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ABSTRACT
Image de-noising and enhancement form fundamental prob-
lems in many engineering and biomedical applications. The
paper is devoted to the study of the multi-resolution approach
to this problem employing the Haar wavelet transform. The
transform is applied to volumetric magnetic resonance (MR)
image sets corrupted with additional noise. The resulting co-
efficients are thresholded and exploited for subsequent recon-
struction. The Haar transform is carried out through both the
two-dimensional approach applied individually to each image
layer, and the three-dimensional technique performed on the
image volume as a whole. In noise reduction, the latter ap-
proach profits from similarities between neighbouring image
layers and shows a considerable improvement over the former
method. Results are presented both in the numerical form and
using three-dimensional visualization tools.

Index Terms— Wavelet transform, image decomposition
and reconstruction, Haar transform, de-noising, biomedical
image processing

1. INTRODUCTION

Fundamental problems encountered in the digital processing
of both one-dimensional and multi-dimensional signals in-
clude rejection of their undesirable parts [1, 2],feature ex-
traction, classification and restoration of their missing or cor-
rupted components. Multi-resolution approach related to wavelet
transform [3, 4, 5] is used in many cases to simplify these
processes and to improve their robustness. Image resolution
enhancement [6, 7] and volumetric reconstruction [8, 9] form
further problems related to these topics.

Biomedical image processing form an extensive area based
upon theoretical principles of multi-dimensional processing
methods. Related problems include multirate analysis, pro-
cessing and coding of biomedical images [10, 11].

The paper is devoted to the use of the wavelet transform
and multi-resolution decomposition of biomedical image vol-
umes to improve results of the de-noising process applied sep-
arately to every image layer of the body. In the initial part of
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the paper, the Haar transform computation algorithm is pro-
posed starting with 1-D signal and proceeding to 2-D images
and 3-D image sets.

The proposed method is applied to multi-layer magnetic
resonance (MR) biomedical images. An example of the bio-
medical structure studied further is presented in Fig. 1. After
noise addition, these multi-layer images are processed by both
2-D and 3-D Haar transform involving the coefficients thresh-
olding procedure. Specific topics of the use of the wavelet
functions in magnetic resonance imaging are studied by many
authors nowadays [12, 13].

Fig. 1. Real data standing for (a) a selected spinal MR image
and (b) four chosen slices of these MR data set 3

2. HAAR TRANSFORM IN SIGNAL ANALYSIS

The Haar transform stands for the simplest algorithm enabling
signal or image compression [14].

Let us have a signal {x(n)}N
n=1. Each couple of its subse-

quent values {x(n), x(n + 1)} for n = 1, 3, · · · , N can then
be decomposed into two values
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Resulting sequence {X1,X3, · · · ,XN−1} defines the low-
pass decomposition values with its length halved in compar-
ison with the original sequence. The complementary high-
pass sequence is composed by values {X2,X4, · · · ,XN} in
the same way.

A similar principle can be applied to the analysis of an im-
age [g(n,m)]N,M taking into account that a one-dimensional
signal can be considered as a special case of an image having
only one column. The elementary decomposition element is
a 2 x 2 matrix (

gn,m gn,m+1

gn+1,m gn+1,m+1

)
(3)

in this case for n = 1, 3, · · · , N−1 and m = 1, 3, · · · ,M−1.
Each such submatrix is decomposed column-wise at first
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and then row-wise using relation
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In this manner, the first level of the decomposition procedure
is complete. The resulting matrix elements may be rearranged
to define four submatrices. The low/low-pass submatrix is
defined hereby⎛

⎜⎜⎝
G1,1 G1,3 · · · G1,M−1

G3,1 G3,3 · · · G3,M−1

· · ·
GN−1,1 GN−1,3 · · · GN−1,M−1

⎞
⎟⎟⎠ (6)

This matrix having the half number of rows and columns com-
paring to the original one can be used for the next level of
decomposition. Results of 2-D Haar decomposition into the
first level for a spinal MR image are presented in Fig. 2.

In a similar way, it is possible to decompose the body con-
sisting of layers of images. The mathematical principle [15,
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Fig. 2. Decomposition of the MR image image with addi-
tional random noise using Haar transform presenting (a) re-
sults of one level image decomposition, (b) approximation
decomposition coefficients, and (c) detail decomposition co-
efficients

14] is based upon the generalization of the previous method
adding another axis in the layer direction. In other words,
pixels of the outcome of 2-D transform of all image layers,
which have the corresponding x,y-location, are decomposed
as well as 1-D signals. The 3-D decomposition of a spinal MR
image volume using the Haar decomposition matrix is shown
in Fig. 3. Further possibilities include application of complex
wavelet functions [16].

