:

Q̊d = {q̊ ∈ H1/2(Γd) : q̊ = 0 on ΓDd }, Q̊ = Q̊1 × Q̊2 × Q̊3. (3.19)

and a common pressure spaces:

Qd = Qd × Q̊d, Q = Q× Q̊. (3.20)

For the components of u ∈ V and p ∈ Q, we shall use notation u = (u1,u2,u3) and
p = (p1, p2, p3, p̊1, p̊2, p̊3) respectively. On these spaces we shall de�ne mixed-hybrid solution
similarly as in [6] or [7], but using the language of the book [4] by Brezzi and Fortin.

De�nition 3.2.1. We say that the pair (u, p) ∈ V ×Q is a mixed-hybrid solution of the single

time step problem P (t,P) at the time t on the partitioning P if it satis�es a saddle point problem

a(u,v) + b(v, p) = 〈G,v〉 ∀v ∈ V, (3.21)

b(u, q)− c(p, q) = 〈F, q〉 ∀q ∈ Q, (3.22)
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where the bilinear forms on the left hand side are

a(u,v) =
3∑

d=1

∑

i∈Id

∫

Ωi
d

1

δd
K−1
d ud · vd dx, (3.23)

b(u, q) = −
3∑

d=1

∑

i∈Id

∫

Ωi
d

qd divud dx+
3∑

d=1

∑

i∈Id

∫

∂Ωi
d

q̊(ud · n) ds, (3.24)

and the composed term c:

c(p, q) = cf (p, q) + ct(p, q) + cR(p̊, q̊) (3.25)

cf (p, q) =
∑

d=2,3

∑

i∈Id

∫

Ωd−1

σd(pd−1 − p̊|Ti)(qd−1 − q̊|Ti) ds

ct(p, q) =

3∑

d=1

∑

i∈Id

∫

Ωi
d

δdSd
τ

pdqd dx,

cR(̊h, q̊) =

3∑

d=1

∑

i∈Id

∫

ΓTF
d

σRd pdq̊d ds,

where cf , ct, cR arise from fracture coupling, time term and the Robin boundary condition re-

spectively. The linear functionals on the right-hand side have the form

〈G,v〉 = −
3∑

d=1

∑

i∈Id

∫

∂Ωd

pDd (v · n) ds, (3.26)

〈F, q〉 = −
3∑

d=1

∫

Ωd

δd fd qd dx, (3.27)

−
3∑

d=1

∑

T∈Td

∫

ΓTF
d

qNd q̊d + σRd h
R
d q̊d ds

− ct(p−1, q).

where p−1 is the pressure at previous time level and p
D
d ∈ H1/2(Γd) is an extension of the Dirichlet

condition pDd ∈ H1/2(ΓDd ).

Few remarks:

• The pressure trace p̊ is from the space Q̊ in particular it is zero on the Dirichlet boundary.
The full pressure trace is therefore p̊d + P̃d.

• We consider the Neumann boundary �ux qNd positive for an in�ow in the contrast to usual
notation but consistently with the sign of the source fd.

• We need trace p̊2 on Ω1 in the de�nition of the bilinear form cf (p, q), which is available
because of the compatibility condition (3.16).

• Fore every fracture triangular element K ∈ T2 we have two terms in cf and two traces p̊2

one for each of two neighboring tetrahedral elements. For a segment elements K ∈ T1 the
number of the terms can be even larger (for 3d ambient space), according to the number
of neighboring triangular elements.

It can be shown using the general theory of mixed formulations [4] and same arguments as
in Theorem 1 from the paper [22] reproduced in Section 3.5
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3.3 Mixed-hybrid �nite element method

Spatial discretization of the mixed-hybrid formulation from De�nition 3.2.1 is straight forward
replacement of the function spaces by their �nite dimensional subspaces. We assume a mesh
T and submeshes Td as introduced in Section 2.2. Let us denote V h

d(Td) ⊂ H(div, Td) the
space of Raviart-Thomas functions of zero order (RT0) on an element Td ∈ Td. Identifying the
subdomains Ωi

d with T
i
d we can choose following approximation of the function spaces V and Q.

We set

V h = V h
1 × V h

2 × V h
3 , V h

d =
∏

Td∈Td
V h
d(Td).

For the pressure space we use piecewise functions:

Qh = Qh1 ×Qh2 ×Qh3 , Qhd =
∏

T∈Td
P 0(T ) ⊂ Qd. (3.28)

Approximation is a bit more elaborated as we need a single degree of freedom (DOF) per interior
edge but two DOFs per edge for fractures and possibly more DOFs per edge for channels. We
begin with the local spaces for every element Td ∈ T :

Q̊h(Td) =
{
q̊ ∈ L2(∂Td) : q̊ = v · n|∂Td ,v ∈ V h

d

}
. (3.29)

Due to properties of the RT0 functions this is equivalent to piecewise constant functions per
side of the element Td. For RT0 elements this gives a constant function for every element face.
Further we identify DOFs on the proper interior faces ΓId:

Q̊hd =
{
q̊ ∈

∏

T∈Td
Q̊h(T ) : q̊|∂K = q̊|∂L̃ on ∂K ∩ ∂L ⊂ ΓId∀K,L ∈ Td

}
. (3.30)

Finally we set Q̊h = Q̊h1 × Q̊h2 × Q̊h3 . Note that the space Q̊h do not conform to the space Q̊ as
it is less regular. However this is compensated by the higher regularity of V h.

Rest of the formulation is the same. We are looking for a triplet (u, p, p̊) from V h×Qh× Q̊h
which satis�es the saddle-point problem:

a(u,v) + b(v, p) = 〈g,v〉, ∀v ∈ V h, (3.31)

b(u, q)− c(p, p̊, q, q̊) = 〈f, (q, q̊)〉, ∀q ∈ Q, q̊ ∈ Q̊, (3.32)

with the same forms as in De�nition 3.2.1.
The submatrix A of the resulting linear system S which corresponds to the form a( · , · ) is

blockwise diagonal with small blocks corresponding to individual elements. It can be cheaply
inverted so we can form the Schur complement S \A. The (q, q) submatrix A1 of the �rst Schur
complement is again diagonal allowing to form the second Schur complement S \ A \ A1 with
unknowns only from Q̊. Second Schur complement is negative de�nite and can be e�ectively
solved using a CG method with ICC preconditioner. For large problems one can use balanced
domain decomposition by constraints where Schur complements are formed locally per every
processor. This is described in Section 3.5
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3.4 Test problem with analytical solution

This section presents a preprint of a paper where we derive an analytical solution to a test Darcy
�ow problem on a square domain with a single horizontal fracture. This analytical solution
is used as part of the test suite of Flow123d and is used to test optimal convergence rate of
the implementation. It is used to test implementation of the formulation on conforming mixed
meshes from the previous section as well as various coupling methods for non-conforming mixed
meshes which will be discussed in Chapter 4.
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Analytical solution to a single fracture test

problem

Jan Březina ∗, Pavel Burda †

April 13, 2018

Abstract

An analytical solution to a test Darcy flow problem on a square do-
main with a single horizontal fracture is derived in terms of Fourier series.
Distinct pressure variables p1 and p2 are considered for the fracture and
the matrix respectively coupled together by a Robin type condition. Two
cases are treated: the conductive fracture with p2 continuous and sym-
metric about the fracture and the barrier fracture, generalization with
separate p2 and parameters for upper and lower part. The analytical so-
lution was verified against the numerical solution using second order finite
differences.

1 Introduction

Fractures, cracks, fissures, faults and other discontinuities are ubiquitous in
real rock formations especially granitoids. Fractures present a challenge for
subsurface water flow modeling as they have small volume but large permeability
with potentially large impact on the pressure and velocity fields. Alternatively
the filled fractures can behave as barriers.

Fractures occurs on wide range of scales. Small scale fractures could be
homogenized, while fractures with scales comparable to the dimensions of a
domain should be captured explicitly. The large scale fractures are still very
thin and a direct discretization with any mesh based method (FE, FV, DG, . . . )
requires high level of refinement which become costly especially for large number
of fractures. A solution to this problem is usage of a mixed mesh combining the
elements of different dimension. It has been shown that for the advection-
diffusion equation the original 3d (or 2d) problem can be approximated by the
system of 3d-2d (or 2d-1d) problems coupled by a Robin type condition (see
e.g. [5], , [4], [1]).

For the purpose of testing implementations of the mixed mesh approach in
combination with different numerical methods it is necessary to have a suitable
test problem with known solution. A common approach is to plug any function
into the equations and prescribe resulting right hand side. This approach is
convenient to test correctness of the implementation but often turns out to do

∗Technical University in Liberec, Studentská 2, Liberec, Czech Republic
(jan.brezina@tul.cz).
†Czech Technical University, (pavel.burda@fs.cvut.cz)
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not capture peculiarities of the real solution and thus may be unsuitable for
tests of convergence of the used method.

To this end we propose a test Darcy flow problem consisting of the square
domain (matrix) and the single horizontal fracture cutting the domain into
upper and lower part. Two cases are considered: the conductive fracture and the
more general barrier fracture. The conductive fracture assumes symmetry about
the fracture yet keeping separate pressure for the matrix and for the fracture.
This case is relatively simple to solve but have very limited practical usage.
The barrier fracture case is a generalization where the problem parameters as
well as the matrix pressure ere treated independently f or the upper and the
lower part of the matrix domain. Both problems are introduced in Section 2.
The solution to the conductive fracture problem is derived in Section 3 the
same approach with necessary modifications and extensions is used to derive
the solution to the barrier fracture problem in Section 4. In Section 6, both
solutions are verified against a numerical solution provided by the second order
finite difference scheme on a regular grid. Conclusions are summarized in the
final Section 7

2 Test problems

Main result of the paper is derivation of the strong analytical solution for two
test problems with coupling between continuum and a fracture. A Darcy flow
is considered on a square 2D domain Ω2 = (−1, 1) × (−1, 1) with a horizontal
fracture Ω1 = (x, 0) : x ∈ (−1, 1). The fracture splits Ω2 into upper and lower
part Ω+

2 and Ω−2 , respectively. The stationary Darcy flow is driven by the same
equation on all three domains:

−k2∆p+2 (x, y) = 0 on Ω+
2 , (1)

−k2∆p−2 (x, y) = 0 on Ω−2 , (2)

−k1p′′1(x) = f(x) on Ω1. (3)

Where pd, d = 1, 2 is the pressure and f is the communication term that will be
specified later. We consider positive constant conductivities k2, k1 on Ω2 and
Ω1, respectively.

The homogeneous Neumann condition is set on the left and the right side of
Ω2, while the Dirichlet condition is set on the top and bottom and at the tips
of the fracture. We denote:

ΓN2 = {(x, y) : x ∈ {−1, 1}, y ∈ (−1, 1), y 6= 0},
ΓN2 = {(x, y) : x ∈ (−1, 1), y ∈ {−1, 1}},
Γ1 = ∂Ω1 = {(−1, 0), (1, 0)}.

Then we prescribe following boundary conditions

∂xp2(x, y) = 0 on ΓN2 (4)

p2(x, y) = P2 on ΓD2 (5)

p1(x) = P1 on Γ1. (6)

2
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In order to complete the problem we must prescribe boundary conditions on
the fracture and specify the source term f . Here we distinguish two cases: the
conductive fracture and the barrier fracture.

Conductive fracture. In this case we assume a fracture with similar or
higher conductivity then in the continuum, k1 ≥ k2. In such case we can as-
sume continuity of the pressure across the fracture. However we keep difference
between p2 and p1 on the fracture. We set:

p+2 = p−2 on Ω1, (7)

−k2(−∂yp+2 + ∂yp
−
2 ) = f(x) on Ω1, (8)

f(x) = 2σ(p2(x, 0)− p1(x)), (9)

where σ ≥ 0 is a coupling parameter, usually σ ≈ k1/δ with δ standing for the
fracture cross-section. Solution of this case is discussed in Section 3.

Barrier fracture. Other case is a fracture with significantly smaller con-
ductivity compared to the surrounding continuum. In this case the pressure
p2 is discontinuous across the fracture and we have two independent bound-
are conditions for each side of the fracture. We also distinguish conductivities
k+2 , k−2 and boundary pressure P+

2 , P−2 for the upper and lower domains Ω+
2 ,

Ω−2 , respectively. The coupling on the fracture is prescribed by the boundary
conditions:

−k+2 ∇p+2 · n+(x, 0) = k+2 ∂yp
+
2 (x) = f+(x) on Γ+, (10)

−k−2 ∇p−2 · n−(x, 0) = −k−2 ∂yp−2 (x) = f−(x) on Γ−, (11)

with Γ+ and Γ− denoting boundary of Ω+
2 and Ω−2 , respectively, collocated with

Ω1. The communication term is:

f(x) = f+(x) + f−(x), f+/− = σ+/−(p
+/−
2 (x, 0)− p1(x)), (12)

where σ+ and σ− are positive coupling parameters for uppar and lower side of
ther fracture respectively. Solution to this system is discussed in Section 4.

3 Conductive fracture

We shall derive an analytical solution to the system (1 − 6) with the coupling
conditions (7−9). Symmetry of the problem in both x and y direction allows us

to solve equivalent reduced problem on Ω̃2 = (0, 1)× (0, 1) and Ω̃1. We impose
the symmetry in x direction by homogeneous Neumann condition at x = 0. All
equations are preserved with exception of the half flux on Γ+. The equivalent
system reads:

−k2∆p2(x, y) = 0 on Ω̃2 (13)

−k1p′′1(x) = f(x) on Ω̃1 (14)

with boundary conditions:

p2(x, 1) = P2, k2∂yp2(x, 0) =
f(x)

2
= σ(p2(x, 0)− p1(x)) (15)

3
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for x ∈ (0, 1),
∂xp2(0, y) = ∂xp2(1, y) = 0 (16)

for y ∈ (0, 1) and finally

p′1(0) = 0, p1(1) = P1. (17)

Proposition 1 Let the real parameters P2, P2, k1 > 0, k2 > 0, σ ≥ 0 be given.
Then the solution p1(x) and p2(x, y) to the system (13− 17) can be expressed in
from of Fourier series:

p2(x, y) = P2 +B0(y − 1)− 2B0

∞∑

n=1

an cos(πnx)sinh
(
πn(1− y)

)
, (18)

p1(x) = P2 −B0 + u0 cosh(x/k)− 2B0

∞∑

n=1

un cos(πnx) (19)

where we denote:

k =

√
k1
2σ
,

and use following coefficients:

an =
(−1)nk2

k2πn cosh(πn)
(
1 + (knπ)2

)
+ σ(knπ)2 sinh(πn)

, (20)

u0 = − k2B0

σk sinh(1/k)
. (21)

un =
an sinh(nπ)

1 + (knπ)2
, (22)

and constants:

B0 =
P2 − P1

1 + 2U + k2
σk

cosh(1/k)
sinh(1/k)

(23)

U =

∞∑

n=1

(−1)nun. (24)

3.1 Separation of variables for 2D equation

We shall apply the separation of variables (see e.g. [3]) to the equation (13).
Considering a solution in form:

p2(x, y) = X(x)Y (y) (25)

the equation (13) gives us two equations:

X ′′

X
= −Y

′′

Y
= L ,

L being a real constant. Applying homogeneous Neumann boundary conditions
(16) we get possible solutions X(x) in the form:

Xn(x) = Ãn + B̃n cos(nπx) for n = 0, 1, . . . (26)

4
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where Ãn, B̃n are arbitrary real constants and L is quantized to values:

L = −n2π2.

Next we plug L in the equation for Y (y) to get all solutions:

Y0(y) = C̃0 + D̃0y,

Yn(y) = C̃ne
nπy + D̃ne

−nπy for n = 1, . . . (27)

where Ãn, B̃n for n = 0, 1, . . . are arbitrary real constants.
Combining (25), (26), (27) we can write the solution p2 as:

p2(x, y) = A0 +B0y+

∞∑

n=1

(
Cn+cos(nπx)

)1

2

(
Ane

nπ(y−1) +Bne
−nπ(y−1)). (28)

Then the Dirichlet condition (15a) yields:

P2 = A0 +B0 +

∞∑

n=1

(
Cn + cos(nπx)

)An +Bn
2

.

for all x ∈ (0, 1) and thus:

A0 +B0 = P2, and An +Bn = 0.

Then (28) can be simplified to the final form (18) where we yet have to determine
B0 and coefficients an.

3.2 Pressure on fracture

Next step is a solution to the equation on fracture, i.e. (14). Substituting for f
using (15) and then for p2 from (18) we arrive at:

− k2p′′1(x) + p1(x) = P2 −B0 − 2B0

∞∑

n=1

an sinh(nπ) cos(nπx). (29)

with k =
√
k1/(2σ).

Solution to:
−aP ′′(x) + P (x) = cos(nπx)

is

P (x) =
cos(nπx)

1 + an2π2
.

Using linearity of the equation we obtain the general form of p1 as:

p1(x) = c+ex/k + c−e−x/k + P2 −B0 − 2B0

∞∑

n=1

un cos(nπx). (30)

with un given by (22). Then the boundary conditions (17) yield:

P1 = p1(1) = c+e1/k + c−e−1/k + P2 −B0 − 2B0U,

0 = p′1(0) =
1

k
(c+ − c−)

5
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with U given by (24). Solving for c+ and c− we get:

c+ = c− =
P1 − P2 +B0(1 + 2U)

2 cosh(1/k)
.

Then (30) gives

p1(x) = P2 −B0 + u0 cosh(x/k)− 2B0

∞∑

n=1

un cos(πnx) (31)

which is (19) but with

u0 =
P1 − P2 +B0 + 2B0U

cosh(1/k)
. (32)

3.3 Fracture coupling

Last relation that we have to consider is the boundary condition (15b). To this
end we plug in the relations (18), (31) for p2, p1 and we group the terms for
remaining unknowns on the left hand side. After straight forward manipulation
we obtain:

A0

2
+
∞∑

n=1

An cos(nπx) = −u0 cosh(x/k). (33)

with

A0 =
2k2B0

σ
(34)

An = 2B0

[k2
σ
nπ cosh(nπ)− sinh(nπ)

1 + (knπ)2
+ sinh(nπ)

]
an (35)

for n = 1, . . . . The left hand side of (33) is the Fourier series, thus we
determine remaining unknowns B0, An by computing Fourier of the function
on the right hand side and comparing coefficients.

For the zero term we have:

A0 = −2u0

∫ 1

0

cosh(x/k)dx = −2u0k sinh(1/k). (36)

which compared to (34) gives us (21).
For other terms, we integrate by parts to get:

An = −2u0

∫ 1

0

cosh(x/k) cos(nπx)dx = − (−1)n2u0k

1 + (knπ)2
sinh(1/k). (37)

We plug (21) into the result and compare it with (35) to obtain formula (20)
for coefficients an. The only remaining unknown is B0 which we determine by
comparing (32) and (21). Straight forward calculation leads to (23).

6
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3.4 Evaluation procedure

Formulas in Proposition 1 are not suitable for practical calculations since hyper-
geometric functions are evaluated for large n. To remedy this issue, we factor
out and cancel eπn. Actual evaluation then takes following procedure:

1. Set finite N for truncated series.

2. Compute ãn for n = 1, . . . , N using:

ãn =
(−1)nk2

k2πn(1− e−2πn)
(
1 + (knπ)2

)
+ σ(knπ)2(1 + e−2πn)

,

3. Compute related ũn coefficients:

ũn =
ãn(1− e−2πn)

1 + (knπ)2
,

4. Evaluate truncated sum:

U =

N∑

n=1

(−1)nun.

5. Compute remaining parameters u0, B0 using (21), (23).

6. Evaluate p2 for any given point (x, y) in Ω2 by:

p2(x, y) = P2 +B0(y − 1)− 2B0

N∑

n=1

ãn cos(πnx)
(
e−πn|y| − eπn(|y|−2)

)
.

7. Evaluate p1 for any given x in Ω1 by:

p1(x) = P2 −B0 + u0 cosh(x/k)− 2B0

N∑

n=1

un cos(πnx).

Convergence rates of the sums are reasonable. For an we have:

ãn ≈ (−1)nn−3

and for two consecutive terms:

ãn + ãn+1 ≈ n−3 − (n+ 1)−3 ≈ n−4.

Series for p2 converge exponentially for y 6= 0. Error for y = 0 is of order N−3

with exception of x = 1 where cos(πn) cancels alternation in an and error is
N−2.

Even better is convergence of un sums, since:

un ≈ (−1)nn−5, un + un+1 ≈ n−6.

Thus for calculation of p1 we have error N−5 (for x = 1 only N−4). The error of
U is only N−4 as the sign alternation cancels with alternation of an. Practical
behavior of errors follows these estimates.

7
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4 Barrier fracture

The case with discontinuous p2 across the fracture is solved by the same ap-
proach as the continuous case, but the derivation is slightly more technical.
Considering the y axis symmetry of the problem (1 − 6) and the coupling
(10 − 12), we can consider the same system of equations on reduced domains
Ω+

2 = (0, 1)× (0, 1), Ω−2 = (0, 1)× (−1, 0), Ω1 = (0, 1). To impose the symmetry
we consider homogeneous Neumann boundary condition on the y axis {(0, y)}.

Repeating arguments from Section 3.1 we obtain Fourier expansion for p+2
and p−2 similar to (18):

p+2 (x, y) = P+
2 +B+

0 (y − 1)− u0
∞∑

n=1

a+n cos(πnx)sinh
(
πn(1− y)

)
, (38)

p−2 (x,−y) = P−2 +B−0 (y − 1)− u0
∞∑

n=1

a−n cos(πnx)sinh
(
πn(1− y)

)
. (39)

with some variable u0 to be specified later.
The equation for p1 on Ω1 can be converted to the form similar to (29):

− kp′′1(x) + p1(x) = P 2 −B0 − u0
∞∑

n=1

an cos(nπx) sinh(nπ) (40)

where we have used averaged variables:

σ = (σ+ + σ−), k =
√
k1/σ, P 2 =

σ+P+
2 + σ−P−2
σ

,

B0 =
σ+B+

0 + σ−B−0
σ

, an =
σ+a+n + σ−a−n

σ
.

Then we can repeat steps from Section 3.2 to get p1 expansion that closely
follows (31):

p1(x) = P 2 −B0 + u0 cosh(x/k)− u0
∞∑

n=1

un cos(πnx) (41)

where we finally identify u0 as:

u0 =
P1 − P 2 +B0 − u0U

cosh(1/k)
, (42)

and we set:

un =
an sinh(nπ)

1 + (knπ)2
, U = −

∞∑

n=1

(−1)nun. (43)

4.1 Coupling

As in Section 3.3, we plug expansion of p+2 , p−2 , and p1 into (10) and (11). We
group the terms to get Fourier expansion on the left hand side and a known
function of x on the right hand side. In particular on Γ+ we have:

8
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A+
0

2
+

∞∑

n=1

A+
n cos(nπx) = −u0 cosh(x/k). (44)

with

A+
0

2
=
k+2 B

+
0

σ+
− P+

2 + P 2 +B+
0 −B0 (45)

A+
n = u0a

+
n

(
nπ

k+2
σ+

cosh(nπ) + sinh(πn)
)
− u0un (46)

We reuse the calculation of Fourier coefficients of the right hand side from (36)
and (37) to obtain:

A+
0 = −2u0k sinh(1/k), (47)

A+
n = − (−1)n2u0k

1 + (knπ)2
sinh(1/k). (48)

Analogous relations hold for the lower side on Γ−.
Now we combine (46) and (48), we cancel u0, and we substitute for un using

(43). Performing the same operation for theA−n we obtain a system to determine
a+n , a−n :

(
X00
n X01

n

X01
n X11

n

)(
a+n
a−n

)
=

(
σ+yn
σ−yn

)
(49)

where

yn = − (−1)n2σk

1 + (knπ)2
sinh(1/k), (50)

X00
n = σnπk+2 cosh(nπ) + σσ+ sinh(πn)− (σ+)2

sinh(nπ)

1 + (knπ)2
, (51)

X11
n = σnπk−2 cosh(nπ) + σσ− sinh(πn)− (σ−)2

sinh(nπ)

1 + (knπ)2
, (52)

X01
n = −σ−σ+ sinh(nπ)

1 + (knπ)2
, (53)

(54)

The system matrix is strictly diagonally dominant providing k
+/−
2 , σ+/−, k1

are positive. There for coefficients a
+/−
n have the sign same as the right hand

side, that is (−1)n+1. This sign alternation cancels with signs in series for U
(43) which makes U always positive.

