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Abstract. We shall study Darcy flow on the heterogeneous system of
3D, 2D, and 1D domains and we present four models for the coupling of
the flow. For one of these models, we describe in detail its mixed-hybrid
formulation. Finally, we show that Schur complements are suitable for so-
lution of the linear system resulting form the lowest order approximation
of the mixed-hybrid formulation.
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1 Introduction

The granite rock represents one of the suitable sites for a nuclear waste deposit.
Water in the granite massive is conducted by the complex system of fractures
of various sizes. While the small fractures can be modeled by an equivalent per-
meable continuum, the preferential flow in the large geological dislocations and
their intersections should be considered as a 2D flow and 1D flow respectively.
Motivated by this application, we have developed a simulator (Flow123d) of
fracture flow and transport with a multidimensional coupling. Even after several
successful applications of this model (e.g. [5]), there is a gap in its theoretical
description. The aim of this work is to fill in this gap at least concerning the
water flow.

In the second section, we shall present several conceptual models for the cou-
pling between Darcian flows in different dimensions. Then we select one of these
models and setup a fully coupled 1-2-3 dimensional problem. In the third section
we describe the mixed-hybrid (MH) formulation of the fully coupled problem. We
basically follows Maryška, Rozložńık, Tůma [6] and Arbogast, Wheeler, Zhang
[1], but we rather derive MH-formulation as an abstract saddle point problem
in order to use classical theory due to Brezzi and Fortin [2]. Finally, in Section



4 we use Schur complements to solve the linear system resulting from the dis-
cretization. We shall prove key properties of the Schur complements similarly as
in [7] and we confirm these properties by numerical experiments.

2 Physical Setting

Common model of the underground water flow is the continuity equation

divv = f (1)

completed by Darcy’s law
v = −K∇h, (2)

where v is the Darcy flux [ms−1], h is the water pressure head [m], f is the volume
density of the water sources [s−1], and K is the tensor of hydraulic conductivity
[ms−1]. Let us consider the water flow described by (1), (2) in a 3D porous
medium that contains very thin layers and channels with a substantially different
hydraulic conductivity. Due to the different conductivity these features can not
be neglected, but can be considered as 2D and 1D objects respectively. We denote
Ω3 ⊂ R3 the 3D domain, Ω2 ⊂ Ω3 will be the domain of 2D fractures, and Ω1 ⊂
Ω2 is the domain of 1D channels. In order to keep further formulas consistent,
we also introduce Ω0 as the set of channel intersections. Since the fractures and
channels are thin, we can assume that the velocity and the pressure is constant in
the normal direction. Moreover the normal part of the velocity can be interpreted
as the water interchange with the surrounding medium. Consequently we can
integrate (1) along the normal directions and obtain

divqd = Fd on Ωd \ Ωd−1 for d ∈ {1, 2, 3}, (3)

where q3 = v3 is simply the Darcy flux [ms−1], q2 = δ2v2 [m2s−1] is the
water flux through the 2D fracture of thickness δ2 [m], and q1 = δ1v1 [m3s−1]
is the water flux through the 1D channel of cross-section δ2 [m2]. Further, Fd

are partially integrated densities of the water sources, which we shall discuss
presently. Vectors qd and tensors Kd, d ∈ {1, 2, 3} lives in the corresponding
tangent space of Ωd. Similarly, we denote hd the pressure head on the domain Ωd.

Next, we have to introduce suitable coupling between the equations on the
domains of different dimension. We assume that the water flux qab from Ωa to
Ωb is driven by the pressure head difference:

qab = σab(ha − hb), (4)

where σab is an water transition coefficient. However, there are at least four
different models for 2D-1D and 3D-2D interaction based on the equation (4).

Let us explain it on 2D-1D case (see Figure 2). We can choose either dis-
continuous or continuous pressure head on 2D. In the first case there is one
independent water interchange for each of two sides of the 1D domain and the
2D pressure head is discontinuous over the 1D fracture. Thats why we call it



Fig. 1. Four possible interaction models between 2D and 1D.

also a separating fracture. In the second case we assume continuous 2D pressure
and only one total flux between 2D and 1D.