Fig. 3. Decomposition of the set of MR images presenting
(a) 2-D slice-by-slice Haar wavelet decomposition (b) 3-D
volumetric Haar wavelet decomposition

3. OPTIMAL THRESHOLD SELECTION FOR
IMAGE DE-NOISING

Image de-nosing can by achieved by appropriate threshold-
ing of wavelet coefficients. In the case of soft-thresholding
it is possible to evaluate new coefficients c(k) using original
coefficients c(k) for a chosen threshold value δ by relation

c(k)=
{

sign c(k) (|c(k) | −δ) if |c(k) |> δ
0 if |c(k) |≤ δ

(7)

This approach can be exploited both for signals and images
using different methods of threshold level estimation. Fig.4(a)
presents results of a selected numerical experiment showing
the dependence of the MSE for a chosen image de-noising
with respect to the threshold limits chosen between the min-
imum and maximum values of the detail decomposition co-
efficients. In this way, the optimal value of threshold level is
found for each image layer. In the case of 3-D decomposi-
tion, a single threshold value is estimated for the whole vol-
ume. Results of the 2-D de-nosing of the selected MR image
using global thresholding and the optimal threshold value are
presented in Figs 4(b), (c) and (d).

4. MULTIDIMENSIONAL OBJECT DE-NOISING

Signal de-noising procedure applied in two dimensions can
be further generalized to three dimensions. The problem is
to find to which extend space information can improve de-
noising results and enhancement of individual images.



The following study is devoted to the problem of noise
rejection in real MR images. Table 1 summarizes specifica-
tions of MR data sets used for this study presenting different
biomedical structures. Fig. 1 shows parts of the set 3 com-
posed of 12 layers with resolution of 256 x 256 pixels.

Table 1. MRI DATA SETS SPECIFICATIONS

MRI
Set

Data Type
Pixel
Spacing
[mm]

Slice
Spacing
[mm]

Block
Size

1 Spine - Sagittal 0.4687 4 512x512x12
2 Spine - Axial 0.3906 4 512x512x26
3 Cut of Set 1 0.4687 4 256x256x12
4 Cut of Set 2 0.3906 4 256x256x26
5 Brain - Axial 0.4688 1 256x256x12

Fig. 5 shows results achieved for selected sets of MR im-
ages. The additional random noise was rejected using both
2-D and 3-D Haar decomposition and thresholding of the re-
sulting coefficients.

Numerical results are summarized in Table 2 for five se-
lected MR sets. The mean square error (MSE) between the
original image volume and the de-noised one is normalised to
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Fig. 4. Processing of the spinal MR image number 3 present-
ing (a) the effect of threshold selection on the mean square
error (MSE) value, (b) original image, (c) image with addi-
tional random noise, and (d) de-noised image using the opti-
mal threshold value

 (a) MRI SET 3, IMAGE 3: NOISY IMAGE, 2D DENOISING,3D DENOISING

 (b) MRI SET 4, IMAGE 3: NOISY IMAGE, 2D DENOISING, 3D DENOISING

 (c) MRI SET 5, IMAGE 3: NOISY IMAGE, 2D DENOISING, 3D DENOISING

Fig. 5. MR image de-noising by thresholding the 2D and 3D
Haar coefficients for (a) image number 3 of MRI set 3 (sagit-
tal spine), (c) image number 3 of MRI set 4 (axial spine), and
(c) image number 3 of MRI set 5 (axial brain)

the number of pixels in each image set. For each of the five
sets of data, we carried out ten 2-D and ten 3-D de-noising
experiments, each time with a different random noise compo-
nent. Table 2 displays the average MSE, its variance and its
percentage improvement attained by de-noising. Both numer-
ical results and their visualization presented in Fig. 5 verify
that the 3-D approach to image processing can highly improve
results achieved by the de-noising of individual layers.

Another set of numerical experiment have been done with
a specific noise related to the random one with its low fre-
quency spectral components removed in the frequency do-
main. Accomplishing the same set of experiments with this
high frequency band noise, much better results were achieved
for both de-noising methods. The overall average improve-
ment was 74.2% for the 2-D de-noising and 87.2% for the
3-D de-noising. In this case, the advantages of the volumetric
approach were not revealed in the full scale.

However, in the case of random noise, the layer-by-layer
technique proves insufficient in comparison with the volumet-
ric one. The percentage decrease of the random noise compo-
nents summarised in Table 2 points out the substantial effect
of the 3-D approach. While the overall average improvement



was 25.5% for the single layer processing, it was possible to
achieve the improvement of 65.0% by the 3-D de-noising ap-
proach.

Table 2. COMPARISON OF THE DE-NOISING RESULTS FOR
THE 2-D AND 3-D HAAR TRANSFORM

Method / Measure
MRI Set

1 2 3 4 5
MSE [E-02] 2.69 2.27 1.81 1.77 1.97

2D Variance [E-07] 8.25 3.39 14.9 2.68 13.0
Improvement [%] 17.9 24.0 26.8 33.4 24.9
MSE [E-02] 1.56 0.91 1.14 0.72 0.62

3D Variance [E-07] 13.8 1.10 5.40 0.71 1.91
Improvement [%] 52.5 69.6 53.9 73.0 76.2

5. CONCLUSION

It is possible to summarize that the 3-D image de-noising can
significantly improve results achieved in the case of process-
ing of individual images. Results presented in Table 2 sum-
marize numerical experiments for real MR biomedical bodies
using the Haar volumeric decomposition enabling also very
simple reconstruction of the three-dimensional body.

Our further studies will be devoted to the application of
specific wavelet functions for volumetric enhancement of biomed-
ical structures. The purpose of such a study is in the detection
of image components and in visualization of general slices of
the 3-D structures.
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