Now we express u0 from (42):

u0 =
P1 − P 2 +B0

cosh(1/k) + U
(55)

and we plug it into (47) which we compare to (45). Taking the same procedure
for A−0 we obtain a system for B+

0 , B−0 :

9
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(
A00 A01

A01 A11

)(
B+

0

B−0

)
=

(
σσ+(P+

2 − Pb)
σσ−(P−2 − Pb)

)
(56)

where

Pb = (1− T )P 2 + TP1, (57)

A00 = σk+2 + σσ+ + (T − 1)(σ+)2, (58)

A11 = σk−2 + σσ− + (T − 1)(σ−)2, (59)

A01 = (T − 1)σ+σ− (60)

denoting

T =
k sinh(1/k)

cosh(1/k) + U
.

The system matrix is strictly diagonally dominant as long as

k
+/−
2

σ+/− + 1 > 1 > T − 1.

Since U is positive we conclude:

T < k tanh(1/k) < 1

and the system matrix is always strictly diagonally dominant.

5 Evaluation procedure

Evaluation of the solution is performed in following steps:

1. Choose number of terms N in the truncated sums.

2. Solve systems (49) to obtain a+n , a−n for n = 1, . . . , N .

3. Compute un and the sum U according to (43).

4. Solve system (56) for B+
0 , B−0 .

5. Compute u0 using (55).

6. Evaluate p1 or p+2 , p−2 by truncated summation of the series (41), (38),
(39), respectively.

6 Verification by finite differences

In order to verify correctness of the analytical solution we have implemented a
finite difference solution for both the conductive fractue and the barrier fracture.
We use classical second order differences:

f ′′(x) =
−2f(x) + f(x− h) + f(x+ h)

h2
+O(h2),

f ′(x) =
−3f(x) + 4f(x+ h)− f(x+ 2h)

2h
+O(h2)

10
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Figure 1: Conductive fracture case. Left: Match between the analytical and
the numerical solution. Right: Difference of the analytical and the numerical
solution.
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Figure 2: Convergence rate p and absolute error exponent c as a function of k2
and σ. Left: Order of convergence p for p1, p2. Right: Absolute error exponent
c for p1, p2.
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wher h is the mesh step.
Figure 6 presents good match between the numerical solution (h = 0.01)

and the analytical solution (truncation after 1000 terms). Problem parameters
were: σ = 20, k1 = 10, k2 = 1, P2 = 10, P1 = 5. Estimate for the sum
reminder is 10−5. The magnitude of the error is of order 10−4. For the whole
technically feasible range h ∈ (0.1, 0.001) we have observed perfect second order
convergence.

This is displayed at Figure 6 which contains results of a parametric study of
the convergence rate as a function of parameters k1 ∈ [0.01, 0.1, 1, 10, 100] and σ
passing through the same set of values. The pressures P2 = 10, P1 = 5 and the
conductivity k2 = 1 are kept constant. For a fixed pair k1, σ we have estimated
the rate of convergence by computing the finite difference solution for a sequence
of mesh steps 0.1, 0.05, 0.025, 0.0125. For every mesh step the L2 errors ε1
and ε2 were approximated by the midpoint rule for p1 and p2 respectively. The
order of convergence p and the absolute error exponent c were determined by
the fit:

log2(ε) ≈ −c+ plog2(h)

Clearly the optimal second order convergence or better is preserved for ma-
jority of the parameter space. The drop to the linear convergence for com-
bination of small k1 and large σ is due to extreme derivatives of p1 close to
the endpoints −1, 1. This behavior can not be resolved by the used regular
gird. Also the absolute error exponent is well above 0 so the error have a small
magnitude.

In the similar fashion we have tested the analytical solution to the barrier
case. Shape of the solution and its match with the finite difference approxima-
tion is shown in Figure 6. The problem parameters were: k1 = 0.5, k+2 = 5,
k−2 = 2, σ+ = 20, σ− = 10, P1 = 0, P+

2 = 10, P−2 = −10, mesh step h = 0.01.
Notice the larger pressure gradient in lower part Ω− with smaller conductivity
k−2 = 2, also the gap between p1(x) and p2(x, 0) is larger due to smaller value
of σ− = 10.

The convergence rate for varying parameters is shown in Figure 6. In par-
ticular we have used σ+ = 3 ∗ √σ, σ− = σ and k+2 = k2, k−2 =

√
k2 with both

σ and k2 iterating through the list [0.01, 0.1, 1, 10, 100]. Remaining parameters
were fixed on following values: k1 = 1, P+

2 = 10, P−2 = −10, P1 = 0. Overall
convergence rate is close to or beyond second order as in the previous case we see
problems of the finite differences to resolve high gradient in p1 for high k2 and
σ. Absolute error is also small for small k2 which is natural since the solution
(both p1 and p2) tends to be constant in x.

7 Conclusion

The analytical solutution in form of Fourier series has been deriverd for the sym-
metrical conductive fracture problem as well as for the general barrier fracture
problem. The solution was modified for practical calculations and convergence
rate of the series were estimated theoretically and confirmed numericaly. It was
realized that summing 100 terms provides precision about 10−6 which would
be enough for most of applications. Adaptive summation can do even better.
Analytical solution was succefully verified against a finite difference solution.

12
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Figure 3: Barrier fracture case. Left: Match between the analytical and the nu-
merical solution. Right: Difference of the analytical and the numerical solution.
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The analyical solution is used as part of the test suit of the software Flow123d
[2] to test various methods of coupling for both conforming and non-conforming
mixed meshes.
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3.5 Scalable BDDC solver for conforming mixed mesh

The balanced domain decomposition by constraints provides e�cient and scalable method to
solve large systems. Its usage for systems formed for mixed mesh problems was challenging
as for the technical complexity as for the signi�cantly di�erent conductivities on the fractures
and on the matrix. Several new scaling methods have been proposed and tested in order to
compensate for the discontinuities on domain interfaces.
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SUMMARY

We extend the balancing domain decomposition by constraints (BDDC) method to flows in porous media
discretised by mixed-hybrid finite elements with combined mesh dimensions. Such discretisations appear
when major geological fractures are modelled by one-dimensional or two-dimensional elements inside three-
dimensional domains. In this set-up, the global problem and the substructure problems have a symmetric
saddle-point structure, containing a ‘penalty’ block due to the combination of meshes. We show that the
problem can be reduced by means of iterative substructuring to an interface problem, which is symmetric
and positive definite. The interface problem can thus be solved by conjugate gradients with the BDDC
method as a preconditioner. A parallel implementation of this algorithm is incorporated into an existing
software package for subsurface flow simulations. We study the performance of the iterative solver on several
academic and real-world problems. Numerical experiments illustrate its efficiency and scalability. Copyright
© 2015 John Wiley & Sons, Ltd.
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KEY WORDS: iterative substructuring; BDDC; saddle-point problems; mixed-hybrid methods; fractured
porous media; subsurface flow

1. INTRODUCTION

A detailed description of flow in porous media is essential for building mathematical models with
applications in, for example, water management, oil and gas recovery, carbon dioxide (CO2) seques-
tration or nuclear waste disposal. In order to set up a reliable numerical model, one needs to have
good knowledge of the problem geometry and input parameters. For example, the flow of water in
granite rock, which is a suitable site for nuclear waste disposal, is driven by the complex system
of vugs, cavities and fractures with various topology and sizes. These alter the effective perme-
ability and therefore should be accurately accounted for in the numerical model. There are two
main approaches: either the fractures are considered as free-flow regions or the fractures contain
debris and are also modelled as porous media with specific permeabilities. In the first case, a uni-
fied approach to modelling free-flow and porous media regions can be provided by the so-called
Stokes–Brinkman equation, which reduces to either the Stokes or Darcy model in certain parameter
limits, for example, within the multiscale mixed finite element framework [1]. In this paper, we con-
sider the latter case and apply the Darcy law to the flow in the reservoir and in the fractures as well;
see [2] for a related approach. In either case, the preferential flow in large geological dislocations
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and their intersections should be considered as two-dimensional (2D) and one-dimensional flows
(1D), respectively. Because of the quite complex structure of the domains, the discretisation is
performed using FEM. The resulting meshes are therefore unstructured, and they combine differ-
ent spatial dimensions (line elements in 1D, triangles in 2D and tetrahedrons in 3D). The systems
of linear equations obtained from the FEM discretisation are often very large so that using direct
methods is prohibitive and iterative solvers are warranted. The systems are typically also bad con-
ditioned because of the mixing of spatial dimensions, large jumps in permeability coefficients and
the presence of elements of considerably different sizes, and so they are challenging for iterative
solvers as well.

The matrices have a saddle-point structure"
A B

T

B �C

#
; (1)

where A is symmetric positive definite on the kernel of B and C is symmetric positive semi-definite
and it is positive definite on the kernel of B

T
. The ‘penalty’ block C ¤ 0 arises from connecting

meshes of different spatial dimensions. The iterative solution of systems with this structure is a
frequently studied topic; see, for example, [3–6], the monographs [7, 8] or [9, Chapter 9] and the
references therein. However, efficient methodologies for solving saddle-point problems are typically
problem dependent.

In this paper, we develop a robust and scalable solver for linear systems with the saddle-point
structure as in (1) with the block C either zero or nonzero. The solver is tailored to the mixed-hybrid
formulation of flow in porous media using the lowest-order Raviart–Thomas .RT0/ finite elements
with combined mesh dimensions (1D, 2D and 3D). In particular, we adapt the balancing domain
decomposition by constraints (BDDC) method to this type of problems.

The BDDC method is currently one of the most popular methods of iterative substructuring. It
has been proposed independently in [10–12]; see [13, 14] for the proof of equivalence. Even though
BDDC has been originally formulated for elliptic problems, it has been successfully extended, for
example, beyond elliptic cases [15, 16] and to multiple levels [17, 18]. An optimal set-up has been
studied in [19–22]. A closely related BDDC preconditioner for vector field problems discretised
with the Raviart–Thomas finite elements has been studied in [23].

We are interested in the applications of the BDDC method to saddle-point problems. If C D 0
in (1), one possible approach is to use an algebraic trick and constrain the iterative solution of the
indefinite problem into a balanced subspace, which is sometimes also called benign, where the
operator is positive definite; see [15] for the Stokes problem and [5, 24, 25] for flow in porous media.
However, because of the mixed-hybrid formulation and possible coupling of meshes with different
spatial dimensions, C ¤ 0 in general, and we will favour an alternative, dual approach here.

Our methodology is as follows. The mixed-hybrid formulation [26, 27] is used in order to mod-
ify the saddle-point problem to one that is symmetric and positive definite by means of iterative
substructuring. In particular, we introduce a symmetric positive definite Schur complement with
respect to interface Lagrange multipliers, corresponding to a part of block C . The reduced system
is solved by the preconditioned conjugate gradient (PCG) method, and the BDDC method is used
as a preconditioner. From this perspective, our work can be viewed as a further extension of [6].
Our main effort here is in accommodating the BDDC solver to flows in porous media with com-
bined mesh dimensions. In addition, the presentation of the BDDC algorithm is driven more by
an efficient implementation, while it is more oriented towards underlying theory in [6]. We take
advantage of the special structure of the blocks in matrix (1) studied in detail in [26, 28, 29]. In
particular, the nonzero structure of block C resulting from a combination of meshes with different
spatial dimensions is considered in [30]. We describe our parallel implementation of the method
and study its performance on several benchmark and real-world problems. Another original con-
tribution of this paper is proposing a new scaling operator in the BDDC method suitable for the
studied problems. We note that if there is no coupling of meshes with different spatial dimensions
present in the discretisation, the block C D 0 in (1) and our method is almost identical to the one
introduced in [6].
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The paper is organised as follows. In Section 2, we introduce the model problem. In Section 3,
we describe the modelling of fractured porous media and combining meshes of different dimen-
sions. In Section 4, we introduce the substructuring components and derive the interface problem. In
Section 5, we formulate the BDDC preconditioner. In addition, the selection of interface weights for
BDDC is studied in detail in Section 6. In Section 7, we describe our parallel implementation, and in
Section 8, we report the numerical results and parallel performance for benchmark and engineering
problems. Finally, Section 9 provides a summary of our work.

Our notation does not, for simplicity, distinguish between finite element functions and corre-
sponding algebraic vectors of degrees of freedom, and between linear operators and matrices within
a specific basis—the meaning should be clear from the context. The transpose of a matrix is denoted
by superscript T , and the energy norm of a vector x is denoted by kxkM D

p
xTMx, where M is

a symmetric positive definite matrix.

2. MODEL PROBLEM

Let � be an open-bounded polyhedral domain in R3. We are interested in the solution of the
following problem, combining the Darcy law and the equation of continuity written as

k�1uCrp D �r´ in�; (2)

r � u D f in�; (3)

p D pN on @�N ; (4)

u � n D 0 on @�E ; (5)

subject to boundary conditions on @� D @�N [@�E , where @�N stands for the part of the bound-
ary with natural (Dirichlet) boundary condition and @�E for the part with essential (Neumann)
boundary condition. In applications, the variable u describes the velocity of the fluid and p the pres-
sure (head) in an aquifer �;k is a symmetric positive definite tensor of the hydraulic conductivity,
�r´ D .0; 0;�1/T is the gravity term and n is the outer unit normal vector of @�. The term r´ is
present because u satisfies u D �krph, where ph D pC´ is the piezometric head. For a thorough
discussion of application background, we refer, for example, to monographs [31, 32].

Let T be the triangulation of domain � consisting of NE simplicial elements with characteristic
size h. We introduce a space

H.�I div/ D
®
v W v 2 L2.�/I r � v 2 L2.�/ and v � n D 0 on @�E

¯
; (6)

equipped with the standard norm. Let V � H.�; div/ be the space consisting of the lowest-order
Raviart–Thomas .RT0/ functions, and letQ � L2.�/ be the space consisting of piecewise constant
functions on the elements of the triangulation T . We refer, for example, to monograph [33] for a
detailed description of the mixed finite elements and the corresponding spaces.

In the mixed finite element approximation of problem (2)–(5), we look for a pair ¹u; pº 2 V �Q
that satisfiesZ

�

k�1u � v dx �
Z
�

pr � v dx D �
Z
@�N

pN v � n ds �
Z
�

v´ dx; 8v 2 V; (7)

�

Z
�

qr � u dx D �
Z
�

f q dx; 8q 2 Q: (8)

In the discrete formulation, we need pN and f only sufficiently regular so that the integrals in
the weak formulation (7)–(8) make sense, namely pN 2 L2.@�N /; f 2 L2.�/.

Next, we recall the mixed-hybrid formulation. It was originally motivated by an effort to
modify the saddle-point problem (7)–(8) to one that leads to symmetric positive definite matrices.

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2015)
DOI: 10.1002/nla

42
TECHNICAL UNIVERSITY OF LIBEREC Faculty of Mechatronics, Informatics and Interdisciplinary Studies Studentská 1402/2 461 17 Liberec 1 Czech Republic

phone:+420 485 353 624 jan.brezina@tul.cz www.fm.tul.cz ID: 467 47 885 VATIN: CZ 467 47 885
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Nevertheless, this formulation is also suitable for a combination of meshes with different spatial
dimensions, which will be described in detail in the next section.

Let F denote the set of inter-element faces of the triangulation T . We now introduce several
additional spaces. First, let us define the space V�1 by relaxing the condition of continuity of the
normal components in the space V on inter-element boundaries F . More precisely, we define local
spaces Vi for each element T i 2 T ; i D 1; : : : ; NE , by

Vi D
®
v 2 H.T i I div/ W v 2 RT0.T i /

¯
; (9)

and put V�1 D V1 � � � � �VNE . Next, we define the space of Lagrange multipliers ƒ consisting of
functions that take constant values on individual inter-element faces in F ,

ƒ D
®
� 2 L2.F/ W � D v � njF ; v 2 V

¯
: (10)

In particular, � D 0 on @� for any � 2 ƒ.
In the mixed-hybrid finite element approximation of problem (2)–(5), we look for a triple
¹u; p; �º 2 V�1 �Q �ƒ that satisfies

NEX
iD1

�Z
T i

k�1i u � v dx �
Z
T i
pr � v dx C

Z
@T in@�

�.v � n/j@Ti ds

�
(11)

D �

Z
@�N

pN v � n ds �
NEX
iD1

Z
T i
v´ dx; 8v 2 V�1;

�

NEX
iD1

�Z
T i
qr � u dx

�
D �

Z
�

f q dx; 8q 2 Q;

(12)

NEX
iD1

�Z
@T in@�

�.u � n/j@Ti ds

�
D 0; 8� 2 ƒ: (13)

Equation (13) imposes a continuity condition on the normal component of the velocity (also called
normal flux) u �n across F , which guarantees that u 2 V. This condition also implies the equivalence
of the two formulations (7)–(8), and (11)–(13). We note that the Lagrange multipliers � can be
interpreted as the approximation of the trace of p on F ; see [34] for details.

Let us now write the matrix formulation corresponding to (11)–(13) as24 A BT BTF
B 0 0

BF 0 0

3524 u
p

�

35 D
24 gf
0

35 : (14)

It is important to note that A is block diagonal with NE blocks, corresponding to elements T i ,
i D 1; : : : ; NE , and each of the blocks is symmetric positive definite (cf. the first term in (11)). It
was shown in [28] that the system of equations (14) can be reduced (twice) to the Schur complement
corresponding to the Lagrange multipliers � and solved efficiently by a direct or iterative solver.
Here, we will look for an efficient solution of a slightly modified, and in general, block dense,
system, which is introduced in the next section.

3. MODELLING OF FRACTURES

In this section, we recall the main ideas of the discrete model of the flow in fractured porous media
that is based on connection of meshes of different dimensions as described in [30]. Let us denote
the full domain by �3 D �. Next, consider lower-dimensional domains �d�1 � �d ; d D 2; 3,
such that �2 consists of polygons and �1 consists of line segments. We will also assume that
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@�1 � @�2 � @�3. The first condition requires that a domain of a lower dimension cannot
poke out of the domain of higher dimension, while the second condition prevents domains of lower
dimension from having boundaries in the interior of domains of higher dimension. We impose these
conditions to avoid technical difficulties in the analysis. However, numerical evidence suggests that
these conditions are not necessary, and in fact, they are not satisfied for the real-world problems
presented in Section 8.2.

For every dimension d D 1; 2; 3, we introduce a triangulation Td of the domain �d that consists
of finite elements T i

d
; i D 1; : : : ; N d

E and satisfies the compatibility conditions

T id�1 � Fd ; where Fd D
[
k

@T kd n @�d ; (15)

T id�1 \ @T
j

d
is either T id�1 or ;; (16)

for every i 2 ¹1; : : : ; N d�1
E º; j 2 ¹1; : : : ; N d

E º, and d D 2; 3. This means that elements of a lower
dimension match faces of elements of the higher dimension.

We consider Equations (3)–(5) on the domains �d ; d D 1; 2; 3, completed by a slight
modification of the Darcy law (2):

k�1d
ud
ıd
Crpd D �r´; (17)

where ud stands for the velocity integrated over the cross-section for d D 1; 2, that is, the units of
u3;u2 and u1 are m s�1, m2 s�1 and m3 s�1, respectively. In addition, ı3 D 1; ı2 is the thickness of
a fracture, and ı1 is the cross-section of a 1D preferential channel. The effective fluid source f2 on
�2 is given as

f2 D ı2 Qf2 C uC3 � n
C C u�3 � n

�; (18)

where Qf2 is the density of external fluid sources and the normal fluxes from the two faces of
the 3D continuum surrounding the fracture are given through the Robin (also called Newton)
boundary conditions

uC3 � n
C D �C3

�
pC3 � p2

�
; (19)

u�3 � n
� D ��3

�
p�3 � p2

�
: (20)

In the last formula, �C=�3 > 0 are the transition coefficients (cf. [2] for possible choices) and pC3 ; p
�
3

are the traces of pressure p3 on the two sides of the fracture. The effective fluid source f1 on �1 is
similar,

f1 D ı1 Qf1 C
X
k

uk2 � n
k; (21)

where Qf1 is the density of external fluid sources. In the 3D ambient space, the 1D channel can be
connected to k faces of 2D fractures. Thus,

uk2 � n
k D �k2

�
pk2 � p1

�
(22)

is the normal flux from the connected fracture k; �k2 > 0 is the transition coefficient and pk2 is the
trace of pressure p2 on the face of fracture k.

In the following, we describe the discrete mixed-hybrid formulation of the problem. The
formulation and discussion of the continuous problem can be found in [30]. Let us consider spaces

V�1 D V�11 � V�12 � V�13 ; V�1d D
Nd
EY

iD1

Vi
�
T id
�
; Q D Q1 �Q2 �Q3; Qd D L

2.�d /: (23)
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For the definition of the space ƒ, we cannot follow (10) directly, because, for example, on �2, we
need to distinguish values of �3 on the two sides of a fracture. Thus, we introduce a separate value
for every non-boundary side of every element:

ƒ
�
T id
�
D
°
� 2 L2

�
@T id n @�d

�
W � D v � n

ˇ̌̌
@T i
d
; v 2 Vd

±
; (24)

where Vd is defined in the same way as the space V but on the domain �d . Further, we identify
values on faces/points that are not aligned to the fractures/channels:

ƒd D

8<:� 2
Nd
EY

iD1

ƒ
�
T id
�
I �j@T i

d
D �j

@T
j

d

on faceF D @T id \ @T
j

d
ifF \�d�1 D ;

9=; : (25)

Finally, we redefine ƒ D ƒ1 � ƒ2 � ƒ3. In the mixed-hybrid finite element approximation of the
flow in fractured porous media, we seek a triple ¹u; p; �º 2 V�1 �Q �ƒ that satisfies

a.u; v/C b.p; v/C bF .�; v/ D hg; vi; 8v 2 V�1; (26)

b.u; q/ � c.p; q/ � cF .q; �/ D hf; qi; 8q 2 Q; (27)

bF .u; �/ � cF .p; �/ � Qc.�; �/ D 0; 8� 2 ƒ; (28)

with

a.u; v/ D
3X

dD1

Nd
EX

iD1

"Z
T i
d

1

ıd
k�1d ud � vd dx

#
; (29)

b.u; q/ D �
3X

dD1

Nd
EX

iD1

"Z
T i
d

qd .r � ud / dx

#
; (30)

bF .u; �/ D
3X

dD1

Nd
EX

iD1

"Z
@T i
d
n@�d

�j@T i
d
.ud � n/ ds

#
; (31)

c.p; q/ D

3X
dD2

Nd
EX

iD1

"Z
@T i
d
\�d�1

�d pd�1 qd�1 ds

#
; (32)

cF .p; �/ D �
3X

dD2

Nd
EX

iD1

"Z
@T i
d
\�d�1

�d pd�1 �d ds

#
; (33)

Qc.�; �/ D

3X
dD2

Nd
EX

iD1

"Z
@T i
d
\�d�1

�d �d �d ds

#
; (34)

hg; vi D �
3X

dD1

Nd
EX

iD1

Z
@T i
d
\@�N

pN .v � n/ ds �
3X

dD1

Nd
EX

iD1

Z
T i
d

v´ dx; (35)

hf; qi D �

3X
dD1

Z
�

ıd Qfd qd dx: (36)
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The system (26)–(28) now leads to the matrix form24 A BT BTF
B �C �C TF
BF �CF � QC

3524 u
p

�

35 D
24 gf
0

35 : (37)

We note that (37) is related to (26)–(28) in the same way as (14) is related to (11)–(13). The
main difference in the structure of the matrices between (37) and (14) is the additional block

C D

�
C C TF
CF QC

�
related to the normal fluxes between dimensions and arising from (19), (20) and

(22) via (32)–(34). In particular, the modified right-hand side of the continuity equation for 2D and
1D elements, f2 and f1, incorporates pressure unknowns on 2D and 1D elements and traces of pres-
sure on 3D and 2D elements at the fracture, which are nothing but the Lagrange multipliers on 3D
and 2D elements in the mixed-hybrid method. Consequently, pC=�3 D �

C=�
3 in (19) and (20) and

pk2 D �
k
2 in (22).