Independently, we can choose either communication over the volume or over
the surface. In the case of the volume communication the flux qab acts as a volume
source [s−1] in both dimension. Nevertheless, to keep it constant in the normal
direction of the 1D domain, we have to perform averaging of qab over the width
δ [m] of the 1D domain. The transition coefficient σ has unit [m−1s−1] and has
the same meaning as the water transfer coefficient in the dual continuum models
(see [3]). In the case of the surface communication, the outflow qab [ms−1] from
the boundary of the 2D domain spreads over the width δ [m] of the 1D domain
so that qab/δ act as a volume source in the 1D domain. The transition coefficient
σ [s−1] should be proportional to |K|δ.

In what follows, we consider only the model with discontinuous pressure head
and the surface communication. On the domain Ω2, there is one water outflow
from Ω3 for every side of the surface:

q3 · n
+ = q+

32 = σ+
3 (h+

3 − h2),

q3 · n
− = q−32 = σ−

3 (h−

3 − h2),

where q3 · n+/− [ms−1] is the outflow from Ω3, h
+/−
3 [m] is the trace of the

pressure head on Ω3, h2 [m] is the pressure head on Ω2, and σ
+/−
3 = σ32 [s−1] is

the transition coefficient. On the other hand, the sum of the interchange fluxes

q
+/−
32 forms a volume source on Ω2. Therefore F2 [ms−1] on the right hand side

of (3) is given by

F2 = δ2f2 + (q+
32 + q−32). (5)

The communication between Ω2 and Ω1 is similar. However, in the 3D ambi-
ent space, an 1D channel can adjoining multiple 2D fractures 1, . . . , n. Therefore,
we have n independent outflows from Ω2:

q2 · n
i = qi

21 = σi
2(h

i
2 − h1),



where σi
2 = δi

2σ21 [ms−1] is the transition coefficient integrated over the width
of the fracture i. Sum of the fluxes forms F1 [m2s−1]

F1 = δ1f1 +
∑

i

qi
21. (6)

For the consistency we also set F3 = f3 [s−1], δ3 = 1 [−], and σ1 = 0.
In order to obtain unique solution we have to prescribe boundary conditions.

We assume that ∂Ω1 ⊂ ∂Ω2 ⊂ ∂Ω3. Let us denote Γ D
d the Dirichlet part of the

boundary ∂Ωd, where we prescribe the pressure head Pd. On the remaining part
Γ W

d , we prescribe outflow by the Newton boundary condition

qd · n = αd(hd − PW
d ).

where α3 [s−1], α2 [ms−1], α1 [m2s−1] are a transition coefficients and PW
d is

the given outer pressure head.

3 Mixed-Hybrid Formulation of Multidimensional

Fracture Flow Problem

Now, we are going to introduce MH-formulation of the problem denoted in
the previous section. To avoid technicalities, we assume that Ω3 have piece-
wise polygonal boundary, domain Ω2 consists of polygons, and Ω1 consists of
line segments. We also assume ∂Ω1 ⊂ ∂Ω2 ⊂ ∂Ω3. Further, we decompose Ωd,
d ∈ {1, 2, 3} into sub-domains Ωi

d, i ∈ Id satisfying the compatibility condition

Ωd−1 ⊂ Γd \ ∂Ωd, d = 1, 2, 3 where Γd =
⋃

i∈Id

∂Ωi
d. (7)

The idea of MH-formulation is to integrate (2) by parts on every sub-domain.
There appears a term with the trace of the pressure head, which is considered
as a Lagrange multiplier to enforce continuity of the pressure head over the
boundaries. However, since the pressure head could be discontinuous over the
fractures, we have to deal with two distinct multipliers along Ω2 and Ω1. To this
end, we introduce a natural decomposition Ωj

d, j ∈ Jd with boundaries given
by Ωd−1. Due to the compatibility condition (7) the decomposition Id can be
viewed as a refinement of the decomposition Jd. In particular, for every Ωi

d,

i ∈ Id there is a unique j(i) such that Ωi
d ⊂ Ω

j(i)
d . Then the Lagrange multiplier

for the sub-domain Ωj
d, j ∈ Jd have support on the set

Γ j
d = Γd ∩ Ωj

d. (8)

Following [1] and [6], we shall consider following spaces for the MH-solution:

V = V3 × V2 × V1 =
∏

d∈3,2,1

∏

i∈Id

H(div, Ωi
d), (9)

P = P3 × P2 × P1 × P̊3 × P̊2 × P̊1, (10)

Pd = L2(Ωd), P̊d =
∏

j∈Jd

{

ϕ̊ ∈ H1/2(Γ j
d ) | ϕ̊ = 0 on Γ D

d

}

.



where H(div, Ω) is standard space of L2-vector functions with divergence in
L2(Ω), and H1/2(∂Ω) is the space of traces of functions from H1(Ω). In the
definition of the MH-solution, the flux qd is from Vd, the pressure head hd from Pd

and the Lagrange multiplier or the pressure head trace h̊ is from P̊d. Introduction
of the composed spaces V and P allows us to formulate MH-problem as an
abstract saddle problem in the spirit of [2]

Definition 1. We say that pair (q, h) ∈ V × P is MH-solution of the problem
if it satisfy abstract saddle point problem

a(q,ψ) + b(ψ, h) = 〈F,ψ〉 ∀ψ ∈ V, (11)

b(q, ϕ) − c(h, ϕ) = 〈G, q〉 ∀ϕ ∈ P, (12)

where bilinear forms on the left-hand side are

a(q,ψ) =
∑

d=1,2,3

∑

i∈Id

∫

Ωi
d

1

δd
qi

dK
−1
d ψi

d,

b(q, ϕ) =
∑

d=1,2,3

∑

i∈Id

(

∫

Ωi
d

−divqi
dϕd +

∫

∂Ωi
d

(qi
d · n)ϕ̊

j(i)
d

)

,

c(h, ϕ) =
∑

d=1,2,3

∑

j∈Jd

(

∫

Γ j

d
∩Ωd−1

σd(hd−1 − h̊j
d)(ϕd−1 − ϕ̊j

d) +

∫

Γ j

d
∩Γ W

d

αd̊h
j
dϕ̊

j
d

)

,

and linear forms on the right-hand side are

〈G,ψ〉 =
∑

d=1,2,3

∑

i∈Id

∫

∂Ωi
d

P̃d(ψd · n),

〈F, ϕ〉 = −
∑

d=1,2,3





∫

Ωd

δdfdϕd +
∑

j∈Jd

∫

Γ j

d
∩Γ W

d

αdP
W
d ϕ̊j

d



 .

where P̃d ∈ P̊d is any extension of the Dirichlet condition Pd ∈ H1/2(Γ D
d ).

Consequently the full trace of the unknown pressure head is h̊d + P̃d.

The second term of the form b deserves a note. The outflow qi
d · n is from dual

to H1/2(∂Ωi
d) which in general is not subspace of H1/2 on the larger domain,

namely Γ
j(i)
d . But here we use the fact, that the later domain does not penetrate

into the domain Ωi
d.

Assuming that δd, Kd, σd, and αd are uniformly bounded and uniformly
grater then zero (positive definiteness of Kd), we can prove that a(·, ·) and c(·, ·)
are bounded, symmetric, positive definite bilinear forms and that

B : V → P ′, 〈B(q, ϕ〉 = b(q, ϕ)

is surjective operator. Assuming further

fd ∈ L2(Ωd), Pd ∈ H1/2(Γ D
d ), PW

d ∈ L2(Γ W
d ),



we can prove that the MH-solution is independent of choice of decomposition Id

and independent of choice of extension P̃d. Finally, using [2, Theorem 1.2], we
can prove existence and uniqueness of the MH-solution.

4 Linear System and Its Schur Complements

Advantage of the discretizations based on mixed-hybrid formulation is a par-
ticular form of the resulting linear system, which could be effectively solved by
Schur complements. In this section, we shall investigate Schur complements in
the case of our coupled problem.