Assuming ıd is bounded and greater than zero and using the fact that kd corresponds to a sym-
metric positive definite matrix, we see from (29) that block A in (37) is symmetric positive definite.
Block C is symmetric positive semi-definite because

c.p; p/C 2cF .p; �/C Qc.�; �/ D
3X

dD2

Nd
EX

iD1

"Z
@T i
d
\�d�1

�d .pd�1 � �d /
2 ds

#
: (38)

The following theorem is a standard result, for example, [33, Theorem 1.2]. Here, we rewrite
it in a form suitable for our setting and we verify the assumptions for the specific blocks of the
matrix in (37). We will further denote Q D Q � ƒ;p D .p; �/ 2 Q; q D .q; �/ 2 Q and
b.u; q/ D b.u; q/C bF .u; �/.

Theorem 1
Let natural boundary conditions (4) be prescribed at a certain part of the boundary, that is, @�N;d¤;
for at least one d 2 ¹1; 2; 3º. Then the discrete mixed-hybrid problem (37) has a unique solution.

Proof
Let us first investigate the structure of the matrix in (37) more closely. Let us number the unknowns
within each block of (37) with respect to spatial dimension d 2 ¹1; 2; 3º. The matrix then takes the
form of 9 � 9 blocks,26666666666664

A11 BT11 BTF ;11
A22 BT22 BTF ;22

A33 BT33 BTF ;33
B11 �C11 �C TF ;12

B22 �C22 �C TF ;23
B33

BF ;11
BF ;22 �CF ;12 � QC22

BF ;33 �CF ;23 � QC33

37777777777775
: (39)

Suppose for a moment that we solve a problem only on domain �d ; d 2 ¹1; 2; 3º (i.e. �i D ; for
i ¤ d ). If no natural boundary conditions are imposed, there is a single �1 entry on each row of
BT
dd

and a singleC1 entry on each row of BTF ;dd . Because�d is a simply connected set, the matrix

B
T

dd D
h
BT
dd

BTF ;dd

i
has a nontrivial nullspace of constant vectors. Enforcing natural boundary

condition on a part of �d changes the C1 value on the corresponding row of matrix BTF ;dd to 0, in

which case B
T

dd has only a trivial nullspace, that is, full column rank (see, e.g. [33, Section IV.1] or
[26, Lemma 3.2]).
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Figure 1. Example of a two-dimensional problem, even single fracture gives rise to two components of the
two-dimensional mesh (left); example of three (shaded) triangles sharing a single Lagrange multiplier in

three dimension (right).

The nullspace becomes more complicated for domains with fractures, in which case�d typically
has more simply connected components separated by fractures (cf. Figure 1). Let us denote them
�c
k
; k D 1; : : : ; nc , regardless of the dimension. In particular, �c

k
; k D 1; : : : ; nci will be compo-

nents without natural condition boundary, that is, @�c
k
\ @�N D ;, while for k D nci C 1; : : : ; nc ,

we obtain components with prescribed natural boundary condition. We also denote �k 2 Q the
characteristic vector of the component �c

k
that takes value C1 for degrees of freedom associated

with elements and faces of the component �c
k

. With such notation, the basis of the nullspace of the
whole matrix

B
T
D

24BT11 BTF ;11
BT22 BTF ;22

BT33 BTF ;33

35 (40)

consists of characteristic vectors �k; k D 1; : : : ; nci and has dimension nci .
Next, we show that matrix C is not only symmetric positive semi-definite, as seen from (38), but

also positive definite on nullB
T

. To this end, take p 2 nullB
T

, a vector that is piecewise constant
on components, having value pk;d on the component �c

k
of dimension d for k D 1; : : : ; nci and

value pk;d D 0 for other components. Then pTCp D 0 implies p D pk;d D 0. Indeed, every
component�c

k
of dimension d D 2; 3 has some component�cj of dimension d �1 on its boundary,

and therefore, all pk;d have the same value (cf. (38)). This value is zero, because there is at least
one component with natural boundary condition.

Applying the congruence transformation, we obtain"
A B

T

B �C

#
D

�
I

BA�1 I

�"
A

�
�
BA�1B

T
C C

� #" I A�1BT
I

#
: (41)

Matrix A is symmetric positive definite from (29), and therefore, BA�1B
T

is symmetric positive

definite on range B , which is the orthogonal complement of the nullspace of B
T

. Thus, the Schur
complement BA�1B

T
C C is symmetric positive definite on whole Q. From the Sylvester law

of inertia, the number of positive, negative and zero eigenvalues is preserved by the congruence
transformation. Because the block-diagonal matrix on the right-hand side of (41) has only (strictly)
positive and (strictly) negative eigenvalues, the matrix on the left-hand side also must be nonsingular,
and problem (37) has a unique solution. �

4. ITERATIVE SUBSTRUCTURING

For our purposes of combining meshes with different spatial dimensions, we define substructures
as subsets of finite elements in the mesh rather than parts of a physical domain (cf. [9]).

To begin, let us define the combined triangulation T123 as the union of triangulations for each
spatial dimension, that is, T123 D T1 [ T2 [ T3. The triangulation T123 is subsequently divided into
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substructures�i ; i D 1; : : : ; NS . Note that, in general, a substructure can contain finite elements of
different dimensions. We define the interface � as the set of degrees of freedom shared by more than
one substructure. Note that � � ƒ for the current setting. Thus, let us split the Lagrange multipliers
� into two subsets. First, we denote by �� the set of multipliers corresponding to the interface � . The
remaining multipliers, corresponding to substructure interiors, will be denoted by �I . The interface
� i of substructure �i is defined as a subset of � corresponding to @�i . Next, let ƒi� be defined as
the space of Lagrange multipliers corresponding to � i ; i D 1; : : : ; NS , and define a space

ƒ� D ƒ
1
� � � � � �ƒ

NS
� : (42)

The substructure problems are obtained by assembling contributions of finite elements in each �i ,26664
Ai B iT B iTF ;I B iTF ;�
B i �C i �C iTF ;I �C

iT
F ;�

B iF ;I �C
i
F ;I �

QC iII �
QC iT�I

B iF ;� �C
i
F ;� �

QC�I
i � QC i��

37775
2664

ui

pi

�iI
�i�

3775 D
2664
gi

f i

0

0

3775 ; i D 1; : : : ; NS ; (43)

where the blocksAi are block diagonal with blocks corresponding to finite element matrices and the
blocksC

i
¤ 0 only if the substructure�i contains coupling of elements of different dimensions. We

note that the global problem (37) could be obtained from (43) by further assembly at the interface.
In the iterative substructuring (see, e.g. [9]), we first reduce the problem to substructure inter-

faces. In our context, we can eliminate normal fluxes, pressure unknowns and Lagrange multipliers
at interiors of substructures, and we can define the substructure Schur complements S i W ƒi� 7! ƒi� ,
i D 1; : : : ; NS , formally as

S i D QC i�� C
h
B iF ;� �C

i
F ;� �

QC i�I

i24 Ai B iT B iTF ;I
B i �C i �C iTF ;I
B iF ;I �C

i
F ;I �

QC iII

35�124 B iTF ;�
�C iTF ;�
� QC iT�I

35 : (44)

However, in an implementation of a Krylov subspace iterative method, we only need to compute
the matrix–vector product S i�i� for a given vector �i� . Therefore, the matrix is not constructed
explicitly, and the multiplication is obtained as follows.

Algorithm 2
Given �i� 2 ƒ

i
� , determine S i�i� 2 ƒ

i
� in the following two steps:

(1) solve a local Dirichlet problem24 Ai B iT B iTF ;I
B i �C i �C iTF ;I
B iF ;I �C

i
F ;I �

QC iII

3524 wi

qi

�iI

35 D �
24 B iTF ;�
�C iTF ;�
� QC iT�I

35�i� ; (45)

(2) perform two sparse matrix–vector multiplications

S i�i�  � �

0@� QC i���i� C hB iF ;� �C iF ;� � QC i�I i
24 wi

qi

�iI

351A : (46)

Next, let bƒ� be the space of global degrees of freedom, such that the values of degrees of freedom
from ƒ� coincide on � . The vectors of the local substructure degrees of freedom �i� 2 ƒ

i
� and the

vector of the global degrees of freedom �� 2 bƒ� are related by

�i� D R
i�� ; i D 1; : : : ; NS ; (47)

where Ri are the restriction operators. More specifically, each Ri is a 0–1 matrix such that every
row contains one entry equal to one, and RiRiT D I . The global Schur complementbS W bƒ� ! bƒ�
can be obtained as
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bS D NSX
iD1

RiTS iRi : (48)

Equation (48) represents the formal assembly of the substructure Schur complements into the
global Schur complement. The global Schur complement system, which we would like to solve
iteratively, reads bS�� Dbb; (49)

where vectorbb DPNS
iD1R

iT bi is obtained from substructure reduced right-hand sides

bi D
h
B iF ;� �C

i
F ;� �

QC i�I

i24 Ai B iT B iTF ;I
B i �C i �C iTF ;I
B iF ;I �C

i
F ;I �

QC iII

35�124 gif i
0

35 : (50)

In our implementation, we factor and store the matrices from (45). The factors are then used to
compute the vectors bi in (50), and especially in Algorithm 2, which is used in connection to formula
(48) to evaluate �� ! bS�� within each iteration of a Krylov subspace iterative method. This
algorithm allows a straightforward parallel implementation. After an approximate solution of (49)
is found, solution in interiors of substructures, including all primal variables, is recovered from (43)
using the factors from (45).

Remark 3
There are other ways to derive the interface problem (49). The authors of [6, 34] use a mixed-hybrid
formulation with Lagrange multipliers introduced only at the interface � as their starting point.
While problem (49) is equivalent to the interface problems considered in [6, 34], the substructure
problems therein have a different structure from (43). In particular, there are no blocks correspond-
ing to �iI , and the matrices corresponding to Ai are no longer block-diagonal element-wise. Next,
the authors of [28, 30] construct the explicit Schur complement with respect to the whole block of
Lagrange multipliers � and they show that because of the special structure of A, the complement is
both sparse and reasonably cheap to construct. If this was performed substructure by substructure,
this could be again seen as an intermediate step in obtaining problem (49) by additional elimination
of the interior Lagrange multipliers �I . However, this would again lead to different substructure
problems based on the explicit local Schur complements.

The following result allows an application of the BDDC method to problems with fractures.

Theorem 4
Let natural boundary conditions (4) be prescribed at a certain part of the boundary, that is, @�N;d¤;
for at least one d 2 ¹1; 2; 3º. Then the matrix bS in (49) is symmetric positive definite.

Proof
Using the notation of (40) and (41), let us introduce a matrix S D BA�1B

T
C C . The matrix S

is symmetric positive definite by Theorem 1 (and its proof). Applying another congruence transfor-
mation to S and denoting the rows corresponding to the interface Lagrange multipliers by subscript
� and the interior by I , we obtain

S D
�

SII ST�I
S�I S��

�
D

�
I

S�IS�1II I

� �
SII

S�� � S�IS�1II ST�I

� �
I S�1II ST�I

I

�
: (51)

Because the matrix on the left-hand side is symmetric positive definite, both diagonal blocks SII
and S�� � S�IS�1II ST�I are also symmetric positive definite from the Sylvester law of inertia.
It remains to note that the Schur complement bS in (49) is symmetric positive definite becausebS D S�� � S�IS�1II ST�I . �

Theorem 4 allows us to use the conjugate gradient method for the iterative solution of (49). In the
next section, we describe the BDDC method used as a preconditioner for bS .
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5. THE BDDC PRECONDITIONER

In this section, we formulate the BDDC method for the solution of (49). The algorithm can be
viewed as a generalisation of [6]. However, we follow the original description from [11], which
better reflects our implementation.

One step of BDDC provides a two-level preconditioner for the conjugate gradient method applied
to solving problem (49). It is characterised by the selection of certain coarse degrees of freedom
based on primary degrees of freedom at interface � . The main coarse degrees of freedom in this
paper are arithmetic averages over faces, defined as subsets of degrees of freedom shared by the
same two substructures. In addition, corner coarse degrees of freedom, defined as any selected
Lagrange multiplier at the interface, are used. Substructure edges, defined as subsets of degrees of
freedom shared by several substructures, may also appear (Remark 5).

The BDDC method introduces constraints that enforce continuity of functions fromƒ� at coarse
degrees of freedom among substructures. This gives rise to the space Qƒ� , which is given as the
subspace of ƒ� of functions that satisfy these continuity constraints. In particular,bƒ� � Qƒ� � ƒ� : (52)

Remark 5
In three spatial dimensions, several triangular elements can be connected at a single Lagrange multi-
plier in a star-like configuration (cf. Figure 1). A similar statement holds for line elements considered
in 2D or 3D space. This fact may lead to the presence of substructure edges and even vertices
(defined as degenerate edges consisting of a single degree of freedom), and we may prescribe also
edge averages as constraints. As mentioned earlier, we also select corners as coarse degrees of free-
dom. While essentially any degree of freedom at the interface � can be a corner, we select them by
the face-based algorithm [21]. This algorithm considers all vertices as corners, and, in addition, it
selects three geometrically well-distributed degrees of freedom from the interface between two sub-
structures sharing a face into the set of corners. Although considering corners is not the standard
practice with RT0 finite elements, in our experience, corners improve convergence for numerically
difficult problems, as can be observed for the engineering applications presented in Section 8.

We now proceed to the formulation of operators used in the BDDC method. The choice of con-
straints determines the construction of matrices Di . Each row of Di defines one coarse degree of
freedom at substructure �i , for example, a corner corresponds to a single 1 entry at a row and an
arithmetic average to several 1s at a row. The coarse basis functions ˆi� , one per each substructure
coarse degree of freedom, are computed by augmenting the matrices from (43) withDi and solving
the augmented systems with multiple right-hand sides2666664

Ai B iT B iTF ;I B iTF ;� 0

B i �C i �C iTF ;I �C
iT
F ;� 0

B iF ;I �C
i
F ;I �

QC iII �
QC iT�I 0

B iF ;� �C
i
F ;� �

QC i�I �
QC i�� DiT

0 0 0 Di 0

3777775
266664
X i

Zi

ˆiI
ˆi�
Li

377775 D
26664
0

0

0

0

I

37775 ; i D 1; : : : ; NS ; (53)

where I is the identity matrix and X i ; Zi and ˆiI are auxiliary matrices not used any further. As
shown in [35], the local coarse matrix S iCC is obtained as a side product of solving (53) as

S iCC D
�
X iT ZiT ˆiTI ˆiT�

	
26664

Ai B iT B iTF ;I B iTF ;�
B i �C i �C iTF ;I �C

iT
F ;�

B iF ;I �C
i
F ;I �

QC iII �
QC iT�I

B iF ;� �C
i
F ;� �

QC i�I �
QC i��

37775
2664
X i

Zi

ˆiI
ˆi�

3775 D �Li : (54)

Let us define, similarly to (47), operators RiC that relate vectors of local coarse degrees of freedom
�iC to the vector of global coarse degrees of freedom �C as

�iC D R
i
C�C : (55)
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The global coarse matrix SCC is then obtained by assembling the local contributions as

SCC D

NSX
iD1

RiTC S
i
CCR

i
C : (56)

Finally, let us define the scaling operators

W i W ƒi� ! ƒi� ; i D 1; : : : ; N S ; (57)

which are given as diagonal matrices of weights that satisfy

NSX
iD1

RiTW iRi D I: (58)

More details on the selection of diagonal entries in W i are given in Section 6.
With this selection of spaces and operators, we are ready to formulate the BDDC preconditioner.

Algorithm 6
The BDDC preconditioner MBDDC W r� 2 bƒ� ! �� 2 bƒ� is defined in the following steps:

(1) Compute the local residuals

r i� D W
iRir� ; i D 1; : : : ; NS : (59)

(2) Compute the substructure corrections �i�� by solving the local Neumann problems2666664
Ai B iT B iTF ;I B iTF ;� 0

B i �C i �C iTF ;I �C
iT
F ;� 0

B iF ;I �C
i
F ;I �

QC iII �
QC iT�I 0

B iF ;� �C
i
F ;� �

QC i�I �
QC i�� DiT

0 0 0 Di 0

3777775
266664
xi

´i

�iI�
�i��
l i

377775 D
26664
0

0

0

r i�
0

37775 ; i D 1; : : : ; NS : (60)

(3) Compute the coarse correction �iC by collecting the coarse residual

rC D

NSX
iD1

RiTC ˆ
iT
� r

i
� ; (61)

solving the global coarse problem

SCC �C D rC (62)

and distributing the coarse correction

�i�C D ˆ
i
�R

i
C�C ; i D 1; : : : ; NS : (63)

(4) Combine and average the corrections

�� D �

NSX
iD1

RiTW i
�
�i�� C �

i
�C

�
: (64)

We note that the factorisations of the matrices from (53) are also used for each solution of (60).
In order to apply the existing BDDC theory for elliptic problems (e.g. [13, 36]) to the pro-

posed preconditioner, we introduce some additional notation and make a few observations. The
substructure corrections in (60), due to (44), can be written equivalently as�

�S i DiT

Di 0

� �
�i��
l i

�
D

�
r i�
0

�
(65)
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and the construction of coarse basis functions ˆi� in (53) as�
�S i DiT

Di 0

� �
ˆi�
Li

�
D

�
0

I

�
: (66)

Next, let us formally write the operators and vectors in the block form

�� D

264 �1�
:::

�
NS
�

375 ; R D
264 R1

:::

RNS

375 ; W D
264W

1

: : :

W NS

375 ; S D
264 S

1

: : :

SNS

375 : (67)

By grouping the steps of Algorithm 6 and using (65), the operator of the BDDC preconditioner
can be formally written as

MBDDC D R
TW QS�1WR; (68)

where

QS�1 D �

´
diag

iD1;:::;NS

 h
Iƒi

�
0
i �
�S i DiT

Di 0

��1 �
Iƒi

�

0

�!

C

 
NSX
iD1

RiTC ˆ
iT
�

!T
S�1CC

 
NSX
iD1

RiTC ˆ
iT
�

!9=; :
(69)

The first term in QS�1 corresponds to substructure corrections, and the second term to the coarse
correction (steps 2 and 3 of Algorithm 6), and Iƒi

�
is the identity matrix inƒi� . From (68) and (69),

one can readily see that MBDDC is symmetric.

Assumption 7
Let us assume that

nullS i ? nullDi : (70)

In order to satisfy Assumption 7, we must prescribe enough coarse degrees of freedom as con-
straints along with the Robin boundary conditions (19), (20) and (22) at each fracture within
substructure �i . Because constrains in Di are linearly independent, DiT has full column rank. In
particular, Assumption 7 is satisfied when arithmetic averages are used on each substructure face
(and eventually edge) as constraints.

Lemma 8
The operator QS�1 in preconditioner MBDDC is symmetric and positive definite on the space Qƒ� .

Proof
The space Qƒ� is decomposed into the substructure spaces and the coarse space,

Qƒ� D Qƒ�� ˚ Qƒ�C : (71)

To achieve this splitting, each local space ƒi� is decomposed into subspaces

ƒi� D nullDi ˚ rangeˆi� ; (72)

corresponding to the substructure space Qƒi�� and the coarse space on substructure �i ; Qƒ�C j�i ,
respectively. To analyse this decomposition, let us recall that S i is a positive semi-definite matrix
and write (66) in detail as

S iˆi� D D
iTLi ; (73)

Diˆi� D I: (74)
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J. ŠÍSTEK, J. BŘEZINA AND B. SOUSEDÍK

From (73),

range
�
S iˆi�

�
� rangeDiT ? nullDi ; (75)

which in turn, similarly to [36, Lemma 8], gives for any �i� 2 nullDi and 	 iC 2 rangeˆi�

�iT� S
i	 iC D 0: (76)

From (74), the matrix ˆi� has full column rank and

nullDi \ rangeˆi� D 0: (77)

Finally, from Assumption 7 and (72),

nullS i � rangeˆi� : (78)

Decomposition of the subdomain space (72) implies decomposition of a function 
i 2 ƒi� to

i D 
i� C 


i
C , where 
i� 2 nullDi ; 
iC 2 rangeˆi� and 
iT� S

i
iC D 0 by (76).
Let us first analyse the substructure corrections. Following [3, Section 3.3], the matrix of (65) is

invertible because of Assumption 7. If we define, in addition, a matrixQi with orthonormal columns
forming a basis of nullDi , that is,

rangeQi D nullDi ; QiTQi D I; (79)

we have h
Iƒi

�
0
i �
�S i DiT

Di 0

��1 �
Iƒi

�

0

�
D �Qi

�
QiTS iQi

��1
QiT : (80)

The matrix
�
QiTS iQi

��1
is symmetric positive definite, and consequently, for any 
i 2 ƒi� ,

� 
iTQi
�
QiTS iQi

��1
QiT 
i 6 0 (81)

with equality if 
i D 
iC 2 rangeˆi� .
Next, let us turn towards the coarse correction. Formula (54) for S iCC can be written

equivalently as

S iCC D �ˆ
iT
� S

iˆi� : (82)

Because the term on the right-hand side is just a (negative) Galerkin projection of the positive semi-
definite matrix S i , matrix S iCC is symmetric negative semi-definite. If at least one substructure is
equipped with natural boundary conditions, the matrix SCC assembled by (56) becomes symmetric
negative definite and so is S�1CC .

We have just verified the negative definiteness of the principal parts of QS�1, and the desired
positive definiteness is obtained through the change of sign in front of the braces in (69). �

In view of Lemma 8, the standard condition number bound follows from [13, Lemma 2].

Theorem 9
The condition number � of the preconditioned operator MBDDC

bS satisfies

� 6 ! D max
��2 Qƒ�



RRTW ��

2S
k��k

2
S

: (83)

The norms in (83) are induced by the matrix S defined in (67) for all functions �� 2 Qƒ� .
In addition, in the case of a single mesh dimension in either 2D or 3D, and under the assumption

of substructure-wise constant hydraulic conductivities, it has been also derived in [6, Lemma 5.5
and Theorem 6.1] that the condition number bound ! satisfies
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! 6 C
�
1C log

H

h

�2
; (84)

where H is the characteristic size of geometric substructures.
We note that the bound (84) implies that for a fixed relative subdomain size H=h, the condition

number is independent of the problem size.
It is worth emphasising that Theorem 9 is also valid for combined mesh dimensions. However,

several simplifications are employed in [6] to obtain (84), which are not satisfied in the set-up
considered in this paper. In particular (i) hydraulic conductivity coefficient here is, in general, not
substructure-wise constant nor isotropic; and (ii) it is not clear whether in the presence of fractures,
the interpolation operator onto a conforming mesh introduced in [6] can be constructed and bounded
in the H 1 norm.

6. SCALING WEIGHTS IN BDDC

Let us now discuss the choice of entries in the diagonal weight matrices W i . These matrices play
an important role in the BDDC method, both in the theory (cf. Theorem 9 or [6, 13, 37]) and in
the computations (cf. [19, 38]). Three possible choices are also studied numerically in Section 8.2.
The basic choice is presented by the arithmetic average taken from values at the neighbouring
substructures. In this simplest construction, the entry corresponding to Lagrange multiplier �i�;j is
given by the inverse counting function as

W i
jj D

1

card.Ij /
; (85)

where card.Ij / is the number of substructures in the set Ij of indices of substructures to which
�i�;j belongs. For 2D or 3D meshes without fractures,W i

jj D
1=2 for the Raviart–Thomas elements.

However, because several 2D fractures can meet in our setting, smaller weights can occasionally
appear at such regions.

While arithmetic average is sufficient for problems with homogeneous coefficients, it is well
known that for problems with large variations in material properties along the interface, it is nec-
essary to incorporate their values into the (weighted) average to obtain a robust method. This gives
rise to the �-scaling, for which

W i
jj D

�iPcard.Ij /
kD1

�k

; (86)

where �k is a material characteristic for substructure�k . This choice is robust with respect to jumps
in coefficients across the interface (cf. [6, 9]); however, coefficients are assumed constant for each
substructure. This requirement is very restrictive for practical computations with quickly varying
coefficients, and we employ a generalisation that takes into account the material coefficient of the
element to which the Lagrange multiplier �i�;j corresponds. In our case, we use �i D d=tr .k�1/,
where d 2 ¹1; 2; 3º is the dimension of the element T i . This value can be seen as a representative
hydraulic conductivity on the element.

Finally, we propose a modification of the popular scaling by diagonal stiffness [19]. In the usual
diagonal stiffness approach, the optimal weight, which is the diagonal entry of the Schur comple-
ment, is approximated by the diagonal entry of the original substructure matrix. However, this is
not directly applicable to the indefinite system (43), as, in general, matrix C i contains only seldom
nonzeros on the diagonal. For this reason, we approximate the diagonal of the Schur complement as

W i
jj D

QC i��;jj C
1

Ai
kk

; (87)

where the index k corresponds to the row in block Ai of the element face to which the Lagrange
multiplier �i�;j belongs.
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Using the diagonal stiffness scaling in connection with the standard Lagrange finite elements
may lead to poor convergence for problems with rough interface [19, 38], for which the diagonal
stiffness can vary quickly even for smooth problems with constant coefficients on uniform meshes.
This is a severe issue for practical computations, in which graph partitioners are typically used for
creating substructures. However, this issue is not as pronounced for the Raviart–Thomas elements,
for which only one element contributes to the stiffness on the diagonal at an interface degree of
freedom, and thus, irregularities caused by changing number of elements contributing to an interface
weight cannot occur. On the other hand, an advantage of the diagonal stiffness scaling is the fact,
that—unlike the �-scaling—it takes into account the shape and relative sizes of elements, which
vary considerably in engineering applications, as well as the effect of ıd introduced in (29) and (36).
Unless stated otherwise, scaling (87) is used in the computations presented in Section 8.

7. THE PARALLEL SOLVER

The basis for an efficient parallel implementation of the method described in previous sections
was obtained by combining two existing open-source software packages: the finite element pack-
age Flow123d ‡ (version 1.6.5) for underground fluid flow simulations and the BDDC-based solver
BDDCML § (version 2.0) used for the solution of the resulting system of equations. However,
minor changes have been made to both codes to support the specific features, such as the weights
(86) and (87).

The Flow123d package has been developed for modelling complex behaviour of underground
water flow and pollution transport. However, only the simple flow in a fully saturated porous media
described by the Darcy law is considered in this paper. To accurately account for fractures in the
medium, such as granite rock, the solver allows us to combine finite elements of different dimen-
sions: the 3D elements of porous media are combined with 2D elements modelling planar fractures,
which may be in turn connected in 1D elements for channels. The Raviart–Thomas elements are
consistently used throughout such discretisation. Although the fractures are also modelled as porous
media, their hydraulic conductivity is by orders of magnitude higher than that of the main porous
material of the domain. In addition, the finite element discretisations are typically not uniform within
the domain, and the relative sizes of elements may also vary by orders of magnitude. Both these
aspects give rise to very poorly conditioned linear systems, which are very challenging for itera-
tive solvers. The Flow123d solver has been developed for over 10 years, and it is written in C/C++
programming language with object-oriented design and parallelism through MPI.

The BDDCML is a library for solving algebraic systems of linear equations by means of the
BDDC method. The package supports the adaptive-multilevel BDDC method [22] suitable for very
high number of substructures and computer cores, although we only use the standard (non-adaptive
two-level) BDDC method from [6, 11] for the purpose of this paper. The BDDCML library is typ-
ically interfaced by finite element packages, which may provide the division into substructures.
This feature is used in our current implementation, in which the division into non-overlapping sub-
structures is constructed within the Flow123d using the METIS (version 5.0) package [39]. One
substructure is assigned to a processor core in the current set-up of the parallel solver, although
BDDCML is more flexible in this respect. The library performs the selection of additional cor-
ners by the face-based algorithm from [21]. The BDDCML package is written in Fortran 95 and
parallelised through MPI.

The BDDCML solver relies on a serial instance of the MUMPS direct solver [40] for the solu-
tion of each local discrete Dirichlet problem (45) as well as for the solution of each local discrete
Neumann problem (60). The coarse problem (62) is solved by a parallel instance of MUMPS. The
main difference from using BDDCML for symmetric positive definite problems is the need to use
the LDLT factorisation of general symmetric matrices for problems (45), which are saddle-point
(i.e. indefinite) systems in the present setting.

‡ http://flow123d.github.io
§http://users.math.cas.cz/~sistek/software/bddcml.html
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Although the original system (37) is indefinite, system (49) is symmetric positive definite, which
allows the use of the PCG method. One step of BDDC is used as the preconditioner within the PCG
method applied to problem (49). The matrix of problem (49) is not explicitly constructed in the
solver, and only its actions on vectors are computed following (45)–(48).

Remark 10
In our implementation, we change the sign neither in the action of S i (46) nor in the action of the
preconditionerMBDDC (64). Because both are then strictly negative definite, the productMBDDC

bS
is the same as if both signs were changed, and the PCG method runs correctly. In this way, no
changes are necessary in an implementation developed for symmetric positive definite problems.

8. NUMERICAL RESULTS

In this section, we investigate the performance of the algorithm and its parallel implementation
on several benchmark problems in 2D and 3D, and on two geoengineering problems of existing
localities in 3D. For the two benchmark problems without fractures, we perform weak scaling tests.
For the benchmark problem with fractures and for the geoengineering problems, we perform strong
scaling tests with the problem size fixed and increasing number of processor cores. In all cases,
the PCG iterations are run until the relative norm of residual



r .k/

 = 


bb


 < 10�7. If not stated
otherwise, the proposed scaling by diagonal stiffness (87) is used within the averaging operator
of BDDC.

8.1. Results for benchmark problems

First, the performance of the solver is investigated on a unit square and a unit cube discretised
solely using 2D and 3D finite elements, respectively. For this reason, block C in system (37), which
is related to combining elements of different dimension, is zero, and the problem reduces to the
standard problem (14). The sequence of unstructured meshes is approximately uniform for both

Figure 2. Example of solution to the model square problem containing only two-dimensional elements, plot
of pressure head with mesh (left) and velocity vectors (right).

Figure 3. Example of solution to the model cube problem containing only three-dimensional elements, plot
of pressure head with mesh (left) and velocity vectors (right).
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problems, and the problems do not contain any jumps in material coefficients. In Figures 2 and 3,
example meshes and the resulting pressure head and velocity fields are presented. While gravity is
present in the 3D case, its effect is not considered in the 2D case.

The results of the weak scaling tests are summarised in Tables I and II. To give a better view, the
resulting solution times for different problem sizes are also visualised in Figure 4. In these tables,
N denotes the number of substructures and processors, n is the size of the global problem (37), n�
is the size of the interface problem (49), nf denotes number of faces, nc denotes number of corners,
‘Its.’ stands for resulting number of PCG iterations and ‘Cond.’ is the approximate condition number
computed from the Lanczos sequence in PCG. We report separately the time spent in preconditioner
set-up, the time spent by PCG iterations and the total time for the whole solve.

Table I. Weak scaling test for the 2D square problem, each substructure problem contains approxi-
mately 100 000 unknowns.

Time (s)

N n.�103/ n=N.�103/ n� nf nc Its. Cond. Set-up PCG Solve

2 207 103 155 1 2 7 1.37 8.3 1.6 9.9
4 440 110 491 5 10 8 1.60 12.2 2.2 14.4
8 822 103 1 236 13 26 9 1.78 11.0 2.5 13.5
16 1 783 111 2 816 33 66 8 1.79 14.3 2.7 17.0
32 3 332 104 5 940 74 148 9 1.79 12.1 3.3 15.4
64 7 201 113 13 048 166 332 9 1.85 14.8 4.4 19.2

Its., resulting number of preconditioned conjugate gradient (PCG) iterations; Cond., the approximate
condition number from the Lanczos sequence in PCG.

Table II. Weak scaling test for the 3D cube problem, each substructure problem contains approxi-
mately 100 000 unknowns.

Time (s)

N n.�103/ n=N.�103/ n� nf nc Its. Cond. Set-up PCG Solve

2 217 108 884 1 3 11 2.88 11.7 2.3 14.0
4 437 109 2 315 6 18 12 3.04 11.7 2.5 14.2
8 945 118 5 677 21 63 15 12.00 15.4 4.0 19.3
16 1 647 103 12 773 56 168 16 6.58 12.9 4.0 17.0
32 3 393 106 29 824 132 401 18 10.10 15.4 5.2 20.6
64 6 108 95 59 617 307 931 19 16.58 13.7 6.3 20.0

Its., resulting number of preconditioned conjugate gradient (PCG) iterations; Cond., the approximate
condition number from the Lanczos sequence in PCG.
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Figure 4. Weak scaling test for the two-dimensional square problem (left) and the three-dimensional cube
problem (right), approximately 100 000 unknowns per core. Computational times separately for set-up and

preconditioned conjugate gradient (PCG) phases and their sum (solve).
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In these weak scaling tests, the number of unknowns per core is kept approximately constant
around 105. These weak scaling tests were performed using up to 64 cores of the SGI Altix UV
supercomputer at the Supercomputing Centre of the Czech Technical University in Prague. The
computer contains twelve Intel Xeon processors, each with six cores at frequency 2.67 GHz. Intel
compilers version 12.0 were used.

The numbers of PCG iterations and condition number estimates in Tables I and II confirm the
expected numerical scalability of the BDDC method, which is well known for symmetric positive
definite problems as well as for the Darcy flow problems [6, 37]. The slight irregularities in the
condition number in Table II are probably caused by using non-nested unstructured meshes.

Looking at times in these tables and in Figure 4, we can see almost optimal scaling, with only
mild growth of times with number of cores. The numbers of PCG iterations are higher in 3D, and
the time spent in PCG iterations grows proportionally, while the time spent in the set-up phase does
not differ considerably between 2D and 3D settings and dominates the overall time.

The next benchmark problem is considerably more complicated. It consists again of a unit cube,
which now contains four planar fractures aligned with diagonals of a 2D cross-section. These four
planar fractures meet at a 1D channel in the centre of the cross-section. Therefore, the problem
contains the full possible combination of 3D, 2D and 1D finite elements. The tensor k is isotropic;
thus, it is just a scalar multiple of identity. The corresponding scalar value is set to 10, 1 and 0.1 for
1D, 2D and 3D elements, respectively.

We perform a strong scaling test with this problem, keeping the mesh size fixed with approx-
imately 2.1 million elements and 14.6 million degrees of freedom. In Figure 5, the computational
mesh and the resulting pressure head and velocity fields are presented. This scaling test was
computed on the Cray XE6 supercomputer Hector at the Edinburgh Parallel Computing Centre.
This supercomputer is composed of 2816 nodes, each containing two AMD Opteron Interlagos
processors with 16 cores at 2.3 GHz. GNU compilers version 4.6 were employed.

Results of the strong scaling test are summarised in Table III, and the computing times are visu-
alised also in Figure 6 together with the parallel speed-up. The reference value for computing
speed-up is the time on 16 cores, and the speed-up on np processors is computed as

snp D
16 t16

tnp
; (88)

where tnp is the time on np processors.
We can see that the number of PCG iterations grows with the number of substructures for this

problem, which is also confirmed by the growing condition number estimate. While the time spent
in set-up phase scales very well, the time spent in PCG grows together with the number of iterations.
The reason for this growth seems to be related to the larger interface, at which more numerical
difficulties appear. This seems to be related to more 1D–2D and 2D–3D connections at the interface
and makes this difficult problem a good candidate for using the Adaptive BDDC method [22, 41].
However, this will be the subject of a separate study.

Figure 5. Example of solution to the model cube problem containing one-dimensional, two-dimensional and
three-dimensional elements, plot of pressure head with mesh and fractures (left) and velocity vectors (right).
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Table III. Strong scaling test for the cube problem with 1D, 2D and 3D elements, size of the
global problem is n D 14:6million unknowns.

Time (s)

N n=N.�103/ n� .�10
3/ nf nc Its. Cond. Set-up PCG Solve

16 912 47 53 159 26 59.3 171.6 84.5 256.2
32 456 65 126 380 48 2091.0 90.1 109.8 200.0
64 228 86 301 914 81 1436.1 36.8 77.1 114.0
128 114 116 689 2076 109 2635.8 14.3 43.1 57.4
256 57 151 1436 4365 164 1700.5 6.7 31.2 38.0
512 28 196 3021 9244 254 42614.5 4.0 26.9 30.9

Its., resulting number of preconditioned conjugate gradient (PCG) iterations; Cond., the approximate
condition number from the Lanczos sequence in PCG.
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Figure 6. Strong scaling test for the cube problem with one-dimensional, two-dimensional and three-
dimensional elements and 14.6 million unknowns, computational time (left) and speed-up (right) separately

for set-up and preconditioned conjugate gradient (PCG) phases, and their sum (solve).

8.2. Results for geoengineering problems

The performance of the algorithm and its parallel implementation has been investigated on two
engineering problems of underground flows within real geologic locations. For both problems, the
porous medium is fractured granite rock, with the fractures modelled by 2D elements.

The first problem is the Melechov locality, which models one of the candidate sites for a nuclear
waste deposit to be build within the Czech Republic in the future. The goal is to model the under-
ground flow and estimate the speed at which an eventual radioactive pollution would spread. The
computational mesh contains 2.1 million finite elements resulting in 15 million unknowns. The
geometry of the problem with the resulting distribution of piezometric head and the finite element
mesh is presented in Figure 7. The problem contains vertical 2D fractures visualised in Figure 8. The
maximal hydraulic conductivity within the fractures is 6:3 � 104 m s�1, while the minimal conduc-
tivity of the outer material is 6:0 � 10�3 m s�1, the transition coefficient �3 = 1 s�1 and the effective
thickness of fractures ı2 = 0.1 m.

We perform a strong scaling test for this problem, keeping the problem size fixed and increasing
the number of substructures and computing cores. An example of division into 64 substructures is
presented in Figure 8. The scaling test was computed on the Hector supercomputer.

Table IV summarises the results of this test. We can still see some growth of the number of iter-
ations with the number of substructures, which is, however, much milder than the growth observed
for the unit cube with fractures in Table III. Correspondingly, the times reported in Table IV and
visualised in Figure 9 show an optimal scaling of the solver over a large range of core counts.

The second engineering model is the locality around the Bedřichov tunnel. The main purpose of
this 2.1-km long tunnel near the city of Liberec in the north of the Czech Republic is to accommodate
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Δ = 12100 m

Δ = 9940 m

Δ =1410 m

Figure 7. The problem of the Melechov locality containing two-dimensional and three-dimensional ele-
ments; mesh contains 2.1 million elements and 15 million unknowns. Plot of the piezometric head. Data by

courtesy of Jiřina Královcová.

Figure 8. The problem of the Melechov locality: the system of fractures (left) and an example division into
64 substructures (right).

Table IV. Strong scaling test for the problem of the Melechov locality containing 2D and 3D
elements, size of the global problem is n D 15million unknowns.

Time (s)

N n=N.�103/ n� .�10
3/ nf nc Its. Cond. Set-up PCG Solve

16 934 36 32 96 40 53.0 131.4 144.1 275.6
32 467 54 76 228 70 878.3 47.5 112.9 160.4
64 233 82 186 561 67 202.4 17.4 50.2 67.7
128 117 116 528 1592 69 237.6 7.9 23.1 31.1
256 58 155 1235 3747 96 5577.0 4.0 14.7 18.8
512 29 207 2699 8256 106 1658.1 2.2 8.3 10.5
1024 15 271 5711 17581 119 11554.5 2.1 7.0 9.2

Its., resulting number of preconditioned conjugate gradient (PCG) iterations; Cond., the approximate
condition number from the Lanczos sequence in PCG.

water pipes, which supply the city by drinking water from a reservoir in the mountains. How-
ever, this locality is also a valuable site for experimental geological measurements performed inside
the tunnel.

The model aims at describing the flow in the granite rock surrounding the tunnel. The compu-
tational mesh consists of 1.1 million elements leading to 7.8 million unknowns. The mesh with the
plot of resulting piezometric head is presented in Figure 10. The system of fractures and an exam-
ple division into 256 substructures are visualised in Figure 11. The hydraulic conductivity of the
fractures is 10�7 m s�1, while the conductivity of the outer material is 10�10 m s�1, the transition
coefficient �3 = 1 s�1 and the effective thickness of fractures ı2 = 1.1 m.
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Figure 9. Strong scaling test for the problem of the Melechov locality containing two-dimensional and three-
dimensional elements and 15 million unknowns, computational time (left) and speed-up (right) separately

for set-up and preconditioned conjugate gradient (PCG) phases, and their sum (solve).

1754 m (width)

2655 m (length)

458 m (height)

Figure 10. The Bedřichov tunnel problem containing two-dimensional and three-dimensional elements;
mesh contains 1.1 million elements and 7.8 million unknowns. Plot of the piezometric head. Data by courtesy

of Dalibor Frydrych.

Figure 11. The Bedřichov tunnel problem: the system of fractures (left) and an example division into 256
substructures (right).

Although the mesh contains fewer finite elements than the one of the Melechov locality model,
this problem is considerably more complicated. This is caused mainly by the presence of relatively
very small and irregularly shaped finite elements in the vicinity of the tunnel and near the cross-
sections of fractures (Figure 12) generated by the mesh generator.

The results of a strong scaling test are summarised in Table V. As before, the times are also
plotted in Figure 13. Although the number of iterations is not independent of the number of sub-
structures, the growth is still small. Consequently, the computing times, and especially the time for
set-up, scale very well over a large range of numbers of substructures. The observed super-optimal
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Figure 12. Example of difficulties in the mesh of the Bedřichov tunnel problem: detail of the tunnel geometry
with fine elements (left) and enforced refinement at an intersection of fractures (right).

Table V. Strong scaling test for the problem of the Bedřichov tunnel containing 2D and 3D
elements, size of the global problem is n D 7:8million unknowns.

Time (s)

N n=N.�103/ n� .�10
3/ nf nc Its. Cond. Set-up PCG Solve

32 245 20 106 322 112 1514.1 110.3 144.0 254.3
64 123 28 192 597 63 117.7 42.2 36.0 78.3
128 61 45 413 1293 75 194.4 13.4 16.8 30.3
256 31 72 902 2791 119 526.7 4.2 10.9 15.1
512 15 110 2009 6347 137 1143.4 1.8 7.1 9.0
1024 8 155 4575 14725 173 897.0 1.6 8.0 9.7

Its., resulting number of preconditioned conjugate gradient (PCG) iterations; Cond., the approximate
condition number from the Lanczos sequence in PCG.
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Figure 13. Strong scaling test for the problem of the Bedřichov tunnel containing two-dimensional and three-
dimensional elements and 7.8 million unknowns, computational time (left) and speed-up (right) separately

for set-up and PCG phases, and their sum (solve).

scaling may be related to faster factorisation of the smaller local problems by the direct solver for
indefinite matrices.

Table VI summarises an experiment performed to analyse the effect of using corners in the
construction of the coarse space in BDDC. As has been mentioned in Section 5, using the
Raviart–Thomas finite elements does not lead to ‘natural’ corners as cross-points shared by several
substructures. On the other hand, the notion of corners was generalised to any selected interface
degree of freedom, at which continuity of functions from the coarse space is required. Such gen-
eralisation is important for the well posedness of the local problems for unstructured meshes, for
example, in elasticity analysis [21]. This is also the default option for BDDCML, in which selection

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2015)
DOI: 10.1002/nla

62
TECHNICAL UNIVERSITY OF LIBEREC Faculty of Mechatronics, Informatics and Interdisciplinary Studies Studentská 1402/2 461 17 Liberec 1 Czech Republic

phone:+420 485 353 624 jan.brezina@tul.cz www.fm.tul.cz ID: 467 47 885 VATIN: CZ 467 47 885
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Table VI. Effect of using corners.

N n=N
Without corners With corners

.�103/ Its. Cond. Time (s) Its. Cond. Time (s)

Set-up PCG Solve Set-up PCG Solve

32 245 131 1789.6 107.5 175.0 282.5 112 1514.1 110.3 144.0 254.3
64 123 70 122.2 40.3 40.4 80.7 63 117.7 42.2 36.0 78.3
128 61 96 208.5 10.9 21.6 32.6 75 194.4 13.4 16.8 30.3
256 31 139 541.9 3.7 12.5 16.2 119 526.7 4.2 10.9 15.1
512 15 197 1418.9 1.4 10.0 11.4 137 1143.4 1.8 7.1 9.0
1024 8 312 3779.4 1.0 14.5 15.6 173 897.0 1.6 8.0 9.7

Problem of the Bedřichov tunnel containing two-dimensional and three-dimensional elements, size of the
global problem is n D 7:8million unknowns. In column ‘Without corners’, no additional corners are selected
in balancing domain decomposition by constraints. In column ‘With corners’, additional corners are selected.
Its., resulting number of preconditioned conjugate gradient (PCG) iterations; Cond., the approximate condition
number from the Lanczos sequence in PCG.

Table VII. Comparison of different averaging techniques for the Bedřichov tunnel containing 2D
and 3D elements, size of the global problem is n D 7:8million unknowns.

N n=N n� nf nc
Arithmetic avg. Mod. �-scal. Diagonal scal.

.�103/ .�103/ Its. Cond. Its. Cond. Its. Cond.

32 245 20 106 322 637 9811.7 110 1467.8 112 1514.1
64 123 28 192 597 618 10254.1 62 115.1 63 117.7
128 61 45 413 1293 2834 1.0e+11 206 401641.4 75 194.4
256 31 72 902 2791 799 11172.9 117 512.9 119 526.7
512 15 110 2009 6347 883 15449.6 136 1160.1 137 1143.4
1024 8 155 4575 14725 n/a 2.5e+10 504 99023.6 173 897.0

Its., resulting number of preconditioned conjugate gradient (PCG) iterations; Cond., the approximate
condition number from the Lanczos sequence in PCG.

of corners is performed at each face between two substructures. Adding corners improves the
approximation properties of the coarse space at the cost of increasing the size of the coarse prob-
lem. Table VI compares the convergence for variable number of substructures without and with
constraints at corners. Column ‘With corners’ in Table VI corresponds to results in Table V, and it
is repeated for comparison. We can see that while the effect of corners on convergence is small for
smaller number of substructures, the improvement of the coarse problem and the approximation of
BDDC becomes more significant for higher numbers of cores. Looking at times in Table VI, the
additional time spent in the set-up phase due to higher number of constraints when using corners is
compensated by the lower number of PCG iterations, resulting in lower overall times. Thus, using
additionally selected corners appears beneficial for complicated engineering problems like this one.

In the final experiment, we compare the effect of different averaging techniques on the conver-
gence of BDDC. In Table VII, results of the strong scaling test for arithmetic averaging (85), the
modified �-scaling (86) and the proposed scaling by diagonal stiffness (87) are summarised. The
final column corresponds to the results from Table V, which are repeated here for comparison.

Table VII suggests that while the simple arithmetic averaging does not lead to satisfactory con-
vergence for this problem, the modified �-scaling and the diagonal scaling mostly lead to similar
convergence. However, while the former provides slightly better convergence for several cases, it
also leads to irregularities for certain divisions, for which the BDDC method with this averaging
converges rather poorly. Therefore, the proposed scaling (87) can be recommended as the most
robust choice among the three tested options.
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9. CONCLUSION

A parallel solver for the mixed-hybrid finite element formulation based on the Darcy law has been
presented. The software combines an existing package Flow123d developed for problems in geo-
physics with BDDCML, a parallel library for solution of systems of linear algebraic equations by
the BDDC method.

In geoengineering applications, the mathematical model is applied to geometries with the pres-
ence of fractures. In the present approach, the flow in these fractures is also modelled by the Darcy
law, although the hydraulic conductivity of the porous media is considered by orders of magnitude
higher. These fractures are modelled by finite elements of a lower dimension. In the discretised
model, 1D, 2D and 3D finite elements are coupled together through the Robin boundary conditions.
These coupling terms lead to a modification of the usual saddle-point matrix of the system, in which
a new nonzero block appears on the diagonal.