We consider the lowest order approximation of the MH-formulation. To this
end, we choose simplexes as the sub-domains Ωi

d, i ∈ Id. Then, we approximate
the space H(div, Ωi

d) by the Raviart-Thomas space RT0(Ω
i
d) (see [2]) and the

spaces L2(Ωd) and H1/2(Γ j
d ) by piecewise constant functions on elements and

their edges respectively (for details see [6]). Such discretization leads to the linear
system which inherits the saddle-point structure of the system (11), (12). The
whole matrix A has a form

A =





A BT B̊T

B C C̊T

B̊ C̊ C̃





where block A is discrete version of a( · , · ) and consists of positive-definite blocks
(d + 1) × (d + 1) on the diagonal. Therefore, the inverse A−1 is also positive-
definite and easy to compute. The rows and columns of A correspond to all
sides of elements of the mesh. The blocks B and B̊ come from the first and the
second term of the form b( · , · ) respectively. Rows of B correspond to elements,
rows of B̊ correspond to the neighbourings of sides. The block B has (d + 1)
non-zeroes at the row of a d-dimensional element located in the columns of its
sides. The block B̊ has one non-zero value per column (side) with value 1. The
blocks C, C̊, C̃ are discretizations of the form −c( · , · ), thus whole C-block is
negative-definite. In Figure 4 (a), you can see the matrix A for a testing problem
P1 — a cube cut by two diagonal planes (fractures) into four prisms. Notice the
four semi-triangular shapes in the block B̊, which are formed by the internal
neighbourings of the elements inside of the prisms.

Full analysis of the system matrix and its Schur complements for a 3D domain
and prismatic finite elements was done by Maryška, Rozložńık, and Tůma

in [7]. Here we only mention main properties. As A−1 is positive-definite and C
is negative-definite, the first Schur complement

A/A = C − (B B̊)T A−1(B B̊)

is negative-definite. Moreover, A1 = BT A−1B is diagonal. Hence we can perform
the second Schur complement A2 = (−A/A)/A1. (see Figure 4 (b), (c)).



Fig. 2. Sparsity pattern: (a) original matrix (b) first Schur complement (c) second
Schur complement

We shall prove that A2 is positive-definite by showing that the Schur com-
plement of any positive definite matrix is also positive definite. Let

M =

(

A B
BT C

)

be positive definite. One can check that

M−1 =

(

A B

B
T

C

)

where
C = (M/A)−1, B = −A−1BC, A = A−1 + A−1BB

T
.

In particular M/A−1 is principal sub-matrix of M−1. Now we use the interlacing
property:

Proposition 1. [4, Theorem 8.1.7] Let B ∈ Rk×k be symmetric principal sub-
matrix of a symmetric matrix A ∈ Rn×n. Denoting αi and βi decreasing eigen-
values sequence of A and B respectively, it holds

αi ≥ βi ≥ αi+n−k, i = 1, . . . , k.

Consequently the least eigenvalue of M/A is bounded from below by the least
eigenvalue of M .

Apart from being positive-definite the Schur complements offer substantial
reduction of the problem size. In Table 1, we compare matrices A, A1, A2 for
the problem P1 discretized by 1444 elements. For the second Schur complement,
we get reduction of the size by factor 3 and reduction of the fill by factor 2. At
the same time, we get also reduction of the condition number.

Table 2 reports results of numerical experiments for problem P1 solved on
two different meshes. In all cases we have used BiCGStab method preconditioned
by ILU(k) with a factor level k. For every linear system, we were looking for the



Table 1. Comparison of Schur complements.

Schur complement size fill condition number

A 10258 45013 9.8e+05
A1 4662 29166 1.0e+06
A2 3218 19036 1.1e+05

factor level k that gives the optimal time of the whole solver. Indeed, for higher
factor levels, we get better preconditioning and thus smaller iteration number,
but because of the higher fill of the preconditioner, the iterations are slower. An
important observation is that in contrast to the whole matrix A, the optimal
factor level for the Schur complements is independent of the problem size.

Table 2. Convergence of BiCGStab with ILU and optimal factor level.

112 755 elements 290 281 elements

Schur complement A A1 A2 A A1 A2

ILU factor level 9 3 2 13 3 3
iterations 45 31 44 42 46 49

solver time 40.4 s 18.6 s 15.4 s 118 s 72 s 63 s
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7. J. Maryška, M. Rozložńık, and M. Tůma. Schur complement systems in the Mixed-
Hybrid finite element approximation of the potential fluid flow problem. SIAM J.
Sci. Comput. (SISC), 22(2), 2000.