The BDDC method is employed for the solution of the resulting system of linear algebraic
equations. BDDC is based on iterative substructuring, in which the problem is first reduced to the
interface among substructures. The Schur complement is not built explicitly. Instead, only mul-
tiplications by the matrix are performed through solving a discrete Dirichlet problem on each
substructure. In the setting of the mixed-hybrid problem, the interface is built only as a subset of
the block of Lagrange multipliers, while remaining unknowns belong to interiors of substructures.
Although the original problem is symmetric indefinite, the system reduced to the interface is sym-
metric positive definite. This is also shown to hold for the case with fractures in the present paper.
Consequently, the PCG method is used for the solution of the reduced problem. However, unlike the
symmetric positive definite problems, a direct solver for symmetric indefinite matrices needs to be
used for the factorisation and repeated solution of local problems on substructures.

One step of the BDDC method is used as the preconditioner for the PCG method run on the inter-
face problem. A modification of the diagonal stiffness scaling has been introduced. It is motivated
by difficult engineering problems, for which it performs significantly better than other two applica-
ble choices—the arithmetic averaging and the modified �-scaling. Arithmetic averages over faces
between substructures are used as the basic constraints defining the coarse space. In addition, cor-
ners are selected from unknowns at the interface using the face-based algorithm. While corners are
not required by the theory, they are shown to improve both the convergence and the computational
times for complicated problems.

The performance of the resulting solver has been investigated on three benchmark problems in
2D and 3D. Both weak and strong scaling tests have been performed. On benchmark problems with
single mesh dimension, the expected optimal convergence independent of number of substructures
has been achieved. Correspondingly, the resulting parallel scalability has been nearly optimal for
the weak scaling tests up to 64 computer cores.

The strong scaling tests were presented for a benchmark problem of a unit cube and for two engi-
neering problems containing large variations in element sizes and hydraulic conductivities, using up
to 1024 computer cores and containing up to 15 million degrees of freedom. The convergence for
the unit cube problem with all three possible dimensions of finite elements slightly deteriorated by
using more substructures, and this translated to sub-optimal parallel performance. However, for the
two engineering applications, in which only 3D and 2D elements are combined, the BDDC method
has also maintained good convergence properties with the growing number of substructures, result-
ing in optimal or even super-optimal parallel scalability of the solver. It has been also shown that
the proposed modification of the diagonal stiffness scaling plays an important role in achieving such
independence for the challenging engineering problems presented in the paper.
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Chapter 4

Numerical methods for non-conforming

mixed meshes

Non-conforming coupling between elements can overcome di�culties with meshing the mixed
meshes. On the other hand the solver has to deal with two new issues: calculation of element
intersections and prescribe a suitable approximation of the coupling equations (2.7−2.8) on these
intersections. The �rst section of this chapter discuss some approaches to the second problem
while the second and the last section presents a collection of algorithms for e�cient calculation
of the mesh intersections.

4.1 Mixed-Hybrid Method on Non-conforming Mixed Meshes

We can classify intersections between pair of elements K ∈ TdK and L ∈ TdL by the codimension
which we de�ne as absolute di�erence of the element's dimensions, |dK − dL|.

Codimension 0. Continuity on the 2d-2d intersections in 3d ambient space and 1d-1d intersec-
tions in 2d ambient space must be enforced unless we assume a single continuous submesh
per dimension.

Codimension 1. Continuum-fracture interaction, in particular conditions (2.7− 2.8) need to be
approximated on 2d-3d and 1d-2d intersections in 3d and 2d ambient space respectively.

Codimension 2. Coupling for 3d-1d and 2d-1d intersections in 3d ambient space have singular
character and require speci�c methods, e.g. XFEM.

We will focus on the coupling for the codimension 1 intersections. Proposed methods are a
generalization of the Mortar method which can be used for enforcing continuity for codimension
0 intersections. We further restrict our interest to the case of conductive fractures where we can
assume continuity of the pressure across the fracture. The general case requires local enrichment
of the �nite element space by the jump functions to represent discontinuities. We also completely
omit the codimension 2 case.

Assuming continuity of the pressure across the fracture we can merge duplicated DOFs of
the trace pressure p̊ on fractures and replace the form cf by an approximation. We start with
change of the discrate spaces Q̊hd which we rede�ne as the space of piecewise constant functions
on edges:

Q̊hd =
{
q̊ ∈

∏

T∈Td
Q̊h(T ) : q̊|∂K = q̊|∂L̃ on ∂K ∩ ∂L ⊂ Γd ∀K,L ∈ Td

}
. (4.1)
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Now we can replace the coupling form cf in (3.25) by its approximation:

cF (p, p̊, q, q̊) =
∑

d={1,2}

∑

K∈Td

∫

T
σd
(
R(p̊d)− T (p̊d+1)

)(
R(φ̊d)− T (φ̊d+1)

)
,

where R is a reconstruction operator of the pressure he and T is the trace approximation.
The reconstruction operator maps pd and p̊d DOFs to a suitable pressure function on the Ωd

domain, while the trace approximation maps pd+1 and p̊d+1 DOFs to a function on the Ωd that
approximates the trace of the pd+1 pressure on Ωd. Several di�erent methods can be obtained
by di�erent choice of operators R and T . In the following, we shall present four methods: P 0

and P 1 direct methods and P 0 and P 1 mortar like methods. In order to do not break solving the
linear system by the two consecutive Schur complements, we construct R and T operators that
use only p̊d and p̊d+1 DOFs respectively. Both direct methods �rst construct a pd+1 function
from pd+1 and p̊d+1 DOFs and then evaluates its trace on Ωd. The integration in cF must be
split into integrals over intersections of the element K ∈ Td with elements L ∈ Td+1. The mortar
like methods projects the pd+1 function into the image space of the R operator. The integration
in cF is evaluated over whole elements K ∈ Td. As we will see not all of these methods actually
works. On the other hand one other methods can be constructed within this general framework.

In order to proceed we �rst introduce necessary notation. Since the integration in cF is
performed over individual elements K ∈ Td, we �x a single element K and introduce all notations
and de�nitions of R and T operators only for this single element K. We denote by IL intersection
of K with an element L from Td+1 and we also use δL = |IL| for its d-dimensional measure. We
also denote by δK =

∑
δL the measure of the element K. Further we denote by p̊T a set of the

trace pressure DOFs of an arbitrary element T and by p̊T,i the DOF on a single side i ∈ ∂T
of this element. Finally, we introduce an average element pressure for any element T of any
dimension d as:

pT =
∑

i∈∂L

p̊T,i
d+ 1

.

4.1.1 Direct P 0 Method

The direct P0 method just imposes coupling between individual pairs of intersecting elements
using their average pressures:

R(p̊d)|K = pK , T (p̊d+1)|IL = pL.

This kind of coupling was proposed already at the beginning of the Flow123d project (see [17]),
but using directly elementwise pressures pK , pl instead their approximation by the averages of
the trace pressures. However this leads to unphysical locking phenomena for the high values of
σd. In this case every pair of intersecting elements acts as an independent constraint prescribing
equality of the pressures which cause overconstrained problem. In our case the overconstraining
is relaxed by the usage of averages however this is still not enough to avoid locking in the 3d
case.

4.1.2 Direct P 1 Method

In order to relax the overconstrained problem and also use higher order method we �rst interpret
the trace pressures as DOFs of the non-conforming P 1 space (piecewise linear with continuity
in face barycenters). Let us denote Si, i = 0, . . . , d the edge barycenters of the element K of
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dimension d. We �nd a basis φi(x), i = 0, . . . , d of the space of linear functions on K that
is orthogonal to the functionals Φj(φ) = φ(Sj), j = 0, . . . , d. With p̊i, i = 0, . . . , d denoting
the trace pressure DOFs on the element K, we introduce the operator P that creates the non-
conforming linear function:

PK [p̊](x) =
∑

i

p̊iφi(x).

Finally, on the intersection IL we de�ne R and T operators as: as:

R(p̊)|K = PK [p̊K ], T (p̊)|L = PL[p̊L].

Using a space of linear functions eliminates the locking for the case of 1d fracture in a 2d
continuum. However when applied to th 2d-3d case a kind of cross-locking still persists as can
be seen in Figure 4.1.2. In order to simulate natural groundwater �ow we have considered
a cube domain with vertical fractures and a �ow driven by the di�erences in the piezometric
head prescribed on the top. No �ow boundary conditions has been applied on the rest of the
boundary. The conductivities 10−5 on fractures and 10−8 has been chosen. Enforcing a near
equilibrium between the fracture and the continuum pressure by setting σ = 1 we observe the
cross-locking phenomena as the piezometric head fails decay with depth as can be observed in
reference solution obtained using the conforming mixed mesh.

Figure 4.1: Comparison of the conforming (left), non-conforming mortar P 0 (center), and non-
conforming direct P 1 (right) coupling. The direct P 1 method exhibits a cross-locking as the
piezo head tends to remain constant in vertical direction.

4.1.3 Mortar Like P 0 Method

The locking phenomena is well known in context of mortar methods that are used for non-
conforming domain decomposition, see e.g. [8] and [15]. The idea of the mortar methods is to
glue solutions on two sides of an interface by introduction of a mortar space on the interface,
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projecting both solutions to the mortar space and penalize the di�erence of these projection. If
the mortar space is not two rich the locking is avoided and the optimal convergence is obtained.

In the similar way select a suitable mortar space Qmd on the fracture and we set R and T
operators to be projections to this space. In particular for a P 0 method we use piecewise constant
functions Qd as the mortar space and operators:

R(p̊d)|K = pK , T (p̊d+1)|K =
1

δK

∑

L

δLpL.

Comparison of the method to the conforming coupling is depicted on Figure 4.1.2. Unlike
the direct P 1 coupling it is in good agreement with the reference solution using the conforming
coupling.

4.1.4 Mortar Like P 1 Method

Similarly to the previous method we introduce the mortar space as the space of discontinuous
piecewise linear functions:

Qmd =
∏

L∈Td
P 1(L).

the R operator is same as in the direct P 1 method:

R(p̊)|K = PK [p̊K ].

As the trace approximation we use the L2 projection of the traces of PL functions on the element
K. In particular,

T (p̊d+1)[x] =

d∑

i=0

λiq̊
i
K(x)

where λi are DOFs of the projection to P 1(K) using the non-conforming bases with support
points on faces of K. For �xed K the vector λ is a solution to the local system:

Lλ = b, Lij =

∫

K
q̊iK q̊

j
K dx, bi =

∑

L

∫

IL

PL(p̊L)qiK dx.

4.1.5 Coupling of codimension 0

For codimension 0, we �rst introduce a numbering Sd of d dimensional manifolds (2d or 1d
fractures), for every intersection line Ii,j of two manifolds i, j ∈ Sd we de�ne the manifold with
smaller number as a master manifold, while the other as a slave manifold. The intersection curve
Ii,j of manifolds Si and Sj , i < j is decomposed into segments corresponding to the elements of
the master manifold, i.e.

Ii,j = ∪K∈SiIK,Sj

With such a notation at our disposal we can write the coupling term as:

cF,0,d(h, h̊, q, q̊) =
∑

Ii,j ,i<j

∑

T∈Si

∫

IT,Sj

σd
(
R(̊hi)− T (̊hj)

)(
R(φ̊i)− T (φ̊j)

)
,

where R is the trace approximation on the master element while T is the trace approximation
of the slave manifold, mapping the local discrete spaces of all intersecting slave elements to the
discrete space of the master element. Any of the trace approximation operators described in the
previous chapters can be used.
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4.2 Intersections of non-conforming mixed meshes

All methods for coupling equations on non-conforming meshes depends on e�cient algorithms
for computing intersections of such meshes. Following paper deals with this problem presenting
a new family of e�cient algorithms based on Plücker coordinates. This approache is attractive in
combination with a front tracking approach where we can reuse some calculations for neighboring
elements.
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a b s t r a c t

The XFEM and Mortar methods can be used in combination with non-matching or non-
conforming grids to deal with problems on complex geometries. However the information
about themesh intersectionmust be provided.We present algorithms for intersections be-
tween 1d and 2d unstructured multi component simplicial meshes and their intersections
with a background unstructured 3d mesh. A common algorithm based on the advancing
front technique is used for the efficient selection of candidate pairs among simplicial el-
ements. Bounding interval hierarchy (BIH) of axes aligned bounding boxes (AABB) of ele-
ments is used to initialize the front tracking algorithm. The family of element intersection
algorithms is built upon a line–triangle intersection algorithm based on the Plücker co-
ordinates. These algorithms combined with the advancing front technique can reuse the
results of calculations performed on the neighboring elements and reduce the number of
arithmetic operations. Barycentric coordinates on each of the intersecting elements are
provided for every intersection point. Benchmarks of the element intersection algorithms
are presented and three variants of the global intersection algorithm are compared on the
meshes raising from hydrogeological applications.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The grid intersection algorithms are crucial for several techniques that try to overcome some limitations of the classical
finite elementmethod. The Chimeramethod [1], also called overset grid, and similar Nitchemethod [2] allow solution of the
problemswith changing geometry as in the fluid–structure problems. TheMortarmethod [3] allows domain decomposition,
independent meshing of domains, and supports sliding boundaries. However our primal motivation is usage of XFEM
methods [4] and non-matching meshes of mixed dimension in groundwater models.

The realistic models of groundwater processes including the transport processes and geomechanics have to deal with
a complex nature of geological formations containing various small scale features as fractures (or fractured zones) and
wells. Although of small scale, these features may have significant impact on the global behavior of the system and their
representation in the numerical model is imperative. For example the fractures may form preferential paths which allow
much faster transport that cannot be fully captured by equivalent continuum. One possible approach is to model fractures
and wells as lower dimensional objects and introduce their coupling with the surrounding continuum. The discretization
then leads to themeshes ofmixeddimensions, i.e. composed of elements of different dimension. This approach calledmixed-
dimensional analysis in the mechanics [5] is also studied in the groundwater context, see e.g. [6–8] and already adopted by
some groundwater simulation software, e.g. FeFlow [9] and Flow123d [10]. Nevertheless as the complexity of the geometry
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increases (e.g. when lots of fractures are randomly generated) the compatible meshing becomes painful or even impossible.
In order to avoid these difficulties we may discretize the continuum and every fracture and well independently, getting a
non-matching (or incompatible) mesh of mixed dimensions and then apply XFEM to represent jumps of the solution on
the fractures or singularities at the wells. The prerequisite for such approach is a fast and robust algorithm for calculating
intersections of individual meshes. Although it is (currently) out of our interest, the non-matching mesh approach allows
a time evolving network of fractures necessary e.g. in modeling of hydraulic fracturing. We consider a composed mesh T

consisting of simplicial meshes Ti of dimensions di ∈ {1, 2, 3}, i = 1, . . . ,NT in the 3d ambient space. We assume that
every mesh Ti is a connected set with no self intersection. Further we assume only single 3dmesh T1. The mesh intersection
problem is to find all pairs of elements L ∈ Ti, K ∈ Tj, i 6= j that have non-empty intersection and to compute that
intersection. The mesh intersection problem consists of the two parts: the first, generating a set of candidate pairs (K , L);
the second, computing the intersection of a particular pair.

According to our knowledge, there are lots of works using non-matching grids, yet only few of them discuss algorithms
how to compute their intersections. Gander and Japhet [11] present the PANG algorithm for 2d–2d and 3d–3d intersections
that can be used e.g. for mesh overlapping methods. They use the advancing front technique to get candidate pairs in
linear time. The algorithm is part of the library DUNE [12]. Massing, Larson, and Logg [2] present an algorithm for 2d–3d
intersections as part of their implementation of the Nitche method which is part of the project Dolfin [13]. They use axes
aligned bounding boxes of elements (AABB) and bounding interval hierarchy (BIH) to get intersection candidate pairs of
elements, the GTS library [14] is used for 2d–3d intersections. Finally, there is the work of Elsheikh and Elsheikh [15]
presenting an algorithm for 2d–2d mesh union operation which includes calculation and imprinting of the intersection
curves. They exploit the binary space partitioning for searching of the initial intersection and the advancing front method
for the intersection curve tracking.

In this paper we present a new approach to the mesh intersection problem based on the Plücker coordinates, further
developing the algorithm of Platis and Theoharis [16] for ray–tetrahedron intersections. Presented intersection algorithms
for pairs of simplicial elements of different dimensions are based on Plücker coordinates. These algorithms are combined
with the advancing front method which allows us to reuse Plücker coordinates and their products among neighboring
elements and reduce the number of arithmetic operations.

The paper is organized as follows. In Section 2 the algorithms for 1d–2d, 1d–3d and 2d–3d intersections of simplices are
described. In Section 3 we discuss our implementation of the advancing front technique and usage of AABB and BIH for its
initialization. Finally, in Section 4, we present benchmarks and comparison of individual algorithms.

2. Element intersections

In this section, we present algorithms for computing the intersection of a pair of simplicial elements of a different
dimension in the 3d ambient space. In particular we address intersection algorithms for 1d–2d, 1d–3d, 2d–3d pairs of
elements. The fundamental idea is to compute intersection of 1d–2d simplices using the Plücker coordinates and reduce
all other cases to this one. We have implemented the case 2d–2d as well, however the treatment of all special cases is quite
technical and not fully tested yet.

We denote by Si a simplicial element with i + 1 vertices (of dimension i). We call vertices, edges, faces and simplices
itself the n-faces and we denote by Mi the set of all n-faces of the simplex Si. In general, an intersection can be a point, a
line segment or a polygon called intersection polygon (IP) in common. The intersection polygon is represented as a list of
its corners called intersection corners (IC). The IP data structure keeps also reference to the intersecting simplices. A data
structure of a single IC consists of:

• The barycentric coordinatewK of IC on K .
• The dimension dK of the smallest dimension n-face the IC lies on, e.g. IC on an edge has dK = 1 although it also lies on

the connected faces.
• the local index iK of that n-face on K ,

for each intersecting element K of the pair. The pair τK = (dK , iK ) is called the topological position of the IC on K . Moreover,
as every IC is a result of a permuted inner product of some Plücker coordinates (see Section 2.2), we store the sign of the
product as well.

2.1. Plücker coordinates

Plücker coordinates represent a line in 3d space. The definition properties andmore general context from computational
geometry can be found e.g. in [17] or [18]. Considering a line p, given by a point Ap and its directional vector up, the Plücker
coordinates of p are defined as

πp = (up, vp), vp = up × Ap.

This representation is independent of the choice of Ap since up × (Ap + tu) = up × Ap. Further, having two lines p and q
with Plücker coordinates πp and πq, we denote a permuted inner product by

πp ⊙ πq = up · vq + uq · vp.
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(a) πp ⊙ πsi < 0 ∀i. (b) πp ⊙ πsi = 0 ∃i, special
case.

(c) πp ⊙ πsi > 0 ∀i.

Fig. 1. Different relative positions of the line p and a triangle with sides si, i = 0, 1, 2. Dashed parts are behind the triangle. Signs of the permuted inner
products depend on orientation of lines, the line p is coplanar with a side in the case (b).

Fig. 2. Notation for Lemma 2.1.

The sign of the permuted inner product is non-zero if p and q are skew lines and is positive if q is oriented
counterclockwise and negative if q is oriented clockwise looking in the p direction. This can be used to determine relative
position of the line p and the triangle. This is demonstrated in Fig. 1. The permuted inner products of triangle sides with the
line p have common sign, cases (a) and (c), if and only if the line intersects the triangle inside. If any πp ⊙ πsi is zero, as in
the case (b), it means that the lines p and si are coplanar.

2.2. Intersection line–triangle (1d–2d)

Let us consider a line pwith parametric equation

X = A + tu, (1)

on which a line segment S1 is defined by t ∈ [0, 1] and a triangle S2 given by vertices (V0,V1,V2) with oriented sides
si = (Vj,Vk), j = (i + 1) mod 3, k = (i + 2) mod 3, see Fig. 2.

Lemma 2.1. The permuted inner products πp ⊙πsi , i = 0, 1, 2 have the same non-zero sign if and only if there is an intersection
point X on the p and inside the triangle S2. The barycentric coordinates of X on S2 are

wi =
πp ⊙ πsi

w
, w =

2∑

i=0

πp ⊙ πsi . (2)

Proof. Using the barycentric coordinates, the intersection point can be expressed as X = V0 + w1s2 − w2s1. The line p has
Plücker coordinates (u, u×X) since these are invariant to change of the initial point. Combining these two expressions and
substituting for V0 − V2 = s1, we get for side s1

πp ⊙ πs1 = u · (s1 × V2) + s1 · (u × [V0 + w1s2 − w2s1]) = −w1u · (s1 × s2).

Since s0 + s1 + s2 = 0 we have s1 × s2 = s2 × s0 = s0 × s1 and thus

πp ⊙ πsi = −wiu · (s1 × s2), (3)

2∑

i=0

πp ⊙ πsi = −u · (s1 × s2). (4)
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Fig. 3. Some possible cases of the 1d–2d algorithm.

The result (2) then follows directly from combination of (3) and (4). The point X is inside S2 if and only if wi > 0 for all
i = 0, 1, 2. �

Having the barycentric coordinates of X on S2, we can compute also its local coordinate on p from its parametric form:

Xi = Ai + tui, for i = 1, 2, 3. (5)

We use iwith maximal |ui| for practical computation.
The calculation of the intersection proceeds as follows:

1. Compute or reuse Plücker coordinates and permuted inner products: πp, πsi , πp ⊙ πsi , for i = 1, 2, 3.

2. If the total w of the products is less than ǫL1L
2
2 jump to the coplanar case in the step 8.

3. Compute barycentric coordinates wi, i = 1, 2, 3 using (2).
4. If any wi is less than −ǫ (see definition below), there is no intersection, return empty IP. Fig. 3, (a).
5. If all wi are greater than ǫ, we set τS2 = (2, 0) for the IC. Fig. 3, (b).
6. If one wi is less than ǫ, intersection is on the edge si, we set τS2 = (1, i). Fig. 3, (c).
7. If two wi are less than ǫ, intersection is at the vertex Vi, we set τS2 = (0, i). Fig. 3, (d).
8. If all wi are less than ǫ, the line is coplanar with the triangle, both objects are projected to the plane xi = 0 where i is

the index of the maximal component of the triangle’s normal vector. Every pair p, si is checked for an intersection on S2
boundary either inside si or at a vertex Vi, setting the topological info τS2 to (1, i) or (0, i), respectively. The ICs (at most
two of them) obtained in this coplanar case will be called degenerate and will later need special treatment.

9. For each IC the barycentric coordinates (1 − t, t) on the line p are computed according to (5).
10. If t ∈ (−ǫ, ǫ) or t ∈ (1 − ǫ, 1 + ǫ), we set the end point of S1: τS1 = (0, 0) or τS1 = (0, 1), respectively.
11. If t 6∈ (−ǫ, 1 + ǫ), the IC is eliminated.

In order to make the test in the step 2 independent of the scale of elements, we use characteristic lengths L1 and L2 of S1
and S2 respectively. Further, the algorithm depends on the parameter ǫ used as a common tolerance parameter for detection
of ICs with special positions. First, it is used in the sign check for permuted inner products, second, it is used for position
check on the line. Only these two kinds of geometric predicates are used through the all intersection algorithms. Currently,
we use just fixed value ǫ = 10−9. This value is close to the machine epsilon (10−16) of the double precision arithmetic,
while far enough to keep precision of the further calculations. Let us note that the algorithm is susceptible to the loss of
significance due to cancellation during evaluation of the products. Nevertheless, the algorithmworks on all realistic meshes
we deal with.

Another problem that would deserve further investigation is possible inconsistent result of two different, but logically
related predicates. Adaptive-precision evaluation of the geometric predicates was designed by Shewchuk [19] and used for
2d–2d mesh intersections in [15] in order to deal with these inconsistencies. It is a topic for future work to understand
dependency between our geometric predicates and decide if the adaptive-precision is the only way to guarantee the
correctness of the algorithm even for various corner cases.

The algorithms for 1d–3d and 2d–3d intersections use simpler version of the 1d–2d intersection algorithm, in particular
the search for ICs in the coplanar case (step 8) is not necessary, and the test in the last point is not performed.

2.3. Intersection line–tetrahedron (1d–3d)

In this section we consider an intersection of a line segment S1, defined by an interval t ∈ [0, 1] of the line p defined in
(1), with a tetrahedron S3. The used algorithm is based on the 1d–2d algorithm and closely follows [16]. Our modification
takes into account intersection with the line segment and consistently propagates topological position of ICs.

Algorithm1 first computes line–face intersections for every face of S3. Tetrahedron has six edges, so 7 Plücker coordinates
and 6 permuted inner products are computed at most. Precomputed coordinates and products are passed into the 1d–2d
algorithmwhich is performed for thewhole line p (line 3). If no IC is found, or coplanar case occurs in line–face computation,
we continue with the next face. Note, ICs that would be created in coplanar case are to be found as ICs with the other faces,
since they lie on edges. Next, IC can be on an edge or at a vertex; then we set the correct topological position and mark the
adjacent faces to be skipped, since there cannot be another IC (and coplanar case has been checked already). Finally at the
line 11, we append the IC to the result and check whether the maximal amount of ICs has been reached.

After collecting line–tetrahedron ICs, we do the line segment trimming from the line 13 further. If we have only one
IC, we check that it actually lies inside S1 (otherwise, we throw it away). If we have two ICs, and if both lie outside S1, we
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Algorithm 1: 1d-3d intersection

Input: Line segment S1 of line p, Tetrahedron S3.
Output: List I of ICs sorted along p.

1 I = {}
2 for unmarked face f of S3 do

3 L = intersection(p, f )
4 if L is none or degenerate then continue

5 if L is inside the edge e then
6 set τS3 = (1, e)
7 mark faces incident to e

8 else if L is at the vertex v then

9 set τS3 = (0, v)
10 mark faces incident with v

11 append L to I
12 if |I| = 2 then break

13 if |I| = 1 and I is outside of S1 then erase I
14 else if |I| = 2 then

15 trim intersection with respect to the line segment S1

Fig. 4. An example of an intersection 2d–3d, demonstrating the ICs ordering. We see at every intersection polygon corner pi which n-faces it lies on.
Looking at p0 , the connection table entries are: Fc [s2] = p0, Ff [p0] = s0 . For the other ICs we have: Fc [s0] = p1, Ff [p1] = f1, Fc [f1] = p2, Ff [p2] = f2 and
Fc [f2] = p3, Ff [p3] = s2 .

eliminate both of them. If one of the ICs lies out of S1, we use the closest end point of the line segment instead and interpolate
barycentric coordinates of the IC on S3. The topological positions τS1 and τS3 are updated as well. The result of the algorithm
is 0, 1, or 2 ICs, sorted by the parameter t in the direction of the line p.

2.4. Intersection triangle–tetrahedron (2d–3d)

The intersection of a triangle S2 and a tetrahedron S3 is an n-side intersection polygon (IP), n ≤ 7. The sides of the polygon
lie either on sides of S2 or on faces of S3. Thus each vertex (IC) of the polygon can arise either from side–face intersection, or
from edge–triangle intersection, or be a vertex of S2. To get all ICs, we have to compute at most 12 side–face intersections
and at most 6 edge–triangle intersections. However, to this end we only need to compute 9 Plücker coordinates (3 sides, 6
edges) and 18 permuted inner products, one for every side–edge pair. Computation of IP consists of three stages: calculation
of side–tetrahedron ICs (Section 2.4.2), calculation of edge–triangle ICs (Section 2.4.3), ordering of ICs (Section 2.4.5).

2.4.1. Successor tables

The intersection corners are appended to the list I as they are computed, however their order on IP is given indirectly by
the successor tables Fc[:] and Ff [:]. Every side of IP that lies on n-face x ∈ M2 ∪ M3 is followed by an IC given by Fc[x] and
every IC p is followed by the side of IP that lies on the n-face y = Ff [p] ∈ M2 ∪ M3 (see Fig. 4). After an IC p is computed, we
also obtain two n-faces x, y incident with the two IP’s sides that are neighboring with the IC. Order of the n-faces x, y have
to match the orientation of the IP which is the same as the orientation of S2 triangle, that is counterclockwise around the
interior with normal pointing to us. Having x, y in right order, we set Fc[x] = u, Ff [u] = y.

This simple approach works well even for most of the degenerated ICs, however in order to deal with some special cases
and with duplicity of ICs in vertices, we further mark by a backlink Fc[y] = u the n-faces that succeed some IC but still do
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not possess its successors. If y already has the backlink we swap x and y. The result is the set links (SL) operation formalized
in Algorithm 2.

Algorithm 2: 2d-3d intersection, set links

Input: n-face x, IC p, n-face y
1 if Ff [Fc[y]] = y then

2 swap x and y // y success an IC already

3 Fc[x] = u, Ff [u] = y
4 if Fc[y] is unset then Fc[y] = u

2.4.2. Intersections on sides of triangle

Algorithm 3 computes all ICs on the boundary of S2. It passes through the sides of the triangle S2 computing the
line–tetrahedron intersection L for every side s. In the regular case (|L| = 2), we process each IC in L (line 4). The IC p is
appended to I and successor tables are set using the SL operation. If p is at the vertex of S2 the links connect the vertex with
the S2 side. In both cases SL is called with the side s as the target n-face since SL correctly swaps n-faces if the side is already
used as the target. The vertex ICs are put twice into I and are merged in the final step.

The case |L| = 1 can happen only if the boundary of S2 touches the boundary of S3. These ICs will be rediscovered again
in Algorithm 4 with better topological information, however this is not the case if the touched edge e of S3 is coplanar with
S2 and the IC is inside of e. To this end we call SL with e as the target which allows to use backlink and get already computed
IC if it is rediscovered later on. The ICs at vertices of S2 are treated differently, but follows the same idea. The ICs at vertices
of S3 are skipped.

Algorithm 3: 2d-3d intersection, ICs on sides of S2

Input: S2 and S3
Output: List I with ICs on sides of S2

1 Fc(:) = −1, Ff (:) = −1 // Unset links.
2 for side s of S2 do

3 L = intersection(s, S3)
4 for p in L do
5 p lies on n-face x ∈ M2 and y ∈ M3

6 if |L| = 1 then

7 deal with special case // side s touching S3

8 append p to I
9 if x is the vertex of S2 then

10 set links(x, p, s)
11 else

12 set links(y, p, x) // x is s

2.4.3. Intersections on edges of tetrahedron

Algorithm 4 uses the line–triangle intersection algorithm for the edges of S3. First, the intersection L[e] is evaluated for
every edge e (line 1). Thenwe pass through once again skipping the edges with none or degenerate IC. For every intersection
corner p = L[e], we first get n-faces that would appear before and after the IC on IP.

The function edge faces (line 4) returns the adjacent faces f0, f1 to the edge e on which the IC lies (see the situation in
Fig. 5). The faces are sorted using the sign of the permuted inner product in 1d–2d intersection. The order of faces matches
the order of sides of IP if the sign is negative. If the sign is positive the function edge faces returns face pair (f1, f0). If the IC is
at the vertex v of S3, the function vertex faces described later (Algorithm 5) is used. It returns a pair of n-faces (face or edge)
adjacent to the IC L[e] at the vertex v of S3. Then p is appended to I . If IC p is inside S2, the obtained pair of n-faces is directly
used to set links (line 16). However, if p is on the boundary of S2 (n-face x), just one of the faces is used, complemented with
x. Presence of the backlink is used to determine the right face.

2.4.4. Vertex faces algorithm

The function in Algorithm 5 gets as a parameter IC p at the vertex v of S3 which is a special case of a non-degenerate
edge–triangle intersection. There are three edges incident with the vertex v, results s[i] of their intersections with S2 may
be one of: no IC, degenerate IC, positive IC and negative IC. Accordingly we say the edge is: without intersection, degenerate,
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Algorithm 4: 2d-3d intersection, ICs on edges of S3

Input: I with ICs on S2 boundary, partially filled Ff , Fc
Output: all ICs in I , complete Ff , Fc

1 for edge e of S3 do L[e] = intersection(e, S2)
2 for edge e of S3 with regular L[e] do
3 p = L[e]
4 if p is inside e then
5 (f0, f1) = edge faces (e)
6 else p at the vertex v of S3
7 (f0, f1) = vertex faces (v,L) // Algorithm 5

8 append p to I
9 if p is on the boundary of S2 then

10 p lies on edge or at vertex x ∈ M3

11 if x have backlink then

12 set links(x, p, f1)
13 else

14 set links(f0, p, x)

15 else

16 set links (f0, p, f1)

Algorithm 5: 2d-3d intersection, vertex faces

Input: vertex v of S3, L[:] intersection results for edges of S3
Output: pair of n-faces incident with v that is intersected by the plane of S2

1 e0, e1, e2 edges incident with v oriented out of v
2 s[i] = L[ei], for i = 0, 1, 2,
3 if s[:] contains 1 degenerate edge e then
4 Let f be the face opposite to e.
5 if other two edges ea, eb have different sign then

6 z = EdgeFaces(ea)
7 replace g ∈ z, g 6= f with e, return z

8 else return (v, e)

9 else if s[:] contains 1 non-degenerate edge e then
10 return pair of degenerate edges sorted according to EdgeFaces(e)
11 else if s[:] contains edge e with the sign opposite to the other two then

12 return EdgeFaces(e)
13 else s[:] have all signs same
14 return (v, v)

Fig. 5. Order of faces adjacent to the oriented edge e pointing towards us.

positive, or negative. We use these edge indicators to return generalized faces of S3 preceding and succeeding p on the
polygons boundary assuming p is at interior of S2. Possible cases are (see also Fig. 6(a)–(e)):
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Fig. 6. Possible cases processed in the function vertex faces. Only the main features referred in text are denoted: tetrahedron vertex v, edge e, face f

(stripes).

• Single degenerate IC (line 3). Let us denote e as the edge with degenerate IC and f the face between the other two edges.
The other two (non-degenerate) edges may have either the opposite sign (the plane is cutting S3, see Fig. 6, (a)) or the
same sign (the plane is touching S3 at the edge e, see Fig. 6, (b)). In the first case, the call edge faces(e) returns (fx, f ) or
(f , fx), then the vertex faces function returns (e, f ) or (f , e), respectively. In the second case, there must be another IC on
e, either at S2 boundary or at the other end of e. In both cases the edge e is the common n-face of the two intersection
points thus we return (v, e) taking the edge as the target object.

• Two degenerate ICs (line 9). A face of S3 lies in the plane of S2, see Fig. 6, (c). Let e be the single non-degenerate edge. We
treat the two degenerate edges as faces adjacent to e and return them sorted like the faces given by edge faces of edge e.

• Single IC has the opposite sign to the other two (line 11). Let e be the edge of the single IC with the different sign. The plane
of S2 separates e from the other two edges so it goes through the faces adjacent to e, see Fig. 6, (d). The order is determined
by the function edge faces called for the edge e.

• All ICs have the same sign (line 13). Since S2 is touching S3 at the vertex v, Fig. 6, (e), the polygon degenerates into a point
and thus no connection information is necessary. We just return (v, v).

2.4.5. Ordering of intersections

The final stage of the 2d–3d intersection is ordering of ICs. We start with the first IC in I and follow the successor tables
until we return back. The ICs are copied into the result vector, skipping the duplicities. Special treatment must be done for
degenerate cases with less than 3 ICs as they may not form a cycle.

3. Global mesh intersection algorithm

Having the algorithms for element–element intersections at our disposal we can proceed to the mesh intersection
algorithm. We consider the composed mesh T containing the 3d mesh T1 that we shall call a bulk mesh Tb. Any other
mesh Ti, with dimension di < 3, i = 1, . . . ,NT , we shall call a component mesh. We first compute all component-bulk
mesh intersections that is (1d–3d and 2d–3d) using the advancing front algorithm which we shall describe in Sections 3.1,
3.2 and then the 1d–2d and 2d–2d intersections are computed using the bulk mesh to get the intersection pair candidates.
This step is described in Section 3.3.

Let us consider a single pair of the component mesh Tc and the bulk mesh Tb. Element intersections for this pair of
meshes are obtained in two phases: firstly, we look for the first pair (c, b) of the component and the bulk element with a
non-empty intersection (the initialization); secondly, we prolong the intersection by investigating neighboring elements
(the front tracking).

3.1. Initialization

Given a component element c , we have to find an intersecting bulk element b. If this step is done only few times the
optimal way is to iterate over the bulk mesh and test every element for the intersection. This process may be accelerated
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Fig. 7. Advancing front algorithm for 1d–2d and 2d–3d intersections.

using the axis aligned bounding box (AABB) for every element and use intersection of the bounding boxes as a fast indicator
for possible intersection of the elements. This step takes time O(N) with respect to the number of elements of the bulk
mesh N . If the number of components k is small and if the components are contained inside the bulk mesh, the total time
of the initialization may still be linear O(kN). However, for more complex cases we organize the bounding boxes of the
bulk mesh into the bounding interval hierarchy (BIH) [20] a data structure in principle equivalent to the R-trees [21,22].
The construction of a BIH takes time O(N log(N/n)) and the search time is O(log(N/n)) where n is the number of the bulk
elements in the leaf nodes of the tree.

3.2. Advancing front method

The advancing front algorithm requires the neighboring information for the elements within the component mesh Tc

as well as within the bulk mesh Tb. It can be viewed as the breadth first search algorithm for a graph where the graph
vertices are the intersection polygons and the graph edges are the sides shared by two polygons. Since every side of IP
is on the boundary of either the component element or the bulk element, we can distinguish bulk and component edges.
Correspondingly we use a component queue Qc and a bulk queue Qb where we shall place intersection candidate pairs (c, b).
In order to process every pair (c, b) only once, we check if the pair was already processed before it is enqueued into one of
the queues. Only if the pair was not yet processed we mark it processed and push it into the queue. Since the number of
possible pairs is too big we cannot have a flag array which may allow constant time checks. Therefore, we keep a hash table
of the processed pairs which allows the constant check in the average.

The key idea behind the two queues is to compute intersections for a component element with all possible bulk elements
at first, and then move to a next neighboring component element. So the bulk queue is emptied before the component
queue.

First, wemark all component elements c ∈ Tc as unvisited. For every unvisited element c ∈ Tc , we find some intersection
candidate pairs {(c, b), b ∈ Tb} and into the queueQc . Thenwe increment the component number γ , whichwe use tomark all
intersection polygons we shall find until the queue Qc becomes empty. This way, we shall later know to which component a
given IP belongs to, which will become important in Section 3.3. This is fromwhere the front tracking starts, see the top-left
corner of the scheme in Fig. 7.

We dequeue the first candidate pair (c, b) from Qc and compute the IP. If the intersection exists, we look for the new
candidate pairs among the neighboring elements (see the big white block in Fig. 7). Therefore, we iterate over ICs of the IP
and further exploit their topological position on the component element c and the bulk element b. For every IC one or both
of the following cases may happen:

(a) IC is on the boundary of c and inside b.

We find all the sides S of c incident with the n-face of c on which IC lies. Then we get all component elements C ′

neighboring with c over any side s ∈ S. And finally, we push all pairs (c ′, b), c ′ ∈ C ′ into the component queue. Note
that c can have more than one neighbor component elements over the single side s, i.e. branches are allowed.

(b) IC is inside c and on the boundary of b.

We find all the faces F of b incident with the n-face of b onwhich IC lies. Thenwe get all bulk elements B′ neighboring
with b over any face f ∈ F , analogically to the previous case. Finally, we push the new candidate pairs (c, b′), b′ ∈ B′

into the bulk queue. However, if the list B′ is empty, which means that the component element c pokes out of the bulk
mesh, we mark the element c as unvisited again. This way we have a chance to find possible other intersections of the
element c with the bulk mesh in the main loop. Note that every time this happens, the possible further intersection of
the current c will be seen as different component with increased component number m (see an example situation in
Fig. 8).

80
TECHNICAL UNIVERSITY OF LIBEREC Faculty of Mechatronics, Informatics and Interdisciplinary Studies Studentská 1402/2 461 17 Liberec 1 Czech Republic

phone:+420 485 353 624 jan.brezina@tul.cz www.fm.tul.cz ID: 467 47 885 VATIN: CZ 467 47 885



J. Březina, P. Exner / Computers and Mathematics with Applications 74 (2017) 174–187 183

Fig. 8. For a non-convex bulk domain a situation as this may happen. The 1d elements 3, 4, 5 extend out of the bulkmesh. Therefore four initializations are
needed, to find all four 1d–3d intersections every one forming an independent component. Advancing front method cannot play any part in this situation.

We see that (c, b′) can prolong the intersection over a bulk element face, on the other hand (c ′, b) may prolong the
intersection over the component side. If the IC lies both on the boundaries of c and b, we obtain candidate pairs of both
types. Having all ICs processed, we continue emptying the queues. We empty the bulk queue first, trying to fully cover the
current component element c before we proceed to the next one.

3.3. Intersections between component meshes

We consider here the situation where components are in the interior of the 3d bulk mesh. After we compute all
component-bulk intersections, we use it to easily find all the component–component intersection candidate pairs. If the
bulk element intersects more than one component element, then we look for candidate pairs only among these.

Let us start with the description of howwe store the intersection results, whichwill be of great importance here. For each
element intersection,we save the followingdata: references to the component andbulk element, the barycentric coordinates
on both and the index of the component. These objects are stored in separate vectors for each pair of dimensions. Further
we define a matrix (intersection map) which has as many rows as there are elements in the mesh. At each row, we save
the references to all other elements, having intersection with the element corresponding to this row, and references to the
actual intersection data.

The algorithm for 2d–2d intersections works as follows. We iterate over all 2d–3d intersections, in fact over the bulk
elements having some intersections with 2d components. We look at the intersection map at the bulk element row and
collect all elements that have 2d–3d intersection with it. Then we create all possible pairs from the collected component
elements. Now comes into play the component number γ . If the elements of a single pair have γ equal, then these are part
of a single continuous component and we do not compute any intersection. Otherwise we obtain a new candidate pair, for
which IP can be computed.

The algorithm for 1d–2d is analogical, only we do not have to check the component number. Note that this way, we do
not obtain any intersection in the exterior of bulk mesh. If such problem is of our interest, we find the candidate pairs using
the search algorithms as in initialization phase of advancing front method.

4. Benchmarks

In this section,we present numerical results on several benchmark problems. In the beginning,we provide some software
development related information. Then we analyze the theoretical number of FLOPS in our element intersection algorithms
with other state of art algorithms. Next we compare our algorithms with different initialization phase (candidate pairs
search), and using the advancing front method or not. We show the results both on a mesh of a real locality and an artificial
mesh.

4.1. Software Flow123d

The implementation of the presented algorithms is part of the open source software Flow123d [10]. The version used
for this paper is tagged as intersections_paper in the main project repository at GitHub. The C++ is used as principal
language. Flow123d provides models for saturated and unsaturated groundwater flow, solute transport with sorption,
and heat transfer. Mixed finite elements, finite volumes, and discontinuous Galerkin method are used. All equations are
consistently formulated for meshes of mixed dimensions. However, non-matching meshes are at the moment available
only in experimental 1d–2d flow model, using mortar like coupling.
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Table 1

Raw number of FLOPs used by different intersection algorithms. Second row contains
estimated effective number of FLOPs per intersection accounting for reuse of edges through
the mesh intersection assuming edges of 2d and 3d elements are used twice (conservative).

Algorithm 1d–2d 1d–3d 2d–3d

Plücker 92 198 426
Plücker (edge reuse) 42 138 264
Haines 51 177 469
Möller and Trumbore 42 168 756

4.2. Theoretical comparison

It proved to be a bit problematic to compare the presented algorithms for element–element intersections to any of
the state of art algorithms e.g. from the field of computer graphics. The algorithms for computer graphics applications are
specialized for the 1d–2d and 1d–3d cases and they provide different output information than our algorithms. Moreover our
implementation is not yet fully optimized to be onparwith the fine tuned implementations. Instead,we present a theoretical
comparison in terms of estimated number of floating point operations (FLOPS) performed by individual algorithms. As the
intersection algorithms work on small data they should not be limited by the memory access, thus such comparison may be
realistic.

We consider 3 algorithms for the line–triangle intersections: Plücker algorithm described in Section 2.2, the algorithm
based on the plane clipping due to Haines [23], and the minimum storage algorithm due to Möller and Trumbore (MT) [24].
For the later two algorithms we have considered straightforward modifications to make them return qualitatively same
output as our algorithms for 1d–2d, 1d–3d, and 2d–3d cases. Estimated numbers of FLOPS for all cases are summarized
in Table 1. For the Plücker, we count FLOPS actually made by the implementation of individual intersection algorithms.
For Haines and MT, we estimated number of FLOPS in theoretical implementations. In particular we account for reuse
of the calculations in Plücker and Haines algorithms. Conclusions from this census are: algorithms based on the Plücker
coordinates should be competitive with state of art algorithms in the case of 1d–3d and 2d–3d intersections. The expected
performance for the 1d–2d case seems to be poor however these intersections are computed after 1d–3d and 2d–3d so the
Plücker coordinates may be reused. Considering this scenario we get quite competitive 45 FLOPS. Similarly we may expect
better times in remaining two intersection caseswhen the Plücker coordinates and their products are reused by neighboring
elements.

4.3. Global mesh intersections

The global mesh intersection algorithm for a composed mesh T presented in Section 3 has been implemented in three
variants. First variant uses a full search (FS) over the bulk mesh to get the initial pair for the advancing front algorithm (AF).
Second variant uses the BIH to accelerate the initialization of the AF algorithm. Third variant does not use AF at all and relies
only on the BIH. In this section, we compare these three variants (FS+AF, BIH+AF, BIH) on one artificial composed mesh and
one mesh raising from a real hydrogeological simulation.

The artificial composed mesh consists of a cube and two diagonal rectangular 2d meshes (see Fig. 9). The bulk mesh A
sequence of meshes was prepared with increasing number of elements ranging from 33 up to 2000 thousands of elements.
The mesh step for the bulk mesh was always about half the mesh step of the component mesh. The number of the
bulk-component intersections varies from 0.1 up to 2.0 million. The timing for the three compared variants of the mesh
intersection algorithm is shown in Fig. 10. Every algorithm consists of the initialization phase which processes all elements
of the mesh and the intersection phase which depends only on the number of elements in the component mesh. In these
terms both phases of all three variants exhibit almost linear time complexity. As the number of component meshes is low
and they are completely inside of the bulk mesh the FS+AF variant is the fastest in particular due to fast initialization. On the
other hand the BIH variant is about two times slower than the BIH+AF variant during the intersection phase. That is roughly
related to the average fraction of the non-intersecting 3d element in the bounding box of a 2d element.

Next, we study the performance of the intersection algorithms on a mesh of a real problem, see Fig. 11. The mesh
represents a mountain ridge above a water supply tunnel in Bedřichov in the Jizera mountains. The mesh includes a system
of geological fractures (Fig. 11(a)). In order to study influence of the component elements poking out of the bulk mesh we
also prepared ameshwith the artificially extended fractures (Fig. 11(b)). Each of thesemeshes contains 28 fractures however
some of them are connected in the conforming way so there are 9 separated 2d components and a single 1d component, the
tunnel.

The results for both meshes can be seen in Fig. 12, pay attention to the different time scales in the graph. In the first
case, we notice that FS+AF and BIH+AF algorithms are nearly twice as fast as BIHonly. The fraction of the non-intersecting 3d
elements in bounding boxes of the 2d elements is higher as the 3d elements are on average smaller than the 2d elements.
Creation of the BIH in the BIH+AF variant pays off and the algorithm performs better than the FS+AF variant. This in the
contrast to the cube test case since the number of the component meshes is higher.
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Fig. 9. Artificial mesh — a cube with two perpendicular planes placed on the diagonals of the cube. The planes are also non-matching, therefore can be
seen as two independent components.

Fig. 10. Time complexity for the initialization phase (left) with respect to total mesh size and the intersection algorithm (right) with respect to the size of
the component mesh.

(a) Interior fractures. (b) Extending fractures.

Fig. 11. A mesh of the real locality of Bedřichov in the Jizera mountains. We see fractures inside the bulk mesh in the left figure, fractures are extending
the bulk mesh.

In the second case, we observe large blow up for the FS+AF variant. It is caused by the exterior component elements, for
which all the bulk elements bounding boxes are iterated before the algorithm concludes there is no intersection. This case
is clearly treated by both BIH and BIH+AF variants much better.

5. Conclusions

Wepresent a family of the algorithms for computing intersectionpolygons for pairs of simplicial elements. The algorithms
are based on the Plücker coordinates of the edges which may be reused between elements. A unified algorithm for the
intersections of the meshes of a composed mesh was demonstrated. All algorithms were tested and compared on a set of
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Fig. 12. Comparison of the algorithms on meshes of Bedřichov locality — interior fractures on the left, extending fractures on the right.

benchmark problems. In the near future, we want to perform an optimization of the algorithms and in particular use them
in XFEM and Mortar like methods for problems in porous media.
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Chapter 5

Unsaturated Darcy �ow on mixed

meshes

Single phase unsaturated Darcy �ow is modeled by the Richards' equation, where the water
content and the conductivity are strongly non-linear functions of the pressure. In particular the
equation degenerate from a non-linear parabolic equation to an elliptic equation as the pressure
tends to zero, i.e. to the saturated state. On the other hand the existence and uniqueness as
well as basic regularity properties were proved by Alt, and Luckhaus [3] for a wide range
of realistic constitutive relations. More over a monotonicity of the equation was proved in [18].
This is in contradiction to the observed �ngering phenomena and suggests that phnomenologycal
constitutive relations are not realistic at least in some corner cases.

As we show in Section 5.1 the standard discretization of the source term (including the time
term) is unstable due to violation of the discrete maximum principle. Next Section 5.5 presents
application of lumping technique to maintain stability. In the �nal Section 5.6, we present the
dual permeability model (due to Gerke and Genuchten [5] and its solution by fully coupled
solver. This solver was also used to show instability of RT elements in Sec�on 5.1, but without
fractures. The dual permeability model presents use a dual continuum model where the matrix
and the fractures are represented by two arti�cial phasis coupled by a Robin type relation similar
to (2.7− 2.8) but with non-linear conductivity. The duap permeability model can be viewed as
a non-eqilibrium homogenization of the network of conductive fractures.

5.1 Richards' equation and instability of Raviart-Thomas ele-

ments

A standard model for the water �ow in a partially saturated porous medium is Richards' equation
which can by written as the system:

∂tθ(h) + div(v) = f in (0, T )× Ω, (5.1)

v = −k(h)∇(h+ z) in (0, T )× Ω. (5.2)

The unknowns are the pressure head h and the water velocity v while the other involved quantities
are the density of volume water sources f , the z-coordinate, assumed to be in opposite direction
to the gravity force, the water content θ and the hydraulic conductivity k, where θ and k are
given nonlinear function of h. Both equations are considered on the domain Ω ⊂ RN and during
the time interval (0, T ). Through this work we consider the Dirichlet boundary condition hD on
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ΓD ⊂ ∂Ω, the homogeneous Neumann condition v = 0 on the remaining part of the boundary,
and the initial condition h0 for the pressure head.

The characteristic functions θ(h) and K(h) are empirical. We assume the most common
Mualem � van Genuchten model [1], [2]:

θ(h) = θr + (θs − θr)θ̃(h), (5.3)

θ̃(h) = (1 + (αh)n)−m, m = 1− 1/n (5.4)

k(h) = ksθ̃
0.5
(

1− (1− θ̃1/m)m
)2
, (5.5)

where θr, θs, n, α, and ks are suitable soil parameters.
System (5.1 � 5.2) represents a quasilinear degenerated parabolic-elliptic equation. The

existence and uniqueness of the solution as well as some regularity properties were proved by
Alt, and Luckhaus [3]. When solving Richards' equation numerically, we want to obtain a
discrete velocity �eld which satis�es a discrete version of the continuity equation (5.1) up to the
given tolerance of the nonlinear solver. This is important for a subsequent simulation of the
water transport. That is why mixed or mixed-hybrid �nite elements are used by many authors,
e.g. [9], [12].

Motivated by these works, we want to develop a simulator that can solve coupled Richards'
equations on domains of di�erent dimension. Since the solution of Richards' equation evolve
substantially only around a small wetting front region, adaptivity is crucial to achieve reasonable
performance. To meet these two requirements, we have decided to try C++ �nite element
library DEAL II [16]. The library allows to produce a dimension independent code with h,
p, and hp versions of adaptivity and provides a rich palette of �nite elements. The only but
fundamental restriction of the library is that elements has to be topologically equivalent to
hypercubes. However, during tests of our code we have observed serious oscillations of the
solution. Aim of this paper is to present these observations and give an explanation of this
behavior.

The paper is organized as follows. First, the mixed discretization is described. Then, in
Section 3, we make its comparison with a primary discretization and we demonstrate the presence
of instabilities. In the last section, we derive a condition under which the mixed scheme obeys a
discrete maximum principle in 1D and we discus some similar results.

5.2 Mixed �nite elements

In order to derive mixed formulation of the system (5.1 � 5.2), we multiply the �rst equation by
a scalar test function φ, while in the second equation we divide by k, test by a vector valued
function ψ and integrate by parts in the pressure term. Finally, we are looking for a solution
h ∈ L2(Ω), v ∈ H(div,Ω) which satis�es

∫

Ω
k−1(h)(v ·ψ)−

∫

Ω
hdivψ =

∫

Ω
zdivψ −

∫

∂Ω
(hD + z)ψ · n, (5.6)

−
∫

Ω
∂tθ(h)φ−

∫

Ω
φdiv v = −

∫

Ω
fφ (5.7)

for all ψ ∈ H(div,Ω) and φ ∈ L2(Ω), where H(div,Ω) is a space of vector valued L2-function
with divergence in L2(Ω).

Next, we consider a decomposition T = {Ki} of the domain Ω ⊂ RN into lines (N=1),
quadrilaterals (N=2) or hexahedrons (N=3). On this computational grid we use Raviart-Thomas
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�nite elements RT0 for discretization of the velocity and piecewise constant �nite elements P0

for discretization of the pressure head. More speci�cally, we consider discrete solution in a form

v(t,x) =
∑

i

ũi(t)ψi(x), h(t,x) =
∑

i

h̃i(t)φi(x), (5.8)

where ũ and h̃ are unknown coe�cient vectors. The backward Euler is used for temporal dis-
cretization. A fully implicit scheme is necessary to avoid oscillations on the saturated part of the
domain where the equation becomes elliptic. Finally, we obtain a nonlinear system of equations
which we solve by simple Pickard iterations. Resulting linear system for the solution h̃k, ũk in
iteration k of time tn reads

A(hk−1)ũk +Bh̃k = F (5.9)

BT ũk +D(hk−1)h̃k = G(hk−1) (5.10)

with

Ai,j(h
k−1) =

∑

K∈T

∫

K
k−1(hk−1)(ψi ·ψj),

Bi,j = −
∑

K∈T

∫

K
φidivψj ,

Di,j(h
k−1) =

∑

K∈T

∫

K
−θ
′(hk−1)

dt
φiφj

Fi =
∑

K∈T

∫

K
zdivψi −

∫

K∩ΓD

(z + hD)ψi · n,

Gi(h
k−1) =

∑

K∈T

∫

K
−θ
′(hk−1)hk−1

dt
φi +

θ(hk−1)− θ0

dt
φi ,

where hk−1 is the actual discrete pressure head �eld given by according to (5.8) and θ0 is the
water content �eld from the previous time tn−1. Before solving system (5.9 � 5.10), we use the last
pressure head h̃k−1 to resolve equation (5.9) and compute a residuum rk−1 of the equation (5.10).
Iterations are stopped, when l2 norm of the residuum drops under the prescribed tolerance. Then
the residuum is subtracted from the actual water content which forms θ0 for the next time step.
This way we achieve a perfect conservation of the total water content over the whole domain.

5.3 Comparison of mixed and primary discretization

The described mixed �nite element approximation with the lowest element order d = 0 (MFE)
have been compared with a mature one dimensional solver based on the primary linear �nite
element (FE) approximation of the pressure. The later solver was thoroughly tested against
experimental data in cooperation with Vogel at al. [20].

The setting of the one dimensional in�ltration test problem was as follows: a vertical domain
(−5, 0) [m], the constant initial pressure head h0 = −150 [m], the Dirichlet boundary condition
hD = 1 [m] on the top and the homogeneous Neumann condition on the bottom. The parameters
of the soil model were n = 1.14, α = 0.1 [m−1], θr = 0.01, θs = 0.480, ks = 2 [mh−1]. This setting
leads to a steep wetting front during the initial phase, thus we have to use short time steps. The
wetting front goes from the top to the bottom so that the pressure head should be monotonous
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Figure 5.1: In�ltration velocity on the topof the vertical 1D domain. The stable FE scheme
(left) and the unstable MFE scheme (right)

in time and space, increasing form −150 up to 1 + z. The velocity should by always negative.
The MFE code was run on meshes with steps 0.01, 0.1, and 0.5 the FE code was run only for
steps 0.01 and 0.5. All simulations has started with the time step 10−6 and the time step is
enlarged if the number of nonlinear iterations drops under 3.

Figure 1 shows the in�ltration velocity on the top of the domain up to the full saturation
of the whole domain. For the �ne mesh step 0.01 the results are comparable. The in�ltration
computed by the MFE code takes just little bit longer compared to the FE code. On the other
hand, for the coarser meshes, the MFE code produce terrible oscillations while the FE code still
provides satisfactory results. The oscillations are not only in time but also in space and they get
worse with shorter time steps or larger mesh steps. Values of the pressure head leaves the valid
interval [−150, 1] and positive values of the velocity appears.

5.4 Discrete maximum principle

Maximum principle for elliptic PDEs states that a solution of the equation

div(−k̃∇h) + c̃h = f̃ on Ω, h = g̃ on ∂Ω, (5.11)

with k̃ > 0, c̃ ≥ 0, is non-negative provided f̃ and g̃ are non-negative. If a similar property holds
for a discrete problem, we say that it obeys the discrete maximum principle (DMP).

In view of the previous section it seems that the MFE scheme violates DMP for the short
time steps. To show this, we shall analyze one linear step, i.e. system (5.9 � 5.10), which can be
viewed as the discretization of the linear elliptic problem (5.11) with k̃ = k(h), c̃ = θ′(h)/dt, and
suitable positive f̃ . We consider one dimensional domain with grid points x1 < x2 < · · · < xn
and the lowest order elements d = 0. Further, we use equivalent mixed-hybrid discretization of
(5.11). On every element Ki = (xi, xi+1) the discrete solution is represented by the pressure
head hi in the center of element, by the traces h̊1,2

i on element boundary, and by the velocity
vi = u1

iψ
1 + u2

iψ2. The velocity is linear combination of discontinuous RT0 base functions

ψ1
i (x) =

xi+1 − x
xi+1 − xi

, ψ2
i (x) =

x− xi
xi+1 − xi

where coe�cients u1,2
i are the outer normal �uxes from the element i. Proceeding similarly as in
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the case of mixed formulation we obtain a discrete version of (5.11):

∑

j=1,2

k̃−1
i uji

∫

Ki

ψmi ψ
j
i = hi − h̊mi for m = 1, 2 (5.12)

c̃ihi|Ki|+ u1
i + u2

i = f̃i|Ki| (5.13)

u2
i = −u1

i+1, h̊2
i = h̊1

i+1. (5.14)

We denote h̊i = h̊2
i = h̊1

i+1. The integral in (5.12) evaluates to |Ki|/3 and −|Ki|/6 for m = j

and m 6= j, respectively. On the Dirichlet boundary xn we set h̊1
n = hD. Then, eliminating hi

and u1,2
i from the system, we obtain an equation for h̊i:

ai−1̊hi−1 + (bi−1 + bi)̊hi + ai̊hi+1 = ci−1 + ci (5.15)

where

ai =
2k̃i
|Ki|

− αiαi
βi

, bi =
4k̃i
|Ki|

− αiαi
βi

, ci =
αi|Ki|f̃i
βi

, (5.16)

αi =
6k̃i
|Ki|

, βi = |Ki|c̃i + 2αi. (5.17)

Equation (5.15) is one row of a linear system Åh = c, where vector c is non-negative provided f̃i
and hD are non-negative. In order to obtain a non-negative solution h̊, the matrix A has to have
positive inverse. This holds if A is so called M -matrix, that is a matrix with positive diagonal
entries, non-positive o� diagonal entries, and positive row sums. In our case this is equivalent
to ai ≤ 0, bi > 0, and ai + bi > 0. The later two inequalities are always true, while the �rst one
holds only if

|Ki|2
6
≤ k̃i
c̃i

= dt
k(hi)

θ′(hi)
. (5.18)

For positive f̃ and g̃, this condition implies positive nodal pressures h̊i. Then the elemental
pressures hi are also positive since

hi =
|Ki|f̃i + αi(̊h

1
i + h̊2

i )

βi
.

Our numerical experiments reveals that oscillations of the solution appears exactly on that
elements where the condition (5.18) does not hold. Thus to get stable scheme one has to adapt
the element size |Ki| according to the condition. However, the limit of the right hand side as
hi → −∞ is zero, at least for the soil model (5.3 � 5.5). It means that |Ki| should be very
small on the whole dry part of the domain where the solution is mainly constant which is highly
ine�ective. Moreover, mixed elements on 2D quadrilaterals or 3D hexahedrons never leads to
M -matrix even for ci = 0.

In the paper due to Younes, Ackerer, and Lehmann [14] authors prove stability conditions
similar to (5.18) for mixed-hybrid elements on triangular and tetrahedral meshes. We can con-
clude that the mixed scheme for the Richards' equation is stable only for large time steps and
therefore is not suitable for a robust solver. However, one can try to modify the mixed scheme
to make it more stable. In fact two such modi�cations were already proposed in [14].
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5.5 Lumped Mixed-Hybrid Method

The instabilities demonstrated in previous section for the simple 1d elements are even worse for
higher dimensions. One possible solution is the diagonalization of the method (lumped mixed-
hybrid method, LMH) proposed in [14]. This method use a simple modi�cation of the saddle
point problem (3.31 − 3.32) replacing the time derivative of the element pressures by the time
derivative of the weighted average of the trace pressures. This is done by replacing the from ct
by:

c̃t(p, p̊, q, q̊) =

3∑

d=1

∑

T∈Td

d+1∑

i=1

αT,i|T |
δdSd
τ

(
p̊|ST,i

q̊|ST,i

)
,

and the source term in (3.27) by

3∑

d=1

∑

T∈Td

d+1∑

i=1

αT,i|T |δdfd q̊|ST,i
,

where |T | is volume of the element T , ST,i is the i-th side of T , and h̊|ST,i
is the degree of freedom

on the side ST,i.

The wights αT,i for the trace pressures are chosen as follows. For a single element T of
dimension d, we denote A the local matrix on T corresponding to the form a( · , · ) in (3.23).
Then the optimal choice of the weights αT,i, i = 0, . . . d is:

αT,i =
λi
λ
, λi =

d∑

j=0

A−1
ij , λ =

d∑

i=0

λi

however the unconditioned satisfaction of DMP is guarantied even for the simple average:

αT,i =
1

d+ 1
.

As this modi�cation adds the source term to the balance of side �uxes, the side �uxes on
a face shared by two elements K and L do not sum to zero anymore. To �x this, we have to
perform a postprocessing of the �uxes after the linear system is solved. Assuming that the side
i of the element K and the side j of the element L corresponds to the common edge e, we set
corrected �ux ũK,i as:

ũK,i = vK,i + αK,i|K|Fe, Fe =

∫

e
δdfdq̊e −

δdSd
τ

(p̊e − p̊0
e)q̊e

where p̊e, p̊0
e, q̊e are the trace pressure, the trace pressure in previous time step and the trace

test function on the edge e respectively.
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Figure 5.2: Comparison of MH (left) and LMH scheme (right), τ = 10−4.

Figure 5.2 shows a comparison of the results using conventional MH scheme and LMH scheme.
At the MH scheme one can observe oscillations in the wavefront where the minimum value is
signi�cantly less than zero.

5.6 Fully coupled dual permeability model

The paper [20] reprinted in this section presens a dual permeability model a fractured soil and its
solution by a fully coupled �nite element solver. The region of soil parameters is ideni�ed where
the full coupling provides better results then the sequential coupling. Both coupling techniques
are compared to the real measurements.
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Physical and Numerical Coupling 
in Dual-Con  nuum Modeling of 
Preferen  al Flow
Dual-conƟ nuum models are useful for describing fl ow in porous systems with signifi cant 
local pressure disequilibrium between slow moving water, contained in the porous matrix, 
and fast moving water in preferenƟ al pathways. The formaƟ on and intensity of preferenƟ al 
fl ow depends on the contrast between the hydraulic properƟ es of the two fl ow domains 
as well as on the properƟ es of their interface. In this study, we focused on both physi-
cal coupling of the fl ow domains through the mass transfer term and numerical coupling 
of the respecƟ ve governing equaƟ ons. The set of governing equaƟ ons was alternaƟ vely 
solved using a sequenƟ ally coupled (SC) approach and a fully coupled (FC) approach. The 
SC approach was shown to be computaƟ onally more effi  cient for strongly developed pref-
erenƟ al fl ow in systems with high interfacial resistance; however, it becomes numerically 
unstable for weak preferenƟ al fl ow associated with low interfacial resistance. The FC 
approach is a computaƟ onally more expensive yet numerically more robust alternaƟ ve, 
capable of simulaƟ ng a complete class of intermediate fl ow regimes ranging from strongly 
preferenƟ al fl ow in a dual-conƟ nuum system to nonpreferenƟ al fl ow in a single-conƟ nuum 
system. To illustrate the performance of the numerical coupling approaches in conjuncƟ on 
with the eff ect of diff erent interfacial resistances, we present a simple example problem 
involving one-dimensional near-saturated fl ow in a verƟ cal soil column.

AbbreviaƟ ons: FC, fully coupled; PF, preferenƟ al fl ow; SC, sequenƟ ally coupled; SM, soil matrix.

When seeking a reasonably realistic description of the fi eld-scale movement of water 
and solutes, the assumption that soil is a single-continuum system is oft en inadequate. 
During rainstorms or intensive irrigation events, water and chemicals can move at relatively 
large velocities in macropores or other structural elements, causing local disequilibrium 
conditions in pressure heads and solute concentrations. Preferential fl ow related to soil 
structure has been widely reported in soils containing worm holes, root channels, and 
interaggregate fi ssures (e.g., Bouma, 1981; Beven and Germann, 1982). Other types of 
preferential fl ow have been associated with textural diff erences rather than structural 
aspects (e.g., Cislerova et al., 2002), water repellency, and other conditions (e.g., Snehota 
et al., 2008).

In the last two decades, several dual-continuum models (e.g., Gerke and van Genuchten, 
1993a; Jarvis, 1994; Ray et al., 1997; Vogel et al., 2000) have been developed to simu-
late preferential fl ow in soils conceptualized as having two pore domains (see Fig. 1): the 
soil matrix domain (SM domain) and the preferential fl ow domain (PF domain). Dual-
continuum models have been commonly referred to as dual-porosity or dual-permeability 
models (although these two terms are not always considered synonymous). In the dual-
continuum models, a Darcian fl ow assumption for the movement of water and a Fickian 
dispersion assumption for the transport of solutes have been assumed to be valid for each 
of the two pore domains separately, allowing local interdomain disequilibrium. Detailed 
discussions of various forms and applications of dual-continuum models can be found in, 
e.g., Gerke (2006), Jarvis (2007), and Köhne et al. (2009).

A crucial component of dual-continuum models is the mass transfer term governing the 
exchange of water between the PF and SM domains through their interface (PF–SM inter-
face). Several empirical and semiempirical expressions are used to represent mass transfer 
in current models. Further research is needed, however, to establish more adequate and 
computationally feasible relationships and to develop the experimental methodologies 
needed to determine the additional constitutive parameters. Generally speaking, water 
communication between the two fl ow domains is a transient, nonlinear process. For this 

The fi rst-order transfer term, control-
ling the soil water exchange between 
the preferenƟ al fl ow domain and the 
soil matrix, is parameterized with the 
emphasis on interfacial resistance. 
This parameterization is used as a 
framework for the evaluaƟ on of the 
performance of two basic approaches 
to numerical coupling of the govern-
ing fl ow equaƟ ons.
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reason, Zimmerman et al. (1993) suggested a nonlinear ordinary 
diff erential equation to evaluate the fracture–matrix transfer for 
fractured rock formations. More recently, Lewandowska et al. 
(2004) implemented a nonlinear exchange term assuming an addi-
tional local fl ow equation in a double-porosity homogenization 
approach. Köhne et al. (2004) proposed a second-order transfer 
term. In spite of that, the fi rst-order algebraic approximation of 
the interdomain transfer (e.g., Gerke and van Genuchten, 1993b, 
1996) is still considered a reasonably adequate and computationally 
highly effi  cient assumption.

As far as the numerical coupling of the dual-continuum system is 
concerned, Gerke and van Genuchten (1993a) solved the dual set 
of governing equations as a fully coupled system (FC approach). 
Tseng et al. (1995) presented a partitioned solution procedure per-
formed sequentially for the two fl ow domains (SC approach). Th ey 
showed that the proposed single-pass scheme is stable and compu-
tationally more effi  cient than the FC approach. Th e SC approach 
was also implemented in the HYDRUS-1D code (Šimunek and 
van Genuchten, 2008).

To allow comparison of the two numerical coupling approaches 
(FC and SC) on an equal basis, we implemented the FC approach 
in a numerical solver that was originally based on the SC approach. 
In this study, both approaches were compared through solving a 
simple example problem, designed to test their performance under 
diff erent fl ow regimes, ranging from strongly preferential fl ow in 
a dual-continuum system to nonpreferential fl ow in a single-con-
tinuum system.

Th e main objectives of this study were twofold: (i) to improve the 
existing dual-continuum model in terms of computational effi  -
ciency and numerical stability, and (ii) to identify the most relevant 
and easy-to-interpret set of parameters that could be used to char-
acterize the fl ow regime in a dual-continuum system. Th e latter 
objective is especially important in situations in which preferential 
fl ow is observed macroscopically but more detailed microscopic 
information about the physical properties of the porous system 
is unavailable.

 Dual-Con  nuum System
Th e dual-continuum system consists of the PF domain and the SM 
domain separated by the PF–SM interface. Variably saturated fl ow 
of water in a dual-continuum system is described by a dual set of 
Richards’ equations (e.g., Gerke and van Genuchten, 1993a). Th ese 
equations are coupled through a soil water transfer term, which 
allows a dynamic exchange of water between the PF domain and 
the SM domain. In case of one-dimensional fl ow, the dual set of 
governing equations can be written in the following form:

f f f
f f f f w1

w h
= w K  w S   

t z z

⎡ ⎤⎛ ⎞∂ θ ∂∂ ⎟⎜⎢ ⎥+ − − Γ⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠∂ ∂ ∂⎣ ⎦
 [1]

m m m
m m m m w1

w h
 = w K  w S  

t z z

⎡ ⎤⎛ ⎞∂ θ ∂∂ ⎟⎜⎢ ⎥+ − +Γ⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠∂ ∂ ∂⎣ ⎦
 [2]

where subscript m denotes the SM domain, subscript f denotes the 
PF domain, h is the soil water pressure head (m), K is the unsatu-
rated hydraulic conductivity (m s−1), θ is the volumetric soil water 
content (dimensionless), S is the intensity of the local root water 
uptake (s−1), Γw is the soil water transfer term (s−1) defi ned as the 
volume of fl uid moving from the PF domain to the SM domain 
per unit volume of bulk soil per unit time, and wm and wf are 
the volumetric fractions of the pore space occupied by the respec-
tive fl ow domains (wm + wf = 1) (all variables are also defi ned in 
Appendix 1).

Th e composite properties of the bulk soil are related to the respec-
tive domain-specifi c properties through simple summation rules:

s f f m ms sw wθ = θ + θ  [3]

s f fs m msK w K w K= +  [4]

where θ s is the saturated water content and Ks is the saturated 
hydraulic conductivity.

Gerke and van Genuchten (1993b) suggested the following fi rst-
order approximation of the transfer term:

( )w w f m h hΓ =α −  [5]

in which αw denotes the fi rst-order soil water transfer coeffi  cient 
(m−1 s−1). Th ey showed that in structured soils,

w a2
K

a
β

α ∝  [6]

where β is a dimensionless geometry factor related to the shape of 
soil aggregates, a is the average soil aggregate radius (m), and Ka 
is the unsaturated hydraulic conductivity at or near the PF–SM 
interface (m s−1).

In this study, the fi rst-order transfer coeffi  cient is parameterized 
in a slightly diff erent way. First, the interfacial conductivity is 

Fig. 1. Th e dual-continuum model: an internally structured porous 
medium is decomposed into two fl ow domains, the soil matrix domain 
(SM domain) and the preferential fl ow domain (PF domain).

TECHNICAL UNIVERSITY OF LIBEREC Faculty of Mechatronics, Informatics and Interdisciplinary Studies Studentská 1402/2 461 17 Liberec 1 Czech Republic

phone:+420 485 353 624 jan.brezina@tul.cz www.fm.tul.cz ID: 467 47 885 VATIN: CZ 467 47 885
95



www.VadoseZoneJournal.org | 262

expressed as a product of the saturated conductivity, Kas, and the 
relative unsaturated conductivity, Kar. Th e former of the two con-
ductivities is then incorporated into the coeffi  cient αws, so that

( )w ws ar f m,K h hα =α  [7]

where αws (m
−1 s−1) is the value of soil water transfer coeffi  cient at 

saturation (when Kar = 1).

Next, we assume that the transfer coeffi  cient is inversely propor-
tional to the interfacial resistance, rws (s). Th e interfacial resistance 
operates at the microscopic scale, but can be upscaled to the mac-
roscopic level by utilizing the concept of specifi c interfacial area:

ws
ws

  
r
τ

α =  [8]

Th e specifi c interfacial area τ (m−1) is defi ned as the area of the 
PF–SM interface per bulk volume of soil.

Th e magnitude of rws clearly depends on the magnitude of the 
interfacial conductivity Kas, but it is also proportional to a char-
acteristic length, λ (m), associated with the mass transfer. Th is 
length could be thought of as the distance separating the two fl ow 
domains, or better as an eff ective distance across which the pres-
sure head diff erence hf − hm operates. Th e defi nition formula for 
the interfacial resistance combines the eff ect of Kas and λ:

ws
as

r
K
λ

=  [9]

Note that the present formulation transforms to a form consistent 
with the original concept of Gerke and van Genuchten (1993b), as 
given by Eq. [6], in the case where λ is equal to the aggregate radius 
a, and τ = β/a. Th ese two conditions can be combined in a more 
compact way as λτ = β. Th e relationship between λ, τ, and β for 
diff erent interfacial geometries was studied in detail by Gerke and 
van Genuchten (1996).

At saturation, the interfacial conductivity Kas is closely related to 
the saturated conductivity of the soil matrix, Kms; however, under 
the presence of increased interfacial resistance, e.g., due to soil 
aggregate coating, it may be signifi cantly lower (e.g., Gerke and 
Köhne, 2002). Th erefore, we can expect that Kas ≤ Kms.

Th e presence of coating at the PF–SM interface may also reduce λ 
because the soil water pressure diff erence operates at much smaller 
distances, related to the thickness of the aggregate coating rather 
than the size of the aggregates. Th us, the characteristic length is 
bound by the condition λ ≤ a.

It is of interest to note that the degree of hydraulic communica-
tion between the PF and SM fl ow domains can be characterized 
by two dimensionless numbers: λτ and Κas/Kms. Th e two num-
bers uniquely determine the magnitude of the transfer coeffi  cient 
αws, provided that τ and Kms are known a priori. Th ese numbers 

complement the other two dimensionless numbers, which char-
acterize the contrast between the properties of the PF and SM 
domains, i.e., wf and Κfs/Kms.

Th e dual system of governing equations is numerically solved by 
the fi nite element method. Th e numerical solver is implemented 
in the variably saturated fl ow and transport model S1D (see Ray 
et al. [2004] or Vogel et al. [2007] for recent applications of the 
code). Th e S1D code is a follow-up version of the single-continuum 
model HYDRUS 5.0 (Vogel et al., 1996).

 Sequen  ally Coupled Approach
With the SC approach, the governing flow equations are solved 
separately for each of the two fl ow domains at each time level. Th e fi rst-
order transfer term, which mediates the exchange of water between 
the two domains, is evaluated at each time level using the soil water 
pressure information from the previous time level, as shown in 

( )11 1
w ws ar mf

jj j j K h h−− −Γ =α −  [10]

in which the relative hydraulic conductivity of the PF–SM inter-
face is determined as

( ) ( )

( ) ( )

1 1
fr mrf f

1 1
mf1

ar
1 1

fr m mr m

1 1
mf

min ,

for

min ,

for 

j j

j j
j

j j

j j

K h K h

h h
K

K h K h

h h

− −

− −
−

− −

− −

⎧ ⎡ ⎤⎪⎪ ⎢ ⎥⎪ ⎣ ⎦⎪⎪⎪ ≥⎪⎪= ⎨⎪ ⎡ ⎤⎪ ⎢ ⎥⎪ ⎣ ⎦⎪⎪⎪ <⎪⎪⎩

 [11]

where Kmr and Kfr are the relative hydraulic conductivities of the 
SM domain and the PF domain, respectively. Equations [10] and 
[11] are evaluated at each nodal point of the space discretization.

 Fully Coupled Approach
Varia  onal Formula  on
Alternatively to the SC approach, described above, the set of two 
governing equations can be solved as a fully coupled system. To 
derive a joined variational formulation, we multiply Eq. [1] and 
[2] by the test functions φf and φm, integrate by parts, and add 
together as follows:

( ) ( )

f m
f m

f w f m f m w m f m

f f m m
f f m m

f m
f f f f m m m m

d

d

d

d

w w  z
t t

w h h w h h z

h h
w K w K  z

z z z z

w K S w K S z
z z

Ω

Ω

Ω

Ω

∂θ ∂θ
+

∂ ∂

+ α − φ + α − φ

∂ ∂φ ∂ ∂φ
+ +

∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞∂φ ∂φ⎟ ⎟⎜ ⎜= − φ + − φ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∂ ∂

∫

∫

∫

∫

 
[12]

for every ( ) ( ) ( )1 1
m f 0 0, H Hφ φ ∈ Ω Ω
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where Ω is a domain with Lipschitz boundary and H0
1(Ω) is the 

space of weakly diff erentiable functions with zero trace on the 
Dirichlet boundary (see discussion of boundary conditions below).

Discre  za  on
Th e variational formulation Eq. [12] is discretized by the fi nite ele-
ment method in the very same way as in the SC approach. Namely, 
φf and φm are approximated by piecewise linear functions, while 
θf, θm, hf, and hm are approximated by piecewise constant func-
tions in the fi rst two integrals of Eq. [12] and by piecewise linear 
functions in the remaining terms. Th e resulting system of ordinary 
diff erential equations is solved by an implicit Euler scheme using 
Pickard iterations to solve the nonlinear system at each time level. 
Th e linear system solved at each iteration reads

( )+ + =T D A h b  [13]

where T is a diagonal matrix corresponding to the time term, i.e., 
the fi rst integral in Eq. [12], D is a block diagonal matrix of the 
interdomain communication corresponding to the second integral 
in Eq. [12], A is a three-diagonal matrix corresponding to the third 
integral, the vector b is related to the right-hand side of Eq. [12] 
plus part of the time diff erence term due to the previous time, and 
h is the vector of unknown nodal values of the pressure head.

Composi  on of the Linear System
For each nodal point i, we denote its base function by φi. Using 
either (φm, φf) = (φi, 0) or (φm, φf) = (0, φi) as test functions in 
Eq. [12], we obtain rows 2i − 1 and 2i in our linear system, so that 
the odd indices are used for the SM domain and even indices for 
the PF domain.

Th e matrix T is diagonal, composed from the values

2 1 2 1
2 1,2 1T

i i i
i i w F C

t

− −
− − =

Δ
 [14]

2 2
2 ,2T

i i i
i i w F C

t
=

Δ
 [15]

where Fi is the integral of the base function φi, w2i−1 = wm and 
w2i = wf are the volumetric fractions of the domains in the node 
i, C2i−1 and C2i are the soil water capacities computed from the 
respective pressure heads 2 1

m
i ih h− = and 2

f
i ih h=  at the previ-

ous iteration, and Δt is the time step.

Th e interdomain communication matrix D consists of 2 × 2 blocks:
2 1,2 1

w

2 1,2
w

D

D

i i i i

i i i i

F

F

− −

−

= α

=− α
 [16]

2 1,2
w

2 1,2
w

D

D

i i i i

i i i i

F

F

−

−

=− α

= α
 [17]

where αw
i are nodal values of the soil water transfer coeffi  cient.

Th e last matrix A is tridiagonal with values

2 1,2 3
m m

2 1,2 1
m

2 1,2 1
m

A

A

A

i i

i i

i i

K K

K

K

− − − +

− − −

− + +

= +

=−

=−

 [18]

2 ,2 2
f f

2 ,2
f

2 ,2 2
f

A

A

A

i i

i i

i i

K K

K

K

− − +

−

+ +

= +

=−

=−

 [19]

where K+ and K − are integrals over the neighboring elements of 
the node i, in particular

( )

( )

2 3 2 3 2 1 2 1
ar ar

m 1

2 1 2 1 2 1 2 1
ar ar

m 1

2

2

i i i i

i i

i i i i

i i

w K w K
K

z z

w K w K
K

z z

− − − −
−

−

+ + − −
+

+

+
=

−

+
=

−

 [20]

( )

( )

2 2 2 2 2 2
ar ar

f 1

2 2 2 2 2 2
ar ar

f 1

2

2

i i i i

i i

i i i i

i i

w K w K
K

z z

w K w K
K

z z

− −
−

−

+ +
+

+

+
=

−

+
=

−

 [21]

Th e right-hand-side vector b consists of a source term and a grav-
ity term, which have already been presented on the right-hand 
side of the variational formulation Eq. [12], but in addition it 
also contains part of the time diff erence due to the water content 
in the previous time. Finally, because we have assumed that the 
water uptake takes place only in the SM domain, the sink term 
in the PF domain is set equal to zero. Th en the formulas for the 
b vector are

2 1
m m

2 1 2 1 2 1 2 1
2 1

m

b

ˆh

i

i i i i
i i i

K K

C
w F S

t t

− + −

− − − −
−

= −

⎛ ⎞θ −θ ⎟⎜ ⎟⎜+ − + − ⎟⎜ ⎟⎟⎜ Δ Δ⎝ ⎠

      [22]

2 2 2 2
2 2

f f

ˆh
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i i i i
i i i C

K K w F
t t

+ −
⎛ ⎞θ −θ ⎟⎜ ⎟⎜= − + − ⎟⎜ ⎟⎟⎜ Δ Δ⎝ ⎠

 [23]

where Sm
i is the nodal value of the sink term in node i, h  is the 

pressure head vector at the last iteration, θ  is the corresponding 
water content vector, and θ̂ is the water content vector at the pre-
vious time step.

Compared with the SC approach, the FC approach is numeri-
cally more stable with respect to the high values of αws. Th is fact 
allowed us to relax the artifi cial restriction, built into the SC code, 
that forced αws to be zero when the target domain of the interdo-
main fl ux was saturated.
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Boundary Condi  ons
Th e simulator supports a number of boundary conditions of dif-
ferent complexity, in particular the conditions for simulating the 
precipitation and evapotranspiration processes. A more detailed 
description of these conditions, specifi cally the procedure for redi-
recting the infi ltration excess water from the SM to the PF domain 
during extreme rainfall events, was given in Dusek et al. (2008).

From the point of view of a numerical solution, all types of bound-
ary conditions lead to either a Dirichlet or a Neumann boundary 
condition. In the case of a Neumann boundary condition, we 
simply add a given fl ux to the right-hand side of Eq. [13], while at 
the nodes with a Dirichlet boundary condition, we use the known 
value of the pressure head to rewrite the corresponding row of the 
linear system as a fl ux equation. Th is makes it possible to incor-
porate the algorithm for handling the infi ltration excess water 
directly into the linear system and results in a reduced number 
of iterations. On the other hand, it has the eff ect of breaking the 
symmetry of the matrix, which could be undesirable if an iterative 
method is preferred for solving the linear system. For a direct solver, 
as used in the present version of the code, this does not represent 
a problem.

 Example Problem
To illustrate the performance of the numerical coupling approaches 
in conjunction with the eff ect of diff erent interfacial resistances, 
we present a simple example problem involving one-dimensional 
infi ltration in a vertical soil column, conceptualized as a dual-
continuum system. Th e upper boundary of the initially dry soil 
column is exposed to ponded infi ltration, which lasts suffi  ciently 
long to lead to the outfl ow of soil water from the lower boundary 
of the column.

Th e example problem is formulated as follows:

 • Geometry: one-dimensional homogeneous vertical soil column 
100 cm high.

 • SM domain: loamy sand (soil hydraulic parameters are shown 
in Table 1); Kms = 1 cm h−1.

 • PF domain: sand (see Table 1); Kfs = 100 cm h−1; wf = 0.05.
 • Specifi c interfacial area: τ = 1 cm−1.
 • Initial conditions: equilibrium with groundwater table at the 

depth of 5 m below the soil surface.
 • Upper boundary conditions: ponded infi ltration (Dirichlet 

type); depth of ponding = 2 cm.
 • Lower boundary conditions: free drainage (Neumann type).

Th e soil hydraulic parameters were generated using the ROSETTA 
database (Schaap et al., 2001). Th e PF domain is represented by 
sand, to imitate the situation in which the preferential pathways 
are fi lled with relatively coarse particles eroded from the matrix. 
Th e values of the saturated hydraulic conductivities computed by 
ROSETTA were respected only in their order of magnitude. Th e 

value of the specifi c interfacial area τ was chosen arbitrarily, how-
ever, within the expected range for structured soils.

Th e example problem was alternatively solved by applying the SC 
approach and the FC approach. In addition, the problem was 
solved by the conventional single-continuum approach, in which 
the soil hydraulic properties were defi ned as composite properties 
of the two fl ow domains (see Eq. [3] and [4]).

The simulations of soil water f low in the soil column were 
repeated with diff erent values of interfacial resistance rws rang-
ing from 1 h (high interdomain communication) to 10,000 h 
(low interdomain communication).

Altogether, 11 simulation scenarios were executed, involving one 
single-continuum approach and two dual-continuum approaches—
each applied with fi ve diff erent interfacial resistances.

 Results and Discussion
Impact of Interfacial Resistance
Th e results of the diff erent simulation scenarios are presented in 
Fig. 2, 3, 4, and 5. Figure 2 indicates a relatively weak dependence 
of the simulated infi ltration rates on the interfacial resistance. On 
the other hand, the outfl ow rates (see Fig. 3) diff ered signifi cantly 
when diff erent values of rws were applied.

Th e simulated responses of soil water pressure at the bottom of the 
soil column, as shown in Fig. 4, reveal signifi cant local disequilib-
rium between the fl ow domains for strongly preferential scenarios 
(rws = 100 h and higher). Th e disequilibrium started with the 
arrival of the moisture front and lasted for the rest of the simula-
tion period. Pressure responses for weak preferential fl ow scenarios 
(rws = 1 and 10 h) were much more synchronized between the two 
domains. Th e local pressure became reequilibrated soon aft er the 
arrival of the moisture front.

As shown in Fig. 4, both numerical coupling methods pro-
vide consistent results for strongly preferential scenarios. 
While the FC approach was numerically stable for all sce-
narios, the SC approach fai led to converge for the weak 
preferential f low scenarios.

Table 1. Soil residual and saturated volumetric water content (θr and θs, 
respectively) and fi tted parameters α and n of hydraulic conductivity 
(ROSETTA, Schaap et al., 2001).

Parameter θr θs α n

cm−1

Soil matrix domain 0.049 0.390 0.035 1.75

Preferential fl ow domain 0.053 0.375 0.035 3.18
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Figure 5 shows the interdomain soil water transfer rates Γw at t 
= 1 h computed by S1D for diff erent input values of rws. Positive 
values of Γw indicate transfer from preferential pathways to the soil 
matrix. Th e fi gure shows highly concentrated transfer rates along 
the advancing moisture front when low interfacial resistances are 
considered (for rws = 1 and 10 h).

Figures 2, 3, and 4 can also be used to compare the results of the 
dual-continuum scenarios with the single-continuum scenario. Th e 
outfl ow rates in Fig. 3 as well as the pressure heads in Fig. 4 indicate 
that for the weak preferential fl ow scenarios the dual-continuum 
results are, in fact, not that much diff erent from those computed 
by the single-continuum model. In other words, the preferential 
fl ow eff ects become increasingly signifi cant when the interfacial 

resistance is higher than about two orders of magnitude 
compared with the lowest considered resistance (in our 
case, for rws = 100 h and higher).

Since the ratio Κas/Kms is expected to be ≤1, the lowest 
possible interfacial resistance is equal to λ/Kms (cf. Eq. 
[9]). Let us assume that the characteristic length λ in our 
example problem is ≥1 cm. Th e lowest possible resistance 
is then rws = 1 h (as Kms = 1 cm h−1). In other words, the 
value of 1 h is a reasonable choice for the lowest possible 
rws in our system as long as λ ≥ 1 cm is a reasonable 
estimate of the characteristic length.

Th e highest value of the interfacial resistance, rws = 10,000 
h, was chosen as an extreme case to represent systems with 
a low interfacial conductivity Kas or a large characteristic 
length λ (e.g., in soils with a sparse network of preferential 
pathways).

When τ is known and Kar is evaluated by Eq. [11] or a 
similar procedure, rws represents a single-valued param-
eter that determines the rate of the soil water transfer 
between the PF and SM domains. Th is makes rws useful 
not only for comparing the responses of dual-continuum 
systems with diff erent level of interdomain communica-
tion (as shown in this study), but also as an important 
parameter in experimental studies in which the hydrau-
lic properties of structured soils are estimated by inverse 
modeling.

Preferential fl ow in structured soils, represented by a 
dual-continuum system, is oft en thought of as being, to 
a large extent, controlled by the contrast in hydraulic 
conductivity between the soil matrix and preferential 
pathways. The presented parameterization concept 
stresses the role of the interfacial resistance as an 
equally important factor. Th e resistance is responsible 
for local disequilibrium, which is essential for sup-
porting persistent preferential fl ow conditions. Low 
interfacial resistance in a dual-continuum system leads 

to negligible preferential fl ow, even when large conductivity con-
trasts between the fl ow domains exist.

Stability Issues
Th e SC version of the S1D code failed to converge for the weak 
preferential fl ow scenarios (rws < 100 h) but was stable for the 
strongly preferential scenarios. Th is is related to the basic assump-
tion of the SC approach—that the soil matrix locally absorbs 
or releases a reasonably small amount of water within any time 
step of the numerical solution, so that the fl ow equations can be 
solved in sequence and the interdomain transfer of water, which 
is evaluated at the end of the time step, can be approximated by 
the transfer rate calculated from the pressure diff erence at the 

Fig. 2. Infi ltration rates at the soil surface during ponded infi ltration computed for 
diff erent values of interfacial resistance rws (the dual-continuum scenarios were simu-
lated with the fully coupled approach).

Fig. 3. Outfl ow rates at the bottom of the soil column computed for diff erent values 
of interfacial resistance rws (the dual-continuum scenarios were simulated with the 
fully coupled approach).
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beginning of the time step (cf. Eq. [10]). Low interfacial resis-
tances lead to large interdomain transfers (see Fig. 5) with adverse 
eff ects on convergence.

Although the FC approach permits much lower values of the 
interfacial resistance, it is paid off  by worse conditioning of the 
nonlinear problem. In practice, this leads to a higher number of 
linear iterations, sometime even to oscillations and nonconver-
gence. In particular, this may happen when the time step is too 
small, so that large linear steps may lead to overshooting. Th is type 
of instability can probably be avoided by using a suitable line search 
method that has been proven to be globally convergent (Deufl hard, 
2004). When used to solve our example problem, the FC scheme 
converged for all selected scenarios.

Th e computational effi  ciency of the numerical codes based on the 
SC and FC approaches is compared in Table 2.

 Conclusions
Th e parameterization of the fi rst-order transfer coeffi  cient, con-
trolling the exchange of water between the PF and SM domains, 
was reformulated to allow a more straightforward interpretation 
of the hydraulic function of the PF–SM interface. Th is param-
eterization was built around the notion of interfacial resistance. It 
was shown that the preferential fl ow eff ects become increasingly 
signifi cant, and therefore worth modeling by a dual- instead of 
a single-continuum approach, when the interfacial resistance is 
higher than the value of λ/Kms by about two orders of magnitude 

(for a system with λτ ∼ 1). Th e fl ow regime in a dual-continuum 
system can be characterized by four dimensionless numbers: wf, 
Κfs/Kms, λτ, and Κas/Kms.

With respect to the alternative methods for numerical coupling, 
the SC approach is relatively simple to program and leads to a 
computationally effi  cient solution of dual-continuum problems, 
provided that the time steps are reasonably small and the amount 
of water exchanged locally between the two fl ow domains in a time 
step is limited by a relatively high interfacial resistance. Th e FC 
approach is more numerically robust. Unlike the SC approach, it 
allows study of a complete class of intermediate fl ow regimes rang-
ing from strongly preferential fl ow in a dual-continuum system to 
nonpreferential fl ow in a single-continuum system. Th is is achieved 
at the expense of somewhat decreased computational effi  ciency.

Fig. 4. Soil water pressure head at the depth of 100 cm computed for 
diff erent values of interfacial resistance rws: (a) soil matrix domain, (b) 
preferential fl ow domain. Lines denote the fully coupled approach, 
while symbols are used for the sequentially coupled (SC) approach 
(missing symbols for the smallest interfacial resistances indicate non-
convergence of the SC approach).

Fig. 5. Interdomain soil water transfer rates (Γw) at time t = 1 h com-
puted for diff erent values of interfacial resistance rws (simulated with 
the fully coupled approach).

Table 2. Model performance (Intel Core2 6700 CPU, 2.69 GHz, 6 GB 
RAM) for the sequentially coupled (SC) approach in the soil matrix 
(SM) and preferential fl ow (PF) domains and the fully coupled (FC) 
approach.

Interfacial 
resistance

Cumulative number of iterations Elapsed time

SC in SM 
domain

SC in PF 
domain FC SC FC

h ————— s —————

10,000 3,354 4,324 5,318 2.39 3.46

1,000 2,930 4,128 4,646 2.04 3.18

100 2,503 4,302 3,501 1.92 2.39

10 NC† NC 4,597 – 2.96

1 NC NC 11,196 – 6.76

† NC, failure to converge.
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 Appendix: List of Symbols
a average soil aggregate radius, m
hf pressure head in the PF domain, m
hm pressure head in the SM domain, m
Ka unsaturated hydraulic conductivity of the PF–SM inter-

face, m s−1

Kar relative unsaturated hydraulic conductivity of the PF–
SM interface

Kas saturated hydraulic conductivity of the PF–SM inter-
face, m s−1

Kfr relative hydraulic conductivity of the PF domain
Kfs saturated hydraulic conductivity of the PF domain, m s−1

Kmr relative hydraulic conductivity of the SM domain
Kms saturated hydraulic conductivity of the SM domain, m s−1

Ks saturated hydraulic conductivity of the bulk soil, m s−1

rws interfacial resistance at saturation, s
Sf intensity of the root water uptake in the PF domain, s−1

Sm intensity of the root water uptake in the SM domain, s−1

wf volumetric fraction of the pore space occupied by the 
PF domain

wm volumetric fraction of the pore space occupied by the 
SM domain

αw soil water transfer coeffi  cient, m−1 s−1

αws soil water transfer coeffi  cient at saturation, m−1 s−1

β geometry factor related to the shape of soil aggregates
Γw soil water transfer term, s−1

λ characteristic length associated with the interdomain 
transfer of soil water, m

θf soil water content in the PF domain
θm soil water content in the SM domain
θs saturated soil water content of the bulk soil
τ specifi c interfacial area, m−1
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